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Singularities of
locally acyclic cluster algebras

Angélica Benito, Greg Muller, Jenna Rajchgot and Karen E. Smith

We show that locally acyclic cluster algebras have (at worst) canonical sin-
gularities. In fact, we prove that locally acyclic cluster algebras of positive
characteristic are strongly F -regular. In addition, we show that upper cluster
algebras are always Frobenius split by a canonically defined splitting, and that
they have a free canonical module of rank one. We also give examples to show
that not all upper cluster algebras are F -regular if the local acyclicity is dropped.

1. Introduction

Fomin and Zelevinsky introduced cluster algebras at the close of the twentieth
century as a way to study total positivity in a wide range of contexts. Since then,
cluster algebra structures have been discovered in many unexpected corners of
mathematics (and physics), including Teichmüller theory [Gekhtman et al. 2005;
Fock and Goncharov 2007], discrete integrable systems [Fomin and Zelevinsky
2003], knot theory [Muller 2012; Musiker et al. 2013], and mirror symmetry [Shen
and Goncharov 2015; Kontsevich and Soibelman 2013], just to name a few.

Locally acyclic cluster algebras, introduced in [Muller 2013], are a large class
of cluster algebras which are simultaneously flexible enough to include many
interesting examples — including many fundamental examples from representation
theory and most examples from Teichmüller theory — yet restrictive enough to
avoid the pathological behavior sometimes found in general cluster algebras. For
example, locally acyclic cluster algebras are finitely generated and normal, while
a general cluster algebra may fail to be either. The main theorem of this paper is
that locally acyclic cluster algebras have (at worst) canonical singularities. In fact,
we show that locally acyclic cluster algebras of prime characteristic are strongly
F -regular, a strong form of Frobenius split which implies many nice restrictions
on the singularities; for example, F -regular varieties are normal, Cohen–Macaulay,
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pseudorational, and have Kawamata log terminal singularities (if the canonical class
divisor is Q-Cartier) or canonical singularities (if the canonical class is Cartier).
These characteristic-p results imply the corresponding statements in characteristic
zero as well. For a survey, see, e.g., [Smith 1997b] or [Smith and Zhang 2015].

Associated to a cluster algebra A is its upper cluster algebra U . This related
algebra has the same fraction field and satisfies A� U (see [Berenstein et al. 2005]).
We show that all upper cluster algebras in positive characteristic have a “cluster”
Frobenius splitting, which can be expressed explicitly in terms of any cluster. We
also prove the closely related result that upper cluster algebras have a free canonical
module, which is generated by any log volume form in a cluster of cluster variables.
The latter of these results is found in the Appendix.

The inclusion A � U need not be equality, though it is in the case when A is
locally acyclic [Muller 2014]. When equality fails, a general philosophy is that U is
better behaved than A. In this direction, we show that if an upper cluster algebra U
fails to be F -regular, then A also fails to be F -regular, and we provide an example
of this situation. Taking the ground field to be of characteristic zero, this gives an
example of a finitely generated upper cluster algebra U which has log canonical but
not log terminal singularities. We also provide an example where A¤ U and A is
pathological (e.g., A is non-Noetherian), but U is nevertheless strongly F -regular.

All of our results and arguments are also valid for cluster algebras given by an
arbitrary skew-symmetrizable matrix. However, we have written the exposition in
the slightly less general setting of cluster algebras given by quivers for the sake
of accessibility. Experts will have no trouble adapting the arguments to the more
general setting.

2. Cluster algebras

A cluster algebra is a commutative domain with some extra combinatorial structure.
It comes equipped with a (usually infinite) set of generators called cluster variables,
which can be recursively generated from a seed: a quiver decorated with a free
generating set for a field.

We will consider cluster algebras over an arbitrary field k, although in the
literature they are usually defined over Q, R or Z. The choice of scalars is mostly
irrelevant to the definitions, and most proofs of standard results go through without
change. As such, we will cite the original results without comment, and only
address the differences as needed.

Seeds and mutations. Let k be a field, and let F be a purely transcendental finite
extension of k. A seed for F over k consists of the following data:

� A quiver Q without loops or directed 2-cycles.
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Figure 1. Three examples of seeds in F D k.x1; x2; x3/.

� A bijection from the vertices of Q to a set of algebraically independent genera-
tors x D fx1; x2; : : : ; xng for F over k. The image xi of a vertex i is called
the cluster variable at that vertex, and the set x is called a cluster.

� A subset of the vertices of Q designated as frozen; the rest are called mutable.
We impose the nonstandard convention that every vertex which touches no
arrow is frozen.1

Seeds will usually be denoted as a pair .Q;x/, with the other data suppressed.
The number of vertices of Q (denoted n hereafter) is the rank of the seed, and the
number of mutable vertices (denoted m hereafter) is the mutable rank.

Seeds may be drawn as a quiver with circles for mutable vertices, and rectan-
gles for frozen vertices, each with the corresponding cluster variable inscribed
(e.g., Figure 1).

A seed .Q;x/ may be mutated at any mutable vertex k to produce a new seed
.�k.Q/; �k.x// for F . The quiver �k.Q/ is constructed in three steps:

(1) For each pair of arrows i ! k! j through the vertex being mutated, add an
arrow i ! j .

(2) Reverse the orientation of every arrow incident to k.

(3) Cancel any directed 2-cycles in pairs.

Q

k
(1) k

(2)k

(3)
k

�k.Q/

1This convention allows us to define cluster algebras in characteristic two, and otherwise produces
the same definition as the usual convention in every other characteristic. The point is that this
convention prevents the numerator in the mutation formula (2-1) from being 2, which in characteristic
two would mean that a mutation at that vertex would not produce another valid cluster variable.
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The cluster variables in �k.x/ are the same as those in x, except for the cluster
variable at vertex k, which becomes

x0k WD

�Y
i!k

xi C
Y
k!i

xi

�
x�1k ; (2-1)

where the products are over all arrows into or out of k, respectively. Frozen vertices
stay frozen.

Mutating at the same vertex twice in a row returns the original seed. That is,
mutation is an involution on the set of seeds of F=k. Two seeds are mutation-
equivalent if they are related by a sequence of mutations.

Cluster algebras. Fix a seed .Q;x/ for F over k. The union of all the clusters which
appear in mutation-equivalent seeds defines the complete set of cluster variables in
the ambient field F , naturally grouped into overlapping clusters consisting of those
appearing together in a seed. The cluster algebra A.Q;x/ determined by .Q;x/ is
the sub-k-algebra of F generated by all of the cluster variables and the inverses of
the frozen variables. The cluster algebra only depends on the mutation-equivalence
class of the initial seed, and so the initial seed .Q;x/ will often be omitted from
the notation.

