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Motivic Donaldson–Thomas invariants
of small crepant resolutions

Andrew Morrison and Kentaro Nagao

We compute the motivic Donaldson–Thomas theory of a small crepant resolution
of a toric Calabi–Yau 3-fold.
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Introduction

This paper is a continuation of [Morrison et al. 2012]. We study the motivic
Donaldson–Thomas invariants of noncommutative and commutative crepant reso-
lutions of the affine toric Calabi–Yau 3-fold fXY �ZN0W N1g � C4.

A Donaldson–Thomas (DT) invariant of a Calabi–Yau 3-fold Y is a counting
invariant of coherent sheaves on Y , introduced in [Thomas 2000] as a holomorphic
analogue of the Casson invariant of a real 3-manifold. A component of the moduli
space of stable coherent sheaves on Y carries a symmetric obstruction theory and a
virtual fundamental cycle [Behrend and Fantechi 1997; 2008]. A DT invariant of a
compact Y is then defined as the integral of the constant function 1 over the virtual
fundamental cycle of the moduli space.

MSC2010: 14N35.
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Figure 1. Polygons for XN0;N1 and X.Z=2Z/2 .

It is known that the moduli space of coherent sheaves on Y can be locally
described as the critical locus of a function, the holomorphic Chern–Simons (CS)
functional (see [Joyce and Song 2012]). Behrend [2009] provided a description
of DT invariants in terms of the Euler characteristic of the Milnor fiber of the CS
functional. Inspired by this result, the proposal of [Kontsevich and Soibelman 2008;
Behrend et al. 2013] was to study the motivic Milnor fiber of the CS functional as a
motivic refinement of the DT invariant. Such a refinement had been expected in
string theory [Iqbal et al. 2009; Dimofte and Gukov 2010].

On the other hand, in [Szendrői 2008] it was proposed to study counting invariants
for the noncommutative crepant resolution (NCCR) of the conifold, which are called
noncommutative Donaldson–Thomas (NCDT) invariants. It was also conjectured
there that NCDT and DT invariants are related by wall-crossing. The paper [Nagao
and Nakajima 2011] realized this, by:

� Describing the chamber structure on the space of stability parameters for
the NCCR.

� Finding chambers which correspond to geometric DT and stable pair (PT)
invariants, as well as NCDT invariants.

� Computing the generating function of DT-type invariants for each chamber.

For the conifold, the dimension of the fiber of the crepant resolution is less than 2
(we say that the resolution is small). This condition plays an important role in
many places of the paper. Affine toric Calabi–Yau 3-folds which have small crepant
resolutions are classified as follows:

(1) X D XN0;N1 WD fXY �ZN0W N1g for N0 > 0 and N1 � 0.

(2) X DX.Z=2Z/2 WDC3=.Z=2Z/2, where .Z=2Z/2 acts on C3 with weights .1; 0/,
.0; 1/ and .1; 1/.

In [Nagao 2012], counting invariants for noncommutative and commutative
crepant resolutions of fXY �ZN0W N1g were studied. First, we provided descrip-
tions of NCCRs of fXY �ZN0W N1g in terms of a quiver with potential. Given
N0 and N1, the quivers with potential are not unique. However it was also shown
that any such quivers with potential are related by a sequence of mutations. Finally,
generalizations of the results in [Nagao and Nakajima 2011] are given.
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In [Morrison et al. 2012], we provided motivic refinements of formulae in
[Nagao and Nakajima 2011]. For the proof, we needed one explicit evaluation
of the “universal” series [Morrison et al. 2012, §2] and a wall-crossing argument
[Morrison et al. 2012, §3].

In this paper, we will show similar formulae for fXY � ZN0W N1g, that is,
motivic refinements of the formulae in [Nagao 2012]. The wall-crossing argument
works without modifications (Section 6), while the evaluation part is more involved
(Theorem 0.1). Our strategy is as follows:

� First, in Section 4, we evaluate the universal series for a specific NCCR using
a generalization of the calculation of [Morrison et al. 2012, §2.2].

� Then, in Section 5, we evaluate the universal series for a general NCCR. Nagao
[2011c] provided a formula which describes how the universal series changes
under mutation. Although it is assumed that the quiver has no loops and 2-
cycles in [Nagao 2011c], we can apply a parallel argument in our setting as well.

Since any two NCCRs are related by a sequence of mutations, the evaluation is done.

Main result

Let � be a quadrilateral (or a triangle in the case N1 D 0) as in Figure 1 and � a
partition of � , that is, a division of � into an N -tuple of triangles with area 1=2,
as in Figure 2. We will associate � to a quiver with superpotential .Q� ; !� / (see
Section 2A). The set of vertices of the quiver Q� is yI WDZ=NZ, which is identified
with f0; : : : ; N � 1g. A vertex has a loop if and only if it is in the subset yIr � yI
(see (2-1) for the definition). It is shown in [Nagao 2012, §1] that the Jacobian
algebra J� WD J .Q� ; !� / is an NCCR of

X WD Spec.CŒX; Y;Z;W �=.XY �ZN0W N1//:

Let � be the set of roots of type zAN and let ��;C �re
�;C, and �im

�;C denote the
set of positive, positive real, and positive imaginary roots, respectively.1

For ˛ 2N
yI , let M.J� ; ˛/ be the moduli stack of J� -modules V with dimV D ˛.

We define the generating series of the motivic DT invariants of .Q� ; W� / by

A�U .y/DA
�
U .y0; : : : ; yN�1/ WD

X
˛2NQ0

ŒM.J� ; ˛/�vir �y
˛
2MCŒŒy0; : : : ; yN�1��:

2

1From the view point of the root system, a choice of a partition � corresponds to a choice of a set
of simple roots.

2For the wall-crossing of motivic DT theory, a twisted product on the y˛ twisted by the Euler form
plays a crucial role. In this case, the twisted product coincides with the usual commutative product
since the Euler form is trivial.
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Here y˛ WD
Q
.yi /

˛i and Œ��vir denotes the virtual motive (see Section 3A), an
element of a suitable ring of motives MC. The subscript refers to the fact that we
think of this series as the universal series.

To each root ˛ 2��;C we associate an infinite product as follows:

� For a real root ˛ 2�re
�;C such that

P
k…yIr

˛k is odd, put

A˛.y/ WD Exp
�
�L�

1
2

1� L�1
y˛
�
D

Y
j�0

.1� L�j�
1
2y˛/:

� For a real root ˛ 2�re
�;C such that

P
k…yIr

˛k is even, put

A˛.y/ WD Exp
�

1

1� L�1
y˛
�
D

Y
j�0

.1� L�jy˛/�1:

� For an imaginary root ˛ 2�im
�;C, put

A˛.y/ WD Exp
�
N � 1C L

1� L�1
y˛
�
D

Y
j�0

.1� L�jy˛/1�N � .1� L�jC1y˛/�1:

The main result of this paper is the following formula:

Theorem 0.1. A�U .y/D
Y

˛2��;C

A˛.y/:

This is proved in Section 4 and Section 5B.

Corollaries

Let zJ� D J. zQ� ; W� / be the framed algebra given by adding the new vertex 1
and the new arrow from1 to 0 to the quiver of J� . Nagao and Nakajima [2011]
introduced a notion of �-(semi)stability of zJ -modules zV with dim zV1 � 1 for a
stability parameter � 2 R

yI .
For ˛ 2 N

yI , let M� . zJ ; ˛/ be the moduli space of �-stable zJ -modules zV with
dim zV D .˛; 1/. We want to compute the motivic generating series

Z� .y/DZ� .y0; : : : ; yN�1/ WD
X
˛2N

yI

ŒM�

�
zJ ; ˛

�
�vir �y

˛
2MCŒŒy0; : : : ; yN�1��:

For each root ˛ 2��;C, we put

Z˛.y0; : : : ; yN�1/ WD
A˛.�L

1
2y0; y1; : : : ; yN�1/

A˛.�L�
1
2y0; y1; : : : ; yN�1/

:

These are given as follows:
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� For a real root ˛ 2�re
�;C such that

P
k…yIr

˛k is odd, we have

Z˛.�y0; : : : ; yN�1/D

˛0�1Y
iD0

.1� L�
˛0
2
C 1
2
Ciy˛/:

� For a real root ˛ 2�re
�;C such that

P
k…yIr

˛k is even, we have

Z˛.�y0; : : : ; yN�1/D

˛0�1Y
iD0

.1� L�
˛0
2
C1Ciy˛/�1:

� For an imaginary root ˛ 2�im
�;C, we have

Z˛.�y0; : : : ; yN�1/D

˛0�1Y
iD0

.1� L�
˛0
2
C1Ciy˛/1�N � .1� L�

˛0
2
C2Cjy˛/�1:

Applying the same argument as [Morrison et al. 2012, §3], we get the following
formula (Section 6A):

Corollary 0.2. For � 2 R
zI not orthogonal to any root, we have

Z� .y/D
Y

˛2��;C
� �˛<0

Z˛.y0; : : : ; yN�1/:

By [Behrend 2009; Behrend et al. 2013], the specialization Z� .y/j
L
1
2!1

is the
DT-type series at the generic stability parameter �, computed in [Nagao 2012].

Let Y� ! X be the crepant resolution corresponding to � . The noncommutative
crepant resolution J� is derived equivalent to Y� . In [Nagao and Nakajima 2011,
§3], we found a stability parameter �DT (resp. �PT) such that the moduli space
coincides with the Hilbert scheme (resp. the stable pair moduli space) for Y� .

Let Z�DT.s; T1; : : : ; TN�1/ and Z�DT.s; T1; : : : ; TN�1/ be the generating func-
tions of DT and PT invariants of Y� , respectively. Here s is the variable for the
homology class of a point and Ti is the variable for the homology class of the i -th
component Ci of the exceptional curve. The variable change induced by the derived
equivalence is given by

s WD y0 �y1 � � �yN�1; Ti D yi :

For 1� a � b �N � 1, we put

CŒa;b� WD ŒCa�C � � �C ŒCb� 2H2.Y� ;Z/;

where Ci is a component of the exceptional curve, and let

TŒa;b� D Ta � � �Tb



772 Andrew Morrison and Kentaro Nagao

be the corresponding monomial. Let c.a; b/ denote the number of .�1;�1/-curves
in fCi j a � i � bg. We define infinite products as follows:

� If c.a; b/ is odd, we put

ZŒa;b� DZŒa;b�.s; TŒa;b�/ WD

1Y
nD1

�n�1Y
iD0

�
1� L�

n
2
C 1
2
Ci
� .�s/n �TŒa;b�

��
:

� If c.a; b/ is even, we put

ZŒa;b� DZŒa;b�.s; TŒa;b�/ WD

1Y
nD1

�n�1Y
iD0

�
1� L�

n
2
C1Ci

� .�s/n �TŒa;b�

��1�
:

� For imaginary roots, we put

Zim DZim.s/ WD

1Y
nD1

�n�1Y
iD0

�
1� L�

n
2
C1Ci .�s/n

�1�N�
1� L�

n
2
C2Ci .�s/n

��1�
:

Corollary 0.3. (1) The refined DT and PT series of Y� are given by the formulae

ZDT.s; T1; : : : ; TN�1/DZim.s/ �
Y

1�a�b�N�1

ZŒa;b�.s; TŒa;b�/;

ZPT.s; T1; : : : ; TN�1/D
Y

1�a�b�N�1

ZŒa;b�.s; TŒa;b�/:

(2) The generating function of virtual motives of the Hilbert scheme of points on
Y� is given by the formula

Z0-dim.s/ WD

1X
nD0

Œ.Y� /Œn��vir � s
n
DZim:

(3) The refined version of the DT-PT correspondence for Y� holds:

ZDT.s; T1; : : : ; TN�1/DZ0-dim.s/�ZPT.s; T1; : : : ; TN�1/:

Remark. The formula in (2) is a direct consequence of the formula for ZDT in (1),
since the polynomial in the TŒa;b� variables does not contribute.
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1. Root system of type zAN

LetN0>0 andN1� 0 be integers such thatN0�N1, and setN DN0CN1. We set

I D f1; : : : ; N � 1g;

yI D f0; 1; : : : ; N � 1g;

zI D
˚
1
2
; 3
2
; : : : ; N � 1

2

	
;

zZD
˚
nC 1

2
j n 2 Z

	
:

For l 2Z and j 2 zZ, let l 2 yI and j 2 zI be the elements such that l� l � j �j � 0
modulo N .

Let Z
yI be the free abelian group with basis f˛i j i 2 yI g; we call ˛i a simple root.

We put

�fin
C WD f˛Œa;b� WD ˛aC � � �C˛b j 1� a � b �N � 1g;

�
re;C
C
WD f˛Œa;b�Cn � ı j ˛Œa;b� 2�

fin
C ; n 2 Z�0g;

�
re;�
C
WD f�˛Œa;b�Cn � ı j ˛Œa;b� 2�

fin
C ; n 2 Z>0g;

and

�re
C WD�

re;C
C
t�

re;�
C

; �im
C WD fn � ı j n 2 Z>0g;

where ı WD ˛0C � � �C˛N�1 is the (positive minimal) imaginary root.
For k 2 yI , the simple reflection at k is the group homomorphism given by

Z
yI
! Z

yI ;

˛i 7! ˛i �Cik �˛k;

where C is the Cartan matrix of type zAN . This gives a self-bijection of �re;C
C
nf˛kg.

2. Noncommutative crepant resolutions

2A. Quivers with potential. We denote by � the quadrilateral (or the triangle in
case N1 D 0) with vertices .0; 0/, .0; 1/, .N0; 0/ and .N1; 1/. Note that the affine
toric Calabi–Yau 3-fold corresponding to � is X D fXY �ZN0W N1g.

A partition � of � is a pair of functions �x W zI ! zZ and �y W zI ! f0; 1g such
that:

� �.i/ WD .�x.i/; �y.i// gives a bijection between zI and˚�
1
2
; 0
�
;
�
3
2
; 0
�
; : : : ;

�
N0�

1
2
; 0
�
;
�
1
2
; 1
�
;
�
3
2
; 1
�
; : : : ;

�
N1�

1
2
; 1
�	
:

� If i < j and �y.i/D �y.j / then �x.i/ > �x.j /.
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Figure 2. �� .

Figure 3. S .

Figure 4. H .

Giving a partition � of � is equivalent to dividing � into an N -tuple of triangles
fTigi2zI with area 1=2 so that Ti has .�x.i/˙ 1=2; �y.i// as its vertices. Let ��
be the corresponding diagram, �� the fan and f� W Y� ! X the crepant resolution
of X . We put

yIr WD
˚
k 2 yI j �y

�
k� 1

2

�
D �y

�
kC 1

2

�	
: (2-1)

Example 1. Let us consider as an example the case N0 D 4, N1 D 2 and

.�.i//
i2zI
D
��
7
2
; 0
�
;
�
3
2
; 1
�
;
�
5
2
; 0
�
;
�
3
2
; 0
�
;
�
1
2
; 1
�
;
�
1
2
; 0
��
:

We show the corresponding diagram �� in Figure 2.

Let S be the union of an infinite number of rhombi with edge length 1, as in
Figure 3, located so that the centers of the rhombi are on a line parallel to the x-axis
in R2, and let H be the union of an infinite number of hexagons with edge length 1,
as in Figure 4 located so that the centers of the hexagons are in a line parallel to
the x-axis in R2.

We form the sequence � D �� W Z! fS;H g which maps l to S (resp. H ) if l
modulo N is not in yIr (resp. is in yIr ), and cover the whole plane R2 by arranging
S’s and H ’s according to this sequence (see Figure 5). We regard this as a graph
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Figure 5. P� in the case of Example 1.

on the 2-dimensional torus R2=ƒ, where ƒ is the lattice generated by .
p
3; 0/ and

.N0�N1; .N0�N1/
p
3CN1/.

We can color the vertices of this graph black or white so that each edge connects
a black vertex and a white one. Let P� denote this bipartite graph on the torus. For
each edge h_ in P� , we make its dual edge h directed so that we see the black end
of h_ on our right-hand side when we cross h_ along h in the given direction. Let
Q� denote the resulting quiver. The set of vertices of the quiver Q� is yI , which is
identified with Z=NZ. The set of edges of the quiver Q� is given by

H WD

�a
i2zI

hCi

�
t

�a
i2zI

h�i

�
t

�a
k2yIr

rk

�
:

Here hCi (resp. h�i ) is an edge from i � 1
2

to i C 1
2

(resp. from i C 1
2

to i � 1
2

), and
rk is an edge from k to itself.

For each vertex q of P� , let !q be the potential3 which is the composition of all
arrows in Q� corresponding to edges in P� with q as their ends. We define

!� WD
X
q black

!q �
X
q white

!q:

The relations of the Jacobian algebra are as follows:

3A potential of a quiver Q is an element in CQ=ŒCQ;CQ�, i.e., a linear combination of equiv-
alence classes of cyclic paths in Q, where two paths are equivalent if they coincide after a cyclic
rotation.
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� For i 2 zI such that i � 1
2
; i C 1

2
2 yIr ,

hCi ı ri� 1
2
D riC 1

2
ı hCi and ri� 1

2
ı h�i D h

�
i ı riC 1

2
:

� For i 2 zI such that i � 1
2
2 yIr and i C 1

2
… yIr ,

hCi ı ri� 1
2
D h�iC1 ı h

C
iC1 ı h

C
i and ri� 1

2
ı h�i D h

�
i ı h

�
iC1 ı h

C
iC1:

� For i 2 zI such that i � 1
2
… yIr and i C 1

2
2 yIr ,

hCi ı h
C
i�1 ı h

�
i�1 D riC 1

2
ı hCi and hCi�1 ı h

�
i�1 ı h

�
i D h

�
i ı riC 1

2
:

� For i 2 zI such that i � 1
2
; i C 1

2
… yIr ,

hCi ıh
C
i�1 ıh

�
i�1D h

�
iC1 ıh

C
iC1 ıh

C
i and hCi�1 ıh

�
i�1 ıh

�
i D h

�
i ıh

�
iC1 ıh

C
iC1:

� For k 2 yIr ,
hC
i� 1
2

ı h�
i� 1
2

D h�
iC 1

2

ı hC
iC 1

2

:

2B. NCCR and derived equivalence. Let � W Y� ! X be the crepant resolution
corresponding to � .

Theorem 2.1 [Nagao 2012, Theorems 1.15 and 1.20].

Db.modJ� /'Db.CohY� /:

The equivalence is given by an explicit tilting vector bundle which is a direct
sum of line bundles [Nagao 2012, Theorem 1.10]. In particular, the following map
is compatible with the derived equivalence

H 0.Y� ;Z/˚H
2.Y� ;Z/! ZI ;

Œpt� 7! ı;

ŒCi � 7! ˛i ;

where ˛i is the i -th fundamental vector and ı WD ˛0C˛1C � � �C˛N�1.

2C. Mutation and derived equivalence. The Derksen–Weyman–Zelevinsky muta-
tion [Derksen et al. 2010] of a quiver with a potential induces a derived equivalence
of the derived categories of Ginzburg’s differential graded algebras [Keller and
Yang 2011]. Moreover, the relation between the module categories of Jacobian
algebras has a description in terms of torsion pair and tilting, which plays a crucial
role for the wall-crossing formulae [Kontsevich and Soibelman 2008; Nagao 2013].
In this paper, we cannot apply [Derksen et al. 2010; Keller and Yang 2011] since
we have loops and oriented 2-cycles in the quiver. In this subsection, we see derived
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equivalences and descriptions of module categories using the explicit computations
given in [Nagao 2012, §3].

Let k be an edge of the partition � which is a diagonal of a parallelogram. Note
that such a k corresponds to a vertex without loops. Let � 0 denote the partition
which is obtained by a “flip” of the edge k.

Let Pi be the indecomposable projective J� -module associated to a vertex i .
Note that, as a vector space, Pi is the space of linear combinations of paths ending
at the vertex i . We define

P 0k WD coker.Pk! Pk�1˚PkC1/;

and put P 0i D Pi for i ¤ k. Here the map Pk ! Pk˙1 above is induced by the
arrow from k to k˙ 1.

Theorem 2.2 [Nagao 2012, Proposition 3.1].

(1) End.˚P 0i /
op
' J� 0 :

(2) The map

ˆk WD RHom.˚P 0i ; �/ WD
b.modJ� /!Db.modJ� 0/

is an equivalence.

For a J� -module V D
L
i2yI

Vi , we have

�
H
j
modJ�0

.ˆk.V //
�
i
D

8̂̂̂<̂
ˆ̂:
Vi i ¤ k; j D 0;

ker.Vk�1˚VkC1! Vk/ i D k; j D 0;

coker.Vk�1˚VkC1! Vk/ i D k; j D 1;

0 otherwise.

The simple reflection is compatible with the derived equivalence for dimension
vectors.

By the description above, we have

modJ� \ˆ�1k .modJ� 0/D fV 2modJ� j coker.Vk�1˚VkC1! Vk/D 0g

D fV 2modJ� j Hom.V; sk/D 0g

DW .modJ� /k;

modJ� \ˆ�1k .modJ� 0/Œ1�D fV 2modJ� j Vi D 0 .i ¤ k/g

DW Sk :
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In other words, ..modJ� /k;Sk/ is a torsion pair of modJ� , and ˆ�1
k
.modJ� 0/ is

obtained from modJ� by tilting with respect to this torsion pair (see [Nagao 2013,
§3.1]). Then we have

modJ� 0 \ˆk.modJ� /D fV 2modJ� 0 j Hom.s0k; V /D 0g

DW .modJ� 0/k :

In summary, we have the following:

Proposition 2.3. The equivalence ˆk induces an equivalence of .modJ� /k and
.modJ� 0/k .

Nagao [2012, proof of Proposition 3.1] gave the isomorphism in Theorem 2.2(1)
explicitly. For V 2modJ� \ˆ�1k .modJ� 0/, the map�

H 0
modJ�0

.ˆk.V //
�
k�1
!
�
H 0

modJ�0
.ˆk.V //

�
k

is induced by the morphism

Rk�1˚Rk�1;kC1 W Vk�1! Vk�1˚VkC1;

where

Rk�1 WD

(
rk�1 k� 1 2 yIr ;

hC
k� 3

2

ı h�
k� 3

2

k� 1 … yIr ;

and
Rk�1;kC1 WD h

�

kC 1
2

ı hC
kC 1

2

ı hC
k� 1

2

:

2D. Cut and mutation. Let .Q;W / be a quiver with potential. To each subset
C �Q1, we associate a grading gC on Q by

gC .a/D

�
1 a 2 C;

0 a 2 C:

A subset C �Q1 is called a cut if W is homogeneous of degree 1 with respect
to gC . Denote by QC the subquiver of Q with vertex set Q0 and arrow set Q1nC .
We define the truncated Jacobian algebra by

J.Q;W /C WD J.Q;W /=hC i:

Let k be a vertex of Q� without loops and C be a cut of .Q� ; w� / such that
gC
�
hC
kC 1

2

�
D 14. We define a cut C 0 of .Q� 0 ; w� 0/ by the following conditions:

4We can construct a cut of .Q� ; w� / as follows: First, by coupling hCi and h�i for each i , we
group the arrows in Q� into N C jyIr j groups. Note that N C jyIr j is even. These groups have the
natural cyclic order and we label each of them as odd or even. Choose (any) one arrow from each odd
(or even) labeled group; then we get a cut.
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� gC 0
�
hC
k� 1

2

�
D 1.

� gC 0.h
˙
i /D gC .h

˙
i / if i ¤ k� 1

2
; kC 1

2
.

Proposition 2.4 [Nagao 2011c, Proposition 4.12]. The equivalence ˆk induces an
equivalence of .modJ�;C /k and .modJ� 0;C 0/k .

Proof. It is enough to show that if hC
kC 1

2

vanishes on V , then hC
k� 1

2

vanished
on ˆk.V /.

Since gC
�
h˙
k� 1

2

�
D 0, we have

� gC .rk�1/D 1 if k� 1 2 yIr , and

� gC
�
hC
k� 3

2

�
D 1 or gC

�
h�
k� 3

2

�
D 1 if k� 1 … yIr ,

and so Rk�1 vanishes. Since gC
�
hC
kC 1

2

�
D 1, we see that Rk�1;kC1 vanishes. �

3. Motivic Donaldson–Thomas invariants

3A. Motives. We are working in a version of the ring of motivic weights: let MC

denote the K-group of the category of effective Chow motives over C, extended
by L�

1
2 , where L is the Lefschetz motive. It has a natural structure of a �-ring

[Getzler 1996; Heinloth 2007], with �-operations defined by �n.ŒX�/D ŒXn=Sn�
and �n.L

1
2 /D L

n
2 . We put

zMC DMCŒŒL
�1��;

which is also a �-ring. Note that in this latter ring the elements .1 � Ln/, and
therefore the motives of general linear groups, are invertible. The rings MC � zMC

sit in larger rings M O�
C
� zM O�

C
of equivariant motives, where O� is the group of all

roots of unity [Looijenga 2002].
Let f WX ! C be a regular function on a smooth variety X . Using arc spaces,

Denef and Loeser [2001; Looijenga 2002] defined the motivic nearby cycle Œ f � 2
M O�

C
and the motivic vanishing cycle

Œ'f � WD Œ f �� Œf
�1.0/� 2M O�

C

of f . Note that if f D 0, then Œ'0�D�ŒX�.

Theorem 3.1 [Behrend et al. 2013, Proposition 1.11]. Let f WX ! C be a regular
function on a smooth variety X. Assume that X admits a C�-action such that f is
C�-equivariant, i.e., f .tx/ D tf .x/ for t 2 C�, x 2 X , and such that there exist
limits limt!0 tx for all x 2X . Then

Œ'f �D Œf
�1.1/�� Œf �1.0/� 2MC �M O�

C
:
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Following [Behrend et al. 2013], we define the virtual motive of crit.f / to be

Œcrit.f /�vir WD �.�L
1
2 /� dimX Œ'f � 2M

O�
C
:

For a smooth variety X , we put

ŒX�vir WD Œcrit.0X /�vir D .�L
1
2 /� dimX

� ŒX�:

3B. Quivers and moduli spaces. Let Q be a quiver, with vertex set Q0 and edge
set Q1. For an arrow a 2Q1, we denote by s.a/ 2Q0 and t .a/ 2Q0 the vertices
at which a starts and ends, respectively. We define the Euler–Ringel form � on
ZQ0 by the rule

�.˛; ˇ/D
X
i2Q0

˛iˇi �
X
a2Q1

˛s.a/ˇt.a/; ˛; ˇ 2 ZQ0 :

Given a Q-representation M , we define its dimension vector dimM 2 NQ0 by
dimM D .dimMi /i2Q0 . Let ˛ 2NQ0 be a dimension vector and let Vi D C˛i for
i 2Q0. We define

R.Q; ˛/ WD
M
a2Q1

Hom.Vs.a/; Vt.a//

and
G˛ WD

Y
i2Q0

GL.Vi /:

Note that G˛ naturally acts on R.Q; ˛/, and the quotient stack

M.Q; ˛/ WD ŒR.Q; ˛/=G˛�

gives the moduli stack of representations of Q with dimension vector ˛.
Let W be a potential on Q, i.e., a finite linear combination of cyclic paths in Q.

Denote by J D JQ;W the Jacobian algebra, i.e., the quotient of the path algebra CQ

by the two-sided ideal generated by formal partial derivatives of the potential W .
Let

f˛ WR.Q; ˛/! C

be the G˛-invariant function defined by taking the trace of the map associated to
the potential W . As it is now well-known [Segal 2008, Proposition 3.8], a point in
the critical locus crit.f˛/ corresponds to a J -module. The quotient stack

M.J; ˛/ WD Œcrit.f˛/=G˛�

gives the moduli stack of J -modules with dimension vector ˛.
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Definition 3.2. A central charge is a group homomorphism Z WZQ0!C such that

Z.˛/ 2 HC D fre
i�'
j r > 0; 0 < ' � 1g

for any ˛ 2NQ0nf0g. Given ˛ 2NQ0nf0g, the number '.˛/D ' 2 .0; 1� such that
Z.˛/D rei�' , for some r > 0, is called the phase of ˛.

Definition 3.3. For any nonzero Q-representation or J -module V , we define
'.V /D '.dimV /. AQ-representation (resp. J -module) V is said to be Z-stable if
for any proper nonzero Q-subrepresentation (resp. J -submodule) U � V we have

'.U / < '.V /;

and Z-semistable if for all such proper subrepresentations (resp. submodules) we
have the weaker condition

'.U /� '.V /:

Definition 3.4. Given � 2 RQ0 , define the central charge Z W ZQ0! C by the rule

Z.˛/D�� �˛C i j˛j;

where j˛j D
P
i2Q0

˛i . We call a Q-representation or J -module �-(semi)stable if
it is Z-(semi)stable.

Remark 3.5. Let the central charge Z be as in Definition 3.4. Define the slope
function � WNQ0nf0g! R by �.˛/D � �˛=j˛j. If l �HDHC[f0g is a ray such
that Z.˛/ 2 l , then l D R�0.��.˛/; 1/. This implies that '.˛/ < '.ˇ/ if and only
if �.˛/ < �.ˇ/.

We say that � 2 RQ0 is ˛-generic if for any 0 < ˇ < ˛ we have '.ˇ/¤ '.˛/.
This condition implies that any �-semistable Q-representation or J -module is
automatically �-stable.

Let R� .Q; ˛/ denote the open subset of R.Q; ˛/ consisting of �-semistable rep-
resentations. Let f�;˛ denote the restriction of f˛ to R� .Q; ˛/. The quotient stacks

M� .Q; ˛/ WD ŒR� .Q; ˛/=G˛� and M� .J; ˛/ WD Œcrit.f�;˛/=G˛� (3-1)

give the moduli stacks of �-semistable Q-representations and J -modules with
dimension vector ˛.

3C. Motivic DT invariants. Let .Q;W / be a quiver with a potential and let J D
JQ;W be its Jacobian algebra. Recall that the degeneracy locus of the function
f˛ WR.Q; ˛/! C defines the locus of J -modules, so that the quotient stack

M.J; ˛/ WD Œcrit.f˛/=G˛�
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is the stack of J -modules with dimension vector ˛. We define motivic Donaldson–
Thomas invariants by

ŒM.J; ˛/�vir WD
Œcrit.f˛/�vir

ŒG˛�vir
:

For a stability parameter �, we define

ŒM� .J; ˛/�vir D
Œcrit.f�;˛/�vir

ŒG˛�vir
; (3-2)

where, as before, f�;˛ denotes the restriction of f˛ WR.Q; ˛/! C to R� .Q; ˛/.

3D. Generating series of motivic DT invariants. Let .Q;W / be a quiver with a
potential admitting a cut, and let J D JQ;W be its Jacobian algebra.

Definition 3.6. We define the generating series of the motivic Donaldson–Thomas
invariants of .Q;W / by

AU .y/D
X

˛2NQ0

ŒM.J; ˛/�vir �y
˛
D

X
˛2NQ0

Œcrit.f˛/�vir

ŒG˛�vir
�y˛ 2 TQ;

where the subscript refers to the fact that we think of this series as the universal series.

Given a cut C of .Q;W /, we define a new quiver QC D .Q0;Q1nC/. Let JC
be the quotient of CQC by the ideal

.@CW /D .@W=@a; a 2 C/:

Proposition 3.7 [Morrison et al. 2012, Proposition 1.14]. If .Q;W / admits a cut
C , then

AU .y/D
X

˛2NQ0

.�L
1
2 /�.˛;˛/C2dI .˛/

ŒR.JC ; ˛/�

ŒG˛�
y˛;

where dC .˛/D
P
.aWi!j /2C ˛i j̨ for any ˛ 2 ZQ0 .

The quiver with potential .Q� ; w� / introduced in Section 2 admits a cut (see
Section 2D), and Proposition 3.7 can be applied. In the next section we use this to
compute the universal series in a specific case.

4. The universal DT series: special case

Throughout this section we fix � to be the unique partition defined such that

yIr D f0; 1; 2; 3; : : : ; N
0
� 1g;

in other words, the partition such that the quiver with potential .Q� ; w� / has loops
at the first N 0 vertices only.

The aim of this section is to prove Theorem 0.1 for this quiver with potential.
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Figure 6. The case N D 6 and N 0 D 2.

We define three fixed subsets of the vertices:

I1 WD f0; 1; : : : ; N
0
� 1g � Z=N;

I2 WD fN
0; N 0C 2;N 0C 4; : : : ; N � 2g � Z=N;

I3 WD fN
0
C 1;N 0C 3;N 0C 5; : : : ; N � 1g � Z=N:

Then there exists a cut C given by the collection of arrows

C D
˚
h�i j i �

1
2
… I2

	
:

By Proposition 3.7, the universal DT seriesA�U .y/D
P
˛2NQ A˛y

˛ has coefficients
given by

A˛ D .�L
1
2 /�.˛;˛/C2dC .˛/

ŒR.J�;C ; ˛/�

ŒG˛�
y˛;

where dC .˛/D
P
.aWi!j /2C ˛i j̨ . To begin, we find a simple expression for the

term �.˛; ˛/C 2dC .˛/ in the exponent. We know by definition that

�.˛; ˛/D
X

i2I1[I2[I3

˛2i �
X
i2I1

˛2i �
X

i2I1[I2[I3

˛i˛iC1 �
X

i2I1[I2[I3

˛iC1˛i ;

dI .˛/D
X
i2I1

˛i˛iC1C
X
i2I3

˛iC1˛i ;

so it follows that

�.˛; ˛/C 2dC .˛/D
X

i2I2[I3

˛2i � 2 �
X
i2I2

˛i˛iC1 D
X
i2I2

.˛iC1�˛i /
2:

Our next goal is to factorizeA�U .y/ into two simpler series. We proceed by analyzing
the motivic classes ŒR.J�;C ; ˛/�.

Given a dimension vector ˛ 2 NQ0 and a representation of a J�;C -module

V D
M

i2I1[I2[I3

Vi ;

we focus on the specific element

H WD hC1
2

C hC3
2

C � � �ChC
N� 1

2

2

M
i2I1[I2[I3

Hom.Vi ; ViC1/:
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This map H acts as an endomorphism of the vector space V . Given any such
linear map

H W V ! V;

there exists a unique splitting V D V I ˚V N with maps

H I
W V I ! V I invertible,

HN
W V N ! V N nilpotent,

so that
H DH I

˚HN :

Moreover, in our case the above splitting respects the grading by i 2 I1[ I2[ I3.
To be explicit, we have that

V I D
M

i2I1[I2[I3

V Ii ;

where V Ii WD Vi \V
I (similarly V N D

L
i2I1[I2[I3

V Ni with V Ni WD Vi \V
N ).

One immediate consequence of this is that

dim.V Ii /D dim.V IiC1/ for all i 2 I1[ I2[ I3I

indeed, this is clear since the block form of H I demands that it map V Ii to V IiC1
via an isomorphism. We are now ready to decompose the computation of A�U .y/
into two simpler subproblems.

Definition 4.1 (invertible series). We define

RI .a/ WD fr 2R.J�;C ; ˛/ jH is invertible, ˛i D a for all ig

and the series

I � .x/ WD
X
a�0

ŒRI .a/�

ŒGL.a/�N
xa:

Definition 4.2 (nilpotent series). We define

RN .˛/ WD fr 2R.J�;C ; ˛/ jH is nilpotentg

and the series

N � .y/ WD
X

˛2NQ0

.�L
1
2 /
P
i2I2

.˛iC1�˛i /
2 ŒRN .˛/�

ŒG˛�
y˛:

The following lemma shows that the series A�U .y/ factorizes into the product of
the two series just defined:
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Lemma 4.3. Let x D y0 � � �yN�1; then, in the notation above, we have

A�U .y/D I
� .x/ �N � .y/:

Proof. This formula follows directly from a stratification of the variety R.J�;C ; ˛/
by the dimension of V Ii .

Fix ˛ 2 NQ0 ; we stratify R.J�;C ; ˛/ by dim.V Ii /D a. Let

a WD .a; a; : : : ; a/ 2 NQ0 ;

and let
˛0 be such that ˛ D aC˛0 2 NQ0 :

There is a Zariski locally trivial fibration

RI .a/�RN .˛0/ ����! fr 2R.J�;C ; ˛/ j dim.V Ii /D a for H 2 rg??y
M.a; ˛/

Here M.a; ˛/ is the space parametrizing splittings Vi D V Ii ˚V
N
i . To see this,

one checks that the arrows ri , h�
iC 1

2

in the representation also preserve the splitting,

so the entire representation splits into V I ˚ V N . This follows easily from the
relations and some basic linear algebra.

Splittings of the vector space Vi D V Ii ˚V
N
i are parametrized by

GL.˛i /=.GL.a/�GL.˛0i //;

and hence the motivic class of the base is

ŒM.a; ˛/�D
ŒG˛�

ŒGL.a/�N � ŒG˛0 �
:

Summing over each stratum with dim.V Ii /D a, we get

ŒR.J�;C ; ˛/�D ŒG˛� �

mini f˛i gX
aD0

ŒRI .a/�

ŒGL.a/�N
�
ŒRN .˛0/�

ŒG˛0 �
:

Multiplying both sides of this expression by .�L
1
2 /
P
i2I2

.˛iC1�˛i /
2

y˛ and summing
gives

A�U .y/

D

�X
a�0

ŒRI .a/�

ŒGL.a/�N

N�1Y
iD0

yai

�
�

� X
˛02NQ0

.�L
1
2 /
P
i2I2

.˛0
iC1
�˛0

i
/2 ŒR

N .˛0/�

ŒG˛0 �
y˛
0

�
;

proving the result. �
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In the next two sections we compute formulae for I � .x/ and N � .y/.

4A. Step I: the invertible case I� .x/.

Proposition 4.4. We have

I � .x/D Exp
�

L
x

1� x

�
:

Proof. A J�;C -module r 2R.J�;C ; ˛/ is given by a vector space

V D
M

i2I1[I2[I3

Vi

of dimension ˛ 2 NQ0 and a collection of linear maps

ri W Vi ! Vi for i 2 I1;

h�
iC 1

2

W ViC1! Vi for i 2 I2;

hC
iC 1

2

W Vi ! ViC1 for i 2 I1[ I2[ I3;

satisfying the relations coming from cyclic differentiation of the potential

rih
C

i� 1
2

D hC
i� 1
2

ri�1 for i 2 Œ1; N 0� 1�\ I1;

r0h
C

N� 1
2

D hC
N� 1

2

hC
N� 3

2

h�
N� 3

2

;

h�
N 0C 1

2

hC
N 0C 1

2

hC
N 0� 1

2

D hC
N 0� 1

2

rN 0�1;

h�
iC 3

2

hC
iC 3

2

hC
iC 1

2

D hC
iC 1

2

hC
i� 1
2

h�
i� 1
2

for i D ŒN 0C 1;N � 3�\ I3:

Assuming moreover that r 2RI .a/, we have

hC
iC 1

2

W Vi ! ViC1 is invertible for all i 2 I1[ I2[ I3:

This allows us to expressRI .a/ as a
QN�1
iD1 GL.Vi /-torsor over a commuting variety

� WRI .a/! C.a/;�
ri ; h

C

iC 1
2

; h�
iC 1

2

�
7!
�
r0; h

C

N� 1
2

hC
N� 3

2

� � � hC3
2

hC1
2

�
;

where

C.a/D f.A;B/ 2 End.V0/�GL.V0/ j AB D BAg:
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The free action of
QN�1
iD1 GL.Vi / on RI .a/ is given by

.g1; : : : ; gN�1/ W ri 7! girig
�1
i for i 2 Œ1; N 0� 1�;

hC1
2

7! g1h
C
1
2

;

hC
N� 1

2

7! hC
N� 1

2

g�1N�1;

hC
iC 1

2

7! giC1h
C

iC 1
2

g�1i for i 2 Œ1; N � 2�;

h�
iC 1

2

7! gih
�

iC 1
2

g�1iC1 for i 2 I2:

As GL.a/ is a special group [Chevalley et al. 1958], the torsor splits in the Zariski
topology, so motivically we have

ŒRI .a/�D ŒGL.a/�N�1 � ŒC.a/�:

Thus

I � .x/D
X
a�0

ŒC.a/�

ŒGL.a/�
xa:

The generating series for the commuting variety is obtained in [Bryan and Morrison
2015], giving the result. �

4B. Step II: the nilpotent case N� .y/. This section is the final step in the calcu-
lation. Here we compute N � .y/ and obtain the formula of A�U .y/.

We fix a dimension vector ˛ 2 NQ0 . As before, a J�;C -module is given by a
vector space

V D
M

i2I1[I2[I3

Vi

of dimension ˛ and a collection of linear maps

ri W Vi ! Vi for i 2 I1;

h�
iC 1

2

W ViC1! Vi for i 2 I2;

hC
iC 1

2

W Vi ! ViC1 for i 2 I1[ I2[ I3;

satisfying the relations of the potential (see Proposition 4.4). Throughout this
section we insist that the map

H D hC1
2

C hC3
2

C � � �ChC
N� 1

2

2

M
i2I1[I2[I3

Hom.Vi ; ViC1/
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is nilpotent. In fact, RN .˛/ is exactly the collection of all such representations
(see Definition 4.2). In particular, if we let j˛j WD dim.V / then we know that
H j˛j D 0. This gives a filtration of the vector space

V D V j˛j � V j˛j�1 � � � � � V 1 � V 0 D f0g;

where
V j D fv 2 V jH j .v/D 0g:

Moreover, the filtration respects the grading by i 2 I1 [ I2 [ I3, by which we
mean that

V j D
M

i2I1[I2[I3

.V j \Vi /;

where Vi is the summand at the i -th vertex of the quiver. By considering the vector
space V as a representation of the nilpotent matrix H , we can identify V with a
CŒx�-module supported at the origin. Modules for a principal ideal domain have a
simple structure. In particular, we have

V Š

dM
jD1

.CŒx�=.xj //˚bj

as a CŒx�-module. The next proposition provides a more refined version of this
statement, where each factor in this decomposition is generated by a vector from a
vector space Vi :

Proposition 4.5. For each i 2 I1[ I2[ I3, there exists a collection of integers bij
such that

V Š
M

i2I1[I2[I3

dM
iD1

.CŒx�=.xj //˚b
i
j ;

where the factor .CŒx�=.xj //˚b
i
j is generated as a CŒx�-module by vectors in Vi .

Moreover, the numbers bij are uniquely determined by the above conditions.

Proof. We will argue by induction on d , the largest integer such that bd ¤ 0. As
such, we can assume that for each j � d � 1 the factor CŒx�=.xj / is generated
by a vector in some Vi . Now let e1; : : : ; ebd be a generating set for the factor
.CŒx�=.xd //˚bd , and define W WD spanfe1; : : : ; ebd g. We consider the projection
operators

pi W V ! Vi=Vi \V
d�1;

and set Wi WD pi .W / and bi
d
D dimWi . We claim that

p0˚ � � �˚pN�1 WW !W0˚ � � �˚WN�1
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is an isomorphism. The map is clearly onto and an injection since any vector
in the kernel must lie in V d�1. Now, considering a lifting of the vector space
Vi �W

0
i �Wi � Vi=Vi \V

d�1, we have that

W 0i ˚HW
0
i ˚ � � �˚H

d�1W 0i � V

is a submodule of V isomorphic to .CŒx�=.xd //˚b
i
d . Summing over all i , we have

that .CŒx�=.xd //
P
i b
i
d is a submodule of V , and hence it follows that

P
i dimWi DP

i b
i
d
� bd D dimW , and so for dimension reasons we get

V Š

�N�1M
iD0

.CŒx�=.xd //˚b
i
d

�M�d�1M
jD1

.CŒx�=.xj //˚bj
�
:

Here each factor .CŒx�=.xd //˚b
i
d is generated by vectors in Vi , so by our inductive

hypothesis the entire module is generated by vectors in Vi .
Finally we prove the uniqueness statement. Assume we have two distinct such

decompositions

V Š

N�1M
iD0

dM
jD1

.CŒx�=.xj //˚b
i
j Š

N�1M
iD0

dM
jD1

.CŒx�=.xj //˚c
i
j :

By restricting to subrepresentations if necessary, we can assume that bi
d
¤ ci

d
for

some i . However in this case

bid D dim.ker.Hd
W Vi ! ViCd /=Vi \V

d�1/D cid

is a contradiction. This proves the last part of the lemma. �

Next we organize this data in the way most helpful to our cause:

Definition 4.6. Let 0� a; b �N � 1. We define

jb� aj Dminfr 2 f0; 1; : : : ; N � 1g j b D aC r modN g:

Intuitively, this is the distance from a to b in the cyclic direction i ! i C 1

corresponding to the map H .

Definition 4.7. Suppose we have a decomposition of V as a CŒx�-module as in
Proposition 4.5. Define V a;b to be the vector subspace corresponding to the
summand M

l�1

.CŒx�=.xN.l�1/Cjb�ajC1//
ba
N.l�1/Cjb�ajC1 ;

and relabel the integers
b
a;b
l
WD baN.l�1/Cjb�ajC1
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to define partitions

� Œa;b� WD
�
1b
a;b
1 2b

a;b
2 3b

a;b
3 � � �

�
:

Notice that the above definition depends on the choice of the decomposition
in Proposition 4.5. However, all such vector spaces are isomorphic abstractly as
CŒx�-modules. We can think of these vector spaces as being generated by the
nilpotent vectors that start at the a-th vertex and are annihilated at the .bC 1/-st
vertex under the action of the map H .

The next lemma makes explicit how to recover the dimension vector of a repre-
sentation from the datum of the N 2 partitions f� Œa;b� j 0� a; b �N � 1g.

Lemma 4.8. Given a representation r 2RN .˛/ so that the endomorphism H has
type f� Œa;b�g, the dimension vector of the representation r is given by

˛i D
X
a;b

j� Œa;b�j �
X
a;b

i…Œa;b�

l.� Œa;b�/;

where j� Œa;b�j and l.� Œa;b�/ are the size and length of the partition � Œa;b�.

Proof. This is clear since
V D

M
a;b

V a;b

and

dim.V a;b \Vi /D
�
j� Œa;b�j if i 2 Œa; b�;
j� Œa;b�j � l.� Œa;b�/ if i … Œa; b�:

�

We can use this to give a simple reformulation of the term �.˛; ˛/C 2dC .˛/

appearing in the series N � :

Corollary 4.9. We have

�.˛; ˛/C 2dC .˛/D
X
i2I2

�X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/

�2
:

Proof. In our initial analysis of these terms we saw that

�.˛; ˛/C 2dC .˛/D
X
i2I2

.˛iC1�˛i /
2;

and now by Lemma 4.8 we have

˛iC1�˛i D
X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/: �

The above classification has been for the purpose of breaking the variety RN .˛/
down into simpler pieces.
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Definition 4.10. Given N 2 partitions f� Œa;b� j 0� a; b �N � 1g and a dimension
vector ˛ as in Lemma 4.8, we define

R.f� Œa;b�g/D fr 2RN .˛/ jH has type f� Œa;b�gg:

This provides a stratification ofRN .˛/ into strata where the normal form ofH has
a fixed type. We will proceed to compute the motivic classes of each of these strata.

A representation in R.f� Œa;b�g/ is given explicitly by a vector space V DL
i2I1[I2[I3

Vi and a collection of linear maps corresponding to the arrows ri
with i 2 I1, h�

iC 1
2

with i 2 I2 and hC
iC 1

2

with i 2 I1[I2[I3. In addition, the linear
maps satisfy relations

rih
C

i� 1
2

D hC
i� 1
2

ri�1 for i 2 Œ1; N 0� 1�\ I1;

r0h
C

N� 1
2

D hC
N� 1

2

hC
N� 3

2

h�
N� 3

2

;

h�
N 0C 1

2

hC
N 0C 1

2

hC
N 0� 1

2

D hC
N 0� 1

2

rN 0�1;

h�
iC 3

2

hC
iC 3

2

hC
iC 1

2

D hC
iC 1

2

hC
i� 1
2

h�
i� 1
2

for i D ŒN 0C 1;N � 3�\ I3:

and we require that the map

H D hC1
2

C hC3
2

C � � �ChC
N� 1

2

2

M
i2I1[I2[I3

Hom.Vi ; ViC1/

has a type given by the partitions f� Œa;b� j 0 � a; b � N � 1g. The linear map H
contains all the information of the maps hC

iC 1
2

. For brevity, we make the following
definition, packaging all the remaining linear maps into one.

Definition 4.11. Given a representation as above, we define the linear map

L WD r0C r1C � � �C rN 0�1C h
�

N 0C 1
2

C � � �Ch�
N� 3

2

2

M
i2I1

Hom.Vi ; Vi /
M
i2I2

Hom.ViC1; Vi /:

From now on, in order to compute the motivic class of R.f� Œa;b�g/ we will work
with a choice of coordinates. Let

v
a;b
l
.k/ 2 Va

be such that va;b
l
.k/ generates the k-th summand of CŒx�=.xN.l�1/Cjb�ajC1/˚b

a;b
l

in the decomposition of Proposition 4.5. Then we have that

B WD fHpv
a;b
l
.k/ j 1� k� b

a;b
l
; 0� a; b�N �1; 0�p�N.l�1/Cjb�ajC1g

forms a basis of V .
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Definition 4.12. We define H.� Œa;b�/ to be the matrix representation of the map
H with respect to the basis B. Also define

F.f� Œa;b�g/ WD fL j .L;H.� Œa;b�// 2R.f� Œa;b�g/g;

N.f� Œa;b�g/ WD fH jH has type f� Œa;b�gg:

Then R.f� Œa;b�g/ has a decomposition as a vector bundle:

Lemma 4.13. R.f� Œa;b�g/ has the structure of a vector bundle

F.f� Œa;b�g/ ����! R.f� Œa;b�g/??y
N.f� Œa;b�g/

In particular, we have that

ŒR.f� Œa;b�g/�D ŒF .f� Œa;b�g/� � ŒN.f� Œa;b�g/�

in the Grothendieck ring of varieties.

Proof. The projection map

p WR.f� Œa;b�g/!N.f� Œa;b�g/;

.L;H/ 7!H

defines the bundle structure with zero section H 7! .0;H/. The fiber is the linear
space of all such L. �

Here the base of the vector bundle is the space of all matrices of type f� Œa;b�g;
these are all conjugate to H.� Œa;b�/, and therefore we have a torsor

� WG˛!N.� Œa;b�/;

P 7! PH.� Œa;b�/P�1:

This is a torsor for the group S 0.f� Œa;b�g/ WDStabG˛ .H.�
a;b//. This group is given

as the group of units in an algebra:

Definition 4.14. We identify S 0.f� Œa;b�g/ with the group of multiplicative units in
the algebra

S.f� Œa;b�g/ WD

�
N 2

N�1Y
iD0

End.˛i /
ˇ̌
NH.� Œa;b�/DH.� Œa;b�/N

�
:

Since S 0.f� Œa;b�g/ is the group of units of an algebra it is a special group
[Chevalley et al. 1958], and so the above torsor splits in the Zariski topology. For
completeness we include a short proof of this fact.
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Lemma 4.15. The group S 0.f� Œa;b�g/ is a special algebraic group.

Proof. The ring of units is defined by a single polynomial equation and is open in
A. Consequently the units S 0.f� Œa;b�g/ act generically freely on the vector space
S.f� Œa;b�g/, so by Proposition 3.13 of [Merkurjev 2013] the group has essential
dimension zero. Then by Proposition 3.16 of [Merkurjev 2013] it is a special
algebraic group. �

The next lemma gives a formula of the motivic class of the group S 0.f� Œa;b;�g/,
and via the splitting of the above torsor we deduce a formula for the class of
N.f� Œa;b�g/. Before stating the lemma we create some notation:

Definition 4.16. We denote the dimensions of the linear spaces F.f� Œa;b�g/ and
S.f� Œa;b�g/ by

T .f� Œa;b�g/ WD dimF.f� Œa;b�g/;

B.f� Œa;b�g/ WD dimS.f� Œa;b�g/:

Lemma 4.17. We have

ŒS 0.f� Œa;b�g/�D ŒS.f� Œa;b�g/� �
Y

0�a;b�N�1

1

f .� Œa;b�/
;

where

f .� Œa;b�/ WD
Y
l�1

ŒEnd.ba;b
l
/�

ŒGL.ba;b
l
/�
:

As a consequence,

ŒR.f�a;bg/�D ŒG˛� � L
T.f�Œa;b�g/�B.f�Œa;b�g/

�

Y
0�a;b�N�1

f .� Œa;b�/:

Proof. Let

W
a;b
l
WD spanCfv

a;b
l
.k/ j 1� k � b

a;b
l
g

be the span of the basis elements va;b
l
.k/ for 1� k � ba;b

l
. We have both inclusion

and projection

W
a;b
l

,! V �W
a;b
l

:

This gives a map of algebras

� W S.f� Œa;b�g/!
Y
a;b;l

End.W a;b
l

/;

N 7!
M
a;b;l

N j
W
a;b
l

:
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This splits as a trivial vector bundle, whose rank is the dimension of the total space
minus the dimension of the base. Since we have that the group S 0.f� Œa;b�g/ is the
group of units in S.f� Œa;b�g/, we can identify S 0.f� Œa;b�g/ as the inverse image of
the units on the right-hand side. This is a trivial vector bundle of rank equal to
dimS.f� Œa;b�g/� dim

Q
a;b;l End.W a;b

l
/. We have an isomorphism of varieties

S 0.f� Œa;b�g/�
S.f� Œa;b�g/Q
a;b;l End.W a;b

l
/
�

Y
a;b;l

GL.W a;b
l

/;

so motivically we have

ŒS 0.f� Œa;b�g/�D ŒS.f� Œa;b�g/� �
Y

0�a;b�N�1

1

f .� Œa;b�/
:

In Lemma 4.13 we saw that

ŒR.f� Œa;b�g/�D ŒF .f� Œa;b�g/� � ŒN.f� Œa;b�g/�:

Now we know that N.f� Œa;b�g/ is a torsor for the group S 0.f� Œa;b�g/. We have just
computed the motive of this group. So we can deduce that

ŒR.f� Œa;b�g/�D ŒF .f� Œa;b�g/� �
ŒG˛�

ŒS 0.f� Œa;b�g/�

D ŒF .f� Œa;b�g/� �
ŒG˛�

ŒS.f� Œa;b�g/�
�

Y
0�a;b�N�1

f .� Œa;b�/

D ŒG˛� � L
T.f�Œa;b�g/�B.f�Œa;b�g/

�

Y
0�a;b�N�1

f .� Œa;b�/: �

The next proposition computes the difference T .f� Œa;b�g/ � B.f� Œa;b�g/. Its
proof is found in the Appendix:

Proposition 4.18. We have that T .f� Œa;b�g/�B.f� Œa;b�g/ is equal to

�
1

2

X
i2I2

�X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/

�2
�
1

2

X
a2I3
b…I2

X
i�1

.b
a;b
i /2�

1

2

X
a…I3
b2I2

X
i�1

.b
a;b
i /2:

Proof. The proof is a linear algebra calculation. See the Appendix. �

As a corollary, we deduce the formula for N � .y/:
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Proposition 4.19. Let

S D fŒa; b� j a 2 I3; b 62 I2 or a 62 I3; b 2 I2g;

yŒa;b� D ya �yaC1 � � �yb;

y0 D y0 �y1 � � �yN�1;

then we have

N � .y/D Exp
�

L

L� 1

1

1�y0

� X
Œa;b�…S

yŒa;b�� L�
1
2

X
Œa;b�2S

yŒa;b�

��
:

Proof. Recall our initial definition of N � .y/:

N � .y/D
X

˛2NQ0

.�L
1
2 /�.˛;˛/C2dC .˛/

ŒRN .˛/�

ŒG˛�
y˛:

In Proposition 4.5 we saw that it was possible to stratify each of the varieties RN .˛/
by the type f� Œa;b�g of the cycle H . This gives

N � .y/D
X

˛2NQ0

.�L
1
2 /�.˛;˛/C2dC .˛/ŒG˛�

�1

� X
f�Œa;b�g`˛

ŒR.f� Œa;b�g/�

�
y˛:

The motivic class of R.f� Œa;b�g/ was computed in Lemma 4.17. Now substituting
this class into the above formula givesX
˛2NQ0

.�L
1
2 /�.˛;˛/C2dC .˛/

�

� X
f�Œa;b�g`˛

LT.f�
Œa;b�g/�B.f�Œa;b�g/

�

Y
0�a;b�N�1

f .� Œa;b�/

�
y˛:

Lemma 4.8 showed how the dimension vector depended on the partitions: we had

˛i D
X

0�a;b�N�1

j� Œa;b�j �
X
Œa;b� 63i

l.� Œa;b�/;

and an immediate corollary was that

�.˛; ˛/C 2dC .˛/D
X
i2I2

�X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/

�2
:
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Combining this with the formula for the difference T .f� Œa;b�g/ � B.f� Œa;b�g/
(Proposition 4.18) gives

N � .y/D
X
f�Œa;b�g

� Y
Œa;b�…S

f .� Œa;b�/

�
�

� Y
Œa;b�2S

f .� Œa;b�/
Y
l�1

.�L
1
2 /�.b

a;b
l
/2
�

�

N�1Y
iD0

y

P
0�a;b�N�1 j�

Œa;b�j�
P
Œa;b� 63i l.�

Œa;b�/

i :

To simplify notation, set

g.�/ WD f .�/ �
Y
l�1

.�L
1
2 /�b

2
l for � D .1b1 2b2 3b3 � � � /I

then rearranging the products and summations gives

N � .y/D
Y

Œa;b�…S

X
�Œa;b�

f .� Œa;b�/ �y0j�
Œa;b�j�l.�Œa;b�/

�y
l.�Œa;b�/

Œa;b�

�

Y
Œa;b�2S

X
�Œa;b�

g.� Œa;b�/ �y0j�
Œa;b�j�l.�Œa;b�/

�y
l.�Œa;b�/

Œa;b�
:

Both of these series are know to have product expansions [Macdonald 1995]

f .t; a/D
X
�

f .�/al.�/t j�j�l.�/ D Exp
�

1

1� L�1
�
a

1� t

�
;

g.t; a/D
X
�

g.�/al.�/t j�j�l.�/ D Exp
�
.�L

1
2 /�1

1� L�1
�
a

1� t

�
:

Now N � is a product of such series, and multiplying together the corresponding
exponential generating series gives the desired result

N � .y/D Exp
�

L

L� 1

1

1�y0

� X
Œa;b�…S

yŒa;b�� L�
1
2

X
Œa;b�2S

yŒa;b�

��
: �

Now we have computed I � and N � , and so by Lemma 4.3

A�U .y/D Exp
�

L
y0

1�y0
C

L

L� 1

1

1�y0

� X
Œa;b�…S

yŒa;b�� L�
1
2

X
Œa;b�2S

yŒa;b�

��
:

Or, reformulating this as a product over the set of roots, we get

Exp
�

1

1� L�1

�
.LCN�1/

X
˛2�im

�;C

y˛C
X

˛2�re
�;CP

I2[I3
˛i even

y˛�L�
1
2

X
˛2�re

�;CP
I2[I3

˛i odd

y˛
��
;
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thus proving Theorem 0.1 for the special case of the partition � :

A�U .y/D
Y

˛2��;C

A˛.y/:

5. The universal DT series: general case

In this section we will prove Theorem 0.1 for any partition � .

5A. Mutation and the root system. Recall that the simple reflection provides a
bijection between ��;Cnf˛kg and �� 0;Cnf˛0kg (see Section 2C). The simple root
˛k maps to �˛0

k
.

For ˛ 2 �re
C

, let x˛ be a simple module of dim˛. By [Nagao 2012, Proposi-
tion 2.14],

P
i…yIr

˛i is odd (resp. even) if and only if ext1.x; x/D 0 (resp. D 1).
In particular, the parity of

P
i…yIr

˛i is preserved by the simple reflection.

5B. Wall-crossing formula.

Theorem 5.1 [Nagao 2011c, Theorem 4.9].

A�
0

U .y/D
A�U .y/

E.yk/
� E.y�1k /:

Proof. Step 1: By the observation in Section 2C, we have the factorization

A�U D E.yk/�A
�
k ;

where

E.y/ WD
X
n�0

Œpf�
ŒGLn�vir

�yn; yk WD y˛k

and A�
k

is the generating series of virtual motives of moduli stacks of objects in
.modJ� /k . We also have

A�
0

U D A
� 0;k
� E.y�1k /;

where A�
0;k is the generating series of virtual motives of moduli stacks of objects

in .modJ� 0/k .

Step 2: By Proposition 2.4, we have A�
k
DA�

0;k (see [Nagao 2011c, Theorem 4.7]).
�

Now Theorem 0.1 follows for any � from the result in Section 4 combined with
Theorem 5.1 and the remark in Section 5A.
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5C. Factorization of the universal series. We will say that a stability parameter
� is generic, if for any stable J� -module V , we have � � dimV ¤ 0. For generic
stability parameter �, let MC

�
.J� ; ˛/ (resp. M�

�
.J� ; ˛/) denote the moduli stacks

of J� -modules V such that dimV D ˛ and such that all the HN factors F of V
with respect to the stability parameter � satisfy � � dimF > 0 (resp. < 0). Let
ŒM˙

�
.J� ; ˛/�vir denote the virtual motive of the moduli stack defined in the same

way as (3-2). We put

A˙� .y/D
X
˛2N

yI

ŒM˙� .J; ˛/�vir �y
˛:

Lemma 5.2 [Morrison et al. 2012, Lemma 2.6]. The generating series A˙
�

are
given by

A˙� .y/D
Y

˛2��;C
˙� �˛<0

A˛.y/:

6. Motivic DT with framing and DT/PT series

6A. Motivic DT invariants with framing. We denote by zQ� the new quiver ob-
tained from Q� by adding a new vertex1 and a single new arrow1! 0. Let
zJ� D J zQ� ;w�

be the Jacobian algebra corresponding to the quiver with potential
. zQ� ; w� /, where we view w� as a potential for zQ� in the obvious way.

Let � 2 R
yI be a vector, which we will refer to as the stability parameter. A zJ� -

representation zV with dim zV1 D 1 is said to be �-(semi)stable, if it is (semi)stable
with respect to .�; �1/ 2 R

yItf1g (see Definition 3.3), where �1 D�� � dimV . As
in Section 3B, a stability parameter � 2 RQ0 is said to be generic if for any stable
J -module V we have � � dimV ¤ 0.

For a stability parameter � 2 RQ0 and a dimension vector ˛ 2 .Z�0/
yI , let

M� . zJ� ; ˛/ denote the moduli stack of �-semistable zJ� -representations with dimen-
sion vector .˛; 1/. As in the introduction, we define the generating function

Z� .y0; : : : ; yN�1/DZ� .y/ WD
X

˛2.Z�0/
yI

ŒM� . zJ� ; ˛/�vir �y
˛:

Theorem 6.1 [Morrison et al. 2012, Proposition 4.6]. For a generic stability para-
meter �, we have

Z� .y/D
A�
�
.�L

1
2y0; y1; : : : ; yN�1/

A�
�
.�L�

1
2y0; y1; : : : ; yN�1/

; (6-1)

where A�
�

was defined in Section 5C.

Combined with Lemma 5.2, we get the formula in Corollary 0.2.
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Remark 6.2. If we cross the wall W˛, we get (or lose) a factor Z˛.y/ in the
generating function. This is compatible with the result in [Nagao 2011b].

6B. Chambers in the moduli spaces. For a root ˛ 2ƒ, let W˛ denote the hyper-
plane in the space R

yI of stability parameters which is orthogonal to ˛. We put

W DWı [
[

˛2�re
�;C

W˛:

A connected component of the complement of W in R
yI is called a chamber.

Theorem 6.3 [Nagao 2012, Proposition 2.10; Nagao and Nakajima 2011, Proposi-
tions 3.10, 3.11]. The set of generic parameters in R

yI is the compliment of W .

(i) For � with �i < 0 for all i , the moduli spaces M� . zJ ; ˛/ are the NCDT moduli
spaces, the moduli spaces of cyclic J -modules from [Szendrői 2008].

(ii) For � in the same chamber as .1�N C "; 1; 1; : : : ; 1/ (0 < "� 1), the moduli
spaces M� . zJ ; ˛/ are the DT moduli spaces of Y� from [Maulik et al. 2006],
the moduli spaces of subschemes on Y� with support in dimension at most 1.

(iii) For � in the same chamber as .1�N � "; 1; 1; : : : ; 1/ (0 < "� 1), the moduli
spaces M� . zJ ; ˛/ are the PT moduli spaces of Y� introduced in [Pandhari-
pande and Thomas 2009]; these are moduli spaces of stable rank-1 coherent
systems.

Remark 6.4. In the above statements " depends on the dimension vector .˛; 1/.

6C. Motivic PT and DT invariants. Let

�DT D .1�N � "; 1; 1; : : : ; 1/; �PT D .1�N C "; 1; 1; : : : ; 1/ .0 < "� 1/

be stability parameters corresponding to DT and PT moduli spaces. Then we have

f˛ 2��;C j �DT �˛ < 0g D�
re;C
C

;

f˛ 2��;C j �PT �˛ < 0g D�
re;C
C
t�im
C :

As we mentioned in the introduction, the variable change induced by the derived
equivalence is given by

s WD y0 �y1 � � �yN�1; Ti D yi :

Here s is the variable for the homology class of a point and Ti is the variable for
the homology class of Ci . Then we get the formulae in Corollary 0.3.
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6D. Connection with the refined topological vertex. As in [Nagao 2011a], we can
apply the vertex operator method [Okounkov et al. 2006] to get a product expansion
of the refined topological vertex for Y� . Then we see that the PT generating
function can be described by the refined topological vertices normalized by the
refined MacMahon functions.5

Appendix

Throughout this appendix we will work with a fixed choice of basis B. In Section 4B
we chose a basis

BDfHpv
a;b
l
.k/ j 1� k � b

a;b
l
; 0� a; b �N �1; 0�p�N.l�1/Cjb�ajC1g

and defined linear spaces

F.f� Œa;b�g/

D

�
L 2

M
i2I1

Hom.Vi ; Vi /˚
M
i2I2

Hom.ViC1; Vi /
ˇ̌
.L;H.� Œa;b�// 2R.f� Œa;b�g/

�
;

S.f� Œa;b�g/D

�
N 2

M
i2I1[I2[I3

Hom.Vi ; Vi /
ˇ̌
ŒN;H.� Œa;b�/�D 0

�
;

with dimensions T .f� Œa;b�g/DdimF.f� Œa;b�g/ andB.f� Œa;b�g/DdimS.f� Œa;b�g/.
The goal of the appendix is to prove Proposition 4.18, that is, to show that the
difference T .f� Œa;b�g/�B.f� Œa;b�g/ is equal to

�
1

2

X
i2I2

�X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/

�2
�
1

2

X
a2I3;b…I2

X
i�1

.b
a;b
i /2�

1

2

X
a…I3;b2I2

X
i�1

.b
a;b
i /2:

For some early examples it becomes clear that the dimensions of F.f� Œa;b�g/ and
S.f� Œa;b�g/ are determined by solving a set of linearly independent equations. We
will see that these dimensions are quadratic polynomials in the number of parts
b
a;b
l

of the partitions f� Œa;b�g. An initial means of simplifying the calculation is
to break the spaces F.f� Œa;b�g/ and S.f� Œa;b�g/ down into simpler spaces. One
easy observation is that not only are the spaces F.f� Œa;b�g/ and S.f� Œa;b�g/ linear,
but they come with a natural vector space structure, the origin corresponding

5Unfortunately, the DT generating function does not coincide with the refined topological vertex.
See [Morrison et al. 2012, §4.3] for details.
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to the zero matrix in both cases. This means that we have decompositions as
vector spaces

F.f� Œa;b�g/D
M

0�a;b;c;d�N�1

F.� Œa;b�; � Œc;d�/;

S.f� Œa;b�g/D
M

0�a;b;c;d�N�1

S.� Œa;b�; � Œc;d�/

whose summands are given by the following definition:

Definition A.5. We define

F.� Œa;b�; � Œc;d�/D F.f� Œa;b�g/\
M

i2I1[I2

Hom.V a;b; V c;d /;

S.� Œa;b�; � Œc;d�/D S.� Œa;b�; � Œc;d�/\
M

i2I1[I2[I3

Hom.V a;b; V c;d /:

These subspaces are essentially given by the block matrices for the decomposition
V D

L
0�a;b�N�1 V

a;b .

Definition A.6. We define

T .� Œa;b�; � Œc;d�/D dimF.� Œa;b�; � Œc;d�/

B.� Œa;b�; � Œc;d�/D dimS.� Œa;b�; � Œc;d�/:

Both T .� Œa;b�; � Œc;d�/ and B.� Œa;b�; � Œc;d�/ can be written as quadratic expres-
sions in the number of parts of � Œa;b� and � Œc;d�. To do so, we introduce a quadratic
form on the space of all partitions and a combinatorial operation that removes a
box from each column of the partition.

Definition A.7. We define

M W P˝P! Z�0;

.1b1 2b2 3b3 � � � /˝ .1c1 2c2 3c3 � � � / 7!
X
i�1

�X
j�i

bj

��X
j�i

cj

�
;

0
W P! P;

� D .1b1 2b2 3b3 � � � / 7! � 0 D .1b2 2b3 3b4 � � � /:

Let us begin with the easier case. We compute dimensions B.� Œa;b�; � Œc;d�/ of
the spaces S.� Œa;b�; � Œc;d�/.
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Lemma A.8. Let N 2 S.� Œa;b�; � Œc;d�/; then the matrix N is uniquely determined
by its value on the vectors va;b

l
.k/. Moreover, the only restriction on the image of

such a vector is that it lie in the linear subspace

N.v
a;b
l
/ 2 Va \V

c;d
\V N �.l�1/Cjb�ajC1:

Proof. To define the linear map N on the space V a;b , it suffices to define its value
at each of the basis vectors

fH rv
a;b
l
.k/ j 0� r �N � .l � 1/Cjb� aj; 1� k � b

a;b
l
g:

However, for N 2 S.� Œa;b�; � Œc;d�/, we have

N.H rv
a;b
l
.k//DH r.Nv

a;b
l
.k//I

therefore the value of N at each H rv
a;b
l
.k/ is determined by Nva;b

l
.k/. This

proves the first part of the lemma. Now we know that the matrix N maps the vector
space at the a-th vertex to itself: Va! Va; also, since N 2 S.� Œa;b�; � Œc;d�/, we
insist that its image be in V c;d . The only additional condition on the image of the
vector va;b

l
.k/ is

HN �.l�1/Cjb�ajC1.Nv
a;b
l
.k//DN.HN �.l�1/Cjb�ajC1v

a;b
l
.k//D 0:

Combining these three conditions above, we have

N.v
a;b
l
.k// 2 Va \V

c;d
\V N �.l�1/Cjb�ajC1: �

Corollary A.9. We have

B.� Œa;b�; � Œc;d�/D

8̂̂̂<̂
ˆ̂:
M.� Œa;b�; � Œc;d�/ if a 2 Œc; d � and jd � aj � jb� aj;
M..� Œa;b�/0; � Œc;d�/ if a 2 Œc; d � and jd � aj> jb� aj;
M.� Œa;b�; .� Œc;d�/0/ if a … Œc; d � and jd � aj � jb� aj;
M..� Œa;b�/0; .� Œc;d�/0/ if a … Œc; d � and jd � aj> jb� aj:

Proof. Let N 2 S.� Œa;b�; � Œc;d�/. Each vector va;b
l
.k/ with 1� k � ba;b

l
can take

any value in the vector space Va\V c;d \V N �.l�1/Cjb�ajC1, and so the dimension
of S.�a;b; � Œc;d�/ is given by

B.� Œa;b�; � Œc;d�/D
X
l�0

b
a;b
l
� dim.Va \V c;d \V N �.l�1/Cjb�ajC1/:
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Counting the number of basis vectors of V c;d that lie in Va, we see there are four
possibilities for dim.Va \V c;d \V N �.l�1/Cjb�ajC1/:

lX
iD1

ib
c;d
i C l

X
i�l

b
c;d
i if a 2 Œc; d � and jd � aj � jb� aj;

l�1X
iD1

ib
c;d
i C .l � 1/

X
i�l

b
c;d
i if a 2 Œc; d � and jd � aj> jb� aj;

lX
iD1

ib
c;d
iC1C l

X
i�l

b
c;d
iC1 if a … Œc; d � and jd � aj � jb� aj;

l�1X
iD1

ib
c;d
iC1C .l � 1/

X
i�l

b
c;d
iC1 if a … Œc; d � and jd � aj> jb� aj:

Consider the first case a 2 Œc; d � and jd � aj � jb� aj; then

B.� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
�

� lX
iD1

ib
c;d
i C l

X
i�l

b
c;d
i

�

D

X
i�1

�X
l�i

b
a;b
l

�
�

�X
l�i

b
c;d
l

�
DM.� Œa;b�; � Œc;d�/:

The other three cases are identical. The relabeling of the partitions in these cases is
encoded by the operation � 7! � 0. �

Now we turn to computing the dimensions T .� Œa;b�; � Œc;d�/ of the spaces
F.� Œa;b�; � Œc;d�/. This will be more intricate.

