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We compute the motivic Donaldson–Thomas theory of a small crepant resolution
of a toric Calabi–Yau 3-fold.
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Introduction

This paper is a continuation of [Morrison et al. 2012]. We study the motivic
Donaldson–Thomas invariants of noncommutative and commutative crepant reso-
lutions of the affine toric Calabi–Yau 3-fold fXY �ZN0W N1g � C4.

A Donaldson–Thomas (DT) invariant of a Calabi–Yau 3-fold Y is a counting
invariant of coherent sheaves on Y , introduced in [Thomas 2000] as a holomorphic
analogue of the Casson invariant of a real 3-manifold. A component of the moduli
space of stable coherent sheaves on Y carries a symmetric obstruction theory and a
virtual fundamental cycle [Behrend and Fantechi 1997; 2008]. A DT invariant of a
compact Y is then defined as the integral of the constant function 1 over the virtual
fundamental cycle of the moduli space.
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Figure 1. Polygons for XN0;N1 and X.Z=2Z/2 .

It is known that the moduli space of coherent sheaves on Y can be locally
described as the critical locus of a function, the holomorphic Chern–Simons (CS)
functional (see [Joyce and Song 2012]). Behrend [2009] provided a description
of DT invariants in terms of the Euler characteristic of the Milnor fiber of the CS
functional. Inspired by this result, the proposal of [Kontsevich and Soibelman 2008;
Behrend et al. 2013] was to study the motivic Milnor fiber of the CS functional as a
motivic refinement of the DT invariant. Such a refinement had been expected in
string theory [Iqbal et al. 2009; Dimofte and Gukov 2010].

On the other hand, in [Szendrői 2008] it was proposed to study counting invariants
for the noncommutative crepant resolution (NCCR) of the conifold, which are called
noncommutative Donaldson–Thomas (NCDT) invariants. It was also conjectured
there that NCDT and DT invariants are related by wall-crossing. The paper [Nagao
and Nakajima 2011] realized this, by:

� Describing the chamber structure on the space of stability parameters for
the NCCR.

� Finding chambers which correspond to geometric DT and stable pair (PT)
invariants, as well as NCDT invariants.

� Computing the generating function of DT-type invariants for each chamber.

For the conifold, the dimension of the fiber of the crepant resolution is less than 2
(we say that the resolution is small). This condition plays an important role in
many places of the paper. Affine toric Calabi–Yau 3-folds which have small crepant
resolutions are classified as follows:

(1) X D XN0;N1 WD fXY �ZN0W N1g for N0 > 0 and N1 � 0.

(2) X DX.Z=2Z/2 WDC3=.Z=2Z/2, where .Z=2Z/2 acts on C3 with weights .1; 0/,
.0; 1/ and .1; 1/.

In [Nagao 2012], counting invariants for noncommutative and commutative
crepant resolutions of fXY �ZN0W N1g were studied. First, we provided descrip-
tions of NCCRs of fXY �ZN0W N1g in terms of a quiver with potential. Given
N0 and N1, the quivers with potential are not unique. However it was also shown
that any such quivers with potential are related by a sequence of mutations. Finally,
generalizations of the results in [Nagao and Nakajima 2011] are given.
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In [Morrison et al. 2012], we provided motivic refinements of formulae in
[Nagao and Nakajima 2011]. For the proof, we needed one explicit evaluation
of the “universal” series [Morrison et al. 2012, §2] and a wall-crossing argument
[Morrison et al. 2012, §3].

In this paper, we will show similar formulae for fXY � ZN0W N1g, that is,
motivic refinements of the formulae in [Nagao 2012]. The wall-crossing argument
works without modifications (Section 6), while the evaluation part is more involved
(Theorem 0.1). Our strategy is as follows:

� First, in Section 4, we evaluate the universal series for a specific NCCR using
a generalization of the calculation of [Morrison et al. 2012, §2.2].

� Then, in Section 5, we evaluate the universal series for a general NCCR. Nagao
[2011c] provided a formula which describes how the universal series changes
under mutation. Although it is assumed that the quiver has no loops and 2-
cycles in [Nagao 2011c], we can apply a parallel argument in our setting as well.

Since any two NCCRs are related by a sequence of mutations, the evaluation is done.

Main result

Let � be a quadrilateral (or a triangle in the case N1 D 0) as in Figure 1 and � a
partition of � , that is, a division of � into an N -tuple of triangles with area 1=2,
as in Figure 2. We will associate � to a quiver with superpotential .Q� ; !� / (see
Section 2A). The set of vertices of the quiver Q� is yI WDZ=NZ, which is identified
with f0; : : : ; N � 1g. A vertex has a loop if and only if it is in the subset yIr � yI
(see (2-1) for the definition). It is shown in [Nagao 2012, §1] that the Jacobian
algebra J� WD J .Q� ; !� / is an NCCR of

X WD Spec.CŒX; Y;Z;W �=.XY �ZN0W N1//:

Let � be the set of roots of type zAN and let ��;C �re
�;C, and �im

�;C denote the
set of positive, positive real, and positive imaginary roots, respectively.1

For ˛ 2N
yI , let M.J� ; ˛/ be the moduli stack of J� -modules V with dimV D ˛.

We define the generating series of the motivic DT invariants of .Q� ; W� / by

A�U .y/DA
�
U .y0; : : : ; yN�1/ WD

X
˛2NQ0

ŒM.J� ; ˛/�vir �y
˛
2MCŒŒy0; : : : ; yN�1��:

2

1From the view point of the root system, a choice of a partition � corresponds to a choice of a set
of simple roots.

2For the wall-crossing of motivic DT theory, a twisted product on the y˛ twisted by the Euler form
plays a crucial role. In this case, the twisted product coincides with the usual commutative product
since the Euler form is trivial.
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Here y˛ WD
Q
.yi /

˛i and Œ��vir denotes the virtual motive (see Section 3A), an
element of a suitable ring of motives MC. The subscript refers to the fact that we
think of this series as the universal series.

To each root ˛ 2��;C we associate an infinite product as follows:

� For a real root ˛ 2�re
�;C such that

P
k…yIr

˛k is odd, put

A˛.y/ WD Exp
�
�L�

1
2

1� L�1
y˛
�
D

Y
j�0

.1� L�j�
1
2y˛/:

� For a real root ˛ 2�re
�;C such that

P
k…yIr

˛k is even, put

A˛.y/ WD Exp
�

1

1� L�1
y˛
�
D

Y
j�0

.1� L�jy˛/�1:

� For an imaginary root ˛ 2�im
�;C, put

A˛.y/ WD Exp
�
N � 1C L

1� L�1
y˛
�
D

Y
j�0

.1� L�jy˛/1�N � .1� L�jC1y˛/�1:

The main result of this paper is the following formula:

Theorem 0.1. A�U .y/D
Y

˛2��;C

A˛.y/:

This is proved in Section 4 and Section 5B.

Corollaries

Let zJ� D J. zQ� ; W� / be the framed algebra given by adding the new vertex 1
and the new arrow from1 to 0 to the quiver of J� . Nagao and Nakajima [2011]
introduced a notion of �-(semi)stability of zJ -modules zV with dim zV1 � 1 for a
stability parameter � 2 R

yI .
For ˛ 2 N

yI , let M� . zJ ; ˛/ be the moduli space of �-stable zJ -modules zV with
dim zV D .˛; 1/. We want to compute the motivic generating series

Z� .y/DZ� .y0; : : : ; yN�1/ WD
X
˛2N

yI

ŒM�

�
zJ ; ˛

�
�vir �y

˛
2MCŒŒy0; : : : ; yN�1��:

For each root ˛ 2��;C, we put

Z˛.y0; : : : ; yN�1/ WD
A˛.�L

1
2y0; y1; : : : ; yN�1/

A˛.�L�
1
2y0; y1; : : : ; yN�1/

:

These are given as follows:
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� For a real root ˛ 2�re
�;C such that

P
k…yIr

˛k is odd, we have

Z˛.�y0; : : : ; yN�1/D

˛0�1Y
iD0

.1� L�
˛0
2
C 1
2
Ciy˛/:

� For a real root ˛ 2�re
�;C such that

P
k…yIr

˛k is even, we have

Z˛.�y0; : : : ; yN�1/D

˛0�1Y
iD0

.1� L�
˛0
2
C1Ciy˛/�1:

� For an imaginary root ˛ 2�im
�;C, we have

Z˛.�y0; : : : ; yN�1/D

˛0�1Y
iD0

.1� L�
˛0
2
C1Ciy˛/1�N � .1� L�

˛0
2
C2Cjy˛/�1:

Applying the same argument as [Morrison et al. 2012, §3], we get the following
formula (Section 6A):

Corollary 0.2. For � 2 R
zI not orthogonal to any root, we have

Z� .y/D
Y

˛2��;C
� �˛<0

Z˛.y0; : : : ; yN�1/:

By [Behrend 2009; Behrend et al. 2013], the specialization Z� .y/j
L
1
2!1

is the
DT-type series at the generic stability parameter �, computed in [Nagao 2012].

Let Y� ! X be the crepant resolution corresponding to � . The noncommutative
crepant resolution J� is derived equivalent to Y� . In [Nagao and Nakajima 2011,
§3], we found a stability parameter �DT (resp. �PT) such that the moduli space
coincides with the Hilbert scheme (resp. the stable pair moduli space) for Y� .

Let Z�DT.s; T1; : : : ; TN�1/ and Z�DT.s; T1; : : : ; TN�1/ be the generating func-
tions of DT and PT invariants of Y� , respectively. Here s is the variable for the
homology class of a point and Ti is the variable for the homology class of the i -th
component Ci of the exceptional curve. The variable change induced by the derived
equivalence is given by

s WD y0 �y1 � � �yN�1; Ti D yi :

For 1� a � b �N � 1, we put

CŒa;b� WD ŒCa�C � � �C ŒCb� 2H2.Y� ;Z/;

where Ci is a component of the exceptional curve, and let

TŒa;b� D Ta � � �Tb
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be the corresponding monomial. Let c.a; b/ denote the number of .�1;�1/-curves
in fCi j a � i � bg. We define infinite products as follows:

� If c.a; b/ is odd, we put

ZŒa;b� DZŒa;b�.s; TŒa;b�/ WD

1Y
nD1

�n�1Y
iD0

�
1� L�

n
2
C 1
2
Ci
� .�s/n �TŒa;b�

��
:

� If c.a; b/ is even, we put

ZŒa;b� DZŒa;b�.s; TŒa;b�/ WD

1Y
nD1

�n�1Y
iD0

�
1� L�

n
2
C1Ci

� .�s/n �TŒa;b�

��1�
:

� For imaginary roots, we put

Zim DZim.s/ WD

1Y
nD1

�n�1Y
iD0

�
1� L�

n
2
C1Ci .�s/n

�1�N�
1� L�

n
2
C2Ci .�s/n

��1�
:

Corollary 0.3. (1) The refined DT and PT series of Y� are given by the formulae

ZDT.s; T1; : : : ; TN�1/DZim.s/ �
Y

1�a�b�N�1

ZŒa;b�.s; TŒa;b�/;

ZPT.s; T1; : : : ; TN�1/D
Y

1�a�b�N�1

ZŒa;b�.s; TŒa;b�/:

(2) The generating function of virtual motives of the Hilbert scheme of points on
Y� is given by the formula

Z0-dim.s/ WD

1X
nD0

Œ.Y� /Œn��vir � s
n
DZim:

(3) The refined version of the DT-PT correspondence for Y� holds:

ZDT.s; T1; : : : ; TN�1/DZ0-dim.s/�ZPT.s; T1; : : : ; TN�1/:

Remark. The formula in (2) is a direct consequence of the formula for ZDT in (1),
since the polynomial in the TŒa;b� variables does not contribute.
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1. Root system of type zAN

LetN0>0 andN1� 0 be integers such thatN0�N1, and setN DN0CN1. We set

I D f1; : : : ; N � 1g;

yI D f0; 1; : : : ; N � 1g;

zI D
˚
1
2
; 3
2
; : : : ; N � 1

2

	
;

zZD
˚
nC 1

2
j n 2 Z

	
:

For l 2Z and j 2 zZ, let l 2 yI and j 2 zI be the elements such that l� l � j �j � 0
modulo N .

