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p-adic Hodge-theoretic properties of
étale cohomology with mod p coefficients,
and the cohomology of Shimura varieties

Matthew Emerton and Toby Gee

We prove vanishing results for the cohomology of unitary Shimura varieties with
integral coefficients at arbitrary level, and deduce applications to the weight part
of Serre’s conjecture. In order to do this, we show that the mod p cohomology of
a smooth projective variety with semistable reduction over K, a finite extension
of Qp , embeds into the reduction modulo p of a semistable Galois representation
with Hodge–Tate weights in the expected range (at least after semisimplifying, in
the case of the cohomological degree greater than 1).
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The aim of this paper is to establish vanishing results for the cohomology of
certain unitary similitude groups. For example, we prove the following result:

Theorem A. Let X be a projective U.2; 1/-Shimura variety of some sufficiently
small level, and let F be a canonical local system of Fp-vector spaces on X . Let m
be a maximal ideal of the Hecke algebra acting on the cohomology H �.X;F/, and
suppose that there is a Galois representation �m WGF ! GL3.Fp/ associated to m.
If we suppose further that we have SL3.k/� �m.GF /� F�p SL3.k/ for some finite
extension k=Fp , and that �mjGQp

is 1-regular and irreducible, then the localisations
H i

ét.XQ;F/m vanish in degrees i ¤ 2.
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(See Corollary 3.5.1 and Lemma 4.1.9 below, and see Sections 2 and 3 for the
precise definitions that we are using; for simplicity we work with U.2; 1/-Shimura
varieties1 over a quadratic imaginary field F . Note that “sufficiently small level”
means that the compact open subgroup defining the level is sufficiently small.
We say that a Galois representation is associated to a maximal ideal of a Hecke
algebra if there is the usual relation between Hecke polynomials and characteristic
polynomials of Frobenius elements at unramified places; see Section 3.4 for a
precise definition.)

In fact, we prove a version of this result for U.n� 1; 1/-Shimura varieties under
weaker assumptions on �m; however, in general we can only prove vanishing in
degrees outside of the range Œn=2; .3n� 4/=2�.

We also prove the following result, which makes no explicit reference to a
maximal ideal in the Hecke algebra:

Theorem B. Let X and F be as in the statement of Theorem A. If � is a 3-
dimensional irreducible sub-GF -representation of the étale cohomology group
H 1

ét.XQ;F/, then either every irreducible subquotient of �jGQp
is 1-dimensional, or

else �jGQp
is not 1-regular, or else �.GF / is not generated by its subset of regular

elements.

Note that in neither theorem do we make any assumption on the level of the
Shimura variety at p.

A Galois representation �m as in the statement of Theorem A is known to exist if
m corresponds to a system of Hecke eigenvalues arising from the reduction mod p of
the Hecke eigenvalues attached to some automorphic Hecke eigenform. Furthermore,
recent work of Scholze [2013] (which appeared after the first version of this paper
was written) implies that such a representation exists for any maximal ideal m.

It seems reasonable to believe that any irreducible sub-GF -representation of any
of the étale cohomology groups H i

ét.XQ;F/ for any of the Shimura varieties under
consideration should in fact be a constituent of �m for some maximal ideal m of the
Hecke algebra. However, this doesn’t seem to be known, and relating the “abstract”
GF -representations �m to the “physical” GF -representations appearing on étale
cohomology is one of the problems we have to deal with in proving our results.

Application to Serre-type conjectures. We are able to combine our results with
those of [Emerton et al. 2013] so as to establish cases of the weight part of the Serre-
type conjecture of [Herzig 2009] for U.2; 1/. More precisely, we have the following
result (where the assertion that � is modular means that the corresponding system
of Hecke eigenvalues occurs in the mod p cohomology of some U.2; 1/-Shimura
variety; see Theorem 3.5.6 and Lemma 4.1.9.)

1These Shimura varieties might more properly be called GU.2; 1/-Shimura varieties; see Section 3
for their definition.
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Theorem C. Suppose � WGF !GL3.Fp/ satisfies SL3.k/� �.GF /� F�p SL3.k/
for some finite extension k=Fp, that �jGQp

is irreducible and 1-regular, and that
� is modular of some strongly generic weight. Then the set of generic weights for
which � is modular is exactly the set predicted by the recipe of [Herzig 2009].

Relationship with a mod p analogue of Arthur’s conjecture. Arthur [1989, §9]
made a quite precise conjecture regarding the systems of Hecke eigenvalues that
appear in the L2-automorphic spectrum of any reductive group over a number
field, which has consequences for the nature of the Hecke eigenvalues appearing
in the cohomology of Shimura varieties. For our purposes it suffices to describe
a qualitative version of these consequences: namely, Arthur’s conjecture implies
that if � is a system of Hecke eigenvalues appearing in the degree-i cohomology,
where i is less than the middle dimension, then � is attached (in the sense of, e.g.,
[Buzzard and Gee 2014; Johansson 2013]) to a reducible Galois representation (i.e.,
one which factors through a parabolic subgroup of the L-group).

The fragmentary evidence available suggests that a similar statement will be
true for the mod p cohomology of Shimura varieties. Our Theorems A and B give
further evidence in this direction.

p-adic Hodge theory. In order to prove these theorems, we establish some new
results about the p-adic Hodge-theoretic properties of the étale cohomology of vari-
eties over a number field or p-adic field with coefficients in a field of characteristic p.
In the first section we establish results about the mod p étale cohomology of varieties
over number fields or p-adic fields which, although weaker in their conclusions,
are substantially broader in the scope of their application than previously known
mod p comparison theorems. For example, we prove the following result (see
Theorem 1.4.1 below):

Theorem D. Let K be a finite extension of Qp, and write GK for the abso-
lute Galois group of K. If X is a smooth projective variety over K which has
semistable reduction, and if � is an irreducible subquotient of theGK-representation
H i

ét.XK ; Fp/, then � also embeds as a subquotient of a GK-representation over Fp

which is the reduction modulo the maximal ideal of a GK-invariant Zp-lattice in a
GK-representation over Qp which is semistable with Hodge–Tate weights contained
in the interval Œ�i; 0�.

Both the hypotheses and the conclusions of our theorems are rather precisely
tailored to maximise (as far as we are able) their utility in applications to the analysis
of Galois representations occurring in the cohomology of Shimura varieties, which
we give in the third section.

The remaining two sections of the paper are devoted respectively to using integral
p-adic Hodge theory (Breuil modules with descent data) to establish a result related
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to the reductions of tamely potentially semistable p-adic representations of GQp

(Section 2) and to proving some technical results about group representations
(Section 4). The result of Section 2 is an essential ingredient in the arguments
of Section 3, while the results of Section 4 provide sufficient conditions for the
various representation-theoretic hypotheses appearing in the results of Section 3 to
be satisfied.

Remark on related papers. Very general vanishing theorems for the mod p coho-
mology of Shimura varieties have been proved by Lan and Suh [2013]; however, their
results apply only in situations of good reduction and for coefficients corresponding
to small Serre weights, which makes them unsuitable for the kinds of applications we
have in mind, e.g., to the weight part of Serre-type conjectures. In the ordinary case
there is the work of Mokrane and Tilouine [2002, §9] in the Siegel case and Dimitrov
[2005, §6.4] in the case of Hilbert modular varieties. Finally, in a recent preprint,
Shin [2013] proved a general vanishing result for cohomology outside of middle
degree for the part of the mod p cohomology which is supercuspidal at some prime
l ¤ p, by completely different methods from those of this paper. It seems plausible
that, via the mod p local Langlands correspondence for GLn.Ql/, Shin’s hypothesis
could be interpreted as a condition on the restriction to a decomposition group at
l of the relevant mod p Galois representations, whereas our conditions involve the
restriction to a decomposition group at p, so our results appear to be complementary.

Conventions. For any field K we let GK denote a choice of absolute Galois group
of K.

If K is a finite field, then by a Frobenius element in GK we will always mean
a geometric Frobenius element. We extend this convention in an evident way to
Frobenius elements at primes in Galois groups of number fields, and to Frobenius
elements in Galois groups of local fields.

If K is a local field, then we denote by OK the ring of integers of K, by IK the
inertia subgroup ofGK , by WK the Weil group ofK (the subgroup ofGK consisting
of elements whose reduction modulo IK is an integral power of Frobenius), and by
WDK the Weil–Deligne group of K.

If K is a number field and v is a finite place of K, then we will write Kv for the
completion of K at v and OKv for its ring of integers. We will write OK;.v/ for the
localisation of OK at the prime ideal v.

We will write Zp for the ring of integers in Qp (a fixed algebraic closure of Qp),
and mZp for the maximal ideal of Zp.

We let ! denote the mod p cyclotomic character. We will denote a Teichmüller
lift with a tilde, so that for example z! is the Teichmüller lift of !.

We use the traditional normalisation of Hodge–Tate weights, with respect to
which the cyclotomic character has Hodge–Tate weight 1.
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By a closed geometric point x of a scheme X , we mean a morphism of schemes
x W Spec�!X for a separably closed field �, whose image is a closed point x of
X , and such that the induced embedding �.x/ ,!� (where �.x/ denotes the residue
field of x) identifies � with a separable closure of �.x/. If x is a closed geometric
point of a Noetherian scheme X , then we let OX;x denote the local ring of X at x,
i.e., the stalk, in the étale topology on X , of the structure sheaf of X at x; we let
.OX;x/

^ denote the completion of OX;x , and we write .Xx/^ WD Spf..OX;x/^/, and
refer to .Xx/^ as the formal completion of X along the closed geometric point x.

The symbol G will always denote a group; in Section 3 it will be a certain
algebraic group, and in Section 4 it will be a finite group.

1. p-adic Hodge theoretic properties of mod p cohomology

1.1. Introduction. We now describe in more detail our results on the integral p-
adic Hodge theory of the étale cohomology of projective varieties, which are perhaps
the most novel part of this paper.

It is well-known that integral p-adic Hodge theory is less robust than the corre-
sponding theory with rational coefficients; for example, the comparison theorems
for integral and mod p étale cohomology due to Fontaine and Messing [1987] and
Faltings [1989] involve restrictions both on the degrees of cohomology and the
dimensions of the varieties considered, and they also require that the field K be
absolutely unramified and that the variety under consideration be of good reduction.
More recently, Caruso [2008] has proved an integral comparison theorem in the case
of semistable reduction for possibly ramified fields K, but there are still restrictions:
his result requires that ei < p� 1, where e is the absolute ramification index of K,
and i is the degree of cohomology under consideration.

These restrictions are unfortunate, since mod p and integral p-adic Hodge
theory are among the most powerful local tools available for the analysis of Galois
representations occurring in the mod p étale cohomology of varieties. The premise
that underlies the present work is that frequently in such applications one does
not need a precise comparison theorem relating the mod p étale cohomology
to an analogous structure involving mod p de Rham or crystalline cohomology.
Rather, one often uses the comparison theorem merely to draw much less specific
conclusions, such as that the Galois representations occurring in certain mod p étale
cohomology spaces are in the essential image of the Fontaine–Laffaille functor,
applied to Fontaine–Laffaille modules whose Fontaine–Laffaille numbers lie in
some prescribed range. Our aim is to establish results of the latter type in more
general contexts than they have previously been proved.

The precise direction of our work is informed to a significant extent by the
fairly recent development of a rich internal integral p-adic Hodge theory, by Breuil
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[2000], Kisin [2006], Liu [2008] and others. What we mean here by the word
“internal” is that these developments have been directed not so much at applications
to comparison theorems, but rather at the purely Galois-theoretic problem of giving
a p-adic Hodge-theoretic description of Galois-invariant lattices in crystalline
or semistable Galois representations, and of the mod p Galois representations
that appear in the reductions of such lattices. These tools, especially the theory
of Breuil modules [2000], which provides the desired description of the mod p
representations arising as reductions of such lattices, have proved very useful in
arithmetic applications. Because of the availability of these tools, it has become both
possible and worthwhile to move beyond the Fontaine–Laffaille context in integral
p-adic Hodge theory. While Caruso’s work mentioned above is a significant step in
this direction, an important aspect of the present work will be the consideration of
situations in which the bound ei <p�1, required for the validity of the comparison
theorem of [Caruso 2008], does not hold.

Our goal, then, is to establish in various situations that a Galois representation
appearing in the mod p étale cohomology of a variety can be embedded in the
reduction of a Galois-invariant lattice contained in a crystalline or semistable Galois
representation, with Hodge–Tate weights lying in some specified range (namely,
the range that one would expect given the degree of the cohomology space under
consideration). Since, in arithmetic situations, one frequently has to make a ramified
base change in order to obtain good or semistable reduction, and since the resulting
descent data on the associated Breuil module typically then play an important role
in whatever analysis has to be undertaken, we also prove results in certain cases of
potentially semistable reduction which allow us to gain some control over these
descent data.

The idea underlying our approach is very simple. Suppose that X is a variety
over a p-adic field K. If i is some degree of cohomology, then we have a short
exact sequence

0�!H i
ét.XK ;Zp/=pH

i
ét.XK ;Zp/�!H i

ét.XK ; Fp/�!H iC1
ét .XK ;Zp/Œp��!0;

as well as an isomorphism

Qp˝Zp H
i
ét.XK ;Zp/ �!

� H i
ét.XK ;Qp/:

Thus, if both H i
ét.XK ;Zp/ and H iC1

ét .XK ;Zp/ are torsion-free, then we see that
H i

ét.XK ; Fp/ is the reduction mod p of H i
ét.XK ;Zp/, which is a Galois-invariant

lattice in H i
ét.XK ;Qp/. Furthermore, the usual comparison theorems of rational

p-adic Hodge theory [Faltings 1989; Tsuji 1999] can be applied to conclude that
this latter representation is, e.g., crystalline (if X is proper with good reduction) or
semistable (if X is proper with semistable reduction).
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The obstruction to implementing this idea is that we have no reason to believe in
general that H i

ét.XK ;Zp/ and H iC1
ét .XK ;Zp/ will be torsion-free. To get around

this difficulty, we engage in various dévissages using the weak Lefschetz theorem.
To explain these, first consider the case when X is a projective curve and i D 1. In
this case all the cohomology with Zp-coefficients is certainly torsion-free, and so
H 1

ét.XK ; Fp/ is the reduction of a Galois-invariant lattice in H 1
ét.XK ;Qp/. Now

a simple induction using the weak Lefschetz theorem shows that for any smooth
projective variety X over K there is an embedding

H 1
ét.XK ; Fp/ ,!H 1

ét.CK ; Fp/;

where C is a smooth projective curve. Furthermore, if X has good (respectively
semistable) reduction, we can ensure that the same is true of C . This gives the
desired result in the case of H 1 (ignoring for a moment the problem of obtaining a
refinement dealing with descent data in the potentially semistable case).

For higher degrees of cohomology, a more elaborate dévissage is required. The
key point, again established via the weak Lefschetz theorem, is that if X is smooth
and projective of dimension d , and if Y and Z are sufficiently generic hyperplane
sections of X , then the cohomology of the pair ..X nY /K ; .Z nY /K/, with either
Zp or Fp coefficients, vanishes in degrees other than d (see Section A.3 of the
appendix; note that X nY is affine), so thatHd

ét ..X nY /K ; .ZnY /K ;Zp/ is torsion-
free and is thus a Galois-invariant lattice in Hd

ét ..X nY /K ; .Z nY /K ;Qp/, which
is potentially semistable by [Yamashita 2011], and whose reduction is equal to
Hd

ét ..X nY /K ; .Z nY /K ; Fp/. Such relative cohomology spaces are the essential
ingredient of the basic lemma of [Beilinson 1987], and we learned the idea of using
them as building blocks for the cohomology of varieties from Nori [2002], who
has used the basic lemma as the foundation of his approach to the construction of
motives. Indeed, our present approach to integral p-adic Hodge theory was inspired
by Beilinson’s and Nori’s work.