A fundamental property of cluster algebras is the Laurent phenomenon [Fomin
and Zelevinsky 2002], which states that each cluster variable can be expressed as
a Laurent polynomial in any cluster. Put differently, the localization of A at any
cluster x D fx1; x2; : : : ; xng is the ring of Laurent polynomials in x over k:

A ,!AŒx�11 ; x�12 ; : : : ; x�1n �D kŒx˙11 ; x˙12 ; : : : ; x˙1n �� F :

Every cluster in A defines such an inclusion. This naturally leads to the following
definition: the upper cluster algebra U of A is the intersection of each of these
Laurent rings, taken inside the ambient field F :

U WD
\

clusters x�A

kŒx˙11 ; x˙12 ; : : : ; x˙1n �� F :

By the Laurent phenomenon, there is an inclusion A � U . This inclusion is not
always equality (see [Berenstein et al. 2005, Proposition 1.26]), but it is an equality
in all of the simplest examples, and in many of the most important examples.

Lemma 2.1. Upper cluster algebras are normal.

Proof. Laurent rings over fields are regular, and hence normal. Since an intersection
of normal rings inside their common fraction field is normal, upper cluster algebras
are normal. �
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Cluster localization. Under certain circumstances, localizing a cluster algebra at
one or more cluster variables is again a cluster algebra. This important idea was
first discussed in [Muller 2013] and further developed in [Muller 2014], to which
we refer for more details.

Given a seed .Q;x/ over k and a designated subset fk1; k2; : : : ; kag of its mutable
vertices, we can make a new seed .Q�;x�/ by making those vertices frozen. Because
mutations for Q� are all mutations for Q, there is a natural containment

A.Q�;x�/�A.Q;x/Œx�1k1
; x�1k2

; : : : ; x�1ka
�: (2-2)

If this is an equality, A.Q�;x�/ is called a cluster localization of A.Q;x/.
Although it can be difficult to determine whether a particular localization is a

cluster localization, there is one situation where it is easy. Indeed, we have inclusions

A.Q�;x�/�A.Q;x/Œx�1k1
;x�1k2

; : : : ;x�1ka
��U.Q;x/Œx�1k1

;x�1k2
; : : : ;x�1ka

��U.Q�;x�/;
(2-3)

where the first and third inclusions follow from the fact that the mutations for Q� are
a subset of the mutations for Q (and the middle inclusion follows from the Laurent
phenomenon for A.Q//. Thus the inclusion in (2-2) is always equality whenever
A.Q�;x�/D U.Q�;x�/. One extreme case is where we freeze all vertices: since
obviously AD U when no mutations can happen, it follows that localizing at any
full cluster x is a cluster localization. More generally, A.Q�;x�/D U.Q�;x�/ will
necessarily hold if “enough” mutable vertices become frozen.

For example, if we freeze enough variables to break any directed cycles in Q,
we arrive at an acyclic quiver Q�. By definition, a quiver is acyclic if it has no
directed cycles through mutable vertices; a cluster algebra is acyclic if it admits
some acyclic seed. Because acyclic cluster algebras are known to equal their upper
cluster algebras (by Theorem 2.6 below), the chain of inclusions (2-3) above implies
that A.Q�;x�/ is a cluster localization whenever Q� is acyclic.

Cluster covers. The idea of cluster localization is powerful when a cluster algebra
can be covered by cluster localizations.

Definition 2.2. For a cluster algebra A, a set fAigi2I of cluster localizations of A
is called a cluster cover if the corresponding open subschemes cover Spec.A/, that
is, if

Spec.A/D
[
i2I

Spec.Ai /:

If a cluster algebra admits a cluster cover, any geometric property, such as
normality, smoothness, or even different classes of singularities, can be checked
locally on the cluster localizations. Another property which may be checked on a
cover is whether AD U :
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Lemma 2.3 [Muller 2014, Lemma 3.3.2]. If fAigi2I is a cluster cover of A, and
Ai D Ui for each i 2 I , then AD U .

A powerful observation proposed in [Muller 2013] is that many notable classes
of cluster algebras admit covers by acyclic cluster algebras.

Definition 2.4. A cluster algebra is locally acyclic if it admits a cluster cover by
acyclic cluster algebras.

The class of locally acyclic cluster algebras is much wider than the class of
acyclic cluster algebras. The latter class is well-understood and very nicely behaved,
but far too restrictive to be itself a major class. On the other hand, locally acyclic
cluster algebras include, for example, cluster algebras of Grassmannians, cluster
algebras of marked surfaces with at least two marked points on the boundary
[Muller 2013, Theorem 10.6], as well as cluster algebras of double Bruhat cells and
more generally, positroid cells [Muller and Speyer 2014]. Because the geometric
properties of locally acyclic cluster algebras follow nicely from the acyclic case,
there is now substantial interest in identifying locally acyclic cluster algebras.

Proposition 2.5 [Muller 2013]. A locally acyclic cluster algebra over k is finitely
generated over k and equal to its upper cluster algebra. A locally acyclic cluster
algebra is normal and a local complete intersection (hence Gorenstein).

This follows with little fuss from the acyclic case, due to Berenstein, Fomin, and
Zelevinsky.2

Theorem 2.6 [Berenstein et al. 2005, Corollary 1.17; Muller 2014, Corollary 4.2.2].
Let .Q;x/ be an acyclic seed. Then the cluster algebra A.Q/ is a finitely generated
complete intersection, equal to its upper cluster algebra U.Q/.
Remark 2.7. It is important to note that not every cluster algebra admits a cover by
proper cluster localizations. For example, the Markov cluster algebra generated from
the middle seed in Figure 1 cannot by covered by proper cluster localizations. Indeed,
one easily checks that A can be N-graded, with every cluster variable homogeneous
of degree one. So, any nontrivial cluster localization Spec.Ai / of Spec.A/ necessary
misses the unique homogeneous maximal ideal generated by the cluster variables.

3. Frobenius splittings

Frobenius splittings. Every domain3 R over a field of positive characteristic p has
a canonical ring map, the Frobenius endomorphism

F WR!R; defined by x 7! xp:

2The proof in [Berenstein et al. 2005] assumes an additional condition, that the cluster algebra is
totally coprime. However, it was shown in [Muller 2014] that this condition is unnecessary.