Lemma A.10. Suppose a 2 I1 [ I3 and L 2 F.� Œa;b�; � Œc;d�/; then the map L
is uniquely determined by its value on the vectors va;b

l
.k/. Moreover the only

restriction on the image of such a vector is that it lie in a linear subspace:

Lv
a;b
l
.k/ 2

8̂̂̂<̂
ˆ̂:

Va \V
N �.l�1/Cjb�ajC1\V c;d if a 2 I1 and b … I2;

Va \V
N �.l�1/Cjb�aj\V c;d if a 2 I1 and b 2 I2;

Va�1\V
N �.l�1/Cjb�ajC2\V c;d if a 2 I3 and b … I2;

Va�1\V
N �.l�1/Cjb�ajC1\V c;d if a 2 I3 and b 2 I2:

Proof. To define the linear map L on the space V a;b , it suffices to define its value
at each of the basis vectors

fH rv
a;b
l
.k/ j 0� r �N � .l � 1/Cjb� aj; 1� k � b

a;b
l
g:
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However, for L 2 F.� Œa;b�; � Œc;d�/, we know that the pair .L;H.� Œa;b�// 2
R.f� Œa;b�g/ satisfies the relations coming from the superpotential:

rih
C

i� 1
2

D hC
i� 1
2

ri�1 for i 2 Œ1; N 0� 1�\ I1;

r0h
C

N� 1
2

D hC
N� 1

2

hC
N� 3

2

h�
N� 3

2

;

h�
N 0C 1

2

hC
N 0C 1

2

hC
N 0� 1

2

D hC
N 0� 1

2

rN 0�1;

h�
iC 3

2

hC
iC 3

2

hC
iC 1

2

D hC
iC 1

2

hC
i� 1
2

h�
i� 1
2

for i D ŒN 0C 1;N � 3�\ I3:

As in Lemma A.8, once the value of L is determined for va;b
l
.k/ it is uniquely

determined for all H rv
a;b
l
.k/ by the condition that the above relations be satisfied

for the pair .L;H.� Œa;b�/. To be precise, if a 2 I1 we have

L WH r.v
a;b
l
.k// 7!

8<:
H rL.v

a;b
l
.k// if aC r 2 I1;

0 if aC r 2 I2;
H r�1L.v

a;b
l
.k// if aC r 2 I3;

and if a 2 I3 then

L WH r.v
a;b
l
.k// 7!

8<:
H rC1L.v

a;b
l
.k// if aC r 2 I1;

0 if aC r 2 I2;
H rL.v

a;b
l
.k// if aC r 2 I3:

Since L 2 F.� Œa;b�; � Œc;d�/ by definition, its image must lie in the space V c;d ;
also, if a 2 I1 then L W Va ! Va and if a 2 I3 then L W Va ! Va�1. The only
further condition on the image of a vector va;b

l
.k/ is that its image be killed by a

high-enough power of H . It is given that HN �.l�1/Cjb�ajC1v
a;b
l
.k/D 0, so then

H t .Lv
a;b
l
.k//D 0, where the exponent t is read off from the defining relations on

L above. In the separate cases,

Lv
a;b
l
.k/ 2

8̂̂̂<̂
ˆ̂:

Va \V
N �.l�1/Cjb�ajC1\V c;d if a 2 I1 and b … I2;

Va \V
N �.l�1/Cjb�aj\V c;d if a 2 I1 and b 2 I2;

Va�1\V
N �.l�1/Cjb�ajC2\V c;d if a 2 I3 and b … I2;

Va�1\V
N �.l�1/Cjb�ajC1\V c;d if a 2 I3 and b 2 I2;

proving the result. �
We have a result similar to Lemma A.10 when a 2 I2.

Lemma A.11. Suppose a 2 I2 and L 2 F.� Œa;b�; � Œc;d�/; then the map L is
uniquely determined by its value on the vectors Hva;b

l
.k/. Moreover, the only

restriction on the image of such a vector is that it lie in a linear subspace:

L.Hv
a;b
l
.k// 2

�
Va \V

N �.l�1/Cjb�ajC1\V c;d if b … I2;
Va \V

N �.l�1/Cjb�aj\V c;d if b 2 I2:
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Proof. Again, we know that to define the linear map L on the space V a;b it suffices
to define its value at each of the basis vectors

fH rv
a;b
l
.k/ j 0� r �N � .l � 1/Cjb� aj; 1� k � b

a;b
l
g:

Since by definition if a 2 I2 then Lva;b
l
.k/ D 0, the map is already trivially

determined on these vectors and their image does not suffice to determine the map
in general. However if we consider the vectors Hva;b

l
.k/, then once the value of

L is determined for Hva;b
l
.k/ it is uniquely determined for all H rv

a;b
l
.k/ by the

condition that the relations (see Lemma A.10) be satisfied by the pair .L;H.� Œa;b�/.
To be precise, if a 2 I2 we have

L WH r.v
a;b
l
.k// 7!

8<:
H rL.Hv

a;b
l
.k// if aC r 2 I1;

0 if aC r 2 I2;
H r�1L.Hv

a;b
l
.k// if aC r 2 I3:

By definition, we know that the image of L lies in V c;d and also that for a 2 I2
we have L W VaC1! Va. As before the only remaining condition on the image of
v
a;b
l
.k/ is that it be killed by a high-enough power of H . From the definition of L

above we see that

L.Hv
a;b
l
.k// 2

�
Va \V

N �.l�1/Cjb�ajC1\V c;d if b … I2;
Va \V

N �.l�1/Cjb�aj\V c;d if b 2 I2;

proving the result. �

The following notation encapsulates the dimensions of all the vector spaces
encountered in the last two lemmas.

Definition A.12. We define integers

da;bWc;d .l/

D

8̂̂̂<̂
ˆ̂:

dim.Va \V N �.l�1/Cjb�ajC1\V c;d / if a 2 I1[ I2 and b … I2;
dim.Va \V N �.l�1/Cjb�aj\V c;d / if a 2 I1[ I2 and b 2 I2;

dim.Va�1\V N �.l�1/Cjb�ajC2\V c;d / if a 2 I3 and b … I2;
dim.Va�1\V N �.l�1/Cjb�ajC1\V c;d / if a 2 I3 and b 2 I2:

From Lemma A.10 and Lemma A.11 we deduce the dimension of the spaces
F.� Œa;b�; � Œc;d�/.

Corollary A.13. If a 2 I1[ I2 and b … I2 then

T .� Œa;b�; � Œc;d�/D

8̂̂̂<̂
ˆ̂:
M.� Œa;b�; � Œc;d�/ if a 2 Œc; d � and jd � aj � jb� aj;
M..� Œa;b�/0; � Œc;d�/ if a 2 Œc; d � and jd � aj> jb� aj;
M.� Œa;b�; .� Œc;d�/0/ if a … Œc; d � and jd � aj � jb� aj;
M..� Œa;b�/0; .� Œc;d�/0/ if a … Œc; d � and jd � aj> jb� aj:
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If a 2 I1[ I2 and b 2 I2 then

T .� Œa;b�;� Œc;d�/D

8̂̂̂<̂
ˆ̂:
M.� Œa;b�;� Œc;d�/ if a 2 Œc;d � and jd�aj � jb�aj�1;
M..� Œa;b�/0;� Œc;d�/ if a 2 Œc;d � and jd�aj> jb�aj�1;
M.� Œa;b�;.� Œc;d�/0/ if a … Œc;d � and jd�aj � jb�aj�1;
M..� Œa;b�/0;.� Œc;d�/0/ if a … Œc;d � and jd�aj> jb�aj�1:

If a 2 I3 and b … I2 then

T .� Œa;b�; � Œc;d�/

D

8̂̂̂<̂
ˆ̂:
M.� Œa;b�; � Œc;d�/ if a� 1 2 Œc; d � and jd � .a� 1/j � jb� ajC 1;
M..� Œa;b�/0; � Œc;d�/ if a� 1 2 Œc; d � and jd � .a� 1/j> jb� ajC 1;
M.� Œa;b�; .� Œc;d�/0/ if a� 1 … Œc; d � and jd � .a� 1/j � jb� ajC 1;
M..� Œa;b�/0; .� Œc;d�/0/ if a� 1 … Œc; d � and jd � .a� 1/j> jb� ajC 1:

If a 2 I3 and b 2 I2 then

T .� Œa;b�; � Œc;d�/

D

8̂̂̂<̂
ˆ̂:
M.� Œa;b�; � Œc;d�/ if a� 1 2 Œc; d � and jd � .a� 1/j � jb� aj;
M..� Œa;b�/0; � Œc;d�/ if a� 1 2 Œc; d � and jd � .a� 1/j> jb� aj;
M.� Œa;b�; .� Œc;d�/0/ if a� 1 … Œc; d � and jd � .a� 1/j � jb� aj;
M..� Œa;b�/0; .� Œc;d�/0/ if a� 1 … Œc; d � and jd � .a� 1/j> jb� aj:

Proof. We know that if a2 I1[I3 (resp. a2 I2) then the map L2F.� Œa;b�; � Œc;d�/
is determined by its value at the vectors va;b

l
.k/ (resp. Hva;b

l
.k/) for 1� k � ba;b

l
.

In the notation of the previous definition, such a vector takes values in a space of di-
mension da;bIc;d .l/. So in all cases the total dimension of the spaceF.� Œa;b�;� Œc;d�/
is equal to

T .� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
� da;bIc;d .l/:

In the above definition of da;bIc;d .l/ there are four possible forms, depending on
the value of a and b. Lets consider the first case, where a 2 I1 [ I2 and b … I2.
Then we have that

da;bIc;d .l/D dim.Va \V N �.l�1/Cjb�ajC1\V c;d /:
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Counting the number of basis vectors of V c;d that lie in Va, we see there are four
possibilities for dim.Va \V c;d \V N �.l�1/Cjb�ajC1/:

lX
iD1

ib
c;d
i C l

X
i�l

b
c;d
i if a 2 Œc; d � and jd � aj � jb� aj;

l�1X
iD1

ib
c;d
i C .l � 1/

X
i�l

b
c;d
i if a 2 Œc; d � and jd � aj> jb� aj;

lX
iD1

ib
c;d
iC1C l

X
i�l

b
c;d
iC1 if a … Œc; d � and jd � aj � jb� aj;

l�1X
iD1

ib
c;d
iC1C .l � 1/

X
i�l

b
c;d
iC1 if a … Œc; d � and jd � aj> jb� aj:

In the first case a 2 Œc; d � and jd � aj � jb� aj, we have

T .� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
�

� lX
iD1

ib
c;d
i C l

X
i�l

b
c;d
i

�

D

X
i�1

�X
l�i

b
a;b
l

�
�

�X
l�i

b
c;d
l

�
DM.� Œa;b�; � Œc;d�/:

In the second case a 2 Œc; d � and jd � aj> jb� aj, we have

T .� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
�

� l�1X
iD1

ib
c;d
i C .l � 1/

X
i�l

b
c;d
i

�

D

X
i�1

�X
l�i

b
a;b
lC1

�
�

�X
l�i

b
c;d
l

�
DM..� Œa;b�/0; � Œc;d�/:

In the third case a … Œc; d � and jd � aj � jb� aj, we have

T .� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
�

� lX
iD1

ib
c;d
iC1C l

X
i�l

b
c;d
iC1

�

D

X
i�1

�X
l�i

b
a;b
l

�
�

�X
l�i

b
c;d
lC1

�
DM.� Œa;b�; .� Œc;d�/0/:
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Finally, in the fourth case a … Œc; d � and jd � aj> jb� aj, we have

T .� Œa;b�; � Œc;d�/D
X
l�1

b
a;b
l
�

� l�1X
iD1

ib
c;d
iC1C .l � 1/

X
i�l

b
c;d
iC1

�

D

X
i�1

�X
l�i

b
a;b
lC1

�
�

�X
l�i

b
c;d
lC1

�
DM..� Œa;b�/0; .� Œc;d�/0/:

This completes the situation when a 2 I1[ I2 and b … I2. In the other situations,
a 2 I1 [ I2 and b 2 I2, or a 2 I3 and b … I2, or a 2 I3 and b 2 I2. All of these
cases can be dealt with in a similar manner. �

Now we have computed all the dimensions T .� Œa;b�;� Œc;d�/ andB.� Œa;b�;� Œc;d�/.
The next lemma combines Corollaries A.9 and A.13 to compute their difference.
We see that in most cases there is an exact cancellation:

Lemma A.14. The equality

T .� Œa;b�; � Œc;d�/D B.� Œa;b�; � Œc;d�/

holds, except in the following cases, where we give the possible values of the
difference T .� Œa;b�; � Œc;d�/�B.� Œa;b�; � Œc;d�/:

Case 1: a 2 I1[ I2, b D d 2 I2:

M..� Œa;b�/0; � Œc;b�/�M.� Œa;b�; � Œc;b�/ if a 2 Œc; b�;

M..� Œa;b�/0; .� Œc;b�/0/�M.� Œa;b�; .� Œc;b�/0/ if a … Œc; b�:

Case 2: a 2 I3, b … I2, d D a� 1 2 I2:

M.� Œa;b�; � Œa;a�1�/�M..� Œa;b�/0; � Œa;a�1�/ if aD c;

M.� Œa;b�; � Œc;a�1�/�M..� Œa;b�/0; .� Œc;a�1�/0/ if a 6D c:

Case 3: a 2 I3, b 62 I2, aD c, d 6D a� 1:

M.� Œa;b�; .� Œa;d�/0/�M.� Œa;b�; � Œa;d�/ if jd � aj � jb� aj;

M..� Œa;b�/0; .� Œa;d�/0/�M..� Œa;b�/0; � Œa;d�/ if jd � aj> jb� aj:

Case 4: a 2 I3, b 2 I2, d D a� 1:

M.� Œa;b�; � Œa;a�1�/�M..� Œa;b�/0; � Œa;a�1�/ if aD c and b 6D a� 1;

M.� Œa;a�1�; � Œc;a�1�/�M.� Œa;a�1�; .� Œc;a�1�/0/ if a 6D c and b D a� 1;

M.� Œa;b�; � Œc;a�1�/�M..� Œa;b�/0; .� Œc;a�1�/0/ if a 6D c and b 6D a� 1:
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Case 5: a 2 I3, b 2 I2, a� 1 2 Œc; d �, d 6D a� 1, b D d :

M..� Œa;b�/0; � Œc;b�/�M.� Œa;b�; � Œc;b�/:

Case 6: a 2 I3, b 2 I2, a� 1 … Œc; d �, aD c, jd � aj< jb� aj:

M.� Œa;b�; .� Œa;d�/0/�M.� Œa;b�; � Œa;d�/:

Case 7: a 2 I3, b 2 I2, a� 1 62 Œc; d �:

M..� Œa;b�/0; .� Œa;b�/0/�M.� Œa;b�; � Œa;b�/ if aD c and b D d;

M..� Œa;b�/0; .� Œa;d�/0/�M..� Œa;b�/0; � Œa;d�/ if aD c and jd � aj> jb� aj;

M..� Œa;b�/0; .� Œc;b�/0/�M.� Œa;b�; .� Œc;b�/0/ if a 6D c and b D d:

Proof. Compare Corollaries A.9 and A.13. �

Our aim throughout this appendix has been to prove Proposition 4.18 and de-
duce that the difference

P
0�a;b;c;d�N�1 T .�

Œa;b�; � Œc;d�/�B.� Œa;b�; � Œc;d�/ is
equal to

�
1

2

X
i2I2

�X
b¤i

l.� ŒiC1;b�/�
X
c¤iC1

l.� Œc;i�/

�2
�
1

2

X
a2I3;b…I2

X
i�1

.b
a;b
i /2�

1

2

X
a…I3;b2I2

X
i�1

.b
a;b
i /2:

So all that remains is to check this sum agrees with the values we computed. First
we will transform it into a expression in terms of the M.� Œa;b�; � Œc;d�/. To do this
we need the simple identities

M.� Œa;b�; � Œc;d�/�M..� Œa;b�/0; .� Œc;d�/0/

D

X
l�1

�X
i�l

b
a;b
i �

X
i�l

b
c;d
i �

X
i�l

b
a;b
iC1 �

X
i�l

b
c;d
iC1

�
D

X
i�1

b
a;b
i �

X
i�1

b
c;d
i

D l.� Œa;b�/ � l.� Œc;d�/
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and

M.� Œa;b�; � Œa;b�/�M..� Œa;b�/0; � Œa;b�/

D

X
l�1

�X
i�l

b
a;b
i �

X
i�l

b
a;b
i �

X
i�l

b
a;b
iC1 �

X
i�l

b
a;b
i

�
D

X
l�1

b
a;b
l
�

X
i�l

b
c;d
i

D
1

2
l.� Œa;b�/2C

1

2

X
l�1

.b
a;b
l
/2:

Using these two identities and some simple algebraic manipulations, we can rewrite
Proposition 4.18 as the statement that the differenceX

0�a;b;c;d�N�1

T .� Œa;b�; � Œc;d�/�B.� Œa;b�; � Œc;d�/

is equal toX
i2I2

X
b 6Di
c 6DiC1

M.� ŒiC1;b�; � Œc;i�/�M..� ŒiC1;b�/0; .� Œc;i�/0/

C

X
i2I2

X
b<d
b;d 6Di

M..� ŒiC1;b�/0; .� ŒiC1;d�/0/�M.� ŒiC1;b�; � ŒiC1;d�/

C

X
i2I2

X
a<c

a;c 6DiC1

M..� Œa;i�/0; .� Œc;i�/0/�M.� Œa;i�; � Œc;i�/

C

X
a2I3;b2I2
b 6Da�1

M..� Œa;b�/0; .� Œa;b�/0/�M.� Œa;b�; � Œa;b�/

C

X
Œa;b�2S

M..� Œa;b�/0; � Œa;b�/�M.� Œa;b�; � Œa;b�/:

By a careful systematic approach, one shows that all these terms are exactly ac-
counted for in Lemma A.14.
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Étale homotopy equivalence of
rational points on algebraic varieties

Ambrus Pál

It is possible to talk about the étale homotopy equivalence of rational points
on algebraic varieties by using a relative version of the étale homotopy type.
We show that over p-adic fields rational points are homotopy equivalent in this
sense if and only if they are étale-Brauer equivalent. We also show that over the
real field rational points on projective varieties are étale homotopy equivalent
if and only if they are in the same connected component. We also study this
equivalence relation over number fields and prove that in this case it is finer than
the other two equivalence relations for certain generalised Châtelet surfaces.
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of X to L. Let K be a field, and let X be a variety defined over K. Harpaz and
Schlank [2013] defined a relative version Et=K.X/ of the étale homotopy type of X
by looking at the action of the absolute Galois group Gal.KjK/ of K on the étale
hypercoverings of XK . With the aid of the action of Gal.KjK/ on Et=K.X/, they
define a pro-object X.hK/ in the category of sets, which they call the homotopy
fixed point set of X , that serves as a certain homotopical approximation of the set
X.K/ of rational points. By slight abuse of notation we will use the same symbol
to denote the projective limit of X.hK/, which we will consider as a topological
space equipped with its pro-discrete topology. It is possible to define a natural map

�X=K WX.K/!X.hK/;

which can be thought of as a homotopy-theoretic version of the section map in
Grothendieck’s anabelian geometry, which it also happens to refine. We say that
x; y 2X.K/ are H -equivalent if �X=K.x/D �X=K.y/.

The aim of this paper is to describe the H -equivalence relation on X.K/ as
explicitly as possible for many K and X . Let us first turn to the case when K is a
finite extension of Qp . In this case, the map �X=K is not surjective in general; every
abelian variety of positive dimension is a counterexample (see Proposition 9.7).
However it is possible to describe the equivalence relation it induces on X.K/ in
rather concrete terms. For any smooth variety X over any field K of characteris-
tic zero, let Br.X/DH 2.X;Gm/ denote the cohomological Brauer group ofX . We
say that x; y 2X.K/ are Brauer equivalent if x�.b/D y�.b/ for all b 2Br.X/. We
say that x; y 2X.K/ are étale-Brauer equivalent if, for every finite, étale morphism
Y !X of varieties over K and each Qx 2 Y.K/ mapping to x, there is a Qy 2 Y.K/
which maps to y and which is Brauer equivalent to Qx. Then we have the following:

Theorem 1.1. Let K be a finite extension of Qp, and let X be a smooth quasi-
projective variety over K. Then étale-Brauer equivalence and H -equivalence
coincide on X.K/.

It is important to note that this claim is not true for more general fields; Châtelet
surfaces over number fields provide counterexamples (see the remark following
Theorem 14.8 below). The main ingredients of the theorem above, besides obstruc-
tion theory, are duality for the Galois cohomology of K and Gabber’s theorem on
the existence of Azumaya algebras. We also provide examples to show that the
theorem cannot be strengthened by substituting Brauer equivalence for étale-Brauer
equivalence; see Theorem 9.5 below. We can also characterise H -equivalence for
the field of real numbers:

Theorem 1.2. LetK be the field R of real numbers, and let X be a smooth affine or
projective variety overK. Then twoK-rational points of X areH -equivalent if and
only if they are in the same connected component of the topological space X.K/.
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The main tools of the proof of this result are a celebrated theorem of Mahé (see
[Houdebine and Mahé 1982; Mahé 1982]), the theory of Stiefel–Whitney classes
for quadratic bundles (see [Esnault et al. 1993; Milnor 1970]), and an equivariant
version of a basic comparison result of Artin and Mazur [1969]. The reader should
note that Quick [2011] developed a general theory of homotopy fixed point spaces
for simplicial pro-sets equipped with a continuous action of a profinite group,
which can be applied to Friedlander’s étale topological type functor [1982]. His
construction offers an alternative route for the foundations of our investigations.

Contents. In the next section, we review the relative étale homotopy type and
homotopy fixed points of varieties as defined by Harpaz and Schlank and their
relation to the Artin–Mazur construction. In the third section, we introduce a pointed
version of the relative étale homotopy type and compare it with the previously
defined constructions. In the fourth section, we study the relationship between the
étale homotopy groups of finite étale coverings. In the following section, we show
that the étale homotopy types of abelian varieties and smooth curves which are not
projective of genus zero are Eilenberg–MacLane spaces over algebraically closed
fields of characteristic zero. The fact presented in these two sections might be
well-known to the experts, but we could not find a convenient reference. In the sixth
section, we prove two useful lemmas about lifting a pair of rational points on certain
principal bundles. Then we prove the fundamental theorem of obstruction theory for
H -equivalence in the seventh section. We study the analogue of the Manin pairing
for homotopy fixed points in the eighth section. In the ninth section, we prove that
étale-Brauer equivalence is strictly finer than Brauer equivalence on X.K/ when K
is a p-adic field and X is a bielliptic surface over K, using a rather standard set of
tools. Theorem 1.1 is proved in the tenth section, while in the eleventh we prove
Theorem 1.2. In the twelfth section, we introduce a natural homotopy version of
Grothendieck’s section and the Shafarevich–Tate conjectures over number fields by
substituting the arithmetic fundamental group with the relative version of the étale
homotopy type, which we call the homotopy section principle (HSP), and prove
that it is equivalent to its well-established analogues in the special case of curves
and abelian varieties. We provide further examples of varieties which satisfy HSP
(see Theorems 13.3, 13.7 and 14.8) in the final two sections, including generalised
Châtelet surfaces.

2. Basic definitions

Definition 2.1. Let � be a profinite group. By a �-set we mean a set with a �-action
such that each element has an open stabiliser. Let �-Sets denote the category whose
objects are �-sets and whose morphisms are �-equivariant maps between them. By
a simplicial �-set we mean a simplicial object in �-Sets. These form a category
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�-SSets in the usual way. Note that, for every simplicial�-set S and every n2N, the
n-skeleton skn.S/, the n-coskeleton coskn.S/ and the Kan replacement Ex1.S/ are
all naturally equipped with a �-action. Since with respect to this action the stabiliser
of each simplex of skn.S/, coskn.S/ and Ex1.S/ is open, these constructions
furnish three functors: the n-skeleton skn W �-SSets! �-SSets, the n-coskeleton
coskn W �-SSets! �-SSets, and the Kan replacement Ex1 W �-SSets! �-SSets
functors. Moreover, let Pn W�-SSets!�-SSets denote the corresponding analogue
of the simplicial version of the n-th Postnikov piece given by the rule

Pn.S/D cosknC1.sknC1.Ex1 S//

for every simplicial �-set S .

Notation 2.2. For every category C let Pro -C be the category of pro-objects of C.
For every pair of categories C;D let C �D denote their direct product, and for
every category C let Cop denote its opposite category. Clearly there is a natural
equivalence between .C�D/op and Cop �Dop; for the sake of simplicity we will
not distinguish between these categories. We will consider every directed set, and
in particular every ordered set, to be a category in the usual way.

Definition 2.3. Goerss [1995] constructs a model category structure on �-SSets,
called the strict model structure. The corresponding homotopy category will be
denoted by Ho.�-SSets/ and will be called the homotopy category of simplicial
�-sets. Similarly to the construction in Chapter 4 of [Artin and Mazur 1969], we
may define a Postnikov tower functor

. � /\ W Pro-�-SSets! Pro-�-SSets

as follows: if I is a small filtering index category and … W I op ! �-SSets is a
pro-object of �-SSets, then the functor …\ W I op �Nop! �-SSets is given by

…\.˛; n/D Pn.….˛// for all ˛ 2 ob.I / and n 2 N:

We will denote by the same symbol the variant of the Postnikov tower functor in
the category Pro-Ho.�-SSets/, by the usual abuse of notation.

Definition 2.4. Next we recall the definition of the relative étale homotopy type,
following [Harpaz and Schlank 2013]. Let K be a field, let �K D Gal.KjK/
denote the absolute Galois group of K and let Sch=K denote the category of locally
Noetherian schemes over Spec.K/. Let

�0=K W Sch=K ! �K-Sets

denote the functor which takes the K-scheme X to the �K-set of connected com-
ponents of XK . By applying this functor level-wise and composing it with the
localisation functor �K-SSets!Ho.�K-SSets/, we get a functor from the category
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of étale hypercoverings of the K-scheme X to the homotopy category of simplicial
�K-sets. This construction furnishes, similarly to what is done in Chapter 9 of
[Artin and Mazur 1969], another functor

Et=K W Sch=K ! Pro-Ho.�K-SSets/;

which we will call the relative étale homotopy type of X over K. Note that by
functoriality we get a natural map

�X=K WX.K/! ŒEt=K.Spec.K//;Et=K.X/�! ŒEt=K.Spec.K//\;Et=K.X/
\�;

where the second map is furnished by applying the Postnikov tower functor. We
will call the pro-set ŒEt=K.Spec.K//\;Et=K.X/\� the homotopy fixed points of X
and we will denote it by the symbol X.hK/.

Our next aim is to describe the target of this map more explicitly (and to justify
the terminology which we have just introduced).

Definition 2.5. Let Sets and SSets denote the category of sets and the category of
simplicial sets, respectively. Let � be as above. The category �-SSets is equipped
with a natural concept of homotopy fixed points (see [Goerss 1995]); we will
denote this functor �-SSets! SSets by … 7!…h� . For every small filtering index
category I and pro-object … W I op ! Ho.�-SSets/, we define the �-homotopy
fixed point set of …, denoted by ….E�/, to be

….E�/D lim
˛2ob.I /

�0.….˛/
h�/:

We will frequently consider the limit ….E�/ as a topological space via its natural
pro-discrete topology. This structure is enough to reconstruct the underlying pro-set.
By a formula of Harpaz and Schlank there is a natural identification

Œ.E�/\;…\�D….E�/;

where E� is an analogue of the total space of the universal �-bundle in this setting
(see [Harpaz and Schlank 2013, Definition 2.3]). They also show that when �D�K
is the absolute Galois group of a field K then Et=K.Spec.K//DE�K , hence we
have X.hK/D Et=K.X/.E�K/ for every K-scheme X , justifying our terminology.

Notation 2.6. Let Ho.SSets/ denote the homotopy category of simplicial sets, let
Sch denote the category of locally Noetherian schemes, and let

Et W Sch! Pro-Ho.SSets/
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denote the Artin–Mazur étale homotopy type functor. For every X as above and
every n 2 N let Etn.X/ denote the n-th Postnikov piece Pn.Et.X// and let Et.X/\

denote the Postnikov tower of Et.X/. For every field K and every scheme X
over K let X denote the base change XK . Moreover, for every such K, every
X 2 ob.Sch=K/ and every n 2 N, let Etn

=K
.X/ denote the n-th Postnikov piece by

Pn.Et=K.X//.

Lemma 2.7. Let K be a field and X be a variety over K. Then there are natural
isomorphisms

f n.X/ W Etn.X/! Etn=K.X/ and f \.X/ W Et.X/\! Et=K.X/
\

in the category Pro-Ho.SSets/.

Proof. The first half of the claim is Proposition 2.14 of [Harpaz and Schlank 2013].
The second half is an immediate consequence of the first half and the compatibility
of the maps f n.X/. �

Notation 2.8. For every X 2 ob.Ho.SSets// let X^ 2 ob.Pro-Ho.SSets// denote
its profinite completion. The basic result about the homotopy type of complex
algebraic varieties is the following classical theorem of Artin and Mazur:

Theorem 2.9. LetX be a geometrically unibranch algebraic variety defined over C.
Then there is a canonical weak homotopy equivalence

�X W Et.X/\! .X.C/^/\

in Pro-Ho.SSets/.

Proof. This is [Artin and Mazur 1969, Corollary 12.10, p. 143]. �

Proposition 2.10. Assume that K is algebraically closed. Then �X=K is surjective.
Two points x; y 2 X.K/ are H -equivalent if and only if they lie in the same
connected component of X with respect to the Zariski topology.

Proof. WhenK is algebraically closed its absolute Galois group is trivial. Therefore
Ho.�K-SSets/ is the homotopy category of simplicial sets and Et=K.X/ is just the
usual Artin–Mazur étale homotopy type of X . Because K is algebraically closed,
Et=K.Spec.K// is contractible. Therefore there is a natural bijection

X.hK/Š Œ� ;Et=K.X/
\�Š �0.Et=K.X/

\/Š �0.X/;

where the third identification is the consequence of a fundamental comparison
theorem of Artin and Mazur [1969, Corollary 10.8, p. 122]. The claim now follows
from the naturality of �X=K . �
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3. The pointed relative étale homotopy type

Definition 3.1. Let � be as above. By a pointed simplicial �-set we mean a
simplicial �-set S� with a point p 2 S0 fixed by � . These form a category,
�-SSets�, in the usual way. Note that, for every pointed simplicial �-set S and
every n2N, the n-skeleton skn.S/, the n-coskeleton coskn.S/, the Kan replacement
Ex1.S/ and n-th Postnikov piece Pn.S/ are all naturally equipped with a point
fixed by � , and we will denote the corresponding four functors, the n-skeleton
skn W �-SSets� ! �-SSets�, the n-coskeleton coskn W �-SSets� ! �-SSets�,
the Kan replacement Ex1 W �-SSets�! �-SSets� and the n-th Postnikov piece
Pn W �-SSets�! �-SSets� by the same symbols by a slight abuse of notation.

Definition 3.2. The homotopy category of �-SSets� with respect to the pointed
version of weak equivalences of Goerss’ strict model structure, called the homotopy
category of pointed simplicial �-sets, will be denoted by Ho.�-SSets�/. Similarly
to the construction recalled in Definition 2.3, we may define a Postnikov tower
functor

. � /\ W Pro-�-SSets�! Pro-�-SSets�;

and we will denote by the same symbol the corresponding Postnikov tower functor
in the category Pro-Ho.�-SSets�/ by the usual abuse of notation. This is of course
justified as the formations of these invariants commute with the forgetful functor
Pro-Ho.�-SSets�/! Pro-Ho.�-SSets/.

Definition 3.3. Since �-SSets is a model category, it has all colimits, in particular
pushouts and equalisers. If Y� is a simplicial �-set and X� � Y� is a subsimplicial
�-set, then let Y�=X� denote the simplicial �-set which is the pushout of the
inclusion map X�!Y�. We call Y�=X� the contraction of Y� by X�. If X�; Y� are
simplicial �-sets and f� WX�! Y�, g� WX�! Y� are maps of simplicial �-sets,
then let Y�.f� D g�/ denote the simplicial �-set which is the coequaliser of f�
and g�.

Definition 3.4. Note that, for every pair of simplicial �-setsX� and Y�, the product
X� �Y� equipped with the natural (diagonal) �-action is also a simplicial �-set.
Similarly the coproduct (disjoint union) X� tY� of simplicial �-sets X� and Y� is
also a simplicial �-set equipped with the tautological �-action. Let I denote the
1-simplex�1D Œ0; 1� with the trivial �-action; this choice makes it into a simplicial
�-set. For every morphism f WX�! Y� of simplicial �-sets the mapping cylinder
Cyl.f / is the coequaliser of the two maps

f 0 WX ! Y� tX� � I and p WX ! Y� tX� � I;
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where f 0 is the composition of f and the tautological inclusion Y� � Y� tX� � I
and p is the composition of the map identifying X� with X� � f1g �X� � I and
the tautological inclusion X� � I � Y� tX� � I . We define the mapping cone
Cone.f / of an f WX�! Y� as above as the contraction of Cyl.f / by the image
of the map

q WX�! Cyl.f /;

where q is the composition of the map identifying X� with X� � f0g � X� � I
with the tautological inclusion X� � I � Y� tX� � I composed with the natural
surjection Y� tX� � I 7! Cyl.f /. Note that Cone.f / is canonically a pointed
simplicial �-set, where the base point is the image of q.X0/� Cyl.f /0 under the
contraction map Cyl.f /! Cone.f /.

Definition 3.5. By a pointed K-scheme .X; x/ we will mean a locally Noetherian
scheme X over K with a K-valued point x W Spec.K/! X on X . These form
the objects of a category Sch=K�, where a morphism f from an object .X; x/ to
another object .Y; y/ is a map f WX ! Y of schemes over K such that f .x/D y.
Now let .X; x/ be a pointed K-scheme and let H� be an étale hypercovering of X .
Then the pullback x�.H�/ is an étale hypercovering of Spec.K/, and the map x
induces a morphism x�.H�/ W �0=K.x

�.H�//! �0=K.H�/ of simplicial �-sets.
Let �0=K.H�; x/ denote the mapping cone of the composition of this map x�.H�/
and the canonical inclusion �0=K.H�/�Ex1.�0=K.H�//; it is a pointed simplicial
�-set. A map f W H� ! J� between étale hypercoverings of X induces a map
�0=K.f; x/ W �0=K.H�; x/! �0=K.J�; x/ between pointed simplicial �-sets, and
a homotopy between two maps f W H� ! J�; g W H� ! J� induces a pointed
�-equivariant homotopy between �0=K.f; x/ and �0=K.g; x/. Therefore we may
apply Corollary 8.13(i) of [Artin and Mazur 1969, p. 105] to conclude that the functor

H� 7! �0=K.H�; x/

above induces an object Et=K.X; x/ of Pro-Ho.�-SSets�/. We will call the latter
the pointed relative étale homotopy type of .X; x/.

Notation 3.6. Let .X; x/ be a pointed K-scheme. For every étale hypercovering
H� of X let

i.H�; x/ W �0=K.H�/! �0=K.H�; x/

be the composition of the natural inclusion map

�0=K.H�/! Cone.x�.H�//

and the map Cone.x�.H�//! �0=K.H�; x/ induced by the functoriality of map-
ping cones. This is a natural transformation between two functors from the category
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of étale hypercoverings over X into �-SSets, and hence it induces a map

i.X; x/ W Et=K.X; x/! Et=K.X/

of pro-objects of the homotopy category Ho.�-SSets/, where by slight abuse of
notation we let Et=K.X; x/ also denote the image of the pointed relative étale
homotopy type of .X; x/ with respect to the forgetful functor

Pro-Ho.�-SSets�/! Pro-Ho.�-SSets/:

The map i.X; x/ is obviously natural.

Proposition 3.7. The map i.X; x/ W Et=K.X; x/! Et=K.X/ induces a bijection on
homotopy fixed points.

Proof. Note that the functor �0=K induces an equivalence between the category
of étale coverings over Spec.K/ and �-Sets, so �0=K.x�.H�// is a contractible
simplicial �-set. Therefore i.H�; x/ is a weak equivalence for every étale hyper-
covering H� of X with respect to Goerss’ weak model structure (see Theorem A on
p. 189 and Definition 1.11 on p. 194 in [Goerss 1995]), and hence induces a bijection
�0.�0=K.H�/

h�/!�0.Cone.x�.H�//h�/. So the same holds for i.X; x/, too. �

Definition 3.8. Let Sch� be the category of pointed locally Noetherian schemes,
and, as usual, denote the objects of Sch� by pairs .X; x/, where X is a locally
Noetherian scheme and x is a geometric point of X . By slight abuse of notation let

Et W Sch�! Pro-Ho.SSets�/

denote the pointed version of the Artin–Mazur étale homotopy type functor. For
every object .X; x/ of Sch� and every n� 1, let �n.X; x/ denote the n-th homotopy
group of Et.X; x/ when X is connected.

Notation 3.9. For every pointed scheme .X; x/ and every n 2 N, let Etn.X; x/
denote the n-th Postnikov piecePn.Et.X; x// and let Et.X; x/\ denote the Postnikov
tower of Et.X; x/. Similarly, for every field K, every pointed K-scheme .X; x/ and
every n2N, let Etn

=K
.X; x/ denote the n-th Postnikov piece Pn.Et=K.X; x// and let

Et=K.X; x/\ denote the Postnikov tower of Et=K.X; x/. Since we fixed a separable
closure K of K, we may associate to every K-valued point x W Spec.K/!X of a
K-scheme X a K-valued point x W Spec.K/!X which is the composition of the
map Spec.K/! Spec.K/ induced by the inclusion K �K and x.

Similarly to above, by slight abuse of notation we let Et=K.X; x/ and Etn
=K
.X; x/

also denote respectively the image of the pointed relative étale homotopy type of
.X; x/ and of the n-th truncation of the latter with respect to the forgetful functor

Pro-Ho.�-SSets�/! Pro-Ho.SSets�/:
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Proposition 3.10. Let K be a field and .X; x/ a pointed K-scheme such that X is
a variety over K. Then there are natural isomorphisms

f n.X; x/ W Etn.X; x/! Etn=K.X; x/ and f \.X; x/ W Et.X; x/\! Et=K.X; x/
\

in the category Pro-Ho.SSets�/.

Proof. Since the second half is an immediate consequence of the first half and the
compatibility of the maps f n.X; x/, it will be enough to prove the former. Let
�0 denote the 0-simplex, as usual. Let .H�; h/ be a pointed étale hypercovering
of .X; x/. By definition h is a map �0! �0=K.x

�.H�// of simplicial sets. For
every .H�; h/ as above let �0=K.H�; h; x/ be the contraction of �0=K.H�; x/ by
the image of the map

ch W�
1
Š�0 ��1! �0=K.H�; x/

of simplicial sets, where ch is the composition �ı�ı.h�idI /, where � is the inclusion

�0=K.x
�.H�//��

1
� Ex1.�0=K.H�//t�0=K.x

�.H�//��
1

and � is the canonical surjection

Ex1.�0=K.H�//t�0=K.x
�.H�//��

1
! �0=K.H�; x/:

Let
a.H�; h/ W �0=K.H�; x/! �0=K.H�; h; x/

be the contraction map. We will consider �0=K.H�; h; x/ a pointed simplicial
set, where its distinguished point b.h/ 2 �0=K.H�; h; x/0 is the image of the base
point of the pointed simplicial �-set under a.H�; h/. Note that this map is a weak
equivalence in Pro�Ho.SSets�/, since we contracted a contractible subsimplicial
set. Therefore by [Artin and Mazur 1969, Corollary 8.13(i), p. 105] the functor

.H�; h/ 7! .�0=K.H�; h; x/; b.h//

induces an object Et0.X; x/ of Pro-Ho.SSets�/ which is isomorphic to Et=K.X; x/
in this category. For every .H�; h/ as above let �0=K.h/ 2 �0=K.H0/ be the point
corresponding to h, and let

b.H�; h/ W �0=K.H�/! �0=K.H�; x/

be the map of pointed simplicial sets which is the composition of the natural
inclusion map

�0=K.H�/� �0=K.H�/t�0=K.x
�.H�//��

1

with the natural surjection

�0=K.H�/t�0=K.x
�.H�//��

1
! Cone.x�/
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composed with the map Cone.x�/! �0=K.H�; x/ induced by the functoriality of
mapping cones. Let c.H�; h/ be the composition of b.H�; h/ with a.H�; h/; then
this map is a morphism

c.H�; h/ W .�0=K.H�/; �0=K.h//! .�0=K.H�; h; x/; b.h//

of pointed simplicial sets. Since �0=K.x�.H�// is a contractible simplicial �-set,
the map c.H�; h/ is a weak equivalence for every pointed étale hypercovering
.H�; h/ of X . Therefore by [Artin and Mazur 1969, Corollary 8.13(i), p. 105]
the functor

.H�; h/ 7! .�0=K.H�/; �0=K.h//

induces an object Et00.X; x/ of Pro-Ho.SSets�/ which is isomorphic to Et0.X; x/,
and hence to Et=K.X; x/ in this category. Therefore it will be sufficient to prove
that there are natural isomorphisms

gn.X; x/ W Etn.X; x/! Pn.Et00.X; x//

in the category Pro-Ho.SSets�/ which are compatible with each other and with
truncation.

Note that the inclusion of the indexing category of Et00.X; x/ in the indexing
category of Et.X; x/ furnishes a natural map

g.X; x/ W Et.X; x/! Et00.X; x/:

In order to prove that g.X; x/ is an isomorphism after taking n-th truncations, we can
argue the same way as in the proof of [Harpaz and Schlank 2013, Proposition 2.14].

�

4. Homotopy groups of finite étale covers

Recall that for every object X of Sch with a geometric point x and every n 2 N

the symbol �n.X; x/ denotes the homotopy group �n.Et.X/; x/. In this section
assume that K is an algebraically closed field.

Proposition 4.1. Let f W .X; x/! .Y; y/ be a finite étale map of pointed smooth
connected quasiprojective varieties over K. Then the induced map

�n.f / W �n.X; x/! �n.Y; y/

is an isomorphism for every n� 2.

Proof. Because �1.Y; y/ is topologically finitely generated, its open normal sub-
groups are cofinal, and hence there is a finite étale map g W .Z; z/! .X; x/ of
pointed smooth connected quasiprojective varieties over K such that the image
of �1.f ıg/ W �1.Z; z/! �1.Y; y/ is an open normal subgroup. In this case the
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image of �1.f / W �1.Z; z/! �1.X; x/ is an open normal subgroup, too. It will be
enough to show that the maps �n.f ı g/ and �n.f / are isomorphisms for every
n � 2. Since the composition f ı g is also a finite étale map, we’ve reduced the
claim to the special case when the image of �1.f / is an open normal subgroup.

In this case f is a finite Galois covering; let G denote the covering group and
let ˛ WG! Aut.X/ be the action corresponding to the deck transformations. Let
.H�; h/ be a pointed hypercovering of Y with respect to the étale site of Y pointed
with y. Let C� denote the étale Čech hypercovering

X
..
X �Y X

oo oo X �Y X �Y X
oo oooo � � �

oooooooo

generated by the cover X ! Y , and equip it with a point c with respect to the
same pointed site. Let .I�; i/ be the fibre product of .H�; h/ and .C�; c/ over Y ;
this pointed simplicial object is also a hypercovering. Let .J�; j / be the pullback
f �.I�; i/ of the pointed hypercovering .I�; i/ onto the étale site of X pointed with
x with respect to f and let f� W .�0.J�/; �0.j //! .�0.I�/; �0.i// be the map
induced by f between the pointed simplicial sets of connected components of J�
and I�.

The action ˛ induces an action of G on J�, and hence an action of G on �0.J�/.
If we equip �0.I�/ with the trivial action then f� is G-equivariant. Because f is a
finite étale cover the map f� is surjective. Moreover, for every n the étale cover
In! Y factors through f WX ! Y , and hence the action of G on the connected
components of the base change Jn ! X of this map to X is free. We get that
f� W .�0.J�/; �0.j //! .�0.I�/; �0.i// is a G-cover and hence the induced maps

�n.f�/ W �n.�0.J�/; �0.j //! �n.�0.I�/; �0.i//

are isomorphisms for all n� 2.
Let .L�; l/ be a pointed hypercovering of X with respect to the étale site of

X pointed with x. By composing the structure maps with f we get a pointed
hypercovering of Y with respect to the étale site of Y pointed with y, which we will
denote by .H�; h/ by slight abuse of notation. By applying the same construction
to .H�; h/ as above we get a pointed hypercovering .J�; j / of the étale site of X
pointed with x which dominates .L�; l/. Therefore pointed hypercovers of X of
the form as .J�; j / above are cofinal, so the injectivity of the maps �n.f / for all
n� 2 follows.

Let 
 be an element of �n.Y; y/ (where n� 2). For every pointed hypercovering
.L�; l/ of X with respect to the étale site of X pointed with x we will construct an
element 
 0

.L�;l/
2�n.�0.L�/; �0.l// as follows. Let .H�; h/, .I�; i/ and .J�; j / be

the same as in the paragraph above. Let 
.I�;i/ 2�n.�0.I�/; �0.i// be the image of

 under the tautological map �n.Y; y/!�n.�0.I�/; �0.i//, let �n.f�/�1.
.I�;i//



Étale homotopy equivalence of rational points on algebraic varieties 827

be the unique preimage of 
.I�;i/ under the isomorphism

�n.f�/ W �n.�0.J�/; �0.j //! �n.�0.I�/; �0.i//;

and let 
 0
.L�;l/

be the image of �n.f�/�1.
.I�;i// under the natural map

�n.�0.J�/; �0.j //! �n.�0.L�/; �0.l//:

It is easy to check that the elements 
 0
.L�;l/

glue together to an element 
 0 of
�n.X; x/ whose image under �n.f / is 
 . The surjectivity of the maps �n.f / for
all n� 2 follows. �

Notation 4.2. For every group � let y� be its profinite completion. For every object
X of Sch, for every n2N and for every pro-abelian groupA letHn.X;A/ denote the
homology group Hn.Et.X/; A/. For every object .X; x/ of Sch� and n as above let

hn.X; x/ W �n.X; x/!Hn.X; yZ/

denote the Hurewicz map. Let X be a smooth, geometrically irreducible, quasipro-
jective variety over K. Let x be a K-valued point of X and let Fet.X; x/ denote
the category of finite étale pointed connected covers .Y; y/ of .X; x/ such that the
image of the induced map �1.f / W �1.Y; y/! �1.Y; y/ is an open characteristic
subgroup for every object f W .Y; y/! .X; x/. Since for every f W .Y; y/! .X; x/

as above the induced map �2.f / W �2.Y; y/! �2.X; x/ is an isomorphism by
Proposition 4.1, the projective limit of the inverses of these maps is an isomorphism

aX W �2.X; x/! lim
.Y;y/2Fet.X;x/

�2.Y; y/:

Moreover, we may take the projective limit of the Hurewicz maps

bX W lim
.Y;y/2Fet.X;x/

�2.Y; y/! lim
.Y;y/2Fet.X;x/

H2.Y; yZ/:

Theorem 4.3. The map

bX ı aX W �2.X; x/! lim
.Y;y/2Fet.X;x/

H2.Y; yZ/

is an isomorphism.

Proof. First we are going to prove that bX is injective. Let 
 be a nonzero element
of �2.X; x/. Then there is a pointed hypercovering .H�; h/ of X with respect to
the étale site of X pointed with x such that the image of 
 under the natural map
�2.X; x/!�2.�0.H�/; �0.h// is nonzero. Let N be the kernel of the natural map
�1.X; x/!�1.�0.H�/; �0.h//; it is an open normal subgroup. Because �1.X; x/
is topologically finitely generated, its open characteristic subgroups are cofinal, and
hence there is an object f W .Y; y/! .X; x/ of Fet.X; x/ such that the image of
�1.f / W �1.Y; y/! �1.X; x/ lies in N .
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Note that f is a finite Galois covering; let G denote the covering group and let
˛ WG! Aut.X/ be the action corresponding to the deck transformations. Let C�
denote the étale Čech hypercovering generated by the cover Y ! X , and equip
it with a point c with respect to the same pointed site. Let .I�; i/ be the pointed
simplicial object which is the fibre product of .H�; h/ and .C�; c/ and let .J�; j / be
the pullback f �.I�; i/ of the pointed hypercovering .I�; i/ onto the étale site of X
pointed with x with respect to f . Let f� W .�0.J�/; �0.j //! .�0.I�/; �0.i// be
the map induced by f between the pointed simplicial sets of connected components
of J� and I�.

We may argue as above to conclude that f� W .�0.J�/; �0.j //! .�0.I�/; �0.i//

is a G-cover with respect to the action induced by ˛ on �0.J�/ and the trivial action
on �0.I�/. Therefore the induced map

�1.f�/ W �1.�0.J�/; �0.j //! �1.�0.I�/; �0.i//

is injective. There is a commutative diagram

�1.Y; y/ ����! �1.�0.J�/; �0.j //

�1.f /

??y �1.f�/

??y
�1.X; x/ ����! �1.�0.I�/; �0.i//:

By assumption the composition of �1.f / and the lower horizontal map has trivial
image. Since the upper horizontal map is surjective by [Artin and Mazur 1969,
Corollary 10.6, pp. 121–122], we get that �1.f�/ has trivial image, too, and hence
�1.�0.J�/; �0.j // is the trivial group. There is a similar commutative diagram

�2.Y; y/ ����! �2.�0.J�/; �0.j //

�2.f /

??y �2.f�/

??y
�2.X; x/ ����! �2.�0.I�/; �0.i//

for �2. The image of 
 , considered as an element of �2.Y; y/, is nonzero under the
composition of �2.f / and the lower horizontal map by assumption. Therefore its
image 
 0 under the upper horizontal map is also nonzero. Since �1.�0.J�/; �0.j //
is trivial, we get that the image of 
 0 under the Hurewicz map �2.�0.J�/; �0.j //!
H2.�0.J�/; yZ/ is nonzero. By naturality this implies that the image of 
 under the
Hurewicz map h2.Y; y/ W �2.Y; y/!H2.Y; yZ/ is nonzero, too.

Next we are going to prove that bX is surjective. For every .Z; z/ 2 Fet.X; x/
let C.Z; z/ be the category of morphisms .Y; y/! .Z; z/ in Fet.X; x/, and let

c.Z;z/ W lim
.Y;y/!.Z;z/2C.Z;z/

H2.Y; yZ/!H2.Z; yZ/
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be the tautological map. Because the preimage .bX ıaX /�1.Im.c.Z;z///��2.X; x/
is closed and �2.X; x/ is profinite, by compactness it will be enough to show that
for every object .Z; z/ as above .bX ıaX /�1.Im.c.Z;z/// is nonempty. Now fix an
element 
 2 Im.c.Z;z// and choose a


 0 2 lim
.Y;y/!.Z;z/2C.Z;z/

H2.Y; yZ/

such that c.Z;z/.
 0/ D 
 . For every pointed hypercovering .H�; h/ of Z with
respect to the étale site of Z pointed with z, we are going to construct an element

.H�;h/ 2 �2.�0.H�/; �0.h// as follows.

Let N be the kernel of the natural map �1.Z; z/! �1.�0.H�/; �0.h//. Using
that �1.Z; z/ is topologically finitely generated as above, we get that there is
a morphism f W .Y; y/ ! .Z; z/ of Fet.X; x/ such that the image of �1.f / W
�1.Y; y/ ! �1.Z; z/ lies in N . Let C� denote the étale Čech hypercovering
generated by the cover Y !Z, and equip it with a point c with respect to the same
pointed site. Let .I�; i/ be the pointed hypercovering which is the fibre product
of .H�; h/ and .C�; c/, and let .J�; j / be the pullback f �.I�; i/ of .I�; i/ onto
the étale site of Y pointed with y with respect to f . Let f� W .�0.J�/; �0.j //!
.�0.I�/; �0.i// be the map induced by f between the pointed simplicial sets of
connected components of J� and I�.

As we saw in the proof of injectivity, the group �1.�0.J�/; �0.j // is trivial
and hence the Hurewicz map �2.�0.J�/; �0.j //!H2.�0.J�/; yZ/ is an isomor-
phism. Therefore there is a unique 
f 2�2.�0.J�/; �0.j // whose image under this
Hurewicz map is the image of 
 0 under the composition of c.Y;y/ and the natural
map H2.Y; yZ/!H2.�0.J�/; yZ/. Let 
.H�;h/ 2 �2.�0.H�/; �0.h// be the image
of 
f under the composition of the functorial maps �2.f�/ W �2.�0.J�/; �0.j //!
�2.�0.I�/; �0.i// and �2.�0.I�/; �0.i//! �2.�0.H�/; �0.h//.

First we are going to show that 
.H�;h/ is independent of the choice of the
morphism f . Let f 0 W .Y 0; y0/! .Z; z/ be another morphism of Fet.X; x/ such that
the image of �1.f 0/ W�1.Y 0; y0/!�1.Z; z/ lies in N . Then the fibre product of f
and f 0 over .Z; z/ is another morphism of Fet.X; x/ with this property. Moreover,
it can be factorised into a composition of a morphism g of Fet.X; x/ and f , and
into a composition of a morphism g0 of Fet.X; x/ and f 0 too. Therefore it will be
enough to show that this construction applied to the morphism f ıg of Fet.X; x/
will give the same element in �2.�0.H�/; �0.h// as f , where g W .V; v/! .Y; y/

is a morphism of Fet.X; x/.
Let .C�; c/ be the same Cech hypercovering as above, and let C 0� denote the

étale Čech hypercovering generated by the cover V !Z, and equip it with a point
c0 with respect to the same pointed site. Note that g furnishes a map ı W .C 0�; c

0/!

.C�; c/ of pointed hypercoverings. Let .C�; c/, .I�; i/ and .J�; j / be as above,
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let .I 0�; i
0/ be the fibre product of .H�; h/ and .C 0�; c

0/, and let .J 0�; j
0/ be the

pullback .f ıg/�.I 0�; i
0/. Let f� W .�0.J�/; �0.j //! .�0.I�/; �0.i// and .f ıg/� W

.�0.J
0
�/; �0.j

0// ! .�0.I
0
�/; �0.i

0// be the maps induced by f and by f ı g,
respectively. Note that g induces a map g� Wg�.�0.J�/; �0.j //! .�0.J�/; �0.j //.
Then there is a commutative diagram

�2.�0.J
0
�/; �0.j

0//
�2..f ıg/�/
��������! �2.�0.I

0
�/; �0.i

0// ����! �2.�0.H�/; �0.h//??y�2.g�ı.f ıg/�.ıH // ??y�2.ıH / 



�2.�0.J�/; �0.j //

�2.f�/
����! �2.�0.I�/; �0.i// ����! �2.�0.H�/; �0.h//;

where ıH W .I 0�; i
0/! .I�; i/ is the fibre product of ı with .H; h/, the morphism

.f ıg/�.ıH / W .�0.J
0
�/; �0.j

0//! g�.�0.J�/; �0.j //D .f ıg/
�.�0.I�/; �0.i//

is the base change of ıH with respect to f ıg; while the middle and left vertical
maps are induced by ıH and g� ı .f ıg/�.ıH /, respectively. Since the image of

f ıg under the left vertical map is 
f , the claim above follows.

In order to conclude the proof of the theorem itself, we only need to show
that, for every morphism ı W .H�; h/ ! .H 0�; h

0/ of pointed hypercoverings of
Z with respect to the étale site of Z pointed with z, the induced map �2.ı/ W
�2.�0.H�/; �0.h//! �2.�0.H

0
�/; �0.h

0// takes 
.H�;h/ to 
.H 0�;h0/. Indeed, in
this case these 
.H�;h/ glue together to an element of �2.Z; z/ whose image is

 under the Hurewicz map, by construction. Now let f W .Y; y/! .Z; z/ be a
morphism of Fet.X; x/ such that the image of �1.f / W �1.Y; y/! �1.Z; z/ lies in
the kernel of the natural map �1.Z; z/! �1.�0.H�/; �0.h//. Let .C�; c/; .I�; i/
and .J�; j / be as above. Note that the image of �1.f / lies in the kernel of the
natural map �1.Z; z/! �1.�0.H

0
�/; �0.h

0//, too. Let .I 0�; i
0/ be the fibre product

of .H 0�; h
0/ and .C�; c/ and let .J 0�; j

0/ be the pullback f �.I 0�; i
0/ onto the étale site

of Y pointed with y with respect to f . By slight abuse of notation let f� denote both
maps .�0.J�/; �0.j //! .�0.I�/; �0.i// and .�0.J 0�/; �0.j

0//! .�0.I
0
�/; �0.i

0//

induced by f . Then there is a commutative diagram

�2.�0.J�/; �0.j //
�2.f�/
����! �2.�0.I�/; �0.i// ����! �2.�0.H�/; �0.h//

�2.f
�.ıC //

??y �2.ıC /

??y �2.ı/

??y
�2.�0.J

0
�/; �0.j

0//
�2.f�/
����! �2.�0.I

0
�/; �0.i

0// ����! �2.�0.H
0
�/; �0.h

0//;

where the middle and left vertical maps are induced by the fibre product ıC of ı
with .C; c/ and the pullback f �.ıC / of ıC with respect to f , respectively. By
construction, the image of 
f 2 �2.�0.J�/; �0.j // constructed for .H; h/ under
�2.f

�.ıC // is the element denoted by the same symbol and constructed for .H 0; h0/.
The claim is now clear. �
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5. The homotopy type of curves and abelian varieties

Definition 5.1. Following [Serre 1997, p. 16], we will say that a group � is good
if the homomorphism of cohomology groups Hn.y�;M/!Hn.�;M/ induced by
the natural homomorphism �! y� is an isomorphism for every finite �-module
M . For every smooth, connected, quasiprojective variety X over any field K and
every n� 1, let �n.X/ denote the isomorphism class of the n-th homotopy group of
�n.X; x/ for some geometric point x. As the notation indicates, these isomorphism
classes do not depend on the choice of the base point.

Proposition 5.2. Let X be a smooth variety over C such that X.C/ has the homo-
topy type of the Eilenberg–MacLane space B�1.X.C// and the group �1.X.C// is
good. Then Et.X/ is weakly homotopy equivalent to B�1.X/.

Proof. By [Artin and Mazur 1969, Corollary 6.6, p. 72] the profinite completion
.B�/^ of B� is weakly homotopy equivalent to B y� if and only if � is a good
group. Because we assumed thatX is smooth, Et.X/ is weakly homotopy equivalent
to B 3�1.X.C// by Theorem 2.9. On the other hand, the profinite completion of
�1.X.C// is isomorphic to �1.X/ by the Grauert–Remmert theorem. The claim is
now clear. �
Remark 5.3. It is important to note that the condition requiring the fundamental
group to be good is not only sufficient, but also necessary. In particular, there are
algebraic varietiesX over C such thatX.C/ has the homotopy type of the Eilenberg–
MacLane space B�1.X.C//, but the group �1.X.C// is not good, therefore Et.X/
is not an Eilenberg–MacLane space. For an important class of examples see
[Mochizuki 2003, Lemma 3.16, p. 146].

Proposition 5.4. Let X be a smooth geometrically irreducible quasiprojective
variety over an algebraically closed field K of characteristic zero, and let F be
another algebraically closed field containing K. Then Et.X/ is weakly homotopy
equivalent to Et.XF /.

Proof. This claim is a special case of [Artin and Mazur 1969, Corollary 12.12,
p. 144] when X is proper, using also [Artin and Mazur 1969, Theorem 11.1, p. 124].
We only need to add a little bit more whenX is not proper. By Hironaka’s resolution
of singularities, there is a projective variety Y over K which contains X as an open
subvariety such that the complement C � Y is a normal crossings divisor. By the
tame invariance theorem, the tame fundamental groups �C1 .Y / and �CF1 .YF / are
isomorphic. But since the base fields have characteristic zero we have

�C1 .Y /Š �1.X/ and �
CF
1 .YF /Š �1.XF /:

Therefore �1.X/Š �1.XF /, so the argument presented in [Artin and Mazur 1969]
can be applied in this case, too. �
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Corollary 5.5. (a) Let X be a smooth, geometrically connected curve over an
algebraically closed field K of characteristic zero which is not a projective
curve of genus zero. Then Et.X/ is weakly homotopy equivalent to B�1.X/.

(b) Let X be an abelian variety over an algebraically closed field K of character-
istic zero. Then Et.X/ is weakly homotopy equivalent to B�1.X/.

Proof. Recall that a smooth, geometrically connected curve Y defined over a field
has type .g; d/ if g is the genus of the smooth projective completion Y c of Y and
d is the number of geometric points in the complement of Y in Y c . Let X be a
smooth, geometrically connected curve of type .g; d/ such that .g; d/¤ .0; 0/ over
an algebraically closed field K of characteristic zero. There is a subfield F �K
which is finitely generated over Q with X already defined over F , that is, there
is a smooth, geometrically connected curve Y of type .g; d/ over F whose base
change to K is X .

Choose an embedding i WF !C of fields. Then the base change YC of the curve
YF to C with respect to this embedding is also a smooth, geometrically connected
curve of type .g; d/. The topological space YC.C/ has the homotopy type of the
Eilenberg–MacLane space B�1.YC.C//. The topological fundamental group of a
smooth, connected complex curve is good (this fact follows at once from [Serre
1997, Problem 1(a), p. 15]) so we get from Proposition 5.2 that Et.YC/ is weakly
homotopy equivalent to B�1.YC/. By a repeated application of Proposition 5.4
we get that Et.X/D Et.YK/ is weakly homotopy equivalent to Et.YC/, and hence
�1.X/Š �1.YC/, so Et.X/ is weakly homotopy equivalent to B�1.X/.

The proof of claim (b) is essentially the same as the proof of claim (a); we only
need to add that finitely generated free abelian groups are good (see [Serre 1997,
Problem 2(d), p. 16]), so Et.A/ is weakly homotopy equivalent to B�1.A/ for every
abelian variety A defined over C by Propositions 5.2 and 5.4. �

6. Grothendieck’s short exact sequence

Notation 6.1. Let X be a geometrically connected variety defined over K. Let
� be a K-valued point of X . Then Grothendieck’s short exact sequence of étale
fundamental groups for X is

1 �! �1.X; �/ �! �1.X; �/ �! �K �! 1; (6.1.1)

which is an exact sequence of profinite groups in the category of topological groups.
EveryK-rational point x 2X.K/ induces a section �K!�1.X; �/ of the sequence
(6.1.1), well-defined up to conjugation. Let Sec.X=K/ denote the set of conjugacy
classes of sections of (6.1.1) (in the category of profinite groups where morphisms
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are continuous homomorphisms). Then we have a map

sX=K WX.K/! Sec.X=K/

which sends every point x 2X.K/ to the corresponding conjugacy class of sections.

Definition 6.2. For every characteristic open subgroup N of �1.X; �/, consider
the short exact sequence

1 �! �1.X; �/=N �! �1.X; �/=N �! �K �! 1; (6.2.1)

obtained by dividing out (6.1.1) byN . Let Sec.X=K;N / denote the set of conjugacy
classes of sections of (6.2.1). Let

sX=K;N WX.K/! Sec.X=K;N /

denote the composition of sX=K;N and the natural forgetful map

�X=K;N W Sec.X=K/! Sec.X=K;N /:

Note that for every pair of characteristic open subgroups N 0 �N of �1.X; �/ the
composition of �X=K;N 0 and the forgetful map Sec.X=K;N 0/! Sec.X=K;N / is
�X=K;N . Therefore we may take the projective limit of the maps �X=K;N to get
a map

�X=K D lim
N
�X=K;N W Sec.X=K/! lim

N
Sec.X=K;N /:

where the limit is over the set of characteristic open subgroups of �1.X; �/ directed
with respect to reverse inclusion.

Proposition 6.3. The map �X=K is a bijection.

Proof. Let r; s be two sections �K ! �1.X; �/ such that for every characteristic
open subgroup N of �1.X; �/ the compositions of r and s with the quotient map
�1.X; �/! �1.X; �/=N are conjugates. Then for every such N the set

CN D fg 2 �1.X; �/ j g
�1r.h/gs.h/�1 2N for all h 2 �Kg

is nonempty. Since the sets CN are closed in the compact topological space
�1.X; �/, their intersection\

N

CN D

�
g 2 �1.X; �/

ˇ̌
g�1r.h/gs.h/�1 2

\
N

N for all h 2 �K

�
is also nonempty. Because in a topologically finitely generated profinite group, such
as �1.X; �/, the intersection of all characteristic open subgroups is the identity
element, we get that r and s are conjugates. Therefore �X=K is injective.
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Now let r be an element of limN Sec.X=K;N /, and for every N as above let
rN 2 Sec.X=K;N / be the image of r under the projection limM Sec.X=K;M/!

Sec.X=K;N /. For every positive integer m let N.m/ be the intersection of all
open subgroups of �1.X; �/ of index at most m. We are going to construct a
section sm W �K! �1.X; �/=N.m/ whose conjugacy class is rN.m/ for every m by
induction, as follows. When mD 1 this section is just the identity. Assume now
that sm�1 is already constructed. Let s0m be a section �K ! �1.X; �/=N.m/

whose conjugacy class is rN.m/. Because rN.m/ maps to rN.m�1/ under the
forgetful map Sec.X=K;N.m// ! Sec.X=K;N.m � 1//, we get that there is
a g 2 �1.X; �/=N.m/ such that the composition of g�1s0mg and the quotient map
�1.X; �/=N.m/!�1.X; �/=N.m�1/ is sm�1. Let sm be g�1s0mg. These sections
are compatible and their limit is a section

s W �K !
1

lim
mD1

�1.X; �/=N.m/D �1.X; �/

whose image is r under �X=K . So the latter is surjective, too. �

Definition 6.4. We say that X is well-equipped with K-rational points if the map
sX=K;N is surjective for every characteristic open subgroup N of �1.X; �/. Note
that for a different choice of a base point �0 there is an isomorphism between
�1.X; �/ and �1.X; �0/ which maps �1.X; �/ onto �1.X; �0/, canonical up to
conjugacy. Therefore the sets Sec.X=K/ and Sec.X=K;N / are independent of the
choice of the base point �, as the notation indicates.

Proposition 6.5. The algebraic groups GLn and PGLn are well-equipped with
K-rational points over any characteristic-zero field K and positive integer n.

Proof. Let 1 denote the unit of GLn.K/, and PGLn.K/ as well. The quotient map
p W GLn! PGLn by the centre of GLn induces a surjection

�1.p/ W �1.GLn; 1/! �1.PGLn; 1/;

and hence it will be enough to prove the claim for GLn only. Let i WGL1!GLn be
the map which embeds GL1 into GLn as diagonal matrices with 1 on the diagonal
except at the upper-left corner. This map induces an isomorphism

�1.i/ W �1.GL1; 1/! �1.GLn; 1/:

Therefore it will be enough to prove the claim for GL1 only. There is a natural
isomorphism

�1.GL1; 1/Š yZ;

and for every k 2 N there is a natural bijection

Sec.GL1 =K; kyZ/ŠH 1.K;�k/;
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where �k �K� is the module of k-th roots of unity. Moreover, under this identifi-
cation sGL1 =K;kyZ

corresponds to the coboundary map furnished by Kummer theory.
Since, by Hilbert’s theorem 90, H 1.K;K�/ is zero, the claim now follows. �

Proposition 6.6. Assume that K is an algebraically closed field of characteristic
zero. LetG be a geometrically connected algebraic group overK, and let f WX!Y

be a principal G-bundle over a geometrically connected smooth variety Y over K.
Let x 2X and set y D f .x/. Then the sequence

�1.f
�1.y/; x/! �1.X; x/

�1.f /
�����! �1.Y; y/! 1 (6.6.1)

is exact, where the first map is induced by the inclusion f �1.y/�X .

Proof. There is a subfield F �K which is finitely generated over Q and G;X; Y
and f are already defined over F . Therefore, by the invariance theorem for the
(tame) étale fundamental group, it will be sufficient to prove the claim for F . By
the axiom of choice there is an embedding F ! C of fields, and hence we may
assume that K is C without loss of generality, again by the invariance theorem.
Because the map X.C/! Y.C/ induced by f is a Serre fibration, there is a short
exact sequence

�1.f
�1.y/.C/; x/ �! �1.X.C/; x/ �! �1.Y.C/; y/ �! 1 (6.6.2)

of topological fundamental groups of complex analytic spaces. The profinite
completion functor is right-exact, so the completion of (6.6.2) is also exact. By the
Grauert–Remmert theorem the latter is the sequence (6.6.1). �

Proposition 6.7. LetG be a geometrically connected algebraic group well-equipped
withK-rational points over a fieldK of characteristic zero. Let f WX!Y be a prin-
cipal G-bundle over a smooth variety Y over K and let x; y 2 Y.K/ be such that:

(i) sY=K.x/D sY=K.y/.

(ii) The sets f �1.x/.K/ and f �1.y/.K/ are nonempty.

Then, for every characteristic open subgroup N of �1.X; �/ (where � 2 X.K/ is
arbitrary), there are two points xN 2 f �1.x/.K/ and yN 2 f �1.y/.K/ such that
sX=K;N .xN /D sX=K;N .yN /.

Proof. Pick two points x0 2 f �1.x/.K/, y0 2 f �1.y/.K/ and let � 2 f �1.x/.K/.
Let r 2 sX=K.x0/; s 2 sX=K.y0/ be two sections of the short exact sequence (6.1.1).
Because both x0 and � lie in f �1.x/.K/, we may assume that the image of r
is in �1.f �1.x/; �/ without loss of generality. Now let � D f .�/, and let r0; s0
be the composition of r; s and �1.f / W �1.X; �/ ! �1.Y; �/, respectively. As
r0 2 sY=K.x/ and s0 2 sY=K.y/, we get that these sections are conjugate. By
Proposition 6.6 the map �1.f / is surjective, and therefore we may assume that
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r0 and s0 are the same, by conjugating s if necessary. This implies that s lies in
�1.f

�1.x/; �/, just as r does, by Proposition 6.6. Let N be now a characteristic
open subgroup of �1.X; �/, and letM 0 be the preimage ofN with respect to the map
�1.f �1.x/; �/! �1.X; �/. As M 0 is open and �1.f �1.x/; �/ is topologically
finitely generated, there is a characteristic open subgroupM of �1.f �1.x/; �/ lying
in M 0. Because f �1.x/ has a K-rational point, it is isomorphic to G. Therefore it
is well-equipped with K-rational points, so there is an xN 2 f �1.x/.K/ such that
the composition of s and the quotient map �1.f �1.x/; �/! �1.f

�1.x/; �/=M

lies in sf �1.x/=K;M .xN /. If we set yN D y0 then it is clear that the pair xN ; yN
satisfies the required properties. �

Proposition 6.8. LetG be a geometrically connected algebraic group well-equipped
withK-rational points over a fieldK of characteristic zero such that �1.G/ is finite.
Let f W X ! Y be a principal G-bundle over a smooth variety Y over K and let
x; y 2 Y.K/ be such that:

(i) sY=K.x/D sY=K.y/.