1.2. Bertini-type theorems. We begin by giving a straightforward generalisation
of some of the results of [Jannsen and Saito 2012], which build on the results
of [Poonen 2004] to prove Bertini-type theorems for varieties with semistable
reduction over a discrete valuation ring. It will be convenient to allow K to
denote either a number field, or a field of characteristic zero that is complete
with respect to a discrete valuation with perfect residue field kK of character-
istic p. We abbreviate these two situations as “the global case” and “the local
case” respectively, and in the former case we will let v denote a place of K
dividing p.

We recall the following definition:
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Definition 1.2.1. Suppose first that we are in the local case. We then say that a
projective OK-scheme X is semistable if it is regular and flat over Spec OK , and if
the special fibre Xs is reduced and is a normal crossings divisor; equivalently, a
finite-type OK-scheme X is semistable if, at each closed geometric point x of Xs ,
there is an isomorphism of complete local rings

.Ox;X/
^
Š ..Osh

K/
^/ŒŒx1; : : : ; xn��=.x1 � � � xm�$K/;

where .Osh
K/
^ is the completion of the strict Henselisation of OK (equivalently, the

completion of the ring of integers in the maximal unramified algebraic extension
of K), the element $K is a uniformiser of .Osh

K/
^, and 1�m� n. We say that X

is strictly semistable if it is semistable and if the special fibre Xs is a strict normal
crossings divisor.

Again in the local case, we say that a smooth projective K-scheme has good
reduction if it admits a smooth projective model over OK , and that it has (strictly)
semistable reduction if it admits an extension to a projective OK-scheme which is
(strictly) semistable in the sense of the preceding definition.

In the global case, we say that a smooth projective K-scheme has good reduction
at v if it admits a smooth projective model over OK;.v/, and that it has (strictly)
semistable reduction at v if it admits a (strictly) semistable projective model over
OK;.v/, i.e., a projective model over OK;.v/ whose base change over OKv is (strictly)
semistable in the sense of the preceding definition.

Remark 1.2.2. Note that our definition of a semistable OK-scheme (putting our-
selves in the local case) includes the requirement that the scheme be regular. This
is the definition that is frequently adopted in the theory of semistable reduction,
and it is well-suited to our intended applications. Recall that, with this definition,
semistability is not preserved under the base change to OL, if L is a finite extension
of K, unless L=K is unramified or the original scheme is in fact smooth over OK ;
see also Remark 1.5.2 below.

Proposition 1.2.3. Let X be a smooth projective variety over K with strictly
semistable (respectively good) reduction (at v, in the global case). Then there
are smooth hypersurface sections Y and Z of X (with respect to an appropriately
chosen embedding of X into some projective space) such that Y and Z intersect
transversely, and all of Y , Z, and Y \Z have strictly semistable (respectively
good) reduction (at v, in the global case).

Proof. We first handle the local case. Choose an extension X of X to an OK-scheme
that is projective and smooth (in the good reduction case) or strictly semistable
(in the strictly semistable reduction case), and fix an embedding of X into some
projective space over OK . By Corollaries 0 and 1 of [Jannsen and Saito 2012]
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(or, perhaps more precisely, by their proofs) we can find a hypersurface section Y of
X such that Y is again either smooth or strictly semistable over OK . We take Y to
be the generic fibre of Y. By Remark 0(ii), together with Lemma 1 and the remark
immediately before Corollary 1, of [Jannsen and Saito 2012], we see that in order
to find Z it is enough to check that, given a finite collection X1; : : : ; Xn of smooth
projective schemes in PN

=kK
, there is a common hypersurface section meeting each

of them transversely. This is an immediate consequence of Theorem 1.3 of [Poonen
2004], taking the set UP there to be the subset of the completion yOP consisting of
the f such that f D 0 is transverse to each Xi at P . (Since this set contains all the
f which do not vanish at P , and in particular contains all the f congruent, modulo
the maximal ideal, to a particular choice of f , it has positive Haar measure.)

We now pass to the global case. Let X be a smooth (in the good reduction case)
or strictly semistable (in the strictly semistable reduction case) projective model
of X over OK;.v/. Let P �

d
denote the projective space (over OK;.v/) of degree-d

hypersurfaces in the ambient projective space containing X. Applying the argument
in the local case to the base change X=OKv

, we see that, for some d � 1, there
is a Kv-valued point of P �

d
corresponding to a hypersurface section of X=OKv

having either smooth or semistable intersection (depending on the case we are in)
with X=OKv

. Furthermore, this point lies in an affinoid open subset of P �
d=Kv

(the
preimage of an open set in the special fibre of P �

d
), all of whose points correspond to

hyperplane sections of X=OKv
with either smooth or strictly semistable intersection.

(See Remark 0(i) and the proofs of Theorems 0 and 1 of [Jannsen and Saito 2012].)
The set of Kv-points of this affinoid open set is a nonempty open subset of P �

d
.Kv/.

Since K is dense in Kv , we see that this intersection also contains a K-point of P �
d

,
which gives the required hypersurface section Y . We find the hypersurface section
Z by applying the same argument. �

1.3. Cohomology in degree 1. Our arguments in degree 1 are rather simpler than
in general degree, so we warm up with this case. (In fact, our result in this case is
slightly stronger than our result in general degree, as we do not need to semisimplify
the representation, so this result is not completely subsumed by our later results in
general degree.) Fix a prime p. LetK denote a field of characteristic zero, complete
with respect to a discrete valuation, with ring of integers OK and residue field k,
assumed to be perfect of characteristic p. Let K denote an algebraic closure of K,
and set GK WD Gal.K=K/.

Theorem 1.3.1. If X is a smooth projective variety over K which has good (resp.
strictly semistable) reduction, then H 1

ét.XK ; Fp/ embeds GK-equivariantly into the
reduction modulo p of a GK-invariant lattice in a crystalline (resp. semistable)
p-adic representation of GK whose Hodge–Tate weights are contained in Œ�1; 0�.
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Proof. We proceed by induction on the dimension d ofX . If d �1 thenH 1
ét.XK ; Fp/

is isomorphic to the reduction modulo p ofH 1
ét.XK ;Zp/, and the latter space (being

torsion-free, by virtue of our assumption on d ) is in turn a lattice in H 1
ét.XK ;Qp/,

which is crystalline or semistable, respectively, with Hodge–Tate weights lying in
Œ�1; 0�, by the main result of [Tsuji 1999].

Suppose now that d > 1. It follows from Corollary 0 (resp. Corollary 1) of
[Jannsen and Saito 2012] that if X has good reduction (resp. strictly semistable
reduction) then we may choose a smooth hypersurface section Y of X defined over
K which has good (resp. strictly semistable) reduction. Our induction hypothesis
applies to show thatH 1

ét.YK ; Fp/ embeds as a subobject of aGK-representation over
Fp which is the reduction modulo p of a GK-invariant lattice in a crystalline (resp.
semistable) p-adic representation of GK whose Hodge–Tate weights are contained
in Œ�1; 0�. On the other hand, the weak Lefschetz theorem with Fp-coefficients
[SGA 43 1973, Exposé XIV, Corollaire 3.3] implies that the natural (restriction) map
H 1

ét.XK ; Fp/!H 1
ét.YK ; Fp/ is an embedding (because 1� d � 1 by assumption).

This completes the proof. �

1.4. Cohomology of arbitrary degree. As always we fix a prime p. The necessary
dévissages in this subsection will be more elaborate than in the previous one, and
so, to maximise the utility of our results for later applications, it will be convenient
to again allow K to denote either a number field or a field of characteristic zero
that is complete with respect to a discrete valuation with perfect residue field of
characteristic p. In applications it will also be useful to have flexibility in the choice
of coefficients in the various cohomology spaces that we consider, and to this end we
fix an algebraic extensionE of Qp , with ring of integers OE and residue field kE . (In
applications, E will typically either be a finite extension of Qp , or else will be Qp .)

We now recall some consequences of the weak Lefschetz theorem. Among other
notions, we will use the étale cohomology of a pair consisting of a variety and a
closed subvariety; a precise definition of this cohomology, and a verification of its
basic properties (such as those recalled in the next paragraph), is included in the
Appendix.

Let X be a smooth projective variety of dimension d over K, and suppose that
Y and Z are two smooth hypersurface sections of X , chosen so that Y \Z is also
smooth. Let A denote either E, OE , or kE . In either the first or last case, the spaces
H i

ét..X nY /K ; .Z nY /K ; A/ and H 2d�i
ét ..X nZ/K ; .Y nZ/K ; A/.d/ are naturally

dual to one another for each integer i . The weak Lefschetz theorem implies that the
former space vanishes when i > d and the latter space vanishes when 2d � i > d ,
i.e., when i < d . Thus, in fact, both spaces vanish unless i D d . It then follows
that both spaces vanish unless i D d in the case when A is taken to be OE as well,
and hence that when i D d both spaces are torsion-free.
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Let K denote an algebraic closure of K, and set GK WD Gal.K=K/. Now let
� W GK ! GLn.kE / be irreducible and continuous. In the global case, we fix a
place v of K lying over p, and a decomposition group Dv �GK for v.

Theorem 1.4.1. If X is a smooth projective variety over K which has strictly
semistable (resp. good) reduction (at v, if we are in the global case), and if �
embeds as a subquotient of H i

ét.XK ; kE /, then � also embeds as a subquotient
of a GK-representation over kE which is the reduction modulo the uniformiser
of a GK-invariant OE -lattice in a GK-representation which is semistable (resp.
crystalline) (at v, in the global case) with Hodge–Tate weights contained in the
interval Œ�i; 0�.

Proof. We proceed by induction on the dimension of X . Suppose initially that we
are in the strictly semistable reduction case. By Proposition 1.2.3, we can and do
choose smooth hypersurface sections Y and Z, having smooth intersection, and
such that Y , Z, and Y \Z all have strictly semistable reduction.

We then consider the long exact sequences

� � � �!H i
YK ;ét.XK ; A/ �!H i

ét.XK ; A/ �!H i
ét..X nY /K ; A/ �! � � � ;

� � � �!H i
.Y\Z/K ;ét.ZK ; A/ �!H i

ét.ZK ; A/ �!H i
ét..Z nY /K ; A/ �! � � � ;

� � ��!H i
ét..XnY /K ; .ZnY /K ; A/�!H i

ét..XnY /K ; A/�!H i
ét..ZnY /K ; A/�!� � � ;

withA taken to be eitherE or kE (see [Milne 1980, Chapter III, Proposition 1.25] for
the first two, which are local cohomology long exact sequences, and the Appendix
for the third, which is the long exact sequence of the pair .X nY;Z nY /). We also
recall (see [SGA 43 1973, Exposé XIV, §3]) that there are canonical isomorphisms

H i�2
ét .YK ; A/.�1/ �!

� H i
YK ;ét.XK ; A/;

H i�2
ét ..Y \Z/K ; A/.�1/ �!

� H i
.Y\Z/K ;ét.ZK ; A/:

When ADE, all the cohomology spaces that appear are potentially semistable
[Yamashita 2011]. Since H i

ét.XK ; E/, H
i
ét.YK ; E/, and H i

ét.ZK ; E/ are semi-
stable with Hodge–Tate weights lying in Œ�i; 0�, we see that H i

ét..X n Y /K ; E/,
H i

ét..Z nY /K ; E/, and H i
ét..X nY /K ; .Z nY /K ; E/ are semistable, with Hodge–

Tate weights lying in Œ�i; 0�.
Now taking A D kE , we see that, since � is irreducible, it appears as a sub-

quotient of H i�2
ét .YK ; kE /.�1/, of H i

ét.ZK ; kE /, of H i�1.Y \ Z/.�1/, or of
H i

ét..X nY /K ; .ZnY /K ; kE /. In the first three cases, the theorem follows by induc-
tion on the dimension. In the final case, the conclusion follows from the vanishing
theorem noted above; namely,H i

ét..XnY /K ; .ZnY /K ; E/ is the desired semistable
representation, with invariant latticeH i

ét..XnY /K ; .ZnY /K ;OE /, whose reduction
H i

ét..X nY /K ; .Z nY /K ; kE / contains �.



1046 Matthew Emerton and Toby Gee

Finally, suppose we are in the good reduction case. Again, by Proposition 1.2.3,
we can and do choose smooth hypersurface sections Y and Z, having smooth
intersection, such that Y , Z, and Y \Z all have good reduction. Applying the
same argument as in the previous paragraph, we see by induction on the dimension
of X that it is enough to check that H i

ét..X n Y /K ; .Z n Y /K ; E/ is crystalline,
but this follows immediately from Theorem 1.2 of [Yamashita 2011]. (Note that
if in the notation of that work we take D1 D Z and D2 D Y , then by (A.1.2)
below we see that H i

ét..X n Y /K ; .Z n Y /K ; E/ appears on the left side of the
Hyodo–Kato isomorphism in the statement of Theorem 1.2 of [Yamashita 2011],
and since we have already shown that H i

ét..X nY /K ; .Z nY /K ; E/ is semistable,
it is enough to show that the monodromy operator N vanishes on the right side
of the Hyodo–Kato isomorphism. This follows easily from the definition of this
operator as a boundary map, as all objects concerned arise from base change from
objects with trivial log structures.) �

1.5. Equivariant versions. In practice, we will need equivariant analogues of the
preceding results. As in the preceding section, we letK denote either a number field
(“the global case”) or a field of characteristic zero that is complete with respect to
a discrete valuation with perfect residue field of characteristic p (“the local case”).
We letK denote an algebraic closure ofK, and set GK WDGal.K=K/. In the global
case, we fix a place v ofK lying over p, and a decomposition groupDv �GK for v.

We now put ourselves in the following (somewhat elaborate) situation, which
we call a tamely ramified semistable context, or a tame semistable context for short.

We suppose that X0 and X1 are smooth projective varieties over K, that G is
a finite group which acts on X1, and that � WX1!X0 is a finite étale morphism
which intertwines the givenG-action onX1 with the trivialG-action onX0, making
X1 an étale G-torsor over X0.

We suppose further that X0 admits a semistable projective model X0 over OK
(in the local case) or over OK;.v/ (in the global case). We also suppose that there
is a finite Galois extension L of K, and (in the global case) a prime w of L lying
over v, such that .X1/=L admits a semistable projective model X1 over OL (in the
local case) or over OL;.w/ (in the global case) to which the G-action extends, such
that � extends to a morphism X1! .X0/=OL which intertwines the G-action on
its source with the trivial G-action on its target, and such that the action of the
(opposite group of) the inertia group I.L=K/op (or I.Lw=Kv/op in the global case)
on .X1/=L extends to an action on X1.2

2Note that the tameness condition that we are going to require below ensures that L=K is in fact
tamely ramified, and hence that I.L=K/ is abelian. Thus passing to the opposite group is not actually
necessary here when passing from the action on rings to the action on their Specs, but we will keep
the superscript op in the notation for the sake of conceptual clarity.
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Finally (and most importantly), we assume that the composite morphism

X1! .X0/=OL ! X0 (1.5.1)

(the first being the extension of � , and the second being the natural map) is tamely
ramified along the special fibre .X0/s , in the sense of [Grothendieck and Murre
1971, Definition 2.2.2].

In fact, in our applications we will consider the case that X0 is furthermore strictly
semistable, in which case we will say that we are in a tame strictly semistable context.

