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The torsion group of endotrivial modules
Jon F. Carlson and Jacques Thévenaz

Let G be a finite group and let T (G) be the abelian group of equivalence classes
of endotrivial kG-modules, where k is an algebraically closed field of characteris-
tic p. We determine, in terms of the structure of G, the kernel of the restriction
map from T (G) to T (S), where S is a Sylow p-subgroup of G, in the case when
S is abelian. This provides a classification of all torsion endotrivial kG-modules
in that case.

1. Introduction

Endotrivial modules for a finite group G over a field k of prime characteristic p play
a significant role in modular representation theory. Among other things, they form
an important part of the Picard group of self-equivalences of the stable category
stmod(kG) of finitely generated kG-modules modulo projectives. They are modules
which have universal deformation rings [de Smit and Lenstra 1997]. The endotrivial
modules have been classified in the case that G is a p-group [Carlson and Thévenaz
2004; 2005] and various results have appeared since for some specific families of
groups [Carlson et al. 2006; 2009; 2010; 2011; 2013; 2014a; 2014b; Mazza 2007;
Mazza and Thévenaz 2007; Navarro and Robinson 2012; Lassueur and Mazza
2015]. Recently, another line of research has developed that is concerned with the
classification of all endotrivial modules which are simple [Robinson 2011; Lassueur
et al. 2013; Lassueur and Malle 2015].

The main purpose of this paper is to classify all torsion endotrivial modules when
a Sylow p-subgroup is abelian. We let G be a finite group and T (G) be the abelian
group of equivalence classes of endotrivial kG-modules, where k is an algebraically
closed field of characteristic p. Let S be a Sylow p-subgroup of G. We fix the
notation

K (G)= Ker{ResG
S : T (G)−→ T (S)}.

One of the main open questions is to describe this kernel explicitly, and we achieve
this goal here in the case that S is abelian. Actually, K (G) is known to be equal to
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the torsion subgroup of T (G) in most cases. Specifically, this happens whenever S is
not cyclic, generalized quaternion, or semidihedral — because, if we exclude these
three cases, then T (S) is torsion-free by [Carlson and Thévenaz 2005]. The excluded
cases are treated in [Mazza and Thévenaz 2007; Kawata 1993; Carlson et al. 2013].

Let N = NG(S) denote the normalizer of a Sylow p-subgroup S of G. It is
known that the restriction map ResG

N : K (G)→ K (N ) is injective, induced by the
Green correspondence, and the problem is to describe its image. In fact, K (N )
consists of all one-dimensional representations of N and the main difficulty is to
know which of them lie in the image of ResG

N ; that is, which of them have Green
correspondents that are endotrivial. Indeed, if J is the intersection of the kernels of
the one-dimensional k N -modules whose Green correspondents are endotrivial, then
K (G) is isomorphic to the dual group (N/J )∗. So the problem of finding K (G)
comes down to the question of what is J .

Another approach was introduced by Balmer [2013], in which he shows that
K (G) is isomorphic to the group A(G) of all weak homomorphisms G → k×

(defined below in Section 3). Balmer’s method was used effectively in [Carlson
et al. 2014a] to compute K (G) in some crucial cases for G a special linear group.
The method involved the construction of a system of local subgroups {ρi (Q)}
indexed on the collection of nontrivial subgroups Q of the Sylow subgroup S of G
and for i ≥ 1 (see Section 4 for the definition). These subgroups are in the kernels
of all weak homomorphisms and we show here that ρi (S)⊆ NG(S) is in the kernel
of all one-dimensional representations of NG(S) whose Green correspondents are
endotrivial modules. That is, ρi (S)⊆ J , for J defined as above.

Hence, the question of determining K (G) becomes: is J equal to ρ∞(S), the
limit of the system? The answer is yes in all examples that we know. The main
theorem of this paper says that the answer is yes whenever the Sylow p-subgroup
of G is abelian. Indeed, we prove more. We show that J = ρ2(S), the subgroup of
N = NG(S) generated by the commutator subgroup [N , N ], S, and all intersections
N∩[NG(Q), NG(Q)] for Q a nontrivial subgroup of S. Thus, K (G)∼= (N/ρ2(S))∗

in the case that S is abelian. Balmer’s characterization of K (G) in terms of weak
homomorphisms is crucial for the proof, which appears in Section 5.

In Section 6 we show that the main theorem can be used to describe K (G)
explicitly when S is cyclic. An extension of the main theorem to the case where the
normalizer N of S controls p-fusion is given in Section 7. The paper ends with some
examples of simple or almost simple groups where the subgroup K (G) is not trivial.

2. Endotrivial modules and the restriction to the Sylow subgroup

Throughout this paper, k denotes an algebraically closed field of prime characteris-
tic p and G is a finite group. We assume that all modules are finitely generated. If
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M and L are kG-modules, the notation M ∼= L⊕(proj) means that M is isomorphic
to the direct sum of L with some projective kG-module, which might be zero. We
write k for the trivial kG-module. Unless otherwise specified, the symbol ⊗ is
the tensor product ⊗k of the underlying vector spaces. In the case that M and L
are kG-modules, the tensor product M ⊗ L is a kG-module with G acting by the
diagonal action on the factors.