(ii) The sets f �1.x/.K/ and f �1.y/.K/ are nonempty.

Then there are two points x02f �1.x/.K/ and y02f �1.y/.K/ such that sX=K.x0/D
sX=K.y

0/.

Proof. The proof is the same as above, except that we look at sections of the full
Grothendieck short exact sequence (6.1.1) for X . We leave the details to the reader.

�

Remark 6.9. By Proposition 6.5 we may apply Proposition 6.7 to principal GLn-
bundles. Note that SLn! PSLn is a finite étale cover and SLn is simply connected.
As PSLn and PGLn are isomorphic, we get that �1.PGLn/ is finite. Therefore by
Proposition 6.5 we may apply Proposition 6.8 to principal PGLn-bundles.

7. Basic consequences of obstruction theory

Definition 7.1. For every n 2 N, by functoriality we get a natural map

�nX=K WX.K/! ŒEt=K.Spec.K//;Et=K.X/�! ŒEt=K.Spec.K//\;Etn=K.X/�;

where the second map is furnished by applying the Postnikov tower functor and
composing with the n-th truncation map Et=K.X/\! Etn

=K
.X/. We will denote

ŒEt=K.Spec.K//\;Etn
=K
.X/� by the symbol Xn.hK/. The n-th truncation map

S \! Pn.S/ is natural, and hence induces a natural map

hnX=K WX.hK/!Xn.hK/
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such that �n
X=K
D hn

X=K
ı �X=K . For every positive integer n, let �n denote the

following equivalence relation on X.hK/: for every pair x; y 2 X.hK/ we have
x �n y if and only if hn

X=K
.x/D hn

X=K
.y/. It is clear that the equivalence relation

�nC1 is finer than the equivalence relation �n.

Definition 7.2. For every pointed K-scheme .X; x/, let

.X; x/.hK/D Et=K.X; x/.E�K/:

Let �.X; x/ W .X; x/.hK/ ! X.hK/ denote the bijection induced by the map
i.X; x/ (see Proposition 3.7). Then we have a unique natural map �.X;x/=K W
X.K/! .X; x/.hK/ such that the diagram

.X; x/.hK/

�.X;x/

��

X.K/

�.X;x/=K
88

�X=K &&
X.hK/

is commutative.

Definition 7.3. We are going to need a variant of the equivalence relations �n for
pointed relative étale homotopy types, too. Let .X; x/ be a pointed K-scheme as
above. We will denote Etn

=K
.X; x/.E�K/ by the symbol .X; x/n.hK/. The n-th

truncation map furnishes a natural map

hn.X;x/=K W .X; x/.hK/! .X; x/n.hK/:

By slight abuse of notation, for every positive integer n let �n denote the following
equivalence relation on .X; x/.hK/: for every pair x; y 2 .X; x/.hK/ we have
x �n y if and only if hn

.X;x/=K
.x/D hn

.X;x/=K
.y/.

This notation is justified because of the following:

Lemma 7.4. Under the map �.X; x/ the equivalence relation �n on .X; x/.hK/
corresponds to the equivalence relation �n on X.hK/.

Proof. For every étale hypercovering H� of X there is a natural commutative
diagram

�0=K.H�/
i.H�;x/ //

��

�0=K.H�; x/

��
Pn.�0=K.H�//

Pn.i.H�;x// // Pn.�0=K.H�; x//
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where we use Notation 3.6, and where the vertical maps are induced by truncation.
Since the upper horizontal map is a weak equivalence, so is the lower horizontal
map, so it induces a bijection on homotopy fixed points. The claim now follows by
taking the limit, similarly to the proof of Proposition 3.7. �

Notation 7.5. For every profinite group � and every pro-discrete �-module M ,
let Hk.�;M/ denote the projective limit of the (continuous) cohomology groups
Hk.�;N /, where N runs through the directed system of discrete quotients of M .
For the sake of simple notation, for the rest of the paper for every field K and
every pro-discrete �K-module M let Hk.K;M/ denote the group Hk.�K ;M/

introduced above. Note that these groups commute with projective limits.

Theorem 7.6. Assume that X is a smooth geometrically connected variety over K,
and assume that X.K/ is nonempty. For every x; y 2X.hK/:

(i) x D y if and only if x �n y for every n 2 N.

(ii) There is a natural bijection

jX=K WX
1.hK/! Sec.X=K/

such that for every p 2X.K/ we have jX=K.�1X=K.p//D sX=K.p/.

(iii) For every positive integer n, if x �n y then there exists a natural obstruc-
tion class ıXn .x; y/ 2H

nC1.K; �nC1.X// such that x �nC1 y if and only if
ıXn .x; y/D 0.

Proof. The first claim is an immediate consequence of the definition of Et=K.X/\.
Next we are going to prove (ii). Let f W Y ! X be a torsor under a finite étale
group G over K. Then the K-valued points G D G.K/ of G form a finite group
equipped with an action of �K . Let C� denote the étale Čech hypercovering

Y
..
Y �X Y

oo oo Y �X Y �X Y
oo oooo � � �

oooooooo

generated by the cover Y ! X . It is explained at the beginning of Section 9 of
[Harpaz and Schlank 2013] that there is a natural map

cY W �0=K.C�/.E�K/!H 1.�K ; G/:

Moreover, by [Harpaz and Schlank 2013, Lemma 9.1], for every p 2 X.K/ the
image of the corresponding homotopy fixed point in �0=K.C�/.E�K/ with respect
to cY is the element which classifies the G-torsor Yp D f �1.p/. When Y is
geometrically connected there is a weak equivalence ��.C�/! BG, where we
equip the latter with the tautological �K-action, and hence the map cY is a bijection
(see the discussion after Lemma 9.7 of [Harpaz and Schlank 2013]). Moreover,
the composition of the natural map X.hK/! �0=K.C�/.E�K/ and cY factors
through h1

X=K
.
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Let �2X.K/ be aK-rational point and let � denote theK-valued point associated
to � (see Notation 3.9). Fix an element s of sX=K.�/. For every characteristic open
subgroup N of �1.X; x/ let N 0 � �1.X; x/ be the subgroup generated by N and
the image of s. Since N 0 is an open subgroup, there is a connected finite étale cover
fN W YN ! X such that the image of �1.YN / with respect to �1.fN / is N 0. Let
GN denote the unique finite étale group over K such that GN .K/ is

�1.X; �/=N Š �1.X; �/=N
0;

equipped with its natural �K-action induced by conjugation. Then fN W YN !X

is a torsor under GN , and hence by applying the construction above to the étale
Čech hypercovering generated by fN we get a map

jX=K;N WX
1.hK/! Sec.X=K;N /

such that for every p 2X.K/ we have jX=K;N .�1X=K.p//D sX=K;N .p/. According
to Proposition 6.3, by taking the limit over every characteristic open subgroup N
of �1.X; �/ we get a continuous map

jX=K WX
1.hK/! Sec.X=K/

between compact Hausdorff topological spaces such that for every p 2X.K/ we
have jX=K.�1X=K.p// D sX=K.p/. By [Harpaz and Schlank 2013, Lemma 9.11]
this map is a bijection.

For every connected pointed �K-space S which has only finitely many nontrivial
homotopy groups, there is a natural spectral sequence for homotopy groups of
homotopy fixed points

E
s;t
2 DH

s.K; �t .S//) �t�s.S
h�K /

constructed by Goerss [1995, Theorem B, p. 189]. Therefore for objects of this
category there is a natural obstruction class of the type described in the last claim.
So claim (iii) follows from Lemma 7.4 and Proposition 3.10 by applying Goerss’
results to Et=K.X; �/. �

Lemma 7.7. Assume that X is a smooth geometrically connected variety over K
and Et.X/ is weakly homotopy equivalent toB�1.X/. Also suppose thatX.K/¤∅.
Then for every x; y 2X.hK/ we have x D y if and only if jX=K.x/D jX=K.y/.

Proof. All the higher homotopy groups of X vanish, so the claim is immediate from
the theorem above. �

We say that two points x; y 2X.K/ are directly A-equivalent if there is a map
f W A1K !X of K-varieties such that f .0/D x and f .1/D y. The A-equivalence
on X.K/ is the equivalence relation generated by direct A-equivalence.
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Proposition 7.8. Assume that K has characteristic zero. Then for every X over K
the map

�X=K WX.K/!X.hK/

factors through A-equivalence.

Proof. It will be sufficient to show that for every two points x; y 2 X.K/ which
are directly A-equivalent we have �X=K.x/ D �X=K.y/. Let f W A1K ! X be a
morphism of K-varieties such that f .0/ D x and f .1/ D y. Both �X=K.x/ and
�X=K.y/ lie in the image of the map f� W A1K.hK/! X.hK/. By Corollary 5.5
and Lemma 7.7 the set A1K.hK/ consists of one element, since A1

K
has trivial étale

fundamental group. The claim is now clear. �

Remark 7.9. The validity of a such a claim was already suggested by Toën [2004],
but his original claim is not true as stated in positive characteristic. In the special
case when K is a finite field it was observed in [Tamagawa 1997, Proposition 2.8,
pp. 151-152] that the map sA1K=K

, and hence the map �A1K=K , is injective. Thus it
is not true in general that for two points x; y 2X.K/which are directlyA-equivalent
we have �X=K.x/D �X=K.y/ when K has positive characteristic.

8. The Manin pairing

Notation 8.1. For every object X W I ! Ho.�-SSets/ of Pro-Ho.�-SSets/ such
that I is countable, letXh� 2 ob.Pro-Ho.SSets// denote the pro-homotopy quotient
defined at the beginning of Section 6.2 of [Harpaz and Schlank 2013]. Note that
this construction can be applied to the objects Et=K.X/;Etn

=K
.X/ and Et=K.X/\

when � D �K is the absolute Galois group of the field K.

Proposition 8.2. Let K be a field and X a variety over K. Then there are natural
isomorphisms

Et=K.X/h�K Š Et.X/; Etn=K.X/h�K Š Etn.X/; Et=K.X/
\

h�K
Š Et.X/\

in the category Pro-Ho.SSets/.

Proof. The second isomorphism is the content of Proposition 6.14 in [Harpaz
and Schlank 2013]. The third isomorphism follows from the naturality of this
isomorphism, and the first isomorphism is shown in the proof of the proposition
mentioned above. �

Definition 8.3. Let X be again a variety over K. Note that by functoriality we get
a natural map

�X=K WX.K/! ŒEt.Spec.K//;Et.X/�! ŒEt.Spec.K//\;Et.X/\�;
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where the second map is furnished by applying the Postnikov tower functor. By
applying the pro-homotopy quotient functor and the proposition above, we get that
there is a natural map

�X=K WX.hK/! ŒEt.Spec.K//\;Et.X/\�

such that �X=K D �X=K ı �X=K .

Definition 8.4. By [Artin and Mazur 1969, Corollary 10.8, pp. 122-123] there is a
natural equivalence between the category of locally constant étale sheaves of finite
abelian groups onX and local coefficient systems of finite abelian groups on Et.X/\,
and under this equivalence the étale cohomology of X with coefficients in a locally
constant étale sheaf F of finite abelian groups is the same as the cohomology of
Et.X/\ with coefficients in the local coefficient system corresponding to F. We will
not distinguish between these two categories in what follows. In particular for a finite,
étale group scheme G over K we will identify H�.Et.X/\; G/ and H�.X;G/.

A basic, but important, corollary of these observations is the following. Let G
and X be as above, and let c 2H i .X;G/ be a cohomology class for some i 2 N.

Lemma 8.5. Assume that x; y 2 X.K/ are H -equivalent. Then the cohomology
classes x�.c/; y�.c/ 2H i .K;G/ are equal.

Proof. The lemma follows from the commutativity of the diagram

X.K/ � H i .X;G/ ����! H i .K;G/

�X=K

??y 


 



ŒEt.Spec.K//\;Et.X/\��H i .Et.X/\; G/ ����! H i .Et.Spec.K//\; G/

where the horizontal maps are the pairings furnished by pullback. �

For every n 2 N not divisible by the characteristic of K, let . � ; � /n denote
the pairing

. � ; � /n WX.hK/�H
2.X; �n/!H 2.K;�n/

given by the rule .x; c/n D �X=K.x/�.c/.

Lemma 8.6. The diagram

X.K/ � Br.X/
. � ; � /
����! Br.K/

�X=K

??y x?? x??˛n
X.hK/�H 2.X; �n/

. � ; � /n
����! H2.K;�n/

(8.6.1)

commutes, where the middle and right vertical arrows are induced by the inclusion
�n � Gm of sheaves.
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Proof. This is immediate from the functoriality of the constructions involved. �

Lemma 8.7. Let X be a geometrically connected variety over K and x; y 2X.K/.
Then �X=K.x/ �1 �X=K.y/ if and only if for every finite, étale map f W Y ! X of
geometrically connected varieties over K such that there is an Qx 2 Y.K/ with the
property f . Qx/D x there is a Qy 2 Y.K/ such that f . Qy/D y.

Proof. By part (ii) of Theorem 7.6 we have �X=K.x/ �1 �X=K.y/ if and only if
sX=K.x/D sX=K.y/. It is well-known that the latter condition is equivalent to the
second condition of the claim (see for example [Tamagawa 1997]). �

Lemma 8.8. Let f W Y !X be a finite, étale map of varieties overK. Assume that
x; y 2X.K/ are H -equivalent and that there is an Qx 2 Y.K/ such that f . Qx/D x.
Then there is a Qy 2 Y.K/ such that Qx; Qy are H -equivalent and f . Qy/D y.

Proof. The connected component X 0 of X on which x lies is geometrically con-
nected. By Proposition 2.10 the point y must lie on the same component. The
connected component Y 0 of Y on which Qx lies is also geometrically connected, and
the restriction f jY 0 W Y 0 ! X 0 is a finite, étale map. Therefore we may assume
without loss of generality that X and Y are geometrically connected. Hence by
Lemma 8.7 there is a Qy 2 Y.K/ such that f . Qy/D y, and we may even assume that
�X=K. Qx/�1 �X=K. Qy/.

It will be enough to show that Qx and Qy are H -equivalent. We will prove that
�X=K. Qx/�n �X=K. Qy/ for every n� 2 by induction. Since the map �n.f / W�n.Y /!
�n.X/ is an isomorphism for every n � 2 by Proposition 4.1, we get that the
induced map

Hn.�n.f // WH
n.K; �n.Y //!Hn.K; �n.X//

is also an isomorphism. By naturality of the obstruction classes we have

Hn.�n.f //.ı
Y
n . Qx; Qy//D ı

X
n .x; y/:

Since the right-hand side is zero we get that ıYn . Qx; Qy/ is also zero. �

Proposition 8.9. Let X be a regular variety over K, and assume that x; y 2X.K/
are H -equivalent. Then x and y are étale-Brauer equivalent.

Proof. Let Y !X be a finite, étale morphism of varieties over K such that there
is an Qx 2 Y.K/ mapping to x. By Lemma 8.8 there is a Qy 2 Y.K/ such that
Qx; Qy are H -equivalent and f . Qy/ D y. It will be enough to show that Qx; Qy are
Brauer equivalent. Because Y is the finite étale cover of a regular variety, it is also
regular, so it will be enough show that, given a regular variety X over K, every
pair of points x; y 2 X.K/ which are H -equivalent are also Brauer equivalent.
Because X is regular, the group H 2.X;Gm/ is torsion (see [Grothendieck 1971,
Proposition 1.4, p. 291]). Therefore for every b 2 H 2.X;Gm/ there is a natural
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number n 2N and a c 2H 2.X; �n/ such that b is the image of c under the natural
map H 2.X; �n/!H 2.X;Gm/. The claim now follows from the commutativity
of the diagram (8.6.1). �

9. Brauer equivalence versus étale-Brauer equivalence

Definition 9.1. Let E;E 0 be two elliptic curves defined over a field K whose
characteristic is not two and let t 2E 0.K/ be a point of order two. Let � WE!E

be the multiplication by �1 map and let � WE 0!E 0 be the translation by t . Let X
denote the quotient of E�E 0 by the fixed-point-free involution .�; �/. Then X is a
smooth projective geometrically irreducible surface over K. We call such surfaces
bielliptic.

Proposition 9.2. LetK be a finite extension of Qp , and let X be a bielliptic surface
over K. Then the map sX=K is injective.

Proof. Let x; y 2X.K/ be two different points and let � be K-valued point of X .
Let K� �1.X; �/ be the characteristic subgroup such that the quotient �1.X; �/=K

is the maximal 2-torsion abelian quotient of �1.X; �/. Fix an element s of sX=K.x/
and let K0 � �1.X; �/ be the subgroup generated by K and the image of s; this is
an open subgroup. Let f W Y !X be the connected finite étale cover such that the
image of �1.Y / with respect to �1.f / is K0. Since Y is a finite étale cover of the
abelian variety E �E 0, where we use the notation of the definition above, it is also
an abelian variety. Therefore Y is a principal homogeneous space over an abelian
variety defined over K.

By construction there is an x0 2Y.K/ such that f .x0/Dx. So Y has aK-rational
point, and hence it is also an abelian variety over K. If y does not have a lift to a
K-valued point of Y then sX=K.x/¤ sX=K.y/. So we may assume that there is a
y0 2 Y.K/ such that f .y0/D y. Let G D �1.X; �/=�1.Y; �/. Since we may take a
finite extension of K during the proof of injectivity of sX=K , we may assume that
the action of �K on G is trivial without loss of generality. In this case this finite
group is the Galois group of the connected finite étale cover f W Y !X . It also acts
on Sec.Y=K/, and two elements of Sec.Y=K/ are in the same G-orbit if and only
if they have the same image under the map Sec.Y=K/! Sec.X=K/ induced by f .
Moreover, the section map sY=K W Y.K/! Sec.Y=K/ is G-equivariant. Therefore,
if sX=K.x/D sX=K.y/ then sY=K.x0/D sY=K.g.y0// for some g 2G. For abelian
varieties over K the section map is injective, so x0 D g.y0/ in this case, which
implies that x D y. This is a contradiction, therefore sX=K.x/ is different from
sX=K.y/. �

We continue to use the notation which we introduced above. Let D denote the
quotient of E 0 by the fixed-point-free involution � , and let g W X ! D be the
quotient map.
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Proposition 9.3. Assume that K is a finite extension of Qp. Then the map g� W
H 2.D;Gm/!H 2.X;Gm/ induced by g has finite cokernel.

Proof. For every variety Y over K, the Hochschild–Serre spectral sequence

E2p;q DH
p.K;H q.Y ;Gm//)HpCq.Y;Gm/

furnishes on H 2.Y;Gm/ a natural filtration

0DE23 �E
2
2 �E

2
1 �E

2
0 DH

2.Y;Gm/ (9.3.1)

such that
E1p;2�p ŠE

2
p=E

2
pC1; p D 0; 1; 2:

The members E22 and E21 are usually denoted by Br0.Y / and Br1.Y /, respectively.
Because H 3.K;Gm/D 0 (see [Serre 1997, Proposition 15, p. 93]), the coboundary
map

d21;1 WE
2
1;1 DH

1.K;H 1.Y ;Gm//!H 3.K;Gm/

is zero and therefore

E11;1 DE
3
1;1 D Ker.d21;1/DH

1.K;H 1.Y ;Gm//:

In short, we have a natural exact sequence

0 �! Br0.Y / �! Br1.Y / �!H 1.K;H 1.Y ;Gm// �! 0:

The group Br0.Y / is the image of the natural map Br.K/! Br.Y /, therefore the
map g� W Br0.D/! Br0.X/ is surjective. The Hochschild–Serre spectral sequence
furnishes a natural injection

Br.Y /=Br1.Y /! Br.Y /:

Since Br.X/ is dual to the torsion subgroup of the Néron–Severi group NS.X/ in
our case (see [Skorobogatov 1999, p. 403]), which is finite, it will be enough to
show that the map

g� WH
1.K;H 1.D;Gm//!H 1.K;H 1.X;Gm//

induced by g has finite cokernel. Since g is the Albanese map for X (see [loc. cit.]),
the map Pic0.D/ ! Pic0.X/ induced by g is an isomorphism. Therefore, by
looking at the cohomological long exact sequence associated to the short exact
sequence of �K-modules

0 �! Pic0.X/.K/ �!H 1.X;Gm/ �! NS.X/ �! 0;

we are reduced to show that H 1.K;NS.X// is finite. The abelian group NS.X/
is finitely generated, so there is a finite Galois extension LjK such that the action
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of Gal.LjL/ on NS.X/ is trivial. The abelianisation of Gal.LjL/ is isomorphic to
the profinite completion of L�, so it is topologically finitely generated. Therefore

H 1.L;NS.X//Š Hom.Gal.LjL/;NS.X//

is finite. Therefore the inflation map

H 1.Gal.LjK/;NS.X//!H 1.K;NS.X//

has finite cokernel. Since Gal.LjK/ is finite we get thatH 1.K;NS.X// is finite. �

Let X be a smooth variety over a field K, and let b 2 H 2.X;Gm/. We say
that x; y 2X.K/ are b-equivalent if x�.b/D y�.b/. This defines an equivalence
relation of X.K/, which we will call b-equivalence.

Proposition 9.4. Assume that K is a finite extension of Qp. Then b-equivalence
classes are open in the p-adic topology.

Proof. Let x 2 X.K/. It will be enough to show that x has a p-adically open
neighbourhood U in X.K/ such that x and y is b-equivalent for every y 2 U . We
may assume that X is affine by taking a Zariski-open neighbourhood of x. By a
theorem of Gabber (see [de Jong 2013, Theorem 1.1]), there is an Azumaya algebra
A of some rank n on X which represents b. Let � W Y ! X be the PGLn-torsor
corresponding to A, that is, the torsor whose class in H 1.X;PGLn/ is the same
as the class of A. Let � 2H 1.K;PGLn/ be the class of the fibre of Y over x and
let �� W Y � ! X be the twist of � W Y ! X by � . Then the fibre of Y � over x
is a trivial PGLn-torsor. Therefore there is an x0 2 Y � .K/ such that �� .x0/D x.
Because �� is a submersion, there is an p-adically open neighbourhood U of x in
X.K/ and a p-adically analytical section s W U ! Y � .K/ of �� with s.x/D x0.
Therefore for every y 2 U the fibre of Y � over y has a K-rational point, so it is a
trivial PGLn-torsor. The claim is now clear. �

Theorem 9.5. Let K be as above, and let X be a bielliptic surface over K. Then
étale-Brauer equivalence is strictly finer than Brauer equivalence on X.K/.

Of course our choice of example is motivated by the classical paper [Skorobogatov
1999], and the result above can be considered its natural local counterpart. (Also
compare with [Harari 2000], which uses similar ideas.)

Proof. LetX be a bielliptic surface overK, and let g WX!D be the map introduced
above. By Proposition 9.2 the étale-Brauer equivalence-classes of X.K/ consists of
points, so it will be enough to show that the Brauer equivalence-classes of X.K/ are
infinite. Let r 2D.K/. Note that every x; y 2g�1.r/.K/ are b-equivalent for every
b2H 2.X;Gm/ in the image of the map g� WH 2.D;Gm/!H 2.X;Gm/. Therefore
finitely many Brauer equivalence classes intersect g�1.r/.K/ by Propositions 9.3
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and 9.4. By the inverse function theorem both D and g�1.r/ have infinitely many
K-valued points, so the claim holds. �

In the rest of this section we study the somewhat independent question of the
surjectivity of �X=K over p-adic fields.

Notation 9.6. Let Groups denote the category of groups. Let Nd denote the cate-
gory whose objects are positive integers and whose morphisms are the following:
for every pair of objects m, n 2 ob.Nd / the set of morphisms from m to n consists
of the ordered pair �m;nD .m; n/ if n jm, and otherwise is empty. For every abelian
group A and natural number n let AŒn� denote the subgroup of n-torsion elements
of A and let Ator denote the pro-group Ator W Nd ! Groups given by the rule

Ator.n/D AŒn�

such that, for every pair of positive integersm; n such that n jm, the homomorphism

Ator.�m;n/ W AŒm�! AŒn�

is the multiplication by m=n map.

Proposition 9.7. Let K be a finite extension of Qp. The following holds:

(a) For every smooth, geometrically connected projective curveX of genus at least
two over K the map �X=K is injective, and it is surjective if the local version of
Grothendieck’s section conjecture holds for X .

(b) For every abelian variety X over K the map �X=K is injective, and it is surjec-
tive if and only if X is zero-dimensional.

Proof. First assume that X is a smooth, geometrically connected projective curve of
genus at least two over K. Recall that the local version of Grothendieck’s section
conjecture claims that the map sX=K is a bijection. We also know that in this case
sX=K is injective. Therefore claim (a) follows at once from Corollary 5.5 and
Lemma 7.7. Assume now that X is an abelian variety over K. By Corollary 5.5
and Lemma 7.7 the map jX=K is a bijection. Moreover, there is a natural bijection

Sec.X=K/ŠH 1

�
K;

Y
l is prime

Tl.X/

�
; (9.7.1)

where Tl.X/ denotes the l-th Tate module of X , and under this identification sX=K
corresponds to the coboundary map furnished by Kummer theory. In particular
�X=K is injective, and the cokernel of sX=K is H 1.K;X/tor. By [Milne 1986,
Corollary 3.4, p. 53] the groups H 1.K;X/ and X_.K/^ are isomorphic, where
the latter is the Pontryagin dual of the compact group X_.K/ of K-valued points
of the dual X_ of X . Let OK denote the valuation ring of K. The profinite group
X_.K/ is the direct sum of a finite group and dim.X_/D dim.X/ copies of OK
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by the inverse function theorem. Therefore the group H 1.K;X/tor is zero if and
only if X is zero-dimensional. Hence claim (b) is true. �

10. Étale-Brauer equivalence versus H -equivalence

Definition 10.1. Assume now that K is a p-adic field, and for every n 2 N let
cK;n WH

2.K;�n/!Z=nZ be the isomorphism furnished by local Tate duality. For
every geometrically irreducible variety X defined over K let

f � ; � gn WH
2.K;H2.X;Z=nZ//�H 0.K;H 2.X; �n//! Z=nZ

be the bilinear pairing given by the rule

fx; ygn D cK;n.x[y/

(for every x 2 H 2.K;H2.X;Z=nZ//; y 2 H 0.K;H 2.X; �n//), where the cup
product

[ WH 2.K;H2.X;Z=nZ//�H 0.K;H 2.X; �n//!H 2.K;�n/

is induced by the evaluation pairing

H2.X;Z=nZ/�H 2.X; �n/! �n:

The following lemma is immediate from the functoriality of the constructions
involved:

Lemma 10.2. Let f WX! Y be a morphism of geometrically irreducible varieties
over K. Then the diagram

H 2.K;H2.X;Z=nZ//�H 0.K;H 2.X; �n//
f � ; � gn
����! Z=nZ

H2.f /�

??y .f �/�

x?? 



H 2.K;H2.Y ;Z=nZ//�H 0.K;H 2.Y ; �n//

f � ; � gn
����! Z=nZ

(10.2.1)

commutes. �

Notation 10.3. LetX be a geometrically irreducible variety overK withX.K/¤∅.
For every positive integer n and every x; y 2X.hK/ such that x�1 y, let ıX1 .x; y/n
denote the image of the obstruction class ıX1 .x; y/ under the composition of the
natural map

H 2.K; �2.X//!H 2.K; �2.X/=n�2.X//

and the homomorphism

H�;n WH
2.K; �2.X/=n�2.X//!H 2.K;H2.X;Z=nZ//
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induced by the Hurewicz map

Hn W �2.X/=n�2.X/!H2.X;Z=nZ/:

Let

˛n WH
2.X; �n/!H 2.X;Gm/

denote the map induced by the inclusion �n! Gm, and finally let

�n WH
2.X; �n/!H 0.K;H 2.X; �n//

be the map induced by base change.

Lemma 10.4. Let X be a geometrically irreducible smooth quasiprojective variety
over K. For every n 2 N, every c 2H 2.X; �n/ and every x; y 2 X.K/ such that
˛n.c/D 0 and �X=K.x/�1 �X=K.y/, we have

fıX1 .�X=K.x/; �X=K.y//n; �n.c/gn D 0:

Proof. We will need to introduce analogues of the concepts in Definition 10.1 and
Notation 10.3 for hypercoverings. For every geometrically irreducible variety Z
defined over K and every étale hypercovering H� of Z let

f � ; � gn WH
2.K;H2.�0=K.H�/;Z=nZ//�H 0.K;H 2.�0=K.H�/; �n//! Z=nZ

also denote the bilinear pairing given by the rule

fa; bgn D cK;n.a[ b/

(for every a 2 H 2.K;H2.�0=K.H�/;Z=nZ//; b 2 H 0.K;H 2.�0=K.H�/; �n//),
where the cup product

[ WH 2.K;H2.�0=K.H�/;Z=nZ//�H 0.K;H 2.�0=K.H�/; �n//!H 2.K;�n/

is induced by the evaluation pairing

H2.�0=K.H�/;Z=nZ/�H 2.�0=K.H�/; �n/! �n:

Assume now that Z.K/ ¤ ∅ and pick a point z 2 Z.K/. In Definition 3.5
we introduced a pointed simplicial �K-set �0=K.H�; z/ such that there is a nat-
ural map �0=K.H�/ ! �0=K.H�; z/ which is a weak equivalence. Let a; b 2
�0.�0=K.H�/

�K / be such that their image is the same under the map

�0.�0=K.H�/
�K /! �0.P1.�0=K.H�//

�K /
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induced by the truncation morphism �0=K.H�/ ! P1.�0=K.H�//. By Theo-
rem B on p. 189 of [Goerss 1995] there is an obstruction class ıH�1 .a; b/ 2

H 2
�
K;�2.�0=K.H�; z//

�
. For every positive integer n and a; b as above let

ı
H�
1 .a; b/n denote the image of ıH�1 .a; b/ under the composition of the natural map

H 2
�
K;�2.�0=K.H�; z//

�
!H 2

�
K;�2.�0=K.H�; z//=n�2.�0=K.H�; z//

�
;

the homomorphism

H 2
�
K;�2.�0=K.H�;z//=n�2.�0=K.H�;z//

�
!H 2.K;H2.�0=K.H�;z/;Z=nZ//

induced by the Hurewicz map

�0=K.H�; z//=n�2.�0=K.H�; z//!H2.�0=K.H�; z/;Z=nZ/;

and the inverse of the isomorphism

H 2.K;H2.�0=K.H�/;Z=nZ//!H 2.K;H2.�0=K.H�; z/;Z=nZ//

induced by the weak equivalence �0=K.H�/! �0=K.H�; z/. Finally, for every
a 2X.hK/ let aH� 2 �0.�0=K.H�/�K / denote its image under the canonical map
X.hK/! �0.�0=K.H�/

�K /.
Now let us start the proof in earnest. Because ˛n.c/D 0 there is a line bundle

L on X such that the image of its isomorphism class under the coboundary map
Pic.X/DH 1.X;Gm/!H 2.X; �n/ is c. Let � W Y ! X denote the total space
of L with the zero section removed; then Y is a Gm-torsor over X whose class in
H 1.X;Gm/ is the same as the class of L. It will be enough to show that˚

ı
H�
1

�
�X=K.x/

H� ; �X=K.y/
H�
�
n
; d
	
n

is zero for every étale hypercovering H� of X and every

d 2H 0.K;H 2.�0=K.H�/; �n//

whose image is �n.c/ with respect to the homomorphism

H 0.K;H 2.�0=K.H�/; �n//!H 0.K;H 2.X; �n//

induced by the pullback map H 2.�0=K.H�/; �n/!H 2.X; �n/.
Fix such a hypercovering H�, and let ��.H�/ denote the pullback of H� onto

Y with respect to � . Note that �n.��.c//D 0; in fact even ��.c/D 0. Indeed, the
latter follows as the pullback of the torsor � W Y !X onto Y with respect to � is
trivial: the diagonal Y ! Y �X Y is a section. Let

d 0 2H 0.K;H 2.�0=K.�
�.H�//; �n//
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be the image of d with respect to the homomorphism

H 0.K;H 2.�0=K.H�/; �n//!H 0.K;H 2.�0=K.�
�.H�//; �n//

induced by � . As the image of d 0 is �n.��.c// under the pullback

H 0.K;H 2.�0=K.�
�.H�//; �n//!H 0.K;H 2.Y ; �n//

by naturality, we get that there is a morphism f W I�! ��.H�/ of étale hypercov-
erings of Y such that f �.d 0/ 2H 0.K;H 2.�0=K.I�/; �n// is zero.

Let z 2 Y.K/ be arbitrary. (There are such points; for example, the fibre above
x contains K-rational points.) Let z 2 Y.K/ denote the geometric point lying
above z, corresponding to the choice of algebraic closure K � K. Note that the
image of the canonical map from �1.Y ; z/! �0=K.I�; z/, which is well-defined
by Proposition 3.10, is finite. Therefore by Remark 6.9 there are two points
x0 and y0 in Y.K/ whose images under � are x and y, respectively, such that
�X=K.x

0/I�; �X=K.y
0/I� 2 �0.�0=K.I�/

�K / have the same image under the map

�0.�0=K.I�/
�K /! �0.P1.�0=K.I�//

�K /

induced by truncation. So by the above the obstruction class

ı
I�
1 .�Y=K.x

0/I� ; �Y=K.y
0/I�/ 2H 2

�
K;�2.�0=K.I�; z//

�
is well-defined. By naturality of obstruction classes it will be enough to show that˚

ı
I�
1 .�Y=K.x

0/I� ; �Y=K.y
0/I�/n; f

�.d 0/
	
n
D 0:

But this is clear since f �.d 0/ is zero. �

Lemma 10.5. Let X be a geometrically irreducible smooth quasiprojective variety
over K. For every n 2 N, every c 2H 2.X; �n/ and every x; y 2 X.K/ such that
�X=K.x/�1 �X=K.y/, we have

.�X=K.x/; c/n D .�X=K.y/; c/n D) fıX1 .�X=K.x/; �X=K.y//n; �n.c/gn D 0:

Proof. By a theorem of Gabber (see Theorem 1.1 of [de Jong 2013]) there is an
Azumaya algebra A on X which represents ˛n.c/ 2H 2.X;Gm/. Without loss of
generality we may assume that A has rank n by enlarging n if it is necessary, since
for every pair of positive integers n jm the mapH 2.K;�n/!H 2.K;�m/ induced
by the inclusion map �n � �m is injective. Let � W Y ! X be the PGLn-torsor
corresponding to A, that is, the torsor whose class in H 1.X;PGLn/ is the same
as the class of A. Let � 2 H 1.K;PGLn/ be the class of the fibre of Y over x
and let �� W Y � ! X be the twist of � W Y ! X by � . Then the fibre of Y �

over x is a trivial PGLn-torsor. Because .x; c/n D .y; c/n and the natural map
H 1.K;PGLn/! H 2.K;�n/ is injective, we get that the fibre of Y � over y is



Étale homotopy equivalence of rational points on algebraic varieties 851

also a trivial PGLn-torsor. So there are points x0 and y0 in Y � .K/ whose images
under �� are x and y, respectively. By Remark 6.9 we may even assume that
�Y �=K.x

0/ �1 �Y �=K.y
0/. So by Lemma 10.2 and the naturality of obstruction

classes it will be enough to show that˚
ıY

�

1 .�Y �=K.x
0/; �Y �=K.y

0//n; �n..�
� /�.c//

	
n
D 0:

In order to do so, it will be enough to show that

˛n..�
� /�.c//D .�� /�.˛n.c//D 0

by Lemma 10.4. But this is clear since the pullback of the torsor � W Y � !X onto
Y � with respect to �� is trivial: the diagonal Y � ! Y � �X Y

� is a section. �

Notation 10.6. For every quasiprojective variety Y overK consider the Hochschild–
Serre spectral sequence

E2p;q DH
p.K;H q.Y ; �n//)HpCq.Y; �n/:

Because H 3.K;�n/D 0 (for example by local Tate duality), the coboundary map

d30;2 WE
3
0;2!E33;0 �H

3.K;�n/

is zero and therefore
E10;2 DE

3
0;2 D Ker.d20;2/:

Therefore the spectral sequence furnishes an exact sequence

H 2.Y; �n/
�n
���!H 0.K;H 2.Y ; �n//

dn
���!H 2.K;H 1.Y ; �n//;

which is functorial. Here dn is the coboundary map d20;2 W E
2
0;2 ! E22;1 and �n

is the quotient map H 2.Y; �n/ ! E10;2 Š Ker.d20;2/ by the highest step in the
filtration on H 2.Y; �n/ induced by the spectral sequence.

Lemma 10.7. Let X be a geometrically irreducible smooth quasiprojective variety
over K and let x; y 2X.K/ be étale-Brauer equivalent. Then there is a connected
finite étale cover f W Y !X such that:

(i) There are Qx; Qy 2 Y.K/ such that f . Qx/D x; f . Qy/D y, and Qx; Qy are Brauer-
equivalent.

(ii) For every c 2H 0.K;H 2.X; �n// we have dn.f �.c//D 0.

Proof. Let � be aK-valued point ofX . Let K be the intersection of the kernels of all
continuous homomorphisms �1.X; �/!Z=nZ. Because �1.X; �/ is topologically
finitely generated, the subgroup K is open and characteristic. Let K0 � �1.X; �/ be
the subgroup generated by K and by the image of an element of sX=K.x/; this is an
open subgroup. Let f W Y ! X be the connected finite étale cover such that the
image of �1.Y / with respect to �1.f / is K0. By construction there is an Qx 2 Y.K/



852 Ambrus Pál

such that f . Qx/D x. Because x and y 2X.K/ are étale-Brauer equivalent, there is
a Qy 2 Y.K/ such that f . Qy/D y, and Qx; Qy are Brauer-equivalent. Recall that by the
universal coefficient theorem

0�!Ext1.Hn.V; yZ/;Z=nZ/�!Hn.V;Z=nZ/
en
���!Hom.Hn.V; yZ/;Z=nZ//!0

for every variety V over K, where the map en is induced by the evaluation pairing
and the Ext groups are for the category of pro-groups. In particular there is a natural
isomorphism H 1.V;Z=nZ/ Š Hom.H1.V; yZ/;Z=nZ//. Therefore the pullback
map f � WH 1.X;Z=nZ/!H 1.Y ;Z=nZ/ is zero. Because the map dn is functorial,
the claim now follows. �

Assume that X.K/¤∅. For every x; y 2X.hK/ such that x�1 y, let �X1 .x; y/
denote the image of the obstruction class ıX1 .x; y/ under the homomorphism

H� WH
2.K; �2.X//!H 2.K;H2.X; yZ//

induced by the Hurewicz map

H W �2.X/!H2.X; yZ/:

Proposition 10.8. Let X be a geometrically irreducible smooth quasiprojective
variety over K, and let x; y 2X.K/ be étale-Brauer equivalent. Then we have

�X1 .�X=K.x/; �X=K.y//D 0:

Note that the claim is meaningful because �X=K.x/�1 �X=K.y/ by Lemma 8.7.

Proof. It will be enough to show that

ıX1 .�X=K.x/; �X=K.y//n D 0

for every n 2 N. By the universal coefficient theorem quoted above and by local
Tate duality, every element of H 2.K;H2.X;Z=nZ// annihilated by the pairing
f � ; � gn must be zero. So it will be enough to show that

fıX1 .�X=K.x/; �X=K.y//n; cgn D 0

for every c 2 H 0.K;H 2.X; �n//. Let f W Y ! X and Qx; Qy 2 Y.K/ be as in
Lemma 10.7. By Lemma 10.2 and the naturality of obstruction classes it will be
enough to show that

fıY1 .�Y=K.x
0/; �Y=K.y

0//n; f
�.c/gn D 0

for every c 2 H 0.K;H 2.X; �n//. Because dn.f �.c// D 0, this claim follows
from Lemmas 8.6 and 10.5. �

The following result is Theorem 1.1 of the introduction:
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Theorem 10.9. Let K be a finite extension of Qp , and let X be a smooth quasipro-
jective variety over K. Then étale-Brauer equivalence and H -equivalence coincide
on X.K/.

Proof. Let x; y 2 X.K/ be étale-Brauer equivalent. We need to show that they
are H -equivalent. We may assume without loss of generality that X is geomet-
rically irreducible. We already noted that �X=K.x/ �1 �X=K.y/. Also note that
by Theorem 7.6 it will be enough to show that ıX1 .�X=K.x/; �X=K.y// D 0 since
the cohomological dimension of K is 2, so in this case the obstruction classes
ıXn .�X=K.x/; �X=K.y// will be zero for every n� 2, too.

Fix an element s of sX=K.x/. For every open characteristic subgroup K of
�1.X; �/ let K0 � �1.X; �/ be the subgroup generated by K and the image of s;
this is an open subgroup. Moreover, for every such K let fK W YK ! X be the
connected finite étale cover such that the image of �1.Y / with respect to �1.fK/

is K0. By construction there is an xK 2 YK.K/ such that fK.xK/ D x. Because
x and y are étale-Brauer equivalent, there is a yK 2 YK.K/ such that fK.yK/D y,
and xK; yK are étale-Brauer equivalent. By the naturality of the obstruction classes,
the cohomology classes

�
YK
1 .xK; yK/ 2H

2.K;H2.Y K; yZ//

furnish an element of lim.Y;y0/2Fet.X;x0/H
2.K;H2.Y; yZ//, where x0 is a K-valued

point of X , which is the image of ıX1 .x; y/ with respect to the map

H 2.K; �2.X//ŠH
2

�
K; lim

.Y;y0/2Fet.X;x0/
H2.Y; yZ/

�
�! lim

.Y;y0/2Fet.X;x0/
H 2.K;H2.Y; yZ//

furnished by the map bX ı aX , which is an isomorphism by Theorem 4.3. By
Proposition 10.8 the classes �YK

1 .xK; yK/ are zero, and hence the theorem holds. �

11. H -equivalence over the field of real numbers

Definition 11.1. Let X be any scheme. Recall that a quadratic space over X is a
vector bundle E over X , that is, a locally free OX -module of finite rank, and an
isomorphism h W E! E�, where E� denotes the dual of E, which is symmetric, that
is, the composition

E �! E��
h�

���! E�

is equal to h, where the first map is the natural isomorphism of E with its bidual,
and h� is the dual of h. In the special case when X D Spec.K/, for K a field, this
concept is the same as the concept of a nondegenerate quadratic form over K.
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Definition 11.2. Consider the case when K D R. By Sylvester’s theorem every
nondegenerate quadratic form q over R is isomorphic to a diagonal form

h1; 1; : : : ; 1„ ƒ‚ …
m

;�1; : : : ;�1„ ƒ‚ …
n

i;

and the ordered pair .m; n/ only depends on the isomorphism class of q. Let
�.q/DmCn denote the rank of q and let �.q/Dm�n denote the signature of q,
respectively. By the above, nondegenerate forms over R are classified by their rank
and signature. Let X be a smooth variety over R, let U � X.R/ be a connected
component, and let qD .E; h/ be a quadratic space overX . Then for every x2U the
pullback x�.q/ has the same signature, which we will call the signature of q on U .

Theorem 11.3. LetX be a smooth variety over R which is either affine or projective.
Let U; V �X.R/ be two different connected components. Then there is a quadratic
space q D .E; h/ over X such that the signature of q on U is zero and the signature
of q on V is nonzero.

Proof. See Theorem 1.1.1 in [Mahé 1982] for the affine case, and the main result
of [Houdebine and Mahé 1982] for the projective case. �

Definition 11.4. LetK be a field whose characteristic is not 2. Every nondegenerate
quadratic form q is isomorphic to a diagonal form

ha1; a2; : : : ; ani:

The Stiefel–Whitney classes of the form q above are defined as the cup product
(see [Milnor 1970])

w.q/D 1Cw1.q/C � � �Cwn.q/D .1C ı.a1//.1C ı.a2// � � � .1C ı.an//;

where wi .q/ 2H i .K;Z=2Z/ and

ı WK�!H 1.K;Z=2Z/

is the boundary map of the Kummer exact sequence

0 �! Z=2Z �! Gm
x 7!x2

�����! Gm �! 0:

The Stiefel–Whitney classes are independent of the diagonalisation of q.

Remark 11.5. Assume again that K is the field of real numbers. Then as a graded
algebra

H�.R;Z=2Z/Š F2Œt �;
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where t is the generator of the group H 1.R;Z=2Z/ of order two. Let q be a
nondegenerate quadratic form q over R isomorphic to a diagonal form

h1; 1; : : : ; 1„ ƒ‚ …
m

;�1; : : : ;�1„ ƒ‚ …
n

iI

then by the above

w.q/D .1C t /n D 1Cnt C � � �C tn:

Esnault, Kahn and Viehweg [Esnault et al. 1993] constructed Stiefel–Whitney
classes for any quadratic space q D .E; h/ over a ZŒ1=2�-scheme X , which lives in
mod-2 étale cohomology

wi .q/ 2H
i .X;Z=2Z/;

is functorial over the category of ZŒ1=2�-schemes, and specialises to the construction
above when X is the spectrum of a field. We will use these classes to separate
connected components of real points of varieties defined over R.

Proposition 11.6. Let X be a smooth variety over R which is either affine or
projective. Let U; V � X.R/ be two different connected components. Then there
is a natural number i and a cohomology class c 2H i .X;Z=2Z/ over X such that
for every x 2 U the pullback x�.c/ 2H i .R;Z=2Z/ is zero and for every x 2 V the
pullback x�.c/ 2H i .R;Z=2Z/ is nonzero.

Proof. By Theorem 2.9 and Proposition 2.10, there is a c 2 H 0.X;Z=2Z/ such
that x�.c/ 2H 0.R;Z=2Z/ is zero for every x 2 U and y�.c/ 2H 0.R;Z=2Z/ is
nonzero for every y 2 V if U and V lie on two different connected components of
X.C/. Therefore we may assume that X is geometrically connected without loss of
generality. Let q D .E; h/ be a quadratic space over X such that the signature of
q on U is zero and the signature of q on V is nonzero. We may assume that the
signature of q on V is negative by taking .E;�h/ instead, if necessary. Because X
is connected, the rank of the vector bundle E is constant on X . This rank is even,
say 2m, because the signature of q on U is zero. Then the signature of q on V is
2m�2n, where n is a positive integer bigger thanm. By Remark 11.5 above, we have
x�.wn.q//D wn.x

�.q//D 0 for every x 2 U and x�.wn.q//D wn.x�.q//D tn

for every x 2 V . The claim follows. �

Definition 11.7. For every morphism of sites m W C! C0, let m� W C0! C denote
the functor underlying m. Let C be a Grothendieck site. A left action ˛ of a group
� on C is a morphism ˛.g/ W C! C of sites for each g 2 � such that ˛.1/ is
the identity map of C and ˛.gh/ D ˛.g/ ı ˛.h/ for every g; h 2 � . When � is
profinite, we say that the action ˛ is continuous if for every morphism h W U ! V

in C there is an open subgroup � of � such that ˛.g/�.U /D U; ˛.g/�.V /D V
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and ˛.g/�.h/D h for every g 2�. Assume now that � is a profinite group. By a
�-site .C; ˛/ we mean a Grothendieck site C with a continuous left action ˛ of �
on C. As usual we will drop ˛ from the notation whenever this is convenient.

Example 11.8. A basic example of a �-site is the Grothendieck site �-Sets,
where the coverings are surjective maps, equipped with the left action ˛ such
that ˛.g/�.U /D U for every object U of �-Sets and every g 2 � , and for every
morphism h W U ! V and g 2 � the map ˛.g/�.h/ W U ! V is given by the rule
x 7! gh.x/. By a slight abuse of notation we will let �-Sets denote this �-site, too.

Definition 11.9. Let .C; ˛/ be a �-site. A �-invariant object of .C; ˛/ is an object
U of C such that ˛.g/�.U /D U for every g 2 � . A �-equivariant morphism of
.C; ˛/ is a morphism h W U ! V of C such that U and V are �-invariant objects
and h ı˛.g/�.idU /D ˛.g/�.idV / ıh for every g 2 � . Let C� denote the category
whose objects are �-invariant objects of C and whose morphisms are �-equivariant
maps between these. Since the composition of �-equivariant morphisms are �-
equivariant, with these morphisms C� is indeed a category. Let T denote the
Grothendieck topology of the site C; that is, for every object U of C let T .U /

denote the collection of covering sieves of U . We say that a sieve S on U 2 ob.C�/
is �-invariant if for every V 2 ob.C/ and every h 2 S.V / there is a W 2 ob.C�/, a
morphism h0 2 S.W / which is �-equivariant, and a morphism h00 W V !W such
that hD h0 ıh00. For every �-invariant S as above, let S� denote the sieve on U in
the category C� given by the rule

S�.V /D S.V /\HomC� .V; U /:

For every U 2 ob.C�/ let T �.U / denote the following collection of sieves S in
the category C� :

T �.U /D fS� j S is in T .U / and is �-invariantg:

Example 11.10. Let K be a field and let �K D Gal.KjK/ denote the absolute
Galois group of K as above. Let X be a locally Noetherian scheme over K and
let C denote the small étale site of the base change of X to K. Then C is naturally
equipped with the structure of a �K-site, induced by the action of �K on K. By
étale descent the category C�K is equivalent to the small étale category of X and
T �K is the étale topology of X on it. In particular T �K is a Grothendieck topology.

Definition 11.11. Assume now that C satisfies the conditions in Chapters 8 and 9
of [Artin and Mazur 1969] and T � is a Grothendieck topology on C� . In particular
we suppose that C is closed under finite coproducts and that it is locally connected
in the sense of [Artin and Mazur 1969, Sections 9.1–9.2, pp. 111–112]. Let U
be a �-invariant object of .C; ˛/. Then � acts on the set �0.U / of connected
components of U and this action makes �0.U / into a �-set. Let ��.U / denote
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this �-set. We say that a simplicial object of C is �-invariant if it is a simplicial
object of C� . If X� is a �-invariant simplicial object of .C; ˛/, then the face and
degeneracy maps of X� induce �-equivariant maps between the �-set ��.Xn/
which makes the collection f��.Xn/g1nD1 into an object of �-SSets, which we will
denote by ��.X�/. Since the site .C� ;T �/ inherits the good properties of the site
C, we may apply [Artin and Mazur 1969, Corollary 8.13(i), p. 105] to conclude
that the functor

X� 7! ��.X�/

above induces an object of Pro-Ho.�-SSets/. We will call the later the�-equivariant
homotopy type of C and denote it by ….C/.

Remark 11.12. Let K;�K and X be as in Example 11.10, and let C denote the
small étale site of the base change of X to K, as above. Then the �K-equivariant
homotopy type of C is just the relative étale homotopy type Et=K.X/ of X as
defined by Harpaz and Schlank.

Example 11.13. Assume now that � is a finite group and let X be a locally con-
nected, Hausdorff, paracompact topological space equipped with a continuous left
�-action. Let C be the ordinary site on the coproducts of open subsets of X . Then
C is naturally equipped with the structure of a �-site, induced by the action of
� on X . Moreover, the quotient �nX of X by the action of � is also a locally
connected, Hausdorff, paracompact topological space, and the category C� is the
category of coproducts of open subsets of �nX and T � is the ordinary site of �nX
on it. In particular T � is a Grothendieck topology.

Definition 11.14. Let � and X be as above. We say that X is �-contractible if
there is a subgroup �� � such that the quotient �=�, equipped with the discrete
topology and the natural left �-action, is �-equivariantly homotopy-equivalent
to X . Assume now that every open subset of X is paracompact, and that X is
locally �-equivariantly contractible; that is, for every (finite) orbit O 2X and every
�-invariant open U �X containing O there an open �-invariant and �-contractible
V �X such that V � U and O � V .

Note that when � is finite �-SSets is just the usual category of simplicial sets
with a �-action, and moreover Goerss’ notion of homotopy fixed point spaces
coincides with the usual one. Also note that the singular complex S�X of X is
equipped with an action of � which makes it an object of �-SSets.

Theorem 11.15. Let U� be a �-invariant hypercovering of C such that every �-
orbit of connected components of every Un is �-contractible. Then the simplicial
�-set ��.U�/ is isomorphic to the simplicial �-set S�X in Ho.�-SSets/.
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Proof. Let S�Un denote the singular complex of Un. Then S�U� is a bisimplicial
object in �-Sets. We denote by .DU /� its diagonal simplicial �-set .DU /n D
SnUn. Then we have obvious maps of simplicial �-sets

.DU /�
˛

yy

ˇ

$$
��.U�/ S�X

and we claim that these two maps are homotopy equivalences in Ho.�-SSets/,
which will prove the theorem.

For every subgroup � � � and every �-set Y , let Y � denote the subset of Y
fixed by �. Similarly, for every simplicial �-set Y� let Y �� denote the simplicial
set fY �n g

1
nD1 such that the face and degeneracy maps are the restrictions of such

maps of the simplicial set Y�. By the definition of the strict model structure we
need to show that the maps

.DU /��
˛j
.DU/��

yy

ˇ j
.DU/��

%%
��.U�/

� .S�X/
�

of simplicial sets are homotopy equivalences in Ho.SSets/ for every � as above.
Note that for every �-invariant hypercovering V� of X the simplicial object

V �� in the category of disjoint unions of open sets of the closed subspace X� of
X is a hypercovering, too, since it is the pullback of the hypercovering V� onto
X� with respect to the inclusion map. Because the Un are �-contractible we
have ��.U�/� D �0.U�� /. Moreover, every �-invariant singular simplex of X
must lie in X�, so .S�X/� is the singular complex S�X� of X�. Similarly let
S�U

�
n denote the singular complex of U�n . Then S�U�� is a bisimplicial set. We

denote by .DU�/� its diagonal simplicial set .DU�/n D SnU�n . Then we have
.DU /�� D .DU

�/�, so we only need to show that the analogues

.DU�/�

˛�

yy

ˇ�

$$
�0.U

�
� / S�X

�

of the maps ˛ and ˇ for the topological space X� are homotopy equivalences in
Ho.SSets/ for every � as above. Since every �-orbit of connected components
of every Un is �-contractible, the connected components of U�n are contractible.
Similarly, X� is locally contractible, since X is locally �-contractible. Because
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X� is a closed subspace of a paracompact topological space, it is also paracompact.
The claim now follows from [Artin and Mazur 1969, Theorem 12.1, p. 129]. �

Corollary 11.16. Let C be the ordinary site on the coproducts of open subsets of a
Hausdorff topological space X equipped with a continuous left �-action. Assume
that every open subset of X is paracompact and that X is locally �-equivariantly
contractible. Then the pro-object ….C/ is canonically isomorphic to the element
S�X in Pro-Ho.�-SSets/.

Proof. Because those �-invariant hypercoverings U� of C such that every connected
component of every Un is �-contractible are cofinal by assumption, the claim
follows immediately. �

Definition 11.17. Let again � be an arbitrary profinite group. A morphism m W

.C; ˛/! .C0; ˛0/ of �-sites is a morphism of sites m W C! C0 such that for every
g 2 � and every morphism h W U ! V of C0 we have

˛.g/�.m�.U //Dm.˛0.g/�.U //;

˛.g/�.m�.V //Dm�.˛0.g/�.V //;

˛.g/�.m�.h//Dm�.˛0.g/�.h//:

For every such m, the underlying functor m� carries �-invariant hypercoverings to
�-invariant hypercoverings, and so it furnishes a map

….m/ W….C/!….C0/

in Pro-Ho.�-SSets/ (when these are defined). The map….m/ in turn induces a map

….m/.E�/ W….C/.E�/!….C0/.E�/

of homotopy fixed points.

Definition 11.18. A �-invariant point (or more conveniently �-point) of a �-site
.C; ˛/ is a morphism p W �-Sets! C� of �-sites. Note that the composition of
p� and the functor �-Sets! Sets forgetting the �-action is a point of the site
C in the sense of [Artin and Mazur 1969, Sections 8.3-8.4, pp. 95–96], which
perhaps justifies our terminology. We will let C.�/ denote the set of �-points
of .C; ˛/. Note that the homotopy type ….�-Sets/ is contractible (this is clear
from Corollary 11.16, too), so the set ….�-Sets/.E�/ has one element. For every
p 2C.�/ let �C.p/2….C/.E�/ denote the image of….�-Sets/.E�/ with respect
to ….p/. Clearly

�C W C.�/!….�-Sets/.E�/

is a natural transformation.
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Example 11.19. Let K, �K DGal.KjK/, X and C be as in Example 11.10. Since
the small étale site of Spec.K/ is isomorphic to �K-Sets as a �K-site, every K-
valued point ofX supplies a �K-point of the site C. Therefore the map �C introduced
above is a generalisation of the map �X=K . Similarly, if � is a finite group, X is
a locally connected, Hausdorff, paracompact topological space equipped with a
continuous left �-action and C is as in Example 11.13, then every point of X fixed
by � furnishes a �-point of the site C, and hence the restriction of �C onto X� is a
map X� !….C/.E�/.

Proposition 11.20. Let K be the field R of real numbers, and let X be a variety
over K. Then two K-rational points of X are H -equivalent if they are in the same
connected component of the topological space X.K/.

Proof. Let � D �K D Gal.KjK/ be the group of two elements, and let C0 denote
the small étale site of the base change of X to K. Moreover, let C be the ordinary
site on the coproducts of open subsets of X.K/ with respect to its usual topology.
In addition to these �-sites we also introduce the �-site C00 whose objects are
topological spaces X 0 lying over the topological space of X.K/ such that the
map X 0 ! X is a local isomorphism, i.e., such that every point x 2 X 0 has a
neighbourhood which is isomorphic onto its image. Since any étale map of schemes
X 0!X over K is a local isomorphism on the underlying topological spaces, and
since an open set is in C00, we have morphisms of �-sites

C00

m

~~

m0

  
C C0

Now it is clear from the definition of local isomorphisms that every �-invariant
hypercovering of C00 is dominated by a �-invariant hypercovering of C. Thus the
map….m/ W….C00/!….C/ is a homotopy equivalence in Pro-Ho.�-SSets/, and so

….m/.E�/ W….C00/.E�/!….C/.E�/

is a bijection. Therefore by the naturality of the maps �C; �C0 and �C00 it will be enough
to show that for every pair x; y ofK-rational points ofX lying in the same connected
component of the topological space X.K/ we have �C.x/D �C.y/. Let f W Œ0; 1�!
X.K/ be a continuous path connecting x with y; that is, we have f .0/D x and
f .1/Dy. By naturality again it will be enough to show that �D.0/D �D.1/, where D

is the ordinary site on the coproducts of open subsets of Œ0; 1�with respect to its usual
topology, equipped with the trivial �-action. But the interval Œ0; 1� is contractible to
a point �-equivariantly, so ….D/.E�/ is a one-element set by Corollary 11.16. �
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Remark 11.21. It is not difficult to push the arguments of this proof a little bit
further to prove an equivariant version of [Artin and Mazur 1969, Theorem 12.9,
p. 142], using an equivariant analogue of the profinite completion functor, but we
will not pursue this further since it would take us too far away from our original
project. However in a forthcoming publication we will in fact prove such a claim
in a much more general context.

The following result is Theorem 1.2 of the introduction:

Theorem 11.22. Let K be the field R of real numbers, and let X be a smooth affine
or projective variety over K. Then two K-rational points of X are H -equivalent if
and only if they are in the same connected component of the topological spaceX.K/.

Proof. By Lemma 8.5 and Proposition 11.6, two H -equivalent real points of X
must be in the same component. On the other hand, by Proposition 11.20 two real
points of X in the same connected component must be H -equivalent. �

12. The homotopy section principle

Notation 12.1. Recall that for every field of characteristic zero the topological
Gal.KjK/-module yZ.1/ is defined as the projective limit lim

 ��n2N
�n, where the

directed set structure on N is furnished by divisibility and for every m; n 2 N such
that m j n the transition map �n!�m is multiplication by n=m. For every number
fieldK let jKj denote the set of places ofK, and for every v 2 jKj letKv denote the
completion ofK with respect to v. For every v 2 jKj fix an embedding jv WK!Kv
of K-extensions. For every k 2 N and every discrete Gal.KjK/-module M let
Xk.K;M/ denote the subgroup

Xk.K;M/D Ker
� Y
v2jKj

jv� WH
k.K;M/!

Y
v2jKj

Hk.Kv;M/

�
of Hk.K;M/, where jv� denotes the restriction map induced by jv for every
v 2 jKj. For every topological Gal.KjK/-module M which is a projective limit
lim
 ��i2I

Mi of discrete Gal.KjK/-modules let Xk.K;M/ denote lim
 ��i2I

Xk.K;Mi /.

Lemma 12.2. We have X2.K; yZ.1//D 0 for every number field K.

Proof. By [Milne 1986, Theorem 4.10(a), p. 70] the group X2.K; yZ.1// is zero if
and only if X1.K;Q=Z/ is, where we equip Q=Z with the discrete topology and the
trivial Gal.KjK/-action. We may identify X1.K;Q=Z/ with the kernel of the map

Hom.�K ;Q=Z/!
Y
v2jKj

Hom.�Kv ;Q=Z/

furnished by restriction onto the family of subgroups �Kv of �K for all v 2 jKj.
The claim now follows from the Chebotarev density theorem. �
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Proposition 12.3. Assume that K is a number field and X.K/ is nonempty. For
every x; y 2X.hK/ such that x �2 y we have

x D y () rv�.x/D rv�.y/ .v 2 jKj, v is real/:

Proof. The product of the restriction mapsY
v2jKj
v is real

jv� WH
n.K;M/!

Y
v2jKj
v is real

Hn.Kv;M/

is injective for every integer n � 3 and every discrete Galois module M over K
by [Milne 1986, Theorem 4.10(c), p. 70]. Hence for every n� 2 and every pair of
sections x; y 2X.hK/ such that x �n y we get that

ıXn .x; y/D 0 () ıXvn .rv�.x/; rv�.y//D 0 .v 2 jKj, v is real/

from naturality of the obstruction classes. The claim now follows from Theorem 7.6.
�

Definition 12.4. Let K be for a moment any field of characteristic zero. Recall
that two points x; y 2X.K/ are called directly R-equivalent if there is a rational
map f W P1KÜ X of K-varieties such that f .0/ D x and f .1/ D y. The R-
equivalence on X.K/ is the equivalence relation generated by direct R-equivalence.
LetX.K/=R denote the equivalence classes of this relation. Note thatA-equivalence
coincides with R-equivalence when X is projective by the valuative criterion of
properness. In this case let

�X=K;R WX.K/=R!X.hK/

be the map furnished by Proposition 7.8.

Notation 12.5. It is particularly interesting to study X.K/=R through the map
�X=K;R when K is a number field. For every variety X defined over K and every
v 2 jKj let Xv denote the base change of X to Spec.Kv/. For every v 2 jKj the
embedding jv furnishes a map

rv� WX.hK/!Xv.hKv/

by functoriality. Let AK D
Q0
v2jKjKv denote the ring of adèles of K. Let X.hAK/

denote the image of X.AK/ with respect to the mapY
v2jKj

�Xv=Kv WXv.Kv/!
Y
v2jKj

Xv.hKv/:
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We define the set Sel.X=K/ of Selmer homotopy fixed points of X to be

Sel.X=K/D
� Y
v2jKj

rv�

��1
.X.hAk//�X.hK/:

We are interested in the following natural generalisation of the Shafarevich–Tate
conjecture:

Homotopy section principle (HSP). Assume thatX is smooth and projective. Then
the map

X.K/=R
�X=K;R
������! Sel.X=K/ (12.5.1)

is injective and its image is dense with respect to the pro-discrete topology of
Sel.X=K/.

The claim above is obviously true ifX does not have local points everywhere, and
hence HSP should be considered as a new form of the local-global principle. The
next proposition shows that HSP is indeed a generalisation of standard conjectures
of this sort:

Proposition 12.6. Let K be a number field.

(a) HSP holds for Brauer–Severi varieties and for nonsingular quadratic hyper-
surfaces H � PnK of positive dimension.

(b) Let X be a smooth, geometrically connected projective curve X of genus at
least two over K. Then HSP holds for X if and only if a weak (local-global)
form of Grothendieck’s section conjecture holds for X .

(c) Let X be an abelian variety over K. Then HSP holds for X if and only if the
Shafarevich–Tate conjecture holds for X .

Proof. First assume that X is either a Brauer–Severi variety or a nonsingular
quadratic hypersurface of positive dimension. When Sel.X=K/ is empty there
is nothing to prove. Assume now that Sel.X=K/ is nonempty: then X.AK/ is
nonempty, too. Because the local-global principle holds for X we get that X.K/ is
also nonempty. In this case X.K/=R consists of one element, and hence it will be
enough to show that Sel.X=K/ also has one element. Let x; y2Sel.X=K/. Because
for every v 2 jKj the set Xv.Kv/=R has one element, we get that rv�.x/D rv�.y/
for every such v.

By [Artin and Mazur 1969, Corollary 12.13, p. 144] we know that XK is weakly
homotopy equivalent to XC. Because �1.X.C// D f1g (either because XC is
isomorphic to Pn

C
for nD dim.X/ or by the Lefschetz hyperplane section theorem),

we get �1.XK/D f1g by Theorem 2.9. Therefore x �1 y. Moreover,

�2.XK/DH2.XK ;
yZ/D Hom.H 2.XK ;

yZ/; yZ/
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by [Artin and Mazur 1969, Corollary 6.2, p. 70]. WhenX is a Brauer–Severi variety,
since it has a rational point it is isomorphic to PnK . Therefore H 2.XK ;

yZ/Š yZ.�1/,
and hence �2.XK/Š yZ.1/. Because rv�.x/D rv�.y/ for every v 2 jKj, we have
ıX2 .x; y/ 2X2.K; �2.XK//, so this obstruction class vanishes by Lemma 12.2.
So we get that x �2 y.

When X is a quadratic hypersurface of dimension at least 3, its embedding
X ! PnC1K as such a hypersurface induces an isomorphism

H 2.XK ;
yZ/ŠH 2.PnC1

K
; yZ/Š yZ.�1/

by the Lefschetz hyperplane section theorem, and hence we may conclude as above
that x �2 y. The only remaining case is of a quadratic surface. In this case either

H 2.XK ;
yZ/Š yZ.�1/˚ yZ.�1/;

when both pencils of lines on X are defined over K, or it is the induction of yZ.�1/
from a quadratic extension ofK. Clearly in the first case the group X2.K; �2.XK//

still vanishes by Lemma 12.2, while in the second case this claim follows from
Shapiro’s lemma and Lemma 12.2. Again we get that x �2 y. Claim (a) now
follows from Proposition 12.3.

Assume now that X is a smooth, geometrically connected projective curve of
genus at least two over K. Then there is a commutative diagram

X.K/
sX=K
����! Sec.X=K/??y ??yQ

v2jKj

Xv.Kv/

Q
v2jKj

sXv=Kv

���������!
Q
v2jKj

Sec.Xv=Kv/

where the vertical maps are the obvious maps. The weak local-global form of
Grothendieck’s section conjecture asserts that the diagram above is cartesian. We
also know that in this case sX=K is injective and by Faltings’ theorem X.K/ is finite.
In particular, in this case the map in (12.5.1) has dense image if and only if it is
surjective.

Let’s assume first that the weak local-global form of Grothendieck’s section con-
jecture holds for X , and show that HSP holds for X . This is trivial when Sel.X=K/
is empty, so we may assume that Sel.X=K/ is nonempty. Then Sec.X=K/ has an
element whose image in

Q
v2jKj Sec.Xv=Kv/ lies in the image of

Q
v2jKj sXv=Kv ,

and hence X.K/ is nonempty, by our assumption. The claim now follows from
Corollary 5.5 and Lemma 7.7. Let us prove the converse. We may assume that
Sec.X=K/ has an element whose image in

Q
v2jKj Sec.Xv=Kv/ lies in the image

of
Q
v2jKj sXv=Kv without loss of generality. By the main theorem of [Harpaz and
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Schlank 2013] for smooth projective varieties, the set Sel.X=K/ is nonempty if
and only if the étale-Brauer set of X is. In our case the latter is nonempty (see [Stix
2011]), so we get that Sel.X=K/ is nonempty, too. So by our hypothesis X.K/
is nonempty, so the claim follows from Corollary 5.5 and Lemma 7.7. Claim (b)
is settled.

Finally, consider the case when X is an abelian variety over K. By Corollary 5.5
and Lemma 7.7 the map jX=K is a bijection. Moreover, there is a natural bijection

Sec.X=K/ŠH 1

�
K;

Y
l is prime

Tl.X/

�
; (12.6.1)

where Tl.X/ denotes the l-th Tate module of X , and under this identification sX=K
corresponds to the coboundary map furnished by Kummer theory. In particular
�X=K is injective.

The image of Sel.X=K/�X.hK/ with respect to the composition of jX=K and
the isomorphism of (12.6.1) is Sel.K;X/tor, where Sel.K;X/ is the Selmer group of
X over K. The quotient of Sel.K;X/tor by the closure of the image of X.K/ under
the coboundary map is X.K;X/tor, where X.K;X/ is the Tate–Shafarevich group
of X over K. Since the group X.K;X/Œn� is finite for every positive integer n, the
group X.K;X/tor is trivial if and only if X.K;X/ is finite. So claim (c) holds. �

Remark 12.7. It is tempting to believe that HSP should hold for every smooth pro-
jective variety because of its very general form, but this is not true. The fundamental
reason is the Harpaz–Schlank theorem quoted above, which implies that if HSP
holds for X then the Brauer–Manin obstruction applied to étale covers is the only
obstruction for the Hasse principle. Since now there are many counterexamples
to this claim (see [Poonen 2010; Harpaz and Skorobogatov 2014; Colliot-Thélène
et al. 2013]) we get that there are two- and three-dimensional counterexamples to
HSP. However we can offer some positive results; see Theorems 13.3, 13.7 and 14.8
in the next two sections.

13. Geometrically rational and birational surfaces

Lemma 13.1. LetX be a smooth, projective, geometrically rational surface defined
over a number field K. Then the group X2.K; �2.X// is finite.

Proof. There is a finite Galois extension LjK such that the action of Gal.LjL/ on
Pic.X/ is trivial. Hence X1.L;Pic.X/˝Q=Z/ D 0 by the Chebotarev density
theorem (see the proof of Lemma 12.2), where we equip Q=Z with the discrete
topology and the trivial Gal.KjK/-action. As the image of X1.K;Pic.X/˝Q=Z/

lies in X1.L;Pic.X/˝Q=Z/ with respect to the restriction map

H 1.K;Pic.X/˝Q=Z/!H 1.L;Pic.X/˝Q=Z/;
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the group X1.K;Pic.X/˝Q=Z/ lies in the image of the inflation map

H 1.Gal.LjK/;Pic.X/˝Q=Z/!H 1.K;Pic.X/˝Q=Z/:

Since H 1.Gal.LjK/;Pic.X/˝Q=Z/ is finite, we get that X1.K;Pic.X/˝Q=Z/

is finite too. We have �1.X/D �1.P2
K
/D f1g because the étale fundamental group

is a birational invariant. Hence

�2.X/DH2.X; yZ/D Hom.H 2.X;Q=Z/;Q=Z/

D Hom.Pic.X/˝Q=Z;Q=Z˝yZ
yZ.1//

by [Artin and Mazur 1969, Corollary 6.2, p. 70] and the fact that for a geometrically
rational surface X the étale Chern class map

c1 W Pic.X/˝Q=Z!H 2.X;Q=Z˝yZ
yZ.1//

is an isomorphism. Hence by [Milne 1986, Theorem 4.10(a), p. 70] there is a
perfect duality between X2.K; �2.X// and X1.K;Pic.X/˝Q=Z/. The claim is
now clear. �

For every s 2 Sel.X=K/, let Sel0.s/ � Sel.X=K/ denote the preimage ofQ
v2jKj rv�.s/ with respect to the map

Q
v2jKj rv�.

