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Bounded negativity of self-intersection
numbers of Shimura curves

in Shimura surfaces
Martin Möller and Domingo Toledo

Shimura curves on Shimura surfaces have been a candidate for counterexamples
to the bounded negativity conjecture. We prove that they do not serve this purpose:
there are only finitely many whose self-intersection number lies below a given
bound.

Previously (Duke Math. J. 162:10 (2013), 1877–1894), this result was shown
for compact Hilbert modular surfaces using the Bogomolov–Miyaoka–Yau in-
equality. Our approach uses equidistribution and works uniformly for all Shimura
surfaces.

Introduction

Let X be a Shimura surface not isogenous to a product, i.e., an algebraic surface
which is the quotient of a two-dimensional hermitian symmetric space G/K by an
irreducible arithmetic lattice in G. The aim of this note is to show that Shimura
curves on such a Shimura surface do not provide a counterexample to the bounded
negativity conjecture. More precisely we show:

Theorem 0.1. For any Shimura surface X not isogenous to a product and for any
real number M , there are only finitely many compact Shimura curves C on X with
C2 < M.

The bounded negativity conjecture claims that for any smooth projective algebraic
surface X there is a positive constant B so that for any irreducible curve C on X
the self-intersection C2 is at least −B. We emphasize that the above theorem does
not decide the validity on any Shimura surface, as there could exist non-Shimura
curves with arbitrarily negative self-intersection.
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There are two possibilities for the uniformization of X . The first case is Shimura
surfaces uniformized by H2. In this case, G = SL2(R)

2 and the surfaces are called
quaternionic Shimura surfaces if 0 is cocompact and Hilbert modular surfaces if 0
has cusps. The second case are Shimura surfaces uniformized by the complex 2-ball
B2. In this case, G = SU(2, 1) and the surfaces are called Picard modular surfaces.
There are compact and noncompact Picard modular surfaces. The assumption
on the Shimura surface is necessary, since the theorem is certainly false in the
product situation, e.g., for X = X (d)× X (d) a product of modular curves or a
finite quotient of such a surface: the fiber classes give infinitely many curves with
self-intersection zero.

While only the case of compact X is relevant to the bounded negativity conjecture,
the proofs for noncompact X are the same. When both X and the curves C are
allowed to have cusps the proper formulation is needed; see Theorem 3.6.

Theorem 0.1 was proven for compact Shimura surfaces uniformized by H2 in
[Bauer et al. 2013]. The methods there, based on the logarithmic Bogomolov–
Miyaoka–Yau inequality, do not extend to the ball quotient case. Here we give a
uniform treatment of both cases based on equidistribution results. As in that paper,
we obtain as a consequence:

Corollary 0.2. There are only finitely many Shimura curves on X that are smooth.

Intersection numbers of Shimura curves are known to appear as coefficients of
modular forms, and coefficients of modular forms are known to grow. This, however,
does not directly give a method to prove Theorem 0.1, since in these modularity
statements [Hirzebruch and Zagier 1976; Kudla 1978] the Shimura curves are
packaged to reducible curves TN with an unbounded number of components as
N →∞, while the statement here is for every individual Shimura curve.

1. Shimura curves on Shimura surfaces not isogenous to a product

A Shimura surface not isogenous to a product is a connected algebraic surface that
can be written as a quotient X = 0\G/K , where G =GQ(R) is the set of R-valued
points in a connected semisimple Q-algebraic group GQ, K ⊂ G is a maximal
compact subgroup and 0 is an irreducible arithmetic lattice in G. Here a lattice is
called irreducible if it does not have a finite-index subgroup that splits as a product
of two lattices.

Our geometric definition of Shimura varieties differs from the arithmetic literature
on this subject, where Shimura varieties are typically not connected. It is the point of
view of the bounded negativity conjecture that requires one to deal with irreducible
components of the objects in question. Note that we do not require 0 to be a
congruence subgroup either.
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Definition. Let HQ be a Q-algebraic group, 1 an arithmetic lattice in HQ, and
τ : HQ → GQ a Q-morphism such that τ(1) ⊂ 0. Suppose the τ -preimage of
a maximal compact subgroup K ⊂ GR is a maximal compact subgroup K H ⊂

H = HQ(R). Then the algebraic curve C in X given by C =1\H/K H is called a
Shimura curve.

The aim of this section is to compile the list of possible constructions of
Shimura surfaces that contain infinitely many Shimura curves and the possible
pairs (GQ, HQ). This will be used in the equidistribution theorem in the next
section. More precisely, we need that all Shimura curves can be generated as the
orbit of a fixed subgroup. For this purpose we write G = G0×W with W compact
and G0 without compact factors. There is a corresponding decomposition of the
compact subgroup K = K0×W , and also for the Shimura curve H = H0×WH

and K H = K H,0×WH .
It turns out that there are only two possibilities for G0, and, for each of them,

we can construct all Shimura curves as follows.