Let Z
yI be the free abelian group with basis f˛i j i 2 yI g; we call ˛i a simple root.

We put

�fin
C WD f˛Œa;b� WD ˛aC � � �C˛b j 1� a � b �N � 1g;

�
re;C
C
WD f˛Œa;b�Cn � ı j ˛Œa;b� 2�

fin
C ; n 2 Z�0g;

�
re;�
C
WD f�˛Œa;b�Cn � ı j ˛Œa;b� 2�

fin
C ; n 2 Z>0g;

and

�re
C WD�

re;C
C
t�

re;�
C

; �im
C WD fn � ı j n 2 Z>0g;

where ı WD ˛0C � � �C˛N�1 is the (positive minimal) imaginary root.
For k 2 yI , the simple reflection at k is the group homomorphism given by

Z
yI
! Z

yI ;

˛i 7! ˛i �Cik �˛k;

where C is the Cartan matrix of type zAN . This gives a self-bijection of �re;C
C
nf˛kg.

2. Noncommutative crepant resolutions

2A. Quivers with potential. We denote by � the quadrilateral (or the triangle in
case N1 D 0) with vertices .0; 0/, .0; 1/, .N0; 0/ and .N1; 1/. Note that the affine
toric Calabi–Yau 3-fold corresponding to � is X D fXY �ZN0W N1g.

A partition � of � is a pair of functions �x W zI ! zZ and �y W zI ! f0; 1g such
that:

� �.i/ WD .�x.i/; �y.i// gives a bijection between zI and˚�
1
2
; 0
�
;
�
3
2
; 0
�
; : : : ;

�
N0�

1
2
; 0
�
;
�
1
2
; 1
�
;
�
3
2
; 1
�
; : : : ;

�
N1�

1
2
; 1
�	
:

� If i < j and �y.i/D �y.j / then �x.i/ > �x.j /.
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Figure 2. �� .

Figure 3. S .

Figure 4. H .

Giving a partition � of � is equivalent to dividing � into an N -tuple of triangles
fTigi2zI with area 1=2 so that Ti has .�x.i/˙ 1=2; �y.i// as its vertices. Let ��
be the corresponding diagram, �� the fan and f� W Y� ! X the crepant resolution
of X . We put

yIr WD
˚
k 2 yI j �y

�
k� 1

2

�
D �y

�
kC 1

2

�	
: (2-1)

Example 1. Let us consider as an example the case N0 D 4, N1 D 2 and

.�.i//
i2zI
D
��
7
2
; 0
�
;
�
3
2
; 1
�
;
�
5
2
; 0
�
;
�
3
2
; 0
�
;
�
1
2
; 1
�
;
�
1
2
; 0
��
:

We show the corresponding diagram �� in Figure 2.

Let S be the union of an infinite number of rhombi with edge length 1, as in
Figure 3, located so that the centers of the rhombi are on a line parallel to the x-axis
in R2, and let H be the union of an infinite number of hexagons with edge length 1,
as in Figure 4 located so that the centers of the hexagons are in a line parallel to
the x-axis in R2.

We form the sequence � D �� W Z! fS;H g which maps l to S (resp. H ) if l
modulo N is not in yIr (resp. is in yIr ), and cover the whole plane R2 by arranging
S’s and H ’s according to this sequence (see Figure 5). We regard this as a graph



Motivic Donaldson–Thomas invariants of small crepant resolutions 775

Figure 5. P� in the case of Example 1.

on the 2-dimensional torus R2=ƒ, where ƒ is the lattice generated by .
p
3; 0/ and

.N0�N1; .N0�N1/
p
3CN1/.

We can color the vertices of this graph black or white so that each edge connects
a black vertex and a white one. Let P� denote this bipartite graph on the torus. For
each edge h_ in P� , we make its dual edge h directed so that we see the black end
of h_ on our right-hand side when we cross h_ along h in the given direction. Let
Q� denote the resulting quiver. The set of vertices of the quiver Q� is yI , which is
identified with Z=NZ. The set of edges of the quiver Q� is given by

H WD

�a
i2zI

hCi

�
t

�a
i2zI

h�i

�
t

�a
k2yIr

rk

�
:

Here hCi (resp. h�i ) is an edge from i � 1
2

to i C 1
2

(resp. from i C 1
2

to i � 1
2

), and
rk is an edge from k to itself.

For each vertex q of P� , let !q be the potential3 which is the composition of all
arrows in Q� corresponding to edges in P� with q as their ends. We define

!� WD
X
q black

!q �
X
q white

!q:

The relations of the Jacobian algebra are as follows:

3A potential of a quiver Q is an element in CQ=ŒCQ;CQ�, i.e., a linear combination of equiv-
alence classes of cyclic paths in Q, where two paths are equivalent if they coincide after a cyclic
rotation.
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� For i 2 zI such that i � 1
2
; i C 1

2
2 yIr ,

hCi ı ri� 1
2
D riC 1

2
ı hCi and ri� 1

2
ı h�i D h

�
i ı riC 1

2
:

� For i 2 zI such that i � 1
2
2 yIr and i C 1

2
… yIr ,

hCi ı ri� 1
2
D h�iC1 ı h

C
iC1 ı h

C
i and ri� 1

2
ı h�i D h

�
i ı h

�
iC1 ı h

C
iC1:

� For i 2 zI such that i � 1
2
… yIr and i C 1

2
2 yIr ,

hCi ı h
C
i�1 ı h

�
i�1 D riC 1

2
ı hCi and hCi�1 ı h

�
i�1 ı h

�
i D h

�
i ı riC 1

2
:

� For i 2 zI such that i � 1
2
; i C 1

2
… yIr ,

hCi ıh
C
i�1 ıh

�
i�1D h

�
iC1 ıh

C
iC1 ıh

C
i and hCi�1 ıh

�
i�1 ıh

�
i D h

�
i ıh

�
iC1 ıh

C
iC1:

� For k 2 yIr ,
hC
i� 1
2

ı h�
i� 1
2

D h�
iC 1

2

ı hC
iC 1

2

:

2B. NCCR and derived equivalence. Let � W Y� ! X be the crepant resolution
corresponding to � .

Theorem 2.1 [Nagao 2012, Theorems 1.15 and 1.20].

Db.modJ� /'Db.CohY� /:

The equivalence is given by an explicit tilting vector bundle which is a direct
sum of line bundles [Nagao 2012, Theorem 1.10]. In particular, the following map
is compatible with the derived equivalence

H 0.Y� ;Z/˚H
2.Y� ;Z/! ZI ;

Œpt� 7! ı;

ŒCi � 7! ˛i ;

where ˛i is the i -th fundamental vector and ı WD ˛0C˛1C � � �C˛N�1.

2C. Mutation and derived equivalence. The Derksen–Weyman–Zelevinsky muta-
tion [Derksen et al. 2010] of a quiver with a potential induces a derived equivalence
of the derived categories of Ginzburg’s differential graded algebras [Keller and
Yang 2011]. Moreover, the relation between the module categories of Jacobian
algebras has a description in terms of torsion pair and tilting, which plays a crucial
role for the wall-crossing formulae [Kontsevich and Soibelman 2008; Nagao 2013].
In this paper, we cannot apply [Derksen et al. 2010; Keller and Yang 2011] since
we have loops and oriented 2-cycles in the quiver. In this subsection, we see derived
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equivalences and descriptions of module categories using the explicit computations
given in [Nagao 2012, §3].

Let k be an edge of the partition � which is a diagonal of a parallelogram. Note
that such a k corresponds to a vertex without loops. Let � 0 denote the partition
which is obtained by a “flip” of the edge k.

Let Pi be the indecomposable projective J� -module associated to a vertex i .
Note that, as a vector space, Pi is the space of linear combinations of paths ending
at the vertex i . We define

P 0k WD coker.Pk! Pk�1˚PkC1/;

and put P 0i D Pi for i ¤ k. Here the map Pk ! Pk˙1 above is induced by the
arrow from k to k˙ 1.

Theorem 2.2 [Nagao 2012, Proposition 3.1].

(1) End.˚P 0i /
op
' J� 0 :

(2) The map

ˆk WD RHom.˚P 0i ; �/ WD
b.modJ� /!Db.modJ� 0/

is an equivalence.

For a J� -module V D
L
i2yI

Vi , we have

�
H
j
modJ�0

.ˆk.V //
�
i
D

8̂̂̂<̂
ˆ̂:
Vi i ¤ k; j D 0;

ker.Vk�1˚VkC1! Vk/ i D k; j D 0;

coker.Vk�1˚VkC1! Vk/ i D k; j D 1;

0 otherwise.

The simple reflection is compatible with the derived equivalence for dimension
vectors.

By the description above, we have

modJ� \ˆ�1k .modJ� 0/D fV 2modJ� j coker.Vk�1˚VkC1! Vk/D 0g

D fV 2modJ� j Hom.V; sk/D 0g

DW .modJ� /k;

modJ� \ˆ�1k .modJ� 0/Œ1�D fV 2modJ� j Vi D 0 .i ¤ k/g

DW Sk :
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In other words, ..modJ� /k;Sk/ is a torsion pair of modJ� , and ˆ�1
k
.modJ� 0/ is

obtained from modJ� by tilting with respect to this torsion pair (see [Nagao 2013,
§3.1]). Then we have

modJ� 0 \ˆk.modJ� /D fV 2modJ� 0 j Hom.s0k; V /D 0g

DW .modJ� 0/k :

In summary, we have the following:

Proposition 2.3. The equivalence ˆk induces an equivalence of .modJ� /k and
.modJ� 0/k .

Nagao [2012, proof of Proposition 3.1] gave the isomorphism in Theorem 2.2(1)
explicitly. For V 2modJ� \ˆ�1k .modJ� 0/, the map�

H 0
modJ�0

.ˆk.V //
�
k�1
!
�
H 0

modJ�0
.ˆk.V //

�
k

is induced by the morphism

Rk�1˚Rk�1;kC1 W Vk�1! Vk�1˚VkC1;

where

Rk�1 WD

(
rk�1 k� 1 2 yIr ;

hC
k� 3

2

ı h�
k� 3

2

k� 1 … yIr ;

and
Rk�1;kC1 WD h

�

kC 1
2

ı hC
kC 1

2

ı hC
k� 1

2

:

2D. Cut and mutation. Let .Q;W / be a quiver with potential. To each subset
C �Q1, we associate a grading gC on Q by

gC .a/D

�
1 a 2 C;

0 a 2 C:

A subset C �Q1 is called a cut if W is homogeneous of degree 1 with respect
to gC . Denote by QC the subquiver of Q with vertex set Q0 and arrow set Q1nC .
We define the truncated Jacobian algebra by

J.Q;W /C WD J.Q;W /=hC i:

Let k be a vertex of Q� without loops and C be a cut of .Q� ; w� / such that
gC
�
hC
kC 1

2

�
D 14. We define a cut C 0 of .Q� 0 ; w� 0/ by the following conditions:

4We can construct a cut of .Q� ; w� / as follows: First, by coupling hCi and h�i for each i , we
group the arrows in Q� into N C jyIr j groups. Note that N C jyIr j is even. These groups have the
natural cyclic order and we label each of them as odd or even. Choose (any) one arrow from each odd
(or even) labeled group; then we get a cut.
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� gC 0
�
hC
k� 1

2

�
D 1.

� gC 0.h
˙
i /D gC .h

˙
i / if i ¤ k� 1

2
; kC 1

2
.

Proposition 2.4 [Nagao 2011c, Proposition 4.12]. The equivalence ˆk induces an
equivalence of .modJ�;C /k and .modJ� 0;C 0/k .

Proof. It is enough to show that if hC
kC 1

2

vanishes on V , then hC
k� 1

2

vanished
on ˆk.V /.