Remark 1.5.2. The notion of a tame semistable context is somewhat rigid, as we
will see in the following lemma, and would perhaps not be of much interest if it did
not occur naturally in the Shimura variety context (as we will see Section 3.1). As
one example of this rigidity, note that if GD 1, i.e., if X0 and X1 coincide, then the
only way to achieve a tame semistable context is if L=K is unramified, or if X0 is
smooth over OK . (Indeed, since a tamely ramified morphism is finite, and since the
base change X0=OL over the semistable OK-scheme X0 is normal, we see that if X0
and X1 coincide then the morphism X1! X0=OL is necessarily an isomorphism.
This implies that the semistable OK-scheme X0 has a semistable base change over
OL, which, as we noted in Remark 1.2.2, is possible only if L=K is unramified
or X0 is smooth over OK . Another point of view on this case is as follows: if X0
is semistable but not smooth, then in order to construct a semistable model X1 of
X0=OL , we must perform some nontrivial blow-ups, and the resulting morphism
X1! X0 is not finite, and in particular not tamely ramified.)

The following lemma gives a more concrete interpretation of the stipulation that
(1.5.1) be tamely ramified along .X0/s .

Lemma 1.5.3. In the above setting, the morphism (1.5.1) is tamely ramified along
.X0/s if and only if the following conditions hold:

(1) L (resp. Lw in the global case) is tamely ramified over K (resp. Kv in the
global case), of ramification degree e, say.

(2) For each closed geometric point x1 of the special fibre .X1/s , with image x0
in .X0/s , and for some choice of isomorphism

.Ox0;X0/
^
Š .Osh

K/
^ŒŒx1; : : : ; xn��=.x1 � � � xm�$K/; (1.5.4)

where $K is a uniformiser of .Osh
K/
^ and 1�m� n, there is a corresponding

isomorphism

.Ox1;X1/
^
Š .Osh

L /
^ŒŒy1; : : : ; yn��=.y1 � � �ym�$L/;

where $L is a uniformiser of .Osh
L /
^, such that the induced morphism

..X1/x1/
^
! ..X0/x0/

^
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is defined by the formula xj D yej for 1� j �m and xj D yj for m< j � n.

Furthermore, if these equivalent conditions hold, then condition (2) holds for every
choice of isomorphism (1.5.4).

Proof. We first note that if we are in the global case, then, relabelling Kv as K and
Lw as L, we may reduce ourselves to proving the lemma in the local case. Thus
we assume that we in the local case from now on.

If conditions (1) and (2) (for some choice of isomorphism (1.5.4)) hold, then
the morphism (1.5.1) is certainly tamely ramified along .X0/s . (This amounts to
the claim that we can verify tame ramification by passing to formal completions of
closed geometric points, which is indeed the case, as follows from [Grothendieck
and Murre 1971, Corollary 4.1.5].)

Suppose conversely that (1.5.1) is tamely ramified along .X0/s . Since this
morphism factors through the natural morphism .X0/=OL ! X0, it follows from
[Grothendieck and Murre 1971, Lemma 2.2.5] that this latter morphism is tamely
ramified, and hence (e.g., by Proposition 2.2.9 of that reference, although our
particular situation is much simpler than the general case of faithfully flat descent
for tamely ramified covers considered in that proposition) that Spec OL! Spec OK
is tamely ramified, i.e., that L is tamely ramified over K, of some ramification
degree e. Thus condition (1) holds.

Now choose a closed geometric point x1 of .X1/s lying over the closed geo-
metric point x0 of .X0/s , and fix an isomorphism of the form (1.5.4). Since
X1! X0 is tamely ramified along the divisor $K D 0 of X0, Abhyankar’s lemma
[SGA 1 1971, Exposé XIII, Corollaire 5.6] (see also [Grothendieck and Murre
1971, Theorem 2.3.2] for a concise statement) implies that we may find regular
elements faj gjD1;:::;k of .Osh

K/
^ŒŒx1; : : : ; xn��=.x1 � � � xm�$K/ such that a1 � � � ak

generates the ideal .$K/ of .Osh
K/
^ŒŒx1; : : : ; xn��=.x1 � � � xm � $K/, exponents

e1; : : : ; ek all coprime to p, and a subgroup H � �e1 � � � � ��ek , such that the
.Osh
K/
^ŒŒx1; : : : ; xn��=.x1 � � � xm�$K/-algebra .Ox1;X1/

^ is isomorphic to�
.Osh
K/
^ŒŒx1; : : : ; xn��ŒT1; : : : ; Tk�=.x1 � � � xm�$K ; T

e1
1 � a1; : : : ; T

ek
k
� ak/

�H
:

(Here �e1 � � � � ��ek , and hence H , acts on

.Osh
K/
^ŒŒx1; : : : ; xn��ŒT1; : : : ; Tk�=.x1 � � � xm�$K ; T

e1
1 � a1; : : : ; T

ek
k
� ak/

in the obvious manner: namely, an element .�1; : : : ; �k/ acts on Tj via multiplication
by �j .)

Since each ej is prime to p and .Osh
K/
^ŒŒx1; : : : ; xn��=.x1 � � � xm�$K/ is strictly

Henselian, any unit in this ring has an ej -th root, and thus we are free to multiply
any of the aj by a unit. Consequently, we may assume that in fact a1 � � � akD$KD
x1 � � � xm, and hence (again taking advantage of our freedom to modify the aj by
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units) that f1; : : : ; mg is partitioned into k sets J1; : : : ; Jk , such that aj D
Q
i2Jj

xi .
Now if we extract the ej -th roots of each xi for i 2 Jj , the resulting extension of
.Osh
K/
^ŒŒx1; : : : ; xn��=.x1 � � � xm�$K/ contains

.Osh
K/
^ŒŒx1; : : : ; xn��ŒT1; : : : ; Tk�=.x1 � � � xm�$K ; T

e1
1 � a1; : : : ; T

ek
k
� ak/I

thus it is no loss of generality to assume that k Dm and that aj D xj , and so we
conclude that .Ox1;X1/

^ is isomorphic, as an .Osh
K/
^ŒŒx1; : : : ; xn��=.x1 � � � xm�$K/-

algebra, to�
.Osh
K/
^ŒŒx1; : : : ; xn��ŒT1; : : : ; Tm�=.x1 � � � xm�$K ; T

e1
1 � x1; : : : ; T

em
m � xm/

�H
;

for some subgroup H � �e1 � � � � ��em .
Let Ij denote the subgroup 1� � � � ��ej � � � � � 1 of �e1 � � � � ��em ; this is the

inertia group of the divisor .xj / with respect to the cover

Spec..Osh
K/
^/ŒŒx1; : : : ; xn��ŒT1; : : : ; Tm�=.x1 � � � xm�$K ; T

e1
1 �x1; : : : ; T

em
m �xm/

! Spec..Osh
K/
^/ŒŒx1; : : : ; xn��=.x1 � � � xm�$K/:

If we write Hj DH \ Ij , then H 0 WDH1 � � � � �Hm is a subgroup of H , and
the cover

Spec
�
.Osh
K/
^ŒŒx1; : : : ;xn��ŒT1; : : : ;Tm�=.x1: : :xm�$K ;T

e1
1 �x1; : : : ;T

em
m �xm/

�H 0
!Spec

�
.Osh
K/
^ŒŒx1;: : : ;xn��ŒT1;: : : ;Tm�=.x1: : :xm�$K ;T

e1
1 �x1;: : : ;T

em
m �xm/

�H
is unramified in codimension 1. Since X1 is regular, being semistable over OL, so
is the target of this map (since we recall that this target is isomorphic to ..X1/x1/

^).
The purity of the branch locus then implies that this cover is étale, and hence is an
isomorphism (since its target is strictly Henselian). Consequently H DH 0.

If we write

Hj D 1� � � � ��e0
j
� � � � � 1� 1� � � � ��ej � � � � � 1D Ij ;

and set dj D ej =e0j and Sj D T
e0
j

j , then we conclude that

.Ox1;X1/
^

Š
�
.Osh
K/
^ŒŒx1; : : : ;xn��ŒT1; : : : ;Tm�=.x1 � � �xm�$K ;T

e1
1 �x1; : : : ;T

em
m �xm/

�H 0
Š .Osh

K/
^ŒŒx1; : : : ;xn��ŒS1; : : : ;Sm�=.x1 � � �xm�$K ;S

d1
1 �x1; : : : ;S

dm
m �xm/:

Now X1 is an OL-scheme with reduced special fibre (again because it is semistable
over OL). Since .Ox1;X1/

^ is strictly Henselian, it contains .Osh
L /
^, and we may

choose a uniformiser $L of this ring such that $e
L D$K . Looking at the above

description of .Ox1;X1/
^, and taking into account that its reduction modulo $L
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must be reduced, we see that this special fibre must be the zero locus of the
element S1 � � �Sm, hence that S1 � � �Sm D u$L for some unit u, and thus that
.S1 � � �Sm/

e D ue$K . We conclude that d1 D � � � D dm D e and that ue D 1, and
hence, replacing $L by u$L, we find that S1 � � �Sm D$L. This shows that (2)
holds (for our given choice of isomorphism (1.5.4)). �

Remark 1.5.5. Note that we could avoid the appeal to the general theory of tame
ramification (in particular, to Abhyankar’s lemma) by just directly stipulating in
our context that conditions (1) and (2) of Lemma 1.5.3 hold; indeed, in the proof
of Theorem 1.5.15 below, we will work directly with these conditions, and in our
applications to Shimura varieties we will also see directly that these conditions
hold. Nevertheless, we have included Lemma 1.5.3 as an assurance to ourselves
(and perhaps to the reader) that these conditions are somewhat natural.

Lemma 1.5.6. In a tame strictly semistable context as above, the OL-scheme X1 is
also strictly semistable.

Proof. Since X1 is semistable by assumption, it is enough to show that the compo-
nents of the special fibre .X1/s are regular. Suppose that D is a nonregular compo-
nent of .X1/s , and let x1 be a closed geometric point of D whose local ring on D is
not regular. If we let x0 denote the image of x1 in .X0/s , then Lemma 1.5.3(2) shows
that we may find isomorphisms .Ox1;.X1/s /

^ Š OK=$K ŒŒy1; : : : ; yn��=.y1 � � �ym/

and .Ox0;.X0/s /
^ Š OK=$K ŒŒx1; : : : ; xn��=.x1 � � � xm/, with 1 � m � n, such that

the morphism .Ox1;.X1/s /
^ ! .Ox0;.X0/s /

^ is given by xj D yej for 1 � j � m
and xj D yj for m < j � n. Since by assumption x1 is not a regular point of
D, we find that necessarily m � 2, and that (possibly after permuting indices)
there is an isomorphism .Ox1;D/

^ Š OK=$K ŒŒy1; : : : ; yn��=.y1 � � �ym0/, where
2�m0 �m. If we let D0 denote the image of D in .X0/s , we conclude that there
is an isomorphism .Ox0;D0/

^ Š OK=$K ŒŒx1; : : : ; xn��=.x1 � � � xm0/, and thus that
D0 is not regular. Hence X0 is not strictly semistable, a contradiction. �

We now suppose that we are in a tame semistable context, as described above,
and suppose for the moment that we are in the local case. Then we have an action
of I.L=K/op �G on the special fibre .X1/s . Let D be an irreducible component
of the special fibre of .X0/s , and let zD denote its preimage in .X1/s , so that zD is
an I.L=K/op �G-invariant union of irreducible components of .X1/s .

Lemma 1.5.7. If G is abelian, then there is a homomorphism  W I.L=K/! G

such that the action of I.L=K/op on zD is given by composing the action of G with
 ; i.e., if i 2 I.L=K/, then the action of i on zD coincides with the action of  .i/.

We first prove a general lemma:
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Lemma 1.5.8. Let S be a connected Noetherian scheme, let G and I be finite
groups, and let f W T ! S be a finite étale morphism with the property that I op�G

acts on T over S in such a way that T becomes a G-torsor over S . If G is abelian,
then there exists a morphism  W I !G such that the action of I on T is given by
composing the action of G on T with the morphism  .

Proof. For clarity, we will not impose the assumption thatG is abelian until required.
If we fix a geometric point s of S , then the theory of the étale fundamental group

[SGA 1 1971, Exposé V, Théorème 4.1] shows that passing to the fibre over s gives
an equivalence of categories between the category of finite étale covers of S and
the category of (discrete) finite sets with a continuous action of �1.S; s/. In this
way, T is classified by an object P of this latter category equipped with an action
of I op �G, with respect to which the G-action makes P a principal homogeneous
G-set.

If we fix a base point p 2 P , then we may identify P with G, thought of as
a principal homogeneous G-set via left multiplication. As the automorphisms of
G as a principal homogeneous G-set are naturally identified with Gop acting by
right multiplication, we obtain a homomorphism  p W I

op!Gop, or equivalently a
homomorphism  p W I !G, describing the action of I op on P . If we replace p by
g �p (for some g 2G), then one finds that  gpD g pg�1. Thus, if we now assume
furthermore that G is abelian, then  p D  gp, and so it is reasonable in this case
to write simply  for this homomorphism, which is well-defined independently
of the choice of base point for P . Furthermore, when G is abelian, left and right
multiplication by an element g 2G coincide, and so the action of I op on P is given
by the formula i �p D  .i/ �p for all p 2 P . Since the automorphisms of T over
S induced by i and  .i/ coincide on P , they in fact coincide on all of T . �

Proof of Lemma 1.5.7. The morphism X1! .X0/=OL is étale on generic fibres, and
the explicit local formulas for this morphism provided by Lemma 1.5.3 show that
it is in fact étale over an open subset U0 of .X0/=OL whose intersection with the
special fibre ..X0/=OL/s is Zariski dense. Replacing U0 with the intersection of all
of its I.L=K/op-translates, we may furthermore assume that U0 is invariant under
the action of I.L=K/op on .X0/=OL .

If we let U1 denote the preimage of U0 in X1, then U1 is invariant under the
I.L=K/�G-action on X1, and the morphism U1!U0 is a finite étale cover, for
which the corresponding map U1! U0 on generic fibres realises U1 as a G-torsor
over U0. It follows that the G-action on U1 realises U1 as an étale G-torsor over
U0, and hence, passing to special fibres, that .U1/s is an étale G-torsor over .U0/s .

Now the induced I.L=K/op-action on .U0/s is trivial, and so I.L=K/op acts on
.U1/s as a group of automorphisms of the G-torsor .U1/s over .U0/s . If D0 WD
D\ .U0/s , then D0 is an irreducible component of .U0/s , and zD0 WD zD\ .U1/s
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is the restriction of .U1/s to D0. Thus zD0! zD is again an étale G-torsor, with
an action of I.L=K/op via automorphisms. Lemma 1.5.8 then shows that there
is a homomorphism  W I.L=K/op ! Gop, or equivalently a homomorphism
 W I.L=K/!G, such that the action of I.L=K/op on the points of zD0 is given
by composing the action of G with the homomorphism  . Since zD is equal to the
Zariski closure of zD0 in .X1/s , the claim of the lemma follows. �

Lemma 1.5.9. Suppose that we are in a tame strictly semistable context. If g 2
I.L=K/�G and D is a component of .X1/s , then D and gD either coincide or
are disjoint.

Proof. The images ofD and gD in .X0/s coincide, and it follows from Lemma 1.5.3
that two distinct components of .X1/s that have nonempty intersection must have
distinct images in .X0/s . �

If we now suppose that we are in the global case, then the discussion applies with
L=K everywhere replaced by Lw=Kv , and in particular for each component D we
may define a character  W I.Lw=Kv/! G describing the action of I.Lw=Kv/
on D.

Our next result describes how our tame semistable context behaves upon passage
to a semistable hypersurface section of X0. In its statement we assume for simplicity
that we are in the local case.

Proposition 1.5.10. Suppose that we are in the tamely ramified semistable context
described above, and let Y0 be a regular hypersurface section of X0 such that
the union of Y0 and .X0/s forms a divisor with normal crossings on X0. Let Y0
denote the generic fibre of Y0, let Y1 denote the preimage of Y0 under the morphism
� WX1!X0, and let Y1 be the preimage of Y0 under (1.5.1) (so that .Y1/=L is the
generic fibre of the OL-scheme Y1). Then:

(1) The complement of Y1 in X1 is affine.