We assume that G has order divisible by p and we let S be a Sylow p-subgroup
of G. Recall that a kG-module M is endotrivial provided its endomorphism al-
gebra Endk(M) is isomorphic (as a kG-module) to the direct sum of the trivial
module k and a projective kG-module. In other words, M is endotrivial if and
only if Homk(M,M) ∼= M∗ ⊗ M ∼= k ⊕ (proj), where M∗ denotes the k-dual
of M . Any endotrivial module M splits as the direct sum M = M0⊕ (proj) for an
indecomposable endotrivial kG-module M0, which is unique up to isomorphism.
We let T (G) be the set of equivalence classes of endotrivial kG-modules for the
equivalence relation

M ∼ L ⇐⇒ M0 ∼= L0.

Every equivalence class contains a unique indecomposable module up to isomor-
phism. The tensor product induces an abelian group structure on the set T (G),
written additively as [M]+[L]= [M⊗L]. The zero element of T (G) is the class [k]
of the trivial module, while the inverse of the class of a module M is the class of
the dual module M∗. The group T (G) is known to be a finitely generated abelian
group.

Lemma 2.1 [Carlson et al. 2011, Lemma 2.3]. Let K (G) be the kernel of the
restriction map ResG

S : T (G)−→ T (S) to a Sylow p-subgroup S.

(a) K (G) is a finite subgroup of T (G).

(b) K (G) is the entire torsion subgroup T T (G) of T (G), provided S is not cyclic,
generalized quaternion, or semidihedral.

We say that a kG-module M has trivial Sylow restriction if the restriction of M
to a Sylow p-subgroup S has the form M↓G

S
∼= k ⊕ (proj). Any such module is

endotrivial and is the direct sum of an indecomposable trivial source module and a
projective module. Thus M has trivial Sylow restriction if and only if its class [M]
belongs to K (G).

Proposition 2.2. Suppose that a finite group H has a nontrivial normal p-subgroup.
Then every indecomposable k H-module with trivial Sylow restriction has dimension
one.

Proof. The proof is a straightforward application of the Mackey formula. The
details appear in Lemma 2.6 in [Mazza and Thévenaz 2007]. �
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In the situation of Proposition 2.2, for any one-dimensional k H -module L we
write χL : H → k× for the corresponding group homomorphism (representation).

Our next result is an easy application of the Green correspondence. For details,
see Proposition 2.6 in [Carlson et al. 2006].

Proposition 2.3. Let S be a Sylow p-subgroup of G and let N = NG(S).

(a) The restriction map ResG
N : T (G)→ T (N ) is injective, induced by the Green

correspondence.

(b) In particular, the restriction map ResG
N : K (G)→ K (N ) is injective.

We emphasize that, if M and L are kG-modules with trivial Sylow restriction
then, by Proposition 2.2, M↓G

N
∼= U ⊕ (proj) and L↓G

N
∼= V ⊕ (proj), where U

and V are k N -modules of dimension one. Here U is the Green correspondent of M ,
V is the Green correspondent of L , and we see automatically that U ⊗ V is the
Green correspondent of (M⊗ L)0, the unique indecomposable nonprojective direct
summand of M ⊗ L .

We know that K (NG(S)) consists exactly of all one-dimensional representations
of N . The main problem is to know which of them are in the image of the restriction
map from K (G). In other words, given a one-dimensional k N -module U , we need
to know when its Green correspondent M is endotrivial.

Another way of viewing the situation is the following:

Proposition 2.4. Let S denote a Sylow p-subgroup of G and let N = NG(S). Let
J ⊆ N be the intersection of the kernels of all one-dimensional k N-modules U such
that the Green correspondent M of U is an endotrivial kG-module. That is, J is
the intersection of the kernels of U such that [U ] is in the image of the restriction
ResG

N : T (G)→ T (N ). Then K (G)∼= (N/J )∗ ∼= Hom(N/J, k×).

Proof. The restriction map ResG
N : K (G) → K (N ), being injective, gives an

isomorphism between K (G) and a subgroup A⊆ K (N )∼=Hom(N , k×), the group
of one-dimensional representations of N . But A is isomorphic to the dual group of
N/J , where J is the intersection of the kernels of the elements of A. �

From the proposition, we see that the problem of characterizing the group K (G)
is equivalent to finding the group J . The main purpose of this paper is to offer a
possible candidate for the subgroup J . In addition, we prove that the candidate is,
in fact, equal to J in the case that the Sylow p-subgroup S is abelian.

3. Weak homomorphisms and the kernel of restriction

Balmer [2013] provided a new characterization of the group K (G) in terms of the
group of weak S-homomorphisms, which we describe in this section. Note that
Balmer’s construction is more general than the one that we use here. He defined
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“weak H -homomorphisms” for any subgroup H containing S. Because, we only
deal with the case that H = S in this paper, we call them “weak homomorphisms”.
Balmer [2015] has expanded his results, but here we only need the formulation
in [Balmer 2013].