Lemma 13.2. LetX be a smooth, projective, geometrically rational surface defined
over a number field K such that X.K/ ¤ ∅, and let s 2 Sel.X=K/. Then the
cardinality of Sel0.s/ is at most the order of X2.K; �2.X//.

Proof. By Proposition 12.3 it will be enough to show that the number of equivalence
classes of the relation �2 in Sel0.s/ is at most the order of X2.K; �2.X//. For
every x; y 2 Sel0.s/ at least we have x �1 y by Theorem 7.6, since �1.X/D f1g,
and so jSec.X=K/j D 1. Moreover, ıX1 .x; y/ 2X2.K; �2.X// by the naturality
of obstruction classes. But

ıX1 .x; y/D ı
X
1 .x; s/� ı

X
1 .y; s/;

so the claim follows from the pigeonhole principle. �

Theorem 13.3. Let X be a smooth, projective, geometrically rational surface
defined over a number field K such that X.K/¤∅. Then Sel.X=K/ is finite.

Because we expect that X.K/=R is finite for such an X and K, this result should
be also expected, assuming that HSP holds for X .

Proof. Because for every archimedean v 2 jKj the topological space Xv.Kv/ has
only finitely many connected components, the set Xv.Kv/=H is finite for such v by
Theorem 1.2. Since �1.X/Df1gwe get that Brauer equivalence andH -equivalence
coincide on Xv.Kv/ for every nonarchimedean v 2 jKj by Theorem 1.1. Hence by
[Bloch 1981, Corollary A.2, p. 55] the set Xv.Kv/=H is finite for every v 2 jKj.
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Moreover, Xv.Kv/=H has at most one element when v is nonarchimedean and X
has good reduction at v by [Bloch 1981, Corollary A.3, p. 55]. Hence we may
conclude that the set

Q
v2jKjXv.Kv/=H is finite. So we only need to show that

the map Y
v2jKj

rv� W Sel.X=K/!
Y
v2jKj

Xv.Kv/=H

is finite-to-one. This follows from Lemmas 13.1 and 13.2. �

Lemma 13.4. Let X and Y be smooth projective surfaces over a field K, and let
� WX ! Y be a composition of monoidal transformations over K. Then the map
�� WX.K/=R! Y.K/=R induced by � is a bijection.

Proof. We may immediately reduce to the case when � is the blow-up of an
irreducible subvariety S � Y of dimension zero by induction on the number of
blow-ups in some sequence of contractions X ! X1 ! � � � ! Xn D Y whose
composition is � . If S has no K-valued points then ��1.S/ has no K-valued
points either and the map �� is obviously a bijection. Otherwise S consists of one
K-valued point. In this case ��1.S/ is isomorphic to P1K and the claim is clear. �

Lemma 13.5. Let X and Y be smooth projective surfaces over the field R, and let
� W X ! Y be a composition of monoidal transformations over R. Then the map
�� W �0.X.R//! �0.Y.R// induced by � is a bijection.

Proof. The argument is the same as above. �

Proposition 13.6. Let X and Y be smooth geometrically irreducible projective
surfaces over a number field K and let � WX ! Y be a composition of monoidal
transformations over K. Assume that Y is simply connected and Y.K/¤∅. Then
the map �� W Sel.X=K/! Sel.Y=K/ induced by � is injective.

Proof. Note that X.K/ ¤ ∅, since X is birational to Y . Again we may assume
without loss of generality that � is the blow-up of an irreducible subvariety of
dimension zero. Let x; y 2 Sel.X=K/ be such that ��.x/D ��.y/. Because the
map induced by � between the fundamental groups is an isomorphism, we get that
x�1 y. Also note that by Theorem 7.6 it will be enough to show that ıX1 .x; y/D 0,
since by Lemma 13.5 and Theorem 1.2 we have rv�.x/ D rv�.y/ for every real
place v of K, so the higher obstruction classes ıXn .x; y/ will vanish for every n� 2
by Proposition 12.3.

By the Hurewicz theorem

�2.X/ŠH2.X; yZ/ŠH2.Y ; yZ/˚Ker.H2.�//Š �2.Y /˚Ker.H2.�//;

where
H2.�/ WH2.X; yZ/!H2.Y ; yZ/
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is induced by � . Because � is the blow-up of a single closed point, the module
Ker.H2.�// is the induction of yZ.1/ from a finite extension of K. Therefore
X2.K;Ker.H2.�// vanishes by Lemma 12.2 and Shapiro’s lemma. Therefore
ıX1 .x; y/ is zero by the naturality of obstruction classes. �

Theorem 13.7. Let � W X ! Y be a composition of monoidal transformations
between geometrically irreducible smooth projective surfaces over K. Assume that
Sel.Y=K/ is finite, Y is simply connected, the set Y.K/ is nonempty, and HSP
holds for Y over K. Then Sel.X=K/ is finite and HSP holds for X over K, too.

This result can be used to supply many examples of surfaces satisfying HSP, for
example blow-ups of Châtelet surfaces; see Theorem 14.8 below.

Proof. By Proposition 13.6 the set Sel.X=K/ injects into Sel.Y=K/, so it is finite.
Let x; y 2X.K/ be H -equivalent. Then �.x/ and �.y/ are H -equivalent elements
of Y.K/, so they are R-equivalent, since HSP holds for Y . Therefore x and y are
also R-equivalent by Lemma 13.4. We get that the map

�X=K WX.K/=R! Sel.X=K/ (13.7.1)

is injective. Let s be an element of Sel.X=K/. Because Sel.Y=K/ is finite, the
topology on it is discrete. Therefore there is a y 2 Y.K/ such that �Y=K.y/D��.s/.
Let x 2X.K/ be such that �.x/Dy. Then ��.�X=K.x//D �Y=K.y/D��.s/, so by
Proposition 13.6 we get that �X=K.x/D s, so the map in (13.7.1) is also surjective. �

14. Generalised Châtelet surfaces

Notation 14.1. For every torus S defined over a field K of characteristic zero let
C.S/ denote the Gal.KjK/-module of its cocharacters, and for every scheme X
over K let

ı WH 1.X; S/!H 2.X; C.S/˝ yZ.1//

be the projective limit of the coboundary maps

ın WH
1.X; S/!H 2.X; SŒn�/

furnished by the corresponding Kummer exact sequences, where SŒn� denotes the
n-torsion subgroup scheme of S . Note that, when K is a number field, ı maps
X1.K; S/ into X2.K;C.S/˝ yZ.1//. Let

ı0 WX
1.K; S/!X2.K;C.S/˝ yZ.1//

be the restriction of ı onto X1.K; S/.
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Lemma 14.2. Let S be a torus defined over a field K of characteristic zero.

(i) The map ı WH 1.K; S/!H 2.K;C.S/˝ yZ.1// is injective.

(ii) The map ı0 WX1.K; S/!X2.K;C.S/˝ yZ.1// is bijective when K is a
number field.

Proof. First note that for every field K of characteristic zero and for every torus S
defined over K the cohomology group H 1.K; S/ has finite exponent. In fact there
is a finite Galois extension LjK such that the action of Gal.LjL/ on C.S/ is trivial.
Hence H 1.L; S/D 0 by Hilbert’s theorem 90. Therefore H 1.K; S/ is the image
of H 1.Gal.LjK/; S/ under the inflation map. But the group H 1.Gal.LjK/; S/ is
annihilated by the order of Gal.LjK/. The first claim also follows.

Now we prove that ı0 is also surjective when K is a number field. Let LjK
be a finite Galois extension of the type above and assume that the degree of this
extension ism. By the Albert–Brauer–Hasse–Noether theorem the group X2.L; S/

is trivial, and hence X2.K; S/ is annihilated by multiplication by m, since it is a
subquotient of H 2.Gal.LjK/; S/. The cokernel of the restriction

ınjX1.X;S/ WX
1.X; S/!X2.X; SŒn�/ (14.2.1)

of ın onto X1.X; S/ is a subgroup of X2.X; S/. Therefore the map in (14.2.1)
surjects onto mX2.X; SŒn�/ by the above. Claim (ii) now follows by taking
the limit. �

Definition 14.3. We say that a smooth geometrically irreducible projective surface
X defined over a field K of characteristic zero is a generalised Châtelet surface if
there is an a 2K� and a separable polynomial P 2KŒx� of degree 4 such that X
is a smooth compactification of the affine surface given by the equation

y2� az2 D P.x/

over K. For the sake of brevity we will frequently drop the adjective ‘generalised’
when we talk about generalised Châtelet surfaces.

Proposition 14.4. LetX be a Châtelet surface defined over a number fieldK. Then
for every s 2 Sel.X=K/ there is an x 2X.K/ such that �Xv=Kv .iv.x//D rv�.s/ for
every v 2 jKj.

Proof. Let S be a finite subset of jKj which contains every archimedean place of
K and every nonarchimedean place of K where X does not have good reduction.
For every v 2 jKj choose an xv 2 Xv.Kv/ such that �Xv=Kv .xv/ D rv�.s/. By
[Colliot-Thélène et al. 1987b, Theorem 8.6(b), p. 87] for every v 2 jKj there is
an open neighbourhood Uv �Xv.Kv/ of xv contained by the R-equivalence class
of xv in Xv.Kv/. Because

Q
v2jKj xv 2 X.AK/

Br by the easy direction of the
Harpaz–Schlank theorem, there is an x 2 X.K/ such that iv.x/ 2 Uv for every
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v 2 S by [ibid., Theorem 8.11(c), p. 92]. Clearly �Xv=Kv .iv.x//D rv�.s/ for every
v 2 S . Because for every v 2 jKj � S the set X.K/=R consists of one element
by [ibid., Theorem 8.6(c), p. 87], we get that �Xv=Kv .iv.x// D rv�.s/ for every
v 2 jKj �S as well. �

Definition 14.5. For every smooth projective geometrically irreducible variety X
defined over a field K let CH0.X/ denote the Chow group of zero-dimensional
cycles on X , and let A0.X/ denote the kernel of the degree map deg WCH0.X/!Z.
Fix a point x 2X.K/. Then there is a map‰x WX.K/=R!A0.X/ which for every
y 2 X.K/ maps the R-equivalence class of y to Œy�� Œx�. When K is a number
field let X1A0.X/ denote the subgroup of those elements c of A0.X/ such that
the base change of c to Kv is the zero element of A0.Xv/ for every v 2 jKj. Now
let X be a Châtelet surface, let S be a torus over K whose group of characters
is isomorphic to Pic.X/ as a Gal.KjK/-module and let T be a universal torsor
over X . Then we have a map

�T WX.K/!H 1.K; S/

which associates to every P 2X.K/ the class of the fibre of T at P . Moreover, there
is a unique homomorphismˆT WA0.X/!H 1.K; S/ such that for every y 2X.K/
we haveˆT.Œy��Œx�/D �T.y/��T.x/ (see [ibid., p. 88]). In particular the map �T

factors through R-equivalence; let �T;R WX.K/=R!H 1.K; S/ be the map which
sends the R-equivalence class of every y 2X.K/ to �T.y/. When K is a number
field, ˆT maps X1A0.X/ into X1.K; S/. Let ˆ0 WX1A0.X/!X1.K; S/ be
the restriction of ˆT onto X1A0.X/.

Theorem 14.6 (Colliot-Thélène, Sansuc, Swinnerton-Dyer). Let X be a Châtelet
surface, let T be a universal torsor over X and let x 2X.K/.

(i) The map �T;R is an injection.

(ii) The map ‰x is a bijection.

(iii) When K is a number field the map ˆ0 is a bijection.

Proof. The map �T;R is injective by [Colliot-Thélène et al. 1987b, Theorem 8.5(a),
p. 86]. Claim (ii) is true by [ibid., Theorem 8.8, p. 89] while claim (iii) holds by
[ibid., Theorem 8.10, p. 91]. �

Let X be a Châtelet surface over a number field K. Then for every x 2 X.K/
let R0.x/ � X.K/=R denote the set of those R-equivalences classes s such that
for every y 2 s the points x; y 2Xv.Kv/ are R-equivalent for every v 2 jKj.

Corollary 14.7. For every X , K and x as above, the set R0.x/ has the same
cardinality as X1.K; S/.
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Proof. Note that ‰x maps R0.x/ into X1A0.X/. Therefore it will be enough to
show that the induced map

‰xjR0.x/ WR0.x/!X1A0.X/ (14.7.1)

is a bijection by part (iii) of Theorem 14.6. It is injective by part (ii) of Theorem 14.6.
Let s 2X1A0.X/ be arbitrary; by part (ii) of Theorem 14.6 there is a y 2X.K/
such that Œy�� Œx� is s. Because ‰x is a bijection over Kv for every v 2 jKj by
part (ii) of Theorem 14.6, we get that the points x; y 2Xv.Kv/ are R-equivalent
for every v 2 jKj. Therefore the map in (14.7.1) is surjective, too. �

Theorem 14.8. LetK be a number field and letX be a generalised Châtelet surface
over K. Then HSP holds for X .

Remark 14.9. According to [Colliot-Thélène et al. 1987a, Remark 8.10.2, p. 91]
there is a Châtelet surfaceX defined over a number fieldK on which R-equivalence
is strictly finer than Brauer equivalence. Hence by Theorem 14.8 we get that H -
equivalence is finer than étale-Brauer equivalence over number fields. Moreover,
there are two rational points x; y 2X.K/ such that x; y 2Xv.Kv/ areH -equivalent
for every v 2 jKj, but x and y are not H -equivalent over K. The theorem above is
also interesting because it covers a whole class of varieties X for which HSP holds,
but which are not homogeneous spaces; moreover, every R-equivalence class of
X.K/ is Zariski-dense (see [Colliot-Thélène et al. 1987b, Theorem 8.5(b), p. 86])
and, by [Colliot-Thélène et al. 1987b, Theorem 8.13, p. 95], the set X.K/=R could
be arbitrarily large for X defined over Q.

Proof of Theorem 14.8. Because Châtelet surfaces are geometrically rational it will
be both necessary and sufficient to show that the map

�X=K;R WX.K/=R! Sel.X=K/

is a bijection by Theorem 13.3. Let c 2 H 1.X; S/ be the cohomology class
corresponding to the universal torsor � W T ! X . Let x; y 2 X.K/ be in two
different R-equivalence classes. By part (i) of Theorem 14.6 the pullback classes
x�.c/; y�.c/ 2H 1.K; S/ are different. Therefore the classes

ı.x�.c//D x�.ı.c//; ı.y�.c//D y�.ı.c// 2H 2.K;C.S/˝ yZ.1//

are also different by part (i) of Lemma 14.2. Therefore x and y are notH -equivalent
by Lemma 8.5. The injectivity of �X=K;R follows.

Now we prove that it is surjective, too. Let s 2 Sel.X=K/. By Proposition 14.4
there is an x 2 X.K/ such that �Xv=Kv .iv.x// D rv�.s/ for every v 2 jKj. Note
that �X=K;R maps R0.x/ into Sel0.s/. Therefore it will be enough to show that the
induced map

�X=K;RjR0.x/ WR0.x/! Sel0.s/ (14.9.1)
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is a bijection. By the above this map is injective, so it will be enough to show that the
cardinality of Sel0.s/ is at most X2.K;C.S/˝ yZ.1// by part (ii) of Lemma 14.2
and Corollary 14.7. By the definition of S we have that

C.S/˝ yZ.1/D Hom.Pic.X/;Z/˝ yZ.1/D Hom.Pic.X/˝ yZ; yZ.1//:

We already noted in the proof of Lemma 13.1 that

�2.X/D Hom.Pic.X/˝ yZ; yZ.1//; so �2.X/D C.S/˝ yZ.1/:

Therefore it will be enough to show that the cardinality of Sel0.s/ is at most
X2.K; �2.X//. But this is the content of Lemma 13.2. �
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Fermat’s last theorem over
some small real quadratic fields

Nuno Freitas and Samir Siksek

Using modularity, level lowering, and explicit computations with Hilbert modular
forms, Galois representations, and ray class groups, we show that for 3� d � 23,
where d ¤ 5; 17 and is squarefree, the Fermat equation xn C yn D zn has no
nontrivial solutions over the quadratic field Q.

p
d/ for n� 4. Furthermore, we

show that for d D 17, the same holds for prime exponents n� 3; 5 .mod 8/.

1. Introduction

Interest in the Fermat equation

xn
Cyn

D zn (1)

over various number fields goes back to the 19th and early 20th centuries, with the
work of Maillet (1897) and Furtwängler (1910) [Dickson 1920, pages 758 and 768].
However, until the current work, the only number fields for which Fermat’s last the-
orem has been proved are Q and Q.

p
2/. These proofs are respectively due to Wiles

[1995] (as consequence of his ground-breaking proof of modularity of semistable
elliptic curves over Q) and to Jarvis and Meekin [2004]. The precise statements are
that if K DQ and n� 3 or K DQ.

p
2/ and n� 4, then the only solutions to (1)

in K are the trivial ones satisfying xyz D 0. In [Freitas and Siksek 2015], it is
shown that for five-sixths of real quadratic fields K, there is a bound BK such that
for prime exponents n� BK , the only solutions to the Fermat equation (1) over K

are the trivial ones. This paper is concerned with proving Fermat’s last theorem for
several other real quadratic fields. Our main results are the following two theorems.

Theorem 1. Let 3� d � 23 be squarefree with d ¤ 5; 17. Then the Fermat equa-
tion (1) does not have any nontrivial solutions over Q.

p
d / with exponent n� 4.
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Theorem 2. The Fermat equation (1) has no nontrivial solutions over Q.
p

17/ for
prime exponents n� 5 satisfying n� 3; 5 .mod 8/.

Remark. For nD 3, equation (1) defines an elliptic curve having rank 0 over Q; it
does, however, have positive rank over some of the quadratic fields in the statement
of Theorem 1. We therefore impose n� 4.

It is sufficient to prove Theorem 1 for exponents n D 4; 6; 9, and for prime
exponents n D p � 5. In fact, all solutions to the Fermat equation in quadratic
fields for nD 4; 6; 9 have been determined by Aigner [1934; 1957]. These are all
defined over imaginary quadratic fields except for the trivial solutions. We may
therefore restrict our attention to prime exponents nD p � 5.

Let d � 2 be a squarefree positive integer, and let K DQ.
p

d /, and write OK

for its ring of integers. By the Fermat equation with exponent p over K, we mean
the equation

ap
C bp

C cp
D 0; a; b; c 2OK : (2)

A solution .a; b; c/ is called trivial if abc D 0, otherwise it is nontrivial. For
p D 5; 7; 11, all solutions of degree at most .p � 1/=2 have been determined by
Gross and Rohrlich [1978, Theorem 5]. It turns out that the only nontrivial quadratic
solutions are permutations of .1; !; !2/, where ! is a primitive cube root of unity.
For pD 13, the same was shown to be true by Tzermias [2004]. We shall therefore
henceforth assume that p � 17.

A brief overview of the method and difficulties. As in the proof of Fermat’s last
theorem over Q and Q.

p
2/, let .a; b; c/ be a nontrivial solution to the Fermat

equation (2), and consider the Frey elliptic curve

Ea;b;c W Y
2
DX.X � ap/.X C bp/: (3)

Write EDEa;b;c and denote by N�E;p its mod p Galois representation. An essential
fact to the proof of Fermat’s last theorem over Q and Q.

p
2/ is the modularity of

the Frey curve. Modularity of elliptic curves over all real quadratic fields is now
known (see [Freitas et al. 2014]). In particular, our Frey curve Ea;b;c is modular
over K. The proof of Fermat’s last theorem over Q and Q.

p
2/ makes essential

use of the fact that it is always possible to scale and permute the hypothetical
nontrivial solution so that not only are a, b, c algebraic integers, but they are
also coprime, and they satisfy additional 2-adic restrictions; over Q, these are
a � �1 .mod 4/ and 2 j b. In both cases, a suitable choice of scaling produces
a semistable Frey curve Ea;b;c . Applying suitable level-lowering results to the
modular Galois representation N�E;p shows that it arises from an eigenform of level 2

for Q, and a Hilbert eigenform of level
p

2 for Q.
p

2/. There are no eigenforms at
these levels, giving a contradiction and completing the proof for both fields.



Fermat’s last theorem over some small real quadratic fields 877

It should be possible to carry out the same level lowering strategy over any real
quadratic field K. To build on this and prove Fermat’s last theorem over K there
are, however, three principal difficulties:

(a) Verifying the irreducibility of N�E;p; this is required for applying level lowering
theorems.

(b) Computing the newforms at the levels predicted by conductor computations
and level lowering; in general, these levels depend on the class and unit groups
of K and are not of small norm.

(c) Dealing with the newforms found at these levels; in general, these spaces will
be nonzero.

In [Freitas and Siksek 2015], it is shown that these difficulties disappear for p>CK ,
where CK is some inexplicit constant, for five-sixths of real quadratic fields K. In
this paper, we show how to deal with (a), (b), (c) for the fields in the statement of
Theorem 1. For K DQ.

p
d / with d D 5; 17, our method for (c) fails. However,

for d D 17, we are still able to prove Fermat’s last theorem for half of exponents p

using an argument of Halberstadt and Kraus [2002], yielding Theorem 2.

For K D Q, it follows from Mazur’s celebrated theorem on isogenies [1978]
that N�E;p is irreducible for the Frey curve E and p � 5. The analogue of Mazur’s
theorem is not known for any other number field. However, Kraus shows that for K,
a real quadratic field of class number 1, and E, a semistable elliptic curve over K, if
N�E;p is reducible, then p � 13 or ramifies in K or p j NormK=Q.u

2� 1/, where u

is a fundamental unit of K. It is possible to give corresponding bounds for p when
the class group is nontrivial and E has some fixed set of additive primes (see for
example [David 2012]), although these bounds are considerably worse. In Section 6,
we overcome these difficulties for the fields in Theorem 1 through explicit class
field theory computations. Without this, we would not have been able to deal with
small exponents p.

Assuming modularity of the Frey curve, it should be possible to apply the
same strategy to the Fermat equation over many totally real fields, although the
computation of newforms for totally real fields with either large degree or large
discriminant is likely to be impractical. In Section 9, we illustrate this by looking
at Q.

p
30/ and Q.

p
79/. At the end of that section, we also include a comparison

between the recipes of the current paper and those of [Freitas and Siksek 2015],
illustrating the need for the improvements in the current work.

The computations in this paper were carried out on the computer algebra system
Magma [Bosma et al. 1997]. In particular, we have used Magma’s Hilbert modular
forms package (for the theory see [Dembélé and Donnelly 2008] and [Dembélé and
Voight 2013]) and class field theory package (due to C. Fieker).
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Notational conventions. Throughout, p denotes an odd rational prime, and K a
totally real number field, with ring of integers OK . We write S for the set of prime
ideals in OK dividing 2. For a nonzero ideal a of OK , we denote by Œa� the class
of a in the class group Cl.K/. For a nontrivial solution .a; b; c/ to the Fermat
equation (2), let

Ga;b;c WD aOK C bOK C cOK ; (4)

and let Œa; b; c� denote the class of Ga;b;c in Cl.K/. We exploit the well-known fact
(e.g., [Cassels and Fröhlich 1967, Theorem VIII.4]) that every ideal class contains
infinitely many prime ideals. Let r D #.Cl.K/=Cl.K/2/. Let m1D 1 �OK , and fix,
once and for all, odd prime ideals m2; : : : ;mr such that Œm1�; : : : ; Œmr � represent
the cosets of Cl.K/=Cl.K/2. Let

HD fm1; : : : ;mr g:

Let GK D Gal.K=K/. For an elliptic curve E=K, we write

N�E;p WGK ! Aut.EŒp�/Š GL2.Fp/ (5)

for the representation of GK on the p-torsion of E. For a Hilbert eigenform f of
parallel weight 2 over K, we let Qf denote the field generated by its eigenvalues.
In this situation, $ will denote a prime of Qf above p; of course, if Qf DQ, we
write p instead of $ . All other primes we consider are primes of K. We reserve
the symbol P for primes belonging to S , and m for primes belonging to H. An
arbitrary prime of K is denoted by q, and Gq and Iq are the decomposition and
inertia subgroups of GK at q.

2. Level lowering

We need a level lowering result that plays the role of the Ribet step [1990] in the
proof of Fermat’s last theorem. The following theorem is deduced in [Freitas and
Siksek 2015] from the work of Fujiwara [2006], Jarvis [2004] and Rajaei [2001].

Theorem 3. Let K be a real quadratic field, and E=K an elliptic curve of con-
ductor N . Let p be a rational prime. For a prime ideal q of K denote by �q the
discriminant of a local minimal model for E at q. Let

Mp WD

Y
q jN ;

p j�q.�q/

q and Np WD
N
Mp

: (6)

Suppose the following:

(i) Either p � 5, or K DQ.
p

5/ and p � 7.

(ii) E is modular.
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(iii) N�E;p is irreducible.

(iv) E is semistable at all q jp.

(v) p j �q.�q/ for all q jp.

Then, there is a Hilbert eigenform f of parallel weight 2 that is new at level Np and
some prime $ of Qf such that $ jp and N�E;p � N�f;$ .

3. Scaling and the odd part of the level

Let .a; b; c/ be a nontrivial solution to the Fermat equation (2). Let Ga;b;c be as
given in (4), which we think of as the greatest common divisor of a, b, c. An
odd prime not dividing Ga;b;c is a prime of good or multiplicative reduction for
Ea;b;c and does not appear in the final level Np, as we see in due course. An odd
prime dividing Ga;b;c exactly once is an additive prime and does appear in Np . To
control Np, we need to control Ga;b;c .

Scaling. We refer to page 878 for the notation.

Lemma 3.1. Let .a; b; c/ be a nontrivial solution to (2). There is a nontrivial
integral solution .a0; b0; c0/ to (2) and some m 2H such that the following hold:

(i) For some � 2K�, we have a0 D �a, b0 D �b, c0 D �c.

(ii) Ga0;b0;c0 Dm � r2, where r is an odd prime ideal with r¤m.

(iii) Œa0; b0; c0�D Œa; b; c�.

Proof. Recall that HD fm1; : : : ;mr g and that Œm1�; : : : ; Œmr � represent the cosets
of Cl.K/=Cl.K/2. Thus for some m 2H, we have Œa; b; c�D Œm� � Œb�2, where b is
a fractional ideal. Now every ideal class is represented by infinitely many prime
ideals. Thus there is an odd prime ideal r ¤ m such that Œa; b; c� D Œm� � Œr�2. It
follows that m �r2D .�/ �Ga;b;c for some � 2K�. Let a0, b0, c0 be as in (i). Note that

.a0/D .�/ � .a/Dm � r2
�G�1

a;b;c � .a/;

which is an integral ideal since Ga;b;c (by its definition) divides a. Thus a0 is in OK

and similarly so are b0 and c0. For (ii) and (iii), note that

Ga0;b0;c0Da0OKCb0OKCc0OKD.�/�.aOKCbOKCcOK /D.�/�Ga;b;cDm�r2: �

Behaviour at odd primes. For u; v; w2OK such that uvw¤0 and uCvCwD0, let

E W y2
D x.x�u/.xC v/: (7)

The invariants c4, c6, �, j have their usual meanings and are given by

c4 D 16.u2
� vw/D 16.v2

�wu/D 16.w2
�uv/;

c6 D�32.u� v/.v�w/.w�u/; �D 16u2v2w2; j D c3
4=� :

(8)
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The following elementary lemma is a straightforward consequence of the proper-
ties of elliptic curves over local fields (e.g., [Silverman 1986, §VII.1 and §VII.5]).

Lemma 3.2. With the above notation, let q − 2 be a prime and let

s Dminf�q.u/; �q.v/; �q.w/g:

Write Emin for a local minimal model at q.

(i) Emin has good reduction at q if and only if s is even and

�q.u/D �q.v/D �q.w/: (9)

(ii) Emin has multiplicative reduction at q if and only if s is even and (9) fails to
hold. In this case, the minimal discriminant �q at q satisfies

�q.�q/D 2�q.u/C 2�q.v/C 2�q.w/� 6s:

(iii) Emin has additive potentially multiplicative reduction at q if and only if s is
odd and (9) fails to hold.

(iv) Emin has additive potentially good reduction at q if and only if s is odd and (9)
holds. Moreover, E acquires good reduction over a quadratic extension of Kq.

The odd part of the level. Let .a; b; c/ be a nontrivial solution to the Fermat equa-
tion (2) with odd prime exponent p. Write E for the Frey curve in (3). Let N be
the conductor of E and let Np be as defined in (6). Recall that S is the set of prime
ideals P dividing 2. We define the even parts of N and Np by

N even
D

Y
P2S

P�P.N / and N even
p D

Y
P2S

P�P.Np/:

We define the odd parts of N and Np by

N odd
D

N
N even and N odd

p D
N

N even
p

:

Lemma 3.3. Let .a; b; c/ be a nontrivial solution to the Fermat equation (2) with
odd prime exponent p satisfying Ga;b;c Dm �r2, where m2H, and r is an odd prime
ideal such that r¤m. Write E for the Frey curve in (3). Then at all q … S [fmg,
the local minimal model Eq is semistable and satisfies p j �q.�q/. Moreover,

N odd
Dm2

� r0 or 1
�

Y
q jabc

q…S[fm;rg

q and N odd
p Dm2: (10)

Proof. Clearly, if q − 2abc then E has good reduction at q; hence q −N ;Np . Note
also that

minf�r.ap/; �r.bp/; �r.cp/g D 2p:



Fermat’s last theorem over some small real quadratic fields 881

By Lemma 3.2, E has good or multiplicative reduction at r, and in either case,
p j �r.�r/, proving also the correctness of the exponents of r in N and Np.

Recall that m 2H satisfies mD 1 �OK , or m is an odd prime ideal. In the former
case, there is nothing to prove, so suppose that m is an odd prime ideal. As E has
full 2-torsion over K, the wild part of the conductor of E=K at m vanishes (see
[Silverman 1994, page 380]). Moreover,

minf�m.ap/; �m.b
p/; �m.c

p/g D p:

By Lemma 3.2, E=K has additive reduction at m. Thus the exponent of m in
both N and Np is 2.

Suppose that q j abc and q…S[fm; rg. Since Ga;b;cDm �r2, the prime q divides
precisely one of a, b, c. From (8), q − c4 so the model (3) is minimal and has
multiplicative reduction at q, and p j �q.�/. By (6), we see that q −Np. �
Corollary 3.4. Let 2� d � 23 be squarefree and let K DQ.

p
d /. Let .a; b; c/ be

a nontrivial solution to the Fermat equation (2). We may scale .a; b; c/ so that it
remains integral, and

Ga;b;c Dm � r2; N odd
p Dm2;

where

(a) if d ¤ 10, 15 then mD 1 �OK ;

(b) if d D 10 then mD 1 �OK or mD .3; 1C
p

10/;

(c) if d D 15 then mD 1 �OK or mD .3;
p

15/;

and r is an odd prime ideal such that r¤m.

Proof. For 2� d � 23, where d ¤ 10, 15 and is squarefree, we have Cl.K/ is trivial
and so H D f1 �OK g. For d D 10, we have Cl.K/ D fŒ1 �OK �; Œ.3; 1C

p
10/�g,

and we choose H D f1 � OK ; .3; 1 C
p

10/g. For d D 15, we have Cl.K/ D
fŒ1 � OK �; Œ.3;

p
15/�g, and we choose H D f1 � OK ; .3;

p
15/g. The corollary

follows immediately from Lemmas 3.1 and 3.3. �

4. Scaling by units and the even part of the level

In the previous section, we scaled .a; b; c/ so that Ga;b;c Dm �r2, where m2H, and
we computed the odd parts of the conductor N and level Np. Let O�

K
be the unit

group of K. In this section, we study the effect on N and Np of scaling .a; b; c/ by
units. Note that scaling .a; b; c/ by units does not affect Ga;b;c ; it is plain from the
proofs in the previous section that this leaves the odd parts of N and Np unchanged.
Applying an even permutation to .a; b; c/ results in an isomorphic Frey curve,
whereas applying an odd permutation replaces the Frey curve with its twist by �1,
and so has the same effect as scaling .a; b; c/ by �1.
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Lemma 4.1. Suppose K is a quadratic field and 2 is inert in OK . Let PD 2OK ,
and suppose P − abc. Then after suitably permuting .a; b; c/, we have �P.N /D 4.
Moreover, E has potentially good reduction at P.

Proof. We can write K D Q.
p

d /, where d � �3 .mod 8/. Thus OP D Z2Œ!�,
where !2 C ! C 1 D 0. The residue field of P is F2Œ Q!� Š F4. Write A D ap,
B D bp, and C D cp. Now P − ABC and ACBCC D 0. Then A, B, C are
congruent modulo P to 1, !, !2 in some order. By rearranging, we may suppose
that C � !2 .mod P/, and we will decide later on which of A, B are congruent
to 1 and ! modulo P. Let E denote the Frey curve in (3). It follows from (8) that
�P.�/D 4 and �P.c4/ � 5. In particular, �P.j / � 11, and so E has potentially
good reduction at P. Furthermore, the Frey curve is minimal at P and has additive
reduction. We will follow the steps of Tate’s algorithm as in [Silverman 1994,
page 366]. Let QE denote the reduction of E modulo P. It is easy to check that the
point . QC ; Q1/ is singular on QE. Now we shift the model E, replacing X by X CC

and Y by Y C 1, which has the effect of sending the point . zC ; Q1/ on the special
fibre to .Q0; Q0/. Write a1; : : : ; a6 for the a-invariants of the resulting model. Then

a6 D C 3
C .B �A/C 2

�ABC � 1:

By Step 3 of Tate’s algorithm, we know that if P2 − a6 then �P.N /D �P.�/D 4.
Suppose P2 j a6. Now swapping A and B replaces a6 by

a06 D C 3
C .A�B/C 2

�ABC � 1:

Observe that �P.a
0
6
� a6/D �P.2.A�B/C 2/D 1. Hence P2 − a0

6
. Thus we may

always permute A, B, C so that �P.N /D 4. �

Remark. Under the hypotheses of Lemma 4.1, it follows from Ogg’s formula
[Silverman 1994, Section IV.11] that the possible exponents of P in the conductor
are 2, 3, 4. Lemma 4.1 shows that we can always permute the solution so that the
exponent of P in the conductor is 4, avoiding having to compute newforms at the
smaller levels. Unfortunately, we have found that it is not possible by permuting
the solution to force the exponent to be smaller in general.

Lemma 4.2. Suppose K is a quadratic field and let P 2 S . Suppose .a; b; c/ is a
nontrivial solution to the Fermat equation, with P − Ga;b;c . The Frey curve E has
potentially multiplicative reduction at P if and only if

(a) either f .P=2/D 1 (i.e., 2 splits or ramifies in K),

(b) or f .P=2/D 2 (i.e., 2 is inert in K) and P j abc.

Moreover, if the reduction at P is multiplicative then p − �P.�P/.
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Proof. Suppose (a) or (b) holds. We claim that P j abc. If (b) holds, this is true
by hypothesis. If (a) holds, then the residue field at P is F2. It follows from
ap C bp C cp D 0 that P divides at least one of a, b, c, establishing our claim.
Moreover, as P − Ga;b;c , we see that P divides precisely one of a, b, c. Let
t D �P.abc/� 1. By (8),

�P.c4/D 4�P.2/; �P.�/D 4�P.2/C 2pt:

Thus,
�P.j /D 8�P.2/� 2pt < 0 (11)

as p � 17. Thus we have potentially multiplicative reduction at P. The converse
follows from Lemma 4.1.

To complete the proof suppose that the reduction is multiplicative, and let c0
4
; c0

6

and �0 D �P be the corresponding invariants of a local minimal model. Now
P − c0

4
, but j 0 D .c0

4
/3=�0. From (11), p − �P.j /, and hence p − �P.�P/. �

Lemma 4.3. Let KP be a local field and E an elliptic curve over KP with po-
tentially multiplicative reduction. Let c4, c6 be the usual c-invariants of E. Let
LDKP.

p
�c6=c4/ and let �.L=KP/ be the discriminant of this local extension.

Then the conductor of E=KP is

f .E=KP/D

�
1 if �P.�.L=KP//D 0;

2�P.�.L=KP// otherwise:

Proof. Let E0 be the quadratic twist of E by �c6=c4. Then E0 is a Tate curve
(see, for example, [Silverman 1994, Section V.5]). The lemma now follows from
[Rohrlich 1994, Section 18]. �

Lemma 4.4. Let .a; b; c/ be a nontrivial solution to the Fermat equation such that
Ga;b;c is odd. Suppose 2 is either split or ramified in K, or that 2 is inert and 2 j abc.
Let

bD
Y
P2S

P2�P.2/C1;

and write

ˆ WO�K ! .OK=b/
�=..OK=b/

�/2

for the natural map. Choose a set �1; : : : ; �k 2OKnb that represent the elements
of the cokernel of ˆ. For 1� i � k, and for P 2 S , let �.i/P be the discriminant of
the local extension KP.

p
�i/=KP, and let

�
.i/
P D

�
1 if �P.�

.i/
P /D 0,

2�P.�
.i/
P / otherwise:
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Then we may scale .a; b; c/ by an element of O�
K

so that for some i and for every
P 2 S , we have �P.N /D�

.i/
P .

Proof. Write ODOK . By Lemma 4.2, we have potentially multiplicative reduction
at P for all the primes P 2 S . Write c4, c6 for the usual c-invariants of the Frey
curve E. Since Ga;b;c is odd but P j abc for all P 2 S , we have from (8) and the
relation ap C bp C cp D 0 that �P.c4/ D 4�P.2/ and �P.c6/ D 6�P.2/. Write

 D�c6=4c4. Then 
 2O�P for all P 2 S , and

KP.
p

 /DKP.

p
�c6=c4/:

Now the exponent of P in the conductor N of the Frey curve can be expressed by
Lemma 4.3 in terms of the discriminant of the extension KP.

p

 /=KP.

We shall make use of the isomorphism

.O=b/�=..O=b/�/2 Š
Y
P2S

O�P=.O
�
P/

2;

which follows from the Chinese remainder theorem, and Hensel’s lemma. Observe
that scaling .a; b; c/ by a unit � 2O�

K
scales 
 by �p . Now, as p is odd, it follows

from the definition of ˆ and the above isomorphism that we can scale .a; b; c/ by
some � 2O�

K
so that there is some 1� i � k with 
=�i

P a square in OP for each
P 2 S . Therefore,

KP.
p

 /DKP.

p
�i
P /;

and the lemma follows from Lemma 4.3. �

Remark. Let u be the fundamental unit of the real quadratic field K. Observe that
if �2OKnb represents an element of the cokernel ofˆ, then for every integer k, the
same element of the cokernel is also represented by �0D˙uk�. The local extension
KP.
p
�0/=KP depends only on the choice of sign ˙ and the parity of k. To keep

the even part of the level small, we replace each representative � by whichever one
of �, ��, u�, �u� minimizes the norm of the even part of the level Np.

5. Possibilities for Np

Corollary 5.1. Let 2� d � 23 be squarefree and let K DQ.
p

d /. Let .a; b; c/ be
a nontrivial solution to the Fermat equation (2) with odd prime exponent p. We may
scale .a; b; c/ so that it remains integral, Ga;b;c and N odd

p are as in Corollary 3.4
and N even

p DN even is as given in Table 1.

Proof. The proof is a straightforward application of Lemma 4.1 and Lemma 4.4.
When P j abc (which includes all cases where 2 splits or ramifies), the third column
of Table 1 lists our choices �1; : : : ; �k of representatives for the cokernel of ˆ as
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in Lemma 4.4. In these cases, the even part of the conductor N even is given by
Lemma 4.4. �

d S �s
N even D
N even

p

2 PD .
p

2/ 1; �1� 2
p

2 P

3 PD .1C
p

3/
1 P

�1C 2
p

3 P4

5 PD .2/
1; �5C 2

p
5 P

P − abc P4

6 PD .�2C
p

6/
1 P

1C
p

6 P8

7 PD .3C
p

7/
1; 21� 8

p
7 P

�1C 2
p

7; �5C 2
p

7 P4

10 PD .2;
p

10/ 1; 7� 2
p

10 P

11 PD .3C
p

11/
1 P

�1C 2
p

11 P4

13 PD .2/
1; �5C 2

p
13 P

P − abc P4

14 PD .4C
p

14/
1; �3 P

1C
p

14; �3C
p

14 P8

15 PD .2; 1C
p

15/
1; �15C 4

p
15 P

�1C 2
p

15; 7� 2
p

15 P4

17 P1 D
�

3C
p

17
2

�
; P2 D

�
3�
p

17
2

�
1; 17�4

p
17; �9C2

p
17; �5C2

p
17 P1 �P2

19 PD .13C 3
p

19/
1 P

�1C 2
p

19 P4

1; �5C 2
p

21 P

21 PD .2/ .7�
p

21/=2; .3C 3
p

21/=2 P4

P − abc P4

22 PD .14C 3
p

22/
1 P

1C
p

22 P8

23 PD .5C
p

23/
1; 115C 24

p
23 P

�1C 2
p

23; �163� 34
p

23 P4

Table 1. Quantities required for Corollary 5.1 and its proof.
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6. Irreducibility

We begin with a proposition that gathers some well-known facts in the literature.

Proposition 6.1. Let E be an elliptic curve over a number field K and let p be a
rational prime.

(i) If q − p and is a prime of good or multiplicative reduction then

N�E;pjIq �

�
1 �

0 1

�
:

(ii) If p jp and is a prime of good ordinary reduction, or of multiplicative reduction,
then

N�E;pjIp �

�
� �

0 1

�
;

where � is the mod p cyclotomic character.

(iii) If p jp and is a prime of good supersingular reduction with ramification
degree e, then either

N�E;pjIp �

�
 e

2
0

0  
pe
2

�
; (12)

where  2 W Ip! F�
p2 is a level 2 fundamental character, or

N�E;pjIp �

 
 
f
1

0

0  
e�f
1

!
; (13)

where  1 W Ip! F�p is the level 1 fundamental character, and f is some integer
satisfying 0< f < e.

Proof. See [Serre 1972, §1.11, 1.12] and the proof of [Kraus 1996, Lemma 1]. �

Corollary 6.2. Let E be an elliptic curve over a quadratic field K. Let p be a
rational prime. Suppose N�E;p is reducible and E has supersingular reduction at
some p dividing p. Then .p/D p2, and

N�E;pjIp �

�
 1 0

0  1

�
:

Proof. Write e for the ramification degree of p. As K is quadratic, e D 1 or 2. We
apply part (iii) of Proposition 6.1. Suppose first that N�E;pjIp is given by (12). Now
the characters  2 and  2

2
are not Fp-valued, contradicting the reducibility of N�E;p .

It follows that N�E;pjIp is given by (13), where f is an integer satisfying the
inequality 1< f < e. Thus e D 2 and f D 1, completing the proof. �



Fermat’s last theorem over some small real quadratic fields 887

Lemma 6.3. Let E be an elliptic curve over a number field K of conductor N and
let p � 5 be a rational prime. Suppose N�E;p is reducible and write

N�E;p �

�
� �

0 � 0

�
; (14)

where �; � 0 W GK ! F�p are characters. Write N� and N� 0 for the respective
conductors of these characters. Let q be a prime of K with q − p.

(a) If E has good or multiplicative reduction at q then �q.N� /D �q.N 0� /D 0.

(b) If E has additive reduction at q then �q.N / is even and

�q.N� /D �q.N� 0/D 1
2
�q.N /:

Proof. If E has good or multiplicative reduction at q then, by Proposition 6.1(i),
the characters � , � 0 are unramified at q. This immediately implies (a).

Suppose now that E has additive reduction at q. Recall that � D �=� 0, where
� WGK ! F�p is the mod p cyclotomic character. As � is unramified away from p,
and therefore unramified at q, we see that �q.N� /D �q.N� 0/.

Suppose that �q.N� / D �q.N� 0/ D 0; we will deduce a contradiction. Then
� jIq D �

0jIq D 1. It follows that N�E;p.Iq/ has order 1 or p. Suppose first that E

has potentially good reduction at q. Then (see [Kraus 1990, Introduction]), the
order of N�E;p.Iq/ divides 24, and moreover is equal to 1 if and only if E has good
reduction at q. As p � 5, we have a contradiction. We may therefore suppose
that E has potentially multiplicative reduction. It then follows from the theory of
the Tate curve [Silverman 1994, Proposition V.6.1] that # N�E;p.Iq/D 1 or 2. Again
as p � 5, we have that N�E;p.Iq/D 1 and so E has multiplicative reduction at q.
This contradicts the fact that E has additive reduction at q.

Thus �q.N� /D �q.N� 0/D 1C t , where t � 0 is the wild part of these conductors
of the characters at q. As E has additive reduction at q, we can write �q.N /D 2Cı,
where ı is the wild part of conductor of E at q. To prove (b), it is sufficient to
show that ıD 2t . Let Iwq be the wild inertia subgroup at q. As Iwq is a pro-q group,
where q is the rational prime below q, and as p ¤ q, we have

N�E;pjI w
q
�

 
� jI w

q
0

0 � 0jI w
q

!
:

Now the relation ı D 2t follows straightforwardly from the formula [Silverman
1994, page 380] for the wild part of the conductor of E at q. �

Suppose E is as in Lemma 6.3. Observe that Ker � is a K-rational subgroup
of EŒp� of order p. Thus E0 D E=Ker � is a p-isogenous elliptic curve defined
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over K. It is straightforward to show that

N�E0;p �

�
� 0 �

0 �

�
:

Thus by replacing E with a p-isogenous elliptic curve, we may swap � and � 0 in
(14) as we please.

Lemma 6.4. Let p � 17, and let 2� d � 23 be squarefree. Let K DQ.
p

d /. Let
.a; b; c/ be a nontrivial solution to the Fermat equation (2) scaled as in Corollary 5.1.
Then N�E;p is irreducible.

Proof. Suppose that N�E;p is reducible. As E has nontrivial 2-torsion, it gives rise
to a K-point on X0.2p/. The quadratic points on X0.34/ have been determined by
Ozman [� 2015]. These are all defined over Q.i/, Q.

p
�2/ and Q.

p
�15/. Thus

we suppose p � 19.
Let � , � 0, N� , N� 0 be as in Lemma 6.3.
We shall first complete the proof under the assumption that p is coprime to

either N� or N� 0 . After swapping � and � 0, we can assume that p is coprime to N� .
It follows from Lemma 6.3 that N� is the square root of the additive part of the
conductor N . From Lemma 3.3, we know that the odd additive part is m2 where
the possibilities for m are as in Corollary 3.4. The even additive part of N can be
deduced from Table 1. For the cases where 2 is inert and 2 − abc, the even part of
the conductor is N even D .2/4 (after appropriate scaling of .a; b; c/) by Lemma 4.1.

Thus for each d , we have a small list of possibilities for N� . Let11 and12

be the two real places of K. It follows that � is a character of the ray class group
for the modulus N�1112. Using Magma, we computed this ray class group in all
cases and found it to be one of the following groups:

0; Z=2Z; Z=4Z; Z=2Z�Z=2Z; Z=2Z�Z=4Z:

The order of � divides the exponent of the group, and so it is 1, 2 or 4. If � has order 1,
then E has a point of order p over K. The possibilities for p-torsion over quadratic
fields have been determined by Kamienny, Kenku and Momose (see [Kamienny
1992, Theorem 3.1]) and their results imply that p � 13, giving a contradiction. If
� has order 2, then E has a point of order p over a quadratic extension L=K. The
field L has degree 4 over Q. The possibilities for p-torsion over quartic fields have
been determined by Derickx, Kamienny, Stein and Stoll [Derickx et al. � 2015] and
their results imply that p � 17, again giving a contradiction. Suppose � has order
4. Let L be the unique quadratic extension of K cut out by �2. Now � D � jGL

is a
quadratic character. Twisting E=L by � gives an elliptic curve defined over L with
a point of order p. As before, p � 17. This completes the proof if p is coprime to
either N� or N� 0 .
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From now on we assume that neither N� nor N� 0 is coprime to p. Observe
that E is semistable at all p jp. We shall divide into cases according to whether p

is inert, splits or is ramified in K.

(a) Suppose first that p is inert in K. It follows from Corollary 6.2 that E cannot
have good supersingular reduction at pD .p/. Thus E has either good ordinary or
multiplicative reduction at p. By Proposition 6.1(ii), we see that one of �; � 0 is un-
ramified at p. It follows that one of N� , N� 0 is coprime to p, giving a contradiction.

(b) Suppose now that p ramifies in K. This means that d D p and d is either 19 or
23. Let p be the unique prime above p in K. If E has good ordinary or multiplicative
reduction at p then we obtain a contradiction as in (a). Thus suppose E has good
supersingular reduction at p. We will now apply Proposition 6.5 below to show
this cannot happen. The field K DQ.

p
d / has a prime P dividing 2 with residue

field F2, and so by Lemma 4.2, this is a prime of potentially multiplicative reduction
for E. In the notation of Proposition 6.5,

p
A D .1/ or P2. In all cases, the

ray class group of modulus
p
A1112 is Z=2Z, and the proposition implies that

4D Norm.P/2 � 1 .mod p/. As p D 19 or 23, we have a contradiction and so E

cannot be supersingular at P.

(c) Suppose p splits as pp0. The primes p, p0 are unramified, and again we de-
duce that E has either good ordinary or multiplicative reduction at these. By
Proposition 6.1(ii), we have that precisely one of � , � 0 is ramified at p and precisely
one of them is ramified at p0. If � is unramified at both p, p0 then we have a
contradiction, and likewise if � 0 is unramified at both p, p0. We can assume p jN� ,
p − N� 0 and p0 − N� , p0 jN� 0 . Thus, by Proposition 6.1(ii), � jIp D �jIp and
� 0jIp0 D �jIp0 . We shall write down a small integer n> 0 such that �n is unramified
away from p. If q − p is a prime of potentially multiplicative reduction then �2 is
unramified at q. Furthermore, for our Frey curve E, the only odd additive prime is
qDm, and Lemma 3.2(iv) implies that # N�E;p.Iq/D 2, and so �2 is unramified at
q. We are left with primes q, with q j 2, of potentially good reduction. These only
arise for d D 5, 13, 21, and in these cases �q.�q/D 4. It follows from [Kraus 1990,
Theorem 3] that N�E;p.Iq/ is either cyclic of order 3, 6 or isomorphic to SL2.F3/

and so has order 24. The last case cannot occur, as SL2.F3/ is nonabelian, and any
nonabelian reducible subgroup of GL2.Fp/ has an element of order p. It follows
that �6 is unramified at q. Letting n D 6 for d D 5, 13, 21, and n D 2 for other
values of d , we conclude that the character �n is unramified away from p, and that
�njIp D �

njIp . Let u be a generator of the subgroup of totally positive units in O�
K

.
It follows (see [Kraus 1996, page 249]) that p j Norm.un� 1/. We computed the
factorization of Norm.un� 1/ for our values of d and found that none are divisible
by primes p � 19, except when d D p D 19 or d D p D 23. However, in these
cases p ramifies in the field K DQ.

p
d /, and so are covered by case (b). �
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Proposition 6.5. Let d D p � 5 be a prime and p be the unique prime in K D

Q.
p

d / above p. Let E=K be an elliptic curve and denote by A the additive
part of its conductor. Suppose that E has good supersingular reduction at p and
potentially multiplicative reduction at some prime q0 ¤ p. Suppose further that
N�E;p is reducible. Therefore, A is a square and we let n be the exponent of the ray
class group for the modulus

p
A1112. Then, Norm.q0/

n � 1 .mod p/.

Proof. Suppose N�E;p is reducible and let �; � 0 be as in the proof of Lemma 6.4. Write
�D �=� 0. By Corollary 6.2, the character � is unramified at p; it is here that we use
the assumption that E has good supersingular reduction at p. Moreover, as �D�2=�,
where � is the cyclotomic character, it follows that for q, an additive prime with q−p,

�q.N�/� �q.N� /D 1
2
�q.A/:

Therefore, the exponent of the ray class group of modulus N�1112 is a divisor
of n. Thus �n D 1. Let �q

0
be the Frobenius element of GK at q0. Since q0 is of

potentially multiplicative reduction the possible pairs of eigenvalues of N�E;p.�q0
/

are .1;Norm.q0// or .�1;�Norm.q0// and they correspond to the values of �.�q
0
/

and � 0.�q
0
/ up to reordering. Thus,

1D �n.�q
0
/D �.�q

0
/n=� 0.�q

0
/n � Norm.q0/

˙n .mod p/: �

7. Proof of Theorem 1

For now let 2� d � 23 be squarefree, and let KDQ.
p

d /. We would like to show
that the equation xnCynD zn has only trivial solutions in K for n� 4, although as
we will see in due course, our proof strategy fails for d D 5 and d D 17. As in the
introduction, we reduce to showing that the Fermat equation (2) has no nontrivial
solutions .a; b; c/ in OK with prime exponent p � 17. Now suppose .a; b; c/ is a
nontrivial solution with p�17, and scale this as in Corollary 5.1. Let EDEa;b;c be
the Frey curve given by (3), and let N�E;p be its mod p representation. We know from
Lemma 6.4 that N�E;p is irreducible. We now apply Theorem 3 to deduce that there is
a cuspidal Hilbert newform f over K of weight .2; 2/ and level Np (one of the levels
predicted by Corollary 5.1) such that N�E;p � N�f;$ for some prime $ jp of Qf.

Lemma 7.1. Let q −Np be a prime of K, and let

AD fa 2 Z W jaj � 2
p

Norm.q/; Norm.q/C 1� a� 0 .mod 4/g:

If N�E;p � N�f;$ then $ divides the principal ideal

Bf;q D Norm.q/
�
.Norm.q/C 1/2� aq.f/

2
� Y

a2A

.a� aq.f// �OQf :

Proof. If q jp, then Norm.q/ is a power of p. Since $ jp, we have $ divides Bf;q.
Thus we may suppose q − p. By assumption q − Np. From the definition of Np
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in (6), the prime q is of good or multiplicative reduction for E. If q is a prime of
good reduction for E, then aq.E/� aq.f/ .mod$/. By the Hasse–Weil bounds,
we know that jaq.E/j � 2

p
Norm.q/. Moreover, as E has full 2-torsion (and q − 2,

as q −Np), we have 4 j #E.Fq/. Thus aq.E/ 2A and so $ jBf;q. Finally, suppose
q is a prime of multiplicative reduction for Np. Then, comparing the traces of the
images of Frobenius at q under N�E;p and N�f;$ , we have

˙.Norm.q/C 1/� aq.f/ .mod$/:

It follows that $ divides Bf;q in this case too. �
Using Magma we computed the newforms f at the predicted levels, the fields

Qf, and eigenvalues aq.f/ at primes q of K small norm. We computed for each f at
level Np, the ideal

Bf WD

X
q2T

Bf;q; (15)

where T is the set of prime ideals q of K, with q − Np and with norm less than
60 (this turns out to be sufficient for our purpose). Let Cf WD NormQf=Q.Bf/. If
N�E;p� N�f;$ then by the above lemma,$ jBf and so p jCf. Hence, the isomorphism
N�E;p � N�f;$ is impossible if p − Cf. Thus, the newforms satisfying Cf D 0 are the
problematic ones. We computed Cf for all newforms f at the predicted levels, and
found only three fields where Cf D 0 for some f. All the others produced values
of Cf that are not divisible by primes p � 17. Thus to complete the proof, we have
to deal with the cases where Cf D 0; these are as follows:

(i) K DQ.
p

3/, Np D .1C
p

3/4. Here f is the unique newform at level Np. It
satisfies Qf DQ and corresponds to the elliptic curve

E0 W y2
D x.xC 1/.xC 8C 4

p
3/

of conductor .1C
p

3/4.

(ii) K DQ.
p

5/, Np D .2/
4. There are three newforms at level Np , and all three

satisfy Qf DQ. For all three newforms, Cf D 0.

(iii) KDQ.
p

17/, Np D .2/. Here f is the unique newform at level Np . It satisfies
Qf DQ and corresponds to the elliptic curve

W W y2
D x.x� 4C

p
17/

�
xC
�13C 5

p
17

2

�
of conductor (2).

Indeed, the remaining eigenforms f correspond to elliptic curves with full 2-torsion.
It is easy to see from the definitions that Bf;q D 0 for such an eigenform. It follows
that it is futile to enlarge the set T in (15).
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Since d¤5; 17 in the statement of Theorem 1, we only have to complete the proof
for d D 3. To do this, we must discard the isomorphism N�E;p � N�E0;p, where E0

is given in (i) above. The elliptic curve E0 has j -invariant j 0 D 54000 and so
potentially good reduction at PD .1C

p
3/; in particular [Kraus 1990], the order of

N�E0;p.IP/ is 1, 2, 3, 4, 6, 8 or 24. On the other hand, the Frey curve E has potentially
multiplicative reduction, and p − �P.j /. By the theory of the Tate curve [Silverman
1994, Proposition V.6.1], we have p j N�E0;p.IP/, giving a contradiction as p � 17.

8. Proof of Theorem 2

To complete the proof of Theorem 2, it remains to discard the isomorphism
N�E;p � N�W ;p, where W is given in (iii) above. We apply Lemma 1.6 of [Hal-
berstadt and Kraus 2002] — this is proved for K D Q, but the proof for K, a
general number field, is identical. Let P1, P2 be as in Table 1 for d D 17. The
curve E has multiplicative reduction at Pi , and the valuations of the minimal
discriminants are �8C 2pti , where t1, t2 are positive integers. The curve W has
conductor .2/DP1P2 and its minimal discriminant �W satisfies �P1

.�W /D 4

and �P2
.�W /D 2. The quantity

�P1
.�E/�P2

.�E/

�P1
.�W /�P2

.�W /
D
.�8C 2pt1/.�8C 2pt2/

4 � 2
� 8 .mod p/

is a square modulo p if and only if p � 1, 7 .mod 8/. It follows from [Halberstadt
and Kraus 2002, Lemma 1.6] that N�E;p � N�W ;p cannot hold if p � 3; 5 .mod 8/,
concluding the proof.

9. Computational remarks

In the introduction, we indicated that the above strategy can be applied over other
totally real fields (assuming the modularity of the Frey curve). However, the com-
putation of newforms will often be impractical, particularly if the levels predicted
by level lowering have large norm. These levels depend crucially on a choice of
odd prime ideal representatives H for Cl.K/=Cl.K/2. In this section, we illustrate
these computational issues by looking at K DQ.

p
30/ and K DQ.

p
79/.

Let K DQ.
p

30/. Here Cl.K/ has order 2, and we can take HD f1 �OK ; mg,
where m is the unique prime above 3. By computations similar to those leading to
Corollary 5.1, we obtain four possible levels Np. One of these is Np DP8 �m2,
where P is the unique prime above 2. The dimension of the space of cusp forms of
level Np is 26108, making the computation of newforms infeasible with the current
Magma implementation.
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Let K DQ.
p

79/. Here Cl.K/ has order 3, and thus Cl.K/=Cl.K/2 is trivial;
this is the smallest real quadratic field for which Cl.K/ and Cl.K/=Cl.K/2 differ.
By definition, HDf1 �OK g. We can show by variants of the arguments in Section 6
that N�E;p is irreducible for p� 17. Moreover the predicted levels Np are P and P4,
where P j 2. The dimensions of the corresponding spaces of cusp forms are 156 and
1077 respectively. Here it feasible to compute the newforms, and similar arguments
to those in Section 7 allow us to deduce the following.

Theorem 4. The Fermat equation (1) has only trivial solutions over K DQ.
p

79/

for n� 4.

In [Freitas and Siksek 2015], the reader will also find recipes for the possible
levels Np . The objectives of [loc. cit.] are theoretical and there is no need to make
the levels Np particularly small. The purpose of the following remarks is to illustrate
the value of Sections 3 and 4 of the current paper, where a finer analysis of the
levels and the effect of scaling the solution is carried out. In [loc. cit.], the set H is
taken to be representatives of Cl.K/ rather than representatives for Cl.K/=Cl.K/2.
For the fields K appearing in Theorem 1, all class groups are either trivial or cyclic
of order 2. Therefore there is no difference between Cl.K/ and Cl.K/=Cl.K/2.
For these fields, the main improvement of the current paper lies in Section 4 which
radically reduces the possibilities for the even part of the level. However, to extend
the computations to other fields, the distinction between Cl.K/ and Cl.K/=Cl.K/2

becomes crucial. For example, for K DQ.
p

79/, a set of odd representatives for
Cl.K/ is f1�OK ; m1; m2g, where m1m2D3�OK . Following the recipe in [loc. cit.],
the odd part of the level will be 1 �OK , m2

1
or m2

2
. Thus the possibilities for Np

include P4 �m2
1
. The dimension of the space of cusp forms for this level is 12090,

which makes the computation of newforms impractical. Finally, we point out that
the even part of the level given by the recipe in [loc. cit.] can be as large as P10.
Even if the odd part of the level is taken to be trivial, the dimension of the space
of cusp forms of level P10 is 64596, which again is too large. It is clear that the
refinements of Sections 3 and 4 are required for KDQ.

p
79/, and will be needed if

the computations of the current paper are to be extended to other totally real fields.
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Bounded negativity of self-intersection
numbers of Shimura curves

in Shimura surfaces
Martin Möller and Domingo Toledo

Shimura curves on Shimura surfaces have been a candidate for counterexamples
to the bounded negativity conjecture. We prove that they do not serve this purpose:
there are only finitely many whose self-intersection number lies below a given
bound.

Previously (Duke Math. J. 162:10 (2013), 1877–1894), this result was shown
for compact Hilbert modular surfaces using the Bogomolov–Miyaoka–Yau in-
equality. Our approach uses equidistribution and works uniformly for all Shimura
surfaces.

Introduction

Let X be a Shimura surface not isogenous to a product, i.e., an algebraic surface
which is the quotient of a two-dimensional hermitian symmetric space G/K by an
irreducible arithmetic lattice in G. The aim of this note is to show that Shimura
curves on such a Shimura surface do not provide a counterexample to the bounded
negativity conjecture. More precisely we show:

Theorem 0.1. For any Shimura surface X not isogenous to a product and for any
real number M , there are only finitely many compact Shimura curves C on X with
C2 < M.

The bounded negativity conjecture claims that for any smooth projective algebraic
surface X there is a positive constant B so that for any irreducible curve C on X
the self-intersection C2 is at least −B. We emphasize that the above theorem does
not decide the validity on any Shimura surface, as there could exist non-Shimura
curves with arbitrarily negative self-intersection.
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There are two possibilities for the uniformization of X . The first case is Shimura
surfaces uniformized by H2. In this case, G = SL2(R)

2 and the surfaces are called
quaternionic Shimura surfaces if 0 is cocompact and Hilbert modular surfaces if 0
has cusps. The second case are Shimura surfaces uniformized by the complex 2-ball
B2. In this case, G = SU(2, 1) and the surfaces are called Picard modular surfaces.
There are compact and noncompact Picard modular surfaces. The assumption
on the Shimura surface is necessary, since the theorem is certainly false in the
product situation, e.g., for X = X (d)× X (d) a product of modular curves or a
finite quotient of such a surface: the fiber classes give infinitely many curves with
self-intersection zero.

While only the case of compact X is relevant to the bounded negativity conjecture,
the proofs for noncompact X are the same. When both X and the curves C are
allowed to have cusps the proper formulation is needed; see Theorem 3.6.

Theorem 0.1 was proven for compact Shimura surfaces uniformized by H2 in
[Bauer et al. 2013]. The methods there, based on the logarithmic Bogomolov–
Miyaoka–Yau inequality, do not extend to the ball quotient case. Here we give a
uniform treatment of both cases based on equidistribution results. As in that paper,
we obtain as a consequence:

Corollary 0.2. There are only finitely many Shimura curves on X that are smooth.

Intersection numbers of Shimura curves are known to appear as coefficients of
modular forms, and coefficients of modular forms are known to grow. This, however,
does not directly give a method to prove Theorem 0.1, since in these modularity
statements [Hirzebruch and Zagier 1976; Kudla 1978] the Shimura curves are
packaged to reducible curves TN with an unbounded number of components as
N →∞, while the statement here is for every individual Shimura curve.

1. Shimura curves on Shimura surfaces not isogenous to a product

A Shimura surface not isogenous to a product is a connected algebraic surface that
can be written as a quotient X = 0\G/K , where G =GQ(R) is the set of R-valued
points in a connected semisimple Q-algebraic group GQ, K ⊂ G is a maximal
compact subgroup and 0 is an irreducible arithmetic lattice in G. Here a lattice is
called irreducible if it does not have a finite-index subgroup that splits as a product
of two lattices.

Our geometric definition of Shimura varieties differs from the arithmetic literature
on this subject, where Shimura varieties are typically not connected. It is the point of
view of the bounded negativity conjecture that requires one to deal with irreducible
components of the objects in question. Note that we do not require 0 to be a
congruence subgroup either.
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Definition. Let HQ be a Q-algebraic group, 1 an arithmetic lattice in HQ, and
τ : HQ → GQ a Q-morphism such that τ(1) ⊂ 0. Suppose the τ -preimage of
a maximal compact subgroup K ⊂ GR is a maximal compact subgroup K H ⊂

H = HQ(R). Then the algebraic curve C in X given by C =1\H/K H is called a
Shimura curve.

The aim of this section is to compile the list of possible constructions of
Shimura surfaces that contain infinitely many Shimura curves and the possible
pairs (GQ, HQ). This will be used in the equidistribution theorem in the next
section. More precisely, we need that all Shimura curves can be generated as the
orbit of a fixed subgroup. For this purpose we write G = G0×W with W compact
and G0 without compact factors. There is a corresponding decomposition of the
compact subgroup K = K0×W , and also for the Shimura curve H = H0×WH

and K H = K H,0×WH .
It turns out that there are only two possibilities for G0, and, for each of them,

we can construct all Shimura curves as follows.

Proposition 1.1. For a given Shimura surface X = 0\G0/K0 = 0\G/K not isoge-
nous to a product, there exists a subgroup H0∼= SL2(R) of G0 such that all Shimura
curves arise as C = 0\0gH0/K H0 for some g ∈ G0.

We start with the possibilities for G0. There are only two hermitian symmetric
domains of dimension two. This leads to the following two cases, as in the intro-
duction. In each case we give a description of the possible Shimura surfaces. Here,
and elsewhere, the description of the algebraic groups in question will always be
given only up to central isogeny.

Case One: G0 = SL2(R)
2. There two possibilities. Either G is the set of R-points

of the Q-algebraic group GQ = ResF/Q(SL2(A)) for a quaternion algebra A over a
totally real field F which is unramified at exactly two infinite places of F , or G
is the product ResF/Q(SL2(A1))×ResF/Q(SL2(A2)) for two quaternion algebras
A1, A2, each unramified at exactly at one infinite place. For the proofs, first remark
that these give F-forms of SL2(R)

2; see, e.g., [Vignéras 1980, IV.1]. That these
are the only possibilities follows from the classification of algebraic groups [Tits
1966]. In more detail, the procedure of [Tits 1966, §3.1] reduces the problem to
the classification of F-forms of SL2. The description in [Serre 1994, III.1.4] of the
F-forms of SL2 in bijective correspondence with quaternion algebras over F gives
the above description of the algebraic groups. In both cases, the maximal compact
subgroup K in G is SO2(R)

2 times the compact factors of GR.
In the product case, all lattices are reducible, so we can discard this case in view

of our irreducibility hypothesis on X . In the remaining case, in order obtain an
arithmetic lattice 0 ⊂ G one has to fix an order O ⊂ A and let O1

⊂ O be the
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elements of reduced norm 1. Then 0 is the image in G of a group commensurable
with O1. See, e.g., [Vignéras 1980] for more details.

Case Two: G0 = SU(2, 1). In this case the underlying Q-algebraic group is GQ =

ResF0/Q(G F0)), and from the classification of algebraic groups (over number fields)
[Tits 1966; Platonov and Rapinchuk 1994], we see that, in the notation of [Tits
1966, p. 55] G F0 must be of type 2A(d)2,r , where d | 3, d ≥ 1 and 2rd ≤ 3. In other
words, G F0 = SU(h), where h is a hermitian form constructed as follows. Start
with a totally real field F0 and take a totally complex quadratic extension F/F0,
i.e., F is a CM field. Then take a central simple division algebra D of degree d
(hence dimension d2) over F , with center F and involution σ of the second kind
(not the identity on F), and a hermitian form h on D3/d so that h is isotropic at one
real place of F0 and definite at all other real places (equivalently, isotropic at one
conjugate pair of complex places of F , definite at all other pairs).

Thus there are two “types” corresponding to the two possibilities d = 1 or d = 3:
The first type corresponds to d = 1. Then D = F and h is a hermitian form on

F3 that is definite except for one pair of places of F , interchanged by complex
conjugation. Then SU(h) is indeed a F0-algebraic group and the set of R-valued
points of ResF0/Q(SU(h)) equals G0 up to compact factors. The compact subgroup
K in G is S(U (2)×U (1)) times the compact factors of GR. Arithmetic lattices 0
of the first type are obtained by fixing an order O⊂ F and taking 0 commensurable
with G ∩ SL3(O). The integer r above satisfying 2rd ≤ 3 is the F0-rank of G F0 ,
or the dimension of the maximal isotropic subspace of h in F3. The lattice is
cocompact if and only if r = 0, and r = 1 forces F0 to be Q.

The second type corresponds to d = 3; in this case, D is central simple division
algebra of degree 3 (dimension 9) over F with an involution “of the second kind”.
The lattices 0 are obtained by fixing an order O⊂ D and taking 0 commensurable
with G ∩ SL(D). Observe that in this case the inequality 2rd ≤ 3 forces r to be 0,
and therefore 0 is always cocompact. We will see that lattices of the second type
do not have any Shimura curves, so we will not need to consider them.

Shimura curves in X for G0 = SL2(R)2. The Shimura curves in X are totally
geodesic complex curves in X , so they are projections to X of totally geodesic
holomorphic disks H⊂ H2, which in turn are orbits of embeddings of SL2(R)⊂

SL2(R)
2. It is well known that, up to biholomorphic isometries, there are only

two classes of such disks: factors and diagonals. By the irreducibility hypothesis,
the inclusion into one factor does not come from a morphism of the underlying
Q-algebraic groups. So H0 ⊂ G0 has to be the diagonal embedding, proving
Proposition 1.1 in this case. In fact, the possible embeddings are discussed in great
detail in [van der Geer 1988] for Hilbert modular surfaces and in [Granath 2002]
for quaternionic Shimura surfaces.
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Shimura curves in X for G0 = SU(2, 1). Fix a Shimura surface X obtained by
choosing F0, F, d, D, σ, h,O⊂ D, 0. The Shimura curves, being totally geodesic
complex curves, are projections to X of orbits in the universal cover of subgroups
H ⊂ G0, all isomorphic to SU(1, 1) and standardly embedded in SU(2, 1). The
image in X of an H -orbit is a Shimura curve if and only if H ∩0 is a lattice in
H . This happens if and only if H is defined over F0, meaning that the underlying
algebraic group G F0 contains an F0-subgroup HF0 so that, if ι : F0 → R is the
embedding of F0 with group of real points G F0,ι(R) isomorphic to G0, the inclusion
HF0,ι(R)⊂ G F0,ι(R) agrees with H ⊂ G0. There are two cases:

No Shimura curves in Shimura surfaces of the second type. The group SU(h),
for h a hermitian form on a central simple division algebra D over F of degree 3 as
above, has no subgroup HF0 defined over F0 with HF0(R)= SU(1, 1) standardly
embedded in SU(h)(R)= SU(2, 1).