(2) The generic fibre Y0 of Y0 is smooth over K, the morphism Y1 ! Y0 is an
étale G-torsor (so in particular Y1 is also smooth over K), Y0 is a semistable
model of Y0 over OK , Y1 is a semistable model for .Y1/=L over OL, and the
morphism Y1 ! Y0 is tamely ramified; consequently Y1 ! Y0 is again a
tamely ramified semistable context.

(3) Suppose that G is abelian. If D0 is an irreducible component of .Y1/s , con-
tained in an irreducible component D of .X1/s , then the homomorphism
 W I.L=K/!G, which describes the action of I.L=K/ onD, also describes
the action of I.L=K/ on D0.
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Proof. Since Y0 is a hypersurface section of X0, its generic fibre Y0 is a hypersurface
section of X0. Thus its complement is affine. Since � is a finite morphism by
assumption, the complement of Y1 in X1 is again affine. Since Y0 is a regular
projectiveK-scheme (being the generic fibre of Y0, which is regular by assumption),
it is in fact smooth over K. By definition, Y1 is the preimage of Y0 under the
morphism X1!X0, which is an étale G-torsor by assumption. Thus Y1! Y0 is
indeed an étale G-torsor (and so Y1 is also smooth over K).

Let x0 denote a closed geometric point of the special fibre .Y0/s . Since�
..X0/x0/

^
�
s
[ ..Y0/x0/

^ forms a divisor with normal crossings, since each com-
ponent of

�
..X0/x0/

^
�
s

is regular, and since Y0 is regular by assumption, it follows
from [Grothendieck and Murre 1971, Lemma 1.8.4] that

�
..X0/x0/

^
�
s
[..Y0/x0/

^

is in fact a divisor with strictly normal crossings in ..X0/x0/
^, and hence the local

equation ` of ..Y0/x0/
^, together with the elements x1; : : : ; xm that cut out the

irreducible components of
�
..X0/x0/

^
�
s
, form part of a regular system of parameters

for .Ox0;X0/
^. Thus we may choose a model of the form (1.5.4) for ..X0/x0/

^ for
which m< n and in which ` is equal to the element xn, i.e., in which ..Y0/x0/

^ is
the zero locus of the element xn.

We now choose a closed geometric point x1 of .X1/s lying over x0, as well as a
model for the tamely ramified morphism ..X1/x1/

^! ..X0/x0/
^ as in part (2) of

Lemma 1.5.3. Thus this morphism has the form

Spec..Osh
L /
^/ŒŒy1; : : : ; yn��=.y1 � � �ym�$L/

! Spec..Osh
K/
^/ŒŒx1; : : : ; xn��=.x1 � � � xm�$K/;

with xj D yej for 1� j �m and xj D yj for m< j � n. In particular, we see that
xn D yn, and thus we see that the induced morphism

..Y1/x1/
^
! ..Y0/x0/

^ (1.5.11)

can be written as

Spec..Osh
L /
^/ŒŒy1; : : : ; yn�1��=.y1 : : : ym�$L/

! Spec..Osh
L /
^/ŒŒx1; : : : ; xn�1��=.x1 : : : xm�$K/: (1.5.12)

Thus we see that Y0 and Y1 are indeed semistable models of their generic fibres
(over OK and OL respectively), and that the morphism Y1!Y0 is tamely ramified.
This completes the verification of (2). The claim of (3) follows from the fact that
the action of I.L=K/op �G on .Y1/s is the restriction of the corresponding action
on .X1/s , together with the fact that any component of .Y1/s is contained in a
component of .X1/s . �

We now suppose that E is an algebraic extension of Qp containing K0. Recall
that if � WGK ! GLn.E/ is a potentially semistable representation, then we may
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attach a Weil–Deligne representation WD.�/ to � by first passing to the potentially
semistable Dieudonné module Dpst.�/ of �, which is a module over E ˝Qp K0,
then fixing an embedding K0 ,! E, and hence a projection pr W E˝Qp K0! E,
and, finally, forming WD.�/ WD E ˝E˝QpK0;pr Dpst. Although WD.�/ depends
on the choice of the embedding K0 ,! E, up to isomorphism it is independent
of this choice, as the Frobenius � on Dpst.�/ provides isomorphisms between the
different choices. (See for example [Conrad et al. 1999, Appendix B] and [Taylor
2004, p. 78–79] for discussions of this construction and its properties.)

In the tame strictly semistable case, the following result will allow us to describe
the inertial part of the Weil–Deligne representation associated to the p-adic étale
cohomology of X1, or of a pair .X1; Y1/ that arises in the context of the preceding
proposition. Before stating the result we introduce some additional notation, and
an additional assumption.

Assume that G is abelian, and let J denote the set of I.L=K/�G-orbits on the
set of irreducible components of .X1/s , and let Dj (for j 2 J ) denote the union
of the components lying in the orbit labelled by j . Let  j W I.L=K/!G be the
homomorphism provided by Lemma 1.5.7, describing the action of I.L=K/ on the
points of Dj .

Proposition 1.5.13. Suppose that we are in a tame strictly semistable context
as above. Either let W denote the Weil–Deligne representation associated to
the potentially semistable GK-representation H i

ét..X1/=K ; E/, or else suppose
that we are in the context of Proposition 1.5.10, and let W denote the Weil–
Deligne representation associated to the potentially semistable GK-representation
H i

ét..X1/=K ; .Y1/=K/; E/ (here i is some given degree of cohomology); in either
case, W is a representation of the product WDK �G. Assume furthermore that G
is abelian.

Then, if , as in the above discussion, zJ denotes the set of I.L=K/�G-orbits
of irreducible components of .X1/s , we may decompose W as a direct sum W DL
Qj2 zJ

W Qj , such that on W Qj the action of the inertia group in WK is obtained by
composing the G-action on W Qj with the homomorphism IK ! I.L=K/ ��!

 Qj

G.

Proof. Since the action of the inertia subgroup of WK on W factors through a
finite group, and representations of a finite group over a field of characteristic
zero are semisimple, the claimed property of W is stable under the formation of
subobjects, quotients, and extensions (in the category of WK �G-representations).
A consideration of the long exact sequence of cohomology associated to the pair
.X1; Y1/ (see the Appendix) then reduces the claim for the cohomology of the pair
to the claim for the cohomology ofX1 and Y1 individually. Since Proposition 1.5.10
shows that the strictly semistable model Y1 of .Y1/=L behaves in an identical manner
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to the strictly semistable model of X1 of .X1/=L, it in fact suffices to consider the
case of X1.

Thus we now restrict our attention to the WK-representation W underlying
the potentially semistable Dieudonné module associated to H i

ét..X1/=K ; E/. By
[Tsuji 1999], this Dieudonné module is naturally identified with the log-crystalline
cohomologyH i ..X1/

�
s =W.k/

�/˝W.k/E of the special fibre .X1/s with its natural
log-structure. Lemma 1.5.9 shows that if an intersection of distinct components of
the special fibre .X1/s is nonempty, then the various components appearing must lie
in mutually distinct orbits of I.L=K/�G acting on the set of components. Recalling
that J denotes the indexing set for the collection fDj gj2J of I.L=K/�G-orbits
of components of .X1/s , this log-crystalline cohomology may be computed by the
following spectral sequence of [Mokrane 1993]:

E
�m;iCm
1

D

M
l�maxf0;�mg

fj1;:::;j2lCmC1g�J

H i�2l�m
cris .Dj1 \ � � � \Dj2lCmC1=W.k//˝W.k/E.�l �m/

D)H i ..X1/
�
s =W.k/

�/˝W.k/E:

The constructions of [Tsuji 1999; Mokrane 1993] are both functorial, so that
everything here is compatible with the I.L=K/�G-actions. Each of the summands
in the E1-term is naturally an I.L=K/�G-representation, and furthermore the
action of I.L=K/ is given by the composite of the action of G with one of the
characters  Qj . Thus the E1-terms of this spectral sequence satisfy the claimed
property of W . Thus W also satisfies this property, since it is obtained as a
successive extension of subquotients of these E1-terms. �

We are now ready to prove our equivariant versions of Theorems 1.3.1 and
1.4.1. For the first result, we place ourselves in the local case (since the global case
immediately reduces to the local case by passing from K to Kv):

Theorem 1.5.14. Suppose that we are in the tame strictly semistable context de-
scribed above. Then the GK �G-representation H 1

ét..X1/K ; Fp/ embeds GK �G-
equivariantly into the reduction modulo the uniformiser of a GK �G-invariant
OE -lattice in a representation V ofGK�G overE, having the following properties:

(1) The restriction of V to GL is semistable, with Hodge–Tate weights contained
in the interval Œ�1; 0�.

(2) The Weil–Deligne representation associated to V , which is naturally a repre-
sentation of WDK �G, when restricted to a representation of IK �G can be
written as a direct sum

L
Qj2 zJ

W Qj of IK �G-representations, where Qj runs
over the same index set that labels the set of I.L=K/�G-orbits of irreducible
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components of .X1/s , such that on W Qj the action of the inertia group in
WK is obtained by composing the G-action on W Qj with the homomorphism
IK ! I.L=K/ ��!

 Qj

G.

Proof. We follow the proof of Theorem 1.3.1, proceeding by descending induction
on the dimension of X0 and X1, and passing to appropriately chosen hypersurface
sections Y0 of X0 and their corresponding preimages Y1 in X1 and Y1 in .X1/=L.
Taking into account Proposition 1.5.10, we thus reduce to the case when X0 and
X1 are curves, so thatH 1

ét..X1/=K ; Fp/ is the reduction mod p ofH 1
ét..X1/=K ;Zp/,

which is in turn a lattice inH 1
ét..X1/=K ;Qp/. This latter representation is potentially

semistable with Hodge–Tate weights in Œ�1; 0�, by [Tsuji 1999]; the claim regarding
Weil–Deligne representations follows from Proposition 1.5.13. �

For our second result, we allow ourselves to be in either the local or global context.

Theorem 1.5.15. Suppose that we are in the tame strictly semistable context de-
scribed above, and let � WGK �G! GLn.kE / be an irreducible and continuous
representation that embeds as a subquotient of H i

ét..X1/K ; kE /. Then � also
embeds as a subquotient of aGK�G-representation over kE which is the reduction
modulo the uniformiser of a GK �G-invariant OE -lattice in a representation V of
GK �G over E, having the following properties:

(1) The representation V becomes semistable when restricted to GL (resp. the
decomposition group Dw �GL in the global case), with Hodge–Tate weights
contained in the interval Œ�i; 0�.

(2) The Weil–Deligne representation associated to V , which is naturally a repre-
sentation of WDK �G (resp. WDKv �G in the global case), when restricted
to a representation of IK � G (resp. IKv � G in the global case) can be
written as a direct sum

L
Qj
W Qj of IK �G-representations (resp. of IKv �G-

representations), where Qj runs over the same index set that labels the set of
I.L=K/ �G-orbits (resp. of IKv �G-orbits) of irreducible components of
.X1/s , such that onW Qj , the action of the inertia group is obtained by composing
the G-action on W Qj with the homomorphism IK ! I.L=K/��!

 Qj

G (resp. the
homomorphism IKv ! I.Lw=Kv/ ��!

 Qj

G).

Proof. We can be proved in exactly the same way as Theorem 1.4.1, taking into
account Propositions 1.5.10 and 1.5.13. �

2. Breuil modules with descent data

In this section we establish a result (Theorem 2.2.4) which imposes some constraints
on the reductions of certain tamely potentially semistable p-adic representations
of GQp .
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2.1. Preliminaries. We begin by recalling some results from Section 3 of [Emerton
et al. 2013]. To this end, let p be an odd prime, let Qp be a fixed algebraic closure
of Qp, and let E and K be finite extensions of Qp inside Qp. Assume that E
contains the images of all embeddings K ,!Qp . LetK0 be the maximal absolutely
unramified subfield of K, so that K0 D W.k/Œ1=p�, where k is the residue field
of K. Let K=K 0 be a Galois extension, with K 0 a field lying between Qp and K.
Assume further that K=K 0 is tamely ramified with ramification index e, and fix a
uniformiser � 2K with �e 2K 0. Let E.u/ 2W.k/Œu� be the minimal polynomial
of � over K0.

Let kE be the residue field of E, and let 0� r � p�2 be an integer. Recall that
the category kE -BrModrdd of Breuil modules of weight r with descent data from K

to K 0 and coefficients kE consists of quintuples .M;Mr ; 'r ; Og;N /, where:

� M is a finitely generated .k˝Fp kE /Œu�=u
ep-module, free over kŒu�=uep.

� Mr is a .k˝Fp kE /Œu�=u
ep-submodule of M containing uerM.

� 'r WMr!M is kE -linear and '-semilinear (where ' WkŒu�=uep!kŒu�=uep is
the p-th power map) with image generating M as a .k˝Fp kE /Œu�=u

ep-module.

� N W M! M is k ˝Fp kE -linear and satisfies N.ux/ D uN.x/� ux for all
x 2M, ueN.Mr/�Mr , and 'r.ueN.x//D cN.'r.x// for all x 2Mr . Here,
c D F .u/p 2 .kŒu�=uep/�, where E.u/D ueCpF.u/ in W.k/Œu�.

� Og WM!M are additive bijections for each g 2 Gal.K=K 0/, preserving Mr ,
commuting with the 'r - and N -actions, and satisfying Og1 ı Og2 D .g1 ıg2/^

for all g1; g2 2 Gal.K=K 0/. Furthermore, if a 2 k˝Fp kE and m 2M then
Og.auim/D g.a/..g.�/=�/i ˝ 1/ui Og.m/.

There is a covariant functor T�;rst from kE -BrModrdd to the category of kE -
representations of GK0 .

Lemma 2.1.1. Suppose that M 2 kE -BrModrdd and T 0 is a GK0-subrepresentation
of T�;rst .M/ (so that in particular T 0 has the structure of a kE -vector space). Then
there is a unique subobject M0 of M such that, if f WM0!M is the inclusion map,
then T�;rst .f / is identified with the inclusion T 0 ,!T�;rst .M/. (Here M0 is a subobject
of M in the naive sense that it is a sub-.k ˝Fp kE /Œu�=u

ep-module of M, which
inherits the structure of an object of kE -BrModrdd from M in the obvious way.)

Proof. This is Corollary 3.2.9 of [Emerton et al. 2013]. �

We now specialise to the particular situation of interest to us in this paper;
namely, we let K0 be the unique unramified extension of Qp of degree d , we
take K D K0..�p/

1=.pd�1//, and we set K 0 D K0, so that e D pd � 1. Fix
�D .�p/1=.p

d�1/. We write z!d WGal.K=K0/!K�0 for the character g 7!g.�/=� ,
and we let !d be the reduction of z!d modulo � . (By inflation we can also think
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of z!d and !d as characters of IK0 D IQp . Note that !d is a tame fundamental
character of niveau d and that z!d is the Teichmüller lift of !d .) Note that when
d D 1, we have !1 D !, the mod p cyclotomic character.

Let ' be the arithmetic Frobenius on k, and let �0 Wk ,!kE be a fixed embedding.
Inductively define �1; : : : ; �d�1 by �iC1 D �i ı '�1; we will often consider the
numbering to be cyclic, so that �d D �0. There are idempotents ei 2 k˝Fp kE
such that if M is any k˝Fp kE -module, then M D

L
i eiM , and eiM is the subset

of M consisting of elements m for which .x˝ 1/mD .1˝ �i .x//m for all x 2 k.
Note that .'˝ 1/.ei /D eiC1 for all i .