For notation, recall that gS denotes the conjugate subgroup gSg−1, while Sg

denotes g−1Sg.

Definition 3.1. A map χ : G → k× is called a weak homomorphism (“weak S-
homomorphism” in the language of [Balmer 2013]) if it satisfies the following three
conditions:

(a) If s ∈ S, then χ(s)= 1.

(b) If g ∈ G and S ∩ gS = {1}, then χ(g)= 1.

(c) If a, b ∈ G and if S ∩ aS ∩ abS 6= {1}, then χ(ab)= χ(a)χ(b).

The product of two weak homomorphisms χ and ψ is defined pointwise by
(χψ)(g) = χ(g)ψ(g) and is again a weak homomorphism. The set A(G) of all
weak homomorphisms is an abelian group under this operation.

Theorem 3.2 [Balmer 2013]. The groups K (G) and A(G) are isomorphic.

The isomorphism is explicit and is described in detail in [Balmer 2013]. In
particular, it is shown that, given a weak homomorphism χ , there is a certain
norm-type formula using χ that constructs a homomorphism from the permutation
module k(G/S) to itself, whose image is the endotrivial module associated to χ .

It is important, in what follows, to understand Balmer’s isomorphism on restric-
tion to a subgroup H having a nontrivial normal p-subgroup. This is our next result.
For notation, given a finite group H , we let ♦(H) be the smallest normal subgroup
of H such that H/♦(H) is an abelian p′-group. In other words ♦(H)= [H, H ]S is
the subgroup of H generated by the commutator subgroup [H, H ] and by a Sylow
p-subgroup S of H .

Proposition 3.3. Suppose that a finite group H has a nontrivial normal p-subgroup.

(a) Every weak homomorphism χ : H → k× is a group homomorphism.

(b) The isomorphism K (H)→ A(H) maps the class of a one-dimensional k H-
module M to the corresponding group representation H → k×.

(c) The group A(H) is isomorphic to the group of one-dimensional representations
of H , that is, the dual group (H/♦(H))∗.

Proof. To prove (a), let Q be a nontrivial normal p-subgroup of H . For any a, b∈G,
the subgroup S ∩ aS ∩ abS is nontrivial because it contains Q = aQ = abQ. Thus
the third condition in Definition 3.1 implies that χ(ab)= χ(a)χ(b).

Statement (b) follows from the construction of the isomorphism given in Sec-
tion 2.5 of [Balmer 2013]. See also Corollary 5.1 in [Balmer 2013]. The proof
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of (c) is straightforward, because the image of any group homomorphism H → k×

is contained in the subgroup of k× consisting of roots of unity, namely the group of
all p′-roots of unity since k is algebraically closed and has characteristic p. �

Proposition 3.4. Let N = NG(S), where S is the Sylow p-subgroup of G. The
restriction map ResG

N : A(G)→ A(N ) is injective.

Proof. This follows from Proposition 2.3, Balmer’s isomorphism in Theorem 3.2,
and the fact that this isomorphism is natural. �

4. A system of local subgroups

In this section, we discuss the properties of a sequence of subgroups ρi (Q)⊆NG(Q),
where Q is a nontrivial p-subgroup of S and i ≥ 1. The construction of the sequence
was first presented in [Carlson et al. 2014a], though the version here is slightly
different. The definition of the subgroups ρi (Q) depends not only on NG(Q), but
involves all normalizers of nontrivial subgroups of the Sylow subgroup S of G.

The definition proceeds inductively as follows. We fix a Sylow p-subgroup S
of G. For any nontrivial subgroup Q of S, let

ρ1(Q) := ♦(NG(Q)).

As before, ♦(NG(Q)) is the product of the commutator subgroup of NG(Q) and a
Sylow p-subgroup of NG(Q). The original version in [Carlson et al. 2014a] uses
simply the commutator subgroup of NG(Q). For i > 1, we let

ρi (Q) := 〈NG(Q)∩ ρi−1(Q′) | {1} 6= Q′ ⊆ S〉,

the subgroup generated by the subgroups NG(Q) ∩ ρi−1(Q′) for all nontrivial
subgroups Q′ of S. This contains ρi−1(Q), so we have a nested sequence of
subgroups

ρ1(Q)⊆ ρ2(Q)⊆ ρ3(Q)⊆ · · · ⊆ NG(Q).

Since G is finite, the sequence eventually stabilizes, and we let ρ∞(Q) be the limit
subgroup of the sequence {ρi (Q) | i ≥ 1}, namely their union.

The definition of the subgroups ρi (Q) was originally motivated in [Carlson et al.
2014a] by the following observation:

Proposition 4.1. Suppose that χ : G→ k× is a weak homomorphism as defined in
the last section. If x ∈ ρi (Q) for some i ≥ 1 and for some nontrivial subgroup Q
of S, then χ(x)= 1.