3The assumption that R is a domain is completely unnecessary, but it simplifies our discussion
and is sufficient for our purposes.
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The Frobenius map is an R-module map if we equip the target copy of R with the
R-module structure it gets via restriction of scalars. In practice, it is convenient to
denote the target copy of R by some other notation. We denote the target copy by
R1=p and its elements by r1=p, which is consistent with viewing the target copy
of R as (the canonically isomorphic ring) R1=p inside the algebraic closure of the
fraction field of R. In this case, the elements of r act on elements x1=p 2R1=p by
r � x1=p D .rpx/1=p, the usual multiplication rx1=p in the fraction field. In this
notation, the Frobenius map becomes the inclusion

R F,�!R1=p;

r 7! .rp/1=p D r;
(3-1)

of R into the overring R1=p of p-th roots.
We say that R is F -finite if R1=p is a finitely generated R-module. This is a

fairly weak condition, satisfied, for example, by every finitely generated algebra
over a perfect field k.

A famous theorem of Kunz [1969, Theorem 2.1] states that an F -finite domain R
is regular if and only if R1=p is locally free over R. More generally, one should
expect that the closerR1=p is to being locally free overR, the milder the singularities
of R. Frobenius split rings and strongly F -regular rings are examples of rings in
which some degree of “freeness” is retained of R1=p over R.

Definition 3.1. A domain R is Frobenius split if the map (3-1) splits in the category
of R-modules. A choice of splitting � WR1=p!R is called a Frobenius splitting.

Example 3.2. Every field k of characteristic p is Frobenius split, since k1=p is a
vector space over the subfield k. For a perfect field k, the Frobenius endomorphism
is a field isomorphism, and its inverse is the unique Frobenius splitting of k.

Example 3.3. Polynomial rings are Frobenius split. Define the standard splitting
of the polynomial ring kŒx1; x2; : : : ; xn� to be given by

� W .kŒx1;x2; : : : ;xn�/
1=p
! kŒx1;x2; : : : ;xn�;

�..�x
a1

1 x
a2

2 � � �x
an
n /

1=p/D

�
�.�1=p/x

a1=p
1 x

a2=p
2 � � �x

an=p
n if a1;a2; : : : ;an2pZ;

0 otherwise;

where the map � Wk1=p!k on scalars � is taken to be any fixed splitting of Frobenius.

Remark 3.4. The standard splitting of a polynomial ring is a Frobenius splitting,
and will be the source of Frobenius splittings of cluster algebras. It depends on a
choice of generators x and if k is not perfect, it depends on a choice of Frobenius
splitting for k. We suppress the dependence on the choice of a Frobenius splitting
of k by assuming our ground field comes with a fixed Frobenius splitting. In any
case, when k is perfect, there is a unique splitting.
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The standard splitting of a polynomial ring induces a splitting, also called the
standard splitting, of the k-Laurent ring LD kŒx˙11 ; : : : ; x˙1n �, using the exact same
formula as above. An isomorphism between two k-Laurent rings will commute
with the standard splitting, so it does not depend on a choice of presentation.

The standard splitting of a k-Laurent ring has the following key property.

Lemma 3.5. If L is a finitely generated Laurent ring over a perfect4 field k of
characteristic p, then the standard splitting � freely generates HomL.L

1=p; L/ as
an L1=p-module.

Explicitly, every L-module map L1=p!L (including every Frobenius splitting)
can be written as the composition

L1=p
ms
��!L1=p

�
��!L

of the standard splitting � and “multiplication by s1=p” map ms for some unique
s 2L. We denote this composition by � ı s1=p . We include a short proof, although
it may be well-known to experts.

Proof. Let L D kŒx˙11 ; x˙12 ; : : : ; x˙1n �. As an L-module, L1=p has a basis
consisting of monomials xa D x

a1

1 x
a2

2 � � � x
an
n for which 0 � ai < p. For any

 2 HomL.L
1=p; L/, define

s WD
X

a j0�ai<p

 .xa/px�a:

Then, for any b with 0� bi < p,

�..sxb/1=p/D �
��X

 .xa/pxb�a
�1=p�

D

X
 .xa/�.xb�a/1=p D  .xb/:

Since � ı s1=p and  agree on a basis for L1=p, they coincide. �

Remark 3.6. In fact, for any local or graded Gorenstein F -finite ring S of charac-
teristic p, the module HomS .S1=p; S/ is a free rank-one S1=p-module, since in this
case, HomS .S1=p; S/ is a canonical module for S1=p.5 The point of Lemma 3.5
is that for a Laurent ring L, a Frobenius splitting gives a natural generator for
HomL.L

1=p; L/, and hence for the canonical module of L.
One special case is for a field. If F is a field, then HomF .F1=p;F/ is a one-

dimensional vector space over F1=p , so we can take any nonzero mapping to be a
basis. In particular, if we fix a splitting � W F1=p! F , then every  W F1=p! F
is the composition  D � ı s1=p for some unique s 2 F .

4Perfect is not necessary here, but it suffices for our purposes and simplifies the discussion.
5This is a special case of the general “upper shriek” formula for a finite extension R! S that

!S Š HomR.S; !R/ [Hartshorne 1966; Bruns and Herzog 1993, Theorem 3.3.7b]. Note that is S if
Gorenstein, then so is the isomorphic ring S1=p ; hence !S Š S .
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Frobenius splittings of upper cluster algebras. As we now prove, upper cluster
algebras are always Frobenius split. Indeed, there is a natural cluster splitting which
is compatible with the cluster structure:

Theorem 3.7. Suppose that U is an upper cluster algebra over a field k of positive
characteristic. For any cluster x D fx1; x2; : : : ; xng, the standard splitting of
kŒx˙11 ; x˙12 ; : : : ; x˙1n � restricts to a splitting of U . This splitting of U does not
depend on the choice of cluster.

The point of the proof is the following simple but crucial observation: a subal-
gebra R of a Frobenius split algebra S is Frobenius split if �.R1=p/�R, where �
is some Frobenius splitting for S .

Proof. Let x0 D fx01; x2; : : : ; xng be the mutation of x at 1, and let P1 D x1x
0
1 be

the numerator of the mutation (see (2-1)). The standard splitting �x of the Laurent
ring Lx extends to a splitting of the fraction field F by localization; we check that
this splitting restricts to the standard splitting �x0 on the Laurent ring Lx0 .