If � WGK0! GLn.E/ is a potentially semistable representation which becomes
semistable over K, then the associated inertial type (that is, the restriction to IK0
of the Weil–Deligne representation associated to �) is a representation of IK0
which becomes trivial when restricted to IK , so we can and do think of it as a
representation of Gal.K=K0/Š IK0=IK .

Proposition 2.1.2. Maintaining our current assumptions on K, suppose that � W
GK0 ! GLn.E/ is a continuous representation whose restriction to GK is semi-
stable with Hodge–Tate weights contained in Œ0; r�, where r � p � 2, and let the
inertial type of � be �1˚ � � � ˚�n, where each �i is a character of IK0=IK . If �
denotes the reduction modulo mE of a GK0-stable OE -lattice in �, then there is an
element M of kE -BrModrdd, admitting a .k˝Fp kE /Œu�=u

ep-basis v1; : : : ; vn such
that Og.vi /D .1˝�i .g//vi for all g 2 Gal.K=K0/, and for which T�;rst .M/Š �.

Proof. This is Proposition 3.3.1 of [Emerton et al. 2013]. (Note that the conven-
tions on the sign of the Hodge–Tate weights in that work are the opposite of the
conventions in this paper.) �
Lemma 2.1.3. Maintain our current assumptions on K, so that in particular we
have e D pd � 1. Then every rank-1 object of kE -BrModrdd may be written in
the form

� MD ..k˝Fp kE /Œu�=u
ep/ �m,

� eiMr D u
ri eiM,

� 'r
�Pd�1

iD0 u
ri eim

�
D �m for some � 2 .k˝Fp kE /

�,

� Og.m/D
�Pd�1

iD0 .!d .g/
ki ˝ 1/ei

�
m for all g 2 Gal.K=K0/, and

� N.m/D 0.

Here the integers 0�ri � .pd�1/r and ki satisfy ki�p.ki�1Cri�1/ mod .pd�1/
for all i . Conversely, any module M of this form is a rank-1 object of kE -BrModrdd.
Furthermore,

T�;rst .M/jIK0 Š �0 ı!
�0
d
;

where �0 � k0Cp.r0pd�1C r1pd�2C � � �C rd�1/=.pd � 1/ mod .pd � 1/.
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Proof. This is Lemma 3.3.2 of [Emerton et al. 2013]. �
Remark 2.1.4. In the sequel, we will only be interested in the case that for
each i we have ki D .1 C p C � � � C pd�1/xi for some 0 � xi < p � 1. In
this case, the condition that pri � kiC1 � pki mod .pd � 1/ implies that ri �
.1C p C � � � C pd�1/.xiC1 � xi / mod .pd � 1/, so the condition that 0 � ri �
.pd�1/r means that we can write riD .1CpC� � �Cpd�1/.xiC1�xi /C.pd�1/yi ,
with 0� yi � r . An elementary calculation shows that we then have

�0 � x0Cy0Cp
d�1.x1Cy1/C � � �Cp.xd�1Cyd�1/ mod .pd � 1/:

2.2. Regularity. Let Qpn denote the unique unramified extension of Qp of de-
gree n, with residue field Fpn . Regarding Fpn as a subfield of Fp, we may then
regard !n as a character IQp ! F�p .

Definition 2.2.1. Let � WGQp !GLn.Fp/ be an irreducible representation, so that
�Š Ind

GQp

GQpn
� for some character � WGQp ! F�p . If we write

�jIQp
D !.a0Cpa1C���Cp

n�1an�1/
n ;

where each ai 2 Œ0; p�1� and not all the ai are p�1, then the multiset of exponents
of � is defined to be the multiset of residues of the ai in Z=pZ.

Definition 2.2.2. Let � WGQp ! GLn.Fp/ be a representation. Then the multiset
of exponents of � is the union of the multisets of exponents of each of the Jordan–
Hölder factors of �.

Definition 2.2.3. Let � W GQp ! GLn.Fp/ be a representation, and let r be a
nonnegative integer. Then we say that � is r-regular if the exponents a1; : : : ; an of
� are such that the residues ai Ck 2 Z=pZ, 1� i � n, 0� k � rC 1, are pairwise
distinct.

The following theorem is the main result we will need from explicit p-adic
Hodge theory:

Theorem 2.2.4. Let r be a nonnegative integer, and let s W GQp ! GLm.Qp/

be a potentially semistable representation with Hodge–Tate weights contained in
the interval Œ0; r� and inertial type �1 ˚ � � � ˚ �m. Suppose that there are (not
necessarily distinct) integers 0� a1; : : : ; an < p� 1 such that each �i is equal to
some z!aj .

Suppose that � WGQp !GLn.Fp/ is a subquotient of s, the reduction mod mOQp

of some GQp -stable Zp-lattice in s. Suppose also that

� det �jIQp
D !a1C���CanCn.n�1/=2,

� r � .n� 1/=2, and

� p > n.n� 1/=2C 1.
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If r D .n� 1/=2 then assume further that some irreducible subquotient of � has
dimension greater than 1. Then � is not r-regular.

Proof. Modifying the choice of Zp-lattice if necessary, it suffices to treat the case
that � and s are semisimple. Let �0Š Ind

GQp

GQ
pd

� be an irreducible subrepresentation
of �. Take K 0 D K0 D Qpd in the above notation, so that e D pd � 1. Taking
E to be sufficiently large so that s is defined over E and � is defined over kE ,
and applying Proposition 2.1.2 to sjGQ

pd
, we see that there is an element M of

kE -BrModrdd with
T�;rst .M/Š sjGQ

pd
;

such that M has a .k˝Fp kE /Œu�=u
ep-basis v1; : : : ; vm with Og.vi /D .1˝�i .g//vi

for all g 2 Gal.K=K0/. Since sjGQ
pd

contains a subrepresentation isomorphic
to �, we see from Lemma 2.1.1 that there is a rank-1 subobject N of M for which
T�;rst .N/Š �.

Since N=uN embeds into M=uM (as N is a free kŒu�=uep-submodule of the
free kŒu�=uep-module M), we see from Lemma 2.1.3 and our assumption on the
characters �i that we may write N in the form

� ND ..k˝Fp kE /Œu�=u
.pd�1/p/ �w,

� eiNr D u
ri eiN,

� 'r
�Pd�1

iD0 u
ri eiw

�
D �w for some � 2 .k˝Fp kE /

�,

� Og.w/D
�Pd�1

iD0 .!d .g/
ki ˝ 1/ei

�
w for all g 2 Gal.K=K0/, and

� N.w/D 0.

Here the integers 0�ri � .pd�1/r and ki satisfy ki�p.ki�1Cri�1/ .mod pd�1/
for all i , and each ki is equal to some .1CpC � � � Cpd�1/aj . (The conditions
on the ri come from Lemma 2.1.3, and the fact that each ki is equal to some
.1CpC� � �Cpd�1/aj comes from the fact that N is a submodule of M which has a
basis v1; : : : ; vn such that Og.vi /D .1˝�i .g//vi and the assumption that each �i is
equal to some !aj .) Writing ki D .1CpC� � �Cpd�1/xi , 0� xi <p�1, we see as
in Remark 2.1.4 that we can write ri D .1CpC� � �Cpd�1/.xiC1�xi /C.pd�1/yi ,
with 0� yi � r . By Lemma 2.1.3 and Remark 2.1.4, we have

�jIQp
D �0 ı!

x0Cy0Cp
d�1.x1Cy1/C���Cp.xd�1Cyd�1/

d
:

Since r � p � 2, we have 0 � yi � p � 2, and we conclude (after allowing for
“carrying”) that each exponent of � is of the form aj C k with 0� k � r C 1.

Suppose that � is r-regular. It must then be the case that the xi above are all dis-
tinct. Applying this analysis to each irreducible subrepresentation of �, we conclude
that the ai are all distinct. Since we have det.�0/jIQp

D �1CpC���Cp
d�1

jIQp
D

!.x0Cy0/C���C.xd�1Cyd�1/, we conclude that det �jIQp
D !a1C���CanCy for some
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0 � y � nr � n.n � 1/=2. The assumption on det � then implies that y �
n.n�1/=2 .mod p�1/. If in fact r < .n�1/=2, then we have 0� y < n.n�1/=2,
which contradicts the assumption that p > n.n� 1/=2C 1.

It remains to treat the case that r D .n� 1/=2, where we may assume (by the
additional hypothesis that we have assumed in this case) that the representation �0

above has dimension d > 1. By the above analysis we must have y D n.n� 1/=2,
so that each yi D r . Since we have ri � .pd � 1/r , we must have xiC1 � xi � 0
for each i , so that in fact x0 D x1 D � � � D xd�1, a contradiction (as we already
showed that the xi are distinct). �

3. The cohomology of Shimura varieties

3.1. The semistable reduction of certain U.n�1; 1/-Shimura varieties. Fix n�2,
and fix an odd prime p.3 We now recall the definitions of the U.n� 1; 1/-Shimura
varieties with which we will work, and some associated integral models. For
simplicity we work over Q (or rather an imaginary quadratic extension of Q) rather
than over a general totally real field.

For the most part we will follow Section 3 of [Haines and Rapoport 2012] (which
uses a similar approach to [Harris and Taylor 2002]), with the occasional reference
to [Harris and Taylor 2001]. Fix an imaginary quadratic field F in which the
prime p splits, say .p/ D pp for some choice of p, let x 7! x be the nontrivial
automorphism of F , and regard F as a subfield of C via a fixed embedding F ,!C.

Let D be a division algebra over F of dimension n2, and let � be an involution
of D of the second kind (that is, �jF is nontrivial). Assume that D splits at p (and
hence at p), and fix isomorphisms Dp Š Mn.Qp/ and Dp Š Mn.Qp/ with the
property that, under the induced isomorphism

D˝Qp ŠMn.Qp/�Mn.Qp/
op;

the involution � corresponds to .X; Y / 7! .Y t ; X t /.
Let G=Q be the algebraic group whose R-points are

G.R/D fx 2 .D˝QR/
�
j x � x� 2R�g

for any Q-algebra R. Thus our fixed isomorphism Dp Š Mn.Qp/ induces an
isomorphism G �Q Qp Š GLn �Gm.

Now let h0 W C ! DR be an R-algebra homomorphism with the properties
that h0.z/� D h0.z/ and the involution x 7! h0.i/

�1x�h0.i/ is positive (that is,
trB=Q.xh0.i/

�1x�h0.i// > 0 for all nonzero x). Let B D Dop and let V D D,
which we consider as a free left B-module of rank 1 by multiplication on the right.

3The reason for assuming that the prime p is odd is that below we will want to apply the discussion
and results of Section 2, in which this assumption was made.
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Then EndB.V /DD, and one can find an element � 2D� with the properties that
�� D �� and such that the involution � of B defined by x� D �x���1 is positive
(see Section I.7 of [Harris and Taylor 2001] or Section 5.2 of [Haines 2005] for the
existence of such a �).

We have an alternating pairing  . � ; � / W D �D ! Q defined by  .x; y/ D
trD=Q.x�y

�/, and one sees easily that  .bx; y/D .x; b�y/ and that  . � ; h0.i/ � /
is either positive- or negative-definite. After possibly replacing � by ��, we can
and do assume that it is positive-definite.

It is easy to see that one has

G.R/Š GU.r; s/

for some r , s with r C s D n. We impose the additional assumption that in fact
fr; sg D fn� 1; 1g. Note that by Lemma I.7.1 of [Harris and Taylor 2001] one can
find division algebrasD for which this holds. We say that a compact open subgroup
K �G.A1/ (resp. Kp �G.Ap;1/) is sufficiently small if for some prime q (resp.
some prime q ¤ p) the projection of K (resp. Kp) to G.Qq/ contains no element
of finite order other than 1. If K is sufficiently small, we will consider the Shimura
variety Sh.G; h0j�1C�

; K/. It has a canonical model over F , which we denote by
X.K/ (note that if n > 2 the reflex field is F , while if nD 2 the reflex field is Q,
and we let X.K/ denote the base change of the canonical model from Q to F ).

We say that a compact open subgroup K of G.A/ is of level dividing N , for
some integer N � 1, if for all primes l − N we can write K D KlKl , where Kl
is a hyperspecial maximal compact subgroup of G.Ql/ and Kl is a compact open
subgroup of G.A1;l/. (Note then that in fact K D KN �

Q
l−N Kl , for some

compact open subgroup KN of
Q
ljN G.Ql/.) If K is of level dividing N , then we

similarly refer to X.K/ as a U.n� 1; 1/-Shimura variety of level dividing N .
We will now define integral models of these Shimura varieties for two specific

kinds of level structure. We begin by introducing notation related to the level
structures in question.

We write I0 for the Iwahori subgroup of GLn.Qp/ �Q�p ; namely, I0 is the
subgroup of GLn.Zp/� Z�p consisting of elements whose first factor lies in the
usual Iwahori subgroup of matrices which are upper-triangular mod p. We write I1
to denote the pro-p-Iwahori subgroup of GLn.Qp/�Q�p ; namely, I1 is the (unique)
pro-p Sylow subgroup of I0, and consists of those elements of GLn.Zp/ � Z�p
whose first factor is upper-triangular unipotent mod p, and whose second factor is
congruent to 1 mod p. We write I�1 to denote the subgroup of I0 consisting of those
matrices in GLn.Zp/�Z�p whose first factor is upper-triangular unipotent mod p.

There is a natural isomorphism Z�p D F�p � .1CpZp/, and this induces a natural
isomorphism I�1 D F�p � I1. If we let T denote the diagonal torus in GLn, then
there is also a natural isomorphism I0 D T .Fp/� I

�
1 .
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We will define integral models for X.I0Kp/ and X.I�1K
p/ over the local rings

OF;.p/ and OF.�p�1/;.v/ respectively, where �p�1 denotes a primitive .p�1/-st root
of unity, and v is some fixed place in F.�p�1/ above p; here Kp is a sufficiently
small compact open subgroup ofG.A1;p/, and we consider I0 and I�1 as subgroups
of G.Qp/ Š GLn.Qp/�Q�p . We will typically not include Kp in the notation,
and we will write X0.p/, X1.p/ for our integral models of X0.p/ WD X.I0Kp/
and X1.p/ WDX.I�1K

p/ respectively.

Remark 3.1.1. Note that in [Haines and Rapoport 2012], [Harris and Taylor 2002],
and [Harris and Taylor 2001], the authors work over Zp, but we follow [Kottwitz
1992] in working over OF;.p/, so as to satisfy the hypothesis required to be in the
global case of Section 1. The appearance of �p�1 in the ring of definition of X1.p/

is a consequence of our use of Oort–Tate theory in the definition of the integral
model in this case.

In order to define these integral models, we first recall a certain category of
abelian schemes (up to isogeny) with polarisations and endomorphisms. If F is a
set-valued functor on the category of connected, locally noetherian OF;.p/-schemes,
we will also consider it to be a functor on the category of all locally noetherian
OF.p/-schemes by setting

F
�a

Si

�
WD

Y
F.Si /:

Let OB be the unique maximal Z.p/-order in B which under our fixed identification
B˝Q Qp DMn.Qp/�Mn.Qp/

op is identified with Mn.Z.p/ �Mn.Z.p//
op. Let

S be a connected, locally noetherian OF;.p/-scheme, and let AVS be the category
whose objects are pairs .A; i/, whereA is an abelian scheme over S of dimension n2

and i W OB ! EndS .A/˝Z.p/ is a homomorphism. We define homomorphisms in
AVS by

Hom..A1; i1/; .A2; i2//D HomOB ..A1; i1/; .A2; i2//˝Z.p/

(that is, the elements of HomS .A1; A2/˝ Z.p/ which commute with the action
of OB ). The dual of an object .A; i/ of AVS is . yA; Oi/, where yA is the dual abelian
scheme of A and Oi.b/ D .i.b�//^. A polarisation of .A; i/ is a homomorphism
� W .A; i/! . yA; Oi/ in AVS with the property that, for some n � 1, n� is induced
by an ample line bundle on A. A principal polarisation is a polarisation which
is also an isomorphism in AVS . A Q-class of polarisations is an equivalence
class of homomorphisms .A; i/! . yA; Oi/ which contains a polarisation, under the
equivalence relation of differing by a Q�-scalar.