Proof. In the case that i =1, the statement is a trivial consequence of the definition of
a weak homomorphism. That is, χ(x)=1 for any x ∈Q by Definition 3.1(a), and is a
homomorphism to an abelian group when restricted to NG(Q) by Definition 3.1(c).
So assume that i > 1 and that χ(x) = 1 for all x ∈ ρi−1(Q) for all nontrivial
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subgroups Q ⊆ S. Then χ(x)= 1 for all x ∈ NG(Q)∩ρi−1(Q′) for any nontrivial
subgroups Q and Q′. Thus, χ(x) = 1 for all x ∈ ρi (Q), and the proposition is
proved by induction. �

Suppose that M is a kG-module with trivial Sylow restriction. By Proposition 2.2,
for any nontrivial subgroup Q of S there is a one-dimensional k NG(Q)-module L Q

such that M↓G
NG(Q)

∼= L Q⊕(proj). We write χQ =χL Q for the corresponding group
homomorphism χQ : NG(Q)→ k×.

The next result encapsulates the main idea of this section. It should be compared
with Proposition 4.1.

Proposition 4.2. Suppose that M is a kG-module with trivial Sylow restriction, let
Q be a nontrivial subgroup of S and let χQ : NG(Q)→ k× be defined as above.
Then ρ∞(Q) is contained in the kernel of χQ .

Proof. We prove, by induction on i , that if x ∈ ρi (Q) then χQ(x)= 1. In the case
that i = 1, the result is a consequence of the fact that ρ1(Q)=♦(NG(Q)) is in the
kernel of every one-dimensional character on NG(Q). Inductively, we assume that
the lemma is true for ρ j (Q′) whenever j < i and 1 6= Q′ ⊆ S. Because x ∈ ρi (Q),
we have that x = x1 · · · xm for some m, where xt ∈ NG(Q)∩ ρi−1(Qt), for some
nontrivial subgroup Qt of S, for each t = 1, . . . ,m. For each t we consider the
restriction of M to NG(Q)∩ NG(Qt). Using the notation above, this yields

M↓G
NG(Q)∩NG(Qt )

∼= L Q ↓
NG(Q)
NG(Q)∩NG(Qt )

⊕ (proj)∼= L Qt ↓
NG(Qt )
NG(Q)∩NG(Qt )

⊕ (proj) .

The intersection NG(Q)∩ NG(Qt) contains the center of S, which is a nontrivial
p-subgroup. Thus, any indecomposable projective module over NG(Q)∩ NG(Qt)

has dimension divisible by p. Therefore, by the Krull–Schmidt theorem,

L Q ↓
NG(Q)
NG(Q)∩NG(Qt )

∼= L Qt ↓
NG(Qt )
NG(Q)∩NG(Qt )

.

For all t , it follows by induction that χQ(xt)= χQt (xt)= 1, because xt ∈ ρ
i−1(Qt).

Thus χQ(x)= 1, as asserted. �

The main theorem of this section is a special case of the above.

Theorem 4.3. Suppose that M is an endotrivial kG-module with trivial Sylow
restriction, i.e., M↓G

S
∼= k⊕ (proj). Then M↓G

ρ∞(S)
∼= k⊕ (proj).

There are several immediate corollaries.

Corollary 4.4. Suppose that ρ∞(S) = NG(S). Then the only indecomposable
kG-module with trivial Sylow restriction is the trivial module; that is, K (G)= {0}.

Proof. If M is a kG-module with trivial Sylow restriction, then our assumption
implies that M↓G

NG(S)
∼= k⊕ (proj). Because M is indecomposable, it is the Green

correspondent of the trivial module kNG(S). Thus M is the trivial module. �
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Corollary 4.5. Suppose that Q is a normal subgroup of S and that, for some i ,
NG(S) ⊆ ρi (Q). Then the only indecomposable kG-module with trivial Sylow
restriction is the trivial module. In other words, K (G)= {0}.

Proof. Under the hypothesis, we have that NG(S)⊆ ρi+1(S), and we are done by
the previous corollary. �

Note in the above corollary that Q being normal in S does not assure that NG(S)
is a subgroup of NG(Q). However, if Q is characteristic in S, then this is a certainty.

Corollary 4.6. Suppose that Q is a characteristic subgroup of S and that, for
some i , NG(Q) = ρi (Q). Then the only indecomposable kG-module with trivial
Sylow restriction is the trivial module. In other words, K (G)= {0}.

5. Abelian Sylow subgroup

The purpose of this section is to prove our main theorem, which describes K (G)
when a Sylow p-subgroup S of G is abelian. Specifically, we show the following:

Theorem 5.1. Suppose that a Sylow p-subgroup S of G is abelian. Let N = NG(S).

(a) The image of the restriction map ResG
N : A(G)→ A(N ) consists exactly of all

group homomorphisms NG(S)→ k× having ρ2(S) in their kernel.

(b) K (G)∼= A(G)∼= (NG(S)/ρ2(S))∗.

(c) ρ2(S)= ρ∞(S).

In other words, the theorem says that if the Sylow subgroup S of G is abelian, then
the subgroup J of Proposition 2.4 is equal to ρ2(S) and that K (G)∼= (N/ρ2(S))∗.

Note that, by Proposition 4.1, the restriction to NG(Q) of any weak homomor-
phism φ : G → k× is a homomorphism having ρ2(Q) in its kernel. Our task
then is to prove a very strong converse, namely, that any group homomorphism
χ : N = NG(S)→ k× having ρ2(S) in its kernel is the restriction to N of a weak
homomorphism.