This is well-known to experts, but we do not know a reference (but see [Garibaldi
and Gille 2009, Corollary 4.2] for a more general result). Matthew Stover kindly
communicated the following proof:

Let F0, F, D, σ be as above. The D-valued hermitian form h can be taken to be
h(x, y)= σ(x)y, and the group of F0-points of the F0-group in question is

SU(D, σ )(F0)= {x ∈ D : σ(x)x = e, Nrd(x)= 1} ⊂ D,

which gives us an SU(2, 1) as follows: choose an embedding F → C, use it
to form D ⊗F C, which becomes isomorphic to the algebra M(3,C) of 3 × 3
complex matrices, under an isomorphism (unique up to conjugation by Skolem–
Noether) which takes σ to its conjugate-transpose with respect to a hermitian
form h′. Whenever all choices can be made so that h′ has signature (2, 1), the group
of real points of SU(D, σ ) becomes the standard SU(2, 1). The signature of the
hermitian form h′ depends only on D, σ and the embedding F→ C.

Note that the F-algebra D is embedded in the algebra M(3,C) by x 7→ x ⊗ 1.
The F-vector subspace of M(3,C) generated by the subset SU(D, σ )(F0) is easily
seen to be a σ -stable subalgebra of M(3,C) contained in the division algebra D,
hence it is itself a division algebra, and easily seen to equal D. Suppose HF0 is
an F0-subgroup of SU(D, σ ), so that the corresponding inclusion of real points is
a standard embedding of SU(1, 1) in SU(2, 1), all inside M(3,C), and let V be
the F-vector subspace of M(3,C) generated by the F0-points of HF0 . This is a
noncommutative division subalgebra of D, and it must be a proper subalgebra
because V ⊗F C is a proper subspace of D ⊗F C = M(3,C). Since D has
degree 3, it has no proper noncommutative F-subalgebras, so such subgroups
cannot exist.
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Classification of Shimura curves in Shimura surfaces of the first type. In this
case, there are always infinitely many Shimura curves. We continue the same
notation: choose an embedding of F in C so that the hermitian form h is isotropic,
then extend h from F3 to C3. Interpret the unit ball G0/K0 ∼= B2

⊂ P2 as the
collection of h-negative lines in C3. The Shimura curves in X arise as the quotient
of totally geodesic disks B1

⊂ B2, and such disks are in bijective correspondence
with the h-positive lines. Namely, an h-positive line l determines the hermitian
space (`⊥, h|l⊥) of signature (1, 1) and the corresponding space of negative lines
B1

l ⊂ B2. All geodesic disks arise this way. The groups G`, the stabilizer of `
(isomorphic to U (1, 1)) and the subgroup Hl fixing l pointwise (isomorphic to
SU(1, 1)) act on (`⊥, h|l⊥) and B1

`, both actions being transitive on B1
l . The disk

B1
` projects to a Shimura curve in X if and only if H` ∩0 a lattice in H`; in turn:

Lemma 1.2. The group H` ∩0 is a lattice in H` if and only if ` is an F-rational
line, that is, `∩ F3

6= {0}.

Proof. Let v ∈C3 be a basis vector for `, and suppose 0`= H`∩0 is a lattice in H`.
Since 0` fixes ` pointwise, v is fixed by all γ ∈ H`∩0. Since 0` leaves `⊥ invariant,
the remaining eigenvectors of any γ ∈ 0` lie in `⊥. Since the action of H` on l⊥ is
isomorphic to the standard action of SU(1, 1) on C2 and 0` is a lattice in H`, 0l con-
tains hyperbolic elements. Fix such an element γ . Then γ (v)= v and the remaining
eigenvalues of γ are of absolute value 6= 1. Therefore 1 is a simple eigenvalue of
γ , and thus the space of solutions of γ (v)= v is an F-rational line, as asserted.

For the converse, suppose that ` is a rational line, and let v ∈O3 be a primitive
vector which is a basis for `. Let M0=Ov and M1=v

⊥
∩O3, and let M=M0⊕M1.

Then M is an O-submodule of finite index in O3. Consequently, 0 is commensu-
rable with 0′ = {γ ∈ SU(h,O) : γ (M)= M} and 0 ∩ Hl is commensurable with
0′v={γ ∈0

′
:γ (v)=v}, which is a lattice in the group H`=Hv={g∈G : g(v)=v},

a group defined over F0, and isomorphic (over F0) to SU(h|M1⊗F ). This group in
turn is isomorphic over R to SU(1, 1). Thus 0∩H` is a lattice in H` and we obtain
a Shimura curve associated to the Q-group ResF0/Q(SU(h|M1⊗F )). �

End of proof of Proposition 1.1. Choose an orthogonal basis v1, v2, v3 for O3,
where h(vi )= ai āi > 0 for i = 1, 2, h(v3)=−a3ā3 < 0 and v1 ∈ `. Let e1, e2, e3

be the standard basis for C3, let H = He1 ⊂ G be the subgroup, isomorphic to
SU(1, 1), that fixes e1, and let g ∈ G be the linear transformation that takes ei to
vi/ai . Then gHg−1

= H`; therefore H` is as asserted in Proposition 1.1 �

Remark. From Lemma 1.2 we see that the collection of Shimura curves in X is
parametrized by the 0-equivalence classes of primitive positive vectors in O3, that
is, primitive vectors v ∈ O3 with h(v) > 0. The collection of these equivalence
classes is commensurable with SU(h, F)\P(F3)+, where P(F3)+ denotes the
space of h-positive lines in F3. The class of h(v) gives a well-defined function
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h : P(F3)→ F∗0 /NF/F0(F
∗), the norm residue group. It can be checked that the

class of h(v) is a commensurability invariant and that it takes on infinitely many
values; hence we get an infinite number of commensurability classes of subgroups
of SU(1, 1). Observe that the matrix of the conjugating element g of Lemma 1.2
has entries in the finite field extension F(a1, a2, a3) of F .

The compact factors of G, necessary for the Q-structure in the definition of a
Shimura surface, play no role in the sequel. We thus simplify notation and write G
for G0 and H for H0 from now on.

Elliptic elements and cusps. The bounded negativity conjecture (BNC) originally
is a question for smooth compact (projective) surfaces. If 0 is cocompact and
torsion-free, Shimura surfaces as defined above fall into the scope of this conjecture
and the results in the introduction need no explanation.

Any arithmetic lattice contains a neat normal subgroup of finite index. Such
subgroups are in particular torsion-free. As quotients by a finite group, the Shimura
surfaces come with a (Q-valued) intersection theory. The BNC can be extended to
such surfaces, and Theorem 0.1 needs no further explanation.

If 0 is cofinite but not cocompact, our proof of Theorem 0.1 gives a statement
about the self-intersection number of the cohomology class of the Shimura curve
projected to the complement of the cusp resolution cycles, as we will now explain.

We may suppose that 0 is a neat subgroup. Let XBB be the minimal (Baily–Borel)
compactification of X = 0\G/K . Since X is not isogenous to a product, XBB

\ X
has codimension two, and hence H 2

c (X,Q)∼= H 2(XBB,Q). Let π : Y → XBB be
a (minimal) smooth resolution of the singularities at the cusps and j : X→ Y the
inclusion. We claim that

H 2(Y,Q)= π∗H 2(XBB,Q)⊕ B, (1)

where B is the subspace spanned by cusp resolution curves. Moreover, the direct
sum is orthogonal and the intersection form on B is negative-definite. This implies
that the sum decomposition is compatible with Poincaré duality, and this will make
the arguments in Section 3 work in the noncompact case, too; see Theorem 3.6.

Our claims are stated for the Hilbert modular case in [van der Geer 1988, Sec-
tions II.3, VI.1]. In the case of a ball quotient, a neighborhood W of the cusps in
Y is a disjoint union of disc bundles over tori, each sitting inside a line bundle of
negative degree. It suffices to show that

H2(Y,Q)= H2(W,Q)⊕ Im( j∗ : H2(X,Q)→ H2(Y,Q))

and then apply duality. By Mayer–Vietoris, it suffices to show that H1(W∩X,Q)→

H1(W,Q)⊕ H1(X,Q) is injective. This holds true, since the inclusion of a circle
bundle into the corresponding disc bundle induces an injection the level of H1( · ,Q).
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We remark that the BNC (and intersection numbers in general) are very sensitive
to blowups. We leave it to the reader to investigate if Theorem 0.1 also holds
on Y .

Volume normalization. The hermitian symmetric space G/K comes with a Kähler
(1, 1)-form ω that we normalize, say, so that the minimum value of the curvature
of the associated Riemannian metric is −1. We continue assuming that 0 is a neat
subgroup, so that X is a manifold with universal cover X̃ = G/K . Then ω ∧ ω
provides volume forms on X̃ and X . We let vol(X) be the volume of the Shimura
surface. Rescaling by the volume, we obtain a probability measure νX on X induced
from the volume form.

Shimura curves are totally geodesic subvarieties in X . Consequently, the restric-
tion of ω is a Kähler form ωC on C . We let vol(C)=

∫
C ωC be the corresponding

volume and νC the probability measure defined by ωC .
We need to extend this to the quotients by smaller compact subgroups. Let

K ′ ⊂ G be a compact subgroup and K ′H = K ′ ∩ H . Let νG be the Haar measure
on G normalized so that the pushforward to G/K gives the above volume form on
X̃ and such that the fibers have volume 1. From νG , we obtain measures νG/K ′ on
G/K ′ and finite measures ν0\G/K ′ on X K ′ = 0\G/K ′ with vol(X)= vol(X K ′).

Similarly we fix a normalization of a Haar measure νH on H by requiring that
the fibers of H→ H/K H have volume 1 and that the pushforward to H/K H is the
volume form coming from the metric with curvature −1, as above.

In this way, given a Shimura curve C = 0\0gH/K H , the pushforward of νH de-
fines a finite measure νC,K ′ on the locally symmetric subspaces CK ′ =0\0gH/K ′H
inside X K ′ with vol(CK ′)= vol(C).

2. Equidistribution

There are many sources in the literature that deduce equidistribution for Shimura
curves from a Ratner-type theorem (notably [Clozel and Ullmo 2005; Ullmo 2007]).
We need a slightly stronger equidistribution result, on 0\G or on 0\G/K ′ for some
(not necessarily maximal) compact subgroup K ′ of G rather than on the algebraic
surface X . This follows along known lines from Ratner’s result, or rather the version
in [Eskin et al. 1996]. We give a proof avoiding technicalities on Shimura data and
focusing on the surface case.

The references above contain as special case the following equidistribution:

Proposition 2.1. Suppose that X is a Shimura surface. If (Cn)n∈N is a sequence of
pairwise different Shimura curves, then νCn → νX weakly as n→∞.

This is a special case of the following stronger result:
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Proposition 2.2. Suppose that X =0\G/K is a Shimura surface. Let K ′⊂ K be a
closed subgroup, and let gn ∈ G be a sequence of points so that the orbits gn H ⊂ G
project to pairwise-distinct Shimura curves Cn in X. Then on X ′ = 0\G/K ′ the
sequence of probability measures νCn,K ′ converges weakly to ν0\G/K ′ as n→∞.

Corollary 2.3. Suppose that X = 0\G/K is a Shimura surface. If (Cn)n∈N is a
sequence of pairwise different Shimura curves, then vol(Cn)→∞ as n→∞.

Proof of Corollary 2.3. With the above volume normalization, it suffices to prove
the claim for the lifts of the Shimura curves Cn to X ′′ = 0\G. Let C ′′n denote these
lifts. We apply the preceding proposition for K ′ = {e}. Equidistribution implies in
particular that Shimura curves are dense; i.e., for any finite collection of open sets
Ui , i ∈ I , there exists N0 such that for n > N0 the intersection C ′′n ∩Ui is nonempty
for all i . Since X ′′ is foliated by H -orbits and νG is locally the product of νH and
a transversal measure, it suffices to take for Ui sufficiently many open sets locally
trivializing the foliation, namely Ui=Vi×Wi with Vi an H -orbit, such that νH (Vi )=

O(1) but the transversal measure of Wi is O(1/n2). Then we can fit O(n) such
sets into X , and each time C ′′n intersects some Ui it picks up a volume of O(1). �

Proof of Proposition 2.2. We first observe that, if the proposition holds for K ′= {e},
then it holds for any other K ′ ⊂ K . Namely, under the projection π : X ′′ = 0\G→
X ′ = 0\G/K ′, we have, by the volume normalization above, that the pushforward
measures satisfy π∗(νX ′′) = νX ′ and π∗(νCn,e) = νCn,K ′ . Thus we will assume
K ′ = {e}. For this choice of K ′ we have that X ′ = 0\G. Thus we’ll simply write
X ′ for 0\G and ν ′n for νCn,e.

The proof consists of two parts: (1) prove that ν ′n has convergent subsequences ν ′n j
;

(2) prove that the limit of any convergent subsequence must be νX ′ .
If 0 is cocompact, that is, X ′ is compact, then the space of probability measures

on X ′ is compact in the weak-∗ topology, so ν ′n has a convergent subsequence. If
X is not compact, then a subsequence converges to a measure on the one-point
compactification X ′ ∪ {∞}, but these measures may “escape to infinity”, e.g.,
converge to the delta function at∞. An example of this “escape of mass” is given
in the introduction to [Eskin et al. 1997]. The main result there is that there is no
escape of mass when the image of Z(H) in X ′ is compact (where Z(H) is the
centralizer of H in G). More precisely, compactness of the image of Z(H) in X ′

implies (see [Eskin et al. 1997, Theorem 1.1]) that for every ε > 0 there exists a
compact subset W ⊂0\G such that every H -orbit gives measure at least 1−ε to W .
Hence the sequence ν ′n indeed converges in the space of probability measures on X ′.

In our situation Z(H) itself is compact: it is finite in Case One and U (1) in Case
Two, and thus we always have convergence, thereby proving (1). (Compactness of
Z(H) generally holds for Shimura varieties if one discards the obvious exception
of product situations; see [Ullmo 2007].)
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To prove (2) we may assume ν ′n converges weakly to a probability measure ν ′; we
must prove ν ′ = νX ′ . This follows a pattern which is by now standard: (i) use, as in
[Eskin et al. 1996], Ratner’s theorem on unipotent flows to prove that ν is algebraic,
i.e., supported on an L-orbit of some connected algebraic group H ⊆ L ⊆ G that
intersects 0 in a lattice; (ii) prove L = G. We formulate (i) as the following lemma:

Lemma 2.4. Suppose ν ′n converges weakly to ν ′. Then there exists a closed con-
nected subgroup L , H ⊂ L ⊂ G, such that ν ′ is an L-invariant measure supported
on 0\0cL for some c∈G and such that c−10c∩L is a lattice in L. Moreover, there
exist a sequence xn ∈ 0gn H converging to c and an n0 such that cLc−1 contains
the subgroup generated by xn H x−1

n for n ≥ n0.

We formulated this lemma following closely the wording of [Eskin and Oh
2006, Proposition 2.1] (see also [Eskin et al. 1996, Theorem 1.7]) because it can
be proved from [Mozes and Shah 1995, Theorem 1.1] in same way. Namely,
start from the fact that ν ′n is supported on the H -orbit 0\0gn H ⊂ 0\G, which is
isomorphic to (g−1

n 0gn∩H)\H and is H -invariant. Since g−1
n 0gn is a lattice in H ,

which, in our case, is locally isomorphic to SL(2,R), we can choose a unipotent
one-parameter subgroup u(t) in H and apply the Moore ergodicity theorem, as in
the proof of [Eskin and Oh 2006, Proposition 2.1], to show that ν ′n is an ergodic
u(t)-invariant measure, thus checking that the first hypothesis of [Mozes and Shah
1995, Theorem 1.1] is satisfied. We continue, in this way, following the proof of
[Eskin and Oh 2006, Proposition 2.1] until the proof of Lemma 2.4 is complete.

Finally the groups xn H x−1
n cannot all be equal to H , since this would give γn ∈0

so that gn Hg−1
n = γn Hγ−1

n , contradicting the hypothesis that the curves Cn are pair-
wise different. We conclude that H ( L and thus L =G by the following lemma. �

Lemma 2.5. Let (G, H) be as in Case One or Case Two. If L is a connected real
Lie group with H ( L ⊂ G and 0 ∩ L is a lattice in L , then L = G.

Proof. This is easily verified on the level of Lie algebras. Since Lie(L) contains an
element not in Lie(H), bracketing with suitable elements of Lie(H) allows one to
produce a generating set of Lie(G). �

3. The current of integration of a Shimura curve

Any Shimura curve C , in fact any codimension-one subvariety of the Shimura
surface X , defines a closed (1, 1)-current on X . On the other hand, the Shimura
surface comes with a natural (1, 1)-form, the Kähler form ω. The aim of this
section is to translate the equidistribution result (a convergence of measures) into a
convergence statement for the classes of these currents, suitably normalized. We
start with the compact case and explain at the end of this section the necessary
modification in the noncompact case. Recall that a (1, 1)-current on a complex
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surface X is a continuous linear functional on A1,1
c (X), the space of compactly

supported (1, 1)-forms on X . This space (A1,1
c (X))∨ contains both the complex

curves C ⊂ X and the smooth forms η ∈ A1,1(X) by the formulas

C→
(
α→

∫
C
α

)
, η→

(
α→

∫
X
η∧α

)
for all α ∈ A1,1

c (X).

The cohomology of X can be computed either from the complex of forms or from the
complex of currents. Recall also that, if X is Kähler and ω denotes the Kähler form,
then vol(X)=

∫
X ω∧ω, the Kähler form of C is ωC = ωX |C and vol(C)=

∫
C ωC .

Proposition 3.1. Let X = 0\G/K be a smooth Shimura surface and let gn ∈ G be
any sequence of points such that the Shimura curves Cn =0\0gn H/K are pairwise
distinct. Then

Cn/ vol(Cn)→ ω in A1,1
c (X)∨, hence in H 1,1(X).

This and the finite-dimensionality of the Picard group allows us to deduce our
main result.

Corollary 3.2. Let X = 0\G/K be a compact, smooth Shimura surface and let
gn ∈ G be any sequence of points such that the Shimura curves Cn = 0\gm H/K
are pairwise distinct. Then

C2
n ∼ vol(X) vol(0\0gn H)2 for n→∞.

In particular, for any M , there are only finitely many Shimura curves C on X with
C2 < M.

Proof. For the first statement, fix a basis γ0 = ω, γ1, . . . , γs of H 1,1(X). Taking
γi for i ≥ 1 orthogonal to γ0, we may suppose that the dual basis is λ−1ω =

γ ∨0 , γ
∨

1 , . . . , γ
∨
s for some λ ∈ C; in fact, λ=

∫
X ω∧ω= vol(X). If C is a curve in

X , thus representing a (1, 1)-class, the Poincaré dual is represented by

PD(C)=
s∑

i=0

(∫
C
γi

)
γ ∨i .

Consequently, letting An = vol(Cn), by Proposition 3.1,

1
A2

n
Cn ·Cn =

1
A2

n

∫
Cn

PD(Cn)=

s∑
i=0

(
1
An

∫
Cn

γi

)(
1
An

∫
Cn

γ ∨i

)

−→

s∑
i=0

(∫
X
ω∧ γi

)(∫
X
ω∧ γ ∨i

)
= λ= vol(X). (2)

The second statement follows from the first and from Corollary 2.3. �
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Integrating on the projectivized tangent bundle. We now prepare for the proof of
Proposition 3.1. For this purpose we work on the universal cover X̃ = G/K of X .
First of all, for any (two-dimensional) Kähler manifold X there is a natural map

PT X̃→31,1T X̃ = (31,1T ∗ X̃)∨,

defined pointwise at any x ∈ X̃ by [v] 7→ v∧ v̄/|v|2 for v ∈ Tx X̃ \ {0}. Dually, an
element α ∈ (31,1T ∗ X̃) defines a real-valued function

ϕα : PT X̃→ R, ϕα([v])= α

(
v∧ v̄

|v|2

)
.

Using this map we can write the intersection with α as the integral of a real-
valued function against the volume form of PT X . In Case Two, PT X̃ = G/K ′

is a homogeneous space with an invariant volume, where K ′ = U(1)×U(1). In
Case One, we will need to pass to a G-invariant real subbundle of PT X̃ , also of
the form G/K ′ for K ′ = U(1).

We start with Case Two. Recall that we scaled the Kähler form ω so that
vol(X)=

∫
X ω∧ω.

Lemma 3.3. Let X be a two-dimensional Kähler manifold, choose a two-form η on
PT X that restricts to the area form ηx of each fiber PTx X , x ∈ X , scaled to give
total area 1 to each fiber. Then, for all (1, 1)-forms α on X and for each x ∈ X ,
we have

(ω∧α)x =

(∫
PTx X

ϕαηx

)
(ω∧ω)x .

Therefore we have ∫
X
ω∧α =

∫
PT X

ϕα η∧ω∧ω,

where we have written simply ω for the pullback to PT X of the form ω on X.

Proof. In suitable local coordinates at x , the Kähler form at x is

ωx =

√
−1
2

(dz1 ∧ dz̄1+ dz2 ∧ dz̄2).

Writing α =
√
−1
2

∑
αi j̄ dzi ∧ dz̄ j , we have (suppressing the factors of

√
−1
2 )

(ω∧α)x = (α11̄+α22̄)(dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2)=
α11̄+α22̄

2
(ω∧ω)x .
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On the other hand, if we let e1, e2 denote the basis for Tx X dual to dz1, dz2, and
write v = v1e1+ v2e2 ∈ Tx X , the first factor of the right-hand side is∫

P1
α

(
(v1e1+v2e2)∧(v1e1+v2e2)

|v1|2+|v2|2

)
ηx

= α11̄

∫
P1

|v1|
2

|v1|2+|v2|2
ηx+α22̄

∫
P1

|v2|
2

|v1|2+|v2|2
ηx+

∫
P1

2Im(α12̄v1v̄2)

|v1|2+|v2|2
ηx . (3)

The involution (v1 : v2)→ (v2 : v1) is an isometry of P1. The last integrand is sent
to its negative by this involution, so the last integral vanishes. The first two integrals
are interchanged by this involution, therefore they are equal. Since the sum of the
two integrands is visibly identically 1, each of the first two integrals has value 1

2 .
Thus the first two terms give 1

2α11̄ and 1
2α22̄ respectively, hence the first statement

of the lemma follows. The second follows from the first and Fubini’s theorem. �

Remark. The first statement in the lemma is equivalent to the well-known fact in
linear algebra that the trace of a hermitian matrix equals the average value over the
unit sphere of the associated hermitian form.

Corollary 3.4. If X is a Shimura surface covered by the ball, then for all (1, 1)-
forms α on X we have ∫

X
ω∧α =

∫
PT X

ϕα dν0\G/K ′,

where ν0\G/K ′ is the volume form on PT X introduced above.

Proof. If X̃ =B2
=G/K , then η∧ω∧ω in Lemma 3.3 is a G-invariant volume form

on PT X̃ . Moreover, ω and η have been scaled to give the correct normalization. �

Now we address the corresponding statement in Case One. If the Shimura
surface X is covered by H2, then PT X̃ is no longer a homogeneous space for
G, but it has some natural homogeneous subbundles. Equivalently, the action of
K on PTx X̃ ∼= P1 is not transitive, but has some distinguished orbits: two zero-
dimensional orbits, corresponding to the tangents to the two factors of H2, and an
orbit of real dimension 1 corresponding to the graphs of isometries between the
two factors. Explicitly, if we choose coordinates z1, z2 as above, this time adapted
to the product structure of X̃ , and with dual basis e1, e2 each tangent to one of the
factors, and writing v = v1e1+ v2e2 as above, the action of K ∼= U(1)×U(1) on
PTx X̃ ∼= P1 leaves invariant the points with homogeneous coordinates (1 : 0) and
(0 : 1) and the real submanifold {(v1 : v2) : |v1| = |v2|} = {(1 : eiθ )} ∼= S1.

Let us call this submanifold STx X̃ and let ST X̃∼=G/K ′ denote the corresponding
bundle over X̃ ∼= G/K with fiber K/K ′ ∼= STx X̃ ∼= S1. Then a calculation just as
in the proof of Lemma 3.3 gives us:
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Lemma 3.5. Let X be a Shimura surface covered by H2, choose a one-form η on
ST X that restricts to the angle form ηx = dθ of each fiber STx X , scaled to give
total area 1 to each fiber. Then, for any (1, 1) form α on X and for each x ∈ X ,
we have

(ω∧α)x =

(∫
STx X

ϕαηx

)
(ω∧ω)x .

Therefore we have∫
X
ω∧α =

∫
ST X

ϕα η∧ω∧ω =

∫
ST X

ϕα dν0\G/K ′,

where ν0\G/K ′ is the volume form on ST X introduced above.

Proof of Proposition 3.1. To show convergence in H 1,1(X) it suffices to show that

1
vol(Cn)

∫
Cn

α →

∫
X
ω∧α

for any α ∈ H 1,1(X). In Case Two, by Corollary 3.4 it suffices to show that

1
vol(Cn)

∫
Cn

α →

∫
PT X

ϕα dν0\G/K ′ .

A local verification, just using the definition of ϕα and the fact that νCn,K ′ was
defined to give measure 1 to the fibers K/K ′, implies that

∫
Cn
α=

∫
PT Cn

ϕα dνCn,K ′ .
Since νCn,K ′ is supported on PT Cn ⊂ PT X , it is thus sufficient to show that∫

PT X
ϕα dνCn,K ′→

∫
PT X

ϕα dν0\G/K ′ .

We have reformulated our claim in terms of a convergence of measures, integrating
against a globally defined function ϕα. Proposition 2.2 completes the proof. In
Case One, the proof is the same, replacing PT X by ST X and the reference to
Corollary 3.4 by Lemma 3.5. �

The noncompact case. Recall that we denoted by Y a minimal resolution of the sin-
gularities of the Baily–Borel compactification XBB. By [Mumford 1977, Theorem
3.1, Proposition 1.1], the Kähler class ω extends to a closed current on Y . Moreover,
ω ∈ π∗H 2(XBB,Q) by [Mumford 1977, Proposition 3.4(b)]. The statement of
Proposition 3.1 now reads

pB⊥(Cn)/ vol(Cn)→ ω in π∗H 2(XBB,Q),

where p⊥B is the orthogonal projection onto the complement of B. The same proof
as above works. In order to show the analog

(pB⊥Cn)
2
∼ vol(0\0gn H)2 for n→∞
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of Corollary 3.2, we apply Poincaré duality to π∗H 2(XBB,Q). Since this is a
perfect pairing, the proof of Corollary 3.2 applies without changes:

Theorem 3.6. For X as above and for any real number M , there are only finitely
many Shimura curves C on X with (pB⊥C)2 < M.

In particular, for the collection of compact Shimura curves in X , we obtain
Theorem 0.1.
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Singularities of
locally acyclic cluster algebras

Angélica Benito, Greg Muller, Jenna Rajchgot and Karen E. Smith

We show that locally acyclic cluster algebras have (at worst) canonical sin-
gularities. In fact, we prove that locally acyclic cluster algebras of positive
characteristic are strongly F -regular. In addition, we show that upper cluster
algebras are always Frobenius split by a canonically defined splitting, and that
they have a free canonical module of rank one. We also give examples to show
that not all upper cluster algebras are F -regular if the local acyclicity is dropped.

1. Introduction

Fomin and Zelevinsky introduced cluster algebras at the close of the twentieth
century as a way to study total positivity in a wide range of contexts. Since then,
cluster algebra structures have been discovered in many unexpected corners of
mathematics (and physics), including Teichmüller theory [Gekhtman et al. 2005;
Fock and Goncharov 2007], discrete integrable systems [Fomin and Zelevinsky
2003], knot theory [Muller 2012; Musiker et al. 2013], and mirror symmetry [Shen
and Goncharov 2015; Kontsevich and Soibelman 2013], just to name a few.

Locally acyclic cluster algebras, introduced in [Muller 2013], are a large class
of cluster algebras which are simultaneously flexible enough to include many
interesting examples — including many fundamental examples from representation
theory and most examples from Teichmüller theory — yet restrictive enough to
avoid the pathological behavior sometimes found in general cluster algebras. For
example, locally acyclic cluster algebras are finitely generated and normal, while
a general cluster algebra may fail to be either. The main theorem of this paper is
that locally acyclic cluster algebras have (at worst) canonical singularities. In fact,
we show that locally acyclic cluster algebras of prime characteristic are strongly
F -regular, a strong form of Frobenius split which implies many nice restrictions
on the singularities; for example, F -regular varieties are normal, Cohen–Macaulay,

Smith acknowledges the financial support of NSF grant DMS-1001764 and the Clay Foundation.
Benito is partially support by MTM2012-35849.
MSC2010: primary 13F60; secondary 13A35, 14B05.
Keywords: cluster algebras, locally acyclic cluster algebras, singularities, F -regularity, Frobenius
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pseudorational, and have Kawamata log terminal singularities (if the canonical class
divisor is Q-Cartier) or canonical singularities (if the canonical class is Cartier).
These characteristic-p results imply the corresponding statements in characteristic
zero as well. For a survey, see, e.g., [Smith 1997b] or [Smith and Zhang 2015].

Associated to a cluster algebra A is its upper cluster algebra U . This related
algebra has the same fraction field and satisfies A� U (see [Berenstein et al. 2005]).
We show that all upper cluster algebras in positive characteristic have a “cluster”
Frobenius splitting, which can be expressed explicitly in terms of any cluster. We
also prove the closely related result that upper cluster algebras have a free canonical
module, which is generated by any log volume form in a cluster of cluster variables.
The latter of these results is found in the Appendix.

The inclusion A � U need not be equality, though it is in the case when A is
locally acyclic [Muller 2014]. When equality fails, a general philosophy is that U is
better behaved than A. In this direction, we show that if an upper cluster algebra U
fails to be F -regular, then A also fails to be F -regular, and we provide an example
of this situation. Taking the ground field to be of characteristic zero, this gives an
example of a finitely generated upper cluster algebra U which has log canonical but
not log terminal singularities. We also provide an example where A¤ U and A is
pathological (e.g., A is non-Noetherian), but U is nevertheless strongly F -regular.

All of our results and arguments are also valid for cluster algebras given by an
arbitrary skew-symmetrizable matrix. However, we have written the exposition in
the slightly less general setting of cluster algebras given by quivers for the sake
of accessibility. Experts will have no trouble adapting the arguments to the more
general setting.

2. Cluster algebras

A cluster algebra is a commutative domain with some extra combinatorial structure.
It comes equipped with a (usually infinite) set of generators called cluster variables,
which can be recursively generated from a seed: a quiver decorated with a free
generating set for a field.

We will consider cluster algebras over an arbitrary field k, although in the
literature they are usually defined over Q, R or Z. The choice of scalars is mostly
irrelevant to the definitions, and most proofs of standard results go through without
change. As such, we will cite the original results without comment, and only
address the differences as needed.

Seeds and mutations. Let k be a field, and let F be a purely transcendental finite
extension of k. A seed for F over k consists of the following data:

� A quiver Q without loops or directed 2-cycles.
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x1

x2 x3

x1

x2 x3

x�11

x2C 1

x1C 1
x1x3

Figure 1. Three examples of seeds in F D k.x1; x2; x3/.

� A bijection from the vertices of Q to a set of algebraically independent genera-
tors x D fx1; x2; : : : ; xng for F over k. The image xi of a vertex i is called
the cluster variable at that vertex, and the set x is called a cluster.

� A subset of the vertices of Q designated as frozen; the rest are called mutable.
We impose the nonstandard convention that every vertex which touches no
arrow is frozen.1

Seeds will usually be denoted as a pair .Q;x/, with the other data suppressed.
The number of vertices of Q (denoted n hereafter) is the rank of the seed, and the
number of mutable vertices (denoted m hereafter) is the mutable rank.

Seeds may be drawn as a quiver with circles for mutable vertices, and rectan-
gles for frozen vertices, each with the corresponding cluster variable inscribed
(e.g., Figure 1).

A seed .Q;x/ may be mutated at any mutable vertex k to produce a new seed
.�k.Q/; �k.x// for F . The quiver �k.Q/ is constructed in three steps:

(1) For each pair of arrows i ! k! j through the vertex being mutated, add an
arrow i ! j .

(2) Reverse the orientation of every arrow incident to k.

(3) Cancel any directed 2-cycles in pairs.

Q

k
(1) k

(2)k

(3)
k

�k.Q/

1This convention allows us to define cluster algebras in characteristic two, and otherwise produces
the same definition as the usual convention in every other characteristic. The point is that this
convention prevents the numerator in the mutation formula (2-1) from being 2, which in characteristic
two would mean that a mutation at that vertex would not produce another valid cluster variable.
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The cluster variables in �k.x/ are the same as those in x, except for the cluster
variable at vertex k, which becomes

x0k WD

�Y
i!k

xi C
Y
k!i

xi

�
x�1k ; (2-1)

where the products are over all arrows into or out of k, respectively. Frozen vertices
stay frozen.

Mutating at the same vertex twice in a row returns the original seed. That is,
mutation is an involution on the set of seeds of F=k. Two seeds are mutation-
equivalent if they are related by a sequence of mutations.

Cluster algebras. Fix a seed .Q;x/ for F over k. The union of all the clusters which
appear in mutation-equivalent seeds defines the complete set of cluster variables in
the ambient field F , naturally grouped into overlapping clusters consisting of those
appearing together in a seed. The cluster algebra A.Q;x/ determined by .Q;x/ is
the sub-k-algebra of F generated by all of the cluster variables and the inverses of
the frozen variables. The cluster algebra only depends on the mutation-equivalence
class of the initial seed, and so the initial seed .Q;x/ will often be omitted from
the notation.

A fundamental property of cluster algebras is the Laurent phenomenon [Fomin
and Zelevinsky 2002], which states that each cluster variable can be expressed as
a Laurent polynomial in any cluster. Put differently, the localization of A at any
cluster x D fx1; x2; : : : ; xng is the ring of Laurent polynomials in x over k:

A ,!AŒx�11 ; x�12 ; : : : ; x�1n �D kŒx˙11 ; x˙12 ; : : : ; x˙1n �� F :

Every cluster in A defines such an inclusion. This naturally leads to the following
definition: the upper cluster algebra U of A is the intersection of each of these
Laurent rings, taken inside the ambient field F :

U WD
\

clusters x�A

kŒx˙11 ; x˙12 ; : : : ; x˙1n �� F :

By the Laurent phenomenon, there is an inclusion A � U . This inclusion is not
always equality (see [Berenstein et al. 2005, Proposition 1.26]), but it is an equality
in all of the simplest examples, and in many of the most important examples.

Lemma 2.1. Upper cluster algebras are normal.

Proof. Laurent rings over fields are regular, and hence normal. Since an intersection
of normal rings inside their common fraction field is normal, upper cluster algebras
are normal. �
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Cluster localization. Under certain circumstances, localizing a cluster algebra at
one or more cluster variables is again a cluster algebra. This important idea was
first discussed in [Muller 2013] and further developed in [Muller 2014], to which
we refer for more details.

Given a seed .Q;x/ over k and a designated subset fk1; k2; : : : ; kag of its mutable
vertices, we can make a new seed .Q�;x�/ by making those vertices frozen. Because
mutations for Q� are all mutations for Q, there is a natural containment

A.Q�;x�/�A.Q;x/Œx�1k1
; x�1k2

; : : : ; x�1ka
�: (2-2)

If this is an equality, A.Q�;x�/ is called a cluster localization of A.Q;x/.
Although it can be difficult to determine whether a particular localization is a

cluster localization, there is one situation where it is easy. Indeed, we have inclusions

A.Q�;x�/�A.Q;x/Œx�1k1
;x�1k2

; : : : ;x�1ka
��U.Q;x/Œx�1k1

;x�1k2
; : : : ;x�1ka

��U.Q�;x�/;
(2-3)

where the first and third inclusions follow from the fact that the mutations for Q� are
a subset of the mutations for Q (and the middle inclusion follows from the Laurent
phenomenon for A.Q//. Thus the inclusion in (2-2) is always equality whenever
A.Q�;x�/D U.Q�;x�/. One extreme case is where we freeze all vertices: since
obviously AD U when no mutations can happen, it follows that localizing at any
full cluster x is a cluster localization. More generally, A.Q�;x�/D U.Q�;x�/ will
necessarily hold if “enough” mutable vertices become frozen.

For example, if we freeze enough variables to break any directed cycles in Q,
we arrive at an acyclic quiver Q�. By definition, a quiver is acyclic if it has no
directed cycles through mutable vertices; a cluster algebra is acyclic if it admits
some acyclic seed. Because acyclic cluster algebras are known to equal their upper
cluster algebras (by Theorem 2.6 below), the chain of inclusions (2-3) above implies
that A.Q�;x�/ is a cluster localization whenever Q� is acyclic.

Cluster covers. The idea of cluster localization is powerful when a cluster algebra
can be covered by cluster localizations.

Definition 2.2. For a cluster algebra A, a set fAigi2I of cluster localizations of A
is called a cluster cover if the corresponding open subschemes cover Spec.A/, that
is, if

Spec.A/D
[
i2I

Spec.Ai /:

If a cluster algebra admits a cluster cover, any geometric property, such as
normality, smoothness, or even different classes of singularities, can be checked
locally on the cluster localizations. Another property which may be checked on a
cover is whether AD U :
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Lemma 2.3 [Muller 2014, Lemma 3.3.2]. If fAigi2I is a cluster cover of A, and
Ai D Ui for each i 2 I , then AD U .

A powerful observation proposed in [Muller 2013] is that many notable classes
of cluster algebras admit covers by acyclic cluster algebras.

Definition 2.4. A cluster algebra is locally acyclic if it admits a cluster cover by
acyclic cluster algebras.

The class of locally acyclic cluster algebras is much wider than the class of
acyclic cluster algebras. The latter class is well-understood and very nicely behaved,
but far too restrictive to be itself a major class. On the other hand, locally acyclic
cluster algebras include, for example, cluster algebras of Grassmannians, cluster
algebras of marked surfaces with at least two marked points on the boundary
[Muller 2013, Theorem 10.6], as well as cluster algebras of double Bruhat cells and
more generally, positroid cells [Muller and Speyer 2014]. Because the geometric
properties of locally acyclic cluster algebras follow nicely from the acyclic case,
there is now substantial interest in identifying locally acyclic cluster algebras.

Proposition 2.5 [Muller 2013]. A locally acyclic cluster algebra over k is finitely
generated over k and equal to its upper cluster algebra. A locally acyclic cluster
algebra is normal and a local complete intersection (hence Gorenstein).

This follows with little fuss from the acyclic case, due to Berenstein, Fomin, and
Zelevinsky.2

Theorem 2.6 [Berenstein et al. 2005, Corollary 1.17; Muller 2014, Corollary 4.2.2].
Let .Q;x/ be an acyclic seed. Then the cluster algebra A.Q/ is a finitely generated
complete intersection, equal to its upper cluster algebra U.Q/.
Remark 2.7. It is important to note that not every cluster algebra admits a cover by
proper cluster localizations. For example, the Markov cluster algebra generated from
the middle seed in Figure 1 cannot by covered by proper cluster localizations. Indeed,
one easily checks that A can be N-graded, with every cluster variable homogeneous
of degree one. So, any nontrivial cluster localization Spec.Ai / of Spec.A/ necessary
misses the unique homogeneous maximal ideal generated by the cluster variables.

3. Frobenius splittings

Frobenius splittings. Every domain3 R over a field of positive characteristic p has
a canonical ring map, the Frobenius endomorphism

F WR!R; defined by x 7! xp:

2The proof in [Berenstein et al. 2005] assumes an additional condition, that the cluster algebra is
totally coprime. However, it was shown in [Muller 2014] that this condition is unnecessary.

3The assumption that R is a domain is completely unnecessary, but it simplifies our discussion
and is sufficient for our purposes.
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The Frobenius map is an R-module map if we equip the target copy of R with the
R-module structure it gets via restriction of scalars. In practice, it is convenient to
denote the target copy of R by some other notation. We denote the target copy by
R1=p and its elements by r1=p, which is consistent with viewing the target copy
of R as (the canonically isomorphic ring) R1=p inside the algebraic closure of the
fraction field of R. In this case, the elements of r act on elements x1=p 2R1=p by
r � x1=p D .rpx/1=p, the usual multiplication rx1=p in the fraction field. In this
notation, the Frobenius map becomes the inclusion

R F,�!R1=p;

r 7! .rp/1=p D r;
(3-1)

of R into the overring R1=p of p-th roots.
We say that R is F -finite if R1=p is a finitely generated R-module. This is a

fairly weak condition, satisfied, for example, by every finitely generated algebra
over a perfect field k.

A famous theorem of Kunz [1969, Theorem 2.1] states that an F -finite domain R
is regular if and only if R1=p is locally free over R. More generally, one should
expect that the closerR1=p is to being locally free overR, the milder the singularities
of R. Frobenius split rings and strongly F -regular rings are examples of rings in
which some degree of “freeness” is retained of R1=p over R.

Definition 3.1. A domain R is Frobenius split if the map (3-1) splits in the category
of R-modules. A choice of splitting � WR1=p!R is called a Frobenius splitting.

Example 3.2. Every field k of characteristic p is Frobenius split, since k1=p is a
vector space over the subfield k. For a perfect field k, the Frobenius endomorphism
is a field isomorphism, and its inverse is the unique Frobenius splitting of k.

Example 3.3. Polynomial rings are Frobenius split. Define the standard splitting
of the polynomial ring kŒx1; x2; : : : ; xn� to be given by

� W .kŒx1;x2; : : : ;xn�/
1=p
! kŒx1;x2; : : : ;xn�;

�..�x
a1

1 x
a2

2 � � �x
an
n /

1=p/D

�
�.�1=p/x

a1=p
1 x

a2=p
2 � � �x

an=p
n if a1;a2; : : : ;an2pZ;

0 otherwise;

where the map � Wk1=p!k on scalars � is taken to be any fixed splitting of Frobenius.

Remark 3.4. The standard splitting of a polynomial ring is a Frobenius splitting,
and will be the source of Frobenius splittings of cluster algebras. It depends on a
choice of generators x and if k is not perfect, it depends on a choice of Frobenius
splitting for k. We suppress the dependence on the choice of a Frobenius splitting
of k by assuming our ground field comes with a fixed Frobenius splitting. In any
case, when k is perfect, there is a unique splitting.
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The standard splitting of a polynomial ring induces a splitting, also called the
standard splitting, of the k-Laurent ring LD kŒx˙11 ; : : : ; x˙1n �, using the exact same
formula as above. An isomorphism between two k-Laurent rings will commute
with the standard splitting, so it does not depend on a choice of presentation.

The standard splitting of a k-Laurent ring has the following key property.

Lemma 3.5. If L is a finitely generated Laurent ring over a perfect4 field k of
characteristic p, then the standard splitting � freely generates HomL.L

1=p; L/ as
an L1=p-module.

Explicitly, every L-module map L1=p!L (including every Frobenius splitting)
can be written as the composition

L1=p
ms
��!L1=p

�
��!L

of the standard splitting � and “multiplication by s1=p” map ms for some unique
s 2L. We denote this composition by � ı s1=p . We include a short proof, although
it may be well-known to experts.

Proof. Let L D kŒx˙11 ; x˙12 ; : : : ; x˙1n �. As an L-module, L1=p has a basis
consisting of monomials xa D x

a1

1 x
a2

2 � � � x
an
n for which 0 � ai < p. For any

 2 HomL.L
1=p; L/, define

s WD
X

a j0�ai<p

 .xa/px�a:

Then, for any b with 0� bi < p,

�..sxb/1=p/D �
��X

 .xa/pxb�a
�1=p�

D

X
 .xa/�.xb�a/1=p D  .xb/:

Since � ı s1=p and  agree on a basis for L1=p, they coincide. �

Remark 3.6. In fact, for any local or graded Gorenstein F -finite ring S of charac-
teristic p, the module HomS .S1=p; S/ is a free rank-one S1=p-module, since in this
case, HomS .S1=p; S/ is a canonical module for S1=p.5 The point of Lemma 3.5
is that for a Laurent ring L, a Frobenius splitting gives a natural generator for
HomL.L

1=p; L/, and hence for the canonical module of L.
One special case is for a field. If F is a field, then HomF .F1=p;F/ is a one-

dimensional vector space over F1=p , so we can take any nonzero mapping to be a
basis. In particular, if we fix a splitting � W F1=p! F , then every  W F1=p! F
is the composition  D � ı s1=p for some unique s 2 F .

4Perfect is not necessary here, but it suffices for our purposes and simplifies the discussion.
5This is a special case of the general “upper shriek” formula for a finite extension R! S that

!S Š HomR.S; !R/ [Hartshorne 1966; Bruns and Herzog 1993, Theorem 3.3.7b]. Note that is S if
Gorenstein, then so is the isomorphic ring S1=p ; hence !S Š S .
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Frobenius splittings of upper cluster algebras. As we now prove, upper cluster
algebras are always Frobenius split. Indeed, there is a natural cluster splitting which
is compatible with the cluster structure:

Theorem 3.7. Suppose that U is an upper cluster algebra over a field k of positive
characteristic. For any cluster x D fx1; x2; : : : ; xng, the standard splitting of
kŒx˙11 ; x˙12 ; : : : ; x˙1n � restricts to a splitting of U . This splitting of U does not
depend on the choice of cluster.

The point of the proof is the following simple but crucial observation: a subal-
gebra R of a Frobenius split algebra S is Frobenius split if �.R1=p/�R, where �
is some Frobenius splitting for S .

Proof. Let x0 D fx01; x2; : : : ; xng be the mutation of x at 1, and let P1 D x1x
0
1 be

the numerator of the mutation (see (2-1)). The standard splitting �x of the Laurent
ring Lx extends to a splitting of the fraction field F by localization; we check that
this splitting restricts to the standard splitting �x0 on the Laurent ring Lx0 .

�x..x
0˛/1=p/D �x..x

0˛1

1 x
˛2

2 � � � x
˛n
n /

1=p/D �x..P
˛1

1 x
�˛1

1 x
˛2

2 � � � x
˛n
n /

1=p/:

Since P1 does not contain x1, the expression inside �x is x�˛1

1 times a rational func-
tion of x2; : : : ; xn. It follows that this is zero, unless ˛1D pˇ1 for some ˇ1 2 Z. In
this case, �x..x

0˛/1=p/D �x..x
0ˇ1p
1 x

˛2

2 � � � x
˛n
n /

1=p/D x
0ˇ1

1 �x..x
˛2

2 � � � x
˛n
n /

1=p/.
Since this last expression is a Laurent monomial in x, we find that

�x..x
0˛/1=p/ WD

�
x0ˇ if ˛ D pˇ;
0 otherwise,

and so �x D �x0 on F . Iterating this argument, we see that every cluster x gives
the same splitting on F . Since this splitting preserves each Laurent ring Lx, it
preserves their intersection U . �

The cluster splitting of U inherits the key property from Lemma 3.5.

Theorem 3.8. Let U be an upper cluster algebra over a perfect field k. The cluster
splitting � of U freely generates HomU .U1=p;U/ as a U1=p-module.

Proof. Consider a U-module map  W U1=p! U . This map induces, by localization,
an F-linear map  W F1=p! F , which we also denote (somewhat abusively) by  .
Since HomF .F1=p;F/ is a one-dimensional vector space over F1=p generated by
the (localization of the) standard splitting �, we can write  as � ı s1=p for some
unique s 2 F . We aim to show that s 2 U . This will complete the proof, as every
 2 HomU .U1=p;U/ will then be the composition of the standard splitting with
premultiplication by a unique s1=p in U1=p.

To show that s 2 U , it suffices to show that s 2 Lx, where Lx is the Laurent
ring on any cluster x D fx1; x2; : : : ; xng. Note that Lx is the localization of U
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at the cluster variables fx1; x2; : : : ; xng. Thus the map  W U1=p! U induces an
Lx-module map  x W .Lx/

1=p ! Lx, which we again call  . By Lemma 3.5,
there is a unique sx 2 Lx such that  x.r

1=p/D �..sxr/
1=p/ for all r 2 Lx. But

now, localizing further to the fraction field F , this map is of course the same as
the map � ı s1=p from the first paragraph; that is, � ı s1=p D � ı s1=px . So by the
uniqueness of s, we see that s D sx 2 Lx. Since this works for any cluster x, it
follows that s 2 U . �
Remark 3.9. The existence of the cluster splitting of U is closely related to the
fact that the canonical module !U=k is free (see Remark 3.6). This is addressed in
the Appendix, which also describes the relation to Frobenius splittings.

4. F -regularity of locally acyclic cluster algebras

Strong F -regularity is a strengthened form of Frobenius splitting, first introduced by
Hochster and Huneke [1988]. Strongly F -regular rings have many nice properties:
they are Cohen–Macaulay, normal, and have pseudorational singularities, to name
a few. Our main theorem in this section is that locally acyclic cluster algebras are
strongly F -regular.

Strong F -regularity. Fix a domain R of characteristic p > 0. We continue to
assume that R is F -finite, meaning that R1=p is finitely generated over R. This is
always satisfied for algebras finitely generated over a perfect field.

Strong F -regularity will be a splitting condition on iterates of the Frobenius map.
For any natural number e, let F e W R! R denote the e-th iterate of Frobenius,
so that F e.r/D rp

e

for all r 2 R. As in the opening paragraphs of Section 3, it
is convenient to replace the target copy of R by the canonically isomorphic ring
R1=p

e

and view the Frobenius map as the inclusion

R ,!R1=p
e

inside the algebraic closure of the fraction field of R.
If R ,!R1=p splits, it is easy to see that every iterate R ,!R1=p

e

splits as well.
Indeed, if � WR1=p!R is a Frobenius splitting, then there is a naturally induced
R-module splitting �e WR1=p

e

!R induced by composition

R1=p
e �1=pe�1

�����!R1=p
e�1

�! � � � �!R1=p
�
�!R:

In particular, upper cluster algebras also have cluster splittings �e for the in-
clusions U ,! U1=pe

, and one easily checks (using the same proof) that �e is a
generator for HomU .U1=p

e

;U/ as a U1=pe

-module as in Theorem 3.8.

Definition 4.1. An F -finite domain R is strongly F -regular if for every nonzero
element x2R, there exists e2N and 2HomR.R1=p

e

; R/ such that .x1=p
e

/D1.
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Though not apparent from its definition, strong F -regularity is a geometric
property which restricts how bad singularities can be. The next two well-known
theorems are examples of this. See also [Smith and Zhang 2015] for a recent survey
of F -regularity.

Theorem 4.2 [Hochster and Huneke 1989, Theorem 3.1c]. An F -finite regular ring
is strongly F -regular.

Theorem 4.3. A Noetherian strongly F -regular ring is:

(1) Frobenius split;

(2) Cohen–Macaulay and normal [Hochster and Huneke 1989, Theorem 3.1d];

(3) pseudorational (see [Smith 1997a]);

(4) Kawamata log terminal whenever it is Q-Gorenstein [Hara and Watanabe
2002] (or more generally Kawamata log terminal in the sense of Schwede and
Smith’s result [2010]: there exists a boundary divisor � such that the pair
.X;�/ is Kawamata log terminal).

Like most good geometric properties, strong F -regularity is a local condition;
this is essential for our application to locally acyclic cluster algebras.

Lemma 4.4 [Hochster and Huneke 1989, Theorem 3.1a]. A domain R is strongly
F -regular if and only if Rp is strongly F -regular, for each prime ideal p.

In practice, to determine whether or not R is strongly F -regular, it often suffices
to check the condition in the definition for a single element x.

Proposition 4.5 [Hochster and Huneke 1989, Theorem 3.3]. Let R be a Noetherian
F -finite domain which is Frobenius split. If there is some nonzero c 2R such that

(1) Rc DRŒc�1� is strongly F -regular, and

(2) there exists e 2 N and  2 HomR.R1=p
e

; R/ such that  .c1=p
e

/D 1,

then R is strongly F -regular.

Proof. This is a well-known result lacking a precise reference easy for nonexperts
to parse (see [Hochster and Huneke 1989, Theorem 3.1a] or [Smith 2000, Theo-
rem 3.10]), so we include a proof. Take any nonzero x 2 R. By (1), there exists
 2 HomRc

.Rc
1=pf

; Rc/ such that  .x1=p
f

/D 1. Since HomRc
.R
1=pn

c ; Rc/D

HomR.R1=p
n

; R/˝RRc , we know  D .1=cq/ z for some z 2HomR.R1=p
n

; R/

and some natural number q, which without loss of generality can be assumed a
power of p. So z .x1=p

n

/ D cq . Now, because R is Frobenius split, a splitting
� 2 HomR.R1=q; R/ will send .cq/1=q to c. Composing this with the map given
in (2) will produce a map sending x1=qp

eCn

to 1. So R is strongly F -regular. �
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Such an element c is a test element for R. These types of test elements were first
defined in [Hochster and Huneke 1989]; for a recent survey of test elements in this
context, see [Smith and Zhang 2015] (more basic) or [Schwede and Tucker 2012]
(more advanced).

F -regularity of locally acyclic cluster algebras. We now establish the main result
of this section, the F -regularity of locally acyclic cluster algebras.

Theorem 4.6. A locally acyclic cluster algebra A over an F -finite field k of prime
characteristic is strongly F -regular.

Proof. The assumption on the field ensures that A is F -finite. Strong F -regularity
is a local condition (see Lemma 4.4), and so it can be checked on an open affine
cover. Since locally acyclic cluster algebras admit an open affine cover by acyclic
cluster algebras, it suffices to prove the theorem for acyclic cluster algebras.

Fix an acyclic seed .Q;x/ for A. We induce on the number of mutable vertices
to prove that A is strongly F -regular.

First, suppose there is only one mutable variable; call it x1. Then

AD kŒx1; x
0
1; x
˙1
2 ; : : : ; x˙1n � =hx1x

0
1�p

C
1 �p

�
1 i;

where pC1 and pC1 are monomials in x2; : : : ; xn with disjoint supports. This is a
localization of the hypersurface algebra

S D kŒx1; x
0
1; x2; : : : ; xn� =hx1x

0
1�p

C
1 �p

�
1 i:

Since at least one of pC1 and p�1 is not 1,6 the corresponding Jacobian ideal
contains a monomial in x2; : : : ; xn, and so the Jacobian ideal becomes trivial in the
localization to A. Hence, A is regular, so it strongly F -regular by Theorem 4.2.

Assume now by induction that any acyclic quiver with m� 1 mutable vertices
defines a strongly F -regular cluster algebra.

Let .Q;x/ be an acyclic seed withm mutable vertices. Since Q is acyclic, we can
find a vertex which is mutable and admits no arrows to any other mutable vertex —
a sink. Label that vertex x1, and the remaining mutable vertices x2; : : : ; xr . Let
.Q�;x�/ be the same seed but with x1 also frozen. Since .Q�;x�/ is also acyclic,
A.Q�;x�/D U.Q�;x�/ and so

A.Q�;x�/DAŒx�11 �

is a cluster localization. The seed .Q�;x�/ is acyclic with m� 1 mutable vertices,
and so by the inductive hypothesis, AŒx�11 � is strongly F -regular.

Since A is acyclic, the cluster algebra A coincides with the upper cluster algebra U
(Theorem 2.6), and so the cluster splitting from Theorem 3.7 is a Frobenius splitting

6Due to the assumption that mutable vertices must have at least one incident arrow.
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for A. Hence, by Proposition 4.5, it suffices to check only the test element c WD x1
in A. We construct a  sending x1=p

e

1 to 1 directly, using the cluster splitting �.
Let pC1 and p�1 be the monomials appearing in the mutation formula at x1, so

that x1x
0
1 D p

C
1 C p

�
1 . Choose e large enough that each exponent appearing in

pC1 or p�1 is less than pe. Since there are no arrows from x1 to other mutable
vertices, p�1 is a monomial only in the frozen variables; in particular, it is invertible.
Consider the map

 D �e ı

�
x01
p�1

�1=pe

;

where �e is the cluster splitting of A ,!A1=pe

. Then

 .x
1=pe

1 /D �e
��
x1x
0
1

p�1

�1=pe�
D �e

��
pC1
p�1
C 1

�1=pe�
:

Since pe is greater than any exponent in the Laurent monomial pC1 =p
�
1 , we know

that �e kills that term, and so  .x1=p
e

1 /D 1. By Proposition 4.5, this shows that A
is strongly F -regular. This completes the inductive step and the proof. �

Characteristic zero consequences. So far, our results are for cluster algebras over
a field of positive characteristic. By a standard miracle, these results imply similar
consequences over fields of characteristic zero.

We first need to check that locally acyclic cluster algebras over Z behave as
expected when tensored with a field k. Let AZ denote a cluster algebra over Z.
Choosing any seed in AZ and replacing the cluster with a cluster over k determines
a cluster algebra Ak over k, which is well-defined up to canonical isomorphism.

Lemma 4.7. If AZ is locally acyclic, then Ak is locally acyclic and k˝Z AZ 'Ak.

Proof. If AZ is acyclic, then any acyclic seed of AZ corresponds to an acyclic seed
of Ak with the same quiver. The presentations of AZ and Ak from Theorem 2.6
coincide except for the ring of scalars, and so k˝Z AZ 'Ak.

If AZ is locally acyclic, let f.Ai /Zgi2I be a cover by acyclic cluster algebras.
By the previous paragraph, k˝Z .Ai /Z ' .Ai /k is an acyclic cluster localization
of Ak. Since extension of scalars sends covers to covers, f.Ai /kgi is a cover of Ak.
Since the map k˝Z AZ!Ak is locally an isomorphism, it is an isomorphism. �

With this in hand, we may prove one of our main theorems.

Theorem 4.8. A locally acyclic cluster algebra over a field k of characteristic zero
has (at worst) canonical singularities.

Proof. Let A be a locally acyclic cluster algebra over k, and let AZ be the corre-
sponding locally acyclic cluster algebra over Z. By the preceding lemma, for any
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prime p 2 Z,

Fp˝Z AZ 'AFp

is locally acyclic. By Theorem 4.6, AFp
is strongly F -regular. On the other hand,

A is Gorenstein by Proposition 2.5. Thus, by [Smith 1997a, Theorem 4.3], Ak has
(at worst) rational singularities, but Gorenstein rational singularities are canonical
(see the discussion in [Elkik 1981]). �

5. The nonlocally acyclic setting

What can be said about cluster algebras and upper cluster algebras which are not
locally acyclic? We provide examples which demonstrate that strong F -regularity
is still possible, but not necessary. We also support the general philosophy that
U should be better-behaved than A by proving that F -regularity of A implies
F -regularity of U .

We end this section by showing that related algebras, called the lower bound
algebras, are always Frobenius split. We do not know whether or not lower bound al-
gebras are always strongly F -regular (they are, at least, always Noetherian complete
intersections). Nor do we know whether an arbitrary cluster algebra is Frobenius
split in general.

F -regularity of A implies F -regularity of U . In this section, we consider a com-
pletely arbitrary cluster algebra A (possibly infinitely generated) over a perfect field.

Lemma 5.1. Fix any integer e � 1 and let ' 2 HomA.A1=p
e

;A/. Then ' extends
uniquely to a map in HomU .U1=p

e

;U/.

Proof. The map ' extends, by localization, to the Laurent ring generated by the
cluster variables in any given cluster. Hence, it preserves U , the common intersection
of all of these Laurent rings. �

Proposition 5.2. If A is strongly F -regular then U is strongly F -regular.

Proof. Suppose that c is a nonzero element of U . Since A and U have the same
fraction field, there is an a 2A for which ac is a nonzero element of A. Because
A is strongly F -regular, there is an integer e � 1 and a map ' 2 HomA.A1=p

e

;A/
for which '..ac/1=p

e

/D 1. By Lemma 5.1, we may extend ' uniquely to a map
z' W U1=pe

! U .
Let ma W U1=p

e

! U1=pe

be the multiplication map given by ma.x1=p
e

/ D

a1=p
e

x1=p
e

. Then the composition z'ıma is an element of HomU .U1=p
e

;U/ which
maps c1=p

e

to 1. �

In what follows, we focus on the F -regularity of upper cluster algebras.
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x1

x2 x3

Figure 2. The seed for the Markov cluster algebra in F D k.x1; x2; x3/.

The Markov upper cluster algebra. Consider the seed .Q;x/ defined in Figure 2.
Observe that it has three mutable vertices and no frozen vertices.

Introduced in [Berenstein et al. 2005], the Markov cluster algebra ADA.Q;x/ is
a standard source of counterexamples and pathologies. For example, ADA.x;B/ is
not a locally acyclic cluster algebra, and indeed A¨U [Berenstein et al. 2005, Theo-
rem 1.26]. Moreover, the Markov cluster algebra A is not Noetherian [Muller 2013].

Nevertheless, the Markov upper cluster algebra U D U.Q;x/ is quite well-
behaved. It was shown in [Matherne and Muller 2014] that it can be presented as
the hypersurface algebra

U Š kŒx1; x2; x3;M � =hx1x2x3M � x
2
1 � x

2
2 � x

2
3i:

Equivalently, the upper cluster algebra U is generated inside the field F by x1; x2; x3
and the element

M D
x21 C x

2
2 C x

2
3

x1x2x3
:

Proposition 5.3. If char.k/ ¤ 2; 3, then the Markov upper cluster algebra U is
strongly F -regular.

Proof. Since U is Frobenius split by Theorem 3.7, and the localization of U at
x1x2x3 is a Laurent ring, x1x2x3 is a test element for U . Consider now the
morphism ' W U1=pe

! U1=pe

defined by '.�/D �e..1=6 �M 3/1=p
e

�/, where �e

is the iterated cluster splitting of U defined on page 921 and M is described as
before. This morphism ' maps .x1x2x3/1=p

e

to 1:

'..x1x2x3/
1=pe

/D�

��
1

6

�
x21Cx

2
2Cx

2
3

x1x2x3

�3
x1x2x3

�1=pe�
D�

��
1

6

P
iCj�3;i;j¤1 ci;jx

2i
1 x

2j
2 x

6�2i�2j
3 C6x21x

2
2x
2
3

.x1x2x3/2

�1=pe�
D 1;

where the ci;j are some combinatorial coefficients. This shows that U is strongly
F -regular. �
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x1

x2 x3

a

a

a

Figure 3. A seed in F D k.x1; x2; x3/, where a � 2.

A non-F -regular upper cluster algebra. Generalizing the previous setting, con-
sider the seed .Q;x/ defined in Figure 3 for some integer a � 2.

Let U D U.Q;x/ denote the associated upper cluster algebra. As shown in
[Matherne and Muller 2014], this generalized Markov upper cluster algebra can be
presented as

U Š kŒx1; x2; x3;M � =hx1x2x3M � x
a
1 � x

a
2 � x

a
3 i:

Proposition 5.4. If a � 3, then U is not strongly F -regular.

Proof. Notice that U is graded, with

deg.x1/D deg.x2/D deg.x3/D 1; deg.M/D a� 3:

When a � 3, every homogeneous element in U has degree at least 0. As a conse-
quence, the span of the positive degree elements forms a nonzero ideal I .

The cluster splitting � sends positive degree elements to positive degree elements
or zero, so �e.I 1=p

e

/� I for any e. By Theorem 3.8, any  2 HomU .U1=p
e

;U/
can be written as

 D �e.s1=p
e

�/

for some s 2 U . Since .sI /1=p
e

� I 1=p
e

, we see that  .I 1=p
e

/ � I 1=p
e

for any
 2HomU .U1=p

e

;U/. In particular, for any c 2I , there is no 2HomU .U1=p
e

;U/
such that  .c/D 1 62 I , and so U is not strongly F -regular. �

By Proposition 5.2, this extends to the cluster algebra as well.

Corollary 5.5. If a � 3, then A.Q;x/ is not strongly F -regular.

Remark 5.6. The positive degree elements in U form an ideal .x1; x2; x3/ stable
under all maps in HomU .U1=p

e

;U/, that is, compatible with respect to every element
of HomU .U1=p

e

;U/. This is the test ideal of U . See [Schwede and Tucker 2012].

Lower bound algebras. Fix a seed .Q;x/, where xD .x1; x2; : : : ; xn/. As before,
let

pCi WD
Y
j!i

xj and p�i WD
Y
j i

xj ;
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and let x0i WD .p
C
i Cp

�
i /x
�1
i . The algebra L.Q;x/ defined by

L.Q;x/ WD kŒx1; x2; : : : ; xn; x
0
1; x
0
2; : : : ; x

0
n�� F D k.x1; : : : ; xn/

is called the lower bound algebra associated to the seed .Q;x/. Notice that
L.Q;x/ � A.Q;x/. This inclusion is an equality if and only if Q is an acyclic
quiver (see [Berenstein et al. 2005, Theorem 1.20]).

Lemma 5.7. The kernel L of the surjective ring homomorphism

kŒx1; : : : ; xn; y1; : : : ; yn�! L.Q;x/; xi 7! xi ; yi 7! x0i ;

is a prime component of the ideal I WD hx1y1�.pC1 Cp
�
1 /; : : : ; xnyn�.p

C
n Cp

�
n /i.

Proof. Since L.Q;x/ is a domain, L is a prime ideal. To see that L is a component
of I , let S D kŒx1; : : : ; xn; y1; : : : ; yn�, and observe that

ISŒ.x1 � � � xn/
�1�D hy1� x

0
1; : : : ; yn� x

0
ni:

Since LD hy1�x01; : : : ; yn�x
0
ni\S , it follows that .ISŒ.x1 � � � xn/�1�/\S DL,

and thus L is a prime component of I . �

Proposition 5.8. The lower bound algebra L.Q;x/ is Frobenius split.

Proof. Fix any prime p > 0, let S WD kŒx1; : : : ; xn; y1; : : : ; yn�, and let B denote
the S -module basis of S1=p consisting of all monomials

x
a1=p
1 � � � xan=p

n y
anC1=p
1 � � �ya2n=p

n ; 0� ai < p:

Define  WS1=p!S to be the S -linear map which takes value 1 on the basis ele-
ment x.p�1/=p1 � � � x

.p�1/=p
n y

.p�1/=p
1 � � �y

.p�1/=p
n and 0 on all other elements of B.

We will construct a Frobenius splitting of S which descends to a Frobenius
splitting of L. To this end, let

f D
Y
1�i�n

.xiyi �p
C
i �p

�
i /;

and observe that premultiplication of  by f .p�1/=p is a Frobenius splitting of S .
Indeed, since the pC and p� never involved any y, all monomials appearing in
f .p�1/ involve each yi to a power less than p; all of these are killed by  except
for the monomial term x

.p�1/
1 � � � x

.p�1/
n y

.p�1/
1 � � �y

.p�1/
n , whose p-th root gets

sent to 1 by  . So,  .f .p�1/=p � 1/D 1, and  .f .p�1/=p�/ is thus a Frobenius
splitting of S . Furthermore, if J D hf i, then

 .f .p�1/=pJ 1=p/� J:

That is, J is a compatibly split ideal. Because sums and prime components of
compatibly split ideals are compatibly split (see, for example, [Brion and Kumar
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2005, Chapter 1.2]), the ideal L� S that defines the lower bound algebra L.Q;x/
is compatibly split. The Frobenius splitting  .f .p�1/=p�/ W S1=p! S therefore
descends to a Frobenius splitting of the lower bound algebra. �

Appendix: The canonical module of an upper cluster algebra

This appendix considers the canonical module of an upper cluster algebra U over a
field k.7 Since upper cluster algebras need not be Noetherian [Speyer 2013], we
must be careful which definition we use.

Canonical modules. Let S be a normal domain over k such that the fraction field
F.S/ has transcendence degree n over k. Define the canonical module of S over k
to be the S -module

!S=k WD .ƒ
n
S�S=k/

��:

If S is regular (such as a field), then the double dual in the definition is unnecessary,
and !S=k DƒnS�S=k. This construction commutes with localization; in particular,
there is a natural embedding

!S=k � !F.S/=k Dƒ
n
F.S/�F.S/=k

into the canonical module of the fraction field.

The log volume form. Let U be an upper cluster algebra over k. The algebra U is
normal and the transcendence degree of its fraction field over k is the rank n. For a
cluster x with functions fx1; x2; : : : ; xng indexed by f1; 2; : : : ; ng, let Lx denote
the k-Laurent ring in that cluster, and define the log volume form

�x WD
dx1 ^ dx2 ^ � � � ^ dxn

x1x2 � � � xn
2 !Lx=k:

Note that a permutation of the indices may change the sign of this element.

Proposition A.1. The canonical module !Lx=k is free of rank one over Lx and
generated by the log volume form �x.

The log volume form is an invariant of the cluster algebra, up to sign.

Proposition A.2. For two different clusters x;y of U , we have �x D˙�y .

Proof. It is sufficient to check the proposition for a single mutation. Let x0 D

fx1;x2; : : : ;x
0
i ; : : : ;xng, where x0i D .p

C
i Cp

�
i /=xi . Then

dx0i
x0i
D
d.pCi Cp

�
i /

xix
0
i

�
.pCi Cp

�
i / dxi

x2i x
0
i

D
d.pCi Cp

�
i /

pCi Cp
�
i

�
dxi

xi
:

7The results remain true over Z.
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Since pCi and p�i are monomials in fx1; x2; : : : ; xi�1; xiC1; : : : ; xng,

dx1 ^ � � � ^ dx
0
i ^ � � � ^ dxn

x1 � � � x
0
i � � � xn

D�
dx1 ^ � � � ^ dxi ^ � � � ^ dxn

x1 � � � xi � � � xn
:

Hence, �x D��x0 . Iterating mutations or permuting the indices will change this
form by at most a sign. �

Canonical modules of upper cluster algebras. Since either log volume form freely
generates the canonical module after localizing to a cluster Laurent ring, it follows
that they freely generate the canonical module of U .

Theorem A.3. For an upper cluster algebra U over a field8 k, the canonical module
!U=k is free of rank one over U and generated by a log volume form in any cluster.

Proof. Fix a log volume form � in some cluster. For any cluster x, the localization
Lx˝ƒ

n
U�U=k equals Lx� by Proposition A.1. Let

ƒnU�U=k! f .ƒnU�U=k/

be the quotient by the maximal torsion submodule. Then f .ƒnU�U=k/ is contained
inside the localization Lx�, which is contained inside the generic canonical module
ƒnF.U/�F.U/=k. Intersecting over all clusters, we obtain a map

ƒnU�U=k! f .ƒnU�U=k/�
\

clusters x

.Lx�/D

� \
clusters x

Lx

�
�D U�:

Define �� 2 .ƒnU�U=k/
�DHomU .ƒ

n
U�U=k;U/ to be the composition of the above

map with the U-module map U�! U which sends � to 1.
Consider another U-module map  WƒnU�U=k! U . Since U is torsion-free,  

factors through f .ƒnU�U=k/. Localizing  at a cluster x gives an Lx-module map
 x W Lx�! Lx. Let sx WD  x.�/, and note that  x.a�/D asx for all a 2 Lx.

Localizing at a different cluster y gives a map  y W Ly�! Ly , which is of the
form  y.a�/D asy for some sy 2 Ly . Since there is some nonzero b 2 U such
that b� 2 f .ƒnU�U=k/ (the product of the variables in any cluster suffices),

bsx D b x.�/D  .b�/D b y.�/D bsy ;

and it follows that sxD sy inLx\Ly . Repeating for all clusters, sx 2U . Therefore,
 .a�/D asx D �

�.sxa�/ for all a 2 U ; this proves that �� freely generates the
dual module

.ƒnU�U=k/
�
D U��:

Dualizing both sides demonstrates that !U=k D U�. �

8The theorem remains true when k is an arbitrary normal domain.
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There are examples where the log volume forms are not in �nU=k; hence, the
double dual in the definition of !U=k is necessary.

Corollary A.4. A Noetherian upper cluster algebra over a field is Gorenstein.

Canonical modules and Frobenius splittings. We sketch the relation between
canonical modules and Frobenius splittings here; further details may be found
in [Brion and Kumar 2005, Section 1.3].