Fix Kp a sufficiently small open compact subgroup of G.A1;p/. Let A0 be
the set-valued functor on the category of locally noetherian schemes over OF;.p/
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which sends a connected, locally noetherian scheme S over OF;.p/ to the set of
isomorphism classes of the following data:

� A commutative diagram of morphisms in the category AVS of the form

A0
˛0
//

�0
��

A1
˛1

//

�1
��

� � �
˛n�2

// An�1
˛n�1

//

�n�1
��

A0

�0
��

yA0 yA1
Ǫ0

oo � � �
Ǫ1

oo yAn�1
Ǫn�2
oo yA0

Ǫn�1
oo

where each ˛i is an isogeny of degree p2n and their composite is just multipli-
cation by p. In addition, �0 is a Q-class of polarisations containing a principal
polarisation. Furthermore, we require that each Ai satisfies a compatibility
between the two actions of OF on the Lie algebra of Ai (one action coming
from the structure morphism OF;.p/! OS , and the other from the OB -action;
see [Harris and Taylor 2001, §III.4] for a discussion of this condition).

� A geometric point s of S , and a �1.S; s/-invariant Kp-orbit of isomorphisms

� W V ˝Q Ap;1 �!� H1..A0/s;A
p;1/

which are OB -linear and up to a constant in .Ap;1/� take the  -pairing on
the left side to the �0-Weil pairing on the right side. (This data is canonically
independent of the choice of s; see the discussion on pp. 390–391 of [Kottwitz
1992].)

An isomorphism of this data is one induced by isomorphisms inAVS which preserve
the �i up to an overall Q�-scalar.

The functor A0 is represented by a projective scheme X0.p/ over OF;.p/, which
is an integral model for X.I0Kp/. (See the proof of Lemma 3.2 of [Taylor and
Yoshida 2007], which shows that X0.p/ is projective over the usual integral model
at hyperspecial level. At hyperspecial level, quasiprojectivity is proved on p. 391
of [Kottwitz 1992], and projectivity can be checked via the valuative criterion for
properness as on p. 392 of the same work. More properly, X0.p/ is an integral
model for a disjoint union of a number of copies of X.I0Kp/, due to the possible
failure of the Hasse principle; see for example Section 7 and the discussion on
p. 400 of [Kottwitz 1992]. Since the cohomology of a disjoint union of spaces is
the direct sum of the cohomologies of the individual spaces, this does not affect
our arguments, and we will not dwell on this point in the following.) The proof of
Proposition 3.4(3) of [Taylor and Yoshida 2007] (which goes over unchanged in our
setting) shows that the special fibre of X0.p/ is a strict normal crossings divisor.

Our next goal is to describe an integral model X1.p/, over OF.�p�1/;.v/, for
X.I�1K

p/ (or rather, as in the previous paragraph, an integral model of a disjoint
union of a number of copies of X.I�1K

p/). Recalling that T denotes the diagonal
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torus in GLn, we let {i WGm! T denote the embedding of tori identifying Gm with
the subgroup of T consisting of elements which are 1 away from the i -th diagonal
entry. We use the same notation {i to denote the map F�p ! T .Fp/ induced by the
map of tori.

The quotient I0=I�1 is naturally identified with T .Fp/, and so T .Fp/ acts on
X1.p/, with quotient isomorphic to X0.p/.

Given an S -valued point of A0, letAi .p1/ be the p-divisible group associated to
Ai for i D 0; : : : ; n�1. Each Ai .p1/ has an action of OB DMn.Z.p//�Mn.Zp/

op.
LetXiDe11Ai .p1/, where e11 is the usual idempotent inMn.Z.p// (and is zero on
the second factor). Then each Xi is a p-divisible group of height n and dimension 1,
and we obtain a chain of isogenies of degree p

C WX0
˛0
���!X1

˛1
���! � � �

˛n�2
�����!Xn�1

˛n�1
�����!Xn WDX0;

whose composite is equal to multiplication by p.
We let OT denote the Artin stack over OF.�p�1/;.v/ given by

OT WD
�
Spec OF.�p�1/;.v/ŒX; Y �=.XY �wp/=Gm

�
;

where Gm acts via � � .X; Y /D .�p�1X; �1�pY / and wp is some explicit element
of OF.�p�1/;.v/ of valuation 1. Oort–Tate theory shows that OT classifies finite flat
group schemes of order p over OF.�p�1/;.v/-schemes. The universal group scheme
over OT is the stack

G WD
�
Spec OF.�p�1/;.v/ŒX; Y;Z�=.XY �wp; Z

p
�XZ/=Gm

�
;

where Gm acts on X and Y as above, and on Z via � �Z D �Z. The morphism
G!OT is the evident one, the zero section of G is cut out by the equationZD0, and
we let G� denote the closed subscheme of G cut out by the equation Zp�1�X D 0;
this is the so-called scheme of generators of G. (See Theorem 6.5.1 of [Genestier
and Tilouine 2005] for these facts, which are a restatement of Theorem 2 of [Tate
and Oort 1970] in the language of stacks.)

We define X1.p/ via the Cartesian diagram

X1.p/

��

// G� �OF.�p�1/;.v/
� � � �OF.�p�1/;.v/

G�

��

X0.p/=OF.�p�1/;.v/
// OT�OF.�p�1/;.v/

� � � �OF.�p�1/;.v/
OT

(3.1.2)

where the bottom horizontal arrow is given by

C 7! .ker.˛0/; : : : ; ker.˛n�1//:
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Note that the right-hand vertical arrow is finite and relatively representable by
construction, and so the left-hand vertical arrow is a finite morphism of schemes.
The action of T .Fp/ on X1.p/ extends to an action on X1.p/, namely, the action
pulled back from the action of T .Fp/ on G� �OF.�p�1/;.v/

� � � �OF.�p�1/;.v/
G� over

OT�OF.�p�1/;.v/
� � � �OF.�p�1/;.v/

OT.

Let � WD .�p/1=.p�1/, and let w be the unique finite place of L WD F.�p�1; �/
lying over our fixed place v of F.�p�1/. We let O denote the localisation of OL
at w, and we let X1.p/O denote the normalisation of the base change X1.p/=O

of X1.p/ over O. We write I WD Gal.L=F.�p�1//; this is also the inertia group
at w in Gal.L=F /. The group I acts naturally on X1.p/O. The mod p cyclotomic
character ! induces an isomorphism (which we continue to denote by !)

! W I �!� F�p :

For each i D 0; : : : ; n� 1, we let ˛i W I ! T denote the composite {i ı!�1.

Lemma 3.1.3. The scheme X1.p/O is a semistable projective model for X1.p/=L
over O, the natural morphism

X1.p/O! X0.p/ (3.1.4)

is tamely ramified, and the action of I � T on X1.p/=L extends to an action on
X1.p/O. Furthermore, on each irreducible component of its special fibre, the inertia
group I acts through the composite of the T -action with one of the characters ˛i .

Proof. We will apply a form of Deligne’s homogeneity principle, as described in
the proof of [Taylor and Yoshida 2007, Proposition 3.4], to the morphism (3.1.4).
The scheme here denoted X0.p/ is there denoted XU (and the integral model there
is considered over Zp rather than OF;.p/, but this is immaterial for our present
purposes), while the scheme there denoted XU0 is an integral model of the Shimura
variety (in the notation of the present paper)X.KpKp/, whereKpDGLn.Zp/�Z�p .
We let X0.p/

.h/
s (for 0�h�n�1) denote the locally closed subset of the special fibre

X0.p/s , obtained by pulling back the locally closed subsetX .h/U0 defined in Section 3
of [Taylor and Yoshida 2007] under the natural projection X0.p/s DXU !XU0 .

We will show that the morphism (3.1.4) is tamely ramified in the formal neigh-
bourhood of any closed geometric point of the special fibre X0.p/s , and hence
(by Lemma 1.5.3) that it is tamely ramified. We first note that the morphism
X0.p/=OF.�p�1/;.v/

! X0.p/ induces an isomorphism on special fibres, and so
we are free to replace X0.p/ by X0.p/=OF.�p�1/;.v/

in our considerations. We next
note that the completion of the bottom arrow of (3.1.2) at a closed geometric
point x0 of X0.p/s depends up to isomorphism only on the value of h for which
x0 2X0.p/

.h/
s (since the p-divisible group attached to the point x0 depends only on
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the value of h), and hence that the restriction of (3.1.4) to a formal neighbourhood of
x0 depends only on the value of h. Then, by [Taylor and Yoshida 2007, Lemma 3.1],
the closure of X0.p/

.h/
s contains X0.p/

.0/
s . Since being tamely ramified is an open

condition, we conclude from these two conditions that, in order to prove the lemma,
it suffices to show that the restriction of (3.1.4) to a formal neighbourhood of x0 is
tamely ramified at closed geometric points x0 of X0.p/

.0/
s . (As already indicated,

this argument is a variation on Deligne’s homogeneity principle.)
Thus, consider a closed geometric supersingular point x0 of X0.p/

.0/
s , so that

x0 admits a formal neighbourhood of the form

SpecW.Fp/ŒŒT1; : : : ; Tn��=.T1 � � �Tn�wp/:

The proof of [Taylor and Yoshida 2007, Proposition 3.4] shows that the Ti may
be taken to be the matrix of ˛i�1 on tangent spaces, so that the map X0.p/!

OT�OF.�p�1/;.v/
� � � �OF.�p�1/;.v/

OT may be defined in the formal neighbourhood
of x0 by the map

.T1; : : : ; Tn/ 7! ..T1; U1/; : : : ; .Tn; Un//;

where Ui D T1 � � � yTi � � �Tn (and, as is usual in these situations, a hat on a variable
denotes that that variable is omitted in the expression). Thus a formal neighbourhood
of a closed geometric point lying over x0 in .X1.p/=O/s is isomorphic to

SpecW.Fp/Œ��ŒŒV1; : : : ; Vn��=..V1 � � �Vn/p�1�wp/:

If we write u WD V1 � � �Vn=� , then we see that up�1 D �wp=p, and hence that
u lies in the normalisation of this formal neighbourhood. Furthermore, on each
component of this normalisation, u is equal to one of the .p�1/-st roots of �wp=p
lying in W.Fp/. Thus the normalisation of this formal neighbourhood is a union of
components, each isomorphic to

Spec OŒŒV1; : : : ; Vn��=.V1 � � �Vn�u�/;

with the morphism (3.1.4) being given by Ti D V
p�1
i . Thus this morphism is

indeed tamely ramified in the formal neighbourhood of x0.
It is clear that the I �T -action on X1.p/L extends to an action on X1.p/=O, and

hence to its normalisation X1.p/O. As for the final statement, note that I acts on �
via !, and hence on u via !�1, while I fixes each Vi . Also T acts on Vi through
multiplication by the i -th diagonal entry, and so acts on u via multiplication by the
determinant. Combining these facts, we see that I acts on the components of the
special fibre on which Vi D 0 via {i ı!�1. �
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Remark 3.1.5. This lemma (and the fact that X0.p/ is strictly semistable) shows
that the map X1.p/O! X0.p/ provides a tame strictly semistable context, in the
sense of Section 1.5. In particular, we can apply Theorem 1.5.15 in this setting
(of course taking the group G to be the abelian group T ), and we see that each
character  j as in the statement of that theorem is equal to one of the characters ˛i .

3.2. Canonical local systems. If K is a sufficiently small compact open subgroup
of G.A1/, and V is a continuous representation of K on a finite-dimensional
Fp-vector space (this vector space being equipped with its discrete topology), then
we may associate to V an étale local system FV of Fp-vector spaces on X.K/ as
follows: Choose an open normal subgroup K 0 �K lying in the kernel of V , and
regard V as a representation of the quotient K=K 0. Since X.K 0/ is naturally an
étale K=K 0-torsor over X.K/, we may form the étale local system of Fp-vector
spaces over X.K/ associated to the K=K 0-representation V . This local system is
independent of the choice of K 0, up to canonical isomorphism, and we define it to
be FV .

Definition 3.2.1. We refer to the étale local systems FV that arise by the preceding
construction as the canonical local systems on X.K/. If we may choose K 0 in
the kernel of V to be of level dividing N (so that in particular X.K/ is of level
dividing N ), then we say that FV can be trivialised at level N .

3.3. The Eichler–Shimura relation. Let X be a U.n� 1; 1/-Shimura variety of
level dividing N . Let w be a place of F such that l WDwjQ splits in F and does not
divide N . There is a natural action via correspondences on X of Hecke operators
T
.i/
w , 0� i � n, where T .i/w is the double coset operator corresponding to�

l1i 0

0 1n�i

�
� 1 2 GLn.Ql/�Z�l ;

where we use the assumption that l −N and identify a hyperspecial maximal compact
subgroup of G.Ql/ with GLn.Zl/�Z�

l
via an isomorphism Dw ŠMn.Ql/. These

correspondences then act on the cohomology H j
ét .XQ; Fp/.

More generally if FV is a canonical local system on X that can be trivialised at
level N , then we obtain an action of the double coset operators T .i/w on FV , and
hence on the cohomology H j

ét .XQ;FV /.
The following theorem regarding this action is then an immediate consequence

of the main result of [Wedhorn 2000] (which proves the Eichler–Shimura relation
for PEL Shimura varieties at places of good reduction at which the group is split).

Theorem 3.3.1. Let X be a U.n� 1; 1/-Shimura variety of level dividing N and
FV a canonical local system on X . Let w be a place of F such that wjQ splits in F
and does not divide Np. Then

Pn
iD0.�1/

i .Normw/i.i�1/=2T
.i/
w Frobn�iw acts as 0

on each H j
ét .XQ;FV /.
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3.4. Vanishing and torsion-freeness of cohomology for certain U.n � 1; 1/-Shi-
mura varieties. Let X denote a U.n� 1; 1/-Shimura variety as above, and let FV
denote a canonical local system on X . Choose N so that X has level dividing N ,
so that FV can be trivialised at level N , and so that p divides N . Assume that the
projection of the corresponding level K to G.Ap;1/ is sufficiently small.

Let TD ZpŒT
.i/
w � be the polynomial ring in the variables T .i/w , 1� i � n, where

w runs over the places of F such that wjQ splits in F and does not divide N . Let
m be a maximal ideal in T with residue field Fp, and suppose that there exists
a continuous irreducible representation �m W GF ! GLn.Fp/ which is unrami-
fied at all finite places not dividing N , and which satisfies char.�m.Frobw// �Pn
iD0.�1/

i .Normw/i.i�1/=2T
.i/
w Xn�i mod m for all w −N such that wjQ splits

in F . Continue to fix a choice of a place p of F dividing p, and write GQp

for GFp from now on. Recall that the choice of p also gives us an isomorphism
G.Qp/Š GLn.Qp/�Q�p as in Section 3.1.

We consider the following further hypothesis on �m (this is Hypothesis 4.1.1):

Hypothesis 3.4.1. If � WGF !GLm.Fp/ is any continuous, irreducible representa-
tion with the property that the characteristic polynomial of �m.g/ annihilates �.g/
for every g 2GF , then � is equivalent to �m.