We need a couple of preliminary results before beginning the proof. The first
observation is essential to our efforts.

Lemma 5.2. Let S be a Sylow p-subgroup of a finite group H.

(a) The inclusion map NH (S)→ H induces an isomorphism

NH (S)/NH (S)∩♦(H)∼= H/♦(H).

(b) For any group homomorphism φ : NH (S)→ k× having NH (S) ∩ ♦(H) in
its kernel, there exists a unique group homomorphism ψ : H → k× whose
restriction to NH (S) is equal to φ.
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Proof. By the definition of ♦(H), the Sylow p-subgroup S is contained in ♦(H).
The Frattini argument yields NH (S)♦(H) = H , proving (a). Then (b) follows
from (a). �

Lemma 5.3 (Burnside’s fusion theorem). Let S be an abelian Sylow p-subgroup
of G and suppose that R is a nontrivial subgroup of S ∩ gS.

(a) There exists c ∈ CG(R) and n ∈ NG(S) such that g = cn.

(b) If g=c′n′ with c′∈CG(R) and n′∈NG(S), then there exists d∈NG(S)∩CG(R)
such that c′ = cd and n′ = d−1n.

Proof. Statement (a) is essentially Burnside’s theorem. For the proof, observe
that S and gS are Sylow p-subgroups of CG(R), hence conjugate by an element
c ∈ CG(R). Then n = c−1g normalizes S. Statement (b) follows by defining
d = c−1c′ = nn′−1. �

The essence of the proof of Theorem 5.1 is the following:

Proposition 5.4. Suppose that a Sylow p-subgroup S of G is abelian, and let
N = NG(S). Let χ : N → k× be a homomorphism whose kernel contains ρ2(S).
Then there is a unique weak homomorphism θ : G→ k× whose restriction to N is
equal to χ .

Proof. Let Q be a nontrivial subgroup of S, and let H =CG(Q), the centralizer of Q
in G. Since S is abelian, S⊆ H ⊆ NG(Q). Clearly,♦(H)=[H, H ]S⊆♦(NG(Q)),
hence χ vanishes on NH (S)∩♦(H)⊆ ρ2(S) by assumption. By Lemma 5.2, there
exists a unique group homomorphism

ψQ : H = CG(Q)−→ k×

that coincides with χ on the subgroup NH (S)= NG(S)∩CG(Q)= N ∩ H .
We define θ : G→ k× by the following rule. First, we set θ(g)= 1 if S∩ gS = 1.

If S ∩ gS 6= {1}, we use Lemma 5.3 and write g = cn, with c ∈ CG(S ∩ gS)
and n ∈ NG(S). Then let

θ(g)= ψS∩gS(c)χ(n).

In order to prove that θ is well defined, we must consider another decomposition
g = c′n′, with c′ ∈ CG(S ∩ gS) and n′ ∈ NG(S), and show that the algorithm
produces the same result for θ(g). In fact, we prove more: that the algorithm
produces the same result even if we replace S ∩ gS by a proper nontrivial subgroup.
That is, assume that R is any nontrivial subgroup of S∩ gS and write g = c′n′, with
c′ ∈ CG(R) and n′ ∈ NG(S). We claim that

ψS∩gS(c)χ(n)= ψR(c′)χ(n′).
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In order to prove the claim, we observe that CG(S ∩ gS) ⊆ CG(R) because
R ⊆ S ∩ gS. So we have two decompositions g = cn = c′n′ with c, c′ ∈ CG(R)
and n, n′ ∈ NG(S). By Lemma 5.3, there exists d ∈ NG(S) ∩ CG(R) such that
c′ = cd and n′ = d−1n. Thus,

ψR(c′)χ(n′)= ψR(cd)χ(d−1n)= ψR(c)ψR(d)χ(d)−1χ(n)= ψR(c)χ(n)

because d∈NG(S)∩CG(R) and we know thatψR and χ coincide on NG(S)∩CG(R).
We next observe that the uniqueness of ψS∩gS : CG(S ∩ gS)→ k× implies that
it must be equal to the restriction to CG(S ∩ gS) of the group homomorphism
ψR : CG(R)→ k×. Therefore ψR(c) = ψS∩gS(c), completing the proof of the
claim.

Our next task is to prove that θ is a weak homomorphism. If s ∈ S, then S∩sS= S
and we have CG(S)⊆ NG(S). We use the decomposition s = 1 · s with 1 ∈ CG(S)
and s ∈ NG(S) and we get θ(s)= χ(s). But χ vanishes on S because S ⊆♦(N ).
Therefore θ(s) = 1, proving the first condition for a weak homomorphism. The
second condition is obvious, since θ(g)= 1 if S ∩ gS = 1, by definition.

Assume that a, b∈G with S∩aS∩abS 6={1}. We must show that θ(ab)=θ(a)θ(b).
Let R = S ∩ aS ∩ abS, and note that R ⊆ S ∩ aS. Using what we have proved, we
can write

θ(a)= ψR(c)χ(n), where a = cn, c ∈ CG(R), n ∈ NG(S).