Since gC
�
h˙
k� 1

2

�
D 0, we have

� gC .rk�1/D 1 if k� 1 2 yIr , and

� gC
�
hC
k� 3

2

�
D 1 or gC

�
h�
k� 3

2

�
D 1 if k� 1 … yIr ,

and so Rk�1 vanishes. Since gC
�
hC
kC 1

2

�
D 1, we see that Rk�1;kC1 vanishes. �

3. Motivic Donaldson–Thomas invariants

3A. Motives. We are working in a version of the ring of motivic weights: let MC

denote the K-group of the category of effective Chow motives over C, extended
by L�

1
2 , where L is the Lefschetz motive. It has a natural structure of a �-ring

[Getzler 1996; Heinloth 2007], with �-operations defined by �n.ŒX�/D ŒXn=Sn�
and �n.L

1
2 /D L

n
2 . We put

zMC DMCŒŒL
�1��;

which is also a �-ring. Note that in this latter ring the elements .1 � Ln/, and
therefore the motives of general linear groups, are invertible. The rings MC � zMC

sit in larger rings M O�
C
� zM O�

C
of equivariant motives, where O� is the group of all

roots of unity [Looijenga 2002].
Let f WX ! C be a regular function on a smooth variety X . Using arc spaces,

Denef and Loeser [2001; Looijenga 2002] defined the motivic nearby cycle Œ f � 2
M O�

C
and the motivic vanishing cycle

Œ'f � WD Œ f �� Œf
�1.0/� 2M O�

C

of f . Note that if f D 0, then Œ'0�D�ŒX�.

Theorem 3.1 [Behrend et al. 2013, Proposition 1.11]. Let f WX ! C be a regular
function on a smooth variety X. Assume that X admits a C�-action such that f is
C�-equivariant, i.e., f .tx/ D tf .x/ for t 2 C�, x 2 X , and such that there exist
limits limt!0 tx for all x 2X . Then

Œ'f �D Œf
�1.1/�� Œf �1.0/� 2MC �M O�

C
:



780 Andrew Morrison and Kentaro Nagao

Following [Behrend et al. 2013], we define the virtual motive of crit.f / to be

Œcrit.f /�vir WD �.�L
1
2 /� dimX Œ'f � 2M

O�
C
:

For a smooth variety X , we put

ŒX�vir WD Œcrit.0X /�vir D .�L
1
2 /� dimX

� ŒX�:

3B. Quivers and moduli spaces. Let Q be a quiver, with vertex set Q0 and edge
set Q1. For an arrow a 2Q1, we denote by s.a/ 2Q0 and t .a/ 2Q0 the vertices
at which a starts and ends, respectively. We define the Euler–Ringel form � on
ZQ0 by the rule

�.˛; ˇ/D
X
i2Q0

˛iˇi �
X
a2Q1

˛s.a/ˇt.a/; ˛; ˇ 2 ZQ0 :

Given a Q-representation M , we define its dimension vector dimM 2 NQ0 by
dimM D .dimMi /i2Q0 . Let ˛ 2NQ0 be a dimension vector and let Vi D C˛i for
i 2Q0. We define

R.Q; ˛/ WD
M
a2Q1

Hom.Vs.a/; Vt.a//

and
G˛ WD

Y
i2Q0

GL.Vi /:

Note that G˛ naturally acts on R.Q; ˛/, and the quotient stack

M.Q; ˛/ WD ŒR.Q; ˛/=G˛�

gives the moduli stack of representations of Q with dimension vector ˛.
Let W be a potential on Q, i.e., a finite linear combination of cyclic paths in Q.

Denote by J D JQ;W the Jacobian algebra, i.e., the quotient of the path algebra CQ

by the two-sided ideal generated by formal partial derivatives of the potential W .
Let

f˛ WR.Q; ˛/! C

be the G˛-invariant function defined by taking the trace of the map associated to
the potential W . As it is now well-known [Segal 2008, Proposition 3.8], a point in
the critical locus crit.f˛/ corresponds to a J -module. The quotient stack

M.J; ˛/ WD Œcrit.f˛/=G˛�

gives the moduli stack of J -modules with dimension vector ˛.
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Definition 3.2. A central charge is a group homomorphism Z WZQ0!C such that

Z.˛/ 2 HC D fre
i�'
j r > 0; 0 < ' � 1g

for any ˛ 2NQ0nf0g. Given ˛ 2NQ0nf0g, the number '.˛/D ' 2 .0; 1� such that
Z.˛/D rei�' , for some r > 0, is called the phase of ˛.

Definition 3.3. For any nonzero Q-representation or J -module V , we define
'.V /D '.dimV /. AQ-representation (resp. J -module) V is said to be Z-stable if
for any proper nonzero Q-subrepresentation (resp. J -submodule) U � V we have

'.U / < '.V /;

and Z-semistable if for all such proper subrepresentations (resp. submodules) we
have the weaker condition

'.U /� '.V /:

Definition 3.4. Given � 2 RQ0 , define the central charge Z W ZQ0! C by the rule

Z.˛/D�� �˛C i j˛j;

where j˛j D
P
i2Q0

˛i . We call a Q-representation or J -module �-(semi)stable if
it is Z-(semi)stable.

Remark 3.5. Let the central charge Z be as in Definition 3.4. Define the slope
function � WNQ0nf0g! R by �.˛/D � �˛=j˛j. If l �HDHC[f0g is a ray such
that Z.˛/ 2 l , then l D R�0.��.˛/; 1/. This implies that '.˛/ < '.ˇ/ if and only
if �.˛/ < �.ˇ/.

We say that � 2 RQ0 is ˛-generic if for any 0 < ˇ < ˛ we have '.ˇ/¤ '.˛/.
This condition implies that any �-semistable Q-representation or J -module is
automatically �-stable.

Let R� .Q; ˛/ denote the open subset of R.Q; ˛/ consisting of �-semistable rep-
resentations. Let f�;˛ denote the restriction of f˛ to R� .Q; ˛/. The quotient stacks

M� .Q; ˛/ WD ŒR� .Q; ˛/=G˛� and M� .J; ˛/ WD Œcrit.f�;˛/=G˛� (3-1)

give the moduli stacks of �-semistable Q-representations and J -modules with
dimension vector ˛.

3C. Motivic DT invariants. Let .Q;W / be a quiver with a potential and let J D
JQ;W be its Jacobian algebra. Recall that the degeneracy locus of the function
f˛ WR.Q; ˛/! C defines the locus of J -modules, so that the quotient stack

M.J; ˛/ WD Œcrit.f˛/=G˛�
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is the stack of J -modules with dimension vector ˛. We define motivic Donaldson–
Thomas invariants by

ŒM.J; ˛/�vir WD
Œcrit.f˛/�vir

ŒG˛�vir
:

For a stability parameter �, we define

ŒM� .J; ˛/�vir D
Œcrit.f�;˛/�vir

ŒG˛�vir
; (3-2)

where, as before, f�;˛ denotes the restriction of f˛ WR.Q; ˛/! C to R� .Q; ˛/.

3D. Generating series of motivic DT invariants. Let .Q;W / be a quiver with a
potential admitting a cut, and let J D JQ;W be its Jacobian algebra.

Definition 3.6. We define the generating series of the motivic Donaldson–Thomas
invariants of .Q;W / by

AU .y/D
X

˛2NQ0

ŒM.J; ˛/�vir �y
˛
D

X
˛2NQ0

Œcrit.f˛/�vir

ŒG˛�vir
�y˛ 2 TQ;

where the subscript refers to the fact that we think of this series as the universal series.

Given a cut C of .Q;W /, we define a new quiver QC D .Q0;Q1nC/. Let JC
be the quotient of CQC by the ideal

.@CW /D .@W=@a; a 2 C/:

Proposition 3.7 [Morrison et al. 2012, Proposition 1.14]. If .Q;W / admits a cut
C , then

AU .y/D
X

˛2NQ0

.�L
1
2 /�.˛;˛/C2dI .˛/

ŒR.JC ; ˛/�

ŒG˛�
y˛;

where dC .˛/D
P
.aWi!j /2C ˛i j̨ for any ˛ 2 ZQ0 .

The quiver with potential .Q� ; w� / introduced in Section 2 admits a cut (see
Section 2D), and Proposition 3.7 can be applied. In the next section we use this to
compute the universal series in a specific case.

4. The universal DT series: special case

Throughout this section we fix � to be the unique partition defined such that

yIr D f0; 1; 2; 3; : : : ; N
0
� 1g;

in other words, the partition such that the quiver with potential .Q� ; w� / has loops
at the first N 0 vertices only.

The aim of this section is to prove Theorem 0.1 for this quiver with potential.
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Figure 6. The case N D 6 and N 0 D 2.

We define three fixed subsets of the vertices:

I1 WD f0; 1; : : : ; N
0
� 1g � Z=N;

I2 WD fN
0; N 0C 2;N 0C 4; : : : ; N � 2g � Z=N;

I3 WD fN
0
C 1;N 0C 3;N 0C 5; : : : ; N � 1g � Z=N:

Then there exists a cut C given by the collection of arrows

C D
˚
h�i j i �

1
2
… I2

	
:

By Proposition 3.7, the universal DT seriesA�U .y/D
P
˛2NQ A˛y

˛ has coefficients
given by

A˛ D .�L
1
2 /�.˛;˛/C2dC .˛/

ŒR.J�;C ; ˛/�

ŒG˛�
y˛;

where dC .˛/D
P
.aWi!j /2C ˛i j̨ . To begin, we find a simple expression for the

term �.˛; ˛/C 2dC .˛/ in the exponent. We know by definition that

�.˛; ˛/D
X

i2I1[I2[I3

˛2i �
X
i2I1

˛2i �
X

i2I1[I2[I3

˛i˛iC1 �
X

i2I1[I2[I3

˛iC1˛i ;

dI .˛/D
X
i2I1

˛i˛iC1C
X
i2I3

˛iC1˛i ;

so it follows that

�.˛; ˛/C 2dC .˛/D
X

i2I2[I3

˛2i � 2 �
X
i2I2

˛i˛iC1 D
X
i2I2

.˛iC1�˛i /
2:

Our next goal is to factorizeA�U .y/ into two simpler series. We proceed by analyzing
the motivic classes ŒR.J�;C ; ˛/�.

Given a dimension vector ˛ 2 NQ0 and a representation of a J�;C -module

V D
M

i2I1[I2[I3

Vi ;

we focus on the specific element

H WD hC1
2

C hC3
2

C � � �ChC
N� 1

2

2

M
i2I1[I2[I3

Hom.Vi ; ViC1/:
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This map H acts as an endomorphism of the vector space V . Given any such
linear map

H W V ! V;

there exists a unique splitting V D V I ˚V N with maps

H I
W V I ! V I invertible,

HN
W V N ! V N nilpotent,

so that
H DH I

˚HN :

Moreover, in our case the above splitting respects the grading by i 2 I1[ I2[ I3.
To be explicit, we have that

V I D
M

i2I1[I2[I3

V Ii ;

where V Ii WD Vi \V
I (similarly V N D

L
i2I1[I2[I3

V Ni with V Ni WD Vi \V
N ).

One immediate consequence of this is that

dim.V Ii /D dim.V IiC1/ for all i 2 I1[ I2[ I3I

indeed, this is clear since the block form of H I demands that it map V Ii to V IiC1
via an isomorphism. We are now ready to decompose the computation of A�U .y/
into two simpler subproblems.

Definition 4.1 (invertible series). We define

RI .a/ WD fr 2R.J�;C ; ˛/ jH is invertible, ˛i D a for all ig

and the series

I � .x/ WD
X
a�0

ŒRI .a/�

ŒGL.a/�N
xa:

Definition 4.2 (nilpotent series). We define

RN .˛/ WD fr 2R.J�;C ; ˛/ jH is nilpotentg

and the series

N � .y/ WD
X

˛2NQ0

.�L
1
2 /
P
i2I2

.˛iC1�˛i /
2 ŒRN .˛/�

ŒG˛�
y˛:

The following lemma shows that the series A�U .y/ factorizes into the product of
the two series just defined:
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Lemma 4.3. Let x D y0 � � �yN�1; then, in the notation above, we have

A�U .y/D I
� .x/ �N � .y/:

Proof. This formula follows directly from a stratification of the variety R.J�;C ; ˛/
by the dimension of V Ii .