Proposition 1.1. For a given Shimura surface X = 0\G0/K0 = 0\G/K not isoge-
nous to a product, there exists a subgroup H0∼= SL2(R) of G0 such that all Shimura
curves arise as C = 0\0gH0/K H0 for some g ∈ G0.

We start with the possibilities for G0. There are only two hermitian symmetric
domains of dimension two. This leads to the following two cases, as in the intro-
duction. In each case we give a description of the possible Shimura surfaces. Here,
and elsewhere, the description of the algebraic groups in question will always be
given only up to central isogeny.

Case One: G0 = SL2(R)
2. There two possibilities. Either G is the set of R-points

of the Q-algebraic group GQ = ResF/Q(SL2(A)) for a quaternion algebra A over a
totally real field F which is unramified at exactly two infinite places of F , or G
is the product ResF/Q(SL2(A1))×ResF/Q(SL2(A2)) for two quaternion algebras
A1, A2, each unramified at exactly at one infinite place. For the proofs, first remark
that these give F-forms of SL2(R)

2; see, e.g., [Vignéras 1980, IV.1]. That these
are the only possibilities follows from the classification of algebraic groups [Tits
1966]. In more detail, the procedure of [Tits 1966, §3.1] reduces the problem to
the classification of F-forms of SL2. The description in [Serre 1994, III.1.4] of the
F-forms of SL2 in bijective correspondence with quaternion algebras over F gives
the above description of the algebraic groups. In both cases, the maximal compact
subgroup K in G is SO2(R)

2 times the compact factors of GR.
In the product case, all lattices are reducible, so we can discard this case in view

of our irreducibility hypothesis on X . In the remaining case, in order obtain an
arithmetic lattice 0 ⊂ G one has to fix an order O ⊂ A and let O1

⊂ O be the



900 Martin Möller and Domingo Toledo

elements of reduced norm 1. Then 0 is the image in G of a group commensurable
with O1. See, e.g., [Vignéras 1980] for more details.

Case Two: G0 = SU(2, 1). In this case the underlying Q-algebraic group is GQ =

ResF0/Q(G F0)), and from the classification of algebraic groups (over number fields)
[Tits 1966; Platonov and Rapinchuk 1994], we see that, in the notation of [Tits
1966, p. 55] G F0 must be of type 2A(d)2,r , where d | 3, d ≥ 1 and 2rd ≤ 3. In other
words, G F0 = SU(h), where h is a hermitian form constructed as follows. Start
with a totally real field F0 and take a totally complex quadratic extension F/F0,
i.e., F is a CM field. Then take a central simple division algebra D of degree d
(hence dimension d2) over F , with center F and involution σ of the second kind
(not the identity on F), and a hermitian form h on D3/d so that h is isotropic at one
real place of F0 and definite at all other real places (equivalently, isotropic at one
conjugate pair of complex places of F , definite at all other pairs).

Thus there are two “types” corresponding to the two possibilities d = 1 or d = 3:
The first type corresponds to d = 1. Then D = F and h is a hermitian form on

F3 that is definite except for one pair of places of F , interchanged by complex
conjugation. Then SU(h) is indeed a F0-algebraic group and the set of R-valued
points of ResF0/Q(SU(h)) equals G0 up to compact factors. The compact subgroup
K in G is S(U (2)×U (1)) times the compact factors of GR. Arithmetic lattices 0
of the first type are obtained by fixing an order O⊂ F and taking 0 commensurable
with G ∩ SL3(O). The integer r above satisfying 2rd ≤ 3 is the F0-rank of G F0 ,
or the dimension of the maximal isotropic subspace of h in F3. The lattice is
cocompact if and only if r = 0, and r = 1 forces F0 to be Q.

The second type corresponds to d = 3; in this case, D is central simple division
algebra of degree 3 (dimension 9) over F with an involution “of the second kind”.
The lattices 0 are obtained by fixing an order O⊂ D and taking 0 commensurable
with G ∩ SL(D). Observe that in this case the inequality 2rd ≤ 3 forces r to be 0,
and therefore 0 is always cocompact. We will see that lattices of the second type
do not have any Shimura curves, so we will not need to consider them.