�x..x
0˛/1=p/D �x..x

0˛1

1 x
˛2

2 � � � x
˛n
n /

1=p/D �x..P
˛1

1 x
�˛1

1 x
˛2

2 � � � x
˛n
n /

1=p/:

Since P1 does not contain x1, the expression inside �x is x�˛1

1 times a rational func-
tion of x2; : : : ; xn. It follows that this is zero, unless ˛1D pˇ1 for some ˇ1 2 Z. In
this case, �x..x

0˛/1=p/D �x..x
0ˇ1p
1 x

˛2

2 � � � x
˛n
n /

1=p/D x
0ˇ1

1 �x..x
˛2

2 � � � x
˛n
n /

1=p/.
Since this last expression is a Laurent monomial in x, we find that

�x..x
0˛/1=p/ WD

�
x0ˇ if ˛ D pˇ;
0 otherwise,

and so �x D �x0 on F . Iterating this argument, we see that every cluster x gives
the same splitting on F . Since this splitting preserves each Laurent ring Lx, it
preserves their intersection U . �

The cluster splitting of U inherits the key property from Lemma 3.5.

Theorem 3.8. Let U be an upper cluster algebra over a perfect field k. The cluster
splitting � of U freely generates HomU .U1=p;U/ as a U1=p-module.

Proof. Consider a U-module map  W U1=p! U . This map induces, by localization,
an F-linear map  W F1=p! F , which we also denote (somewhat abusively) by  .
Since HomF .F1=p;F/ is a one-dimensional vector space over F1=p generated by
the (localization of the) standard splitting �, we can write  as � ı s1=p for some
unique s 2 F . We aim to show that s 2 U . This will complete the proof, as every
 2 HomU .U1=p;U/ will then be the composition of the standard splitting with
premultiplication by a unique s1=p in U1=p.

To show that s 2 U , it suffices to show that s 2 Lx, where Lx is the Laurent
ring on any cluster x D fx1; x2; : : : ; xng. Note that Lx is the localization of U
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at the cluster variables fx1; x2; : : : ; xng. Thus the map  W U1=p! U induces an
Lx-module map  x W .Lx/

1=p ! Lx, which we again call  . By Lemma 3.5,
there is a unique sx 2 Lx such that  x.r

1=p/D �..sxr/
1=p/ for all r 2 Lx. But

now, localizing further to the fraction field F , this map is of course the same as
the map � ı s1=p from the first paragraph; that is, � ı s1=p D � ı s1=px . So by the
uniqueness of s, we see that s D sx 2 Lx. Since this works for any cluster x, it
follows that s 2 U . �
Remark 3.9. The existence of the cluster splitting of U is closely related to the
fact that the canonical module !U=k is free (see Remark 3.6). This is addressed in
the Appendix, which also describes the relation to Frobenius splittings.

4. F -regularity of locally acyclic cluster algebras

Strong F -regularity is a strengthened form of Frobenius splitting, first introduced by
Hochster and Huneke [1988]. Strongly F -regular rings have many nice properties:
they are Cohen–Macaulay, normal, and have pseudorational singularities, to name
a few. Our main theorem in this section is that locally acyclic cluster algebras are
strongly F -regular.

Strong F -regularity. Fix a domain R of characteristic p > 0. We continue to
assume that R is F -finite, meaning that R1=p is finitely generated over R. This is
always satisfied for algebras finitely generated over a perfect field.

Strong F -regularity will be a splitting condition on iterates of the Frobenius map.
For any natural number e, let F e W R! R denote the e-th iterate of Frobenius,
so that F e.r/D rp

e

for all r 2 R. As in the opening paragraphs of Section 3, it
is convenient to replace the target copy of R by the canonically isomorphic ring
R1=p

e

and view the Frobenius map as the inclusion

R ,!R1=p
e

inside the algebraic closure of the fraction field of R.
If R ,!R1=p splits, it is easy to see that every iterate R ,!R1=p

e

splits as well.
Indeed, if � WR1=p!R is a Frobenius splitting, then there is a naturally induced
R-module splitting �e WR1=p

e

!R induced by composition

R1=p
e �1=pe�1

�����!R1=p
e�1

�! � � � �!R1=p
�
�!R:

In particular, upper cluster algebras also have cluster splittings �e for the in-
clusions U ,! U1=pe

, and one easily checks (using the same proof) that �e is a
generator for HomU .U1=p

e

;U/ as a U1=pe

-module as in Theorem 3.8.

Definition 4.1. An F -finite domain R is strongly F -regular if for every nonzero
element x2R, there exists e2N and 2HomR.R1=p

e

; R/ such that .x1=p
e

/D1.
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Though not apparent from its definition, strong F -regularity is a geometric
property which restricts how bad singularities can be. The next two well-known
theorems are examples of this. See also [Smith and Zhang 2015] for a recent survey
of F -regularity.

Theorem 4.2 [Hochster and Huneke 1989, Theorem 3.1c]. An F -finite regular ring
is strongly F -regular.

Theorem 4.3. A Noetherian strongly F -regular ring is:

(1) Frobenius split;

(2) Cohen–Macaulay and normal [Hochster and Huneke 1989, Theorem 3.1d];

(3) pseudorational (see [Smith 1997a]);

(4) Kawamata log terminal whenever it is Q-Gorenstein [Hara and Watanabe
2002] (or more generally Kawamata log terminal in the sense of Schwede and
Smith’s result [2010]: there exists a boundary divisor � such that the pair
.X;�/ is Kawamata log terminal).

Like most good geometric properties, strong F -regularity is a local condition;
this is essential for our application to locally acyclic cluster algebras.

Lemma 4.4 [Hochster and Huneke 1989, Theorem 3.1a]. A domain R is strongly
F -regular if and only if Rp is strongly F -regular, for each prime ideal p.

In practice, to determine whether or not R is strongly F -regular, it often suffices
to check the condition in the definition for a single element x.

Proposition 4.5 [Hochster and Huneke 1989, Theorem 3.3]. Let R be a Noetherian
F -finite domain which is Frobenius split. If there is some nonzero c 2R such that

(1) Rc DRŒc�1� is strongly F -regular, and

(2) there exists e 2 N and  2 HomR.R1=p
e

; R/ such that  .c1=p
e

/D 1,

then R is strongly F -regular.