Next notice that R ⊆ aS ∩ abS, so that Ra
⊆ S ∩ bS. We write

θ(b)= ψRa (d)χ(m), where b = dm, d ∈ CG(Ra), m ∈ NG(S).

It follows that ab = adam, with ad ∈ CG(R), am ∈ NG(
aS). Therefore

ab = aba = adama = adcc−1am = adcnm,

because c−1a = n. But adc ∈ CG(R), because d ∈ CG(Ra) and nm ∈ NG(S). So
we obtain

θ(ab)= ψR(
adc)χ(nm)= ψR(

ad)ψR(c)χ(n)χ(m)= ψR(c)χ(n)ψR(
ad)χ(m).

Now we claim that ψR(
ad)= ψRa (d). Writing a = cn, we first find that

ψR(
ad)= ψR(cndc−1)= ψR(c)ψR(

nd)ψR(c−1)= ψR(
nd),

because k× is commutative. Moreover, writing conjn(x)= nxn−1, we observe that
the composite

CG(Ra)= CG(Rn)
conjn // CG(R)

ψR // k×
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has a restriction to NG(S)∩CG(Rn) equal to

NG(S)∩CG(Rn)
conjn // NG(S)∩CG(R)

χ // k×.

Hence, it is equal to the map

NG(S)∩CG(Rn)
χ // k× ,

because n ∈ NG(S) and χ(nxn−1)= χ(n)χ(x)χ(n−1)= χ(x) by commutativity
of k×. It follows that ψR ◦ conjn : CG(Rn) → k× is the unique extension of
χ : NG(S)∩CG(Rn)→ k×, hence equal to the homomorphism ψRn :CG(Rn)→ k×.
In other words, ψR(

nd)= ψR(conjn(d))= ψRn (d). Finally,

ψR(
ad)= ψR(

nd)= ψRn (d)= ψRa (d),

as claimed.
Returning to the computation of θ(ab), we find

θ(ab)= ψR(c)χ(n)ψR(
ad)χ(m)= ψR(c)χ(n)ψRa (d)χ(m)= θ(a)θ(b).

This completes the proof of the third condition for a weak homomorphism. Thus
θ : G→ k× is a weak homomorphism, and we have proved the proposition. �

Proof of Theorem 5.1. To prove (a), we recall that any weak homomorphism on N
is a homomorphism. The image under the restriction map ResG

N : A(G)→ A(N )
of any element of A(G) must be a homomorphism with ρ2(S) in its kernel. The
previous proposition says that the restriction map must be injective and surjective
onto this subset.

Statement (b) follows immediately from (a) and the injectivity of the restriction
map (Proposition 3.4). The proof of (c) — that is, the equality ρ2(S)= ρ∞(S)—
follows from (a) and the fact that ρ∞(S) is in the kernel of any weak homomorphism,
by Theorem 4.3. �

All of the experimental evidence suggests that something like Theorem 5.1 should
be true in general. Hence, we suggest the following question:

Question 5.5. Suppose that G is any finite group with Sylow p-subgroup S. Let
N = NG(S), and let J ⊆ N be the intersection of the kernels of all one-dimensional
k N-modules U such that the Green correspondent of U is an endotrivial kG-module.
Is J = ρ∞(S)?

While it might be possible to prove an affirmative answer by means similar to
those in the proof of Theorem 5.1, we should point out that at least two difficulties
arise. The first is that the fusion theorem of Burnside does not hold in greater
generality. It would have to be replaced with something like Alperin’s fusion
theorem, whose conditions are more complicated. In addition, as we see in Section 7,
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even a stringent assumption such as control of fusion by the normalizer of the Sylow
subgroup S does not readily lead to a generalization. Other assumptions seem to be
necessary for the proof.

A second difficulty generalizing Theorem 5.1 is that the equality ρ2(S)= ρ∞(S)
does not hold in general. An example is G2(5) for k a field of characteris-
tic 3. Computer calculations using Magma [Bosma and Cannon 1996] show that
ρ3(S)= ρ∞(S)= NG(S), but ρ2(S) is a proper subgroup of NG(S).

6. The cyclic case

If a Sylow p-subgroup S of G is cyclic, then the structure of K (G) is determined
in Theorem 3.6 of [Mazza and Thévenaz 2007]. In this section, we show that this
result can be recovered using Theorem 5.1. We prove the following:

Theorem 6.1. Suppose that a Sylow p-subgroup S of G is cyclic. Let Z be the
unique subgroup of S of order p. Then K (G)∼=K (NG(Z))∼=

(
NG(Z)/♦(NG(Z))

)∗.
Proof. For any subgroup Q such that Z ⊆ Q ⊆ S, we have that NG(Q)⊆ NG(Z).
Hence ♦(NG(Q))⊆♦(NG(Z)), and

ρ2(S)= NG(S)∩♦(NG(Z)).

By Lemma 5.2 applied to the subgroup H = NG(Z), we have an isomorphism

NG(S)/ρ2(S)= NG(S)/NG(S)∩♦(NG(Z))∼= NG(Z)/♦(NG(Z)) .