Shimura curves in X for G0 = SL2(R)2. The Shimura curves in X are totally
geodesic complex curves in X , so they are projections to X of totally geodesic
holomorphic disks H⊂ H2, which in turn are orbits of embeddings of SL2(R)⊂

SL2(R)
2. It is well known that, up to biholomorphic isometries, there are only

two classes of such disks: factors and diagonals. By the irreducibility hypothesis,
the inclusion into one factor does not come from a morphism of the underlying
Q-algebraic groups. So H0 ⊂ G0 has to be the diagonal embedding, proving
Proposition 1.1 in this case. In fact, the possible embeddings are discussed in great
detail in [van der Geer 1988] for Hilbert modular surfaces and in [Granath 2002]
for quaternionic Shimura surfaces.
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Shimura curves in X for G0 = SU(2, 1). Fix a Shimura surface X obtained by
choosing F0, F, d, D, σ, h,O⊂ D, 0. The Shimura curves, being totally geodesic
complex curves, are projections to X of orbits in the universal cover of subgroups
H ⊂ G0, all isomorphic to SU(1, 1) and standardly embedded in SU(2, 1). The
image in X of an H -orbit is a Shimura curve if and only if H ∩0 is a lattice in
H . This happens if and only if H is defined over F0, meaning that the underlying
algebraic group G F0 contains an F0-subgroup HF0 so that, if ι : F0 → R is the
embedding of F0 with group of real points G F0,ι(R) isomorphic to G0, the inclusion
HF0,ι(R)⊂ G F0,ι(R) agrees with H ⊂ G0. There are two cases:

No Shimura curves in Shimura surfaces of the second type. The group SU(h),
for h a hermitian form on a central simple division algebra D over F of degree 3 as
above, has no subgroup HF0 defined over F0 with HF0(R)= SU(1, 1) standardly
embedded in SU(h)(R)= SU(2, 1).

This is well-known to experts, but we do not know a reference (but see [Garibaldi
and Gille 2009, Corollary 4.2] for a more general result). Matthew Stover kindly
communicated the following proof:

Let F0, F, D, σ be as above. The D-valued hermitian form h can be taken to be
h(x, y)= σ(x)y, and the group of F0-points of the F0-group in question is

SU(D, σ )(F0)= {x ∈ D : σ(x)x = e, Nrd(x)= 1} ⊂ D,

which gives us an SU(2, 1) as follows: choose an embedding F → C, use it
to form D ⊗F C, which becomes isomorphic to the algebra M(3,C) of 3 × 3
complex matrices, under an isomorphism (unique up to conjugation by Skolem–
Noether) which takes σ to its conjugate-transpose with respect to a hermitian
form h′. Whenever all choices can be made so that h′ has signature (2, 1), the group
of real points of SU(D, σ ) becomes the standard SU(2, 1). The signature of the
hermitian form h′ depends only on D, σ and the embedding F→ C.

Note that the F-algebra D is embedded in the algebra M(3,C) by x 7→ x ⊗ 1.
The F-vector subspace of M(3,C) generated by the subset SU(D, σ )(F0) is easily
seen to be a σ -stable subalgebra of M(3,C) contained in the division algebra D,
hence it is itself a division algebra, and easily seen to equal D. Suppose HF0 is
an F0-subgroup of SU(D, σ ), so that the corresponding inclusion of real points is
a standard embedding of SU(1, 1) in SU(2, 1), all inside M(3,C), and let V be
the F-vector subspace of M(3,C) generated by the F0-points of HF0 . This is a
noncommutative division subalgebra of D, and it must be a proper subalgebra
because V ⊗F C is a proper subspace of D ⊗F C = M(3,C). Since D has
degree 3, it has no proper noncommutative F-subalgebras, so such subgroups
cannot exist.
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Classification of Shimura curves in Shimura surfaces of the first type. In this
case, there are always infinitely many Shimura curves. We continue the same
notation: choose an embedding of F in C so that the hermitian form h is isotropic,
then extend h from F3 to C3. Interpret the unit ball G0/K0 ∼= B2

⊂ P2 as the
collection of h-negative lines in C3. The Shimura curves in X arise as the quotient
of totally geodesic disks B1

⊂ B2, and such disks are in bijective correspondence
with the h-positive lines. Namely, an h-positive line l determines the hermitian
space (`⊥, h|l⊥) of signature (1, 1) and the corresponding space of negative lines
B1

l ⊂ B2. All geodesic disks arise this way. The groups G`, the stabilizer of `
(isomorphic to U (1, 1)) and the subgroup Hl fixing l pointwise (isomorphic to
SU(1, 1)) act on (`⊥, h|l⊥) and B1

`, both actions being transitive on B1
l . The disk

B1
` projects to a Shimura curve in X if and only if H` ∩0 a lattice in H`; in turn:

Lemma 1.2. The group H` ∩0 is a lattice in H` if and only if ` is an F-rational
line, that is, `∩ F3

6= {0}.

Proof. Let v ∈C3 be a basis vector for `, and suppose 0`= H`∩0 is a lattice in H`.
Since 0` fixes ` pointwise, v is fixed by all γ ∈ H`∩0. Since 0` leaves `⊥ invariant,
the remaining eigenvectors of any γ ∈ 0` lie in `⊥. Since the action of H` on l⊥ is
isomorphic to the standard action of SU(1, 1) on C2 and 0` is a lattice in H`, 0l con-
tains hyperbolic elements. Fix such an element γ . Then γ (v)= v and the remaining
eigenvalues of γ are of absolute value 6= 1. Therefore 1 is a simple eigenvalue of
γ , and thus the space of solutions of γ (v)= v is an F-rational line, as asserted.