Proof. This is a well-known result lacking a precise reference easy for nonexperts
to parse (see [Hochster and Huneke 1989, Theorem 3.1a] or [Smith 2000, Theo-
rem 3.10]), so we include a proof. Take any nonzero x 2 R. By (1), there exists
 2 HomRc

.Rc
1=pf

; Rc/ such that  .x1=p
f

/D 1. Since HomRc
.R
1=pn

c ; Rc/D

HomR.R1=p
n

; R/˝RRc , we know  D .1=cq/ z for some z 2HomR.R1=p
n

; R/

and some natural number q, which without loss of generality can be assumed a
power of p. So z .x1=p

n

/ D cq . Now, because R is Frobenius split, a splitting
� 2 HomR.R1=q; R/ will send .cq/1=q to c. Composing this with the map given
in (2) will produce a map sending x1=qp

eCn

to 1. So R is strongly F -regular. �
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Such an element c is a test element for R. These types of test elements were first
defined in [Hochster and Huneke 1989]; for a recent survey of test elements in this
context, see [Smith and Zhang 2015] (more basic) or [Schwede and Tucker 2012]
(more advanced).

F -regularity of locally acyclic cluster algebras. We now establish the main result
of this section, the F -regularity of locally acyclic cluster algebras.

Theorem 4.6. A locally acyclic cluster algebra A over an F -finite field k of prime
characteristic is strongly F -regular.

Proof. The assumption on the field ensures that A is F -finite. Strong F -regularity
is a local condition (see Lemma 4.4), and so it can be checked on an open affine
cover. Since locally acyclic cluster algebras admit an open affine cover by acyclic
cluster algebras, it suffices to prove the theorem for acyclic cluster algebras.

Fix an acyclic seed .Q;x/ for A. We induce on the number of mutable vertices
to prove that A is strongly F -regular.

First, suppose there is only one mutable variable; call it x1. Then

AD kŒx1; x
0
1; x
˙1
2 ; : : : ; x˙1n � =hx1x

0
1�p

C
1 �p

�
1 i;

where pC1 and pC1 are monomials in x2; : : : ; xn with disjoint supports. This is a
localization of the hypersurface algebra

S D kŒx1; x
0
1; x2; : : : ; xn� =hx1x

0
1�p

C
1 �p

�
1 i:

Since at least one of pC1 and p�1 is not 1,6 the corresponding Jacobian ideal
contains a monomial in x2; : : : ; xn, and so the Jacobian ideal becomes trivial in the
localization to A. Hence, A is regular, so it strongly F -regular by Theorem 4.2.

Assume now by induction that any acyclic quiver with m� 1 mutable vertices
defines a strongly F -regular cluster algebra.

Let .Q;x/ be an acyclic seed withm mutable vertices. Since Q is acyclic, we can
find a vertex which is mutable and admits no arrows to any other mutable vertex —
a sink. Label that vertex x1, and the remaining mutable vertices x2; : : : ; xr . Let
.Q�;x�/ be the same seed but with x1 also frozen. Since .Q�;x�/ is also acyclic,
A.Q�;x�/D U.Q�;x�/ and so

A.Q�;x�/DAŒx�11 �

is a cluster localization. The seed .Q�;x�/ is acyclic with m� 1 mutable vertices,
and so by the inductive hypothesis, AŒx�11 � is strongly F -regular.

Since A is acyclic, the cluster algebra A coincides with the upper cluster algebra U
(Theorem 2.6), and so the cluster splitting from Theorem 3.7 is a Frobenius splitting

6Due to the assumption that mutable vertices must have at least one incident arrow.
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for A. Hence, by Proposition 4.5, it suffices to check only the test element c WD x1
in A. We construct a  sending x1=p

e

1 to 1 directly, using the cluster splitting �.
Let pC1 and p�1 be the monomials appearing in the mutation formula at x1, so

that x1x
0
1 D p

C
1 C p

�
1 . Choose e large enough that each exponent appearing in

pC1 or p�1 is less than pe. Since there are no arrows from x1 to other mutable
vertices, p�1 is a monomial only in the frozen variables; in particular, it is invertible.
Consider the map

 D �e ı

�
x01
p�1

�1=pe

;

where �e is the cluster splitting of A ,!A1=pe

. Then

 .x
1=pe

1 /D �e
��
x1x
0
1

p�1

�1=pe�
D �e

��
pC1
p�1
C 1

�1=pe�
:

Since pe is greater than any exponent in the Laurent monomial pC1 =p
�
1 , we know

that �e kills that term, and so  .x1=p
e

1 /D 1. By Proposition 4.5, this shows that A
is strongly F -regular. This completes the inductive step and the proof. �

Characteristic zero consequences. So far, our results are for cluster algebras over
a field of positive characteristic. By a standard miracle, these results imply similar
consequences over fields of characteristic zero.

We first need to check that locally acyclic cluster algebras over Z behave as
expected when tensored with a field k. Let AZ denote a cluster algebra over Z.
Choosing any seed in AZ and replacing the cluster with a cluster over k determines
a cluster algebra Ak over k, which is well-defined up to canonical isomorphism.

Lemma 4.7. If AZ is locally acyclic, then Ak is locally acyclic and k˝Z AZ 'Ak.

Proof. If AZ is acyclic, then any acyclic seed of AZ corresponds to an acyclic seed
of Ak with the same quiver. The presentations of AZ and Ak from Theorem 2.6
coincide except for the ring of scalars, and so k˝Z AZ 'Ak.

If AZ is locally acyclic, let f.Ai /Zgi2I be a cover by acyclic cluster algebras.
By the previous paragraph, k˝Z .Ai /Z ' .Ai /k is an acyclic cluster localization
of Ak. Since extension of scalars sends covers to covers, f.Ai /kgi is a cover of Ak.
Since the map k˝Z AZ!Ak is locally an isomorphism, it is an isomorphism. �

With this in hand, we may prove one of our main theorems.

Theorem 4.8. A locally acyclic cluster algebra over a field k of characteristic zero
has (at worst) canonical singularities.

Proof. Let A be a locally acyclic cluster algebra over k, and let AZ be the corre-
sponding locally acyclic cluster algebra over Z. By the preceding lemma, for any
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prime p 2 Z,

Fp˝Z AZ 'AFp

is locally acyclic. By Theorem 4.6, AFp
is strongly F -regular. On the other hand,

A is Gorenstein by Proposition 2.5. Thus, by [Smith 1997a, Theorem 4.3], Ak has
(at worst) rational singularities, but Gorenstein rational singularities are canonical
(see the discussion in [Elkik 1981]). �

5. The nonlocally acyclic setting

What can be said about cluster algebras and upper cluster algebras which are not
locally acyclic? We provide examples which demonstrate that strong F -regularity
is still possible, but not necessary. We also support the general philosophy that
U should be better-behaved than A by proving that F -regularity of A implies
F -regularity of U .