Fix ˛ 2 NQ0 ; we stratify R.J�;C ; ˛/ by dim.V Ii /D a. Let

a WD .a; a; : : : ; a/ 2 NQ0 ;

and let
˛0 be such that ˛ D aC˛0 2 NQ0 :

There is a Zariski locally trivial fibration

RI .a/�RN .˛0/ ����! fr 2R.J�;C ; ˛/ j dim.V Ii /D a for H 2 rg??y
M.a; ˛/

Here M.a; ˛/ is the space parametrizing splittings Vi D V Ii ˚V
N
i . To see this,

one checks that the arrows ri , h�
iC 1

2

in the representation also preserve the splitting,

so the entire representation splits into V I ˚ V N . This follows easily from the
relations and some basic linear algebra.

Splittings of the vector space Vi D V Ii ˚V
N
i are parametrized by

GL.˛i /=.GL.a/�GL.˛0i //;

and hence the motivic class of the base is

ŒM.a; ˛/�D
ŒG˛�

ŒGL.a/�N � ŒG˛0 �
:

Summing over each stratum with dim.V Ii /D a, we get

ŒR.J�;C ; ˛/�D ŒG˛� �

mini f˛i gX
aD0

ŒRI .a/�

ŒGL.a/�N
�
ŒRN .˛0/�

ŒG˛0 �
:

Multiplying both sides of this expression by .�L
1
2 /
P
i2I2

.˛iC1�˛i /
2

y˛ and summing
gives

A�U .y/

D

�X
a�0

ŒRI .a/�

ŒGL.a/�N

N�1Y
iD0

yai

�
�

� X
˛02NQ0

.�L
1
2 /
P
i2I2

.˛0
iC1
�˛0

i
/2 ŒR

N .˛0/�

ŒG˛0 �
y˛
0

�
;

proving the result. �
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In the next two sections we compute formulae for I � .x/ and N � .y/.

4A. Step I: the invertible case I� .x/.

Proposition 4.4. We have

I � .x/D Exp
�

L
x

1� x

�
:

Proof. A J�;C -module r 2R.J�;C ; ˛/ is given by a vector space

V D
M

i2I1[I2[I3

Vi

of dimension ˛ 2 NQ0 and a collection of linear maps

ri W Vi ! Vi for i 2 I1;

h�
iC 1

2

W ViC1! Vi for i 2 I2;

hC
iC 1

2

W Vi ! ViC1 for i 2 I1[ I2[ I3;

satisfying the relations coming from cyclic differentiation of the potential

rih
C

i� 1
2

D hC
i� 1
2

ri�1 for i 2 Œ1; N 0� 1�\ I1;

r0h
C

N� 1
2

D hC
N� 1

2

hC
N� 3

2

h�
N� 3

2

;

h�
N 0C 1

2

hC
N 0C 1

2

hC
N 0� 1

2

D hC
N 0� 1

2

rN 0�1;

h�
iC 3

2

hC
iC 3

2

hC
iC 1

2

D hC
iC 1

2

hC
i� 1
2

h�
i� 1
2

for i D ŒN 0C 1;N � 3�\ I3:

Assuming moreover that r 2RI .a/, we have

hC
iC 1

2

W Vi ! ViC1 is invertible for all i 2 I1[ I2[ I3:

This allows us to expressRI .a/ as a
QN�1
iD1 GL.Vi /-torsor over a commuting variety

� WRI .a/! C.a/;�
ri ; h

C

iC 1
2

; h�
iC 1

2

�
7!
�
r0; h

C

N� 1
2

hC
N� 3

2

� � � hC3
2

hC1
2

�
;

where

C.a/D f.A;B/ 2 End.V0/�GL.V0/ j AB D BAg:
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The free action of
QN�1
iD1 GL.Vi / on RI .a/ is given by

.g1; : : : ; gN�1/ W ri 7! girig
�1
i for i 2 Œ1; N 0� 1�;

hC1
2

7! g1h
C
1
2

;

hC
N� 1

2

7! hC
N� 1

2

g�1N�1;

hC
iC 1

2

7! giC1h
C

iC 1
2

g�1i for i 2 Œ1; N � 2�;

h�
iC 1

2

7! gih
�

iC 1
2

g�1iC1 for i 2 I2:

As GL.a/ is a special group [Chevalley et al. 1958], the torsor splits in the Zariski
topology, so motivically we have

ŒRI .a/�D ŒGL.a/�N�1 � ŒC.a/�:

Thus

I � .x/D
X
a�0

ŒC.a/�

ŒGL.a/�
xa:

The generating series for the commuting variety is obtained in [Bryan and Morrison
2015], giving the result. �

4B. Step II: the nilpotent case N� .y/. This section is the final step in the calcu-
lation. Here we compute N � .y/ and obtain the formula of A�U .y/.

We fix a dimension vector ˛ 2 NQ0 . As before, a J�;C -module is given by a
vector space

V D
M

i2I1[I2[I3

Vi

of dimension ˛ and a collection of linear maps

ri W Vi ! Vi for i 2 I1;

h�
iC 1

2

W ViC1! Vi for i 2 I2;

hC
iC 1

2

W Vi ! ViC1 for i 2 I1[ I2[ I3;

satisfying the relations of the potential (see Proposition 4.4). Throughout this
section we insist that the map

H D hC1
2

C hC3
2

C � � �ChC
N� 1

2

2

M
i2I1[I2[I3

Hom.Vi ; ViC1/



788 Andrew Morrison and Kentaro Nagao

is nilpotent. In fact, RN .˛/ is exactly the collection of all such representations
(see Definition 4.2). In particular, if we let j˛j WD dim.V / then we know that
H j˛j D 0. This gives a filtration of the vector space

V D V j˛j � V j˛j�1 � � � � � V 1 � V 0 D f0g;

where
V j D fv 2 V jH j .v/D 0g:

Moreover, the filtration respects the grading by i 2 I1 [ I2 [ I3, by which we
mean that

V j D
M

i2I1[I2[I3

.V j \Vi /;

where Vi is the summand at the i -th vertex of the quiver. By considering the vector
space V as a representation of the nilpotent matrix H , we can identify V with a
CŒx�-module supported at the origin. Modules for a principal ideal domain have a
simple structure. In particular, we have

V Š

dM
jD1

.CŒx�=.xj //˚bj

as a CŒx�-module. The next proposition provides a more refined version of this
statement, where each factor in this decomposition is generated by a vector from a
vector space Vi :

Proposition 4.5. For each i 2 I1[ I2[ I3, there exists a collection of integers bij
such that

V Š
M

i2I1[I2[I3

dM
iD1

.CŒx�=.xj //˚b
i
j ;

where the factor .CŒx�=.xj //˚b
i
j is generated as a CŒx�-module by vectors in Vi .

Moreover, the numbers bij are uniquely determined by the above conditions.

Proof. We will argue by induction on d , the largest integer such that bd ¤ 0. As
such, we can assume that for each j � d � 1 the factor CŒx�=.xj / is generated
by a vector in some Vi . Now let e1; : : : ; ebd be a generating set for the factor
.CŒx�=.xd //˚bd , and define W WD spanfe1; : : : ; ebd g. We consider the projection
operators

pi W V ! Vi=Vi \V
d�1;

and set Wi WD pi .W / and bi
d
D dimWi . We claim that

p0˚ � � �˚pN�1 WW !W0˚ � � �˚WN�1
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is an isomorphism. The map is clearly onto and an injection since any vector
in the kernel must lie in V d�1. Now, considering a lifting of the vector space
Vi �W

0
i �Wi � Vi=Vi \V

d�1, we have that

W 0i ˚HW
0
i ˚ � � �˚H

d�1W 0i � V

is a submodule of V isomorphic to .CŒx�=.xd //˚b
i
d . Summing over all i , we have

that .CŒx�=.xd //
P
i b
i
d is a submodule of V , and hence it follows that

P
i dimWi DP

i b
i
d
� bd D dimW , and so for dimension reasons we get

V Š

�N�1M
iD0

.CŒx�=.xd //˚b
i
d

�M�d�1M
jD1

.CŒx�=.xj //˚bj
�
:

Here each factor .CŒx�=.xd //˚b
i
d is generated by vectors in Vi , so by our inductive

hypothesis the entire module is generated by vectors in Vi .
Finally we prove the uniqueness statement. Assume we have two distinct such

decompositions

V Š

N�1M
iD0

dM
jD1

.CŒx�=.xj //˚b
i
j Š

N�1M
iD0

dM
jD1

.CŒx�=.xj //˚c
i
j :

By restricting to subrepresentations if necessary, we can assume that bi
d
¤ ci

d
for

some i . However in this case

bid D dim.ker.Hd
W Vi ! ViCd /=Vi \V

d�1/D cid

is a contradiction. This proves the last part of the lemma. �

Next we organize this data in the way most helpful to our cause:

Definition 4.6. Let 0� a; b �N � 1. We define

jb� aj Dminfr 2 f0; 1; : : : ; N � 1g j b D aC r modN g:

Intuitively, this is the distance from a to b in the cyclic direction i ! i C 1

corresponding to the map H .

Definition 4.7. Suppose we have a decomposition of V as a CŒx�-module as in
Proposition 4.5. Define V a;b to be the vector subspace corresponding to the
summand M

l�1

.CŒx�=.xN.l�1/Cjb�ajC1//
ba
N.l�1/Cjb�ajC1 ;

and relabel the integers
b
a;b
l
WD baN.l�1/Cjb�ajC1
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to define partitions

� Œa;b� WD
�
1b
a;b
1 2b

a;b
2 3b

a;b
3 � � �

�
:

Notice that the above definition depends on the choice of the decomposition
in Proposition 4.5. However, all such vector spaces are isomorphic abstractly as
CŒx�-modules. We can think of these vector spaces as being generated by the
nilpotent vectors that start at the a-th vertex and are annihilated at the .bC 1/-st
vertex under the action of the map H .

The next lemma makes explicit how to recover the dimension vector of a repre-
sentation from the datum of the N 2 partitions f� Œa;b� j 0� a; b �N � 1g.

Lemma 4.8. Given a representation r 2RN .˛/ so that the endomorphism H has
type f� Œa;b�g, the dimension vector of the representation r is given by

˛i D
X
a;b

j� Œa;b�j �
X
a;b

i…Œa;b�

l.� Œa;b�/;

where j� Œa;b�j and l.� Œa;b�/ are the size and length of the partition � Œa;b�.

Proof. This is clear since
V D

M
a;b

V a;b

and

dim.V a;b \Vi /D
�
j� Œa;b�j if i 2 Œa; b�;
j� Œa;b�j � l.� Œa;b�/ if i … Œa; b�:

�

We can use this to give a simple reformulation of the term �.˛; ˛/C 2dC .˛/

appearing in the series N � :

Corollary 4.9. We have

�.˛; ˛/C 2dC .˛/D
X
i2I2

�X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/

�2
:

Proof. In our initial analysis of these terms we saw that

�.˛; ˛/C 2dC .˛/D
X
i2I2

.˛iC1�˛i /
2;

and now by Lemma 4.8 we have

˛iC1�˛i D
X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/: �

The above classification has been for the purpose of breaking the variety RN .˛/
down into simpler pieces.
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Definition 4.10. Given N 2 partitions f� Œa;b� j 0� a; b �N � 1g and a dimension
vector ˛ as in Lemma 4.8, we define

R.f� Œa;b�g/D fr 2RN .˛/ jH has type f� Œa;b�gg:

This provides a stratification ofRN .˛/ into strata where the normal form ofH has
a fixed type. We will proceed to compute the motivic classes of each of these strata.

A representation in R.f� Œa;b�g/ is given explicitly by a vector space V DL
i2I1[I2[I3

Vi and a collection of linear maps corresponding to the arrows ri
with i 2 I1, h�

iC 1
2

with i 2 I2 and hC
iC 1

2

with i 2 I1[I2[I3. In addition, the linear
maps satisfy relations

rih
C

i� 1
2

D hC
i� 1
2

ri�1 for i 2 Œ1; N 0� 1�\ I1;

r0h
C

N� 1
2

D hC
N� 1

2

hC
N� 3

2

h�
N� 3

2

;

h�
N 0C 1

2

hC
N 0C 1

2

hC
N 0� 1

2

D hC
N 0� 1

2

rN 0�1;

h�
iC 3

2

hC
iC 3

2

hC
iC 1

2

D hC
iC 1

2

hC
i� 1
2

h�
i� 1
2

for i D ŒN 0C 1;N � 3�\ I3:

and we require that the map

H D hC1
2

C hC3
2

C � � �ChC
N� 1

2

2

M
i2I1[I2[I3

Hom.Vi ; ViC1/

has a type given by the partitions f� Œa;b� j 0 � a; b � N � 1g. The linear map H
contains all the information of the maps hC

iC 1
2

. For brevity, we make the following
definition, packaging all the remaining linear maps into one.