For the converse, suppose that ` is a rational line, and let v ∈O3 be a primitive
vector which is a basis for `. Let M0=Ov and M1=v

⊥
∩O3, and let M=M0⊕M1.

Then M is an O-submodule of finite index in O3. Consequently, 0 is commensu-
rable with 0′ = {γ ∈ SU(h,O) : γ (M)= M} and 0 ∩ Hl is commensurable with
0′v={γ ∈0

′
:γ (v)=v}, which is a lattice in the group H`=Hv={g∈G : g(v)=v},

a group defined over F0, and isomorphic (over F0) to SU(h|M1⊗F ). This group in
turn is isomorphic over R to SU(1, 1). Thus 0∩H` is a lattice in H` and we obtain
a Shimura curve associated to the Q-group ResF0/Q(SU(h|M1⊗F )). �

End of proof of Proposition 1.1. Choose an orthogonal basis v1, v2, v3 for O3,
where h(vi )= ai āi > 0 for i = 1, 2, h(v3)=−a3ā3 < 0 and v1 ∈ `. Let e1, e2, e3

be the standard basis for C3, let H = He1 ⊂ G be the subgroup, isomorphic to
SU(1, 1), that fixes e1, and let g ∈ G be the linear transformation that takes ei to
vi/ai . Then gHg−1

= H`; therefore H` is as asserted in Proposition 1.1 �

Remark. From Lemma 1.2 we see that the collection of Shimura curves in X is
parametrized by the 0-equivalence classes of primitive positive vectors in O3, that
is, primitive vectors v ∈ O3 with h(v) > 0. The collection of these equivalence
classes is commensurable with SU(h, F)\P(F3)+, where P(F3)+ denotes the
space of h-positive lines in F3. The class of h(v) gives a well-defined function
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h : P(F3)→ F∗0 /NF/F0(F
∗), the norm residue group. It can be checked that the

class of h(v) is a commensurability invariant and that it takes on infinitely many
values; hence we get an infinite number of commensurability classes of subgroups
of SU(1, 1). Observe that the matrix of the conjugating element g of Lemma 1.2
has entries in the finite field extension F(a1, a2, a3) of F .

The compact factors of G, necessary for the Q-structure in the definition of a
Shimura surface, play no role in the sequel. We thus simplify notation and write G
for G0 and H for H0 from now on.

Elliptic elements and cusps. The bounded negativity conjecture (BNC) originally
is a question for smooth compact (projective) surfaces. If 0 is cocompact and
torsion-free, Shimura surfaces as defined above fall into the scope of this conjecture
and the results in the introduction need no explanation.

Any arithmetic lattice contains a neat normal subgroup of finite index. Such
subgroups are in particular torsion-free. As quotients by a finite group, the Shimura
surfaces come with a (Q-valued) intersection theory. The BNC can be extended to
such surfaces, and Theorem 0.1 needs no further explanation.

If 0 is cofinite but not cocompact, our proof of Theorem 0.1 gives a statement
about the self-intersection number of the cohomology class of the Shimura curve
projected to the complement of the cusp resolution cycles, as we will now explain.

We may suppose that 0 is a neat subgroup. Let XBB be the minimal (Baily–Borel)
compactification of X = 0\G/K . Since X is not isogenous to a product, XBB

\ X
has codimension two, and hence H 2

c (X,Q)∼= H 2(XBB,Q). Let π : Y → XBB be
a (minimal) smooth resolution of the singularities at the cusps and j : X→ Y the
inclusion. We claim that

H 2(Y,Q)= π∗H 2(XBB,Q)⊕ B, (1)

where B is the subspace spanned by cusp resolution curves. Moreover, the direct
sum is orthogonal and the intersection form on B is negative-definite. This implies
that the sum decomposition is compatible with Poincaré duality, and this will make
the arguments in Section 3 work in the noncompact case, too; see Theorem 3.6.

Our claims are stated for the Hilbert modular case in [van der Geer 1988, Sec-
tions II.3, VI.1]. In the case of a ball quotient, a neighborhood W of the cusps in
Y is a disjoint union of disc bundles over tori, each sitting inside a line bundle of
negative degree. It suffices to show that

H2(Y,Q)= H2(W,Q)⊕ Im( j∗ : H2(X,Q)→ H2(Y,Q))

and then apply duality. By Mayer–Vietoris, it suffices to show that H1(W∩X,Q)→

H1(W,Q)⊕ H1(X,Q) is injective. This holds true, since the inclusion of a circle
bundle into the corresponding disc bundle induces an injection the level of H1( · ,Q).
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We remark that the BNC (and intersection numbers in general) are very sensitive
to blowups. We leave it to the reader to investigate if Theorem 0.1 also holds
on Y .