We end this section by showing that related algebras, called the lower bound
algebras, are always Frobenius split. We do not know whether or not lower bound al-
gebras are always strongly F -regular (they are, at least, always Noetherian complete
intersections). Nor do we know whether an arbitrary cluster algebra is Frobenius
split in general.

F -regularity of A implies F -regularity of U . In this section, we consider a com-
pletely arbitrary cluster algebra A (possibly infinitely generated) over a perfect field.

Lemma 5.1. Fix any integer e � 1 and let ' 2 HomA.A1=p
e

;A/. Then ' extends
uniquely to a map in HomU .U1=p

e

;U/.

Proof. The map ' extends, by localization, to the Laurent ring generated by the
cluster variables in any given cluster. Hence, it preserves U , the common intersection
of all of these Laurent rings. �

Proposition 5.2. If A is strongly F -regular then U is strongly F -regular.

Proof. Suppose that c is a nonzero element of U . Since A and U have the same
fraction field, there is an a 2A for which ac is a nonzero element of A. Because
A is strongly F -regular, there is an integer e � 1 and a map ' 2 HomA.A1=p

e

;A/
for which '..ac/1=p

e

/D 1. By Lemma 5.1, we may extend ' uniquely to a map
z' W U1=pe

! U .
Let ma W U1=p

e

! U1=pe

be the multiplication map given by ma.x1=p
e

/ D

a1=p
e

x1=p
e

. Then the composition z'ıma is an element of HomU .U1=p
e

;U/ which
maps c1=p

e

to 1. �

In what follows, we focus on the F -regularity of upper cluster algebras.



Singularities of locally acyclic cluster algebras 927

x1

x2 x3

Figure 2. The seed for the Markov cluster algebra in F D k.x1; x2; x3/.

The Markov upper cluster algebra. Consider the seed .Q;x/ defined in Figure 2.
Observe that it has three mutable vertices and no frozen vertices.

Introduced in [Berenstein et al. 2005], the Markov cluster algebra ADA.Q;x/ is
a standard source of counterexamples and pathologies. For example, ADA.x;B/ is
not a locally acyclic cluster algebra, and indeed A¨U [Berenstein et al. 2005, Theo-
rem 1.26]. Moreover, the Markov cluster algebra A is not Noetherian [Muller 2013].

Nevertheless, the Markov upper cluster algebra U D U.Q;x/ is quite well-
behaved. It was shown in [Matherne and Muller 2014] that it can be presented as
the hypersurface algebra

U Š kŒx1; x2; x3;M � =hx1x2x3M � x
2
1 � x

2
2 � x

2
3i:

Equivalently, the upper cluster algebra U is generated inside the field F by x1; x2; x3
and the element

M D
x21 C x

2
2 C x

2
3

x1x2x3
:

Proposition 5.3. If char.k/ ¤ 2; 3, then the Markov upper cluster algebra U is
strongly F -regular.

Proof. Since U is Frobenius split by Theorem 3.7, and the localization of U at
x1x2x3 is a Laurent ring, x1x2x3 is a test element for U . Consider now the
morphism ' W U1=pe

! U1=pe

defined by '.�/D �e..1=6 �M 3/1=p
e

�/, where �e

is the iterated cluster splitting of U defined on page 921 and M is described as
before. This morphism ' maps .x1x2x3/1=p

e

to 1:

'..x1x2x3/
1=pe

/D�

��
1

6

�
x21Cx

2
2Cx

2
3

x1x2x3

�3
x1x2x3

�1=pe�
D�

��
1

6

P
iCj�3;i;j¤1 ci;jx

2i
1 x

2j
2 x

6�2i�2j
3 C6x21x

2
2x
2
3

.x1x2x3/2

�1=pe�
D 1;

where the ci;j are some combinatorial coefficients. This shows that U is strongly
F -regular. �
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x1

x2 x3

a

a

a

Figure 3. A seed in F D k.x1; x2; x3/, where a � 2.

A non-F -regular upper cluster algebra. Generalizing the previous setting, con-
sider the seed .Q;x/ defined in Figure 3 for some integer a � 2.

Let U D U.Q;x/ denote the associated upper cluster algebra. As shown in
[Matherne and Muller 2014], this generalized Markov upper cluster algebra can be
presented as

U Š kŒx1; x2; x3;M � =hx1x2x3M � x
a
1 � x

a
2 � x

a
3 i:

Proposition 5.4. If a � 3, then U is not strongly F -regular.

Proof. Notice that U is graded, with

deg.x1/D deg.x2/D deg.x3/D 1; deg.M/D a� 3:

When a � 3, every homogeneous element in U has degree at least 0. As a conse-
quence, the span of the positive degree elements forms a nonzero ideal I .

The cluster splitting � sends positive degree elements to positive degree elements
or zero, so �e.I 1=p

e

/� I for any e. By Theorem 3.8, any  2 HomU .U1=p
e

;U/
can be written as

 D �e.s1=p
e

�/

for some s 2 U . Since .sI /1=p
e

� I 1=p
e

, we see that  .I 1=p
e

/ � I 1=p
e

for any
 2HomU .U1=p

e

;U/. In particular, for any c 2I , there is no 2HomU .U1=p
e

;U/
such that  .c/D 1 62 I , and so U is not strongly F -regular. �

By Proposition 5.2, this extends to the cluster algebra as well.

Corollary 5.5. If a � 3, then A.Q;x/ is not strongly F -regular.

Remark 5.6. The positive degree elements in U form an ideal .x1; x2; x3/ stable
under all maps in HomU .U1=p

e

;U/, that is, compatible with respect to every element
of HomU .U1=p

e

;U/. This is the test ideal of U . See [Schwede and Tucker 2012].

Lower bound algebras. Fix a seed .Q;x/, where xD .x1; x2; : : : ; xn/. As before,
let

pCi WD
Y
j!i

xj and p�i WD
Y
j i

xj ;
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and let x0i WD .p
C
i Cp

�
i /x
�1
i . The algebra L.Q;x/ defined by

L.Q;x/ WD kŒx1; x2; : : : ; xn; x
0
1; x
0
2; : : : ; x

0
n�� F D k.x1; : : : ; xn/

is called the lower bound algebra associated to the seed .Q;x/. Notice that
L.Q;x/ � A.Q;x/. This inclusion is an equality if and only if Q is an acyclic
quiver (see [Berenstein et al. 2005, Theorem 1.20]).