Definition 4.11. Given a representation as above, we define the linear map

L WD r0C r1C � � �C rN 0�1C h
�

N 0C 1
2

C � � �Ch�
N� 3

2

2

M
i2I1

Hom.Vi ; Vi /
M
i2I2

Hom.ViC1; Vi /:

From now on, in order to compute the motivic class of R.f� Œa;b�g/ we will work
with a choice of coordinates. Let

v
a;b
l
.k/ 2 Va

be such that va;b
l
.k/ generates the k-th summand of CŒx�=.xN.l�1/Cjb�ajC1/˚b

a;b
l

in the decomposition of Proposition 4.5. Then we have that

B WD fHpv
a;b
l
.k/ j 1� k� b

a;b
l
; 0� a; b�N �1; 0�p�N.l�1/Cjb�ajC1g

forms a basis of V .
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Definition 4.12. We define H.� Œa;b�/ to be the matrix representation of the map
H with respect to the basis B. Also define

F.f� Œa;b�g/ WD fL j .L;H.� Œa;b�// 2R.f� Œa;b�g/g;

N.f� Œa;b�g/ WD fH jH has type f� Œa;b�gg:

Then R.f� Œa;b�g/ has a decomposition as a vector bundle:

Lemma 4.13. R.f� Œa;b�g/ has the structure of a vector bundle

F.f� Œa;b�g/ ����! R.f� Œa;b�g/??y
N.f� Œa;b�g/

In particular, we have that

ŒR.f� Œa;b�g/�D ŒF .f� Œa;b�g/� � ŒN.f� Œa;b�g/�

in the Grothendieck ring of varieties.

Proof. The projection map

p WR.f� Œa;b�g/!N.f� Œa;b�g/;

.L;H/ 7!H

defines the bundle structure with zero section H 7! .0;H/. The fiber is the linear
space of all such L. �

Here the base of the vector bundle is the space of all matrices of type f� Œa;b�g;
these are all conjugate to H.� Œa;b�/, and therefore we have a torsor

� WG˛!N.� Œa;b�/;

P 7! PH.� Œa;b�/P�1:

This is a torsor for the group S 0.f� Œa;b�g/ WDStabG˛ .H.�
a;b//. This group is given

as the group of units in an algebra:

Definition 4.14. We identify S 0.f� Œa;b�g/ with the group of multiplicative units in
the algebra

S.f� Œa;b�g/ WD

�
N 2

N�1Y
iD0

End.˛i /
ˇ̌
NH.� Œa;b�/DH.� Œa;b�/N

�
:

Since S 0.f� Œa;b�g/ is the group of units of an algebra it is a special group
[Chevalley et al. 1958], and so the above torsor splits in the Zariski topology. For
completeness we include a short proof of this fact.
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Lemma 4.15. The group S 0.f� Œa;b�g/ is a special algebraic group.

Proof. The ring of units is defined by a single polynomial equation and is open in
A. Consequently the units S 0.f� Œa;b�g/ act generically freely on the vector space
S.f� Œa;b�g/, so by Proposition 3.13 of [Merkurjev 2013] the group has essential
dimension zero. Then by Proposition 3.16 of [Merkurjev 2013] it is a special
algebraic group. �

The next lemma gives a formula of the motivic class of the group S 0.f� Œa;b;�g/,
and via the splitting of the above torsor we deduce a formula for the class of
N.f� Œa;b�g/. Before stating the lemma we create some notation:

Definition 4.16. We denote the dimensions of the linear spaces F.f� Œa;b�g/ and
S.f� Œa;b�g/ by

T .f� Œa;b�g/ WD dimF.f� Œa;b�g/;

B.f� Œa;b�g/ WD dimS.f� Œa;b�g/:

Lemma 4.17. We have

ŒS 0.f� Œa;b�g/�D ŒS.f� Œa;b�g/� �
Y

0�a;b�N�1

1

f .� Œa;b�/
;

where

f .� Œa;b�/ WD
Y
l�1

ŒEnd.ba;b
l
/�

ŒGL.ba;b
l
/�
:

As a consequence,

ŒR.f�a;bg/�D ŒG˛� � L
T.f�Œa;b�g/�B.f�Œa;b�g/

�

Y
0�a;b�N�1

f .� Œa;b�/:

Proof. Let

W
a;b
l
WD spanCfv

a;b
l
.k/ j 1� k � b

a;b
l
g

be the span of the basis elements va;b
l
.k/ for 1� k � ba;b

l
. We have both inclusion

and projection

W
a;b
l

,! V �W
a;b
l

:

This gives a map of algebras

� W S.f� Œa;b�g/!
Y
a;b;l

End.W a;b
l

/;

N 7!
M
a;b;l

N j
W
a;b
l

:
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This splits as a trivial vector bundle, whose rank is the dimension of the total space
minus the dimension of the base. Since we have that the group S 0.f� Œa;b�g/ is the
group of units in S.f� Œa;b�g/, we can identify S 0.f� Œa;b�g/ as the inverse image of
the units on the right-hand side. This is a trivial vector bundle of rank equal to
dimS.f� Œa;b�g/� dim

Q
a;b;l End.W a;b

l
/. We have an isomorphism of varieties

S 0.f� Œa;b�g/�
S.f� Œa;b�g/Q
a;b;l End.W a;b

l
/
�

Y
a;b;l

GL.W a;b
l

/;

so motivically we have

ŒS 0.f� Œa;b�g/�D ŒS.f� Œa;b�g/� �
Y

0�a;b�N�1

1

f .� Œa;b�/
:

In Lemma 4.13 we saw that

ŒR.f� Œa;b�g/�D ŒF .f� Œa;b�g/� � ŒN.f� Œa;b�g/�:

Now we know that N.f� Œa;b�g/ is a torsor for the group S 0.f� Œa;b�g/. We have just
computed the motive of this group. So we can deduce that

ŒR.f� Œa;b�g/�D ŒF .f� Œa;b�g/� �
ŒG˛�

ŒS 0.f� Œa;b�g/�

D ŒF .f� Œa;b�g/� �
ŒG˛�

ŒS.f� Œa;b�g/�
�

Y
0�a;b�N�1

f .� Œa;b�/

D ŒG˛� � L
T.f�Œa;b�g/�B.f�Œa;b�g/

�

Y
0�a;b�N�1

f .� Œa;b�/: �

The next proposition computes the difference T .f� Œa;b�g/ � B.f� Œa;b�g/. Its
proof is found in the Appendix:

Proposition 4.18. We have that T .f� Œa;b�g/�B.f� Œa;b�g/ is equal to

�
1

2

X
i2I2

�X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/

�2
�
1

2

X
a2I3
b…I2

X
i�1

.b
a;b
i /2�

1

2

X
a…I3
b2I2

X
i�1

.b
a;b
i /2:

Proof. The proof is a linear algebra calculation. See the Appendix. �

As a corollary, we deduce the formula for N � .y/:
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Proposition 4.19. Let

S D fŒa; b� j a 2 I3; b 62 I2 or a 62 I3; b 2 I2g;

yŒa;b� D ya �yaC1 � � �yb;

y0 D y0 �y1 � � �yN�1;

then we have

N � .y/D Exp
�

L

L� 1

1

1�y0

� X
Œa;b�…S

yŒa;b�� L�
1
2

X
Œa;b�2S

yŒa;b�

��
:

Proof. Recall our initial definition of N � .y/:

N � .y/D
X

˛2NQ0

.�L
1
2 /�.˛;˛/C2dC .˛/

ŒRN .˛/�

ŒG˛�
y˛:

In Proposition 4.5 we saw that it was possible to stratify each of the varieties RN .˛/
by the type f� Œa;b�g of the cycle H . This gives

N � .y/D
X

˛2NQ0

.�L
1
2 /�.˛;˛/C2dC .˛/ŒG˛�

�1

� X
f�Œa;b�g`˛

ŒR.f� Œa;b�g/�

�
y˛:

The motivic class of R.f� Œa;b�g/ was computed in Lemma 4.17. Now substituting
this class into the above formula givesX
˛2NQ0

.�L
1
2 /�.˛;˛/C2dC .˛/

�

� X
f�Œa;b�g`˛

LT.f�
Œa;b�g/�B.f�Œa;b�g/

�

Y
0�a;b�N�1

f .� Œa;b�/

�
y˛:

Lemma 4.8 showed how the dimension vector depended on the partitions: we had

˛i D
X

0�a;b�N�1

j� Œa;b�j �
X
Œa;b� 63i

l.� Œa;b�/;

and an immediate corollary was that

�.˛; ˛/C 2dC .˛/D
X
i2I2

�X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/

�2
:
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Combining this with the formula for the difference T .f� Œa;b�g/ � B.f� Œa;b�g/
(Proposition 4.18) gives

N � .y/D
X
f�Œa;b�g

� Y
Œa;b�…S

f .� Œa;b�/

�
�

� Y
Œa;b�2S

f .� Œa;b�/
Y
l�1

.�L
1
2 /�.b

a;b
l
/2
�

�

N�1Y
iD0

y

P
0�a;b�N�1 j�

Œa;b�j�
P
Œa;b� 63i l.�

Œa;b�/

i :

To simplify notation, set

g.�/ WD f .�/ �
Y
l�1

.�L
1
2 /�b

2
l for � D .1b1 2b2 3b3 � � � /I

then rearranging the products and summations gives

N � .y/D
Y

Œa;b�…S

X
�Œa;b�

f .� Œa;b�/ �y0j�
Œa;b�j�l.�Œa;b�/

�y
l.�Œa;b�/

Œa;b�

�

Y
Œa;b�2S

X
�Œa;b�

g.� Œa;b�/ �y0j�
Œa;b�j�l.�Œa;b�/

�y
l.�Œa;b�/

Œa;b�
:

Both of these series are know to have product expansions [Macdonald 1995]

f .t; a/D
X
�

f .�/al.�/t j�j�l.�/ D Exp
�

1

1� L�1
�
a

1� t

�
;

g.t; a/D
X
�

g.�/al.�/t j�j�l.�/ D Exp
�
.�L

1
2 /�1

1� L�1
�
a

1� t

�
:

Now N � is a product of such series, and multiplying together the corresponding
exponential generating series gives the desired result

N � .y/D Exp
�

L

L� 1

1

1�y0

� X
Œa;b�…S

yŒa;b�� L�
1
2

X
Œa;b�2S

yŒa;b�

��
: �

Now we have computed I � and N � , and so by Lemma 4.3

A�U .y/D Exp
�

L
y0

1�y0
C

L

L� 1

1

1�y0

� X
Œa;b�…S

yŒa;b�� L�
1
2

X
Œa;b�2S

yŒa;b�

��
:

Or, reformulating this as a product over the set of roots, we get

Exp
�

1

1� L�1

�
.LCN�1/

X
˛2�im

�;C

y˛C
X

˛2�re
�;CP

I2[I3
˛i even

y˛�L�
1
2

X
˛2�re

�;CP
I2[I3

˛i odd

y˛
��
;
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thus proving Theorem 0.1 for the special case of the partition � :

A�U .y/D
Y

˛2��;C

A˛.y/:

5. The universal DT series: general case

In this section we will prove Theorem 0.1 for any partition � .

5A. Mutation and the root system. Recall that the simple reflection provides a
bijection between ��;Cnf˛kg and �� 0;Cnf˛0kg (see Section 2C). The simple root
˛k maps to �˛0

k
.

For ˛ 2 �re
C

, let x˛ be a simple module of dim˛. By [Nagao 2012, Proposi-
tion 2.14],

P
i…yIr

˛i is odd (resp. even) if and only if ext1.x; x/D 0 (resp. D 1).
In particular, the parity of

P
i…yIr

˛i is preserved by the simple reflection.