Let k be a field of positive characteristic p ¤ 2, and let X be a smooth, locally
finite-type scheme over k. The Frobenius map becomes a flat, finite morphism

f WX !X:

Then the push-forward functor f� W Coh.X/! Coh.X/ has a right-adjoint

f Š W Coh.X/! Coh.X/;

together with an adjunction map

tr W f�f Š! Id

called the trace.
The coherent sheaf f Š.OX / and its trace map can be connected with Frobenius

splittings as follows. On any open affine subscheme Spec.R/�X :

� f Š.OX /ŒSpec.R/� is isomorphic to HomR.R1=p; R/ as anR1=p-module; equiv-
alently, to HomRp .R;Rp/ as an R-module.

� f�f
Š.OX /ŒSpec.R/� is isomorphic to HomR.R1=p; R/ as an R-module.

� The trace map is given by the R-module map

HomR.R1=p; R/!R;

which sends a map f WR1=p!R to f .1/ 2R.

Hence, the sheaf of Frobenius splittings is isomorphic to tr�1.1/� f�f Š.OX /.
Duality theory for the morphism f gives an alternate description of f Š.OX / in

terms of the canonical sheaf !X=k.

Theorem A.5 [Brion and Kumar 2005, §1.3]. There are natural isomorphisms9

f Š.OX / �!� HomX .f �!X=k; !X=k/ �!� .!X=k/
1�p;

f�f
Š.OX / �!� HomX .!X=k; f�!X=k/ �!� f�..!X=k/

1�p/;

and a map � W f�!X=k! !X=k, such that the trace map is given by

f�f
Š.OX / �!� HomX .!X=k; f�!X=k/

�ı�
���!HomX .!X=k; !X=k/ �!� OX :

9The negative exponent on .!X=k/1�p denotes a positive power of the dual sheaf !�
X=k

. This is a
markedly different use of exponential notation than R1=p .
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Back to cluster algebras. Let U be an upper cluster algebra. For any seed .Q;x/,
the Laurent phenomenon says that freezing every mutable vertex gives the localiza-
tion kŒx˙11 ; : : : ; x˙1n � in the cluster x D fx1; : : : ; xng. Geometrically, this means
there is an open subscheme

Spec.kŒx˙11 ; : : : ; x˙1n �/� Spec.U/:

Let us call subschemes of this form cluster tori. Let X � Spec.U/ be the union of
the cluster tori, as .Q;x/ runs over all seeds.

While the scheme Spec.U/ is generally neither smooth nor locally finite type
over k, the open subscheme X is both. Hence, by Theorem A.5, we have isomor-
phisms

f Š.OX / �!� HomX .f �!X=k; !X=k/ �!� .!X=k/
1�p:

Proposition A.6. Let X be the union of the cluster tori in Spec.U/.

(1) OX .X/ is isomorphic to U as a k-algebra.

(2) f Š.OX /.X/ is isomorphic to HomUp .U ;Up/ as a U-module.

(3) !X=k.X/ is isomorphic to !U=k as a U-module.

On any cluster torus, these isomorphisms restrict to the obvious isomorphisms.

Proof. The first isomorphism is a standard fact about upper cluster algebras; see,
e.g., [Matherne and Muller 2014, Proposition 3.4]. The other two isomorphisms
follow from Theorems 3.8 and A.3, which show that HomUp .U ;Up/ and !U=k are
each free of rank one over U with a distinguished generator (the cluster splitting and
either log volume form, respectively). On each cluster torus, the sheaves f Š.OX /
and !X=k are free and generated by the restriction of the generator. Hence, a global
section of f Š.OX / or !X=k can be written as the distinguished generator times a
rational function which is Laurent in each cluster, that is, an element of U . �

As a consequence, we have an isomorphism of U-modules

HomUp .U ;Up/ �!� .!U=k/
1�p;

where !U=k to a negative power means !�U=k D .ƒ
n
U�U=k/

� to a positive power.
The connection between cluster splittings and log volume forms starts to become

clear. Theorem A.3 establishes that !U=k is free of rank one as a U-module. Hence,
HomU .U ;Up/ is free of rank one as a U-module, or equivalently, HomU .U1=p;U/
is free of rank one as a U1=p-module.

To choose a distinguished generator, we observe that !U=k has two natural
generators (the log volume forms) which differ by a sign. Since p is odd, the
.1�p/-th power of the two log volume forms coincide, so .!U=k/

1�p has a canonical
generator. This determines a canonical generator in HomU .U1=p;U/ over U1=p;
all that remains is to observe that it coincides with the cluster splitting.
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Proposition A.7. If � 2 !U=k is either log volume form, then the image of �1�p

under the map
.!U=k/

1�p
�!� HomU .U1=p;U/

is the cluster spitting � W U1=p! U .

The reader is cautioned that, as written, this is not a module map; rather, it
intertwines the U-action on .!U=k/

1�p and the U1=p-action on HomU .U1=p;U/.

Proof. If Lx is the k-Laurent ring in some cluster x, the localization map U � Lx

induces localization maps

.!U=k/
1�p ,! .!Lx=k/

1�p and HomU .U1=p;U/ ,! HomLx
.L
1=p
x ; Lx/:

It suffices to check that�1�p is sent to the standard splitting ofLx; this is essentially
[Brion and Kumar 2005, Lemma 1.3.6]. �
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Lazard’s isomorphism

Georg Tamme

We prove a comparison theorem between locally analytic group cohomology and
Lie algebra cohomology for locally analytic representations of a Lie group over a
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Introduction

In a seminal paper, Lazard [1965] established two basic theorems concerning the
cohomology of a compact Qp-analytic Lie group G with Lie algebra g. Firstly, if
V is a finite-dimensional Qp-vector space with continuous G-action, the natural
map from locally analytic group cohomology H�an.G; V /, defined in terms of
locally analytic cochains, to continuous group cohomology H�cont.G; V / is an
isomorphism. Secondly, there is a natural isomorphism between the direct limit
colimG0�G H�cont.G

0; V /, where G0 runs through the system of open subgroups of
G, and the Lie algebra cohomology H�.g; V /. Hence, combining both, there is a
natural isomorphism

colim
G0�G open

H�an.G
0; V /ŠH�.g; V /: (1)
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These results play an important role in arithmetic geometry, in particular in the
theory of Galois representations, or in the study of p-adic regulators [Huber and
Kings 2011].

At least for certain Lie groups, integral and K-analytic versions have been
obtained by Huber, Kings, and Naumann [Huber et al. 2011] when K is a finite
extension of Qp . The proofs are based on Lazard’s original argument via continuous
group cohomology, and are not easily accessible. A somewhat simplified proof has
been given by Lechner [2012] using formal group cohomology.

On the other hand, the situation for a real Lie group G is much more transparent.
The analogous result is van Est’s isomorphism H�

d
.G; V /ŠH�.g; KIV /, which

relates differentiable group cohomology with relative Lie algebra cohomology for a
maximal compact subgroupK�G. Its proof is based on the following observations:
The quotient G=K is contractible, hence the de Rham complex ��.G=K; V / with
coefficients in a G-representation V is a resolution of V . Moreover, for any k,
the space �k.G=K; V / is G-acyclic. Hence, H�

d
.G; V / is computed by the G-

invariants of the complex��.G=K; V /, which is precisely the Chevalley–Eilenberg
complex computing relative Lie algebra cohomology H�.g; KIV /.

It is a natural question whether a similar argument works in the nonarchimedean
situation. In this note, we show that this is indeed the case. This gives a direct
proof of the isomorphism (1) and generalizes it with respect to the ground field and
the coefficients:

Theorem. Let K be a nonarchimedean field of characteristic 0. Let G be a locally
K-analytic Lie group and G ! Aut.V / a locally analytic representation on a
barreled locally convex K-vector space. Denote by g the K-Lie algebra of G. Then
there are natural isomorphisms

colim
G0�G open

H�an.G
0; V /ŠH�.g; V /;

where the colimit is taken over the system of open subgroups of G.

The rough argument is as follows: The de Rham complex ��.G; V / is a reso-
lution of the locally constant V -valued functions on G. As in the real case, each
�k.G; V / is G-acyclic, hence the cohomology of the locally constant V -valued
functions onG is isomorphic to the Lie algebra cohomologyH�.g; V / (see Sections
3 and 4 for precise results). The theorem then follows by taking the direct limit
over the open subgroups of G.

The proof also shows that, for compact G, one can recover the locally analytic
group cohomology from the Lie algebra cohomology as the invariants under the
natural G-action: H�an.G; V /ŠH

�.g; V /G (see Corollary 21).
Moreover, we describe the comparison map between locally analytic group

cohomology and Lie algebra cohomology explicitly on the level of complexes: It is
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given by differentiating locally analytic cocycles at 1 (see Section 5). As pointed
out by the referee, one can use the methods of [Huber and Kings 2011] to show
that, on cohomology groups, this comparison map agrees with the one studied by
Lazard in the case that K is Qp and V is finite-dimensional.

In order to apply usual arguments from homological algebra, we show, following
[Flach 2008], that the locally analytic cochain cohomology groups can be interpreted
as derived functors of the global section functor on a topos BG (Sections 1 and 2).
The nice feature of this is that it gives a quick proof of the main results which
requires only a minimum of functional analysis.

An alternative approach to the cohomology of locally analytic representations
of Lie groups over finite extensions of Qp is due to Kohlhaase [2011]. It is based
on relative homological algebra. He obtains similar results under an additional
assumption on the group, which, as he proves, is fulfilled in many cases. The
cohomology groups he defines are finer than ours in the sense that they themselves
carry a locally convex topology. In contrast to the groups we use, they do not always
coincide with the cohomology groups defined in terms of locally analytic cochains.

I would like to thank the referee for useful remarks, in particular concerning the
comparison of our isomorphism with Lazard’s original one.

Notations and conventions. For the whole paper, we let K be a nonarchimedean
field of characteristic 0, i.e., K is equipped with a nontrivial nonarchimedean
absolute value j � j such that K is complete for the topology defined by j � j. By a
manifold we will always mean a paracompact, finite-dimensional locallyK-analytic
manifold. Note that, by [Schneider 2011, Corollary 18.8], any locally K-analytic
Lie group is paracompact. For manifolds X; Y , we denote by C an.X; Y / the set of
locallyK-analytic maps fromX to Y . We will refer to them simply as analytic maps.

1. Locally analytic group cohomology

In this section, we describe the topos-theoretic approach to locally analytic group
cohomology. We refer to [Flach 2008] for the case of continuous cohomology.

Denote by La the category of manifolds. We let Sh.La/ be the category of sheaves
on La with respect to the topology generated by open coverings. For this topology,
every representable presheaf is a sheaf, hence we have the Yoneda embedding
y W La! Sh.La/.

Let G be a Lie group. Then y.G/ is a group object in Sh.La/. The category of
sheaves with a y.G/-action is a topos [SGA 41 1972, Exposé IV, 2.4], called the
classifying topos of y.G/. It will be denoted by BG.1 We denote its global section
functor by � W BG! Set; �.F/D HomBG.�;F/D F.�/G . Similarly, if X is an

1More precisely, we assume the existence of universes and only consider manifolds which are
elements of a given universe U. Then Sh.La/ and BG are V-topoi for a universe V with U 2 V.
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object of BG, we denote by �.X;�/DHomBG.X;�/ the functor of sections over
X . As usual, we define cohomology groups via the derived functors of the global
section functor:

Definition 2. Let A be an abelian group object of BG. Then we set

H i .G;A/ WD .Ri�/.A/:

Example 3. Let V be a finite-dimensional K-vector space with a linear G-action
such that the map G�V !V defining the action is analytic. This induces an action
y.G/�y.V /! y.V /, and hence y.V / can naturally be considered as an element
of BG. We have �.y.V //D V G . In the next section, we will show that the higher
cohomology groups H i .G; y.V // coincide with the cohomology groups defined in
terms of locally analytic cochains with coefficients in V .

As another example, let M be a continuous G-module, i.e., a topological abelian
group equipped with a linear G-action such that G �M ! M is continuous.
Then we have the sheaf of continuous M -valued functions C.�;M/ on La. It
also carries a natural action by y.G/. It follows from Proposition 8 below that the
groupsH i .G; C.�;M// can be identified with the continuous cochain cohomology
groups of M .

We want to describe the cohomology groups defined in Definition 2 in terms of
a concrete complex. We begin with some general considerations.

Let T be a topos, and let G be a group object in T. For objects A;B of BG

the internal hom HomBG.A;B/ is given as follows: The underlying object of T is
HomT.A;B/ and the action of G is given by the formula

.g�/.a/D g.�.g�1a//:

Denote by i W �! G the morphism from the trivial group in T to G. It induces a
geometric morphism of topoi (see [SGA 41 1972, Exposé IV, 4.5])

i W TŠ B�! BG:

The left adjoint i� simply forgets the G-action. The right adjoint is given by
i�.F/ D HomBG. lG;F/, where lG is G with its natural left action, viewed as an
object ob BG, and F is viewed as object of BG with trivial G-action. The functor
i� also has a left adjoint iŠ given by F 7! lG�F with G-action via the first factor.

For an object A2BG, we denote by A\ the object ofBG with the same underlying
object in T and trivial G-action.

Lemma 4. For A;B 2 BG we have

HomBG. lG�A;B/Š i�HomT.i
�A; i�B/:
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Proof. Let X be an object of BG. Then we have natural isomorphisms

HomBG.X; i�HomT.i
�A; i�B//Š HomT.i

�X;HomT.i
�A; i�B//

Š HomT.i
�.X�A/; i�B/

Š HomBG.iŠi
�.X�A/;B/

Š HomBG. lG� .X�A/\;B/

Š HomBG. lG�X�A;B/

Š HomBG.X;HomBG. lG�A;B//;

where we used the isomorphism lG� .X�A/\Š lG�X�A given by .pr1; action/.
This implies the lemma. �

We now consider the case T D Sh.La/;G D y.G/. For a sheaf F on La, the
sheaf underlying i�F is, by the above, given by X 7!HomSh.La/.y.G/;F/.X/Š

F.G �X/ (Yoneda lemma).

Remark 5. By our general assumption, every manifold X in La is paracompact.
By [Schneider 2011, Proposition 8.7], it is even strictly paracompact, i.e., every
open covering of X can be refined by a covering by pairwise-disjoint open subsets.
This implies in particular that the functor of sections over X is exact on the category
of abelian sheaves on La.

Lemma 6. The functor i� from abelian sheaves on La to abelian group objects in
BG is exact.

Proof. Since i� is a right adjoint, it is left exact. Consider an epimorphism A!B

of abelian sheaves on La. By the above remark, the functor of sections over G �X
is exact, and hence A.G �X/!B.G �X/ is an epimorphism of abelian groups.
From this we deduce that i�A! i�B is an epimorphism. �

Corollary 7. For any abelian sheaf A on La, we have

H i .G; i�A/Š

�
A.�/ if i D 0;
0 else.

Proof. Since the left adjoint i� is exact, i� sends injectives to injectives. Since i� is
exact and � ı i�.�/D HomBG.�; i�.�//Š HomSh.La/.�;�/ we see that

H i .G; i�A/ŠH i
Sh.La/.�;A/Š

�
A.�/ if i D 0;
0 else.

�

We let E�G be the simplicial manifold given in degree p by EpG WDGpC1, and
�� WEqG!EpG, for � W f0 < � � �< pg ! f0 < � � �< qg, given by

.g0; : : : ; gq/ 7! .g�.0/; : : : ; g�.p//:
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The group G acts on E�G via diagonal left multiplication. We denote the simplicial
object of BG given by y.E�G/ equipped with diagonal y.G/-action by lE�G.

For an abelian group object A in BG, the degree-wise sections over lE�G form
a cosimplicial abelian group �. lE�G;A/.

Proposition 8. Let A be an abelian group object of BG. Then

H�.G;A/ŠH�.�. lE�G;A//:

Proof. The projection ly.G/!� is an epimorphism in BG. The Čech nerve of
this morphism is precisely lE�G. We thus have a quasi-isomorphism

AŠHomBG.�;A/ �!� HomBG. lE�G;A/:

Using Lemma 4 and Corollary 7 we see that the complex on the right-hand
side consists of �-acyclic objects. We conclude using �.HomBG. lE�G;A// D
HomBG.�;HomBG. lE�G;A//Š HomBG. lE�G;A/D �. lE�G;A/. �

2. Locally analytic representations

In Example 3, we saw how to associate an abelian group object of BG to any
finite-dimensional locally analytic representation of G. The goal of this section is
to extend this to arbitrary locally analytic representations in the sense of [Schneider
and Teitelbaum 2002], and to relate the cohomology groups thus defined to the
cohomology groups defined in terms of analytic cochains (Proposition 12).

We begin by recalling some basic notions about analytic functions and locally
analytic representations. References are [Féaux de Lacroix 1998] or [Schneider and
Teitelbaum 2002, §§2,3].

IfW is a Banach space, a function f WX!W from a manifold X toW is called
analytic, if, in local charts, it is given by convergent power series with coefficients
in W . The reader who is only interested in representations on Banach spaces can
skip the following general definition and also all “admissibility” considerations
later on. Let V be a locally convex separated K-vector space. A BH-space2 for V
is a continuous inclusion of a separated Banach space W ,! V [Féaux de Lacroix
1998, §1.2]. Let X be a manifold. A function f W X ! V is called analytic if
every x 2 X admits a neighborhood U and a BH-space W ,! V such that f jU
factors through an analytic map U !W . We denote the set of all analytic functions
X ! V by C an.X; V /. By [Féaux de Lacroix 1998, Korollar 2.4.4], C an.X; V / is
a module over the algebra of analytic functions C an.X;K/. For varying X , this is
a sheaf on La denoted by C an.�; V /.

2Banach–Hausdorff
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A topological representation of the Lie group G on V is an action of G on V
by continuous automorphisms, i.e., a homomorphism G! Aut.V / to the abstract
group of continuous automorphisms Aut.V / of V . The topological representation is
called locally analytic if all orbit maps G! V; g 7! gv, are analytic (this is called
a weakly analytic representation in [Féaux de Lacroix 1998, Definition 3.1.5]).

Example 9. Let W be a Banach space. Then Aut.W / is an open subset of the
Banach space of continuous endomorphisms End.W /. Féaux de Lacroix [1998,
Korollar 3.1.9] showed that a topological representation ofG onW is locally analytic
if and only if the corresponding homomorphism r W G ! Aut.W / � End.W / is
analytic. Assume that this is the case. Let X be a manifold, and let � W X ! G

and f W X ! W be analytic maps. Then the point-wise product �f W X ! W ,
x 7! �.x/f .x/, is again analytic. Indeed, �f equals the composition

X
.�; idX /
�����!G �X

r�f
����! Aut.W /�W � End.W /�W

ev
���!W;

where the first two maps are analytic by assumption and the evaluation map ev
is continuous and bilinear. It follows that we get an action of y.G/ on the sheaf
C an.�; W /, and C an.�; W / can naturally be viewed as an object of BG. This
generalizes Example 3.

For a general locally analytic representation of G on V , this need no longer
be true. Instead, we have to consider the subsheaf of C an.�; V / of admissible
functions, as we explain in the next paragraph. The example above shows that for
representations on Banach spaces every analytic function is admissible.

Let G! Aut.V / be a topological representation. We call an analytic function
f W X ! V admissible if the map Of W G �X ! V , .g; x/ 7! gf .x/ is analytic.
Note that Of is analytic if and only if its restriction Of jU�X for some open subset
U � G is analytic. Indeed, if this is the case, then for any h 2 G the restriction
Of jhU�X is equal to the composition

.hU �X/
.g;x/ 7!.h�1g;x/
������������! U �X

Of jU�X
�����! V

h �
���! V;

where the first two maps are analytic and the last is continuous and linear. We define

V .X/ WD C ad.X; V / WD ff 2 C an.X; V / jf is admissibleg:

This is a C an.X;K/-submodule of C an.X; V /. We claim that V is a subsheaf of
C an.�; V / and that the point-wise multiplication byG-valued analytic maps defines
an action of y.G/ on V . We will henceforth view V as an abelian group object
of BG.
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Proof of the claim. If f 2 V .X/ and � W Y ! X is an analytic map between
manifolds, then f ı� is analytic. Moreover, 1f ı� D Of ı .idG ��/ is analytic as
well, hence f ı� is admissible. Thus V is a presheaf. Since admissibility is a local
property, V is a sheaf.

Now let � WX!G be an analytic map. We define �f by .�f /.x/ WD �.x/f .x/.
We have to show that �f is analytic and admissible. But this is clear since �f
equals the composition

X
.�; idX /
�����!G �X

Of
���! V

and c�f equals the composition

G �X
.g;x/ 7!.g�.x/;x/
������������!G �X

Of
���! V: �

Example 10. A topological representation of G on V is locally analytic if and only
if V .�/D V .

Definition 11. For a locally analytic representation of G on V and i � 0 we define
the locally analytic group cohomology of G with coefficients in V as

H i
an.G; V / WDH

i .G; V /:

Recall that a homogeneous analytic p-cochain of G with coefficients in V
is an analytic function f W EpG ! V which is G-equivariant, i.e., satisfies
f .gg0; : : : ; ggp/ D gf .g0; : : : gp/. We denote the complex of homogeneous
analytic cochains by C an

G .E�G; V /. Its differential is induced by the simplicial
structure of E�G.

Proposition 12. The cohomology H�an.G; V / is isomorphic to the cohomology of
the complex of homogeneous analytic cochains C an

G .E�G; V /.

Proof. By Proposition 8 we have H�.G; V / Š H�.�. lE�G; V //. Using the
Yoneda lemma we see that a section in �. lEpG; V /D HomBG. lEpG; V / is just
an admissible function f WEpG! V such that

G �EpG
id�f //

diagonal multiplication
��

G �V

action
��

EpG
f // V

commutes, i.e., a G-equivariant admissible function EpG! V .
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To prove the claim, it suffices to show that, vice versa, every G-equivariant
analytic function f W EpG! V is admissible. But, by the G-equivariance, Of is
equal to the composition

G �EpG
.g;.g0;:::;gp// 7!.gg0;:::;ggp/
���������������������!EpG

f
���! V

and thus analytic. Thus f is admissible. �

3. Differential forms and Lie algebra cohomology

In this section, we introduce sheaves of differential forms with coefficients in a
locally analytic representation V of G as objects of BG. Again, unless V is a
Banach space, we have to restrict to admissible forms. We show that the Lie algebra
cohomology of the K-Lie algebra g of G with coefficients in V can be computed
as the cohomology in BG of the complex of forms on G with coefficients in V .

Let V be a separated locally convex K-vector space. For a submersion Y !X

we denote by �k.Y=X; V / the vector space of relative analytic k-forms with
values in V . Here, a k-form ! is called analytic if for any k-tuple �1; : : : ; �k
of local sections of the vertical tangent bundle T .Y=X/ the function Y ! V ,
y 7! !.y/.�1.y/; : : : ; �k.y// is analytic. It suffices to check this for the local
sections given by a local frame of T .Y=X/. In particular, every y 2 Y admits
a neighborhood U and a BH-space W ,! V such that !jU is in the image of
�k.U=X;W / ,!�k.U=X; V /. It follows that the exterior derivative d! is a well-
defined form in �kC1.Y=X; V /. If V is finite-dimensional, this is the usual notion
of analytic forms.

For a fixed manifold Y , we have a complex of sheaves��.Y; V / on La defined by

��.Y; V /.X/ WD��.X �Y=X; V /:

Let V be a locally analytic representation of G. We would like to equip this
complex with a y.G/-action. As for functions, we have to restrict to a subcomplex
of admissible forms in order to do this. Again, one can ignore this, if one is only
interested in the case that V is a Banach space.

A form ! 2�k.Y=X; V / is called admissible if the form O! on G �Y=G �X
given by

O!.g; y/.x1; : : : ; xk/ WD g � .!.y/.x1; : : : ; xk//;

where g 2 G, y 2 Y and xi 2 T.g;y/.G � Y=G � X/ Š Ty.Y=X/, is analytic.
Equivalently, ! is admissible if and only if for any k-tuple of local sections
�1; : : : ; �k of T .Y=K/ as above the function !.�1; : : : ; �k/ is admissible. As
in the case of functions, this is the case if and only if O!jU�Y is analytic for
some open subset U �G. The admissible k-forms form a C an.Y;K/-submodule
of �k.Y=X; V /, which we denote by �kad.Y=X; V /. They are also stable under
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the exterior derivative: Let ! be an admissible form. Since G acts on V by
continuous linear automorphisms we have cd! D d O!, and this form is analytic.
Thus, the admissible forms ��ad.Y=X; V / form a subcomplex of the de Rham
complex ��.Y=X; V /.

Example 13. If V is a Banach space, it follows from Example 9 that any V -valued
analytic k-form is admissible.

We now fix a manifold Y . For an analytic map between manifolds X 0 ! X ,
the pullback map �k.X �Y=X/!�k.X 0 �Y=X 0/ preserves admissible forms.
Since admissibility is a local condition, �kad.Y; V /, defined by

�kad.Y; V /.X/ WD�
k
ad.X �Y=X; V /;

is a subsheaf of �k.Y; V /, and ��ad.Y; V /��
�.Y; V / is a subcomplex.

We define an action of y.G/ on �kad.G; V / as follows: Let � W X ! G be an
analytic map and ! 2 �kad.X � G=X; V / an admissible form. For any h 2 G,
left translation by h�1 induces a map T.x;g/.X �G=X/! T.x;h�1g/.X �G=X/,
written x 7! h�1x. Using this notation, we define �! by the formula

.�!/.x; g/.x1; : : : ; xk/ WD �.x/ �
�
!.x; �.x/�1g/.�.x/�1x1; : : : ; �.x/

�1xk/
�
:

Lemma 14. This is a well-defined y.G/-action.

Proof. We have to show that �! is analytic and admissible. Consider the analytic
maps O� W G � X � G ! G � X � G; .h; x; g/ 7! .h�.x/; x; �.x/�1g/ and i1 W
X �G ,!G�X �G; .x; g/ 7! .1; x; g/. Then �! D i�1 O�

� O!; hence �! is analytic.
Similarly, we have c�! D O�� O!, and hence �! is admissible. �

We thus consider �kad.G; V / as an abelian group object in BG. We want to
show that it is acyclic. Write zV WD Hom.

Vkg; V /. The adjoint action of G on g

and the given action of G on V induce a natural G-action on zV .

Lemma 15. This representation of G on zV is locally analytic. We have an isomor-
phism

�kad.G; V /ŠHomBG. ly.G/; zV /Š i�i
� zV :

Proof. Let Y be a manifold. We claim that a function f W Y ! zV is admissible if
and only if the function fx W Y ! V , y 7! f .y/.x/ is admissible for every x 2

Vkg.
Taking Y to be a point this implies the first assertion of the lemma.

To prove the claim, assume first that f is admissible. We have bfx.g; y/ D
g.f .y/.x//D .gf .y//.gx/D Of .g; y/.gx/. The function Of is analytic by assump-
tion and so is g 7!gx. Since the evaluation zV �

Vkg!V is continuous and bilinear,
and since

Vkg is finite dimensional, [Féaux de Lacroix 1998, Satz 2.4.3] implies
that bfx is analytic.
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To see the converse, let x1; : : : ; xN be a basis of
Vkg and x�1; : : : ; x

�
N the dual

basis of .
Vkg/_. We can write f as a sum f D

PN
iD1 fxi x

�
i with fxi admissible.

Then Of .g; y/D
P
i
cfxi .g; y/g.x�i / and, by [Féaux de Lacroix 1998, Satz 2.4.3]

again, Of is analytic.
We now prove the second assertion of the lemma. For any manifold X , right

translations by elements of G induce a trivialization of the vertical tangent bundle
T .X �G=X/Š .X �G/� g. This gives a natural isomorphism of vector spaces

�k.X �G=X; V /Š C an.X �G; zV /:

Using the above claim one sees that this isomorphism restricts to an isomorphism

�kad.X �G=X; V /Š C
ad.X �G; zV /:

Under this isomorphism, the y.G/.X/-action on the left-hand side corresponds
to the action on the right-hand side induced by left translations on X � G and
the action on zV mentioned above. Using the isomorphism C ad.X � G; zV / Š

HomBG. ly.G/; zV /.X/, this gives the first isomorphism stated in the Lemma. The
second follows immediately from Lemma 4. �

Corollary 16. We have

H i .G;�kad.G; V //Š

�
HomK.

Vkg; V / if i D 0;
0 else.

Proof. By Lemma 15 and Corollary 7 the higher cohomology groups vanish, and

H 0.G;�kad.G; V //Š
zV .�/D HomK.

Vkg; V /; (17)

concluding the proof. �

Explicitly, this isomorphism is given by evaluating a form at 1 2G.
The differential d of the complex ��ad.G; V / is compatible with the y.G/-action.

Hence we can view ��ad.G; V / as a complex in BG and we can compute its
hypercohomology.

We now assume that V is barreled, i.e., that every closed convex absorbing subset
is open (see [Schneider 2002, §6]). For example, any complete metrizable locally
convex space, in particular any Banach space, is barreled. Differentiating the orbit
maps g 7! gv then induces an action of the Lie algebra g on V [Féaux de Lacroix
1998, Sätze 3.1.3, 3.1.7].

Corollary 18. We have natural isomorphisms

H i .G;��ad.G; V //ŠH
i .g; V /;

where the right-hand side is Lie algebra cohomology.
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Proof. Corollary 16 gives an isomorphism

H i .G;��ad.G; V //ŠH
i .HomK.

V�g; V //;
where the differential on HomK.

V�g; V / is induced from the de Rham differential
via (17). This is precisely the Chevalley–Eilenberg complex computing Lie algebra
cohomology. �

4. Differential forms and locally analytic group cohomology

As before, we fix a locally analytic representation G ! Aut.V /. In this section
we use the Poincaré lemma to compare the hypercohomology of the complex of
V -valued admissible forms with locally analytic group cohomology, and we give
the proof of the theorem announced on page 938 in the introduction.

Fix a manifold Y . A function f W Y �X ! V will be called locally constant
along Y if, for every .y; x/ 2 Y �X , there exist open neighborhoods Y 0 � Y of y
and X 0 �X of x such that f jY 0�X 0 factors through the projection Y 0 �X 0!X 0.
We define

C lc
ad.Y; V /.X/ WD ff 2 C

ad.X �Y; V / jf is locally constant along Y g:

It is easy to see that X 7! C lc
ad.Y; V /.X/ defines a sheaf on La.

Proposition 19. The inclusion in degree 0

C lc
ad.Y; V /!��ad.Y; V /

is a quasi-isomorphism.

If V is a Banach space, this is just the Poincaré lemma, and its usual proof works.
For general locally convex V , it is a little bit more complicated, since we have to
prove admissibility of primitives.

Proof. The map clearly induces an isomorphism on H 0, and it remains to show
that Hk.��ad.Y; V //D 0 for k > 0.

Let X be a manifold, and let ! be a closed form in �kad.X �Y=X; V /. We will
show that there is an �2�k�1ad .X�Y=X; V / such that d�D!. Since all manifolds
are strictly paracompact, it is enough to construct such an � locally on X and Y
(see Remark 5).

The rest of the proof uses some results and notations from the Appendix. It can be
skipped on first reading. Since d O!Dcd!D0, the form O!2�k.G�X�Y=G�X; V /
is closed. Replacing G be a small open neighborhood of 1 and using local charts,
we may assume that there are multiradii ı 2 Rm

C
, � 2 Rn

C
such that G � X Š

Bı.0/ � K
m, Y Š B�.0/ � Kn, and a BH-space W ,! V such that O! is given

by a power series in Fı.�k� .W // (see (25)). Choose a multiradius �0 < �. The
homotopy operator h W�k� .W /!�k�1�0 .W / given by Lemma 26 induces an operator
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h WFı.�
k
� .W //!Fı.�

k�1
�0 .W //. We set z� WD h. O!/. Hence z� represents a relative

analytic .k�1/-form on G�X �Y 0=G�X with an open subset Y 0 � Y . Since O!
is closed, we have d z�D O!jG�X�Y 0 .

For g 2G, let ig WX �Y !G�X �Y (and similarly with Y replaced by Y 0) be
the inclusion .x; y/ 7! .g; x; y/. We set � WD i�1 z�. Clearly, d�D i�1 d z�D i

�
1 O! D !.

To prove that � is admissible, we show that O�Dz�. Letˆg WV !V be the continuous
automorphism given by the action of g. We have to check that i�g z�Dˆg ı �. By
restriction, ˆg induces a continuous isomorphism of BH-spaces W ! g.W / (more
precisely, we view W as a linear subspace of V and let g.W / be its image under
the action of g 2 G with Banach space structure induced from W via the linear
isomorphism ˆg jW WW �!

� g.W /). We have

i�g z�D i
�
g .h. O!// (by definition)

D h.i�g O!/ (using (24) with ˆD h W�q� .W /!�
q�1
�0 .W /)

D h.ˆg ı!/ (definition of O!)

Dˆg ı h.!/ (Lemma 27 for ˆDˆg WW ! g.W /)

Dˆg ı � (since h.!/D h.i�1 O!/D i
�
1 h. O!/D i

�
1 O�D �). �

Proof of the Theorem. The sheafC lc
ad.G; V / carries a natural y.G/-action induced by

left translations onG and the given action on V . By Proposition 19 and Corollary 18
we have isomorphisms

H�.G; C lc
ad.G; V //ŠH

�.G;��ad.G; V //ŠH
�.g; V /: (20)

As in the proof of Proposition 12, Proposition 8 implies that H�.G; C lc
ad.G; V //

is the cohomology of the complex C lc
G.G � E�G; V / of G-equivariant analytic

functions G �EpG! V that are locally constant along the first factor.
Since the open subgroups G0 �G form a fundamental system of neighborhoods

of 1 2G (see [Schneider 2011, Lemma 18.7]), we have an isomorphism

colim
G0�G open

C an
G0.E�G

0; V /Š colim
G0�G open

C lc
G0.G

0
�E�G

0; V /:

Because taking the colimit over a directed system is exact, we see that

colim
G0�G

H�an.G
0; V /! colim

G0�G
H�.G0; C lc.G0; V //

is an isomorphism. Since the isomorphisms (20) are compatible with the restriction
to open subgroups, the claim follows. �
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There is an additional action of G on C lc
ad.G; V / and on ��ad.G; V / induced

by right translations on G. This action is compatible with the given y.G/-action.
It induces a G-action on the cohomology groups. Via the isomorphism (20) this
corresponds to the G-action on H�.g; V / induced by the adjoint action on g and
left multiplication on V .

Corollary 21. If G is compact, there is a natural isomorphism

H�an.G; V /ŠH
�.g; V /G :

Proof. Since G is compact, every open subgroup is of finite index and contains an
open normal subgroup. IfX is a compact manifold, every function inC lc

ad.G; V /.X/

factors through G=H �X for some open normal subgroup H EG. Thus — using
the notation from the previous proof —

C lc
G.G �E�G; V /D colim

HEG open
C an
G .G=H �E�G; V /:

Since the colimit over a directed system is exact, this induces an isomorphism
H�.g; V /Š colimHEG H

�.C an
G .G=H �E�G; V //. Since each quotient G=H is

finite, and taking invariants under a finite group is an exact functor on K-vector
spaces with an action by that group, we get

H�.g; V /G Š colim
HEG

H�.C an
G .G=H �E�G; V //

G=H

Š colim
HEG

H�.C an
G .G=H �E�G; V /

G=H /

Š colim
HEG

H�.C an
G .E�G; V //ŠH

�
an.G; V /: �

5. Explicit description of the comparison map

We want to describe an explicit map of complexes which induces the comparison
map H�an.G; V /!H�.g; V /. Recall that H�an.G; V / is computed by the complex
of homogeneous locally analytic cochains C an

G .E�G; V /, and that H�.g; V / is
computed by the complex of G-invariant admissible differential forms ��ad.G; V /

G .
For integers p � 0 and 0� i � p, we denote by di the partial exterior derivative

in the direction of the .i C 1/-th factor of the product EpG DGpC1. We denote
by �p WG!EpG the diagonal map. For f 2 C an.EpG; V / we set

‰.f / WD��p.d1d2 : : : dpf / 2�
p.G; V /:

Proposition 22. The map ‰ induces a morphism of complexes C an
G .E�G; V /!

��ad.GIV /
G , which agrees with the comparison map H�an.G; V /!H�.g; V / on

cohomology groups.
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Remark 23. Let us consider the special case that K is Qp and V is finite dimen-
sional. We want to indicate how the method of [Huber and Kings 2011] allows
one to compare our map with Lazard’s one. The space of functions C an.EpG; V /

has topological generators of the form f0˝ � � �˝fp˝ v with fi 2 C an.G;K/ and
v 2 V . For such a function we have

‰.f0˝ � � �˝fp˝ v/D f0 df1 ^ � � � ^ dfp˝ v;

and its image in Hom.
Vpg; V / is given by f0.1/ df1.1/^ � � � ^ dfp.1/˝ v.

There is another simplicial model zE�G for the universal G-bundle (see [Huber
and Kings 2011, §4.4]), given by zEpG DEpG, but with face maps

Q@i .g0; : : : ; gn/D

�
.g0; : : : ; gi�1; gigiC1; giC2; : : : ; gp/ if i D 0; : : : p� 1;
.g0; : : : ; gp�1/ if i D p:

The G-action on zE�G is given by left multiplication on the first factor. There is
a natural G-equivariant isomorphism zE�G Š E�G. Huber and Kings show that
Lazard’s isomorphism (for G small enough) is induced by the map

ˆ W C an
G .
zE�G; V /! Hom

�V
�g; V

�
;

ˆ.f0˝ � � �˝fp˝ v/D f0.1/df1.1/^ � � � ^ dfp.1/˝ v

(see [Huber and Kings 2011, Proposition 4.6.1]; this is formulated in the case
of trivial coefficients, but can easily be adapted to our setting). The argument of
[Huber and Kings 2011, Theorem 4.7.1] shows that the composition of ˆ with the
isomorphism C an

G .E�G; V /Š C
an
G .E�G; V / is homotopic to ‰, hence both maps

agree on cohomology groups.

Proof of Proposition 22. From the proof of Proposition 8 we have the acyclic
resolution V �!� HomBG. lE�G; V /. For a manifold X we have

HomBG. lE�G; V /.X/D C
ad.X �E�G; V /

with y.G/-action induced from left translations on E�G and the action on V . We
define‰ WC ad.X�EpG; V /!�

p
ad.X�G=X; V / by the same formula as above. We

claim that this gives a morphism of complexes‰ WHomBG. lE�G; V /!��ad.G; V /

in BG.

Proof of the claim. One checks without difficulty that ‰ is equivariant for the
y.G/-action. Now consider f 2 C ad.EpG �X; V /. Recall the face maps

@i WEpC1G!EpG; .g0; : : : ; gpC1/ 7! .g0; : : : ; bgi ; : : : ; gpC1/:
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The differential of the complex C ad.E�G �X; V / maps f to

pC1X
iD0

.�1/i@�i f:

Since @�i f is constant along the .i C 1/-th factor G, we have di .@�i f /D 0. Since
the partial derivatives commute up to sign, it follows that

‰

�pC1X
iD0

.�1/i@�i f

�
D‰.@�0f /

D��pC1.d1 : : : dpC1.@
�
0f //

D��pC1.@
�
0.d0 : : : dpf //

D��p.d0 : : : dpf /

D��p.d.d1 : : : dpf //

D d.��p.d1 : : : dpf //

D d.‰.f //: �

We thus have a commutative diagram

V

((

' // HomBG. lE�G; V /

‰
��

��ad.G; V /

where the complexes on the right-hand side consist of acyclic sheaves. The propo-
sition now follows by taking global sections. �

Appendix: The Poincaré lemma

LetW be aK-Banach space with norm k � k. For a multiradius �D .�1; : : : ; �n/2Rn
C

we denote the space of �-convergent power series in n variables x D .x1; : : : ; xn/
with coefficients in W by F�.W /:

F�.W / WD

�X
I2Nn0

aIx
I
j aI 2W; kaIk�

I I!1
�����! 0

�
:

Equipped with the norm


P

I aIx
I



�
WDmaxI kaIk�I , this is again a Banach space.

Let ˆ WW !W 0 be a continuous linear map between Banach spaces. It induces
a continuous linear map F�.W /! F�.W

0/. Let B�.0/ � Kn be the closed ball
of radius � around 0. For any x 2 B�.0/ we have the evaluation at x, written
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i�x W F�.W /!W , and similarly for W 0. Since ˆ is continuous the diagram

F�.W /
ˆ //

i�x
��

F�.W
0/

i�x
��

W
ˆ // W 0

(24)

commutes.
For q � 0 we denote by �q� .W / the space of �-convergent W -valued q-forms in

n variables:
�q� .W / WD

Vq
K.K

n/_˝K F�.W /:

Since
Vq
K.K

n/_ is a finite-dimensionalK-vector space, this is again a Banach space.
The usual differential defines a continuous linear map d W�q� .W /!�

qC1
� .W /.

There is a natural injection �q� .W / ,!�q.B�.0/;W / into the space of locally
analytic W -valued q-forms. It is compatible with the differential. More generally,
if ı 2 Rm

C
is a second multiradius, we can identify ı-convergent power series with

coefficients in �q� .W / with relative W -valued forms:

Fı.�
q
� .W // ,!�q.Bı.0/�B�.0/=Bı.0/;W /: (25)

On the other hand, every relative q-form is in the image of (25) after shrinking ı
and � appropriately.

Let �0 2 Rn
C

be a multiradius which is component-wise strictly smaller than �,
written �0 < �. There is a continuous inclusion i W�q� .W / ,!�

q
�0.W /.

Lemma 26 (Poincaré lemma). Let �0 < � and q > 0. Then there exists a bounded
linear map

h W�q� .W /!�
q�1
�0 .W /

such that d ı hC h ı d D i .

Proof. We have

�q� .W /D
M

1�k1<���<kq�n

F�.W / dxk1 : : : dxkq :

Set C WDmaxi .�i=�0i /. By assumption we have C > 1. Hence, for integers N � 0

we have j1=.N C q/j � CN . We define

h.xIdxk1 : : : dxkq / WD
1

jI jC q

qX
˛D1

.�1/˛�1xICek˛ dxk1 : : :
1dxk˛ : : : dxkq :

and
h
�X

aIx
Idxk1 : : : dxkq

�
WD

X
aIh.x

Idxk1 : : : dxkq /:
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Since 



 aI

jI jC q





�0I � kaIkC jI j�0I � kaIk�I for jI j � 0;

it follows that the power series
P
I aI=.jI jC q/x

ICek˛ is �0-convergent, whence
that h is well-defined, and also that h is a bounded linear operator.

By continuity, it is now enough to check the equality dhChd D i on monomi-
als xIdxk1 : : : dxkq . Relabeling the coordinates, we may moreover assume that
.k1; : : : ; kq/D .1; : : : ; q/. We have

dh.xIdx1 : : : dxq/

D d

�
1

jI jC q

qX
˛D1

.�1/˛�1xICe˛dx1 : : :bdx˛ : : : dxq
�

D

�
1

jI jC q

qX
˛D1

.i˛C 1/x
Idx1 : : : dxq

�

C
1

jI jC q

qX
˛D1

nX
ˇDqC1

.�1/˛�1.�1/q�1iˇx
ICe˛�eˇdx1 : : :bdx˛ : : : dxqdxˇ

D

�Pq
˛D1 i˛

�
C q

jI jC q
xIdx1 : : : dxq

C
1

jI jC q

qX
˛D1

nX
ˇDqC1

.�1/˛Cqiˇx
ICe˛�eˇdx1 : : :bdx˛ : : : dxqdxˇ

and

hd.xIdx1 : : : dxq/

D h

�
.�1/q

nX
ˇDqC1

iˇx
I�eˇdx1 : : : dxqdxˇ

�

D
.�1/q

jI jC q

qX
˛D1

nX
ˇDqC1

.�1/˛�1iˇx
ICe˛�eˇdx1 : : :bdx˛ : : : dxqdxˇ

C
.�1/q

jI jC q

nX
ˇDqC1

.�1/qiˇx
Idx1 : : : dxq

D
1

jI jC q

qX
˛D1

nX
ˇDqC1

.�1/˛Cq�1iˇx
ICe˛�eˇdx1 : : :bdx˛ : : : dxqdxˇ

C

�Pn
ˇDqC1 iˇ

�
jI jC q

xIdx1 : : : dxq
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Thus, .dhC hd/.xIdx1 : : : dxk/D xIdx1 : : : dxk . This finishes the proof. �

Lemma 27. Let ˆ WW !W 0 be a bounded linear map between Banach spaces.
It induces a map �q� .W /!�

q
� .W

0/, denoted by the same symbol. For q > 0 and
�0 < �, the diagram

�
q
� .W /

h //

ˆ

��

�
q�1
�0 .W /

ˆ
��

�
q
� .W

0/
h // �

q�1
�0 .W 0/

commutes.

Proof. This follows directly from the definitions. �
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Towards local-global compatibility
for Hilbert modular forms of low weight

James Newton

We prove some new cases of local-global compatibility for the Galois representa-
tions associated to Hilbert modular forms of low weight. If F=Q is a totally real
extension of degree d , we are interested in Hilbert modular forms for F of weight
.k1; : : : ; kd ; w/, with the ki and w odd integers and some but not all ki equal
to 1 (the partial weight-one case). Recall that a Hecke eigenform f with such
a weight has an associated compatible system �f;p of two-dimensional p-adic
representations of Gal.F =F /, first constructed by Jarvis using congruences to
forms of cohomological weight (ki � 2 for all i ).

One expects that the restriction of the representation �f;p to a decomposi-
tion group Dv at a finite place v−p of F should correspond (under the local
Langlands correspondence) to the local factor at v, �f;v , of the automorphic
representation �f generated by f . This expectation is what we refer to as local-
global compatibility. For forms of cohomological weight, the compatibility
was in most cases verified by Carayol using geometric methods. Combining
this result with Jarvis’s construction of Galois representations establishes many
cases of local-global compatibility in the partial weight-one situation. However,
when �f;v is a twist of the Steinberg representation, this method establishes a
statement weaker that local-global compatibility. The difficulty in this case is to
show that the Weil–Deligne representation associated to �f;pjDv has a nonzero
monodromy operator. In this paper, we verify local-global compatibility in many
of these ‘missing’ cases, using methods from the p-adic Langlands programme
(including analytic continuation of overconvergent Hilbert modular forms, maps
between eigenvarieties encoding Jacquet–Langlands functoriality and Emerton’s
completed cohomology).

1. Introduction

In this paper, we study the problem of local-global compatibility for the Galois
representations attached to Hilbert modular forms of low weight. These Galois
representations were constructed by Jarvis [1997]. We begin by recalling the main

MSC2010: primary 11F41; secondary 11F33, 11F80.
Keywords: Hilbert modular forms, Galois representations, local-global compatibility.
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theorem of that paper. Let F be a totally real finite extension of Q. For a prime
p, let � be an isomorphism from a fixed algebraic closure Qp of Qp to C. If v is
a finite place of F and �v is an admissible smooth irreducible representation of
GL2.Fv/ over C, we denote the Frobenius-semisimple Weil–Deligne representation
associated to �v under the (Hecke normalised) local Langlands correspondence by
�.�v/. We denote by � �.�v/ the Weil–Deligne representation with coefficients in
Qp obtained by composition with ��1. For a continuous Qp-representation � of
Gal.F v=Fv/, with v−p a finite place of F , we denote by WD.�/ the Weil–Deligne
representation associated to � by Grothendieck’s p-adic monodromy theorem, with
Frobenius semisimplification WD.�/F -ss and semisimplification WD.�/ss (i.e., we
set the monodromy operator to zero to obtain WD.�/ss).

Results of Carayol [1986b], Blasius and Rogawski [1993], Rogawski and Tunnell
[1983], Taylor [1989] and Jarvis [1997] have shown the following:

Theorem 1.1. Let � be a cuspidal algebraic1 automorphic representation of
GL2.AF /, such that for each infinite place � of F the local factor �� is either
discrete series or holomorphic limit of discrete series. Then there exists an irre-
ducible representation

rp;�.�/ W Gal.F =F /! GL2.Qp/

such that if v is a finite place of F , with v−p, and one of the following holds:

� �� is discrete series for all infinite places � ,

� �v is not special (i.e., �v is not a twist of the Steinberg representation),

then
WD.rp;�.�/jGal.F v=Fv//

F -ss
Š � �.�v/:

Remark 1.2. The irreducibility of the Galois representation appearing in this theo-
rem is proved using an argument of Ribet [1977] (see [Taylor 1995, Proposition 3.1]).

Remark 1.3. In the excluded case, where �� is holomorphic limit of discrete series
for some � and �v is special, then Jarvis [1997, Remark 7.3] proved that

WD.rp;�.�/jGal.F v=Fv//
ss
Š � �.�v/

ss:

The main result of this paper addresses some of the excluded cases in Theorem 1.1.
We prove:

Theorem 1.4. Let � be as in Theorem 1.1, suppose that �� is holomorphic limit of
discrete series for some infinite place � and let v−p be a finite place of F such that
�v is special.

Suppose the following technical hypotheses hold:

1By algebraic, we just mean that the usual parity condition on the weights holds.
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(1) The prime p is absolutely unramified in F .

(2) For every place w of F with w jp, �w is an unramified principal series
representation.

(3) Moreover, for each w jp we have �w Š Ind.�1˝�2/ (normalised parabolic
induction from a Borel subgroup) with �1; �2 distinct unramified characters
of F �w .

(4) The residual representation

rp;�.�/ W Gal.F =F /! GL2.Fp/
is irreducible.

Then
WD.rp;�.�/jGal.F v=Fv//

F -ss
Š � �.�v/:

Remark 1.5. We will not discuss the question of local-global compatibility at
places dividing p in this paper. However, under the ‘p-distinguished’ hypothesis
(3) made above, an argument using analytic continuation of crystalline periods (as
done in [Jorza 2010] for the case of low-weight Siegel modular forms) shows that
the representations rp;�.�/ are crystalline at places dividing p, with the expected
associated Weil–Deligne representation.

The main novelty in this theorem is that we are able to establish nontriviality of
the monodromy operator for a Galois representation which is only indirectly related
(by congruences) to the cohomology of Shimura varieties.

1.6. The technical hypotheses. We will say a few words about the hypotheses
in Theorem 1.4. Hypotheses (1) and (2) are satisfied for all but finitely many p.
Hypothesis (1) appears because we use results of Kassaei [2013] on analytic con-
tinuation and gluing of overconvergent Hilbert modular forms. At least for forms
of parallel weight, results have been announced by Pilloni and Stroh [2013] and
Sasaki [2014] which apply without restriction on the ramification of p, so it seems
reasonable to hope that this hypothesis could be removed in future. Once hypothesis
(1) is removed, hypothesis (2) can be substantially relaxed by first making a base
change to an extension F 0=F in which p ramifies.

Hypothesis (3) is again present in [Kassaei 2013] and has been removed by
Pilloni and Stroh [2013] and Sasaki [2014] in their setting, but we also make
some independent use of this condition. In particular, we use (3) to keep track of
the distinct p-stabilisations when we apply p-adic functoriality to move between
different kinds of p-adic automorphic form. By contrast, in [Pilloni and Stroh
2013; Sasaki 2014], the situation is that the various p-stabilisations form a single
generalised eigenspace for the Hecke operators. So extending our techniques to
this setting would require more care when applying p-adic functoriality.
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We assume hypothesis (4) in order to apply the results of [Newton 2013] (it
simplifies the analysis of completed cohomology of Shimura curves). It should be
possible to avoid this assumption by modifying the arguments of that paper to work
with overconvergent cohomology [Ash and Stevens 2008].

To summarise, we believe that the techniques described in this paper could in
principle prove a version of the above theorem with just one technical hypothesis:
for each place w jp of F , �w is not a twist of the Steinberg representation. To
handle the remaining cases seems to require a new idea or a different method.

Remark 1.7. Recent work of Kassaei, Sasaki and Tian [Kassaei et al. 2014] permits
us to relax hypotheses (2) and (3) slightly (allowing tame ramification). We have
kept to the ‘unramified’ setting for expository reasons, but here is the precise
condition which can replace hypotheses (2) and (3) in Theorem 1.4:

(20) For every place w of F with w jp, �w Š Ind.�1˝�2/ with �1; �2 distinct
characters of F �w whose ratio is tamely ramified.

1.8. Sketch of proof. We now sketch the proof of Theorem 1.4. By twisting and
base change we may assume that ŒF WQ� is even, that �v is an unramified twist of
the Steinberg representation, and that we have an auxiliary finite place w such that
�w is also an unramified twist of Steinberg. In light of Remark 1.3 we just need to
show that the Weil–Deligne representation associated to the local representation

�v D rp;�.�/jGal.F v=Fv/

has a nonzero monodromy operator. Equivalently, we must show that �v is not
an unramified representation. We will assume that �v is unramified and obtain a
contradiction.

The auxiliary Steinberg place w allows us to find systems of Hecke eigenval-
ues attached to � in the p-adically completed cohomology of Shimura curves
associated to indefinite quaternion algebras. In this context, a p-adic analogue
of Mazur’s principle [Newton 2013, Theorem 4.33] allows us to show that, since
the representation �v is unramified, we can strip v from the level of � . More
precisely we can produce overconvergent Hilbert modular forms, with level prime
to v, which share the same system of Hecke eigenvalues (outside v) as � . Finally,
a generalisation, due to Kassaei, of Buzzard and Taylor’s gluing and analytic
continuation of overconvergent eigenforms allows us to produce a classical Hilbert
modular form, with level prime to v, contributing to � . But we assumed that �v
was (a twist of) Steinberg, so � contains no nonzero GL2.OFv /-invariant vectors.
Therefore we obtain the desired contradiction.

Readers familiar with the theory of p-adic and overconvergent automorphic forms
may find it amusing that we make use of three different avatars of overconvergent au-
tomorphic forms in this paper — firstly geometrically defined overconvergent Hilbert
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modular forms (sections of automorphic line bundles on strict neighbourhoods of
the ordinary locus in Hilbert modular varieties as in, for example, [Kisin and Lai
2005]), secondly the overconvergent automorphic forms on definite quaternion
algebras defined by Buzzard [2007] and finally the spaces obtained by applying
Emerton’s locally analytic Jacquet functor to the p-adically completed cohomology
of Shimura curves [Emerton 2006b; Newton 2013].

The organisation of our paper is as follows: In Section 2 we reduce the statement
of Theorem 1.4 to a special case. Then, in Section 3, we describe the various
eigenvarieties we will make use of, together with their construction. We next
explain how to find systems of Hecke eigenvalues arising from the automorphic
representations � of interest in the completed cohomology of Shimura curves,
where we apply the level optimisation results of [Newton 2013] (Section 4). Finally
we return to overconvergent modular forms on Hilbert modular varieties and apply
a crucial result of Kassaei [2013] (Section 5).

1.9. Other approaches. Luu [2015, §3.2] has also recently described an approach
to proving some cases of local-global compatibility for Hilbert modular forms of
low weight when � satisfies an ordinarity hypothesis at places dividing p. We will
use the same notation as in the previous subsection. Using the assumption that
�v is unramified, Luu applied a modularity lifting theorem to produce an ordinary
p-adic Hilbert modular form g with level prime to v and the same system of Hecke
eigenvalues (outside v) as � , and then imposed a hypothesis that amounts to ruling
out the existence of g. It may also be possible to show that g is classical (hence
obtaining a contradiction without an additional hypothesis) using a variant of the
methods applied in the parallel weight-one case (as in, for example, [Kassaei 2013]),
but it is not obvious to the author that these methods can be easily applied. One
obstacle is that, unlike the parallel weight-one case, not all the p-stabilisations
of the newform generating � are ordinary. The advantage of our method is that
these p-stabilisations still have finite slope, so we can apply the level optimisation
results of [Newton 2013] to obtain several overconvergent forms and then apply
[Kassaei 2013].

1.10. Examples. Until recently, not many examples of Hilbert modular forms of
partial weight one were known — in particular, as far as the author knows, the
only known examples were CM forms (and therefore not twists of Steinberg at
any place). However, Moy and Specter [2015] have recently explicitly computed
examples which are non-CM and Steinberg at a finite place.

2. Notation and reductions

We let F=Q be a totally real, finite extension of Q, and fix a prime p such that p is
absolutely unramified in F . We denote by † the set of Archimedean places of F .
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We write AF for the adeles of F and A1F for the finite adeles. For a finite place v
of F we write Ov for the ring of integers in the local field Fv . For convenience, we
fix once and for all a choice of uniformiser $v 2 Ov for each finite place v.

We denote by †p the set of embeddings F ,!Qp, and for a place p jp denote
by †p those embeddings which extend to Fp. Our fixed isomorphism � WQp Š C

induces a bijection between † and †p.
We will need some notation for (limits of) discrete series representations of

GL2.R/. For k � 2 and w integers of the same parity, we let Dk;w denote the
discrete series representation of GL2.R/ with central character t 7! t�w defined
in [Carayol 1986b, Section 0.2]. For k D 1 and w an odd integer, we define D1;w
to be the limit of discrete series Ind.�; �/, where the induction is a normalised
parabolic induction from a Borel subgroup and �; � are characters of R� defined
by �.t/D jt j�w=2 sgn.t/ and �.t/D jt j�w=2.

We assume � is an automorphic representation of GL2.AF / as in the statement
of Theorem 1.4, and that v is a finite place of F with �v special. First we note that
by twisting and making a quadratic base change (to an extension of F in which
v splits) we can assume without loss of generality that ŒF WQ� is even, that �v is
an unramified twist of the Steinberg representation and that there is another finite
place v0 with �v0 also an unramified twist of Steinberg.

With this in mind, for the rest of the paper we fix a cuspidal automorphic
representation �0 of GL2.AF / as in the statement of Theorem 1.4, and moreover
assume that:

� ŒF WQ� is even.

� �0;v is an unramified twist of Steinberg.

� There is a finite place v0 coprime to p and v such that �0;v0 is an unramified
twist of Steinberg.

� �0;� ŠDk� ;w for each � 2† with k� an odd positive integer and w an odd
integer (independent of � ).

2.1. Hilbert modular forms and varieties. We now proceed to reduce Theorem 1.4
to a statement about Hilbert modular forms. Let L�Qp be a finite extension of
Qp which contains the image of every embedding from F into Qp . Let n and m be
two coprime ideals of OF , both coprime to p, and suppose that n is divisible by a
rational integer which is � 4.

Definition 2.2. Let c be a fractional ideal of F such that its absolute norm Nc is
coprime to mn. We denote by M c.n;m/ the functor from schemes over OL to sets
taking S to isomorphism classes of tuples .A; �; Œ��/, where:

� A is a Hilbert–Blumenthal abelian scheme over S (in particular A is equipped
with an action of OF [Kisin and Lai 2005, 1.1]).



Towards local-global compatibility for Hilbert modular forms of low weight 963

� � is a c-polarisation of A [Kisin and Lai 2005, 1.2].

� � is an OF -equivariant closed immersion of S -group schemes

� W .OF =mn/_ ,! AŒmn�;

and Œ�� is its equivalence class under the natural action of .OF =m/�. Here
.OF =mn/_ denotes the Cartier dual of the constant S -group scheme (with OF
action) OF =mn.

Under our assumptions, the functor M c.n;m/ is representable by a smooth
OL-scheme M c.n;m/, and there is a good theory of toroidal and minimal com-
pactifications (see [loc. cit., 1.6, 1.8] — although we use a slightly modified level
structure, everything in this reference goes through).

Having fixed a choice of representatives c1; : : : ; ch for the narrow class group of
F (which we may assume all satisfy Nci coprime to pnm), we define M .n;m/ to
be the disjoint union of the M ci .n;m/.

For � a homomorphism

� W ResOF
Z Gm=OL ! Gm=OL

we have line bundles !� as in [loc. cit., 1.4.2] on M .n;m/, which extend to suitable
toroidal compactifications. We assume that w is an integer such that the character
Nw � ��1 admits a square root. Then, following [loc. cit., 1.11], we define Hecke
operators Ta for each prime ideal a of OF coprime to mn and Ua for each prime
ideal a dividing mn.

Denote by T.n;m/ the polynomial algebra over Z generated by symbols Ta and
Ua as above. This algebra naturally acts on H 0.M .n;m/L; !

�/, and we say that
a nonzero element f of this L-vector space is a Hecke eigenform if the action
of T.n;m/ preserves the one-dimensional space L � f . If f is a cuspidal Hecke
eigenform, we denote by �f the character T.n;m/! L giving the action of the
Hecke algebra on f . After projecting to a classical Hilbert modular form (as
described in [loc. cit., 1.11.8]) f generates (a model over L for) the finite part
�1
f

of a cuspidal automorphic representation �f of GL2.AF /. For � 2† we have
�� DDk� ;w , where the k� can be read off from � (using the bijection between †
and †p). The central character of �f is an algebraic Hecke character of the form
�f !

�w , where ! is the norm character and �f is a finite-order character. The Galois
representation r�f ;� is the unique semisimple representation, unramified outside
pmn, such that for q−pmn a geometric Frobenius element at q has characteristic
polynomial X2� �f .Tq/X C .Nq/1�w ��1�f .$q/

In the subsequent sections of the paper, we will prove the following ‘level
optimisation’ result:
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Proposition 2.3. Suppose m D ql is a product of two prime ideals. Let f 2
H 0.M .n;m/L; !

�/ be a Hecke eigenform. Suppose that:

� The local factor �f;q is an unramified twist of the Steinberg representation.

� The residual representation

rp;�.�f / W Gal.F =F /! GL2.Fp/

is irreducible.

� The polynomials X2��f .Tp/XC .Np/1�w ��1�f .$p/ have distinct roots for
all prime ideals p jp.

� The local representation

rp;�.�f /jGal.F l=Fl/

is unramified.

Then there exists a Hecke eigenform g 2 H 0.M .n; q/L; !
�/ such that the

Hecke eigenvalues of f and g coincide outside l and �f .Ul/ is one of the roots of
X2� �g.Tl/X C .Nl/1�w ��1�f .$l/.

We now explain why this proposition is sufficient to deduce Theorem 1.4.

Lemma 2.4. Proposition 2.3 implies Theorem 1.4.

Proof. Recall that we have reduced the statement of Theorem 1.4 to the case of �0
as described immediately before Section 2.1. We denote the finite part of �0 by
�10 . For m any nonzero ideal of OF we define congruence subgroups U0.m/ and
U1.m/ to be the subgroups of GL2.yZ/ given by

U0.m/D

�
g 2 GL2.yZ/ W g D

�
� �

0 �

�
mod m

�
U1.m/D

�
g 2 GL2.yZ/ W g D

�
� �

0 1

�
mod m

�
Now we denote by l and q the prime ideals of OF corresponding to the places

v and v0 respectively, and suppose that n is an ideal of OF , coprime to pql and
divisible by a rational integer�4, such that .�10 /

U1.n/\U0.ql/¤0. The isomorphism
� WQp! C induces a bijection between † and the embeddings †p from F ,! L,
so using this we can associate a character

� W ResOF
Z Gm=OL ! Gm=OL

to the †-tuple of integers fk�g�2† describing the Archimedean part of �0. Now
(possibly enlarging L) there is a Hecke eigenform f 2H 0.M .n; ql/L; !

�/ with
�f Š �0, and so f satisfies the hypotheses of Proposition 2.3. This proposition
gives us a Hecke eigenform g 2H 0.M .n; q/L; !

�/ with �g Š�0, and so the space
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.�10 /
U1.n/\U0.q/ is nonzero, which contradicts the assumption that �0;l is a twist

of Steinberg. �

We end this section by discussing Hilbert modular varieties with Iwahori level
at p and a definition of overconvergent Hilbert modular forms.

Definition 2.5. Let c be a fractional ideal of F such that its absolute norm Nc is
coprime to pmn. We denote by M c;Iw.n;m/ the functor from schemes over OL to
sets taking S to isomorphism classes of tuples .A; �; Œ��;H/ up to isomorphism,
where .A; �; Œ��/ are as in Definition 2.2 and H is a finite flat subgroup scheme of
AŒp�, stable under the action of OF , of rank pŒF WQ� and isotropic with respect to
the �-Weil pairing.

The functor M c;Iw.n;m/ is represented by an OL-scheme M c;Iw.n;m/. We
denote by M Iw.n;m/ the disjoint union of these over suitable representatives ci of
the narrow class group, as before.

Denoting the rigid generic fibre of M Iw.n;m/ by M Iw.n;m/L, we can con-
sider sections of the line bundles !� over strict neighbourhoods of the locus in
M Iw.n;m/L, where H is Cartier dual to OF =p (i.e., the multiplicative ordinary
locus), to obtain a space M �

� .n;m/ of overconvergent modular forms of weight �
(see [Kassaei 2013, §4]).

3. Eigenvarieties

We will need to make use of eigenvarieties constructed in different contexts. To
clarify the relationship between these eigenvarieties, we are going to follow the
abstract approach of [Bellaïche and Chenevier 2009, 7.2]. First we need to discuss
the weight spaces over which our eigenvarieties will live.

3.1. Weight spaces. We set G D ResF=Q.GL2/.Qp/ D
Q

p jp Gp, where Gp D

GL2.Fp/. We denote by B D
Q

p jp Bp �G the Borel subgroup comprising upper-
triangular matrices and by T D

Q
p jp Tp the maximal torus comprising diagonal

matrices. We denote by Np the subgroup of Bp whose elements have 1 on the
diagonal. Finally, T0 D

Q
p jp T0;p � T is the compact subgroup given by elements

with integral entries.
Fix a finite extension L�Qp of Qp , which we assume contains a normal closure

of F . The functor taking an L-affinoid SpA to the set of continuous A�-valued
characters of

T0 D .OF ˝Z Zp/
�
� .OF ˝Z Zp/

�

is representable by a rigid analytic space yT0 over L [Buzzard 2004, §2]. Likewise,
we have a rigid space yT representing continuous characters of T .
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Definition 3.2. Denote by W the subspace of yT0 whose points correspond to
continuous characters of T0 which are trivial on a finite-index subgroup of O�F
(embedded diagonally in T0).

Suppose we have an algebraic character � W ResOF
Z Gm=OL!Gm=OL such that

Nw ���1 admits a square root. Recall that†p denotes the set of embeddings from F

to L, so � corresponds to a †-tuple of integers fk�g�2†, with the same parity as w.
The character

.t1; t2/ 7!
Y
�2†p

�.t1/
k��2�w

2 �.t2/
�w�k�C2

2

is a point in W .L/, which we also denote by �.

Definition 3.3. Denote by W� the subspace of W such that maps from an L-affinoid
SpA to W� correspond to characters .�1; �2/ W .OF ˝Z Zp/

�� .OF ˝Z Zp/
�!A�

such that �1�2DNm�w and �1��12 D � Nm�2 �.� ıNm/, where � is a continuous
character � W Z�p ! A� with

vp.1� �.a// >
1

p�1

for all a 2 Z�p . Here Nm is the natural extension of the norm map to a continuous
map .OF ˝Z Zp/

�! Z�p .

Taking � to be the trivial character, we see that � is a point of W� . In fact, W� is
a (one-dimensional) disc in W , with centre �.

Remark 3.4. The weight space W is isomorphic to the weight space (also denoted
by W ) defined in [Buzzard 2007, §8]. Our character .�1; �2/ of .OF ˝Z Zp/

� �

.OF ˝Z Zp/
� corresponds to the character .n; v/ D .�1�

�1
2 ; �2/ in Buzzard’s

weight space.
The weight space W� is isomorphic to the weight space (also denoted by W�)

defined in [Kisin and Lai 2005, §4.5].

We are going to build eigenvarieties interpolating classical Hilbert modular forms
over the weight space W� . These eigenvarieties will be constructed using three
different notions of ‘overconvergent automorphic form’.

3.5. Refinements. For p jp, denote by Ip the Iwahori subgroup of Gp, comprising
matrices which reduce to upper-triangular matrices mod $p. We write I for the
product

Q
p jp Ip �G.
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Definition 3.6. Let �p be an irreducible smooth representation of Gp on a complex
vector space which is either an irreducible principal series or a twist of the Steinberg
representation. An accessible refinement of �p is a character � of Tp such that there
is a Gp-equivariant embedding

�p ,! IndGp

Bp
�:

Remark 3.7. We have the following explicit description of accessible refinements:
we have �p Š IndGp

Bp
�1˝�2 or �p Š St˝�, where �;�i are characters of F �p .

� Suppose �p Š IndGp

Bp
�1˝�2. Then the accessible refinements of �p are the

characters �1˝�2 and �2˝�1. Note that if �1 D �2 these refinements are
the same.

� Suppose �p Š St˝�. Then �p is isomorphic to the unique irreducible sub-
representation of the normalised induction IndGp

Bp
�j � j

1=2
p ˝�j � j

�1=2
p and the

unique accessible refinement of �p is �j � j1=2p ˝�j � j
�1=2
p .

For an ideal n of OF , coprime to p, we denote by H .n/ the free commutative
polynomial ring over Z on generators labelled Tv and Sv for places v of F not
dividing pn and Uv for places v j n.

For m; n ideals of OF (coprime to each other and to p), suppose � is a cuspidal
automorphic representation of GL2.AF / with .�1p/U1.n/\U0.m/ ¤ 0 and �� D
Dk� ;w for each � 2 †, with k� � 2 and k� D w mod 2 for each � . We say that
such a � is a classical automorphic representation of tame level U1.n/\U0.m/
and weight .k; w/. We moreover say that � has finite slope if the smooth Jacquet
modules JBp.�p/ are nonzero for all p jp. Equivalently, the �p are all irreducible
principal series or twists of Steinberg (since local factors of a cuspidal automorphic
representation are generic).

Definition 3.8. Suppose � is a finite-slope representation. An accessible refinement
of � is a character

�D
O
p jp

�p W T ! C�

such that each �p is an accessible refinement of �p.

Remark 3.9. The possible accessible refinements of finite-slope automorphic rep-
resentations are completely classified by Remark 3.7.

Definition 3.10. We say that a finite-slope representation is unramified if �p is
either an unramified principal series or an unramified twist of Steinberg for all p jp.

Remark 3.11. The following two conditions are easily seen to be equivalent to �
being unramified:

� For every p jp, �p has nonzero invariants for the Iwahori subgroup Ip.
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� Every accessible refinement of � factors through T=T0.

Definition 3.12. Suppose � is a finite-slope representation of weight .k; w/ and �
is an accessible refinement of � . We define a continuous character

�.�; �/ W T !Q�p

by

�.�; �/D
O
p jp

��1�pj � j
1=2
p ˝j � j

�1=2
p

Y
�2†p

� .k��2�w/=2˝ � .�w�k�C2/=2:

Remark 3.13. Our discussion of accessible refinements and the definition of the
character �.�; �/ is parallel to that of [Chenevier 2009, §1.4]. We will see in
Section 4.2 that these definitions are completely natural when constructing eigenva-
rieties using completed cohomology and Emerton’s locally analytic Jacquet functor.

3.14. Abstract eigenvarieties.

Definition 3.15. Let W 0 be any subspace of W which is an admissible increasing
union of affinoids (in practice it will be W�). Let H be a commutative Z-algebra
and let Z be a subset of Hom.H ;Qp/ � yT .Qp/ whose image in yT0.Qp/ is an
accumulation2 and Zariski-dense subset of W 0. Denote by Y the fibre product of yT
and W 0 over yT0. Then an eigenvariety for the triple .H ;Z ;W 0/ is a reduced rigid
space X over L equipped with:

� a ring homomorphism  WH ! O.X/,

� a finite morphism � WX ! Y ,

� an accumulation and Zariski-dense subset Z �X.Qp/ (which we refer to as
the ‘classical subset’),

such that the following are satisfied:

(1) For all open affinoids V � Y the natural map

 ˝ �� WH ˝O.V /! O.��1.V //

is surjective.

(2) The natural evaluation map

X.Qp/! Hom.H ;Qp/;

x 7!  x WD .h 7!  .h/.x//

induces a bijection z 7! . z; �.z// from Z to Z .