Lemma 5.7. The kernel L of the surjective ring homomorphism

kŒx1; : : : ; xn; y1; : : : ; yn�! L.Q;x/; xi 7! xi ; yi 7! x0i ;

is a prime component of the ideal I WD hx1y1�.pC1 Cp
�
1 /; : : : ; xnyn�.p

C
n Cp

�
n /i.

Proof. Since L.Q;x/ is a domain, L is a prime ideal. To see that L is a component
of I , let S D kŒx1; : : : ; xn; y1; : : : ; yn�, and observe that

ISŒ.x1 � � � xn/
�1�D hy1� x

0
1; : : : ; yn� x

0
ni:

Since LD hy1�x01; : : : ; yn�x
0
ni\S , it follows that .ISŒ.x1 � � � xn/�1�/\S DL,

and thus L is a prime component of I . �

Proposition 5.8. The lower bound algebra L.Q;x/ is Frobenius split.

Proof. Fix any prime p > 0, let S WD kŒx1; : : : ; xn; y1; : : : ; yn�, and let B denote
the S -module basis of S1=p consisting of all monomials

x
a1=p
1 � � � xan=p

n y
anC1=p
1 � � �ya2n=p

n ; 0� ai < p:

Define  WS1=p!S to be the S -linear map which takes value 1 on the basis ele-
ment x.p�1/=p1 � � � x

.p�1/=p
n y

.p�1/=p
1 � � �y

.p�1/=p
n and 0 on all other elements of B.

We will construct a Frobenius splitting of S which descends to a Frobenius
splitting of L. To this end, let

f D
Y
1�i�n

.xiyi �p
C
i �p

�
i /;

and observe that premultiplication of  by f .p�1/=p is a Frobenius splitting of S .
Indeed, since the pC and p� never involved any y, all monomials appearing in
f .p�1/ involve each yi to a power less than p; all of these are killed by  except
for the monomial term x

.p�1/
1 � � � x

.p�1/
n y

.p�1/
1 � � �y

.p�1/
n , whose p-th root gets

sent to 1 by  . So,  .f .p�1/=p � 1/D 1, and  .f .p�1/=p�/ is thus a Frobenius
splitting of S . Furthermore, if J D hf i, then

 .f .p�1/=pJ 1=p/� J:

That is, J is a compatibly split ideal. Because sums and prime components of
compatibly split ideals are compatibly split (see, for example, [Brion and Kumar



930 Angélica Benito, Greg Muller, Jenna Rajchgot and Karen E. Smith

2005, Chapter 1.2]), the ideal L� S that defines the lower bound algebra L.Q;x/
is compatibly split. The Frobenius splitting  .f .p�1/=p�/ W S1=p! S therefore
descends to a Frobenius splitting of the lower bound algebra. �

Appendix: The canonical module of an upper cluster algebra

This appendix considers the canonical module of an upper cluster algebra U over a
field k.7 Since upper cluster algebras need not be Noetherian [Speyer 2013], we
must be careful which definition we use.

Canonical modules. Let S be a normal domain over k such that the fraction field
F.S/ has transcendence degree n over k. Define the canonical module of S over k
to be the S -module

!S=k WD .ƒ
n
S�S=k/

��:

If S is regular (such as a field), then the double dual in the definition is unnecessary,
and !S=k DƒnS�S=k. This construction commutes with localization; in particular,
there is a natural embedding

!S=k � !F.S/=k Dƒ
n
F.S/�F.S/=k

into the canonical module of the fraction field.

The log volume form. Let U be an upper cluster algebra over k. The algebra U is
normal and the transcendence degree of its fraction field over k is the rank n. For a
cluster x with functions fx1; x2; : : : ; xng indexed by f1; 2; : : : ; ng, let Lx denote
the k-Laurent ring in that cluster, and define the log volume form

�x WD
dx1 ^ dx2 ^ � � � ^ dxn

x1x2 � � � xn
2 !Lx=k:

Note that a permutation of the indices may change the sign of this element.

Proposition A.1. The canonical module !Lx=k is free of rank one over Lx and
generated by the log volume form �x.

The log volume form is an invariant of the cluster algebra, up to sign.

Proposition A.2. For two different clusters x;y of U , we have �x D˙�y .

Proof. It is sufficient to check the proposition for a single mutation. Let x0 D

fx1;x2; : : : ;x
0
i ; : : : ;xng, where x0i D .p

C
i Cp

�
i /=xi . Then

dx0i
x0i
D
d.pCi Cp

�
i /

xix
0
i

�
.pCi Cp

�
i / dxi

x2i x
0
i

D
d.pCi Cp

�
i /

pCi Cp
�
i

�
dxi

xi
:

7The results remain true over Z.
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Since pCi and p�i are monomials in fx1; x2; : : : ; xi�1; xiC1; : : : ; xng,

dx1 ^ � � � ^ dx
0
i ^ � � � ^ dxn

x1 � � � x
0
i � � � xn

D�
dx1 ^ � � � ^ dxi ^ � � � ^ dxn

x1 � � � xi � � � xn
:

Hence, �x D��x0 . Iterating mutations or permuting the indices will change this
form by at most a sign. �

Canonical modules of upper cluster algebras. Since either log volume form freely
generates the canonical module after localizing to a cluster Laurent ring, it follows
that they freely generate the canonical module of U .

Theorem A.3. For an upper cluster algebra U over a field8 k, the canonical module
!U=k is free of rank one over U and generated by a log volume form in any cluster.

Proof. Fix a log volume form � in some cluster. For any cluster x, the localization
Lx˝ƒ

n
U�U=k equals Lx� by Proposition A.1. Let

ƒnU�U=k! f .ƒnU�U=k/

be the quotient by the maximal torsion submodule. Then f .ƒnU�U=k/ is contained
inside the localization Lx�, which is contained inside the generic canonical module
ƒnF.U/�F.U/=k. Intersecting over all clusters, we obtain a map

ƒnU�U=k! f .ƒnU�U=k/�
\

clusters x

.Lx�/D

� \
clusters x

Lx

�
�D U�:

Define �� 2 .ƒnU�U=k/
�DHomU .ƒ

n
U�U=k;U/ to be the composition of the above

map with the U-module map U�! U which sends � to 1.
Consider another U-module map  WƒnU�U=k! U . Since U is torsion-free,  

factors through f .ƒnU�U=k/. Localizing  at a cluster x gives an Lx-module map
 x W Lx�! Lx. Let sx WD  x.�/, and note that  x.a�/D asx for all a 2 Lx.