Volume normalization. The hermitian symmetric space G/K comes with a Kähler
(1, 1)-form ω that we normalize, say, so that the minimum value of the curvature
of the associated Riemannian metric is −1. We continue assuming that 0 is a neat
subgroup, so that X is a manifold with universal cover X̃ = G/K . Then ω ∧ ω
provides volume forms on X̃ and X . We let vol(X) be the volume of the Shimura
surface. Rescaling by the volume, we obtain a probability measure νX on X induced
from the volume form.

Shimura curves are totally geodesic subvarieties in X . Consequently, the restric-
tion of ω is a Kähler form ωC on C . We let vol(C)=

∫
C ωC be the corresponding

volume and νC the probability measure defined by ωC .
We need to extend this to the quotients by smaller compact subgroups. Let

K ′ ⊂ G be a compact subgroup and K ′H = K ′ ∩ H . Let νG be the Haar measure
on G normalized so that the pushforward to G/K gives the above volume form on
X̃ and such that the fibers have volume 1. From νG , we obtain measures νG/K ′ on
G/K ′ and finite measures ν0\G/K ′ on X K ′ = 0\G/K ′ with vol(X)= vol(X K ′).

Similarly we fix a normalization of a Haar measure νH on H by requiring that
the fibers of H→ H/K H have volume 1 and that the pushforward to H/K H is the
volume form coming from the metric with curvature −1, as above.

In this way, given a Shimura curve C = 0\0gH/K H , the pushforward of νH de-
fines a finite measure νC,K ′ on the locally symmetric subspaces CK ′ =0\0gH/K ′H
inside X K ′ with vol(CK ′)= vol(C).

2. Equidistribution

There are many sources in the literature that deduce equidistribution for Shimura
curves from a Ratner-type theorem (notably [Clozel and Ullmo 2005; Ullmo 2007]).
We need a slightly stronger equidistribution result, on 0\G or on 0\G/K ′ for some
(not necessarily maximal) compact subgroup K ′ of G rather than on the algebraic
surface X . This follows along known lines from Ratner’s result, or rather the version
in [Eskin et al. 1996]. We give a proof avoiding technicalities on Shimura data and
focusing on the surface case.

The references above contain as special case the following equidistribution:

Proposition 2.1. Suppose that X is a Shimura surface. If (Cn)n∈N is a sequence of
pairwise different Shimura curves, then νCn → νX weakly as n→∞.

This is a special case of the following stronger result:
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Proposition 2.2. Suppose that X =0\G/K is a Shimura surface. Let K ′⊂ K be a
closed subgroup, and let gn ∈ G be a sequence of points so that the orbits gn H ⊂ G
project to pairwise-distinct Shimura curves Cn in X. Then on X ′ = 0\G/K ′ the
sequence of probability measures νCn,K ′ converges weakly to ν0\G/K ′ as n→∞.

Corollary 2.3. Suppose that X = 0\G/K is a Shimura surface. If (Cn)n∈N is a
sequence of pairwise different Shimura curves, then vol(Cn)→∞ as n→∞.

Proof of Corollary 2.3. With the above volume normalization, it suffices to prove
the claim for the lifts of the Shimura curves Cn to X ′′ = 0\G. Let C ′′n denote these
lifts. We apply the preceding proposition for K ′ = {e}. Equidistribution implies in
particular that Shimura curves are dense; i.e., for any finite collection of open sets
Ui , i ∈ I , there exists N0 such that for n > N0 the intersection C ′′n ∩Ui is nonempty
for all i . Since X ′′ is foliated by H -orbits and νG is locally the product of νH and
a transversal measure, it suffices to take for Ui sufficiently many open sets locally
trivializing the foliation, namely Ui=Vi×Wi with Vi an H -orbit, such that νH (Vi )=

O(1) but the transversal measure of Wi is O(1/n2). Then we can fit O(n) such
sets into X , and each time C ′′n intersects some Ui it picks up a volume of O(1). �

Proof of Proposition 2.2. We first observe that, if the proposition holds for K ′= {e},
then it holds for any other K ′ ⊂ K . Namely, under the projection π : X ′′ = 0\G→
X ′ = 0\G/K ′, we have, by the volume normalization above, that the pushforward
measures satisfy π∗(νX ′′) = νX ′ and π∗(νCn,e) = νCn,K ′ . Thus we will assume
K ′ = {e}. For this choice of K ′ we have that X ′ = 0\G. Thus we’ll simply write
X ′ for 0\G and ν ′n for νCn,e.