5B. Wall-crossing formula.

Theorem 5.1 [Nagao 2011c, Theorem 4.9].

A�
0

U .y/D
A�U .y/

E.yk/
� E.y�1k /:

Proof. Step 1: By the observation in Section 2C, we have the factorization

A�U D E.yk/�A
�
k ;

where

E.y/ WD
X
n�0

Œpf�
ŒGLn�vir

�yn; yk WD y˛k

and A�
k

is the generating series of virtual motives of moduli stacks of objects in
.modJ� /k . We also have

A�
0

U D A
� 0;k
� E.y�1k /;

where A�
0;k is the generating series of virtual motives of moduli stacks of objects

in .modJ� 0/k .

Step 2: By Proposition 2.4, we have A�
k
DA�

0;k (see [Nagao 2011c, Theorem 4.7]).
�

Now Theorem 0.1 follows for any � from the result in Section 4 combined with
Theorem 5.1 and the remark in Section 5A.
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5C. Factorization of the universal series. We will say that a stability parameter
� is generic, if for any stable J� -module V , we have � � dimV ¤ 0. For generic
stability parameter �, let MC

�
.J� ; ˛/ (resp. M�

�
.J� ; ˛/) denote the moduli stacks

of J� -modules V such that dimV D ˛ and such that all the HN factors F of V
with respect to the stability parameter � satisfy � � dimF > 0 (resp. < 0). Let
ŒM˙

�
.J� ; ˛/�vir denote the virtual motive of the moduli stack defined in the same

way as (3-2). We put

A˙� .y/D
X
˛2N

yI

ŒM˙� .J; ˛/�vir �y
˛:

Lemma 5.2 [Morrison et al. 2012, Lemma 2.6]. The generating series A˙
�

are
given by

A˙� .y/D
Y

˛2��;C
˙� �˛<0

A˛.y/:

6. Motivic DT with framing and DT/PT series

6A. Motivic DT invariants with framing. We denote by zQ� the new quiver ob-
tained from Q� by adding a new vertex1 and a single new arrow1! 0. Let
zJ� D J zQ� ;w�

be the Jacobian algebra corresponding to the quiver with potential
. zQ� ; w� /, where we view w� as a potential for zQ� in the obvious way.

Let � 2 R
yI be a vector, which we will refer to as the stability parameter. A zJ� -

representation zV with dim zV1 D 1 is said to be �-(semi)stable, if it is (semi)stable
with respect to .�; �1/ 2 R

yItf1g (see Definition 3.3), where �1 D�� � dimV . As
in Section 3B, a stability parameter � 2 RQ0 is said to be generic if for any stable
J -module V we have � � dimV ¤ 0.

For a stability parameter � 2 RQ0 and a dimension vector ˛ 2 .Z�0/
yI , let

M� . zJ� ; ˛/ denote the moduli stack of �-semistable zJ� -representations with dimen-
sion vector .˛; 1/. As in the introduction, we define the generating function

Z� .y0; : : : ; yN�1/DZ� .y/ WD
X

˛2.Z�0/
yI

ŒM� . zJ� ; ˛/�vir �y
˛:

Theorem 6.1 [Morrison et al. 2012, Proposition 4.6]. For a generic stability para-
meter �, we have

Z� .y/D
A�
�
.�L

1
2y0; y1; : : : ; yN�1/

A�
�
.�L�

1
2y0; y1; : : : ; yN�1/

; (6-1)

where A�
�

was defined in Section 5C.

Combined with Lemma 5.2, we get the formula in Corollary 0.2.
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Remark 6.2. If we cross the wall W˛, we get (or lose) a factor Z˛.y/ in the
generating function. This is compatible with the result in [Nagao 2011b].

6B. Chambers in the moduli spaces. For a root ˛ 2ƒ, let W˛ denote the hyper-
plane in the space R

yI of stability parameters which is orthogonal to ˛. We put

W DWı [
[

˛2�re
�;C

W˛:

A connected component of the complement of W in R
yI is called a chamber.

Theorem 6.3 [Nagao 2012, Proposition 2.10; Nagao and Nakajima 2011, Proposi-
tions 3.10, 3.11]. The set of generic parameters in R

yI is the compliment of W .

(i) For � with �i < 0 for all i , the moduli spaces M� . zJ ; ˛/ are the NCDT moduli
spaces, the moduli spaces of cyclic J -modules from [Szendrői 2008].

(ii) For � in the same chamber as .1�N C "; 1; 1; : : : ; 1/ (0 < "� 1), the moduli
spaces M� . zJ ; ˛/ are the DT moduli spaces of Y� from [Maulik et al. 2006],
the moduli spaces of subschemes on Y� with support in dimension at most 1.

(iii) For � in the same chamber as .1�N � "; 1; 1; : : : ; 1/ (0 < "� 1), the moduli
spaces M� . zJ ; ˛/ are the PT moduli spaces of Y� introduced in [Pandhari-
pande and Thomas 2009]; these are moduli spaces of stable rank-1 coherent
systems.

Remark 6.4. In the above statements " depends on the dimension vector .˛; 1/.

6C. Motivic PT and DT invariants. Let

�DT D .1�N � "; 1; 1; : : : ; 1/; �PT D .1�N C "; 1; 1; : : : ; 1/ .0 < "� 1/

be stability parameters corresponding to DT and PT moduli spaces. Then we have

f˛ 2��;C j �DT �˛ < 0g D�
re;C
C

;

f˛ 2��;C j �PT �˛ < 0g D�
re;C
C
t�im
C :

As we mentioned in the introduction, the variable change induced by the derived
equivalence is given by

s WD y0 �y1 � � �yN�1; Ti D yi :

Here s is the variable for the homology class of a point and Ti is the variable for
the homology class of Ci . Then we get the formulae in Corollary 0.3.
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6D. Connection with the refined topological vertex. As in [Nagao 2011a], we can
apply the vertex operator method [Okounkov et al. 2006] to get a product expansion
of the refined topological vertex for Y� . Then we see that the PT generating
function can be described by the refined topological vertices normalized by the
refined MacMahon functions.5

Appendix

Throughout this appendix we will work with a fixed choice of basis B. In Section 4B
we chose a basis

BDfHpv
a;b
l
.k/ j 1� k � b

a;b
l
; 0� a; b �N �1; 0�p�N.l�1/Cjb�ajC1g

and defined linear spaces

F.f� Œa;b�g/

D

�
L 2

M
i2I1

Hom.Vi ; Vi /˚
M
i2I2

Hom.ViC1; Vi /
ˇ̌
.L;H.� Œa;b�// 2R.f� Œa;b�g/

�
;

S.f� Œa;b�g/D

�
N 2

M
i2I1[I2[I3

Hom.Vi ; Vi /
ˇ̌
ŒN;H.� Œa;b�/�D 0

�
;

with dimensions T .f� Œa;b�g/DdimF.f� Œa;b�g/ andB.f� Œa;b�g/DdimS.f� Œa;b�g/.
The goal of the appendix is to prove Proposition 4.18, that is, to show that the
difference T .f� Œa;b�g/�B.f� Œa;b�g/ is equal to

�
1

2

X
i2I2

�X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/

�2
�
1

2

X
a2I3;b…I2

X
i�1

.b
a;b
i /2�

1

2

X
a…I3;b2I2

X
i�1

.b
a;b
i /2:

For some early examples it becomes clear that the dimensions of F.f� Œa;b�g/ and
S.f� Œa;b�g/ are determined by solving a set of linearly independent equations. We
will see that these dimensions are quadratic polynomials in the number of parts
b
a;b
l

of the partitions f� Œa;b�g. An initial means of simplifying the calculation is
to break the spaces F.f� Œa;b�g/ and S.f� Œa;b�g/ down into simpler spaces. One
easy observation is that not only are the spaces F.f� Œa;b�g/ and S.f� Œa;b�g/ linear,
but they come with a natural vector space structure, the origin corresponding

5Unfortunately, the DT generating function does not coincide with the refined topological vertex.
See [Morrison et al. 2012, §4.3] for details.
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to the zero matrix in both cases. This means that we have decompositions as
vector spaces

F.f� Œa;b�g/D
M

0�a;b;c;d�N�1

F.� Œa;b�; � Œc;d�/;

S.f� Œa;b�g/D
M

0�a;b;c;d�N�1

S.� Œa;b�; � Œc;d�/

whose summands are given by the following definition:

Definition A.5. We define

F.� Œa;b�; � Œc;d�/D F.f� Œa;b�g/\
M

i2I1[I2

Hom.V a;b; V c;d /;

S.� Œa;b�; � Œc;d�/D S.� Œa;b�; � Œc;d�/\
M

i2I1[I2[I3

Hom.V a;b; V c;d /:

These subspaces are essentially given by the block matrices for the decomposition
V D

L
0�a;b�N�1 V

a;b .

Definition A.6. We define

T .� Œa;b�; � Œc;d�/D dimF.� Œa;b�; � Œc;d�/

B.� Œa;b�; � Œc;d�/D dimS.� Œa;b�; � Œc;d�/:

Both T .� Œa;b�; � Œc;d�/ and B.� Œa;b�; � Œc;d�/ can be written as quadratic expres-
sions in the number of parts of � Œa;b� and � Œc;d�. To do so, we introduce a quadratic
form on the space of all partitions and a combinatorial operation that removes a
box from each column of the partition.

Definition A.7. We define

M W P˝P! Z�0;

.1b1 2b2 3b3 � � � /˝ .1c1 2c2 3c3 � � � / 7!
X
i�1

�X
j�i

bj

��X
j�i

cj

�
;

0
W P! P;

� D .1b1 2b2 3b3 � � � / 7! � 0 D .1b2 2b3 3b4 � � � /:

Let us begin with the easier case. We compute dimensions B.� Œa;b�; � Œc;d�/ of
the spaces S.� Œa;b�; � Œc;d�/.
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Lemma A.8. Let N 2 S.� Œa;b�; � Œc;d�/; then the matrix N is uniquely determined
by its value on the vectors va;b

l
.k/. Moreover, the only restriction on the image of

such a vector is that it lie in the linear subspace

N.v
a;b
l
/ 2 Va \V

c;d
\V N �.l�1/Cjb�ajC1:

Proof. To define the linear map N on the space V a;b , it suffices to define its value
at each of the basis vectors

fH rv
a;b
l
.k/ j 0� r �N � .l � 1/Cjb� aj; 1� k � b

a;b
l
g:

However, for N 2 S.� Œa;b�; � Œc;d�/, we have

N.H rv
a;b
l
.k//DH r.Nv

a;b
l
.k//I

therefore the value of N at each H rv
a;b
l
.k/ is determined by Nva;b

l
.k/. This

proves the first part of the lemma. Now we know that the matrix N maps the vector
space at the a-th vertex to itself: Va! Va; also, since N 2 S.� Œa;b�; � Œc;d�/, we
insist that its image be in V c;d . The only additional condition on the image of the
vector va;b

l
.k/ is

HN �.l�1/Cjb�ajC1.Nv
a;b
l
.k//DN.HN �.l�1/Cjb�ajC1v

a;b
l
.k//D 0:

Combining these three conditions above, we have

N.v
a;b
l
.k// 2 Va \V

c;d
\V N �.l�1/Cjb�ajC1: �

Corollary A.9. We have

B.� Œa;b�; � Œc;d�/D

8̂̂̂<̂
ˆ̂:
M.� Œa;b�; � Œc;d�/ if a 2 Œc; d � and jd � aj � jb� aj;
M..� Œa;b�/0; � Œc;d�/ if a 2 Œc; d � and jd � aj> jb� aj;
M.� Œa;b�; .� Œc;d�/0/ if a … Œc; d � and jd � aj � jb� aj;
M..� Œa;b�/0; .� Œc;d�/0/ if a … Œc; d � and jd � aj> jb� aj:

Proof. Let N 2 S.� Œa;b�; � Œc;d�/. Each vector va;b
l
.k/ with 1� k � ba;b

l
can take

any value in the vector space Va\V c;d \V N �.l�1/Cjb�ajC1, and so the dimension
of S.�a;b; � Œc;d�/ is given by

B.� Œa;b�; � Œc;d�/D
X
l�0

b
a;b
l
� dim.Va \V c;d \V N �.l�1/Cjb�ajC1/:
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Counting the number of basis vectors of V c;d that lie in Va, we see there are four
possibilities for dim.Va \V c;d \V N �.l�1/Cjb�ajC1/:

lX
iD1

ib
c;d
i C l

X
i�l

b
c;d
i if a 2 Œc; d � and jd � aj � jb� aj;

l�1X
iD1

ib
c;d
i C .l � 1/

X
i�l

b
c;d
i if a 2 Œc; d � and jd � aj> jb� aj;

lX
iD1

ib
c;d
iC1C l

X
i�l

b
c;d
iC1 if a … Œc; d � and jd � aj � jb� aj;

l�1X
iD1

ib
c;d
iC1C .l � 1/

X
i�l

b
c;d
iC1 if a … Œc; d � and jd � aj> jb� aj:

Consider the first case a 2 Œc; d � and jd � aj � jb� aj; then

B.� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
�

� lX
iD1

ib
c;d
i C l

X
i�l

b
c;d
i

�

D

X
i�1

�X
l�i

b
a;b
l

�
�

�X
l�i

b
c;d
l

�
DM.� Œa;b�; � Œc;d�/:

The other three cases are identical. The relabeling of the partitions in these cases is
encoded by the operation � 7! � 0. �

Now we turn to computing the dimensions T .� Œa;b�; � Œc;d�/ of the spaces
F.� Œa;b�; � Œc;d�/. This will be more intricate.