Since K (G)∼=
(
NG(Z)/ρ2(S)

)∗ by Theorem 5.1, we obtain

K (G)∼=
(
NG(Z)/♦(NG(Z))

)∗
,

as required. This is also isomorphic to K (NG(Z)), by Proposition 3.3. �

The isomorphism K (G) ∼= K (NG(Z)) actually follows directly from the iso-
morphism T (G)∼= T (NG(Z)), which is a consequence of the fact that NG(Z) is
strongly p-embedded in G (see Lemma 3.5 in [Mazza and Thévenaz 2007]).

7. Control of fusion

Assume that the normalizer NG(S) of a Sylow p-subgroup S of G controls p-fusion.
One may wonder if Theorem 5.1 still holds under this assumption. The analysis of
the proof shows that we need more, as follows.

Theorem 7.1. Suppose that the normalizer N = NG(S) of a Sylow p-subgroup S
of G controls p-fusion. Assume, in addition, that, for any subgroup Q of S, we
have NH (S)♦(H) = H , where H = CG(Q) and NH (S) = NG(S)∩ H. Then the
following hold:
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(a) The image of the restriction map ResG
NG(S) : A(G)→ A(NG(S)) consists exactly

of all group homomorphisms NG(S)→ k× having ρ2(S) in their kernel.

(b) K (G)∼= A(G)∼= (NG(S)/ρ2(S))∗.

(c) ρ2(S)= ρ∞(S).

Proof. The proof is exactly the same as that of Theorem 5.1, with the following ob-
servations. The assumption on each group H =CG(Q) implies that the conclusions
of Lemma 5.2 hold. Thus the use of Lemma 5.2 remains valid. More precisely, for
any group homomorphism χ : NG(S)→ k× vanishing on NH (S)∩♦(H), there
exists a unique group homomorphism ψQ : CG(S)→ k× which coincides with χ
on the subgroup NH (S)= NG(S)∩ H . Here S is not necessarily contained in H
(while it is when S is abelian), so the Frattini argument cannot be applied as it was
in Lemma 5.2. However, our assumption allows us to make the argument work.

On the other hand, the assumption on control of fusion means exactly that the
conclusions of Lemma 5.3 hold. Thus, the use of Lemma 5.3 remains valid, and
the whole proof goes through. �

8. Examples

If H is a strongly p-embedded subgroup of G, then any one-dimensional represen-
tation of H has a Green correspondent which is endotrivial (see Proposition 2.8
and Remark 2.9 in [Carlson et al. 2006]). This fact was used to produce torsion
endotrivial modules of dimension greater than one in various cases, in particular
for groups of Lie type of rank one in the defining characteristic (Proposition 5.2
in [Carlson et al. 2006]) and for groups with a cyclic Sylow p-subgroup (Lemma 3.5
in [Mazza and Thévenaz 2007]).

However, there are other cases when torsion endotrivial modules of dimension
greater than one occur. Several examples are given in [Lassueur and Mazza 2015]
for various sporadic groups. The purpose of this section is to provide two explicit
examples for classical groups with an abelian Sylow p-subgroup. We first start by
an easy case.

Example 8.1 (PSL(2, q) in characteristic 2). Let G = PSL(2, q) in characteristic 2
and assume that q ≡ 3 or 5 modulo 8, so that a Sylow 2-subgroup S of G is a Klein
four-group. Then CG(S) = S has index 3 in NG(S), hence ♦(NG(S)) = S. Any
subgroup C of order 2 satisfies NG(C)= CG(C) and

S ⊆ NG(S)∩♦(NG(C))⊆ NG(S)∩ NG(C)= NG(S)∩CG(C)= S.

Therefore NG(S) ∩♦(NG(C)) = S, and it follows that ρ2(S) = ρ1(S) = S. By
Theorem 5.1, K (G) is the dual group of NG(S)/S, which is cyclic of order 3.
Hence T T (G)= K (G)∼= Z/3Z.
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For our second example, we compute the torsion part of the group of endotrivial
modules over the group G = PSL(3, q) in characteristic 3, in the case that q ≡ 4
or 7 modulo 9. In this case, the Sylow 3-subgroup of G is elementary abelian of
order 9. The point is to show that the torsion subgroup T T (G) = K (G) of the
group of endotrivial module is isomorphic to (Z/2Z)2, which has three nontrivial
elements.

For notation, we use an overline to indicate the class in G of an element
in H = SL(3, q). Let ζ denote a cubed root of unity in Fq . We fix the following
elements of H :

a =

1 0 0
0 ζ 0
0 0 ζ 2

 , x =

0 1 0
0 0 1
1 0 0

 , u =

1 1 1
1 ζ ζ 2

1 ζ 2 ζ

 , v =

ζ 1 1
ζ ζ ζ 2

1 ζ 1

 .
Then it is not difficult to verify the following:

Lemma 8.2. The subgroup 〈a, x〉 is a Sylow 3-subgroup of H = SL(3, q), and
hence the Sylow 3-subgroup of G is S = 〈a, x〉. In addition, we have the relations:

(1) u−1xu = a,

(2) u−1au = x−1,

(3) v−1xv = a2v,

(4) v−1av = ζ(ax)−1.