The proof consists of two parts: (1) prove that ν ′n has convergent subsequences ν ′n j
;

(2) prove that the limit of any convergent subsequence must be νX ′ .
If 0 is cocompact, that is, X ′ is compact, then the space of probability measures

on X ′ is compact in the weak-∗ topology, so ν ′n has a convergent subsequence. If
X is not compact, then a subsequence converges to a measure on the one-point
compactification X ′ ∪ {∞}, but these measures may “escape to infinity”, e.g.,
converge to the delta function at∞. An example of this “escape of mass” is given
in the introduction to [Eskin et al. 1997]. The main result there is that there is no
escape of mass when the image of Z(H) in X ′ is compact (where Z(H) is the
centralizer of H in G). More precisely, compactness of the image of Z(H) in X ′

implies (see [Eskin et al. 1997, Theorem 1.1]) that for every ε > 0 there exists a
compact subset W ⊂0\G such that every H -orbit gives measure at least 1−ε to W .
Hence the sequence ν ′n indeed converges in the space of probability measures on X ′.

In our situation Z(H) itself is compact: it is finite in Case One and U (1) in Case
Two, and thus we always have convergence, thereby proving (1). (Compactness of
Z(H) generally holds for Shimura varieties if one discards the obvious exception
of product situations; see [Ullmo 2007].)
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To prove (2) we may assume ν ′n converges weakly to a probability measure ν ′; we
must prove ν ′ = νX ′ . This follows a pattern which is by now standard: (i) use, as in
[Eskin et al. 1996], Ratner’s theorem on unipotent flows to prove that ν is algebraic,
i.e., supported on an L-orbit of some connected algebraic group H ⊆ L ⊆ G that
intersects 0 in a lattice; (ii) prove L = G. We formulate (i) as the following lemma:

Lemma 2.4. Suppose ν ′n converges weakly to ν ′. Then there exists a closed con-
nected subgroup L , H ⊂ L ⊂ G, such that ν ′ is an L-invariant measure supported
on 0\0cL for some c∈G and such that c−10c∩L is a lattice in L. Moreover, there
exist a sequence xn ∈ 0gn H converging to c and an n0 such that cLc−1 contains
the subgroup generated by xn H x−1

n for n ≥ n0.

We formulated this lemma following closely the wording of [Eskin and Oh
2006, Proposition 2.1] (see also [Eskin et al. 1996, Theorem 1.7]) because it can
be proved from [Mozes and Shah 1995, Theorem 1.1] in same way. Namely,
start from the fact that ν ′n is supported on the H -orbit 0\0gn H ⊂ 0\G, which is
isomorphic to (g−1

n 0gn∩H)\H and is H -invariant. Since g−1
n 0gn is a lattice in H ,

which, in our case, is locally isomorphic to SL(2,R), we can choose a unipotent
one-parameter subgroup u(t) in H and apply the Moore ergodicity theorem, as in
the proof of [Eskin and Oh 2006, Proposition 2.1], to show that ν ′n is an ergodic
u(t)-invariant measure, thus checking that the first hypothesis of [Mozes and Shah
1995, Theorem 1.1] is satisfied. We continue, in this way, following the proof of
[Eskin and Oh 2006, Proposition 2.1] until the proof of Lemma 2.4 is complete.

Finally the groups xn H x−1
n cannot all be equal to H , since this would give γn ∈0

so that gn Hg−1
n = γn Hγ−1

n , contradicting the hypothesis that the curves Cn are pair-
wise different. We conclude that H ( L and thus L =G by the following lemma. �

Lemma 2.5. Let (G, H) be as in Case One or Case Two. If L is a connected real
Lie group with H ( L ⊂ G and 0 ∩ L is a lattice in L , then L = G.

Proof. This is easily verified on the level of Lie algebras. Since Lie(L) contains an
element not in Lie(H), bracketing with suitable elements of Lie(H) allows one to
produce a generating set of Lie(G). �

3. The current of integration of a Shimura curve

Any Shimura curve C , in fact any codimension-one subvariety of the Shimura
surface X , defines a closed (1, 1)-current on X . On the other hand, the Shimura
surface comes with a natural (1, 1)-form, the Kähler form ω. The aim of this
section is to translate the equidistribution result (a convergence of measures) into a
convergence statement for the classes of these currents, suitably normalized. We
start with the compact case and explain at the end of this section the necessary
modification in the noncompact case. Recall that a (1, 1)-current on a complex
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surface X is a continuous linear functional on A1,1
c (X), the space of compactly

supported (1, 1)-forms on X . This space (A1,1
c (X))∨ contains both the complex

curves C ⊂ X and the smooth forms η ∈ A1,1(X) by the formulas

C→
(
α→

∫
C
α

)
, η→

(
α→

∫
X
η∧α

)
for all α ∈ A1,1

c (X).

The cohomology of X can be computed either from the complex of forms or from the
complex of currents. Recall also that, if X is Kähler and ω denotes the Kähler form,
then vol(X)=

∫
X ω∧ω, the Kähler form of C is ωC = ωX |C and vol(C)=

∫
C ωC .