Localizing at a different cluster y gives a map  y W Ly�! Ly , which is of the
form  y.a�/D asy for some sy 2 Ly . Since there is some nonzero b 2 U such
that b� 2 f .ƒnU�U=k/ (the product of the variables in any cluster suffices),

bsx D b x.�/D  .b�/D b y.�/D bsy ;

and it follows that sxD sy inLx\Ly . Repeating for all clusters, sx 2U . Therefore,
 .a�/D asx D �

�.sxa�/ for all a 2 U ; this proves that �� freely generates the
dual module

.ƒnU�U=k/
�
D U��:

Dualizing both sides demonstrates that !U=k D U�. �

8The theorem remains true when k is an arbitrary normal domain.
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There are examples where the log volume forms are not in �nU=k; hence, the
double dual in the definition of !U=k is necessary.

Corollary A.4. A Noetherian upper cluster algebra over a field is Gorenstein.

Canonical modules and Frobenius splittings. We sketch the relation between
canonical modules and Frobenius splittings here; further details may be found
in [Brion and Kumar 2005, Section 1.3].

Let k be a field of positive characteristic p ¤ 2, and let X be a smooth, locally
finite-type scheme over k. The Frobenius map becomes a flat, finite morphism

f WX !X:

Then the push-forward functor f� W Coh.X/! Coh.X/ has a right-adjoint

f Š W Coh.X/! Coh.X/;

together with an adjunction map

tr W f�f Š! Id

called the trace.
The coherent sheaf f Š.OX / and its trace map can be connected with Frobenius

splittings as follows. On any open affine subscheme Spec.R/�X :

� f Š.OX /ŒSpec.R/� is isomorphic to HomR.R1=p; R/ as anR1=p-module; equiv-
alently, to HomRp .R;Rp/ as an R-module.

� f�f
Š.OX /ŒSpec.R/� is isomorphic to HomR.R1=p; R/ as an R-module.

� The trace map is given by the R-module map

HomR.R1=p; R/!R;

which sends a map f WR1=p!R to f .1/ 2R.

Hence, the sheaf of Frobenius splittings is isomorphic to tr�1.1/� f�f Š.OX /.
Duality theory for the morphism f gives an alternate description of f Š.OX / in

terms of the canonical sheaf !X=k.

Theorem A.5 [Brion and Kumar 2005, §1.3]. There are natural isomorphisms9

f Š.OX / �!� HomX .f �!X=k; !X=k/ �!� .!X=k/
1�p;

f�f
Š.OX / �!� HomX .!X=k; f�!X=k/ �!� f�..!X=k/

1�p/;

and a map � W f�!X=k! !X=k, such that the trace map is given by

f�f
Š.OX / �!� HomX .!X=k; f�!X=k/

�ı�
���!HomX .!X=k; !X=k/ �!� OX :

9The negative exponent on .!X=k/1�p denotes a positive power of the dual sheaf !�
X=k

. This is a
markedly different use of exponential notation than R1=p .
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Back to cluster algebras. Let U be an upper cluster algebra. For any seed .Q;x/,
the Laurent phenomenon says that freezing every mutable vertex gives the localiza-
tion kŒx˙11 ; : : : ; x˙1n � in the cluster x D fx1; : : : ; xng. Geometrically, this means
there is an open subscheme

Spec.kŒx˙11 ; : : : ; x˙1n �/� Spec.U/:

Let us call subschemes of this form cluster tori. Let X � Spec.U/ be the union of
the cluster tori, as .Q;x/ runs over all seeds.

While the scheme Spec.U/ is generally neither smooth nor locally finite type
over k, the open subscheme X is both. Hence, by Theorem A.5, we have isomor-
phisms

f Š.OX / �!� HomX .f �!X=k; !X=k/ �!� .!X=k/
1�p:

Proposition A.6. Let X be the union of the cluster tori in Spec.U/.

(1) OX .X/ is isomorphic to U as a k-algebra.

(2) f Š.OX /.X/ is isomorphic to HomUp .U ;Up/ as a U-module.

(3) !X=k.X/ is isomorphic to !U=k as a U-module.

On any cluster torus, these isomorphisms restrict to the obvious isomorphisms.

Proof. The first isomorphism is a standard fact about upper cluster algebras; see,
e.g., [Matherne and Muller 2014, Proposition 3.4]. The other two isomorphisms
follow from Theorems 3.8 and A.3, which show that HomUp .U ;Up/ and !U=k are
each free of rank one over U with a distinguished generator (the cluster splitting and
either log volume form, respectively). On each cluster torus, the sheaves f Š.OX /
and !X=k are free and generated by the restriction of the generator. Hence, a global
section of f Š.OX / or !X=k can be written as the distinguished generator times a
rational function which is Laurent in each cluster, that is, an element of U . �

As a consequence, we have an isomorphism of U-modules

HomUp .U ;Up/ �!� .!U=k/
1�p;

where !U=k to a negative power means !�U=k D .ƒ
n
U�U=k/

� to a positive power.
The connection between cluster splittings and log volume forms starts to become

clear. Theorem A.3 establishes that !U=k is free of rank one as a U-module. Hence,
HomU .U ;Up/ is free of rank one as a U-module, or equivalently, HomU .U1=p;U/
is free of rank one as a U1=p-module.

To choose a distinguished generator, we observe that !U=k has two natural
generators (the log volume forms) which differ by a sign. Since p is odd, the
.1�p/-th power of the two log volume forms coincide, so .!U=k/

1�p has a canonical
generator. This determines a canonical generator in HomU .U1=p;U/ over U1=p;
all that remains is to observe that it coincides with the cluster splitting.
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Proposition A.7. If � 2 !U=k is either log volume form, then the image of �1�p

under the map
.!U=k/

1�p
�!� HomU .U1=p;U/

is the cluster spitting � W U1=p! U .

The reader is cautioned that, as written, this is not a module map; rather, it
intertwines the U-action on .!U=k/

1�p and the U1=p-action on HomU .U1=p;U/.

Proof. If Lx is the k-Laurent ring in some cluster x, the localization map U � Lx

induces localization maps

.!U=k/
1�p ,! .!Lx=k/

1�p and HomU .U1=p;U/ ,! HomLx
.L
1=p
x ; Lx/:

It suffices to check that�1�p is sent to the standard splitting ofLx; this is essentially
[Brion and Kumar 2005, Lemma 1.3.6]. �
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