In particular, the elements u and v are in the normalizer of S, and each acts on S by
exchanging the four maximal subgroups in pairs. The commutator σ = u−1v−1uv
acts on S by inverting a and x , and hence also inverts every nonidentity element.

Now we consider the centralizers and normalizers. Let z ∈ H be the scalar matrix
with nonzero entries equal to ζ . Then 〈z〉 is the kernel of the natural homomorphism
of H onto G. A general principle here is that, if y is an element of H such that
y commutes with x , then, for some j , a j y is in the centralizer of x , and the same
holds with a and x exchanged.

It is easy to see that the centralizer of a in H is the Levi subgroup L of all diagonal
matrices of determinant one. Then the normalizer of 〈a, z〉 is the normalizer of L
which is generated by L , x and the element σ , the commutator of u and v. The
centralizer of x , which has the same order as that of a, consists of all elements of
the form c d e

e c d
d e c


having determinant one (that is, c3

+ d3
+ e3
− 3cde = 1). Then, the normalizer of

〈x, z〉 is generated by this centralizer, a and σ .
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Thus we can prove the following:

Proposition 8.3. The Sylow 3-subgroup S is self-centralizing. Its normalizer is
generated by a, x , u, v and σ .

Proof. We can see that the centralizer of S is generated by the classes a, x and
the classes of the intersection of the centralizers of a and x in H . However, this
intersection consists only of the elements of 〈z〉. The elements u and v permute
the maximal subgroups of S transitively. So suppose that y is an element of the
normalizer of S and y a preimage of y in H . By replacing y by its product with
a power of u and/or a power of v we may assume that y normalizes 〈a〉. By
replacing y by its product with σ , if necessary, we may assume that y centralizes a.
Multiplying y by a power of x , if necessary, we may assume that y has the formr 0 0

0 s 0
0 0 t

 ,
where rst = 1. Thus we have that

yxy−1
=

 0 r2t 0
0 0 rs2

st2 0 0

 .
The point of this is that yx y−1 must be one of the elements x , ax or a2x and cannot
be x2, ax2 or a2x2. Because y centralizes a, conjugation by y is an automorphism
of order either one or three on S. Order 3 is not possible. Consequently, yx y−1

= x
and y centralizes S. This proves the proposition. �

Now we are ready for the main theorem.

Theorem 8.4. Assume that G=PSL(3, q), where q is congruent to 4 or 7 modulo 9.

(a) Let S be a Sylow 3-subgroup of G. Then ρ∞(S)= ρ1(S)= [NG(S), NG(S)].

(b) T T (G)= K (G)∼= (Z/2Z)2.

Proof. (a) First, ρ1(S)=♦(NG(S))= [NG(S), NG(S)] by definition and the fact
that [NG(S), NG(S)] has index prime to 3 in NG(S) (namely index 4). We also
have that, for any subgroup U of order 3 in S, NG(U )∩ NG(S)⊆ [NG(S), NG(S)].
Consequently, again from the definition, we have that ρn(S)= [NG(S), NG(S)] for
all n.

(b) Since a Sylow 3-subgroup is abelian of rank two, T T (G)= K (G) is isomorphic
to the dual group of NG(S)/ρ2(S) by Theorem 5.1. By (a), ρ2(S)=[NG(S), NG(S)]
and, by Proposition 8.3, NG(S)/[NG(S), NG(S)] ∼= (C2)

2, a Klein four-group, gen-
erated by the classes of u and v. Its dual group (in additive notation) is isomorphic
to (Z/2Z)2. �
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Remark 8.5. In the case that q = 4, the normalizer of the Sylow subgroup S of G
is strongly 3-embedded, and the result of the theorem could be deduced from that
fact. In all other cases, NG(S) is not strongly 3-embedded and it is not strongly
3-embedded in any subgroup of G that properly contains it.

Finally, it is not difficult to perform the computations of the subgroups ρi (Q)
for all subgroups Q of the Sylow subgroup S of G on a computer using a standard
computer algebra system. From this computation, the structure of K (G)= T T (G)
can in many cases be deduced using Theorem 5.1 or something similar. Below are
a few calculations using Magma [Bosma and Cannon 1996]. In most cases, only
a few seconds of computing time was required. The computing time depends on
such things as the size of the permutation representation of G and the number of
subgroups of S. Here we list only groups where K (G) is not trivial. The results
should be compared with those of [Lassueur et al. 2013; Lassueur and Malle 2015;
Lassueur and Mazza 2015]. The notation for the groups is the Atlas notation.

TT(G) Group Characteristic p

Z/2Z
M23, Ru 3

J2, Suz, 2Suz, 6Suz, Fi22, Fi23 5
Z/2Z×Z/2Z M11, M22, M23, HS 3

Z/4Z
2Ru 3

Co3, Sz32 5
Z/2Z×Z/4Z 2M22, 4M22 3

Z/8Z McL 5
Z/24Z 3McL 5
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