2A set is accumulation if each point z 2 Z has a basis of affinoid neighbourhoods U such that
Z \U is Zariski-dense in U .
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The key property of the above definition is that an eigenvariety is unique up to
unique isomorphism, by [Bellaïche and Chenevier 2009, Proposition 7.2.8].

Remark 3.16. An alternative way to abstractly characterise eigenvarieties in our
context is as Zariski closures of sets of classical points in the rigid space given
by the product of the rigid generic fibre of a Galois (pseudo)deformation ring and
some affine spaces or copies of Gm (to keep track of additional Hecke eigenvalues).

For m; n ideals of OF (coprime to each other and to p), suppose � is an unramified
representation of tame level U1.n/\U0.m/.

There is a natural action of H .mn/ on .�1/U1.n/\U0.pm/, where we let Tv and
Uv act by double coset operators�

U

�
$v 0

0 1

�
U

�
and let Sv act by the double coset operator�

U

�
$v 0

0 $v

�
U

�
;

where U D U1.n/\U0.pm/.
Given such a � , we obtain a subset Z .n;m/� of Hom.H .mn/;Qp/� yT .Qp/

by taking pairs

. ; �.�; �//;

where � is an accessible refinement of � and  is a character corresponding (via �)
to a Hecke eigenform in .�1/U1.n/\U0.pm/. Note that any element of the set
Z .n;m/� determines � , by strong multiplicity one. The choice of accessible
refinement � corresponds to a choice of Up-eigenvalue in the space .�p/Ip for each
p jp. The character �� WD �.�; �/jT0 is independent of the refinement �.

Definition 3.17. Let m and n be a pair of coprime ideals in OF , both coprime to p.

(1) Denote by Z .n;m/ the union of the Z .n;m/� obtained from unramified �
with tame level U1.n/\U0.m/ such that �� 2W� .

(2) For q a prime divisor of m, we write Z .n;m/q-sp for the subset of Z .n;m/

arising from � with �U1.n/\U0.pm=q/ D 0 (equivalently, the local factor �q is
an unramified twist of the Steinberg representation).

(3) Similarly, we write Z .n;m/q-ps for the subset of Z .n;m/ arising from �

with �U1.n/\U0.pm=q/ ¤ 0 (equivalently, the local factor �q is an unramified
principal series representation).
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(4) Now we consider the irreducible mod p Galois representation �D rp;�.�f /.
We can define Z .n;m/�, Z .n;m/

q-sp
� and Z .n;m/

q-ps
� to be the subsets of

Z .n;m/, etc. arising from those � with residual Galois representation rp;�.�/
isomorphic to �.

3.18. Buzzard’s eigenvarieties.

Theorem 3.19. There exist eigenvarieties E .n;m/�, E .n;m/
q-sp
� and E .n;m/

q-ps
�

for the triples

.H .mn/;Z .n;m/�;W�/;

.H .mn/;Z .n;m/
q-sp
� ;W�/;

.H .mn/;Z .n;m/
q-ps
� ;W�/:

We denote the classical subsets of these eigenvarieties by Z.n;m/�, Z.n;m/q-sp
�

and Z.n;m/q-ps
� . The following properties are satisfied by these eigenvarieties:

� There are closed immersions

E .n;m/
q-sp
� ,! E .n;m/� and E .n;m/

q-ps
� ,! E .n;m/�

commuting with the maps to weight space and respecting the homomorphisms
 from H .mn/, with imagesX , Y , respectively, given by unions of irreducible
components (in the sense of [Conrad 1999]).

� Each irreducible component of E .n;m/� is contained in precisely one of X
and Y .

� We have Z.n;m/� \X DZ.n;m/
q-sp
� and Z.n;m/� \Y DZ.n;m/

q-ps
� .

� There is a map

E .n;m/
q-ps
� ! E .n;m=q/�;

surjective on closed points, for which the preimage of a closed point x 2
E .n;m=q/� is indexed by the roots of the Hecke polynomialX2� .Tq/.x/XC
Nq .Sq/.x/.

Proof. We fix a definite quaternion algebra D=F , ramified precisely at the in-
finite places of F , and an isomorphism .D ˝F A1F /

� Š GL2.A1F /. Buzzard’s
definition [2007, Part III] of overconvergent automorphic forms on D, with tame
level U1.n/\U0.m/, allows us to construct an eigenvariety E .n;m/ for the triple
.H .mn/;Z .n;m/;W�/. The Zariski density and accumulation properties for the
classical points follow from a special case of the classicality criterion of [Loeffler
2011, Theorem 3.9.6]. To obtain the eigenvariety for .H .mn/;Z .n;m/�;W�/ we
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just take the union of connected components in E .n;m/ whose closed points have
associated residual Galois representation isomorphic to �.

We then define E .n;m/
q-sp
� to be the Zariski closure in E .n;m/� of the subset

Z.nm/
q-sp
� �Z.nm/� corresponding to systems of Hecke eigenvalues in Z .n;m/

q-sp
� .

Similarly, we define E .n;m/
q-ps
� to be the Zariski closure in E .n;m/� of the subset

Z.nm/
q-ps
� . We now need to check that Z.nm/q-sp

� and Z.nm/q-ps
� are accumulation

subsets in their Zariski closures, together with the rest of the assertions of the
theorem.

We can deduce everything we need by applying the results of [Bellaïche and
Chenevier 2009, 7.8] on the family of Weil–Deligne representations carried by
an eigenvariety (see also [Paulin 2011]). We proceed as follows: Denote by
X � E .n;m/� the reduced closed subspace given by the union of irreducible com-
ponents where the monodromy operator in the associated family of Weil–Deligne
representations is generically nonzero — we call such a component ‘generically
special’. More precisely, in the notation of [Bellaïche and Chenevier 2009, 7.8], a
generically special component W is one in which for all closed points x 2W we
have N gen

s.x/
nonzero for s.x/ any germ of an irreducible component at x which is

contained in W . Then we claim that

X \Z.nm/� DZ.nm/
q-sp
� :

Indeed, if x2Z.nm/q-sp
� , then, by Proposition 7.8.19(iii) of [Bellaïche and Chenevier

2009] and local-global compatibility at q for the automorphic representation �x
[Carayol 1986b], every irreducible component passing through x is generically
special.

Conversely, if x 2 X \ Z.nm/�, then the Weil–Deligne representation at q
associated to �x is forced to have the form .W ˚W.1/;N /, where W is a one-
dimensional k.x/-vector space with an unramified action of the Weil group Wq

and W.1/ denotes the twist of W by the p-adic cyclotomic character (N could
be zero or nonzero). This means that either x 2 Z.nm/q-sp

� or the local factor
�q of the automorphic representation � associated to x is one-dimensional. The
latter situation cannot occur, since � is a cuspidal automorphic representation
of GL2.AF / and therefore its local factors are infinite-dimensional (this follows
from the existence of a global Whittaker model; for example, see the proof of
Theorem 11.1 of [Jacquet and Langlands 1970]).

Now it is easy to deduce the accumulation property for Z.nm/q-sp
� from the

accumulation property for Z.nm/�.
Similar arguments apply if we take Y � E .n;m/� to be the reduced closed

subspace given by the union of irreducible components where the monodromy
operator in the associated family of Weil–Deligne representations is generically
zero — we call such components ‘generically principal series’.
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Finally we need to construct the map

E .n;m/
q-ps
� ! E .n;m=q/�:

This can be done by giving an alternative construction of E .n;m/
q-ps
� — indeed, by

the uniqueness of abstract eigenvarieties, E .n;m/
q-ps
� coincides with the nilreduction

of the covering of E .n;m=q/� given by the roots of X2� .Tq/X CNq .Sq/.x/

(this has a natural interpretation as a relative spectrum over E .n;m=q/�). �

3.20. Kisin and Lai’s eigenvarieties. Now we let f be a Hecke eigenform as in
the statement of Proposition 2.3. For each prime ideal p jp, we denote the two
distinct roots of X2 � �f .Tp/X C .Np/1�w ��1�f .$p/ by ˛p and ˇp. Then for
each subset S � fp jpg there is a unique Hecke eigenform

fS 2H
0.M Iw.n; ql/L; !

�/;

whose Hecke eigenvalues away from p are the same as f , and for p jp we have
�fS .Up/D ˛p if p 2 S and �fS .Up/D ˇp if p … S .

We moreover define a point �S 2 yT .Qp/ to be given by the characterO
p jp

�p;1˝�p;2
Y
�2†p

� .k��2�w/=2˝ � .�w�k�C2/=2;

where the �p;i are characters of F �p =O�p defined by:

� �p;1.$p/D ˛p.Np/�1 if p 2 T and �p;1.$p/D ˇp.Np/�1 otherwise.

� �p;2.$p/D ˇp if p 2 T and �p;1.$p/D ˛p otherwise.

Proposition 3.21. For each S � fp jpg there is a point xS of E .n; ql/� such that

�.xS /D �S ;

and the character
 xS WH .nql/!Qp

induced by  is compatible with �fS .

Proof. For this result, we need to use an alternative construction of the eigenvariety
E .n; ql/�. This is given by the space C�.m/ of [Kisin and Lai 2005, Theorem 4.5.4]
(with modified level structures). Here the m corresponds to our choice of residual
Galois representation �. To show that C�.m/ coincides with E .n; ql/�, we need to
verify that the subset of C�.m/ corresponding to the ‘classical points’ Z .n; ql/�
is Zariski-dense and accumulation. This follows from a classicality criterion for
overconvergent Hilbert modular forms, which has recently been proved in two
different ways — by Pilloni and Stroh [2011, Théorème 1.2] and by Tian and
Xiao [2013, Proposition 6.3]. Note that Theorem 6.5 of the latter is the statement
that the classical points are Zariski-dense in the Kisin–Lai eigenvarieties, but the
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accumulation property also follows immediately from the proof. The existence of
the points xS is now immediate from the construction of the Kisin–Lai eigenvariety.

Alternatively, one can avoid the appeal to difficult classicality theorems and
instead show that E .n; ql/� is isomorphic (with its additional structures) to the
Zariski closure of the classical points in C�.m/ by working with the set-up described
in Remark 3.16. Applying [Kisin and Lai 2005, Theorem 4.5.6] then concludes
the proof. �

Since the local factor �f;q is an unramified twist of Steinberg, one naturally
expects that the points xS lie in the eigenvariety E .n; ql/

q-sp
� . Proving that this is

the case is a little delicate: the first thing to observe is that since we do not yet
know local-global compatibility at q for �f , it is also possible that xS could lie in
E .n; ql/

q-ps
� .

One can build E .n; ql/
q-sp
� using modules given by taking a kernel of trace maps

to prime-to-q level from the appropriate Banach modules of overconvergent forms.
However, forming this kernel (for modules over the ring of functions on an affinoid
open U in weight space) does not necessarily commute with base change from U

to a point in weight space (the cokernel of the trace maps may not be flat). So the
fact that �f;q is an unramified twist of Steinberg does not immediate imply that xS
lies in E .n; ql/

q-sp
� . One needs to show that xS lies in a family of forms which are

‘q-new’. This problem is solved in [Newton 2014]:

Proposition 3.22. The points xS of Proposition 3.21 all lie in E .n; ql/
q-sp
� .

Proof. Take a point xS and suppose that it does not lie in E .n; ql/
q-sp
� . Then xS is a

point of E .n; ql/
q-ps
� , so we may consider the image of xS in E .n; l/�. This point

satisfies the assumptions of [Newton 2014, Theorem 4.3], but the conclusion of this
theorem tells us that xS is indeed in E .n; ql/

q-sp
� . �

4. Completed cohomology and level optimisation

We give another construction of the eigenvariety E .n;m/
q-sp
� , using the completed

cohomology of Shimura curves. We will then apply [Newton 2013, Theorem 4.33]
to deduce the following result:

Theorem 4.1. Let S � fp jpg and let xS be the point of E .n; ql/
q-sp
� obtained from

Propositions 3.21 and 3.22. Then there is a point yS of E .n; q/
q-sp
� such that:

� The Hecke eigenvalues outside l coincide with those of xS .

�  xS .Ul/ is one of the roots of X2� yS .Tl/X C .Nl/1�w ��1�f .$l/.

The proof of this theorem occupies the rest of the section.
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4.2. Completed cohomology of Shimura curves. For this section, we fix a quater-
nion algebra B=F such that B is nonsplit at precisely one infinite place, denoted �1,
and one finite place, denoted q (recall that ŒF WQ� is assumed to be even, so such
quaternion algebras exist). Denote by GB the reductive algebraic group over Q

arising from the unit group of B . Note that GB is an inner form of ResF=Q.GL2/.
For U a compact open subgroup of GB.Af /, we have a complex (disconnected)
Shimura curve

M.U /.C/DGB.Q/nGB.Af /� .C�R/=U;

where GB.Q/ acts on C�R via the �1 factor of GB.R/.
These curves have canonical models over F , which we denote by M.U /. We

follow the conventions of [Carayol 1986a] to define this canonical model.

Definition 4.3. We define zH 1.U p; L/ to be�
lim
 ��
n

lim
��!
Up

H 1
ét.M.UpU

p/F ;OL=m
n
L/

�
˝OL L;

where U p is any compact open subgroup of GB.A1;p/ and Up runs over the
compact open subgroups of GB.Qp/.

The L-vector space zH 1.U p; L/ is naturally an L-Banach space with an admis-
sible continuous action of GB.Qp/Š

Q
p jp GL2.Fp/. Moreover, there is a direct

summand zH 1.U p; L/� such that all the systems of Hecke eigenvalues arising from
zH 1.U p; L/� correspond to Galois representations whose residual representations

are isomorphic to �.
We now explain how the systems of Hecke eigenvalues parametrised by the set

Z .n;m/
q-sp
� can be seen in the space zH 1.U p; L/�.

Suppose we have a †-tuple of integers k D .k� /�2† with each k� � 2 and an
integer w with k� D w mod 2 for all � .

We denote by Wk;w the L-representation of GL2.Fp/ defined by

˝�2†p .� ı det/.w�k�C2/=2 Symk��2 V� ;

where V� is the representation of GL2.Fp/ acting via � and the standard representa-
tion of GL2.L/. These representations then give rise to lisse étale L-sheaves Fk;w

on the curves M.U / (see, for example, [Newton 2013, §3.2]).
We set U p to be the prime-to-p part of the compact open subgroup of GB.A1/

given by U1.n/\U0.m=q/. Now the Hecke algebra H .mn/ acts on zH 1.U p; L/

as follows: For places v prime to q, we have a standard action by double coset
operators associated to our fixed uniformisers $v. For the place q, we choose
a uniformiser $Dq of the order ODq whose reduced norm is equal to the fixed
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uniformiser $q of Oq, and let Uq act on zH 1.U p; L/ via the action of $Dq . This
definition is explained by the following:

Lemma 4.4. Let �qD St˝� be an unramified twist of the Steinberg representation
of GL2.Fq/. The local Jacquet–Langlands correspondent JL.�q/ of �q is the one-
dimensional representation of D�q given by �ıNrd, where Nrd denotes the reduced
norm. The Uq-eigenvalue of the space of Iwahori-invariants in �q is equal to �.$q/,
and is therefore equal to the eigenvalue for the action of $Dq on JL.�q/.

Proof. This follows from the standard computation of the Uq-eigenvalue of the
space of Iwahori-invariants in �q. �

We have the following proposition, which is proved exactly the same way as
[Newton 2013, Theorem 5.2]:

Proposition 4.5. There is a GB.Qp/-, Gal.F =F /- and Hecke-equivariant isomor-
phism M

.k;w/

lim
��!
Up

H 1
ét.M.UpU

p/F ;Fk;w/�˝LW
_
k;w Š

zH 1.U p; L/
alg
� ;

where the right-hand side is the space of locally algebraic vectors (in the sense of
[Emerton 2011, 4.2.6]) in the L-Banach space representation zH 1.U p; L/�.

The above proposition allows us to determine the contribution of classical auto-
morphic representations to the Jacquet module (in the sense of [Emerton 2006a])
JB. zH

1.U p; L/�/ of the (Qp-)locally analytic vectors in zH 1.U p; L/�:

Lemma 4.6. There is a T -, Gal.F =F /- and Hecke-equivariant embeddingM
.k;w/

�
lim
��!
Up

H 1
ét.M.UpU

p/F ;Fk;w/�

�
N

˝L �k;w ,! JB. zH
1.U p; L/�/;

where the subscript N denotes coinvariants (i.e., the classical Jacquet module) and
�k;w is the character of T given by�

s1 0

0 s2

�
7!

Y
�2†p

�.s1/
.k��2�w/=2�.s2/

.�w�k�C2/=2

Proof. This follows from left-exactness of the Jacquet module functor and [Emerton
2006a, Proposition 4.3.6], since the highest weight space .W _

k;w
/N has T -action

given by �k;w . �

The following lemma is a standard result in the smooth representation theory of
the groups GL2.Fp/:
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Lemma 4.7. Let �;�1; �2 be smooth complex characters of F �p .

(1) The Jacquet module �.�1; �2/N.p/ is isomorphic as a Tp-representation to

�1j � j
1=2
p ˝�2j � j

�1=2
p ˚�2j � j

1=2
p ˝�1j � j

�1=2
p :

(2) The Jacquet module .St˝�/N.p/ is isomorphic as a Tp-representation to

�j � jp˝�j � j
�1
p :

Proof. See for example [Goldfeld and Hundley 2011, Theorem 8.12.15]. �

As a consequence of Lemma 4.7, together with the Jacquet–Langlands corre-
spondence and the contribution of automorphic representations of GB.A/ to the
cohomology of the curves M.U /, we obtain the following proposition:

Lemma 4.8. Suppose . ; �/ 2Z .n;m/
q-sp
� . Then there is a nonzero element

v 2 JB. zH
1.U p; L/�/˝L Qp

on which the Hecke operators away from p act via the character  and on which
the torus T acts via the character �.

The above lemma tells us that the ‘classical set’ Z .n;m/
q-sp
� can be seen in the

locally analytic T -representations JB. zH 1.U p; L/�/. We now summarise Emer-
ton’s construction of an eigenvariety from this representation, and show that it is an
eigenvariety for the triple .H .mn/;Z .n;m/

q-sp
� ;W�/.

The T -representation JB. zH 1.U p; L/�/ is naturally dual to a coherent sheaf M

on yT (see [Emerton 2006b, Proposition 2.3.2]). Denote by Y the fibre product
yT � yT0

W� , and let MY denote the pullback of M to a coherent sheaf on Y .
Taking the relative spectrum of the commutative subalgebra of endomorphisms

of this sheaf generated by the Hecke algebra H.mn/ gives a rigid space with a
finite map to Y . Passing to the nilreduction gives a reduced rigid space which we
denote by E� . By the above lemma, we have a subset Z � E� of classical points
corresponding to the elements of Z .n;m/

q-sp
� .

Lemma 4.9. The space E� , together with the classical subset Z, is an eigenvariety
for the triple

.H .mn/;Z .n;m/
q-sp
� ;W�/:

Proof. The only condition we have to check is that Z is an accumulation and
Zariski-dense subset of E� — everything else follows from the construction of E� .
To prove this, we have to interpret E� as part of (the nilreduction of) an eigenvariety
constructed as in [Buzzard 2007], following [Emerton 2006a, Proposition 4.2.36;
Newton 2013, Lemma 5.13]. The proof is slightly involved, the main reason being
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that we can show that eigenvarieties constructed with completed cohomology have
nice properties only (a priori) after composing the map to weight space yT0 with
a map corresponding to restriction to a finite-index subgroup of T0. This comes
about because [Emerton 2006a, Proposition 4.2.36] applies to ‘cofree’ modules
over an Iwasawa algebra, not ‘coprojective’ modules.

Choose Up � GB.Qp/ a sufficiently small compact open subgroup such that
zH 1.U p; L/� is a cofree representation ofUp=F �\UpU p , in the sense of [Newton

2013, Definition 5.7]. Such a Up exists by [Newton 2013, Corollary 5.8] — in fact,
it suffices to take Up pro-p, since our assumptions on the tame level already ensure
that UpU p is neat.

Denoting the closed subgroup F �\UpU p of Up by X , we define a compact
commutative p-adic analytic group by S WD T0\Up=X , and denote the rigid space
parametrising its continuous characters by yS . The characters corresponding to
points of W� are trivial on the units of F with norm 1, so (possibly shrinking Up if
p D 2) these characters are trivial on X . Therefore restriction to T0\Up gives a
map W�! yS . In fact, the definition of W� implies that this map is an isomorphism
onto its image, which we denote by WS .

We denote by zW� the preimage of WS in W . The space zW� is a finite disjoint
union of open discs, whose components are indexed by characters of the finite
group T0=T0\Up . We denote by zY the fibre product yT � yT0

zW� , and let M zY
denote

the pullback of M to a coherent sheaf on zY . Mimicking the construction of E� , we
obtain a rigid space zE� with a finite map to zY , such that E� is the open and closed
subspace of zE� lying over W� .

Consider an increasing sequence Xn D Sp.An/ of admissible affinoid opens
covering yS , and write M for the space of global sections of M and Mn for the base
change M y̋

C an. yS;L/
An. It follows from [Emerton 2006a, Proposition 4.2.36] that

Mn is the finite-slope part of an orthonormalisable Banach An-module with the
action of a compact operator (coming from the action of an element z 2T ). We may
choose the Xn such that their inverse images in zW� are admissible affinoid opens
zYn D Sp.Bn/ (e.g., closed discs). It follows from [Buzzard 2007, Corollary 2.10]
that the modulesM y̋

C an. yS;L/
Bn are likewise finite-slope parts of orthonormalisable

Banach Bn-modules with the action of a compact operator.
It now follows, as in [Chenevier 2004, Corollaire 6.4.4], that the image of each

irreducible component of zE� in WS is the image of a Fredholm hypersurface, and is
therefore Zariski-open in WS . For each irreducible component of zE� , the map to
WS factors through one of the connected components of zW� , so each irreducible
component of zE� has Zariski-open image in this connected component. In particular,
each irreducible component of E� has Zariski-open image in W� .

The classicality criterion of [Emerton 2006a, Theorem 4.4.5] now shows that Z
is Zariski-dense and accumulation in E� . �
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Now that we know that E .n;m/
q-sp
� and E� are eigenvarieties for the same triple,

we have the following:

Corollary 4.10. The closed points x 2 E .n;m/
q-sp
� with �.x/ D � 2 yT .Qp/ cor-

respond bijectively with systems of Hecke eigenvalues appearing in the (finite-
dimensional) Qp-vector space

JB. zH
1.U p; L/�/˝L QpŒ��;

defined to be the subspace where T acts via the character �.

Proof. This follows from the construction of E� and Lemma 4.9. �
Now Theorem 4.1 follows from combining Corollary 4.10 and [Newton 2013,

Theorem 4.33].

5. Proof of Theorem 1.4

We can also construct E .n; q/� using the overconvergent Hilbert modular forms
of [Kisin and Lai 2005]. Therefore we conclude from Theorem 4.1 that there
are overconvergent Hilbert modular eigenforms gS 2M

�
� .n; q/ whose systems of

Hecke eigenvalues correspond to those of the points yS .
Applying [Kassaei 2013, Theorem 7.10], we glue the gS into a classical Hilbert

modular eigenform
g 2H 0.M .n; q/L; !

�/

as in the statement of Proposition 2.3 (we are using more general tame levels than
Kassaei, but this presents no problem). This completes the proof of Proposition 2.3,
and hence of Theorem 1.4.

Remark 5.1. Note that the situation in the above proof is that we have an overcon-
vergent form gS with level prime to l such that one of its l-stabilisations is equal
to the classical form fS . One might guess that gS can be obtained from fS by
applying a trace map, in which case it is immediate that gS is classical. However,
in the case we are considering all the trace maps vanish on fS .

A simple example illustrating that some argument is required here is given by the
classical weight-two Eisenstein series of level �0.l/ (note that our level-lowering
result [Newton 2013, Theorem 4.33] does not apply to this form). It is in the kernel
of the trace maps, but it is also the l-stabilisation of a (nonoverconvergent) p-adic
modular form.
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Horrocks correspondence on
arithmetically Cohen–Macaulay varieties

Francesco Malaspina and A. Prabhakar Rao

We describe a vector bundle E on a smooth n-dimensional arithmetically Cohen–
Macaulay variety in terms of its cohomological invariants H i

�.E/, 1� i � n� 1,
and certain graded modules of “socle elements” built from E. In this way we give
a generalization of the Horrocks correspondence. We prove existence theorems,
where we construct vector bundles from these invariants, and uniqueness theorems,
where we show that these data determine a bundle up to isomorphism. The cases
of the quadric hypersurface in PnC1 and the Veronese surface in P5 are considered
in more detail.

Introduction

In a fundamental paper, Horrocks [1964] described all vector bundles on projec-
tive space Pn in terms of their intermediate cohomology modules. He described
these cohomology modules using what he called a Z-complex, and showed that
the category of vector bundles modulo stable equivalence was equivalent to the
category of all Z-complexes modulo exact free complexes. In particular, this
gives the well-known Horrocks criterion for a vector bundle to be a sum of line
bundles in terms of the vanishing of its intermediate cohomology. His results were
reformulated by Walters [1996] in the language of derived categories, and extended
to sheaves by Coandă [2010]. Beı̆linson [1978] described the derived category of
sheaves on a projective space using complexes built from an “exceptional sequence”
fOPn.�n/; : : : ;OPn.�1/;OPng of line bundles on Pn, and Kapranov [1988] gave a
similar description for smooth quadric hypersurfaces by enlarging the sequence to
include the spinor bundles† of the quadric. Ancona and Ottaviani [1991] used these
methods to extend the Horrocks splitting criterion to quadrics, with a theorem that
a vector bundle E on a quadric Qn (of dimension n) is a sum of line bundles if and
only if E has its intermediate cohomology modules H i

�.E/ all zero for 1� i � n�1
and also Hn�1

� .E˝†/D 0 for the spinor bundles †.

MSC2010: primary 14F05; secondary 14J60.
Keywords: vector bundles, cohomology modules, Horrocks correspondence, smooth ACM varieties.
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In this paper, we copy Horrocks’ method on a smooth arithmetically Cohen–
Macaulay (ACM) subvariety X of projective space. Given a vector bundle E on X ,
we construct a Z-complex of free A-modules (where A is the coordinate ring of
X ). This complex, when sheafified, gives rise to a vector bundle F on X which we
call a Horrocks data bundle for E, since it comes with a map ˇ W F! E which is
an isomorphism on intermediate cohomology modules. When H 0

� .ˇ/ is surjective,
the kernel of ˇ is some ACM bundle on X .

These methods of Horrocks provide for ACM varieties a vector-bundle version
of results of Auslander and Bridger [1969, Proposition 4.26, Corollary 4.27], who
gave a structure theorem for a module M of finite Gorenstein dimension n over
a commutative ring, showing that M ˚P for some projective module P can be
expressed as an extension of a module Hn.M/ of projective dimension n by a
module of zero Gorenstein dimension, where the map M ! Hn.M/ satisfies a
universal property. In an unpublished preprint, Buchweitz [1986] proved a similar
result for finitely generated modules over strongly Gorenstein (noncommutative)
rings. We will see that the graded A-module F of global sections of the Horrocks
data bundle F will have F _ of finite projective dimension.

With this natural extension of Horrocks’ arguments to an ACM variety, we give
a generalization of the Horrocks correspondence in Section 1. Our goal in looking
at a Horrocks correspondence on X is to look for cohomological invariants that
determine E. We will take the Horrocks data bundle as encoding all the intermediate
cohomology for E, and view it as one of the invariants. So we will study the bundles
E with a fixed (minimal) Horrocks data bundle F. While for the map F! E the
induced map of first cohomology modulesH 1

� .F/!H 1
� .E/ is an isomorphism, for

various irreducible ACM bundles B on X , the map H 1
� .F˝B_/!H 1

� .E˝B_/

may have a kernel. These kernels will give more cohomological invariants and
we will call them modules of B-socle elements. In Theorems 1.10 and 1.11,
we see how these invariants determine E up to direct sums of ACM bundles.
We also give a splitting criterion for the bundle E to be a sum of line bundles
restricted from projective space. What is lacking in Section 1 is an understanding
of which modules of socle elements are obtained from a vector bundle for a general
ACM variety.

In Section 2 we describe the case of quadrics, on which ACM bundles are well
understood due to Knörrer [1987]. In particular, for the spinor bundles †i on a
quadric Qn, modules of †i -socle elements of a Horrocks data bundle F are just
graded vector spaces. We show that a vector bundle E exists for each choice of
Horrocks data bundle F and vector spaces Vi of †i -socle elements of F, and that
two vector bundles with the same data of F; Vi (up to obvious isomorphisms) are
isomorphic up to direct sums of ACM bundles. In this way we generalize the results
obtained in [Malaspina and Rao 2014] on Q2.
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In Section 3 we deal with the Veronese surface V � P5. The study of vector
bundles on V is trivial by Horrocks if we view V as P2. But, as another illustration
of the methods, it is an interesting example of an arithmetically Cohen–Macaulay
embedding which is not arithmetically Gorenstein and for which the ACM bundles
are easy to handle.

1. Horrocks data bundles on ACM varieties

Let X be a smooth ACM variety of dimension n in PnCr over a field k. For
any sheaf B on X , H i

�.B/ will denote
L
l2ZH

i .X;B.l//. The coordinate ring
of X , ADH 0

� .OX /, is a noetherian Cohen–Macaulay graded k-algebra. H i
�.B/

is a graded module over A. Let M be the category of graded, finitely generated
A-modules and graded homomorphisms. Any finitely generated projective graded
A module has the form

L
i A.ai / for some shifts ai 2 Z in grading, and will be

called a free A-module. Let P�M be the full subcategory of finitely generated
free A-modules. C�.M/ and C�.P/ will denote the categories of all complexes,
bounded above, of objects in M and P respectively, where morphisms are maps
between two complexes. Since M has enough projectives, given a complex C � of
objects in M, bounded above, one can find a free resolution, i.e., a complex P � in
C�.P/ with a quasi-isomorphism P �! C �.

Let E2VB be an object in the category of finite-rank vector bundles onX . H i
�.E/

is an A-module of finite length for 1� i � n�1. A vector bundle will be called free
if it has the form

L
i OX .ai /. A vector bundle E will be called ACM (arithmetically

Cohen–Macaulay) if H i
�.E/D 0 for all 1� i � n� 1. Since X is ACM, every free

bundle is ACM. By Serre duality, the line bundle !X is an ACM line bundle.
Given E, let E denote the graded A-module H 0

� .E/. Denoting duals by _ in the
categories VB and M, we have H 0

� .E
_/ Š .H 0

� .E//
_. Following Horrocks, we

choose a resolution of H 0
� .E
_/ by finitely generated free modules

: : : �! C 3_ �! C 2_ �! C 1_ �! C 0_ �!H 0
� .E
_/ �! 0: (1)

In [Horrocks 1964], this could be chosen as a finite resolution, but in our case it
may be infinite. However, if KD ker.C n�2_!C n�3_/, then K is an ACM vector
bundle on X , where KD zK is the sheaf obtained from K. Replacing the terms up
to and including C n�1_ by K and dualizing, we get the complex

C �
f0;ng W0�!C 0

ı1
C�

����!C 1
ı2

C�

����!C 2
ı3

C�

����!� � �
ın�2

C�

�����!C n�2�!K_�!0: (2)

The exact sequence (1), when sheafified, gives an exact sequence of vector
bundles, and its dual gives the exact sequence of vector bundles

0�!E�! zC 0
ı1

C�

����! zC 1
ı2

C�

����! zC 2
ı3

C�

����!� � �
ın�2

C�

�����! zC n�2�!K_�! 0: (3)
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From this it becomes evident that E D H 0
� .E/ is given as H 0.C �

f0;ng
/, and

H i
�.E/ D H i .C �

f0;ng
/ for i D 1; : : : n � 1 (where C n�1

f0;ng
is understood to refer

to K_).
E itself has a free resolution (again possibly infinite). Splice C �

f0;ng
with a free

resolution L� of E and call the resulting complex C �. The complex C � is bounded
above and has the property that H i .C �/DH i

�.E/ for i D 1; : : : n� 1 and equals 0
for other values of i .

Choose a free resolution P � in C�.P/ of C �:

P � W � � � �! P�2 �! P�1 �! P 0
ı1
P�

��! P 1
ı2
P�

��! � � �

ın�2
P�

���! P n�2 �! P n�1 �! 0??y ??y ??y ??y ??y ??y
C � W � � � �! L�2 �! L�1 �! C 0

ı1
C�

��! C 1
ı2

C�

��! � � �
ın�2

C�

���! C n�2 �! K_ �! 0

Then P � is an element in C�.P/ with the property that H i .P �/ is an A-module of
at most finite length for 1� i � n� 1 and is zero for other i . In [Horrocks 1964]
the bounded version of such a free complex was called a Z-complex, while Walters
[1996] called the category of such complexes FinL.P/. In our setting, we will call
it a Horrocks data complex and use the notation of [Walter 1996]. We also define a
“Horrocks data bundle” for each such Horrocks data complex:

Definition 1.1. FinL�.P/ is the full subcategory of all complexes P � in C�.P/

with the property thatH i .P �/ is anA-module of at most finite length for 1� i�n�1
and is zero for other i . A complex P � in FinL�.P/ will be called a Horrocks data
complex. For such a complex, let F D ker.ı1P � WP

0!P 1/. Then the sheaf FD zF

will be called a Horrocks data bundle on X .

It should be clear that the above F is a vector bundle on X with the property that
H i
�.F/DH

i .P �/ for 1� i � n� 1.

Lemma 1.2 [Horrocks 1964, Theorem 7.2]. F _ has a finite free resolution.

Proof. Horrocks’ proof cited above is when A is a regular ring, but remains
valid when A is Cohen–Macaulay. Another proof (indicated by the referee) is:
0! .P n�1/_! .P n�2/_! � � � ! .P 0/_! F _! 0 is a complex in M, locally
free and exact away from the maximal ideal for the vertex of the cone over X , and
hence is exact by the Peskine–Szpiro acyclicity lemma. �

Since the modules of global sections of a nonfree ACM bundle and of its dual
bundle on X have infinite projective dimension over A, it follows that a Horrocks
data bundle F can have no nonfree ACM bundle or its dual as a summand.

Since any P � in C�.P/ decomposes as M �˚L�, where M � is a minimal free
complex and L� is an acyclic free complex, we get FD Fmin˚L, where F;Fmin,
and L are the Horrocks data bundles corresponding to P �;M �, and L� respectively.
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L is a free bundle and Fmin will be called a “minimal” Horrocks data bundle. The
projective space version of the following isomorphism theorem can be found in
[Horrocks 1964, Theorem 7.5, Proposition 9.5] or [Walter 1996, Lemma 2.11].

Proposition 1.3. Let � W F ! F0 be a homomorphism between two minimal
Horrocks data bundles on X such that � induces isomorphisms H i

�.F/!H i
�.F
0/

for 1� i � n� 1. Then � is an isomorphism.

Proof. The proofs of the results cited above work in our ACM setting as well. �

Returning to the vector bundle E, let P � be a free resolution of C � as described
above. Let P �

�0 denote the naive truncation of P � at the zeroth term. We get the
induced homomorphism of complexes

P ��0! C �
f0;ng:

For F defined as ker ı1P � , there is an induced homomorphism F ! E. For the
Horrocks data bundle FD zF , we get a homomorphism ˇ W F! E which induces
isomorphisms H i

�.F/!H i
�.E/ for 1� i � n� 1. Hence any vector bundle E has

a “Horrocks datum”, as we now define:

Definition 1.4. Let E be a vector bundle on X . A pair .F; ˇ/ will be called a
Horrocks datum for E if F is a Horrocks data bundle and ˇ is a homomorphism
ˇ W F! E which induces isomorphisms H i

�.F/!H i
�.E/ for 1� i � n� 1.

A point on terminology: Auslander’s approximation theorem [Auslander and
Bridger 1969, Proposition 4.26, Corollary 4.27] quoted in the introduction states that,
given a module M of finite Gorenstein dimension n, there exist a projective module
P , a module Hn.M/ of projective dimension n, a module Mn of zero Gorenstein
dimension and an exact sequence 0!Mn!M ˚P !Hn.M/! 0. Following
Auslander’s suggestion, Buchweitz [1986, Corollary 5.3.3] called Hn.M/ (with
the map M !Hn.M/) a “hull of finite projective dimension” for M , and Mn the
maximal Cohen–Macaulay approximation to M .

In the case where our variety X is arithmetically Gorenstein, Auslander’s se-
quence can be seen as coming from the dual of the �-sequence of Theorem 1.7 below:
givenE, the �-sequence 0!K!F!E!0 dualized gives 0!E_!F _!K_,
where F _ has finite projective dimension. When X is arithmetically Gorenstein,
K_ is a maximal Cohen–Macaulay module and F _!K_ is surjective. Pull back
the exact sequence by a surjection L!K_! 0, with L projective. It splits. This
induces an exact sequence 0!N !E_˚L! F _! 0, where N (the kernel of
L!K_) is a maximal Cohen–Macaulay module. This fits the above approximation
theorem for E_.
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However, we have chosen the notation “F is the Horrocks data bundle for E”
since F encodes all the intermediate cohomology data of E.

Theorem 1.5. Let E1;E2 be vector bundles on X with Horrocks data .F1; ˇ1/,
.F2; ˇ2/ respectively. Let � W E1! E2 be a homomorphism.

(1) There is a free bundle Z and a commuting square

F1 ����! F2˚Z??yˇ1

??y.ˇ2;�/

E1 ����!
�

E2

(2) If H 0
� .ˇ2/ WH

0
� .F2/!H 0

� .E2/ is surjective, the free bundle Z can be chosen
to be zero.

Proof. It is straightforward to see that the construction of the complex C � out of
the vector bundle E is functorial in the sense that, given � W E1 ! E2, there is
an induced morphism from C �1 ! C �2 with the property that the homomorphisms
H i .C �1/!H i .C �2/ coincide with H i .�/ WH i

�.E1/!H i
�.E2/ for 1 � i � n� 1.

In the special case of ˇk WFk!Ek , a Horrocks datum, we get a quasi-isomorphism
P �
k
!C�

k
, whereP �

k
is the Horrocks data complex associated to Fk , so thatP �

k
!C�

k

is a free resolution of C�
k

. Now given a morphism of complexes C �1 ! C �2 , we can
lift the morphism to their free resolutions, after adding a free acyclic complex to P �2 .
This gives the commuting square of part (1). The proof of part (2) is elementary. �

The following theorems (Theorems 1.6 and 1.7) are to be found in more general
form in [Buchweitz 1986] as the “syzygy theorem for Gorenstein rings”. The
diagram in Theorem 1.8 below is Buchweitz’s octahedron [1986, (5.3.1)].

Theorem 1.6 (
 sequence for E). Let E be a vector bundle on X and .F; ˇ/ a
Horrocks datum for E. From the Horrocks data complex P � for F, consider the
exact sequence ‰ W 0! F! P0 ! G! 0, where P0 D zP 0 and G D zG with
G D ker ı2P � . We define 
 as the pushout of ‰ by ˇ

‰ W 0 ����! F ����! P0 ����! G ����! 0??yˇ ??y 




 W 0 ����! E ����!

f
A ����!

g
G ����! 0

(1) Given two bundles E1;E2, a morphism � W E1 ! E2, and Horrocks data
.F1; ˇ1/, .F2; ˇ2/ for each bundle, we obtain a commuting box of short exact
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sequences (using obvious notation)

‰1 ����! ‰2˚�??yˇ1

??y.ˇ2;�/


1 ����!
�


2

where � is a short exact sequence 0! Z! Z! 0! 0 of free bundles. If
H 0
� .ˇ2/ is surjective onto H 0

� .E2/, � may be taken to be zero.

(2) Hn�1
� .G/D 0, and A is an ACM bundle on X .

(3) Up to a short exact sequence 0!0!Z!Z!0 of free bundles, the sequence

 depends only on E and not on the choice of Horrocks datum.

Proof. (1) � lifts to a map F1!F2˚Z to give a commuting square, by Theorem 1.5.
F2˚Z is a Horrocks data bundle for the Horrocks data complex, where P 0 is
replaced by P 0˚Z but with the same bundle G2. It is easy to see that the map
F1! F2˚Z extends to a map of sequences ‰1!‰2˚�. The pushouts of ‰2
and ‰2˚� give the same sequence 
2. Lastly, since we have a commuting square
from the first line of the proof, the pushouts of ‰1 and ‰2˚� give a commuting
box of exact sequences.

(2) By construction, Hn�1
� .G/ D Hn.P �/ D 0. Since we have isomorphisms

H i
�.G/ŠH

iC1
� .F/ŠH iC1

� .E/ for 1� i � n�2 andH 0
� .G/�H 1

� .F/ŠH
1
� .E/,

we conclude that A is ACM.

(3) This follows from the first part when we apply the previous theorem to the
identity morphism from E to E. Indeed, the theorem, together with Proposition 1.3,
shows that any two Horrocks data bundles for E are stably equivalent. �

Theorem 1.7 (� sequence for E). Let .F; ˇ/ be a Horrocks datum for the bundle E

such that H 0
� .ˇ/ is surjective. We define the � sequence for E to be

0 �! K �! F
ˇ
��! E �! 0;

where K is the kernel bundle.

(1) K is an ACM bundle.

(2) � is determined by E up to a short exact sequence 0! Z! Z! 0! 0 of
free bundles.

(3) Given a morphism � W E1! E2, there is an induced morphism of short exact
sequences �1! �2.
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Proof. The proof is easy. We just mention that the induced map �1! �2 depends on
the choice of a map from F1 to F2 that lifts � (as obtained from Theorem 1.5). �

Theorem 1.8 (diagram of E). Let .F; ˇ/ be a Horrocks datum for the bundle E

such that H 0
� .ˇ/ is surjective. The 
 and � sequences of E fit into a diagram for E

0 0??y ??y
K K??y˛ ??y

‰ W 0 ����! F ����!
g

P0 ����! G ����! 0??yˇ ??y 




 W 0 ����! E ����!

f
A ����! G ����! 0??y ??y

0 0

� �

Given a morphism � W E1! E2, there is an induced map from the diagram of E1 to
the diagram of E2.

Proof. While the existence of the diagram is clear, the map from diagram of E1 to
the diagram of E2 with appropriate commuting boxes exists because the choice of
a map from F1 to F2 that lifts � will determine �1! �2 and then allows a choice
of a map ‰1!‰2. This now gives the commuting box of short exact sequences
of Theorem 1.6. �

The following is a criterion for obtaining a map between two 
 -sequences:

Proposition 1.9. Let E;E0 be two vector bundles with the same (minimal) Horrocks
data bundle Fmin and Horrocks data .Fmin; ˇ/, .Fmin; ˇ

0/. Let B1;B2; : : : ;Bk be
the distinct nonfree irreducible ACM bundles (up to twists by OX .a/) that appear
as summands in the middle term AE of the 
-sequence of E. For each Bi , let Vi
be the kernel of the map H 1

� .ˇ ˝ 1B_
i
/ from H 1

� .Fmin ˝B_i / to H 1
� .E˝B_i /,

and let V 0i be the same with ˇ replaced by ˇ0. If Vi � V 0i for all i , then there
exists a map � W E! E0 such that the 
-sequence of E0 is the pushout by � of the

 -sequence for E.



Horrocks correspondence on arithmetically Cohen–Macaulay varieties 989

Proof. Since the 
 -sequences 
; 
 0 are pushouts by ˇ; ˇ0 of the‰-sequence for Fmin

‰ W 0 �! Fmin �! P0 �! Gmin �! 0

in the commutative diagram

Hom.P0;E0/ ���! Hom.Fmin;E
0/ ���!

ı.‰/
Ext1.Gmin;E

0/ ���! Ext1.P0;E0/x??ˇ 


 x??
Hom.E;E0/ ���!

ı.
/
Ext1.Gmin;E

0/ ���! Ext1.AE;E
0/

it suffices to show that 
 0 2 Ext1.Gmin;E
0/ maps to zero in Ext1.AE;E

0/, for then
there is an element � 2 Hom.E;E0/ such that � ıˇ differs from ˇ0 by a map that
factors through P0.

Let � WAE! Gmin be the map occurring in the 
 -sequence of E. Then under the
connecting homomorphism for 
 ˝A_E , � maps to zero under H 0

� .Gmin˝A_E /!

H 1
� .E˝A_E /. Hence, under the connecting homomorphism of ‰˝A_E , � maps

to the kernel of H 1
� .Fmin˝A_E /!H 1

� .E˝A_E /. By the assumption Vi � V 0i for
all i , � also maps to the kernel of H 1

� .Fmin˝A_E /! H 1
� .E
0˝A_E /. It follows

that the pullback of 
 0 by � splits, which was the desired result. �

This criterion leads to an isomorphism theorem on X :

Theorem 1.10 (isomorphism theorem). Let E;E0 be two vector bundles on X ,
with the same minimal Horrocks data bundle Fmin and Horrocks data .Fmin; ˇ/,
.Fmin; ˇ

0/. Let B1;B2; : : : ;Bk be the distinct nonfree irreducible ACM bundles
(up to twists by OX .a/) that appear as summands in either of the middle terms
AE;AE0 of the 
 -sequences of E, E0. If for each i the kernel ofH 1

� .ˇ˝1B_
i
/ equals

the kernel of H 1
� .ˇ
0˝ 1B_

i
/ and if E and E0 have no ACM summands, then EŠ E0.

Proof. If F is free, E;E0 are ACM and the theorem does not apply. So we will assume
that Fmin is a nonfree minimal Horrocks data bundle. By applying Proposition 1.9,
there exists a homomorphism � WE!E0 and a commutative diagram of 
 -sequences

0 ����! E ����! AE ����! Gmin ����! 0??y� ??y�1





0 ����! E0 ����! AE0 ����! Gmin ����! 0

Tensor the diagram by B_, where B will stand for any of the distinct irreducible
ACM bundles (up to twists by OX .a/) that appear as summands in AE0 , including
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the possible free line bundle OX . In the induced diagram of cohomology, we get

0 0??y ??y
H 0
� .E˝B_/ ������!

�
H 0
� .E
0˝B_/??y ??y

H 0
� .AE˝B_/ ������!

�1

H 0
� .AE0 ˝B_/??y ??y

H 0
� .Gmin˝B_/ H 0

� .Gmin˝B_/??y ??y
H 1
� .E˝B_/ ������!

�
H 1
� .E
0˝B_/??y ??y

H 1
� .AE˝B_/ ������!

�1

H 1
� .AE0 ˝B_/

The mapH 0
� .Gmin˝B_/!H 1

� .E˝B_/ factors throughH 1
� .F˝B_/, since 


is the pushout of‰ by ˇ. The condition of equality of kernels forH 1
� .ˇ˝1B_/ and

H 1
� .ˇ
0˝ 1B_/ implies that the kernel in H 0

� .Gmin˝B_/ is the same for E and E0.
Therefore the mapping cone mapH 0

� .E
0˝B_/˚H 0

� .AE˝B_/!H 0
� .AE0˝B_/

is surjective. Viewing each summand B of AE0 , the identity global section in
H 0.B ˝ B_/ is in the image of this surjection. It cannot be in the image of
H 0
� .E
0˝B_/ since E0 does not have B as a summand. Hence it is in the image of

some B0 term in AE. This forces B0 to equal B, and the map �1 WAE!AE0 has
to split over this B term in AE0 .

It follows that �1 is a (split) surjection. Hence � W E! E0 is onto. The roles of
E;E0 can be interchanged, showing that they are bundles of the same rank. Hence
� W EŠ E0. �

The following theorem is in the same vein, and extends Proposition 1.3:

Theorem 1.11. Let � W E! E0 be a sheaf homomorphism between two vector bun-
dles on X , where E0 has no ACM summands. Suppose that � induces isomorphisms
H i
�.E/!H i

�.E
0/ for 1� i �n�1, and also, for each nonfree irreducible ACM bun-

dle B appearing in AE0 , suppose that the induced mapH 1
� .E˝B_/!H 1

� .E
0˝B_/

is an isomorphism. Then � is a split surjection decomposing E into E0˚C, where
C is an ACM bundle.



Horrocks correspondence on arithmetically Cohen–Macaulay varieties 991

Proof. By Theorem 1.5, � can be lifted to a map Q� W Fmin ! F0min of minimal
Horrocks data bundles. Since H i

�. Q�/ is an isomorphism for 1 � i � n� 1, Q� is
an isomorphism. So, for convenience, we may assume that Fmin D F0min, and,
according to Theorem 1.6, � induces a map of 
 -sequences

0 ����! E ����! AE ����! Gmin ����! 0??y� ??y�1





0 ����! E0 ����! AE0 ����! Gmin ����! 0

For each B appearing in AE0 , as in the proof of the previous theorem after ten-
soring by B_ we can look at the diagram of cohomology. Since H 1

� .E˝B_/!

H 1
� .E
0˝B_/ is an isomorphism, the kernel inH 0

� .Gmin˝B_/ is the same for E and
E0. The previous argument repeats to show that the homomorphism �1 WAE!AE0

is a split surjection, with a kernel C which is ACM. Hence � W E! E0 is also a split
surjection with kernel equal to C. �

Since the A-submodules Vi D ker.H 1
� .Fmin˝B_i /!H 1

� .E˝B_i // play such
an important role in the above description of a bundle E, it is worthwhile to make
the following definition describing its properties:

Definition 1.12. Let F be a sheaf on X and B an ACM bundle on X with a
minimal set of generators for H 0

� .B/ given by
L
j OX .aj /!B! 0. The kernel

of H 1
� .F˝B_/!H 1

� .F˝
L
j OX .�aj // will be called the A-module of B-socle

elements for F and denoted by H 1
� .F˝B_/soc. A homogeneous element in this

kernel in degree d will be a B-socle element in H 1.F.d/˝B_/.

Remark 1.13. (1) For a vector bundle F, the module of B-socle elements for F

has finite length over the field k.

(2) Suppose B_!OX .b/ is any map. Then, for any sheaf F, a B-socle element in
H 1
� .F˝B_/ maps to zero in H 1

� .F.b//, since B_! OX .b/ factors throughL
j OX .�aj /.

(3) Suppose E is a bundle on X with Horrocks datum .Fmin; ˇ/. Then, for any
ACM bundle B, the module V Dker.H 1

� .Fmin˝B_/!H 1
� .E˝B_// consists

of B-socle elements for Fmin. Indeed, the map H 1
�

�
Fmin˝

L
j OX .�aj /

�
!

H 1
�

�
E˝

L
j OX .�aj /

�
is an isomorphism.

Example 1.14. Any ACM variety X with a nondegenerate embedding into PN

has a Horrocks data bundle given by �1PjX with H 1
� .�

1
PjX /D k and with an exact

sequence

0 �!�1PjX �! OX .�1/
˚NC1

�! OX �! 0:
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For any ACM bundle B onX , without free summands and with B_ ,!
L
j OX .�aj /,

consider the diagram

H 0
� .OX ˝B_/ ����! H 1

� .�
1
PjX ˝B_/??y ??y

H 0
�

�
OX ˝

L
j OX .�aj /

�
����! H 1

�

�
�1PjX ˝

L
j OX .�aj /

�
Then any minimal generator of the moduleH 0

� .OX˝B_/maps to a nongenerator in
H 0
�

�
OX˝

L
j OX .�aj /

�
, and hence maps to zero in H 1

�

�
�1PjX˝

L
j OX .�aj /

�
DL

j k.�aj /. Thus the image of H 0
� .OX˝B_/ in H 1

� .�
1
PjX˝B_/ is nonzero and

consists of B-socle elements for �1PjX . So, for any ACM bundle B on X , without
free summands, the Horrocks data bundle �1PjX will have B-socle elements.

For a general ACM variety X , one would expect infinitely many families of
nonisomorphic and irreducible ACM bundles; hence this shows that even for a
fixed Horrocks data bundle Fmin, the number of bundles E with Horrocks datum
.Fmin; ˇE/ would get out of control, especially with the construction given below.
In later sections, we will limit our attention to the quadric hypersurface and the
Veronese surface, where there are only finitely many ACM bundles. In these sections,
we will also be able to deal with arbitrary submodules of B-socle elements, instead
of the entire B-socle module of the rather crude theorem below.

Theorem 1.15 (existence). Let Fmin be a minimal Horrocks data bundle on X , and
let B1;B2; : : : ;Bk be a finite collection of irreducible, nonfree ACM bundles on X .
Then there is a vector bundle E on X with Horrocks datum .Fmin; ˇ/ and with
kerH 1

� .ˇ˝ 1B_
i
/DH 1

� .Fmin˝B_i /soc for 1� i � k.

Proof. Each H 1
� .Fmin ˝B_i /soc is an A-module, and we can pick a collection

of minimal generators for the module. Let Ki be the vector subspace spanned
by this collection inside H 1

� .Fmin˝B_i /soc. Let B D
L
.Ki ˝k Bi /. The data

Ki ; 1� i � k, can be viewed as a B-socle element in H 1
� .Fmin˝B_/, and hence

gives an extension (that defines a bundle E)

0 �! Fmin
ˇ
��! E

�
��!B �! 0:

Since the element is a socle element, the pullback of the sequence under any map
OX .b/!B will split. Hence H 0

� .�/ is surjective, giving .Fmin; ˇ/ the Horrocks
datum for E.

By construction, the subspace Ki � IBi
in H 0

� .B˝B_i / maps isomorphically to
Ki�H

1
� .Fmin˝B_i /soc. Hence the image of the map ofA-modulesH 0

� .B˝B_i /!

H 1
� .Fmin˝B_i /soc is onto. �
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Remark 1.16. (1) The same construction can be done for an arbitraryA-submodule
Vi of H 1

� .Fmin˝B_i /soc. We would choose Ki to be the subspace spanned
by a set of minimal generators for Vi . In the last step of the above proof, we
find that image of the map of A-modules H 0

� .B˝B_i /!H 1
� .Fmin˝B_i /soc

contains Vi , and could possibly be larger. Hence the Horrocks invariants of E,
kerH 1

� .ˇ˝ 1B_
i
/, may not be precisely recognizable in this case.

(2) In the above theorem, for the E so constructed, it is possible to identify AE

in the case when X is arithmetically Gorenstein, or when the dual of each
of the ACM bundles Bi ; 1 � i � k, is also ACM: since the 
-sequence of
E is the pushforward of the ‰-sequence for Fmin, we get the exact sequence
0! P0 ! AE ! B! 0, which is forced to split by the extra hypotheses.
Once the ACM bundles in AE are identified, it is possible to compare E with
other bundles via the uniqueness theorems (Theorems 1.10, 1.11).

(3) However, in the non-arithmetically Gorenstein case, a clear description of AE

may not be apparent at the end of the construction of the theorem. We will
give an example later (Example 3.3) where an identification of AE requires
more work.

It is easy to obtain a splitting criterion for a vector bundle E on X to be free,
which gives for example the criterion for quadrics in [Ancona and Ottaviani 1991]
that was cited in the introduction. Once again, in the theorem below, note that the
condition invoking any ACM bundle is not very useful when there are too many
ACM bundles on X . It is more interesting (see the proof below) in the case where
the choices for B are limited, for example, if one could limit the possible ACM
bundles that might appear as a summand in the diagram of E.

Theorem 1.17 (a splitting criterion). Let E be a vector bundle of rank � r on
X , a smooth ACM variety of dimension n, such that H i

�.E
_/ D 0 for 1 � i �

minfr � 1; n� 1g and also H 1
� .E
_˝B/D 0 for any ACM bundle B on X . Then E

is free.

Proof. Now the �-sequence (Theorem 1.7) of E, 0! K! F! E! 0, gives an
element inH 1.E_˝K/ which is zero by hypothesis. Hence K and E are summands
of F. Since F is a Horrocks data bundle, it can have no nonfree ACM summand,
so K must be free. Thus E itself is a Horrocks data bundle.

If r � n, E_ is ACM. But the dual of a Horrocks data bundle has finite resolution,
so E_ must be free.

If r < n, consider the sequence (3) with E replaced by E_. From the vanishing
of cohomologies of E_, when we look at the complex of global sections of the
sequence, we conclude that the module E_ is an .r C 1/-th syzygy, and E_ has
finite projective dimension since E is a Horrocks data bundle. By the Evans–Griffith
syzygy theorem [1981], E_ is free. �
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Remark 1.18. IfX is a smooth quadric hypersurface, the above splitting criterion is
also equivalent to Corollary 4.3 of [Ballico and Malaspina 2009]. Splitting criteria
have been established on other varieties. For a Grassmannian of lines G.1; n/,
which supports infinitely many irreducible ACM bundles when n� 4, it is possible
to prove a splitting criterion (see Theorem 2.6 of [Arrondo and Malaspina 2010])
with a finite number of cohomological vanishing conditions involving only the
ACM bundles S iQ, where i D 1; : : : ; n� 2 and Q is the tautological rank-two
bundle. Similarly, on multiprojective spaces Pn1 � � � � �Pns , there is a splitting
criterion (see Theorem 3.9 of [Ballico and Malaspina 2011]) with a finite number of
cohomological vanishing conditions involving only the ACM bundles O.k1; : : : ; ks/,
where �nj � kj � 0. These results are much stronger than Theorem 1.17. Due
to the generality of our setting, we are unable to prove a splitting criterion with
conditions involving only a finite number of ACM bundles.

However, when there is additional analysis of the ACM bundles, more can be
said. For example, Arrondo and Graña [1999] identified a list of six specific ACM
bundles on G.1; 4/, and showed that any other ACM bundle B is a summand
of a bundle that appears in the middle of a short exact sequence of bundles,
where the bundles on either side are built from direct sums of twists of these
six bundles. Hence in our Theorem 1.17, applied to G.1; 4/, it suffices to consider
only these six specific bundles for B. It is now straightforward to check that
Ottaviani’s splitting criterion on G.1; 4/ (which is just one case of [Ottaviani
1987, Théorème 1]) follows from Theorem 1.17. (He assumed that H i

�.E
_/D 0

for 1 � i � 5 and his other hypotheses imply that H 1
� .E
_ ˝B/ D 0 for these

six ACM bundles.)

2. Quadric hypersurfaces

Let Qn � PnC1 be a smooth quadric hypersurface. We will work over a field of
characteristic not two. The quadratic form defining Qn descends to a quadratic form
on the tangent bundle of Qn. Hence one can define spinor bundles on Qn [Karrer
1973]. Set l WD b.nC 1/=2c. If n is even, then Qn has two distinct spinor bundles
†1 and †2 of rank 2l�1. If n is odd, then Qn has a unique spinor bundle, which
we denote †1, of rank 2l�1. Algebraic properties of these bundles were studied
by Ottaviani [1988], who obtained them using the geometry of the variety of all
maximal linear subspaces of Qn to construct morphisms from Qn toG.2l�1; 2l/. He
shows that these spinor bundles on Qn are ACM bundles. Kapranov [1988] showed
how these bundles were crucial in describing the derived category of sheaves on
the quadric. Meanwhile, Knörrer [1987], classifying maximal Cohen–Macaulay
modules over isolated quadratic hypersurface singularities, described these bundles
as the fundamental ACM bundles on Qn (see [Buchweitz et al. 1987] for the
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interpretation of Knörrer’s results in terms of bundles). Knörrer’s classification of
ACM bundles on Qn was proved also in [Ancona and Ottaviani 1991].

We use a unified notation †i for spinor bundles on Qn, where for even n, i can
take on the values 1; 2, while if n is odd, i can be only 1. We follow the notation
of [Kapranov 1988], whose spinor bundles differ from those in [Ottaviani 1988]
by a twist of 1. Hence †i is generated by its global sections and †i .�1/ has no
sections.

We will call a bundle of the form †i .a/ a twisted spinor bundle on Qn. The
fundamental theorem of [Knörrer 1987] is:

Theorem 2.1. Any ACM bundle on Qn is a direct sum of line bundles and twisted
spinor bundles.

The spinor bundles on Qn satisfy some dualities [Ottaviani 1988]: when n is odd
or n� 0 .mod 4/, †_i Š †i .�1/, while if n� 2 .mod 4/, †_i Š †j .�1/, where
j ¤ i .

In addition, the spinor bundles on Qn satisfy canonical sequences. To further
unify the notation, when n is odd or when n� 2 .mod 4/, define i 7! Ni to be the
identity on indices, and when n� 0 .mod 4/, define i 7! Ni to be the transposition
of the indices 1 and 2. With this notation, we have the canonical sequences

0 �!†_Ni

ui
���! O˚2

l vi
���!†i �! 0 (4)

(see [Ottaviani 1988, Theorem 2.8]).
Ottaviani [1988, Lemma 2.7] proved that, for any spinor bundle †i , End.†i /D

H 0.†i ˝†
_
i / D k and Hom.†i ; †j / D 0 for i ¤ j . Using this, and tensoring

the sequence above with †_i , we get H 1.†_
Ni
˝†_i /D k, where Id†i

maps to a
generator of H 1.†_

Ni
˝†_i /. For completeness, the following lemma is also easy

to prove:

Lemma 2.2. H 1
� .†

_
Ni
˝†_i /D k;

H 1
� .†

_
j ˝†

_
i /D 0 if j ¤ Ni :

.5/

.6/

Recall the definition of socle elements.

Definition 2.3. Let F be a sheaf on Qn. The sequence dual to (4) tensored by F

gives

0 �! F˝†_i �! F˝O˚2
l

�! F˝†Ni �! 0

and a natural map H 1
� .F˝†

_
i /!H 1

� .F˝O˚2
l

/.
An element in H 1.F.d/˝ †_i / will be called a †i -socle element for F in

degree d if it is annihilated by the map H 1.F.d/˝†_i /!H 1
� .F˝O˚2

l

/.
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The terminology “socle” comes from the case of a quadric surface studied in
[Malaspina and Rao 2014], where socle elements were annihilated by multiplication
by the forms lifted from one of the P1 factors of Q2. We have extended this
terminology to all ACM bundles in Section 1.

Lemma 2.4. Let F be a sheaf on Qn. Let V be a finite-dimensional graded subspace
consisting of †i -socle elements in H 1

� .F˝†
_
i /. Then there is a homomorphism

˛ W V ˝†_
Ni
! F such that H 1

� .˛˝ 1†_i
/ has image V .

Proof. Consider the dual canonical sequence (4) tensored by F

0 �! F˝†_i �! F˝O˚2
l

�! F˝†Ni �! 0:

We get

H 0.F˝†Ni /!H 1.F˝†_i /!H 1.F˝O˚2
l

/:

There is a graded subspace V 0 of H 0
� .F˝†Ni / which is mapped isomorphically to

V �H 1
� .F˝†

_
i /. This induces a map ˛ W V 0˝k†_Ni !F. Thus we can construct

the commuting diagram

0 0??y ??y
F˝†_i  ����˛˝1

�
V 0˝k †

_
Ni

�
˝†_i??y1˝v_i ??y1˝v_i

F˝O˚2
l

 ����
˛˝1

�
V 0˝k †

_
Ni

�
˝O˚2

l??y1˝u_i ??y1˝u_i
F˝†Ni  ����

˛˝1

�
V 0˝k †

_
Ni

�
˝†Ni??y ??y

0 0

Then H 1
� .˛˝ 1/ WH

1
� ..V

0˝k †
_
Ni
/˝†_i /!H 1

� .F˝†
_
i / gives V 0 Š V . �

Corollary 2.5. Let F be a vector bundle on Qn. Then any graded vector subspace
V of †i -socle elements in H 1

� .F˝†
_
i /soc is an A-submodule of H 1

� .F˝†
_
i /soc.

Proof. In the proof above H 1
� .˛˝ 1†_i

/ is an A-module homomorphism, and by
Lemma 2.2 theA-moduleH 1

� ..V
0˝k†

_
Ni
/˝†_i / has the trivialA-module structure,

where multiplication by graded elements in A of positive degree is zero. �

For any vector bundle E on Qn, we will define invariants as follows:
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Definition 2.6 (Horrocks invariants of E). Let E be a vector bundle on Qn. It has a
minimal associated Horrocks datum .Fmin; ˇ/. Let

Vi D kerH 1.ˇ˝ Id†_
i
/ WH 1

� .Fmin˝†
_
i /!H 1

� .E˝†
_
i /:

Then Vi is a graded subspace of H 1
� .Fmin ˝†

_
i /soc. The collection .Fmin; Vi /

will be called Horrocks invariants for E. (As usual, when n is even, this means
.Fmin; V1; V2/ and when n is odd, it means .Fmin; V1/.)

Remark 2.7. (1) E is ACM if and only if Fmin is the zero bundle. Vi D 0 as well.

(2) In general, Vi D 0 for all i if and only if E is a direct sum of a Horrocks data
bundle and an ACM bundle.

(3) If B is an ACM bundle, then E and E˚ B will have the same Horrocks
invariants.

(4) If .Fmin; ˇ; Vi / is a collection of Horrocks invariants for E and � is an auto-
morphism of Fmin, then � can be used to change ˇ WFmin! E and hence also
Vi to get a new collection of Horrocks invariants for E.

(5) The definition could have used an arbitrary Horrocks data bundle F for E

instead of the minimal one Fmin, since H 1
� .†

_
i /D 0 and hence the description

of Vi would not change.

A stronger existence theorem for quadrics can now be stated than was proved in
Theorem 1.15. Below we have a statement that deals with arbitrary subspaces of
socle elements:

Theorem 2.8 (existence). Let Fmin be a minimal Horrocks data bundle on Qn and
let Vi be a graded vector subspace of H 1

� .Fmin ˝ †
_
i /soc. Then there exists a

vector bundle E with the Horrocks invariants .Fmin; V1; V2/ (when n is even) and
invariants .Fmin; V1/ (when n is odd).

Proof. We follow the approach in Theorem 1.15. For notational convenience,
assume n is even, so i D 1; 2. Let BD .V1˝k†1/˚ .V2˝k†2/. As in the earlier
proof, we obtain a short exact sequence (defining E):

0 �! Fmin
ˇ
��! E

�
��! .V1˝k †1/˚ .V2˝k †2/ �! 0;

where .Fmin; ˇ/ is a Horrocks datum for the bundle E so obtained. Our goal is now
to show that the image of H 0

� .B˝†
_
i /!H 1

� .Fmin˝†
_
i / is Vi , whereas in the

earlier proof we showed that it contained Vi . Let †j .a/ be any summand in B, and
pick a nonzero section s 2 H 0.†j .a/˝†

_
i .b//, or a map s W †i .�b/! †j .a/.

Then aCb � 0. The section s 2H 0.B˝†_i .b// maps to zero in H 1
� .Fmin˝†

_
i /

if and only if the pullback of the short exact sequence by the map s W†i .�b/!B

is a split sequence. If aC b > 0, by Lemma 2.2 the map s W †i .�b/! †j .a/
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factors through O˚2
l

.a/. The pullback of the short exact sequence by the map
O˚2

l

.a/ ! †j .a/ � B splits since the extension is defined by socle elements.
Hence so does the pullback by the map †i .�b/!†j .a/�B.

It follows that the only nonzero contribution from this summand †j .a/ to the
image of H 0.B˝†_i .b// occurs when aC b D 0. If i ¤ j , Hom.†i ; †j / D 0
and so no section s can be found. If i D j , End.†i /D k and it follows that the
image of s lies in Vi . Thus the image of H 0

� .B˝†
_
i / is exactly Vi . �

As pointed out after Theorem 1.15, if Fmin has a ‰-sequence 0!Fmin!P0!

Gmin! 0, then the E constructed in the above theorem has 
 -sequence given as

0 �! E �!
M

i
.Vi ˝k †i /˚P0 �! Gmin �! 0:

It is also easy to see that since Fmin has no summands of type †i , neither does E.
Conversely, suppose E is a vector bundle on Qn with Horrocks invariants .Fmin; Vi /

and with no summands of type †i . It will follow from the next theorems that E has
a 
 -sequence with AE D

L
i .Vi ˝k †i /˚P0, where P0 is free.

The following two uniqueness results follow easily from the general theorems of
Section 1.

Theorem 2.9 (uniqueness). Given two bundles E;E0 on Qn without ACM sum-
mands and with Horrocks invariants .Fmin; Vi /, .F0min; V

0
i /, suppose that there

exists � W Fmin �!
� F0min such that the induced isomorphisms H 1

� .Fmin˝†
_
i / Š

H 1
� .F

0
min˝†

_
i / carry Vi to V 0i for each i . Then E and E0 are isomorphic.

Proof. We may assume that E and E0 have the same minimal Horrocks data bundle
Fmin. If Fmin is zero, E;E0 are ACM and the theorem does not apply. So we
will assume that Fmin is a nonfree minimal Horrocks data bundle. If Vi is 0 for
i D 1; 2, then E is stably equivalent to Fmin, and, being without ACM summands,
it must be isomorphic to Fmin. Since V 0i will also be zero, the same is true for E0

and we conclude that EŠ E0. So assume Vi is nonzero for some i . If there is an
automorphism � of Fmin which carries Vi to V 0i , in the diagram of Theorem 1.8 for
E0, we may replace ˇ0 W Fmin! E0 by ˇ0 ı��1 and so on, and assume that ˇ and
ˇ0 give the same kernel Vi in H 1

� .Fmin˝†
_
i /.

We can now apply Theorem 1.10 to conclude the result. �

Theorem 2.10. Let E;E0 be vector bundles on Qn with no ACM summands. Suppose
� W E! E0 is a homomorphism such that � induces H j

� .E/ŠH
j
� .E
0/ for 1� j �

n� 1 and also isomorphisms H 1
� .E˝†

_
i /ŠH

1
� .E
0˝†_i / for all i . Then � is an

isomorphism.

Proof. This is just Theorem 1.11 with the additional condition that E has no
ACM summands. �
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3. The Veronese surface

The Veronese surface V � P5 is an arithmetically Cohen–Macaulay embedding
which is not arithmetically Gorenstein. The study of vector bundles on V is trivial
if we view V as P2. Below we discuss how the techniques of Section 1 apply to
the embedded variety V. With its polarization from the embedding, V has two
irreducible, nonfree ACM bundles (up to twists). Hence, as in the case of quadric
hypersurfaces of even dimension, we can define Horrocks invariants .Fmin; V;W /

for any vector bundle E on V. But unlike in the case of the quadric, where V;W
were independent of each other, here there is a dependency between them.

In the following discussion, we will write OV.1/ for OP5.1/jV and OV.n/ for
OV.1/

˝n. We will write L for OP2.1/ and U for �1V˝L. Then the only irreducible
ACM bundles on V (with respect to the polarization OV.1/) are OV.n/, L.n/ and
U.n/. In the diagram of a bundle E on V in Theorem 1.8, the terms AE and KE are
built out of these three types of irreducible ACM bundles. The vector bundle G is a
free bundle and the ‰-sequence is the sheafification of a free presentation of the
A-module H 1

� .E/. The connection between AE and KE, given by the �-sequence
in the diagram of E, is controlled by the canonical sequences

0 �!U
u
��! 3OV

v
��! L �! 0 (7)

and
0 �! 3U.�1/˚OV.�1/ �! 9OV.�1/ �!U �! 0; (8)

where the second can be simplified noncanonically to

0 �! 3U.�1/
u0

���! 8OV.�1/
v0

���!U �! 0: (9)

In addition, there is the canonical sequence

0 �! OV.�1/ �! 3L.�1/ �!U �! 0: (10)

The two uniqueness theorems of Section 1 apply in this setting, where given a
bundle E on V we can construct Horrocks invariants for E as .Fmin; V;W /, where
.Fmin; ˇ/ is a Horrocks datum for E, V D ker.H 1

� .Fmin˝L_/!H 1
� .E˝L_//

andW D ker.H 1
� .Fmin˝U_/!H 1

� .E˝U_//. Thus to complete the classification
of bundles on V by this method it remains to get a description of any constraints
on V � H 1

� .F˝L_/ and W � H 1
� .Fmin˝U_/, and to finally show that given

.Fmin; V;W / with these constraints, there exists a bundle E with those invariants.
By Remark 1.13, V is anA-submodule of L-socle elements inH 1

� .Fmin˝L_/soc

and W is an A-submodule of U-socle elements in H 1
� .Fmin˝U_/soc. By the next

lemma, there is no distinction between the concepts of graded A-submodules and
graded vector subspaces of socle elements:
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Lemma 3.1. For any vector bundle F on V, in the A-module structures of both
H 1
� .F˝L_/soc andH 1

� .F˝U_/soc, multiplication by graded elements of positive
degree in A is zero.