We will now prove our first main result, a vanishing theorem for the cohomology
of X with FV -coefficients:

Theorem 3.4.2. Suppose that �m satisfies Hypothesis 3.4.1, that �mjGQp
is r-

regular for some r� .n�1/=2, that p>n.n�1/=2C1 and, if rD .n�1/=2, suppose
in addition that �mjGQp

contains an irreducible subquotient of dimension greater
than 1. Then the localisations H i

ét.XQ;FV /m vanish for i � r and i � 2.n�1/� r .

Remark 3.4.3. In Section 4.1 we will show that Hypothesis 3.4.1 is satisfied if
either �m is induced from a character of GK for some degree-n cyclic Galois
extension K=Q, or if p� n and SLn.k/� �m.GF /� F�p GLn.k/ for some subfield
k � Fp.

Remark 3.4.4. While we work here with étale local systems and étale cohomology,
by virtue of Artin’s comparison theorem [SGA 43 1973, Exposé XI, Théorème 4.3]
our vanishing results are equivalent to vanishing results for the cohomology of
the complex U.n� 1; 1/-Shimura varieties with coefficients in the corresponding
canonical local systems for the complex topology.

Proof of Theorem 3.4.2. First, note that it suffices to prove vanishing in degree i � r
for all V , as vanishing in degree i � 2.n� 1/� r then follows by Poincaré duality.
(Note that the dual of the canonical local system FV attached to a representation V
is the canonical local system attached to the contragredient representation V _.)
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We prove the theorem for i � r by induction on i , the case when i < 0 being
trivial. We begin by reducing to the case when FV is trivial. To this end, write
X DX.K/, let K 0 be an open normal subgroup of K of level dividing N such that
V is representation of K=K 0, and choose an embedding of K=K 0-representations
V ,!FpŒK=K

0�n for some n; denote the cokernel byW . Let � denote the projection
X.K 0/! X.K/. Passing to the associated canonical local systems, we obtain a
short exact sequence 0! FV ! ��Fnp! FW ! 0, which gives rise to an exact
sequence of cohomology

H i�1
ét .XQ;FW / �!H i

ét.XQ;FV / �!H i
ét.XQ; ��Fnp/DH

i
ét.X.K

0/Q; Fp/
n:

Localising at m and applying our inductive hypothesis (with FW in place of FV ),
we reduce to the case of constant coefficients (with X.K 0/ in place of X). We
therefore turn to establishing the claimed vanishing in this case.

Suppose now that K 0 is any open normal subgroup of K of level dividing N .
Combining the Hochschild–Serre spectral sequence

E
m;n
2 DHm

ét .K=K
0;Hn.X.K 0/Q; Fp/m/D)HmCn

ét .X.K/Q; Fp/m

with our inductive hypothesis, we find that vanishing of H i
ét.X.K

0/; Fp/m implies
the vanishing of H i

ét.X.K/Q; Fp/m. Thus, without loss of generality, we may and
do assume that K DKpKp , where Kp is an open normal subgroup of I1 and Kp

is a sufficiently small compact open subgroup of G.A1;p/.
We again consider a Hochschild–Serre spectral sequence, this time the one

relating the cohomology of X.K/ and X.I1Kp/, which takes the form

E
m;n
2 DHm.I1=Kp;H

n
ét.X.K/Q; Fp/m/D)HmCn

ét .X.I1K
p/Q; Fp/m:

Once more taking into account our inductive hypothesis, we obtain an isomorphism
H i

ét.X.I1K
p/Q; Fp/m�!

� H i
ét.X.K/Q; Fp/

I1=Kp
m . Since I1=Kp is a p-group, while

H i
ét.X.K/Q; Fp/m is a vector space over a field of characteristic p, we see that the

latter space vanishes if and only if its space of I1=Kp-invariants does. Thus we are
reduced to establishing the theorem in the case when K D I1Kp.

Now recall that I�1 D F�p � I1, and that the projection onto the first factor
arises from the similitude projection GU.n� 1; 1/! Gm. From this it follows
that X.I1Kp/ is isomorphic to the product X.I�1K

p/ �F SpecA, where A WD
F Œx�= p̂.x/ (where p̂.x/ denotes the p-th cyclotomic polynomial; the action of
F�p D I

�
1 =I1 on X.I1Kp/ is induced by the action of F�p on A given by x 7! xa

for a 2 F�p). Consequently there is an isomorphism of Galois representations

H i .X.I1K
p/Q; Fp/m �!

�

p�2M
jD0

H i .X.I�1K
p/Q; Fp/mj ˝!

j ;
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where mj is the maximal ideal in T which corresponds to the twisted Galois
representation �mj WD �m ˝ !

�j . Since each of the Galois representations �mj
satisfies the hypotheses of the theorem (as these hypotheses are invariant under
twisting), we are reduced to proving the theorem in the case of X.I�1K

p/.
Consider an irreducibleGF �I0=I�1 -subrepresentation ofH i

ét.X.I
�
1K

p/Q; Fp/m,
which we may write in the form � ˝ ˇ, where � is an absolutely irreducible
GF -representation and ˇ is a character of the abelian group T .Fp/ D I0=I

�
1 .

Theorem 3.3.1 and Hypothesis 3.4.1 taken together imply that � is equivalent to
�m. We consider ˇ as an n-tuple of characters ˇ1; : : : ; ˇn of F�p . Write žj for the
Teichmüller lift of ǰ and �j for the character of IQp given by ǰ . By Lemma 3.1.3,
Remark 3.1.5 and Theorem 1.5.15, we see that � can be embedded as the reduction
mod p of a potentially semistable representation with Hodge–Tate weights in the
range Œ�i; 0�, whose inertial type is a direct sum of characters belonging to the
collection f žj g. (To see this, note that as � is in the ˇ-part of the cohomology, it nec-
essarily occurs in the reduction of the ž-part of the GF �T -representation provided
by Theorem 1.5.15.) We claim that det � jIQp

D det �mjIQp
D �1 � � ��n!

�n.n�1/=2.
Admitting this for the moment, we may apply Theorem 2.2.4 to the representation
�mj
_
GQp

, and we deduce that �mj_GQp
is not r-regular. Equivalently, we see that

�mjGQp
is not r-regular, which contradicts our assumptions.

It remains to establish the equality det � jIQp
Ddet �mjIQp

D�1 � � ��n!
�n.n�1/=2.

To see this, note that Theorem 3.3.1 implies that, for each place w −N of F such
that wjQ splits in F , we have det �m.Frobw/D .Normw/n.n�1/=2T

.n/
w . Let  m be

the character of A�F =F
� corresponding to the character !n.n�1/=2 det �m by global

class field theory; then we need to prove that  mjZ�p D ˇ1 � � �ˇn. The centre of
G.AQ/ is A�F , so by the definition of the Shimura variety X there is a natural action
of A�F =F

� on H i
ét.X.I

�
1K

p/Q; Fp/m. By the definition of the Hecke operators,
we see that if $w is a uniformiser at a place w − N of F such that wjQ splits in
F , then $w acts as T .n/w . By the Chebotarev density theorem, we deduce that the
action of A�F =F

� on the underlying vector space of � (which by definition is a
subspace of H i

ét.X.I
�
1K

p/Q; Fp/m) is via the character  m. In order to compute
 mjZ�p , it is thus sufficient to compute the action of Z�p on H i

ét.X.I
�
1K

p/Q; Fp/m,
and in particular sufficient to compute the action of the Iwahori subgroup I0. Now,
since � is assumed to be in the ˇ-part of the cohomology, I0 acts via the character
ˇ of I0=I�1 , so that  mjZ�p D ˇ1 � � �ˇn, as required. �

Corollary 3.4.5. Suppose that �m satisfies Hypothesis 3.4.1, that �m jGQp
is r-

regular for some r �minf.n�1/=2; p�2g, and, if r D .n�1/=2, suppose in addi-
tion that �m jGQp

contains an irreducible subquotient of dimension greater than 1.
Then the localisation H i

ét.XQ;Zp/m vanishes for i � r , while H rC1
ét .XQ;Zp/m is

torsion-free.
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Proof. This follows at once from Theorem 3.4.2 and the short exact sequence

0 �!H i
ét.XQ;Zp/m=mZp

H i
ét.XQ;Zp/m

�!H i
ét.XQ; Fp/m �!H iC1

ét .XQ;Zp/mŒmZp
� �! 0: �

Remark 3.4.6. As already remarked in the introduction, we expect some kind of
mod p analogue of Arthur’s conjectures to hold, and so in particular we expect
that stronger results than Theorem 3.4.2 and Corollary 3.4.5 should hold. In
particular, if m is any maximal ideal in the Hecke algebra attached to an irreducible
continuous representation �m WGF !GLn.Fp/, then we expect that the localisations
H i

ét.XQ;FV /m and H i
ét.XQ;Zp/m should vanish in degrees i < n� 1.

On the other hand, it need not be the case that (for example)H i
ét.XQ; Fp/ vanishes

in all degrees in which H i
ét.XQ;Qp/ vanishes. For example, in the case n D 3,

for the unitary Shimura varieties that we consider here, namely those that are
associated to division algebras, it is known that H 1

ét.XQ;Qp/D 0 [Rogawski 1990,
Theorem 15.3.1]. (Under additional restrictions on the division algebra allowed,
an analogous result is known for all values of n [Clozel 1993, Theorem 3.4].)
On the other hand, one can construct examples for which H 1

ét.XQ; Fp/¤ 0, and
hence for which H 2

ét.XQ;Zp/ is not torsion-free, via congruence cohomology.
(See e.g., the proof of [Suh 2008, Theorem 3.4].) The existence of such classes
does not contradict our theorems or expectations, since congruence cohomology
is necessarily Eisenstein (i.e., gives rise to Eisenstein systems of Hecke eigen-
values, in the sense that the associated Galois representation �m is completely
reducible).

3.5. On the mod p cohomology of certain U.2; 1/-Shimura varieties. Let X WD
X.K/ denote a U.2; 1/-Shimura variety, with K of level dividing N for some
natural number N divisible by p, and such that the projection of K to G.Ap;1/

is sufficiently small. Let FV be a canonical local system on X , which may be
trivialised at level N . The results of Section 3.4 are particularly powerful in this
case, as we now demonstrate.

Corollary 3.5.1. Suppose that �m satisfies Hypothesis 3.4.1, that �mjGQp
is 1-

regular, and that �m jGQp
contains an irreducible subquotient of dimension greater

than 1. Then the localisations H i
ét.XQ;FV /m vanish for i ¤ 2.

Proof. This follows immediately from Theorem 3.4.2, noting that the hypothesis
that �mjGQp

is 1-regular implies that p > 4 (indeed, that p � 11). �

We now prove a result which does not require the existence of a Galois represen-
tation �m. We begin with a lemma:
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Lemma 3.5.2. If m is a maximal ideal of T with residue field Fp, such that
H 0

ét.XQ;FV /m ¤ 0, then there is an abelian representation �0 W GF ! GL3.Fp/
such that char.�0.Frobw//D

P3
iD0.�1/

i .Normw/i.i�1/=2T
.i/
w Xn�i .mod m/ for

all split places w of E for which w −Np.

Proof. This is standard and follows for example from [Deligne 1979, Section 2.1]. �

Theorem 3.5.3. If � is a 3-dimensional irreducible sub-GF -representation of the
étale cohomology group H 1

ét.XQ;FV /, then every irreducible subquotient of �jGQp

is 1-dimensional, or else �jGQp
is not 1-regular, or else �.GF / is not generated by

its subset of regular elements.

Remark 3.5.4. Recall that a square matrix is said to be regular if its minimal and
characteristic polynomials coincide. In Section 4.2 we will show that �.GF / is
generated by its subset of regular elements if either �m is induced from a character
of GK for some cubic Galois extension K=Q, or if �.GF / contains a regular
unipotent element.

Remark 3.5.5. In the proof of the theorem we use some of the results of Section 4.

Proof of Theorem 3.5.3. The argument follows similar lines to the proof of
Theorem 3.4.2, although it is slightly more involved, since we are not giving
ourselves the existence of the Galois representation �m.4 The key point will be that,
in the Hochschild–Serre spectral sequences that appear, the only other cohomology
to contribute besides H 1 will be H 0, and, for maximal ideals of T in the support
of H 0, we do have associated Galois representations, by Lemma 3.5.2.

We first show that if H 0
ét.XQ;FW /m ¤ 0 for some canonical local system FW

on X and some maximal ideal m of T, then HomGF .�;H
1
ét.XQ;FV /Œm�/D 0. To

see this, note that if H 0
ét.XQ;FW /m ¤ 0 and HomGF .�;H

1
ét.XQ;FV /Œm�/ ¤ 0,

then Lemma 3.5.2 and Theorem 3.3.1 together imply that there exists an abelian
representation �0 W GF ! GL3.Fp/ such that, for all g 2 GF , the characteristic
polynomial of �0.g/ annihilates �.g/. By Lemma 4.1.3 this implies that � is abelian,
which is impossible as � is irreducible.

Now H 1
ét.XQ;FV / is the direct sum of its localisations at the various maximal

ideals m of T, and hence, since HomGF .�;H
1
ét.X;FV // ¤ 0 by hypothesis, we

see that HomGF .�;H
1
ét.X;FV /m/¤ 0 for some maximal ideal m of T. Since this

is a finite-length Tm-module, we see that its Tm-socle HomGF .�;H
1
ét.X;FV /Œm�/

must also be nonzero, and hence, by the preceding paragraph, we conclude that
H 0

ét.X;FW /m D 0 for any canonical local system FW on X .

4In fact, as noted in the introduction, recent work of Scholze [2013] implies that �m exists for any
maximal ideal m in the Hecke algebra. We have left our argument as originally written.
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As in the proof of Theorem 3.4.2, choose a short exact sequence of canonical
local systems 0!FV ! ��Fnp!FW ! 0, for some � WX 0!X . Passing to the
long exact sequence

H 0
ét.X;FW /m �!H 1

ét.X;FV /m �!H 1
ét.X; ��Fp/

n
DH 1

ét.X
0; Fp/

n;

and using the result of the preceding paragraph, namely that H 0
ét.X;FW /mD 0, we

conclude that � embeds into H 1
ét.X

0; Fp/. Thus, replacing X by X 0, we reduce to
the case when FV is constant, which we assume from now on.

We now suppose that � is a subrepresentation of H 1
ét.XQ; Fp/m. We will prove

that � is then necessarily a subrepresentation of H 1
ét.X.K

pI1/; Fp/m for some
sufficiently small open subgroup Kp of G.A1;p/. The result will then follow from
Lemmas 3.1.3 and 4.2.2 and Theorems 1.5.15, 3.3.1, and 2.2.4.

As in the proof of Theorem 3.4.2, we write X D X.K/, and choose a normal
open subgroup K 0 WDKpKp of K, with Kp � I1. The Hochschild–Serre spectral
sequence associated to the cover X.K 0/!X.K/ gives rise to an exact sequence

0 �!H 1.K=K 0;H 0.X.K 0/; Fp/m/ �!H 1
ét.X.K/; Fp/m

�!H 1
ét.X.K

0/; Fp/
K=K0

m �!H 2.K=K 0;H 0.X.K 0/; Fp/m/:

The same argument as above, using Lemma 3.5.2 (applied now with X.K 0/ in place
of X ), Theorem 3.3.1, and Lemma 4.1.3 below, shows that

H 1.K=K 0;H 0.X.K 0/; Fp/m/DH
2.K=K 0;H 0.X.K 0/; Fp/m/D 0:

Thus in fact we have an isomorphismH 1
ét.X.K/; Fp/�!

� H 1
ét.X.K

0/; Fp/
K=K0

m , and
hence an isomorphism

HomGF .�;H
1
ét.X.K/; Fp// �!