Lemma A.10. Suppose a 2 I1 [ I3 and L 2 F.� Œa;b�; � Œc;d�/; then the map L
is uniquely determined by its value on the vectors va;b

l
.k/. Moreover the only

restriction on the image of such a vector is that it lie in a linear subspace:

Lv
a;b
l
.k/ 2

8̂̂̂<̂
ˆ̂:

Va \V
N �.l�1/Cjb�ajC1\V c;d if a 2 I1 and b … I2;

Va \V
N �.l�1/Cjb�aj\V c;d if a 2 I1 and b 2 I2;

Va�1\V
N �.l�1/Cjb�ajC2\V c;d if a 2 I3 and b … I2;

Va�1\V
N �.l�1/Cjb�ajC1\V c;d if a 2 I3 and b 2 I2:

Proof. To define the linear map L on the space V a;b , it suffices to define its value
at each of the basis vectors

fH rv
a;b
l
.k/ j 0� r �N � .l � 1/Cjb� aj; 1� k � b

a;b
l
g:
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However, for L 2 F.� Œa;b�; � Œc;d�/, we know that the pair .L;H.� Œa;b�// 2
R.f� Œa;b�g/ satisfies the relations coming from the superpotential:

rih
C

i� 1
2

D hC
i� 1
2

ri�1 for i 2 Œ1; N 0� 1�\ I1;

r0h
C

N� 1
2

D hC
N� 1

2

hC
N� 3

2

h�
N� 3

2

;

h�
N 0C 1

2

hC
N 0C 1

2

hC
N 0� 1

2

D hC
N 0� 1

2

rN 0�1;

h�
iC 3

2

hC
iC 3

2

hC
iC 1

2

D hC
iC 1

2

hC
i� 1
2

h�
i� 1
2

for i D ŒN 0C 1;N � 3�\ I3:

As in Lemma A.8, once the value of L is determined for va;b
l
.k/ it is uniquely

determined for all H rv
a;b
l
.k/ by the condition that the above relations be satisfied

for the pair .L;H.� Œa;b�/. To be precise, if a 2 I1 we have

L WH r.v
a;b
l
.k// 7!

8<:
H rL.v

a;b
l
.k// if aC r 2 I1;

0 if aC r 2 I2;
H r�1L.v

a;b
l
.k// if aC r 2 I3;

and if a 2 I3 then

L WH r.v
a;b
l
.k// 7!

8<:
H rC1L.v

a;b
l
.k// if aC r 2 I1;

0 if aC r 2 I2;
H rL.v

a;b
l
.k// if aC r 2 I3:

Since L 2 F.� Œa;b�; � Œc;d�/ by definition, its image must lie in the space V c;d ;
also, if a 2 I1 then L W Va ! Va and if a 2 I3 then L W Va ! Va�1. The only
further condition on the image of a vector va;b

l
.k/ is that its image be killed by a

high-enough power of H . It is given that HN �.l�1/Cjb�ajC1v
a;b
l
.k/D 0, so then

H t .Lv
a;b
l
.k//D 0, where the exponent t is read off from the defining relations on

L above. In the separate cases,

Lv
a;b
l
.k/ 2

8̂̂̂<̂
ˆ̂:

Va \V
N �.l�1/Cjb�ajC1\V c;d if a 2 I1 and b … I2;

Va \V
N �.l�1/Cjb�aj\V c;d if a 2 I1 and b 2 I2;

Va�1\V
N �.l�1/Cjb�ajC2\V c;d if a 2 I3 and b … I2;

Va�1\V
N �.l�1/Cjb�ajC1\V c;d if a 2 I3 and b 2 I2;

proving the result. �
We have a result similar to Lemma A.10 when a 2 I2.

Lemma A.11. Suppose a 2 I2 and L 2 F.� Œa;b�; � Œc;d�/; then the map L is
uniquely determined by its value on the vectors Hva;b

l
.k/. Moreover, the only

restriction on the image of such a vector is that it lie in a linear subspace:

L.Hv
a;b
l
.k// 2

�
Va \V

N �.l�1/Cjb�ajC1\V c;d if b … I2;
Va \V

N �.l�1/Cjb�aj\V c;d if b 2 I2:
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Proof. Again, we know that to define the linear map L on the space V a;b it suffices
to define its value at each of the basis vectors

fH rv
a;b
l
.k/ j 0� r �N � .l � 1/Cjb� aj; 1� k � b

a;b
l
g:

Since by definition if a 2 I2 then Lva;b
l
.k/ D 0, the map is already trivially

determined on these vectors and their image does not suffice to determine the map
in general. However if we consider the vectors Hva;b

l
.k/, then once the value of

L is determined for Hva;b
l
.k/ it is uniquely determined for all H rv

a;b
l
.k/ by the

condition that the relations (see Lemma A.10) be satisfied by the pair .L;H.� Œa;b�/.
To be precise, if a 2 I2 we have

L WH r.v
a;b
l
.k// 7!

8<:
H rL.Hv

a;b
l
.k// if aC r 2 I1;

0 if aC r 2 I2;
H r�1L.Hv

a;b
l
.k// if aC r 2 I3:

By definition, we know that the image of L lies in V c;d and also that for a 2 I2
we have L W VaC1! Va. As before the only remaining condition on the image of
v
a;b
l
.k/ is that it be killed by a high-enough power of H . From the definition of L

above we see that

L.Hv
a;b
l
.k// 2

�
Va \V

N �.l�1/Cjb�ajC1\V c;d if b … I2;
Va \V

N �.l�1/Cjb�aj\V c;d if b 2 I2;

proving the result. �

The following notation encapsulates the dimensions of all the vector spaces
encountered in the last two lemmas.

Definition A.12. We define integers

da;bWc;d .l/

D

8̂̂̂<̂
ˆ̂:

dim.Va \V N �.l�1/Cjb�ajC1\V c;d / if a 2 I1[ I2 and b … I2;
dim.Va \V N �.l�1/Cjb�aj\V c;d / if a 2 I1[ I2 and b 2 I2;

dim.Va�1\V N �.l�1/Cjb�ajC2\V c;d / if a 2 I3 and b … I2;
dim.Va�1\V N �.l�1/Cjb�ajC1\V c;d / if a 2 I3 and b 2 I2:

From Lemma A.10 and Lemma A.11 we deduce the dimension of the spaces
F.� Œa;b�; � Œc;d�/.

Corollary A.13. If a 2 I1[ I2 and b … I2 then

T .� Œa;b�; � Œc;d�/D

8̂̂̂<̂
ˆ̂:
M.� Œa;b�; � Œc;d�/ if a 2 Œc; d � and jd � aj � jb� aj;
M..� Œa;b�/0; � Œc;d�/ if a 2 Œc; d � and jd � aj> jb� aj;
M.� Œa;b�; .� Œc;d�/0/ if a … Œc; d � and jd � aj � jb� aj;
M..� Œa;b�/0; .� Œc;d�/0/ if a … Œc; d � and jd � aj> jb� aj:
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If a 2 I1[ I2 and b 2 I2 then

T .� Œa;b�;� Œc;d�/D

8̂̂̂<̂
ˆ̂:
M.� Œa;b�;� Œc;d�/ if a 2 Œc;d � and jd�aj � jb�aj�1;
M..� Œa;b�/0;� Œc;d�/ if a 2 Œc;d � and jd�aj> jb�aj�1;
M.� Œa;b�;.� Œc;d�/0/ if a … Œc;d � and jd�aj � jb�aj�1;
M..� Œa;b�/0;.� Œc;d�/0/ if a … Œc;d � and jd�aj> jb�aj�1:

If a 2 I3 and b … I2 then

T .� Œa;b�; � Œc;d�/

D

8̂̂̂<̂
ˆ̂:
M.� Œa;b�; � Œc;d�/ if a� 1 2 Œc; d � and jd � .a� 1/j � jb� ajC 1;
M..� Œa;b�/0; � Œc;d�/ if a� 1 2 Œc; d � and jd � .a� 1/j> jb� ajC 1;
M.� Œa;b�; .� Œc;d�/0/ if a� 1 … Œc; d � and jd � .a� 1/j � jb� ajC 1;
M..� Œa;b�/0; .� Œc;d�/0/ if a� 1 … Œc; d � and jd � .a� 1/j> jb� ajC 1:

If a 2 I3 and b 2 I2 then

T .� Œa;b�; � Œc;d�/

D

8̂̂̂<̂
ˆ̂:
M.� Œa;b�; � Œc;d�/ if a� 1 2 Œc; d � and jd � .a� 1/j � jb� aj;
M..� Œa;b�/0; � Œc;d�/ if a� 1 2 Œc; d � and jd � .a� 1/j> jb� aj;
M.� Œa;b�; .� Œc;d�/0/ if a� 1 … Œc; d � and jd � .a� 1/j � jb� aj;
M..� Œa;b�/0; .� Œc;d�/0/ if a� 1 … Œc; d � and jd � .a� 1/j> jb� aj:

Proof. We know that if a2 I1[I3 (resp. a2 I2) then the map L2F.� Œa;b�; � Œc;d�/
is determined by its value at the vectors va;b

l
.k/ (resp. Hva;b

l
.k/) for 1� k � ba;b

l
.