Proof. Let �2H 1.F.d/˝L_/soc, giving a short exact sequence 0!F.d/!A!

L! 0. Consider multiplication by x 2A of degree one, �x WL.�1/!L. The pull-
back by this map of the short exact sequence (7) is split since H 1.U˝L_.1//D 0.
So �x WL.�1/!L factors through 3OV. By the definition of L-socle elements, the
pullback of � by 3OV! L splits, hence also the pullback of � by �x W L.�1/! L.
Thus x � �D 0.

A similar proof works for an element � 2H 1.F.d/˝U_/soc. One notices that
the pullback by �x W U.�1/! U of the short exact sequence (9) is split because
H 1
� .U˝U_/D 3k supported in H 1.U˝U_.�1//. �

In the definition of U-socle elements for F, the noncanonical inclusion U_ ,!

8OV.1/ can be replaced by a canonical composite inclusion U_ ,! 3L_.1/ ,!

9OV.1/. For any bundle F, this gives a canonical map

�F WH
1
� .F˝U_/soc! 3H 1

� .F.1/˝L_/soc:

When E is a vector bundle with Horrocks invariants .Fmin; V;W /, it is immediate
to see that V andW are related by �Fmin.W /�3V.1/. This is a dependency between
V and W . In fact, this is the only requirement on the pair .V;W / for proving an
existence theorem on the Veronese surface:

Theorem 3.2. Let Fmin be a minimal Horrocks data bundle on V, and let V;W
be graded vector subspaces of H 1

� .Fmin ˝ L_/soc, H 1
� .Fmin ˝U_/soc with the

property that �Fmin.W / � 3V.1/. Then there is a vector bundle E on V with
Horrocks invariants .Fmin; V;W /.

Proof. Construct E as an extension of Fmin by BD .V ˝k L/˚ .W ˝k U/:

0 �! Fmin
ˇ
��! E �!B �! 0: (�)

Since V , W are subspaces of socle elements, E has .Fmin; ˇ/ as its Horrocks
datum. We wish to understand the images of H 0

� .B˝L_/! H 1
� .Fmin˝L_/

and H 0
� .B˝U_/ ! H 1

� .Fmin ˝U_/. End.L/ D End.U/ D k and the image
of V � IL � H

0.V ˝L˝L_/ and W � IU � H
0.W ˝U˝U_/ give V and W

in H 1
� .Fmin ˝ L_/soc and H 1

� .Fmin ˝U_/soc. It remains to analyze any other
contributions to the two images inside H 1

� .Fmin˝L_/soc and H 1
� .Fmin˝U_/soc,

and prove that the images are just V and W respectively.
Let L.b/;U.b/ be any summands in .V ˝k L/˚ .W ˝k U/. Consider maps

�1 W L.a/! L.b/, �2 W L.a/!U.b/, �3 WU.a/!U.b/, �4 WU.a/! L.b/. For
�1, assume a < b since we wish to omit endomorphisms of L. Likewise for �3. In
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the sequence (7) tensored by L_.b� a/ we have H 1.U˝L_.b� a//D 0, and in
the sequence (9) tensored by U_.b� a/ we have H 1.3U.�1/˝U_.b� a//D 0.
Hence �1 factors through 3OV.b/ and �3 factors through 8OV.b� 1/. By the socle
nature of the extension (�), pullbacks of (�) by �1 and �3 split; hence the element
�1 2H

0.L.b/˝L_.�a// maps to zero in H 1
� .Fmin˝L_/, and likewise �3 maps

to zero in H 1
� .Fmin˝U_/.

For �4 to be nonzero, we require that a<bC1. We knowH 1.U˝U_.b�a//D0.
Hence the same argument applies to show that �4 factors through 3OV.b/, and
we are done. The arguments for �3; �4 show that the image of H 0

� .B˝U_/!

H 1
� .Fmin˝U_/ equals W .
For �2 to be nonzero we require that a < b, and we know that

H 1.3U.�1/˝L_.b� a//D 0

except when b � a D 1. Hence the only situation of difficulty is when we have
�2 W L.b � 1/! U.b/. Suppose the pullback of our short exact sequence (�) by
L.b � 1/ �2�!U.b/ ,! B is nonsplit. The pullback of (�) by U.b/ ,! B gives a
nonzero element w of degree �b inW �H 1

� .Fmin˝U_/soc. The nonsplit pullback
by L.b�1/!B gives a nonzero element v inH 1.Fmin˝L_.�bC1//soc which is
the image of w under �_2 . Since �_2 is one component in U_.�b/ ,! 3L_.�bC1/,
the assumption that �Fmin.W / � 3V.1/ tells us that v 2 V . Thus, the image of
H 0
� .B˝L_/!H 1

� .Fmin˝L_/ equals V . �
We conclude with an example:

Example 3.3. The simplest non-ACM bundle on V is E D �1V D U˝L_, with
H 1
� .E/D k and 
 -sequence 0!E! 3L_! OV! 0, while its minimal Horrocks

data bundle is FDFminD�
1
P5 jV, with ‰ sequence 0!F! 6OV.�1/! OV! 0.

The map ˇ W F! E is the standard map �1
P5 jV!�1V, which is a surjective map

of vector bundles but not surjective on the module of global sections. The Horrocks
invariants .F; V;W / of E are easy to work out and are described below.
H 1
� .F˝L_/DH 1.F.1/˝L_/D 3k, and H 1

� .E˝L_/D 0, hence V D 3kD
H 1.F.1/˝L_/, where all elements in H 1

� .F˝L_/ are L-socle.
There is a commutative diagram that shows the only nonzero parts ofH 1

� .F˝U_/

and H 1
� .E˝U_/

H 0.U_/ ,�! H 1.F˝U_/ ����! H 1.6U_.�1// ����! 0


 ??yˇ˝IU_

??y
H 0.U_/ Š H 1.E˝U_/ ����! 0

Hence H 1
� .F˝U_/ D H 1.F˝U_/ is nine-dimensional, and the kernel W

of H 1
� .ˇ˝ IU_/ is a six-dimensional subspace (of U-socle elements) that maps

isomorphically to H 1.6U_.�1//.
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When we apply the construction of the existence theorems (Theorems 1.15, 3.2)
to the data .F; V;W /, we obtain a vector bundle zE and a pushout diagram (refer to
the discussion after Theorem 1.15)

0 0??y ??y
0 ��! F ��! 6OV.�1/ ��! OV ��! 0??y Q̌ ??y jj

0 ��! zE ��! AzE ��! OV ��! 0??y ??y
B Š B??y ??y
0 0

where BD .V ˝k L/˚ .W ˝k U/.
According to the uniqueness theorems, E is a rank-two summand of the rank-20

bundle zE, with the remaining summand of zE consisting of ACM bundles. In this
example, even AzE is not obvious because the middle short exact sequence is not
split. Indeed, the middle sequence is the pushout of the left sequence, hence it is
split if and only if, under F! 6OV.�1/, the image of the element � 2H 1.F˝B_/

is zero in H 1.6OV.�1/˝ B_/. However, the components of � in each of the
U-summands of B generate the vector space W � H 1.F˝U_/, and W maps
isomorphically to H 1.6U_.�1//. Hence the image of � is nonzero.

To understand zE and AzE, a little more work is needed. The fact that W maps
isomorphically to H 1.6U_.�1// tells us that the middle short exact sequence
contains six copies of the canonical sequence (10). Hence AzE D 21L_. The map
AzE! OV is now easy to understand and shows that zED E˚ 18L_.

References

[Ancona and Ottaviani 1991] V. Ancona and G. Ottaviani, “Some applications of Beilinson’s the-
orem to projective spaces and quadrics”, Forum Math. 3:2 (1991), 157–176. MR 92e:14039
Zbl 0725.14009

[Arrondo and Graña 1999] E. Arrondo and B. Graña, “Vector bundles onG.1; 4/ without intermediate
cohomology”, J. Algebra 214:1 (1999), 128–142. MR 2000e:14069 Zbl 0963.14027

[Arrondo and Malaspina 2010] E. Arrondo and F. Malaspina, “Cohomological characterization of
vector bundles on Grassmannians of lines”, J. Algebra 323:4 (2010), 1098–1106. MR 2010m:14054
Zbl 1200.14081

http://dx.doi.org/10.1515/form.1991.3.157
http://dx.doi.org/10.1515/form.1991.3.157
http://msp.org/idx/mr/92e:14039
http://msp.org/idx/zbl/0725.14009
http://dx.doi.org/10.1006/jabr.1998.7700
http://dx.doi.org/10.1006/jabr.1998.7700
http://msp.org/idx/mr/2000e:14069
http://msp.org/idx/zbl/0963.14027
http://dx.doi.org/10.1016/j.jalgebra.2009.11.007
http://dx.doi.org/10.1016/j.jalgebra.2009.11.007
http://msp.org/idx/mr/2010m:14054
http://msp.org/idx/zbl/1200.14081


Horrocks correspondence on arithmetically Cohen–Macaulay varieties 1003

[Auslander and Bridger 1969] M. Auslander and M. Bridger, Stable module theory, Memoirs of
the American Mathematical Society 94, American Mathematical Society, Providence, R.I., 1969.
MR 42 #4580 Zbl 0204.36402

[Ballico and Malaspina 2009] E. Ballico and F. Malaspina, “Qregularity and an extension of the Evans–
Griffiths criterion to vector bundles on quadrics”, J. Pure Appl. Algebra 213:2 (2009), 194–202.
MR 2009j:14055 Zbl 1153.14014

[Ballico and Malaspina 2011] E. Ballico and F. Malaspina, “Regularity and cohomological split-
ting conditions for vector bundles on multiprojective spaces”, J. Algebra 345 (2011), 137–149.
MR 2842058 Zbl 1246.14056

[Beı̆linson 1978] A. A. Beı̆linson, “Coherent sheaves on Pn and problems in linear algebra”, Funk-
tsional. Anal. i Prilozhen. 12:3 (1978), 68–69. In Russian; translated in Funct. Anal. Appl. 12:3
(1978), 214–216. MR 80c:14010b

[Buchweitz 1986] R.-O. Buchweitz, “Maximal Cohen–Macaulay modules and Tate-Cohomology
over Gorenstein rings”, preprint, 1986, http://hdl.handle.net/1807/16682.

[Buchweitz et al. 1987] R.-O. Buchweitz, G.-M. Greuel, and F.-O. Schreyer, “Cohen–Macaulay
modules on hypersurface singularities, II”, Invent. Math. 88:1 (1987), 165–182. MR 88d:14005
Zbl 0617.14034
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The Elliott–Halberstam conjecture
implies the Vinogradov least quadratic

nonresidue conjecture
Terence Tao

For each prime p, let n(p) denote the least quadratic nonresidue modulo p.
Vinogradov conjectured that n(p)= O(pε) for every fixed ε > 0. This conjecture
follows from the generalized Riemann hypothesis and is known to hold for
almost all primes p but remains open in general. In this paper, we show that
Vinogradov’s conjecture also follows from the Elliott–Halberstam conjecture on
the distribution of primes in arithmetic progressions, thus providing a potential
“nonmultiplicative” route to the Vinogradov conjecture. We also give a variant of
this argument that obtains bounds on short centered character sums from “Type II”
estimates of the type introduced recently by Zhang and improved upon by the
Polymath project or from bounds on the level of distribution on variants of the
higher-order divisor function. In particular, an improvement over the Burgess
bound would be obtained if one had Type II estimates with level of distribution
above 2

3 (when the conductor is not cube-free) or 3
4 (if the conductor is cube-free);

morally, one would also obtain such a gain if one had distributional estimates on
the third or fourth divisor functions τ3 or τ4 at level above 2

3 or 3
4 , respectively.

Some applications to the least primitive root are also given.

1. Introduction

For each prime p, let n(p) denote the least natural number that is not a quadratic
residue modulo p. Vinogradov [1985] established the asymptotic bound

n(p)� p1/2
√

e log2 p (1-1)

for all primes p and made the following conjecture:

Conjecture 1.1 (Vinogradov’s conjecture). For any fixed ε > 0, we have n(p)� pε.

MSC2010: primary 11L40; secondary 11L20.
Keywords: quadratic nonresidue, Elliott–Halberstam conjecture, character sums, Burgess bound.
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(See the end of the section for our conventions on asymptotic notation.) Lin-
nik [1942] showed that this conjecture follows1 from the generalized Riemann
hypothesis; Ankeny [1952] improved the bound further to

n(p)� log2 p

on this hypothesis. However, Conjecture 1.1 remains open unconditionally; the best
bound available (up to logarithmic factors) for general primes p is

n(p)� p1/4
√

e+ε (1-2)

for any fixed ε > 0, a well-known result of Burgess [1957]. It was also shown by
Linnik [1942] unconditionally that, for any fixed ε > 0, the number of p ≤ x with
n(p) > xε is bounded uniformly in x , and hence, the number of exceptions to the
inequality n(p) > pε with p ≤ x is bounded by O(log log x).

In this paper, we connect Vinogradov’s conjecture to a standard conjecture in sieve
theory, the Elliott–Halberstam conjecture [1970], as well as to a restricted fragment
of this conjecture recently introduced by Zhang [2014]. The basic phenomenon
being exploited here is that distribution estimates such as those given by the Elliott–
Halberstam conjecture allow one to control correlations of the form2∑

n

(α ∗β)(n)(γ ∗ δ)(n+ h) (1-3)

for various arithmetic sequences α, β, γ , and δ and nontrivial shifts h, as long
as all of the sequences α, β, γ , and δ vanish for very small values of n and
provided that at least one of the sequences α, β, γ , or δ is “smooth” (e.g., if one of
these sequences is an indicator function such as 1[N ,2N ]). On the other hand, by
combining the multiplicativity and periodicity properties of Dirichlet characters
with a hypothesis that the least quadratic residue is large (or that a character sum is
large), we will be able to construct sums of the form (1-3) that deviate substantially
from its expected value, giving the required contradiction. It is the periodicity
of Dirichlet characters χ that allow us to introduce the shift h, thus transferring
the problem from a multiplicative number theory problem (in which hypotheses

1In fact, the conjecture follows from even very weak fragments of this hypothesis; see, e.g.,
[Bateman and Diamond 2004, Theorem 10.6]. (Thanks to Kevin Ford for this reference.) The
strongest result in this direction comes from a very recent work of Granville and Soundararajan
[2015] (see also [Banks and Makarov 2014]), who showed (roughly speaking) that the only way this
conjecture can fail is if a positive proportion of low-lying zeros of an L-function lies extremely close
to the line Re s = 1.

2If only the original Elliott–Halberstam conjecture is available, rather than its variants, then one
of the convolutions α ∗ β or γ ∗ δ needs to be replaced by the von Mangoldt function 3. Also, for
technical reasons, it is convenient to ensure that one of the factors α, β, γ , or δ is supported on
numbers coprime to the shift h.
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such as the generalized Riemann hypothesis are useful) to a sieve theory problem
(in which hypotheses such as the Elliott–Halberstam conjecture are useful). The
arguments share some similarities with that of Burgess [1957] (which also relies
heavily on the multiplicativity and periodicity properties of Dirichlet characters)
but is ultimately powered by a somewhat different source of cancellation, namely
the equidistribution assumptions of Elliott–Halberstam type rather3 than the Weil
exponential sum estimates.

To describe the results more precisely, we need some notation. For any function
α : N→ C with finite support (that is, α is nonzero only on a finite set) and any
primitive residue class a (r), we define the (signed) discrepancy 1(α; a (r)) to be
the quantity

1(α; a (r)) :=
∑

n=a (r)

α(n)−
1
ϕ(r)

∑
(n,r)=1

α(n), (1-4)

where ϕ is the Euler totient function.

Conjecture 1.2 (Elliott–Halberstam conjecture). Let 0< ϑ < 1 be fixed. Then∑
r<xϑ

sup
a∈(Z/rZ)×

|1(31[1,x]; a (r))| � x log−A x (1-5)

for any fixed A > 1, where 3 is the von Mangoldt function. Equivalently, from the
prime number theorem, one has∑

r<xϑ
sup

a∈(Z/rZ)×

∣∣∣∣ ∑
n≤x :n=a (r)

3(n)−
x
ϕ(r)

∣∣∣∣� x log−A x

for any fixed A > 1.

The case ϑ < 1
2 of this conjecture is of course (a slightly weakened form of) the

Bombieri–Vinogradov theorem [Bombieri 1965; Vinogradov 1965].
Our first theorem is then:

Theorem 1.3 (Elliott–Halberstam implies Vinogradov). Conjecture 1.2 implies
Conjecture 1.1.

We prove this theorem in Section 2. The basic idea is to observe (from the general
theory of mean values of multiplicative functions) that, if n(q) > qε for some large
prime q, then the character sum

∑
n≤x χ(n)3(n) will be anomalously large for

3It is worth noting however that much of the recent partial progress on the Elliott–Halberstam
conjecture has proceeded by using Weil exponential sum estimates, although the precise estimates
used there are different from those used in the Burgess argument. In Section 5, though, we sketch a
version of the argument that allows for an improvement over the original bound (1-1) of Vinogradov
using only the elementary bound on Kloosterman sums [1927] and does not require the full strength
of the Weil conjectures.
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some large x = O(q O(1)), where χ is the quadratic character modulo q. As χ is
periodic modulo q , this forces

∑
n≤x χ(n)3(n+q) to be large also. But one can use

the Elliott–Halberstam conjecture (and an expansion of χ into divisor sums, using
once again the largeness of n(q)) to obtain good bounds for

∑
n≤x χ(n)3(n+ q)

and obtain a contradiction.
With some additional combinatorial argument, we can obtain a similar implica-

tion4 concerning the least primitive root modulo p, provided that p− 1 has only
boundedly many factors:

Theorem 1.4 (Elliott–Halberstam bounds least primitive roots). Assume Conjecture
1.2. Then for any fixed d ≥ 1 and fixed ε > 0 and any prime p for which p− 1 is
the product of at most d primes (counting multiplicity), the least primitive residue
modulo p is O(pε).

We prove this theorem in Section 3.
Our proof of Theorem 1.3 does not easily allow one to convert partial progress

on the Elliott–Halberstam conjecture to partial progress on Vinogradov’s conjecture.
We now present a different argument that replaces the Elliott–Halberstam conjecture
by a conjecture on “Type II sums” of the type introduced5 by Zhang [2014] with
the feature that partial progress on the Type II conjecture implies partial progress on
Vinogradov’s conjecture. In particular, the Type II estimates in [Polymath 2014a]
can be used to improve slightly upon the Vinogradov bound (1-1) by a method
different from the Burgess argument, although the numerical exponent obtained is
inferior to that in [Burgess 1957].

Let us first state the Type II conjecture, in a formulation suited for the current
application.

Conjecture 1.5 (Type II conjecture). Let 0<$ < 1
4 , and let δ > 0 be a sufficiently

small fixed quantity depending on ϑ . Let x be an asymptotic parameter going to
infinity. Let P be any number that is the product of some subset of the primes
in [1, xδ]; equivalently, let P be a square-free number all of whose prime factors
are at most xδ. Let N and M be quantities such that

x1/2−2$
� N � M � x1/2+2$

with N M � x , and let α, β : N→ R be sequences supported on [M, 2M] and
[N , 2N ], respectively, such that one has the pointwise bounds

|α(n)| � 1 (1-6)

4We are indebted to Felipe Voloch for suggesting this variant.
5Zhang also considered “Type I” and “Type III” sums, which will not be of direct relevance in this

paper, although the τ3 distribution estimates mentioned in Section 5 are related to the Type III sums.
Similar sums had also been previously considered by Bombieri, Fouvry, Friedlander, and Iwaniec
[Bombieri et al. 1986; 1987; 1989; Fouvry 1984; 1985; Fouvry and Iwaniec 1980; 1983; 1992].
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for all natural numbers n. We also assume that β is simply the indicator function

β = 1[N ,2N ].

Then one has

sup
1≤a≤x :(a,P)=1

∑
r�x1/2+2$ :r |P

|1(α ? β; a (r))| � x log−A x (1-7)

for any fixed A > 0.

This conjecture is implied by the generalized Elliott–Halberstam conjecture in
[Polymath 2014b], which was in turn inspired by a similar conjecture in [Bombieri
et al. 1986]. In [Motohashi 1976] (see also [Gallagher 1968]), a generalization
of the Bombieri–Vinogradov theorem is obtained that roughly speaking implies
(up to logarithmic factors) the $ = 0 endpoint of this conjecture. The arguments
in [Zhang 2014] implicitly establish the above conjecture for 0<$ < 1

1168 , and
more explicitly, the estimate in [Polymath 2014a, Theorem 5.1(iv)] establishes the
conjecture for 0<$ < 1

68 . The estimates in those papers allow for more general
values of a and r and more general sequences α and β than those considered here;
however, the restricted version of Conjecture 1.5 stated above will suffice for our
application. It is likely that the additional restrictions imposed here (particularly
the requirement that β be the indicator function of an interval) allow for some
improvement in the exponent 1

68 obtained in [Polymath 2014a]; see also Section 5
below for a slightly different way to improve upon this exponent, from 1

68 to 1
28 .

Our next main result is then:

Theorem 1.6 (Type II sums bound character sums). Suppose that Conjecture 1.5
holds for a fixed choice of 0<$ < 1

4 . Then one has∣∣∣∣ ∑
n<q1/2−2$+ε

χ(n)
∣∣∣∣� q1/2−2$+ε log−A q (1-8)

for any sufficiently small fixed ε > 0, any fixed A > 0, and any natural number q
(not necessarily prime) whenever χ is a nonprincipal primitive Dirichlet character
of conductor q.

By the usual argument of Vinogradov, this gives:

Corollary 1.7. Suppose that Conjecture 1.5 holds for a fixed choice of 0<$ < 1
4 .

Then one has

n(q)� q(1/
√

e)(1/2−2$)+ε

for any fixed ε > 0 and any prime q.
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Proof. From the pointwise estimate

χ(n)≥ 1− 2
∑

p|n:p>n(q)

1

for the quadratic character χ(n) :=
( n

q

)
, we see that∑

n<x

χ(n)≥ x − 1− 2
∑

n(q)<p≤x

( x
p
+ 1

)
for any x > 1. Setting x := q1/2−2$+ε for some ε > 0 and using Theorem 1.6, we
see that

x − 2x
∑

n(q)<p≤x

1
p
≤ o(x)

as q→∞. From Mertens’ theorem, this implies that

log
log x

log n(q)
≥

1
2 + o(1),

and the claim follows. �

In particular, the Type II estimates in [Polymath 2014a] give the improvement

n(p)� p(1/
√

e)(1/2−1/34)+ε

to (1-1) for any fixed ε > 0. This is well short of the improvement in (1-2); however,
it represents a slightly different way to break the “square root barrier” from the
Burgess argument; for instance, the arguments can extend to more general moduli
than primes p without much difficulty, whereas the Burgess argument encounters
some additional technical issues when the modulus is not cube-free. One will be
able to surpass the Burgess bound as soon as one can establish a Type II estimate for
some $ > 1

8 (or $ > 1
12 in the non-cube-free case); thus, one needs to improve the

Type II exponents in [Polymath 2014a] by a factor of roughly eight. Interestingly, it
was noted in [Bombieri et al. 1986, Conjecture 3] that, if one assumed square root
cancellation in certain exponential sums, one could obtain Type II estimates for all
$ < 1

8 , thus falling barely short of being able to improve upon the Burgess bound.
Theorem 1.6, when combined with the Type II estimates in [Polymath 2014a],

establishes the short character sum bounds∑
n<q1/2−1/34+ε

χ(n)= q1/2−1/34+ε log−A q (1-9)

for any primitive character χ of conductor q. This bound is inferior to that of
Burgess [1957; 1963; 1986], which establishes∑

M≤n≤M+N

χ(n)= N 1−δ(ε)
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for arbitrary M when N � q1/3+ε (if q is not cube-free) or N � q1/4+ε (if q is
cube-free), and δ(ε) > 0 depends only on ε. With our methods, one would need
Type II estimates at level of distribution at least 2

3 (thus $ > 1
12 ) to improve upon

the Burgess bound in the non-cube-free setting or at least 3
4 (thus $ > 1/8) in the

cube-free setting. Note also the Burgess bound has also been improved for certain
types of modulus q, such as smooth numbers (see, e.g., [Graham and Ringrose
1990; Goldmakher 2010]) or prime powers (see, e.g., [Postnikov 1956]).

Remark 1.8. If one had the Type II estimates for all 0<$ < 1
4 , then (by combining

Corollary 1.7 with the Burgess bound) we would have∑
n≤x

χ(n)� x log−A x

for all x ≥ qε and fixed A, ε > 0, and hence (by summation by parts), one would
obtain a very slight improvement L(1, χ)= o(log q) to the standard upper bound
L(1, χ)= O(log q) for the sum L(1, χ)=

∑
n χ(n)/n. Furthermore, one obtains

the bound L(s, χ) = O(log2 q) (say) when |s − 1| ≤ A log log q/log q for any
fixed A. Using this and standard arguments (see, e.g., [Iwaniec and Kowalski 2004,
Chapter 8]), one can enlarge6 the classical zero-free region of L(s, χ) to include the
region |s−1| ≤ A/log q for any fixed A> 0, except possibly for a Siegel zero. This
in turn can be used to improve the prime number theorem of Gallagher [1970] and
hence also the constant in Linnik’s theorem on primes in an arithmetic progression,
assuming the Type II estimates and possibly excluding an exceptional modulus; we
omit the details.

Remark 1.9. By standard arguments (see, e.g., [Montgomery and Vaughan 2007,
Corollary 9.20]) starting from the observation that the sum∑

d|Q

ϕ(Q/d)µ(d)
Q

∑
χ(Q)

ordχ=d

∑
n≤x

χ(n)

counts the number of primitive roots modulo a prime p up to x , where Q is the
product of all the primes dividing p− 1, we see that Theorem 1.6 implies that, if
one has Type II estimates for a given 0<$ < 1

4 , then the least primitive root of
Z/pZ is O(p1/2−2$+ε) for any fixed ε and any prime p, provided that p− 1 has
at most O(log log p) prime factors; we leave the details to the interested reader. In
particular, we can strengthen the conclusion of Theorem 1.4 slightly if we replace
the Elliott–Halberstam conjecture by the Type II conjecture for $ arbitrarily close
to 1

4 . It may be possible7 to remove the requirement on the number of prime factors

6We thank James Maynard for this remark.
7We thank the anonymous referee for this suggestion.
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of p−1 by using zero-density estimates (together with a result of Rodosskiı̆ [1956]
linking L-function zeros with character sums; see also the recent preprints [Banks
and Makarov 2014; Granville and Soundararajan 2015]) to show that

∑
n≤x χ(n)

is small for most characters χ ; we will not pursue this in detail here.

Remark 1.10. Suppose Conjecture 1.5 holds for some fixed 0 < $ < 1
4 , and

suppose that q is a large prime such that the least prime quadratic residue is at
least8 q1/2−2$+ε. Then, letting χ be the quadratic character of conductor q, one
has χ(n) = λ(n) for all n ≤ q1/2−2$+ε, where λ is the Liouville function. From
the prime number theorem (for n ≤ q1/2−2$+ε) and Theorem 1.6, we conclude that∑

n χ(n)/n� log−A q and
∑

n χ(n) log n/n� 1, so |L ′(1, χ)/L(1, χ)|� logA q
for any fixed A. From standard arguments, this implies that one has a Siegel zero
L(σ, χ) = 0 with 1− σ � log−A q for any fixed A. Thus, if one could rule out
Siegel zeros, one could use Type II estimates to bound the least prime quadratic
residue. If one could improve the log−A q gain in (1-8) to a power saving q−ε, then
Siegel’s theorem could be used to remove the need to consider Siegel zeros; for
instance, this argument recovers the standard bound of q1/4+o(1) for the least prime
quadratic residue coming from the Burgess bound. However, our arguments would
require a similar power saving in the Type II estimates to achieve this, which may
be an overly ambitious hypothesis.

We prove Theorem 1.6 in Section 4. The idea here is to exploit the fact that,
if
∑

n∈[N/2,N ] χ(n) is large, then on an interval [1, x] with x = q1+O(ε), χ(n) will
exhibit large correlation with α∗β(n+ jq) for any j = O(qε), where β := 1[N/2,N ]
and α is the restriction of χ to smooth square-free numbers of magnitude close
to x/N and that are coprime to q. This is because of the multiplicativity and
periodicity properties of χ . An application of Cauchy–Schwarz (i.e., the dispersion
method) then shows that α ∗β(n+ jq) and α ∗β(n+ j ′q) correlate with each other
for some distinct j and j ′, but one can use Type II estimates to prevent this scenario
from occurring.

Remark 1.11. The above argument shares many similarities with the argument of
Burgess [1957]. Both arguments rely heavily on the periodicity and multiplicativity
of the Dirichlet character χ , which allows one to start with a hypothesis that a single
character sum

∑
n≤x χ(n) is large and deduce that χ is biased on many arithmetic

progressions. In the current argument, one exploits the bias of χ on medium-length
arithmetic progressions (of length about q1/2−2$ ) and varying modulus; in contrast,
the argument of Burgess exploits the bias of χ on many (close to q1/2) very short
progressions (of length qε for some small ε) and fixed modulus. Unfortunately, the
author was not able to combine the two methods together to obtain any improvement

8We thank John Friedlander for suggesting this problem.
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on (1-2) without assuming a large portion of the Elliott–Halberstam or Type II
conjectures.

Remark 1.12. The proof of Theorem 1.6 may possibly extend to cover the shifted
character sums

∑
M≤n≤M+N χ(n) appearing in the work of Burgess; however, the

way the argument is currently presented, this would require a shifted version of a
Type II estimate in which the convolution α ∗β is replaced by a shifted convolution.
As such, one can no longer directly quote the results from [Polymath 2014a] to
obtain a result for such shifted sums; however, it is plausible that some modification
of the proof of the Type II estimate in [Polymath 2014a] can still be adapted to this
shifted setting. We do not pursue this matter here (as with the centered sums, we
do not seem to directly improve upon the Burgess bounds at the current level of
technology for equidistribution estimates).

A variant of the argument used to prove Theorem 1.6, which we discuss in
Section 5 below, allows one to use distributional estimates for the higher divisor
functions

τk(n) :=
∑

n1,...,nk :n1···nk=n

1 (1-10)

(or more precisely, from dyadic components of such functions) in place of Type II
estimates to obtain similar results. Roughly speaking, a distributional estimate
on τk at level θ implies a bound of the form (1-8) with 1

2 − 2$ replaced by
max(1−θ, 1/(kθ+1)); thus, for instance, the classical distribution estimate of τ2 at
θ = 2

3 gives (1-8) with$ = 1
28 , slightly improving upon (1-9) though still short of the

Burgess bounds in both cube-free and non-cube-free cases. More recently, a level of
distribution 4

7 has been established (in a restricted averaged sense) for τ3 in [Fouvry
et al. 2014], which (morally at least) also recovers (1-8) with $ = 1

28 . To improve
upon the Burgess bound, one would need τk at level of distribution above 2

3 for
some k ≥ 3 (in the non-cube-free case) or above 3

4 for some k ≥ 4 (in the cube-free
case). Both results seem unfortunately to be out of reach of current methods.

A similar analysis, again discussed in Section 5 below, suggests that one should
be able to improve the exponent 1

2−2$ in (1-8) to 1/k−c for some c> 0 provided
that one can obtain good asymptotics for sums such as∑

n≤x

τk(n)τk(n+ q)

with q = o(x). In particular, controlling such sums for k = 3 would (morally, at
least) improve upon the non-cube-free Burgess bound and for k = 4 would improve
upon the cube-free Burgess bound. Unfortunately, rigorous asymptotics for these
sums have only been established for k = 2.
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Notation. We use the following asymptotic notation. We allow for an asymptotic
parameter (e.g., x or q) to go to infinity; quantities in this paper may depend on
this parameter unless they are explicitly labeled as fixed. We then write X � Y ,
X = O(Y ), or Y � X if one has |X | ≤ CY for some fixed C (in particular, C can
depend on other parameters as long as they are also fixed). We also write X =o(Y ) if
we have |X | ≤ cY for some quantity c that goes to zero as the asymptotic parameter
goes to infinity and write X � Y for X � Y � X .

Sums over p are understood to be over primes, and all other sums are over the
natural numbers N= {1, 2, 3, . . . } unless otherwise indicated.

Given two functions f, g :N→C, their Dirichlet convolution f ∗g is defined by

f ∗ g(n) :=
∑
d|n

f (d)g
(n

d

)
,

where d | n denotes the assertion that d divides n.
Given two natural numbers a and b, we use (a, b) to denote the greatest common

divisor of a and b and a (b) to denote the residue class of integers equal to a
modulo b. Given a natural number r , we use (Z/rZ)× = {a (r) : (a, r) = 1} to
denote the primitive residue classes modulo r .

We use 1E to denote the indicator function of E ; thus, 1E(n) equals 1 when
n ∈ E and equals 0 otherwise. Similarly, if S is a sentence, we write 1S to equal 1
when S is true and 0 otherwise; thus, for instance, 1E(n)= 1n∈E .

2. Vinogradov from Elliott–Halberstam

We now prove Theorem 1.3. We will in fact prove a slightly stronger implication,
in which Conjecture 1.1 is replaced by:

Conjecture 2.1. For any Dirichlet character χ , let nχ be the first natural number
with χ(nχ ) 6= 1. For any fixed ε > 0, we have nχ � qε for any primitive Dirichlet
character χ of prime conductor q.

Clearly, Conjecture 1.1 is the special case of Conjecture 2.1 in which χ is a
quadratic character.

Assume the Elliott–Halberstam conjecture. Suppose for sake of contradiction
that Conjecture 1.1 failed; then we can find a fixed κ > 0 and a sequence q of
primes going to infinity, as well as a character χ of modulus q, such that

nχ > qκ .

Without loss of generality, we may take κ to be small, e.g., κ < 1
2 . We view q as an

asymptotic parameter for the purposes of asymptotic notation and reserve the right
to refine q to subsequences as necessary.
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We will need some basic results from the theory of mean values of multiplicative
functions in order to produce some anomalous distribution for χ(n)3(n) at large
scales. This could be accomplished using the results of Granville and Soundararajan
[2001] (or even the earlier work of Wirsing [1967]), but we do not need the
full strength of their theory here since we will be satisfied with an analysis of
logarithmic densities such as (1/ log x)

∑
n≤x χ(n)/n instead of natural densities

such as (1/x)
∑

n≤x χ(n). As such, we give a self-contained treatment here.
It will be technically convenient to work in the asymptotic limit in which we

extract the mean value after sending q to infinity (this is a luxury available in the
logarithmic density setting that is not easily achievable for natural densities, at least
if one is not willing to use the tools of nonstandard analysis). For any fixed t ≥ 0,
we consider the logarithmic densities

Aq(t) :=
1

log q

∑
n<q t

χ(n)
n
,

Bq(t) :=
1

log q

∑
n<q t

χ(n)3(n)
n

.

From Mertens’ theorem, we have the Lipschitz bounds

|Aq(t)− Aq(s)|, |Bq(t)− Bq(s)| ≤ |t − s| + o(1) (2-1)

for all fixed t, s ≥ 0; also we clearly have Aq(0)= Bq(0)= 0. From the Arzelà–
Ascoli theorem, and refining q to a subsequence as necessary, we may thus find
fixed Lipschitz functions A, B : [0,+∞)→ C such that

Aq(t)= A(t)+ o(1), Bq(t)= B(t)+ o(1) (2-2)

for all fixed t ≥ 0; that is to say that Aq and Bq converge locally uniformly to A
and B, respectively. (The traditional form of the Arzelà–Ascoli theorem allows
one to pass to a subsequence on which one has uniform convergence on [0, n] for
each natural number n, and then a further diagonalization gives locally uniform
convergence on [0,+∞).) From (2-1), we have

|A(t)− A(s)|, |B(t)− B(s)| ≤ |t − s|

for all fixed t, s ≥ 0. By the Rademacher differentiation theorem, we can thus find
Lebesgue-measurable functions a, b : [0,+∞)→ C bounded in magnitude by 1,
defined up to almost-everywhere equivalence, such that

A(t)=
∫ t

0
a(u) du, B(t)=

∫ t

0
b(u) du

for all t ∈ [0,+∞).
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We now establish some bounds on A and B. Since χ has mean zero on intervals
of length q , it is easy to see that

Aq(t)= Aq(t ′)+ o(1)

for all fixed t, t ′ > 1; in fact, one can extend this to t, t ′ > 1
4 using the Burgess

bound [1957], but we will not need to do so here. This implies that a is supported
on [0, 1] (modulo null sets).

Next, since χ(n)= 1 for n ≤ qκ , we have from Mertens’ theorem that

Aq(t), Bq(t)= t + o(1)

for t < κ . Thus, A(t)= B(t)= t for t < κ , and so a(t)= b(t)= 1 for t < κ (again
up to null sets).

Next, we claim that a and b obey the integral equation of Wirsing [1967]:

Lemma 2.2 (Wirsing equation). We have

ta(t)=
∫ t

0
a(u)b(t − u) du

for almost all t > 0.

This equation also holds for means other than logarithmic densities (replacing
a and b by suitable substitutes, such as the functions t 7→ (1/q t)

∑
n≤q t χ(n) and

t 7→ (1/q t)
∑

n≤q t χ(n)3(n), respectively), but the arguments are more complicated,
and one has to work nonasymptotically and admit some o(1) errors; see [Wirsing
1967; Granville and Soundararajan 2001].

Proof. We start with the Dirichlet convolution identity

χ(n) log n = (χ3) ∗χ(n)

and conclude for any fixed t > 0 that

1

log2 q

∑
n≤q t

χ(n) log n
n

=
1

log q

∑
d≤q t

χ(d)3(d)
d

1
log q

∑
m≤q t/d

χ(m)
m

. (2-3)

To estimate this expression, we use a Riemann sum argument. Let J > 0 be a
large fixed natural number. If q( j−1)t/J

≤ d < q j t/J for some 1 ≤ j ≤ J , then
(1/ log q)

∑
m≤q t/d χ(m)/m= A(t− j t/J )+O(1/J )+o(1) (with implied constant

uniform in J ), and so the expression (2-3) may be written (after using Mertens’
theorem to estimate error terms) as( J∑

j=1

A
(

t −
j t
J

)
1

log q

∑
q( j−1)t/J≤d<q j t/J

χ(d)3(d)
d

)
+ O

(
1
J

)
+ o(1).
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One has
1

log q

∑
q( j−1)t/J≤d<q j t/J

χ(d)3(d)
d

= B( j t/J )− B(( j − 1)t/J )+ o(1)

=

∫ j t/J

( j−1)t/J
b(u) du+ o(1),

and so (by the Lipschitz nature of A), the previous expression becomes∫ 1

0
A(t − u)b(u) du+ O

(
1
J

)
+ o(1).

As J can be arbitrarily large, we conclude that

1

log2 q

∑
n≤q t

χ(n) log n
n

=

∫ t

0
A(t − u)b(u) du+ o(1).

On the other hand, from the identity log n/log q = t −
∫ t

0 1n≤qu du and (2-2), we
see (after a Riemann sum argument as before) that

1

log2 q

∑
n≤q t

χ(n) log n
n

= t A(t)−
∫ t

0
A(u) du+ o(1)

and hence

t A(t)−
∫ t

0
A(u) du =

∫ t

0
A(t − u)b(u) du

for all t . Differentiating using the Lebesgue differentiation theorem, we conclude
that

ta(t)=
∫ t

0
a(t − u)b(u) du

almost everywhere, as desired. �

We will use this equation, together with some complex analysis and the previously
established compact support of a, to derive the following consequence:

Corollary 2.3. b is not compactly supported (up to null sets).

Proof. Suppose for contradiction that b is compactly supported (modulo null sets).
Now consider the Fourier–Laplace transforms

La(s) :=
∫
∞

0
a(t)e−ts dt,

Lb(s) :=
∫
∞

0
b(t)e−ts dt;

as a and b are both bounded and compactly supported, the functions La and Lb
are entire and of at most exponential growth and are not identically zero since a
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and b are not identically zero. On the other hand, from Lemma 2.2 and standard
computations, we have

−
d
ds

La = La×Lb. (2-4)

As Lb has no poles, La cannot have any zeros; in particular, log La is entire and
grows at most linearly and must therefore be a linear function so that La is an
exponential function, and hence, by (2-4), Lb is a constant function. But this is
absurd (it contradicts the Riemann–Lebesgue lemma). �

Remark 2.4. The above argument shows that a and b cannot both be compactly
supported while still obeying Lemma 2.2, except in trivial cases. A stronger result
in this regard, in which a and b are allowed to decay exponentially, can be found in
[Granville and Soundararajan 2007]. Note that the argument used to establish this
corollary would have been significantly messier if one had to contend with o(1)
errors in the Wirsing integral equation as one would need quantitative approximate
versions of various basic qualitative facts about entire functions. This is the main
reason why we took the asymptotic limit q→∞ previously. However, Andrew
Granville (private communication) has informed me that such an approximate
version of this observation was obtained in an unpublished work of Granville and
Soundararajan. (See also the recent paper [Granville and Soundararajan 2015] for
some related results.)

From the above corollary and the Lebesgue differentiation theorem, we can find
fixed 1< t1 < t2 such that |B(t2)− B(t1)|> 0, and so∣∣∣∣ 1

log q

∑
q t1<n<q t2

χ(n)3(n)
n

∣∣∣∣� 1

for q sufficiently large. By the pigeonhole principle, we may thus find q t1� x� q t2

such that ∣∣∣∣ ∑
n∈[x/2,x]

χ(n)3(n)
∣∣∣∣� x .

Of course, x will depend on q. Since q = o(x), we may shift n by q, using the
periodicity of χ , to conclude that∣∣∣∣ ∑

n∈[x/2,x]

χ(n)3(n+ q)
∣∣∣∣� x .

On the other hand, as χ has mean zero on intervals of length q, we have∑
n∈[x/2,x]

χ(n)= o(x).



Elliott–Halberstam implies Vinogradov 1019

Thus, if we let
X :=

∑
n∈[x/2,x]

χ(n)(3(n+ q)− 1),

then we have
|X | � x (2-5)

for sufficiently large q .
We now upper-bound X in order to contradict (2-5). The first step is to expand

out χ in terms of Dirichlet convolutions. By Möbius inversion, we can express

χ = 1 ∗ f = 1+ 1 ∗ f̃ ,

where
f̃ (n) := f (n)− 1n=1

and
f = χ ∗µ;

in other words, f is the multiplicative function with

f (p j )= χ(p) j−1(χ(p)− 1)

whenever p is a prime and j ≥ 1, with the convention that 00
= 1. In particular, we

see that f (n) is only nonzero when n is qκ -rough, by which we mean that n has no
prime factor less than or equal to qκ ; this implies furthermore that f̃ (n) vanishes
unless n > qκ and that

| f̃ (n)| � 1 (2-6)

whenever n = O(q O(1)).
Let ν > 0 be a small fixed constant to be chosen later. We expand X using the

identity

χ1[x/2,x] = 1[x/2,x]+ (1[1,xν) ∗ f̃ )1[x/2,x]+ (1[xν ,q−κ x] ∗ f̃ )1[x/2,x], (2-7)

where we have used the fact that f̃ (n) vanishes for n < qκ . This gives the splitting

X = X1+ X2+ X3

where
X1 =

∑
n∈[x/2,x]

(3(n+ q)− 1),

X2 =
∑

n∈[x/2,x]

(1[1,xν) ∗ f̃ )(n)(3(n+ q)− 1),

X3 =
∑

n∈[x/2,x]

(1[xν ,q−κ x] ∗ f̃ )(n)(3(n+ q)− 1).
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From the prime number theorem, we have

X1 = o(x).

For X2, we use the triangle inequality to bound

|X2| ≤
∑
d<xν

∑
x/2d≤m≤x/d

| f̃ (m)|(3(dm+ q)+ 1).

We claim that ∑
x/2d≤m≤x/d

| f̃ (m)|3(dm+ q)�
x

ϕ(d) log x
(2-8)

and ∑
x/2d≤m≤x/d

| f̃ (m)| �
x

d log x
(2-9)

for all d < xν , and hence,
X2� νx

with implied constant independent of ν.
We first prove (2-8). From (2-6), we have | f̃ (m)|3(dm + q) = O(log x), and

this expression vanishes unless m and dm+q are both qκ -rough, except for a small
exceptional contribution (coming from when dm+q is the power of a small prime)
that can easily be seen to be negligible. Removing this exceptional contribution,
we see that we are removing two residue classes modulus p from the interval of m
for each prime p < xκ not dividing d. Using a standard upper-bound sieve (see,
e.g., [Friedlander and Iwaniec 2010]), we conclude that the number of surviving
summands m is O(x/(ϕ(d) log2 x)), and the claim follows. The bound (2-9) is
established similarly, except now we bound | f̃ (m)| = O(1) and we remove just a
single residue class for each prime p, rather than two.

Finally we turn to X3. We expand

X3 =
∑

qκ�r�x1−ν

f̃ (r)
∑

m∈[x/2r ,x/r ]∩[xν ,q−κ x]

(3(rm+ q)− 1).

The contribution when r � qκ or r � x1−ν can be seen to be O(x/log x) using the
Brun–Titchmarsh inequality (and upper-bound sieve bounds on qκ -rough numbers,
as in the estimation of X2). The contribution when r is divisible by q can be treated
similarly (in fact one has the better bound of O(x/q) in this case). So we may write

X3 =
∑

2qκ<r<x1−ν/2;(r,q)=1

f̃ (r)
∑

x/2r≤m≤x/r

(3(rm+ q)− 1)+ o(x)

or equivalently (since q is significantly smaller than x)

X3 =
∑

2qκ<r<x1−ν/2;(r,q)=1

f̃ (r)
∑

n∈[x/2,x]:n=q (r)

(3(n)− 1)+ o(x).
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Invoking the Elliott–Halberstam conjecture and the prime number theorem, we then
have

X3 =
∑

2qκ<r<x1−ν/2;(r,q)=1

f̃ (r)
(

1
ϕ(r)

x
2
−

1
r

x
2

)
+ o(x).

If r contributes to the above sum, then it is the product of O(1) primes of size at
least qκ , and so 1/ϕ(r)= 1/r + O(q−κ/r). From this, we see that

X3 = o(x).

Putting all this together, we conclude that

|X | � (ν+ o(1))x,

contradicting (2-5) for ν small enough. This completes the proof of Theorem 1.3.

Remark 2.5. Our arguments here do not easily give any effective quantitative bound
on n(p) due to our use of asymptotic limits; in particular, the fixed quantities t1
and t2 appearing above were obtained by what is essentially a compactness argument
and thus not obviously effective. It is likely that a more carefully quantitative
version of the above argument (perhaps using the estimates from [Granville and
Soundararajan 2001]) can make this portion of the argument effective, thus allowing
one to derive partial progress on the Vinogradov conjecture from sufficiently strong
partial progress on the Elliott–Halberstam conjecture; however, the dependence of
constants will be far worse than in Theorem 1.6. We will not pursue this question
further here.

Remark 2.6. Suppose the Burgess bound (1-2) was sharp up to epsilon factors,
in the sense that one could find a sequence of primes q going to infinity with
n(q) = q1/4

√
e+o(1). Then by extracting a limit to obtain the functions a and b

as above, we see that a(t) = b(t) = 1 for t ≤ 1/4
√

e and (from the Burgess
character sum bounds) a(t)= 0 for t > 1

4 . As was first observed by Heath-Brown
(see, e.g., Appendix 2 of [Diamond et al. 2006]), this information allows one in
this case to determine the functions a and b completely. Indeed, in the range
1/4
√

e ≤ t < 1/2
√

e, one has from Lemma 2.2 that

ta(t)=
∫ t

0
a(u) du−

∫ t−1/4
√

e

0
(1− b(t − u)) du.

Bounding 1− b(t − u) by 2, we thus have

ta(t)≥
∫ t

0
a(u) du− 2(t − 1/4

√
e)

and thus by Gronwall’s inequality

a(t)≥ 1− 2 log(4
√

et).
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(Indeed, one can verify that the difference f (t) := a(t)−1+2 log(4
√

et) obeys the
inequality t f (t) ≥

∫ t
1/4
√

e f (u) du for 1/4
√

e ≤ t < 1/2
√

e with f (1/4
√

e) = 0.)
Since equality is attained for t = 1

4 (note from Lemma 2.2 that a is continuous), we
must have 1− b(t − u)= 2 whenever t ≤ 1

4 and 0≤ u < t − 1/4
√

e; that is to say
b(t)=−1 for 1/4

√
e< t ≤ 1

4 ; also a(t)= 1−2 log(4
√

et) in this range. For t > 1
4 ,

Lemma 2.2 gives

0=
∫ t

0
a(t − u)b(u) du,

which on differentiation gives the integral equation

b(t)= 2
∫ 1/4

1/4
√

e
b(t − u)

du
u
,

which can then be used to complete the description of b, for instance via Laplace
transforms. For instance, we see that b(t) = 1 for 1

4 < t ≤ 1/2
√

e. One can
compute that b does not vanish near t = 1, in which case the argument above shows
that some improvement upon (1-2) can be made provided one can establish the
Elliott–Halberstam conjecture for some ϑ > 1− 1/4

√
e ≈ 0.8484.

3. From Elliott–Halberstam to the least primitive root

We now prove Theorem 1.4. The key new tool is the following combinatorial
statement. Given a subset A of an additive group G = (G,+) and a natural
number k, define the iterated sumset k A to be the set of all sums a1 + · · · + ak ,
where a1, . . . , ak are elements in A (allowing repetition).

Proposition 3.1 (escape from cosets). Let d,m ≥ 1 be fixed integers. Then there
exists a natural number k with the following property: whenever G is a finite
additive group whose order is the product of at most d primes (counting multiplicity)
and A is a subset of G containing 0 for which one has inclusions of the form

k A ⊂
m⋃

i=1

xi + Hi ( G

for some cosets xi + Hi of subgroups Hi of G, then A is contained in a proper
subgroup of G.

In the contrapositive, Proposition 3.1 asserts that, if A generates G and contains 0,
then the iterated sumsets k A for k large enough cannot be covered by a small number
of cosets of subgroups of G, unless these cosets of subgroups already covered all
of G. Thus, the sumsets k A “escape” all nontrivial unions of boundedly many
cosets. This result can be viewed as a simple abelian variant of the nonabelian
“escape from subvarieties” lemma that first appeared in [Eskin et al. 2005].
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Let us assume this proposition for the moment and see how it implies Theorem 1.4.
Assume the Elliott–Halberstam conjecture, and assume for sake of contradiction
that the conclusion of Theorem 1.4 failed. Carefully negating the quantifiers, this
means that we can find a sequence of primes p going off to infinity, with p− 1
being the product of O(1) primes, and a fixed κ > 0, with the property that the
least primitive root of Z/pZ is at least pκ .

Using a discrete logarithm, we have an isomorphism log : (Z/pZ)×→ G from
the multiplicative group (Z/pZ)× to the additive cyclic group G := Z/(p− 1)Z.
If n is a natural number less than pκ , then by hypothesis n is not a primitive root
of (Z/pZ)×, which implies that

log(n)⊂
⋃

r |p−1:r<p−1

{x ∈ G : r x = 0}( G.

In particular, for any natural number k, if we set A := {log(n) : 1≤ n < pκ/k
}, then

k A ⊂
⋃

r |p−1:r<p−1

{x ∈ G : r x = 0}( G.

Since log(1)= 0, A contains 0. Applying Proposition 3.1 (and using the hypothesis
that p−1 is the product of O(1) primes), we conclude (for k large enough) that A is
contained in a proper subgroup of G. Equivalently, A lies in the kernel of a primitive
character χ of conductor p; thus, χ(n)= 1 for all n < pκ/k . But this contradicts
Conjecture 2.1, which as we saw in the previous section was a consequence of the
Elliott–Halberstam conjecture.

It remains to prove Proposition 3.1. To illustrate the proposition, let us first give
a simple case when G is a direct product H1× H2 and we are given that 0 ∈ A and

2A ⊂ (H1×{0})∪ ({0}× H2).

We claim that this forces either A ⊂ H1×{0} or A ⊂ {0}× H2. Indeed, if neither
of these statements were true, then either there would exist a ∈ A that was outside
both H1×{0} and {0}×H2 or else there would exist a1, a2 ∈ A with a1 ∈ H1×{0},
a2 ∈ {0} × H2, and a1, a2 6= 0. In either case, we could find an element of 2A
(a+ 0 or a1+ a2, respectively) that was outside of (H1×{0})∪ ({0}× H2), giving
the desired contradiction. This simple special case is already sufficient to handle
the case of Theorem 1.4 in which p − 1 is the product of just two primes (that
is, p− 1 = 2q for some prime q) although in this case it turns out that the least
primitive root is also the least quadratic nonresidue (for p large enough, at least),
so the claim in this case is already immediate from Theorem 1.3.

The general case can be obtained by a rather complicated induction on the
“complexity” of the covering set

⋃m
i=1 xi + Hi , as follows. Fix a natural number d .
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Define a configuration to be a tuple

(k,G, A,m, (xi + Hi )
m
i=1), (3-1)

where k and m are natural numbers, G is a finite additive group with |G| the
product of d primes, A is a subset of G containing 0 and not contained in any
proper subgroup of G, and the xi + Hi are distinct cosets in G, such that

k A ⊂
m⋃

i=1

xi + Hi ( G. (3-2)

In particular, this implies that Hi 6= G for each i . Our task is to show that, for any
configuration (3-1), k is bounded by a quantity depending only on d and m.

Suppose for contradiction that this claim failed. Then we can find a sequence of
configurations (3-1) in which m stays constant but k goes to infinity. (The other
data G, A, xi , and Hi in the sequence may vary arbitrarily.)

Now we define a measure of complexity of a configuration (3-1). Given a
subgroup H of G, define the dimension dim H of H to be the quantity such that
the order |H | of H is the product of dim H primes (counting multiplicity). This is
a natural number between 0 and d , and any proper subgroup of G has dimension at
most d − 1.

Given a configuration (3-1), define the complexity of the configuration to be
the tuple (m0, . . . ,md−1), where, for each j = 0, . . . , d − 1, m j is the number of
cosets xi + Hi in the configuration such that Hi has dimension j . Since all the Hi

have dimensions between 0 and d − 1, we see that the m0, . . . ,md−1 are natural
numbers that sum to m. In particular, if m is constant, there are only finitely many
possible complexities. Thus, by passing to a subsequence if necessary, we can
find a sequence of configurations (3-1) whose complexity (m0, . . . ,md−1) stays
constant, but k goes to infinity.

We give the space of tuples (m0, . . . ,md−1) ∈ Nd the lexicographical ordering:
we write (m0, . . . ,md−1) < (n0, . . . , nd−1) if there exists 0≤ i ≤ d − 1 such that
mi < ni and m j = n j for i < j ≤ d − 1. As is well-known, this makes Nd a
well-ordered set.

Call a tuple (m0, . . . ,md−1) good if there exists a sequence of configurations
(3-1) with constant complexity (m0, . . . ,md−1), for which k goes to infinity. We
have seen that there is at least one good tuple; by the well-ordering of Nd , we may
thus find a minimal good tuple (m0, . . . ,md−1).

By rounding k down to an even number and then dividing by two, we may thus
find a sequence of configurations

(2k,G, A,m, (xi + Hi )
m
i=1) (3-3)

of complexity (m0, . . . ,md−1) with k going to infinity.
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Let d∗ be the largest j for which m j is nonzero; thus, 0≤ d∗ ≤ d − 1 (note that
at least one of the m j must be nonzero; otherwise, the first inclusion in (3-2) could
not hold). By relabeling, we may assume without loss of generality that H1 has
dimension d∗ for any configuration (3-3) in the above sequence.

Consider a configuration (3-3) in the above sequence; then

2k A ⊂
m⋃

i=1

xi + Hi .

In particular, for any y ∈ k A, we have

k A ⊂ 2k A∩ (2k A− y)⊂
m⋃

i=1

m⋃
j=1

(xi + Hi )∩ (x j − y+ H j ).

Note that the set (xi + Hi )∩ (x j − y+ H j ) is either empty or a coset of Hi ∩ H j ,
which has dimension at most d∗, with equality if and only if Hi = H j has dimension
d∗. In particular, since all the cosets x j+H j are assumed distinct, we see that, if Hi

has dimension d∗, there is at most one set (xi+Hi )∩(x j−y+H j ) that is a coset of a
d∗-dimensional subgroup. In particular, at most md∗ of the (xi+Hi )∩(x j− y+H j )

arise as cosets of d∗-dimensional subgroups.
Now suppose that we can find y ∈ k A such that

y /∈
⋃

1≤ j≤m:H j=H1

x j − x1+ H1. (3-4)

Then we see that x1+ H1 6= x j − y+ H j for any j = 1, . . . ,m. As such, now at
most md∗ − 1 of the (xi + Hi )∩ (x j − y + H j ) arise as cosets of d∗-dimensional
subgroups. Collecting all the cosets of the form (xi + Hi ) ∩ (x j − y + H j ) and
eliminating duplicates, we obtain a new configuration

(k,G, A,m′, (x ′i + H ′i )
m′
i=1),

which has strictly lower complexity than (m0, . . . ,md−1). By the minimality of
(m0, . . . ,md−1), this situation can only occur for finitely many of the sequence of
configurations (3-3). Thus, after discarding finitely many terms, we may assume
that the situation (3-4) does not occur for any y ∈ k A; that is to say, we have

k A ⊂
⋃

1≤ j≤m:H j=H1

x j − x1+ H1.

This gives rise to a configuration of strictly lower complexity than (m0, . . . ,md−1),
unless (m0, . . . ,md−1)= (0, . . . , 0,m, 0, . . . , 0) (with m in the d∗ position), and
all of the H j are equal to H1. Thus, after discarding finitely many terms in the
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sequence, we may assume that H j = H1 for all j , and so

k A ⊂
m⋃

j=1

x j − x1+ H1.

Intersecting this with the inclusion k A ⊂
⋃m

j=1 x j + H1, we again obtain a con-
figuration of lower complexity, unless the set of cosets {x j + H1 : 1 ≤ j ≤ m} is
invariant with respect to translation by x1; so by discarding another finite number of
terms in the sequence, we may assume that this is the case. By permuting indices,
we can then assume that {x j + H1 : 1≤ j ≤ m} is invariant under translation by xi

for any 1 ≤ i ≤ m. In other words, {x j + H1 : 1 ≤ j ≤ m} is a subgroup of the
quotient group G/H1, so

⋃m
j=1 x j + H1 is a subgroup of G. But this has to be a

proper subgroup by (3-2), and so A is in a proper subgroup of G, a contradiction.

4. Character sums from Type II sums

We now prove Theorem 1.6. Suppose that Conjecture 1.5 holds for a fixed choice
of 0<$ < 1

4 . Let δ > 0 be as in Conjecture 1.5; we may assume that δ is small,
e.g., δ < 1

4 . Let ε > 0 be a sufficiently small fixed quantity depending on δ. If
the claim (1-8) failed, then we could find a sequence of nonprincipal primitive
characters χ with conductor q going to infinity such that∣∣∣∣ ∑

n<q1/2−2$+ε

χ(n)
∣∣∣∣� q1/2−2$+ε log−A q

for some fixed A > 0. From the pigeonhole principle, we have∣∣∣∣ ∑
n∈[N/2,N ]

χ(n)
∣∣∣∣� N log−A q (4-1)

for some N = q1/2−2$+ε log−O(A) q (of course, N will depend on q).
Set x := N 1/(1/2−2$) and M := x/N ; thus,

N = x1/2−2$ , M = x1/2+2$

and
x ≥ q1+2ε. (4-2)

Let D be the set of square-free natural numbers in [(1− log−10A−10 x)M,M] whose
prime factors all lie in [qε, xδ] not dividing q. Note that the number of primes
dividing q may be crudely bounded by O(log q) and are thus a negligible proportion
of the primes in [qε, xδ]. If ε is small enough, then the prime number theorem
gives the cardinality bound

|D| � M log−10A−11 x . (4-3)
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(We allow implied constants to depend on the fixed quantities ε, δ, and A.)
We now set

α(m) := 1D(m)χ(m)

and
β(n) := 1[N/2,N ](n) (4-4)

and consider the quantity ∑
j≤qε

∑
n≤x

χ(n)α ∗β(n+ jq).

Shifting n by jq and using the periodicity of χ , we may write this as∑
j≤qε

∑
jq<n≤x+ jq

χ(n)α ∗β(n).

Since α ∗β is supported on [M N/4,M N ] = [x/4, x], this is equal (by (4-2)) to∑
j≤qε

∑
n

χ(n)α ∗β(n),

which factorizes as ∑
j≤qε

(∑
m

χ(m)α(m)
)(∑

n

χ(n)β(n)
)
,

and hence, by (4-1) and (4-3), we have∣∣∣∣∑
n≤x

χ(n)
∑
j≤qε

α ∗β(n+ jq)
∣∣∣∣� xqε log−11A−11 x .

We now “disperse” the α ∗β factors and eliminate the χ factors by a Cauchy–
Schwarz argument. Let γ denote the quantity

γ :=
1

x/2

∑
n

α ∗β(n), (4-5)

which (since
∑

n β(n)= (1+ o(1))N/2) factorizes as

γ =
1+ o(1)

M

∑
m

α(m). (4-6)

In particular, from (4-3) we have

γ = O(log−10A−11 x). (4-7)

Since χ has mean 0 on intervals of length q , we have∣∣∣∣∑
n≤x

χ(n)
∑
j≤qε

γ 1[x/2,x](n+ jq)
∣∣∣∣� γ qqε = o(xqε log−11A−11 x)
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and thus ∣∣∣∣∑
n≤x

χ(n)
∑
j≤qε

(α ∗β − γ 1[x/2,x])(n+ jq)
∣∣∣∣� xqε log−11A−11 x .

Applying the Cauchy–Schwarz inequality, we conclude that

∑
n≤x

∣∣∣∣∑
j≤qε

(α ∗β − γ 1[x/2,x])(n+ jq)
∣∣∣∣2� xq2ε log−22A−22 x,

which we rearrange (using the support of α ∗β−γ 1[x/2,x] to remove the restriction
n ≤ x) as∣∣∣∣ ∑

j, j ′≤qε

∑
n

(α ∗β − γ 1[x/2,x])(n)(α ∗β − γ 1[x/2,x])(n+ ( j ′− j)q)
∣∣∣∣

� xq2ε log−22A−22 x . (4-8)

From the divisor bound, we have α ∗β = xo(1), and the inner sum∑
n

(α ∗β − γ 1[x/2,x])(n)(α ∗β − γ 1[x/2,x])(n+ ( j ′− j)q)

may then be crudely bounded as x1+o(1). From this, we may remove the diagonal
contribution j = j ′ from (4-8); by symmetry, we may then reduce to the case j ′< j .
By the pigeonhole principle, we thus have∣∣∣∣∑

n

(α ∗β − γ 1[x/2,x])(n)(α ∗β − γ 1[x/2,x])(n− jq)
∣∣∣∣� x log−22A−22 x (4-9)

for some 1≤ j ≤ qε.
Let j be as above. We have∑

n

γ 1[x/2,x](n)× γ 1[x/2,x](n− jq)= γ 2 x
2
+ o(x log−22A−22 x).

Also, the quantity α∗β is supported in [(1− log−10A−10 x)x/2, x]. Standard divisor
sum calculations using (4-3) give∑

n

|α ∗β(n)|1
[(1−O(log−10A−10 x))x/2,x/2](n)= O(x log−20A−21 x) (4-10)

and similarly∑
n

|α ∗β(n)|1
[x,x(1+O(log−10A−10 x))](n)= O(x log−20A−21 x) (4-11)
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while from (4-5) one has ∑
n

α ∗β(n)γ = γ 2 x
2
.

We conclude (using (4-7)) that∑
n

α ∗β(n)× γ 1[x/2,x](n− jq)= γ 2 x
2
+ o(x log−22A−22 x).

A similar argument gives∑
n

γ 1[x/2,x](n)×α ∗β(n− jq)= γ 2 x
2
+ o(x log−22A−22 x).

Inserting these bounds into (4-9), we conclude that, if X denotes the quantity

X :=
∑

n

α ∗β(n)α ∗β(n− jq), (4-12)

then we have ∣∣∣X − γ 2 x
2

∣∣∣� x log−22A−22 x (4-13)

for q large enough.
Now we estimate X using Type II estimates in order to contradict (4-13). Ex-

panding out the convolution α ∗β(n), we have

X =
∑

r

α(r)
∑

N/2≤m≤N

α ∗β(rm− jq)

or equivalently
X =

∑
r

α(r)
∑

r N/2− jq≤n≤r N− jq
n= jq (r)

α ∗β(n).

Note from the support of α that r N/2 − jq = x/2 + O(x log−10A−10 x) and
r N − jq = x+O(x log−10A−10 x) if α(r) is nonzero. A modification of (4-10) and
(4-11) then shows that∑

r N/2+ jq≤n≤r N+ jq
n= jq (r)

α ∗β(n)=
∑

n:n= jq (r)

α ∗β(n)+ O
( x

r
log−20A−21 x

)
,

and thus (by (4-3)),

X =
∑

r

α(r)
∑

n:n= jq (r)

α ∗β(n)+ o(x log−22A−22 x).

From construction, we see that jq is coprime to every prime between xε and xδ

that does not divide q and is in particular coprime to r . From the Type II estimate
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hypothesis, we have

∑
r

|α(r)|
∣∣∣∣ ∑
n:n= jq (r)

α ∗β(n)−
1
ϕ(r)

∑
n:(n,r)=1

α ∗β(n)
∣∣∣∣� x log−A′ x

for any fixed A′ > 0. We conclude that

X =
∑

r

α(r)
ϕ(r)

∑
n:(n,r)=1

α ∗β(n)+ o(x log−22A−22 x).

If α(r) is nonzero, then r is the product of O(1) primes between qε and xδ, and
so 1/ϕ(r) = 1/r + O(q−ε/r); the contribution of the error O(q−ε/r) is then
o(x log−22A−22 x) by (4-7). Also, from standard divisor bound bounds, one has∑

n:p|n

α ∗β(n)�
x
p

for any prime p between qε and xδ, and so∑
n:(n,r) 6=1

α ∗β(n)� q−εx .

We conclude that

X =
∑

r

α(r)
r

∑
n

α ∗β(n)+ o(x log−22A−22 x),

and hence, by (4-5), (4-6), (4-7), and the estimate 1/r=1/M+O((log−10A−10 x)/M)
on the support of α, one has

X = γ 2 x
2
+ o(x log−22A−22 x),

which contradicts (4-13) for x large enough. This concludes the proof of Theorem 1.6.

Remark 4.1. If we have n(q) > xδ , then the sequence α in the above argument is
simply α = 1D. Thus, for the purposes of establishing Vinogradov’s conjecture, it
suffices to consider Type II sums when α is a sequence of the form 1D; there is also
considerable flexibility in how to choose the set D, and other choices than the one
given here are available. For similar reasons, one can relax (1-7) by moving the
absolute values outside of the r summation. This leads to some further numerical
improvements in the 1

68 exponent in [Polymath 2014a] for the purposes of the
applications to Vinogradov’s conjecture; see Section 5 below.
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5. A variant of the method

In this section, we sketch how to modify the arguments in Section 4 to be able to
utilize distributional estimates for (components of) the divisor functions τk .

We start with a setup similar to that in Section 4; namely, (4-1) holds for some N
(and some character χ of conductor q going off to infinity) and some fixed A ≥ 1.
We set x := q1+2ε for some small fixed ε > 0. Let k ≥ 2 be a fixed natural number,
and suppose first that N ≤ x1/k . Then the quantity M := bx/N k

c is at least 1. If we
set α(m) := χ(m)1

[(1−log10A x)M,M](m) and β(n) := 1[N/2,N ](n), a brief calculation
similar to that in the previous section reveals that∣∣∣∣∑

j≤qε

∑
n≤x

χ(n)α ∗β∗k(n+ jq)
∣∣∣∣� xqε log−(10+k)A x,

where β∗k denotes the Dirichlet convolution of k copies of β; one should think
of β∗k here as a component of the divisor function τk = 1∗k defined on (1-10). We
then approximate α ∗β∗k by γψ(n/x), where

ψ(t) :=
∫

t1···tk=t
1[1/2,1](t1) · · · 1[1/2,1](tk)

dt1 · · · dtk−1

t1 · · · tk

is the multiplicative convolution of k copies of 1[1/2,1] and

γ :=
1

M(N/2)k
∑

n

α ∗β∗k(n).

A repetition of the arguments of the previous section (with α ∗β∗(k−1) playing the
role of α) then shows that there is 1≤ j ≤ qε for which one has∣∣∣∣X − γ 2x

∫
R

ψ2(t) dt
∣∣∣∣� x log−(20+2k)A x,

where
X :=

∑
n

α ∗β∗k(n)α ∗β∗k(n− jq).

However, a somewhat tedious calculation (similar to that in the preceding section)
shows that, if one has an Elliott–Halberstam-type distributional estimate for β∗k on
residue classes to moduli up to M N k−1

� q1+2ε/N , one can obtain an asymptotic
of the form

X = γ 2x
∫

R

ψ2(t) dt + o(x log−(20+2k)A x)

giving the desired contradiction. If τk has a level of distribution θ for some
0< θ < 1, this suggests we can establish cancellation in sums such as

∑
n≤N χ(n)

whenever N ≤ q1/k and q1+2ε/N ≤ (N k)θ−ε, which suggests that N can be as
low as q1/(1+kθ)+ε if θ > 1− 1/k. For instance, using the well-known level of
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distribution θ = 2
3 for the divisor function τ2 or for the variant β ∗ β (an old

observation of Linnik and Selberg, arising from the Weil bound on Kloosterman
sums), this argument gives (1-8) with $ = 1

28 (in fact, one can replace log−A q by
a power savings because the Linnik–Selberg argument provides such a savings in
the equidistribution estimate). Using only the elementary bound of Kloosterman
[1927], one gets a level of distribution θ = 4

7 , corresponding to the value $ = 1
60 ,

thus giving a slight improvement over the Pólya–Vinogradov bound (or even the
currently best known consequence of Theorem 1.6) that requires no knowledge of
the Weil conjectures.

If instead N <q1/k , one can repeat the above analysis with the convolution α∗β∗k

replaced by β1 ∗ · · · ∗βk , where βi = 1[Ni/2,Ni ] and N1, . . . , Nk ≥ 1 are quantities
with N = N1 ≥ N2, . . . , Nk and N1 · · · Nk = x . If (4-1) holds for all N1, . . . , Nk ,
then the above analysis again leads to a contradiction if q1+2ε/N ≤ xθ−ε, which
suggests that N can be as low as q1−θ+ε if θ ≤ 1−1/k. By a numerical coincidence,
the best known distribution results (at θ = 4

7 ) on τ3, due to Fouvry, Kowalski, and
Michel, correspond to the same value of $ , namely 1

28 , as the Linnik–Selberg
distribution result discussed above.

In the endpoint case N = x1/k , α becomes trivial and the quantity X discussed
above is analogous to the sum∑

n≤x

τk(n)τk(n+ jq),

with jq being slightly smaller than x . Thus, if one were able to obtain good
asymptotics for such sums (with error terms that were smaller than the main term by
an arbitrary power of the logarithm), one would expect to be able to obtain bounds
such as (1-8) with q1/2−2$+ε replaced by a quantity slightly smaller than q1/k .
Unfortunately, asymptotics for such sums are currently only known for k = 2.
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