Proposition 3.1. Let X = 0\G/K be a smooth Shimura surface and let gn ∈ G be
any sequence of points such that the Shimura curves Cn =0\0gn H/K are pairwise
distinct. Then

Cn/ vol(Cn)→ ω in A1,1
c (X)∨, hence in H 1,1(X).

This and the finite-dimensionality of the Picard group allows us to deduce our
main result.

Corollary 3.2. Let X = 0\G/K be a compact, smooth Shimura surface and let
gn ∈ G be any sequence of points such that the Shimura curves Cn = 0\gm H/K
are pairwise distinct. Then

C2
n ∼ vol(X) vol(0\0gn H)2 for n→∞.

In particular, for any M , there are only finitely many Shimura curves C on X with
C2 < M.

Proof. For the first statement, fix a basis γ0 = ω, γ1, . . . , γs of H 1,1(X). Taking
γi for i ≥ 1 orthogonal to γ0, we may suppose that the dual basis is λ−1ω =

γ ∨0 , γ
∨

1 , . . . , γ
∨
s for some λ ∈ C; in fact, λ=

∫
X ω∧ω= vol(X). If C is a curve in

X , thus representing a (1, 1)-class, the Poincaré dual is represented by

PD(C)=
s∑

i=0

(∫
C
γi

)
γ ∨i .

Consequently, letting An = vol(Cn), by Proposition 3.1,

1
A2

n
Cn ·Cn =

1
A2

n

∫
Cn

PD(Cn)=

s∑
i=0

(
1
An

∫
Cn

γi

)(
1
An

∫
Cn

γ ∨i

)

−→

s∑
i=0

(∫
X
ω∧ γi

)(∫
X
ω∧ γ ∨i

)
= λ= vol(X). (2)

The second statement follows from the first and from Corollary 2.3. �
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Integrating on the projectivized tangent bundle. We now prepare for the proof of
Proposition 3.1. For this purpose we work on the universal cover X̃ = G/K of X .
First of all, for any (two-dimensional) Kähler manifold X there is a natural map

PT X̃→31,1T X̃ = (31,1T ∗ X̃)∨,

defined pointwise at any x ∈ X̃ by [v] 7→ v∧ v̄/|v|2 for v ∈ Tx X̃ \ {0}. Dually, an
element α ∈ (31,1T ∗ X̃) defines a real-valued function

ϕα : PT X̃→ R, ϕα([v])= α

(
v∧ v̄

|v|2

)
.

Using this map we can write the intersection with α as the integral of a real-
valued function against the volume form of PT X . In Case Two, PT X̃ = G/K ′

is a homogeneous space with an invariant volume, where K ′ = U(1)×U(1). In
Case One, we will need to pass to a G-invariant real subbundle of PT X̃ , also of
the form G/K ′ for K ′ = U(1).

We start with Case Two. Recall that we scaled the Kähler form ω so that
vol(X)=

∫
X ω∧ω.

Lemma 3.3. Let X be a two-dimensional Kähler manifold, choose a two-form η on
PT X that restricts to the area form ηx of each fiber PTx X , x ∈ X , scaled to give
total area 1 to each fiber. Then, for all (1, 1)-forms α on X and for each x ∈ X ,
we have

(ω∧α)x =

(∫
PTx X

ϕαηx

)
(ω∧ω)x .

Therefore we have ∫
X
ω∧α =

∫
PT X

ϕα η∧ω∧ω,

where we have written simply ω for the pullback to PT X of the form ω on X.

Proof. In suitable local coordinates at x , the Kähler form at x is

ωx =

√
−1
2

(dz1 ∧ dz̄1+ dz2 ∧ dz̄2).

Writing α =
√
−1
2

∑
αi j̄ dzi ∧ dz̄ j , we have (suppressing the factors of

√
−1
2 )

(ω∧α)x = (α11̄+α22̄)(dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2)=
α11̄+α22̄

2
(ω∧ω)x .
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On the other hand, if we let e1, e2 denote the basis for Tx X dual to dz1, dz2, and
write v = v1e1+ v2e2 ∈ Tx X , the first factor of the right-hand side is∫

P1
α

(
(v1e1+v2e2)∧(v1e1+v2e2)

|v1|2+|v2|2

)
ηx

= α11̄

∫
P1

|v1|
2

|v1|2+|v2|2
ηx+α22̄

∫
P1

|v2|
2

|v1|2+|v2|2
ηx+

∫
P1

2Im(α12̄v1v̄2)

|v1|2+|v2|2
ηx . (3)

The involution (v1 : v2)→ (v2 : v1) is an isometry of P1. The last integrand is sent
to its negative by this involution, so the last integral vanishes. The first two integrals
are interchanged by this involution, therefore they are equal. Since the sum of the
two integrands is visibly identically 1, each of the first two integrals has value 1

2 .
Thus the first two terms give 1

2α11̄ and 1
2α22̄ respectively, hence the first statement

of the lemma follows. The second follows from the first and Fubini’s theorem. �

Remark. The first statement in the lemma is equivalent to the well-known fact in
linear algebra that the trace of a hermitian matrix equals the average value over the
unit sphere of the associated hermitian form.