In the notation of the previous definition, such a vector takes values in a space of di-
mension da;bIc;d .l/. So in all cases the total dimension of the spaceF.� Œa;b�;� Œc;d�/
is equal to

T .� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
� da;bIc;d .l/:

In the above definition of da;bIc;d .l/ there are four possible forms, depending on
the value of a and b. Lets consider the first case, where a 2 I1 [ I2 and b … I2.
Then we have that

da;bIc;d .l/D dim.Va \V N �.l�1/Cjb�ajC1\V c;d /:
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Counting the number of basis vectors of V c;d that lie in Va, we see there are four
possibilities for dim.Va \V c;d \V N �.l�1/Cjb�ajC1/:

lX
iD1

ib
c;d
i C l

X
i�l

b
c;d
i if a 2 Œc; d � and jd � aj � jb� aj;

l�1X
iD1

ib
c;d
i C .l � 1/

X
i�l

b
c;d
i if a 2 Œc; d � and jd � aj> jb� aj;

lX
iD1

ib
c;d
iC1C l

X
i�l

b
c;d
iC1 if a … Œc; d � and jd � aj � jb� aj;

l�1X
iD1

ib
c;d
iC1C .l � 1/

X
i�l

b
c;d
iC1 if a … Œc; d � and jd � aj> jb� aj:

In the first case a 2 Œc; d � and jd � aj � jb� aj, we have

T .� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
�

� lX
iD1

ib
c;d
i C l

X
i�l

b
c;d
i

�

D

X
i�1

�X
l�i

b
a;b
l

�
�

�X
l�i

b
c;d
l

�
DM.� Œa;b�; � Œc;d�/:

In the second case a 2 Œc; d � and jd � aj> jb� aj, we have

T .� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
�

� l�1X
iD1

ib
c;d
i C .l � 1/

X
i�l

b
c;d
i

�

D

X
i�1

�X
l�i

b
a;b
lC1

�
�

�X
l�i

b
c;d
l

�
DM..� Œa;b�/0; � Œc;d�/:

In the third case a … Œc; d � and jd � aj � jb� aj, we have

T .� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
�

� lX
iD1

ib
c;d
iC1C l

X
i�l

b
c;d
iC1

�

D

X
i�1

�X
l�i

b
a;b
l

�
�

�X
l�i

b
c;d
lC1

�
DM.� Œa;b�; .� Œc;d�/0/:
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Finally, in the fourth case a … Œc; d � and jd � aj> jb� aj, we have

T .� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
�

� l�1X
iD1

ib
c;d
iC1C .l � 1/

X
i�l

b
c;d
iC1

�

D

X
i�1

�X
l�i

b
a;b
lC1

�
�

�X
l�i

b
c;d
lC1

�
DM..� Œa;b�/0; .� Œc;d�/0/:

This completes the situation when a 2 I1[ I2 and b … I2. In the other situations,
a 2 I1 [ I2 and b 2 I2, or a 2 I3 and b … I2, or a 2 I3 and b 2 I2. All of these
cases can be dealt with in a similar manner. �

Now we have computed all the dimensions T .� Œa;b�;� Œc;d�/ andB.� Œa;b�;� Œc;d�/.
The next lemma combines Corollaries A.9 and A.13 to compute their difference.
We see that in most cases there is an exact cancellation:

Lemma A.14. The equality

T .� Œa;b�; � Œc;d�/D B.� Œa;b�; � Œc;d�/

holds, except in the following cases, where we give the possible values of the
difference T .� Œa;b�; � Œc;d�/�B.� Œa;b�; � Œc;d�/:

Case 1: a 2 I1[ I2, b D d 2 I2:

M..� Œa;b�/0; � Œc;b�/�M.� Œa;b�; � Œc;b�/ if a 2 Œc; b�;

M..� Œa;b�/0; .� Œc;b�/0/�M.� Œa;b�; .� Œc;b�/0/ if a … Œc; b�:

Case 2: a 2 I3, b … I2, d D a� 1 2 I2:

M.� Œa;b�; � Œa;a�1�/�M..� Œa;b�/0; � Œa;a�1�/ if aD c;

M.� Œa;b�; � Œc;a�1�/�M..� Œa;b�/0; .� Œc;a�1�/0/ if a 6D c:

Case 3: a 2 I3, b 62 I2, aD c, d 6D a� 1:

M.� Œa;b�; .� Œa;d�/0/�M.� Œa;b�; � Œa;d�/ if jd � aj � jb� aj;

M..� Œa;b�/0; .� Œa;d�/0/�M..� Œa;b�/0; � Œa;d�/ if jd � aj> jb� aj:

Case 4: a 2 I3, b 2 I2, d D a� 1:

M.� Œa;b�; � Œa;a�1�/�M..� Œa;b�/0; � Œa;a�1�/ if aD c and b 6D a� 1;

M.� Œa;a�1�; � Œc;a�1�/�M.� Œa;a�1�; .� Œc;a�1�/0/ if a 6D c and b D a� 1;

M.� Œa;b�; � Œc;a�1�/�M..� Œa;b�/0; .� Œc;a�1�/0/ if a 6D c and b 6D a� 1:



Motivic Donaldson–Thomas invariants of small crepant resolutions 809

Case 5: a 2 I3, b 2 I2, a� 1 2 Œc; d �, d 6D a� 1, b D d :

M..� Œa;b�/0; � Œc;b�/�M.� Œa;b�; � Œc;b�/:

Case 6: a 2 I3, b 2 I2, a� 1 … Œc; d �, aD c, jd � aj< jb� aj:

M.� Œa;b�; .� Œa;d�/0/�M.� Œa;b�; � Œa;d�/:

Case 7: a 2 I3, b 2 I2, a� 1 62 Œc; d �:

M..� Œa;b�/0; .� Œa;b�/0/�M.� Œa;b�; � Œa;b�/ if aD c and b D d;

M..� Œa;b�/0; .� Œa;d�/0/�M..� Œa;b�/0; � Œa;d�/ if aD c and jd � aj> jb� aj;

M..� Œa;b�/0; .� Œc;b�/0/�M.� Œa;b�; .� Œc;b�/0/ if a 6D c and b D d:

Proof. Compare Corollaries A.9 and A.13. �

Our aim throughout this appendix has been to prove Proposition 4.18 and de-
duce that the difference

P
0�a;b;c;d�N�1 T .�

Œa;b�; � Œc;d�/�B.� Œa;b�; � Œc;d�/ is
equal to

�
1

2

X
i2I2

�X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/

�2
�
1

2

X
a2I3;b…I2

X
i�1

.b
a;b
i /2�

1

2

X
a…I3;b2I2

X
i�1

.b
a;b
i /2:

So all that remains is to check this sum agrees with the values we computed. First
we will transform it into a expression in terms of the M.� Œa;b�; � Œc;d�/. To do this
we need the simple identities

M.� Œa;b�; � Œc;d�/�M..� Œa;b�/0; .� Œc;d�/0/

D

X
l�1

�X
i�l

b
a;b
i �

X
i�l

b
c;d
i �

X
i�l

b
a;b
iC1 �

X
i�l

b
c;d
iC1

�
D

X
i�1

b
a;b
i �

X
i�1

b
c;d
i

D l.� Œa;b�/ � l.� Œc;d�/
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and

M.� Œa;b�; � Œa;b�/�M..� Œa;b�/0; � Œa;b�/

D

X
l�1

�X
i�l

b
a;b
i �

X
i�l

b
a;b
i �

X
i�l

b
a;b
iC1 �

X
i�l

b
a;b
i

�
D

X
l�1

b
a;b
l
�

X
i�l

b
c;d
i

D
1

2
l.� Œa;b�/2C

1

2

X
l�1

.b
a;b
l
/2:

Using these two identities and some simple algebraic manipulations, we can rewrite
Proposition 4.18 as the statement that the differenceX

0�a;b;c;d�N�1

T .� Œa;b�; � Œc;d�/�B.� Œa;b�; � Œc;d�/

is equal toX
i2I2

X
b 6Di
c 6DiC1

M.� ŒiC1;b�; � Œc;i�/�M..� ŒiC1;b�/0; .� Œc;i�/0/

C

X
i2I2

X
b<d
b;d 6Di

M..� ŒiC1;b�/0; .� ŒiC1;d�/0/�M.� ŒiC1;b�; � ŒiC1;d�/

C

X
i2I2

X
a<c

a;c 6DiC1

M..� Œa;i�/0; .� Œc;i�/0/�M.� Œa;i�; � Œc;i�/

C

X
a2I3;b2I2
b 6Da�1

M..� Œa;b�/0; .� Œa;b�/0/�M.� Œa;b�; � Œa;b�/

C

X
Œa;b�2S

M..� Œa;b�/0; � Œa;b�/�M.� Œa;b�; � Œa;b�/:

By a careful systematic approach, one shows that all these terms are exactly ac-
counted for in Lemma A.14.
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silver (1997) at the International Mathematical Olympiad. He studied at Kyoto
University, where he specialized in representation theory and geometry, and received
a PhD in mathematics in 2008 under H. Nakajima. He then spent half a year at the
University of Oxford, working with D. Joyce. In Spring 2010 he was appointed to
an assistant professorship at Nagoya University. He was awarded the MSJ Takebe
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[Szendrői 2008] B. Szendrői, “Non-commutative Donaldson–Thomas invariants and the conifold”,
Geom. Topol. 12:2 (2008), 1171–1202. MR 2009e:14100 Zbl 1143.14034

[Thomas 2000] R. P. Thomas, “A holomorphic Casson invariant for Calabi–Yau 3-folds, and bundles
on K3 fibrations”, J. Differential Geom. 54:2 (2000), 367–438. MR 2002b:14049 Zbl 1034.14015

Communicated by Michel Van den Bergh
Received 2011-11-05 Revised 2012-04-26 Accepted 2015-03-27

andrewmo@math.ethz.ch ETH Zurich, CH-8092 Zurich, Switzerland

Kentaro Nagao Graduate School of Mathematics, Nagoya University,
Furu-cho, Chikusa-Ku, Nagoya 464-8602, Japan

mathematical sciences publishers msp

http://dx.doi.org/10.1016/j.jalgebra.2008.06.019
http://dx.doi.org/10.1016/j.jalgebra.2008.06.019
http://msp.org/idx/mr/2009k:16016
http://msp.org/idx/zbl/1168.18005
http://dx.doi.org/10.2140/gt.2008.12.1171
http://msp.org/idx/mr/2009e:14100
http://msp.org/idx/zbl/1143.14034
http://projecteuclid.org/euclid.jdg/1214341649
http://projecteuclid.org/euclid.jdg/1214341649
http://msp.org/idx/mr/2002b:14049
http://msp.org/idx/zbl/1034.14015
mailto:andrewmo@math.ethz.ch
mailto:Kentaro Nagao
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Barry Mazur Harvard University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2015 is US $255/year for the electronic version, and $440/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 9 No. 4 2015

767Motivic Donaldson–Thomas invariants of small crepant resolutions
ANDREW MORRISON and KENTARO NAGAO

815Étale homotopy equivalence of rational points on algebraic varieties
AMBRUS PÁL

875Fermat’s last theorem over some small real quadratic fields
NUNO FREITAS and SAMIR SIKSEK

897Bounded negativity of self-intersection numbers of Shimura curves in Shimura surfaces
MARTIN MÖLLER and DOMINGO TOLEDO

913Singularities of locally acyclic cluster algebras
ANGÉLICA BENITO, GREG MULLER, JENNA RAJCHGOT and KAREN E. SMITH

937On an analytic version of Lazard’s isomorphism
GEORG TAMME

957Towards local-global compatibility for Hilbert modular forms of low weight
JAMES NEWTON

981Horrocks correspondence on arithmetically Cohen–Macaulay varieties
FRANCESCO MALASPINA and A. PRABHAKAR RAO

1005The Elliott–Halberstam conjecture implies the Vinogradov least quadratic nonresidue
conjecture

TERENCE TAO

A
lgebra

&
N

um
ber

Theory
2015

Vol.9,
N

o.4

http://dx.doi.org/10.2140/ant.2015.9.815
http://dx.doi.org/10.2140/ant.2015.9.875
http://dx.doi.org/10.2140/ant.2015.9.897
http://dx.doi.org/10.2140/ant.2015.9.913
http://dx.doi.org/10.2140/ant.2015.9.937
http://dx.doi.org/10.2140/ant.2015.9.957
http://dx.doi.org/10.2140/ant.2015.9.981
http://dx.doi.org/10.2140/ant.2015.9.1005
http://dx.doi.org/10.2140/ant.2015.9.1005

	Introduction
	Main result
	Corollaries
	1. Root system of type N
	2. Noncommutative crepant resolutions
	2A. Quivers with potential
	2B. NCCR and derived equivalence
	2C. Mutation and derived equivalence
	2D. Cut and mutation

	3. Motivic Donaldson–Thomas invariants
	3A. Motives
	3B. Quivers and moduli spaces
	3C. Motivic DT invariants
	3D. Generating series of motivic DT invariants

	4. The universal DT series: special case
	4A. Step I: the invertible case I(x)
	4B. Step II: the nilpotent case N(y)

	5. The universal DT series: general case
	5A. Mutation and the root system
	5B. Wall-crossing formula
	5C. Factorization of the universal series

	6. Motivic DT with framing and DT/PT series
	6A. Motivic DT invariants with framing
	6B. Chambers in the moduli spaces
	6C. Motivic PT and DT invariants
	6D. Connection with the refined topological vertex

	Appendix
	Acknowledgements
	Biographical note
	References
	
	