Corollary 3.4. If X is a Shimura surface covered by the ball, then for all (1, 1)-
forms α on X we have ∫

X
ω∧α =

∫
PT X

ϕα dν0\G/K ′,

where ν0\G/K ′ is the volume form on PT X introduced above.

Proof. If X̃ =B2
=G/K , then η∧ω∧ω in Lemma 3.3 is a G-invariant volume form

on PT X̃ . Moreover, ω and η have been scaled to give the correct normalization. �

Now we address the corresponding statement in Case One. If the Shimura
surface X is covered by H2, then PT X̃ is no longer a homogeneous space for
G, but it has some natural homogeneous subbundles. Equivalently, the action of
K on PTx X̃ ∼= P1 is not transitive, but has some distinguished orbits: two zero-
dimensional orbits, corresponding to the tangents to the two factors of H2, and an
orbit of real dimension 1 corresponding to the graphs of isometries between the
two factors. Explicitly, if we choose coordinates z1, z2 as above, this time adapted
to the product structure of X̃ , and with dual basis e1, e2 each tangent to one of the
factors, and writing v = v1e1+ v2e2 as above, the action of K ∼= U(1)×U(1) on
PTx X̃ ∼= P1 leaves invariant the points with homogeneous coordinates (1 : 0) and
(0 : 1) and the real submanifold {(v1 : v2) : |v1| = |v2|} = {(1 : eiθ )} ∼= S1.

Let us call this submanifold STx X̃ and let ST X̃∼=G/K ′ denote the corresponding
bundle over X̃ ∼= G/K with fiber K/K ′ ∼= STx X̃ ∼= S1. Then a calculation just as
in the proof of Lemma 3.3 gives us:
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Lemma 3.5. Let X be a Shimura surface covered by H2, choose a one-form η on
ST X that restricts to the angle form ηx = dθ of each fiber STx X , scaled to give
total area 1 to each fiber. Then, for any (1, 1) form α on X and for each x ∈ X ,
we have

(ω∧α)x =

(∫
STx X

ϕαηx

)
(ω∧ω)x .

Therefore we have∫
X
ω∧α =

∫
ST X

ϕα η∧ω∧ω =

∫
ST X

ϕα dν0\G/K ′,

where ν0\G/K ′ is the volume form on ST X introduced above.

Proof of Proposition 3.1. To show convergence in H 1,1(X) it suffices to show that

1
vol(Cn)

∫
Cn

α →

∫
X
ω∧α

for any α ∈ H 1,1(X). In Case Two, by Corollary 3.4 it suffices to show that

1
vol(Cn)

∫
Cn

α →

∫
PT X

ϕα dν0\G/K ′ .

A local verification, just using the definition of ϕα and the fact that νCn,K ′ was
defined to give measure 1 to the fibers K/K ′, implies that

∫
Cn
α=

∫
PT Cn

ϕα dνCn,K ′ .
Since νCn,K ′ is supported on PT Cn ⊂ PT X , it is thus sufficient to show that∫

PT X
ϕα dνCn,K ′→

∫
PT X

ϕα dν0\G/K ′ .

We have reformulated our claim in terms of a convergence of measures, integrating
against a globally defined function ϕα. Proposition 2.2 completes the proof. In
Case One, the proof is the same, replacing PT X by ST X and the reference to
Corollary 3.4 by Lemma 3.5. �

The noncompact case. Recall that we denoted by Y a minimal resolution of the sin-
gularities of the Baily–Borel compactification XBB. By [Mumford 1977, Theorem
3.1, Proposition 1.1], the Kähler class ω extends to a closed current on Y . Moreover,
ω ∈ π∗H 2(XBB,Q) by [Mumford 1977, Proposition 3.4(b)]. The statement of
Proposition 3.1 now reads

pB⊥(Cn)/ vol(Cn)→ ω in π∗H 2(XBB,Q),

where p⊥B is the orthogonal projection onto the complement of B. The same proof
as above works. In order to show the analog

(pB⊥Cn)
2
∼ vol(0\0gn H)2 for n→∞
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of Corollary 3.2, we apply Poincaré duality to π∗H 2(XBB,Q). Since this is a
perfect pairing, the proof of Corollary 3.2 applies without changes:

Theorem 3.6. For X as above and for any real number M , there are only finitely
many Shimura curves C on X with (pB⊥C)2 < M.

In particular, for the collection of compact Shimura curves in X , we obtain
Theorem 0.1.
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