� HomGF .�;H
1
ét.X.K

0/; Fp/
K=K0

m /

D HomGF .�;H
1
ét.X.K

0/; Fp/m/
K=K0 :

In particular, if � appears as a subrepresentation ofH 1
ét.X.K/; Fp/m, then it appears

as a subrepresentation of H 1
ét.X.K

0/; Fp/m.
Now, considering the Hochschild–Serre spectral sequence for the coverX.K 0/!

X.KpI1/, and using the fact that if HomGF .�;H
1
ét.X.K

0/; Fp/m/¤ 0, then also
HomGF .�;H

1
ét.X.K

0/; Fp/m/
I1=Kp ¤ 0 (since I1=Kp is a p-group), we conclude

that if � appears as a subrepresentation of H 1
ét.X.K

0/; Fp/m, then it appears as a
subrepresentation of H 1

ét.X.K
pI1/; Fp/m.

Arguing exactly as in the proof of Theorem 3.4.2, we then deduce that some
twist of � appears in H 1

ét.X.K
pI�1 /; Fp/, and so, replacing � by this twist, it

suffices to prove that if � is an irreducible 3-dimensional representation � of
H 1

ét.X.K
pI�1 /; Fp/ that is generated by its regular elements, then either every

irreducible subquotient of �jGQp
is 1-dimensional, or else �jGQp

is not 1-regular.
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This follows from Lemma 3.1.3 and Theorems 1.5.15, 3.3.1, and 2.2.4 exactly as in
the proof of Theorem 3.4.2, replacing the appeal to Hypothesis 3.4.1 with one to
Lemma 4.2.2 below. �

Our other main theorem concerns the weight part of the Serre-type conjecture
of [Herzig 2009] for U.2; 1/. It is proved by combining our techniques with those
of [Emerton et al. 2013], where a similar theorem is proved for U.3/ (which
is simpler, because one has vanishing of cohomology outside of degree 0). We
begin by recalling some terminology from that work. We will call an irreducible
Fp-representation of GL3.Fp/ a Serre weight. Fix an irreducible representation
� W GF ! GL3.Fp/. Let X WD X.K/ be a U.2; 1/-Shimura variety such that K
is of level dividing N and has sufficiently small projection to G.Ap;1/, where
now we assume that .N; p/D 1. Assume furthermore that � is unramified at all
places not dividing Np, and define a maximal ideal m of T with residue field
Fp by demanding that, for each place w − Np of F such that wjQ splits in F ,
the characteristic polynomial of �.Frobw/ is equal to the reduction modulo m ofP3
iD0.�1/

i .Normw/i.i�1/=2T
.i/
w Xn�i .

Let V be a Serre weight; since .N; p/=1, we may write K D KpKp, where
Kp �G.Qp/ŠGL3.Qp/�Q�p is conjugate to GL3.Zp/�Z�p , and we may regard
V as a representation of Kp via the projection GL3.Zp/� GL3.Fp/. As usual,
write FV for the canonical local system associated to V . We say that � is modular
of weight V if for some N , X as above and for some 0� i � 4 we have

H i
ét.XQ;FV /m ¤ 0:

Assume now that �jGQp
is irreducible. Definition 6.2.2 of [Emerton et al. 2013]

defines what it means for a Serre weight to be (strongly) generic, and Section 5.1
there (using the recipe of [Herzig 2009]) defines a set W ‹.�/ of Serre weights in
which it is predicted that � is modular. Let Wgen.�/ be the set of generic weights
for which � is modular.

Theorem 3.5.6. Suppose that � satisfies Hypothesis 4.1.1 and �jGQp
is irreducible

and 1-regular. Suppose that � is modular of some strongly generic weight. Then
Wgen.�/DW

‹.�/. In fact, for each V 2Wgen.�/, we have

H i
ét.XQ;FV /m ¤ 0

if and only if i D 2 and V 2W ‹.�/.

Proof. By the definition of m, the representation � satisfies the defining properties
of the representation �m considered in Section 3.4. Applying Corollary 3.5.1, we
see that for any Serre weight V we have H i

ét.XQ;FV /m D 0 if i ¤ 2. We will now
deduce the result from Theorem 6.2.3 of [Emerton et al. 2013] (taking r there to be
our �). By Theorem 4.3.3 of that reference, we see that it suffices to show that we
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can define S and zS as in Section 4 there, so that Axioms Ã1–Ã3 of Section 4.3 of
that work are satisfied. Following [Emerton et al. 2013], we define S and zS using
completed cohomology in the sense of [Emerton 2006] (in [Emerton et al. 2013] the
use of completed cohomology was somewhat disguised, but the constructions with
algebraic modular forms there are equivalent to the use of completed cohomology
of U.3/ in degree 0). In fact, given our vanishing results the verification of the
axioms of [Emerton et al. 2013] is very similar to that carried out in that work for
U.3/, and we content ourselves with sketching the arguments.

From now on we regard the prime-to-p level structure Kp of X as fixed, and we
will vary Kp in our arguments. We will write Kp.0/ for GL3.Zp/�Z�p �G.Qp/.
We fix a sufficiently large extensionE=Qp with ring of integers OE , residue field kE ,
and uniformiser $E , and we define

S WD lim
��!
Kp

H 2
ét.X.K

pKp/Q; Fp/m;

zS WD
��

lim
 ��
s

lim
��!
Kp

H 2
ét.X.K

pKp/Q;OE=$
s
E /m

�
˝OE Zp

�l:alg

(that is, the locally algebraic vectors in the localisation at m of the completed
cohomology of degree 2). Using the Hochschild–Serre spectral sequence and the
vanishing of H i

ét.XQ;FV /m D 0 if i ¤ 2, it is straightforward to verify Axioms
Ã1–Ã3 of Section 4.3 of [Emerton et al. 2013], as we now explain.

First, we need to check that our definition of “modular” is consistent with that
of Definition 4.2.2 of [Emerton et al. 2013]. This amounts to showing that for any
Serre weight V

.S ˝ FpV /
Kp.0/ DH 2

ét.X.Kp.0/K
p/Q;FV /m:

To see this, note that since any sufficiently small Kp acts trivially on V , we have

S ˝ FpV D lim
��!
Kp

H 2
ét.X.K

pKp/Q; Fp/m˝V �!
� lim
��!
Kp

H 2
ét.X.K

pKp/Q;FV /m;

so it is enough to check that for all compact open subgroups Kp �Kp.0/ we have

H 2
ét.X.K

pKp/Q;FV /
Kp.0/
m DH 2

ét.X.K
pKp.0//Q;FV /m;

which is an easy consequence of the Hochschild–Serre spectral sequence and our
vanishing result. We also need an embedding S ,! zS ˝ ZpFp which is compatible
with the actions of GL3.Qp/ and the Hecke algebra. In fact, it is easy to see that
we have zS ˝ ZpFp D S . For example, there is a natural isomorphism

H 3
ét.XQ;OE /m=$EH

3
ét.XQ;OE /m DH

3
ét.XQ; kE /m;
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and hence the vanishing of H 3
ét.XQ; kE /m implies that of the finitely generated OE -

module H 3
ét.XQ;OE /m. One then sees that for all s we have a natural isomorphism

H 2
ét.XQ;OE /m=$

s
EH

2
ét.XQ;OE /m DH

2
ét.XQ;OE=$

s
E /m;

from which the claim follows easily.
We now examine Axiom Ã1. We must show that if zV is a finite free Zp-

module with a locally algebraic action of Kp.0/ (acting through GL3.Zp/), then
. zS ˝ Zp zV /

Kp.0/ is a finite free Zp-module, and for ADQp, Fp we have

. zS ˝ Zp zV /
Kp.0/˝ ZpAD . zS ˝ Zp zV ˝ ZpA/

Kp.0/:

This is straightforward, the key point being that if F zV denotes the lisse étale sheaf
attached to zV , then a straightforward argument with Hochschild–Serre as above gives

. zS ˝ Zp zV /
Kp.0/ DH 2

ét.X.K
pKp.0//Q;F zV /m;

which is certainly a finite free Zp-module (it is torsion-free by the proof of
Corollary 3.4.5).

The verification of Axioms Ã2 and Ã3 is now exactly the same as in Propo-
sition 7.4.4 of [Emerton et al. 2013], as the Galois representations occurring in
the localised cohomology module H 2

ét.X.K
pKp.0//Q;F zV /m are associated to

automorphic forms exactly as in that work.5 (In fact, at least for Axiom Ã2 this is a
rather roundabout way of proceeding, as the Galois representations in question are
constructed in [Harris and Taylor 2001] by using H 2

ét.X.K
pKp.0//Q;F zV /, and

one can read off the required properties directly from the comparison theorems of
p-adic Hodge theory. For Axiom Ã3 we are not aware of any comparison theorems
in sufficient generality, so it is necessary at present to take a lengthier route through
the theory of automorphic forms.) �

4. Group theory lemmas

The theorems of Section 3 contain certain hypotheses on the Galois representations
involved. Our goal in this section is to establish some group-theoretic lemmas which
give sufficient criteria for these hypotheses to be satisfied. Throughout the section
G is a finite group and k is an algebraically closed field of characteristic p. For
any square matrix A with entries in k, we write char.A/ to denote the characteristic
polynomial of A.

5In the interests of full disclosure, we are not aware of a reference in the literature giving the
precise base change result from U.2; 1/ to GL3 that we need, but it seems to be well-known to the
experts, and will follow from the much more general work in progress of Mok and Kaletha, Minguez,
Shin and White.
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4.1. Characterising representations by their characteristic polynomials. Let � W
G!GLn.k/ be an irreducible representation. In this subsection we establish some
criteria for � to satisfy the following hypothesis:

Hypothesis 4.1.1. If � WG!GLm.k/ is irreducible, and if char.�.g// annihilates
�.g/ for every g 2G, then � is equivalent to �.

Remark 4.1.2. Any irreducible � of dimension 2 satisfies Hypothesis 4.1.1, as was
proved by Mazur [1977, proof of Proposition 14.2]. However, it is not satisfied in
general if the dimension n of � is greater than 2 (for instance, this already fails if
� is the irreducible 3-dimensional representation of A4; see Section 5 of [Boston
et al. 1991] as well as Remark 4.1.7 below).

Lemma 4.1.3. Let � WG! GLn.k/ and � WG!GLm.k/ be two representations.
If � is irreducible, and if char.�.g// annihilates �.g/ for every g 2 G, then the
kernel of � contains the kernel of �.

Proof. If �.g/ is trivial, then the assumption implies that every eigenvalue of �.g/
is equal to 1, and hence that �.g/ is unipotent, and so of order a power of p. Thus
the image of ker.�/ under � is a normal subgroup H of �.G/ of p-power order,
and we see that the space of invariants .km/H is a nontrivial subspace of km. Since
H is normal in �.G/, we see that �.G/ leaves .km/H invariant, and hence, since
� is assumed to be irreducible, we see that in fact .km/H D km. Thus H is trivial,
which is to say that ker.�/� ker.�/, as claimed. �

Lemma 4.1.4. If � W G ! GLn.k/ is a direct sum of 1-dimensional characters
of G, and if �.g/ W G ! GLm.k/ is an irreducible representation of G such that
char.�.g// annihilates �.g/ for every g 2G, then mD 1, so that � is a character,
and every element of G lies in the kernel of at least one of the summands of �˝��1.

Proof. Since � is a direct sum of characters, it factors throughGab. Lemma 4.1.3 then
shows that � also factors through Gab. Since � is also assumed to be irreducible, we
find that � must be a character. Twisting by � by ��1, we may in fact assume that � is
trivial, and, writing �D�1˚� � �˚�n, we find that for each g2G, the value �i .g/ is
equal to 1 for at least one value of i (since char.�.g//D .X��1.g// � � � .X��n.g//
annihilates �.g/D 1). Thus G is equal to the union of its subgroups ker.�i /. �

Remark 4.1.5. In the context of the preceding proposition, we can’t conclude in
general that � coincides with one the summands of �. For example, if G denotes
the Klein four-group, if p is odd, and if � denotes the 3-dimensional representation
obtained by taking the direct sum of the three nontrivial characters ofG, then, taking
� to be the trivial representation, the hypotheses of the proposition are satisfied, but
� is certainly not one of the summands of �.
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Lemma 4.1.6. If � WG!GLn.k/ is irreducible, and is isomorphic to an induction
IndGH  , where H is a cyclic normal subgroup of G of index n and  WH ! k� is
a character, then � satisfies Hypothesis 4.1.1.

Proof. The restriction �jH is isomorphic to the direct sum
L
g2G=H  

g . If we
let � 0 be a Jordan–Hölder constituent of the restriction �jH , then Lemma 4.1.4
(applied to the representations �jH and � 0 of H ) implies that � 0 is a character of
H and (because H is cyclic) that � 0 D  g for some g 2G=H . The H -equivariant
inclusion  g D � 0! �jH then induces a nonzeroG-equivariant map �D IndGH  D
IndGH  

g ! � , which must be an isomorphism, since both its source and target are
irreducible by assumption. This proves the lemma. �
Remark 4.1.7. If we take G D A4 and H to be the normal subgroup of G of
order four (so that H is a Klein four-group), then the induction of any nontrivial
character of H gives an irreducible representation � W G ! SO3.k/. For every
g 2G, the characteristic polynomial of �.g/ thus has 1 as an eigenvalue, and so, if
� denotes the trivial character of G, the element �.g/ is annihilated by char.�.g//
for every g 2G. Thus the analogue of Lemma 4.1.6 does not hold in general if H
is not cyclic.

We thank Florian Herzig for providing the proof of the following lemma:

Lemma 4.1.8. Suppose that G is a finite subgroup of GLn.k/ which contains
SLn.k0/ for some subfield k0 of k and is contained in k�GLn.k0/.

(1) Any irreducible representation ofG over k remains irreducible upon restriction
to SLn.k0/.

(2) Given any two irreducible representations of G which become isomorphic
upon restriction to SLn.k0/, one can be obtained from the other via twisting by
a character of G that is trivial on SLn.k0/.

Proof. Let G act via � on the k-vector space V , and let .�;W / be an irreducible
subrepresentation of � jSLn.k0/. Then W is obtained by restriction from a repre-
sentation of the algebraic group SLn =k0 (see Section 1 of [Jantzen 1987]), so the
action of SLn.k0/ on W may be extended to an action of GLn.k/ and thus of G.
By Frobenius reciprocity we obtain a surjective map .IndGSLn.k0/

1/˝W ! V of
G-representations. Since G=SLn.k0/ is a finite abelian group of prime-to-p order,
we see that .IndGSLn.k0/

1/ is a direct sum of 1-dimensional representations, so that V
is a twist of W by some character which is trivial on SLn.k0/. Thus the restriction
of � to SLn.k0/ is just W , which is irreducible, proving (1).

This same argument also serves to establish (2). �
Lemma 4.1.9. Assume that p � n. If � W G ! GLn.k/ is irreducible, and
if SLn.k0/ � �.G/ � k�GLn.k0/ for some subfield k0 of k, then � satisfies
Hypothesis 4.1.1.
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Proof. The case nD 1 follows from Lemma 4.1.4, and, as remarked above, the case
nD 2 is proved in the course of the proof of Proposition 14.2 of [Mazur 1977], so
we may assume that n� 3. By Lemma 4.1.3, we may assume that � is faithful, so
that we can identify G with �.G/. In particular, SLn.k0/ is a subgroup of G, and,
by Lemma 4.1.8, the restriction of � to SLn.k0/ remains irreducible.

Since G is finite, our assumption that SLn.k0/ � G implies that k0 is finite;
suppose that k0 has cardinality q. We recall some basic facts about the representation
theory of SLn.k0/; see for example Section 1 of [Jantzen 1987]. The irreducible
k-representations of SLn.k0/ are obtained by restriction from the algebraic group
SLn =k0, and are precisely those representations whose highest weights are q-
restricted. (With the usual choice of maximal torus T of SLn, if we identify
the weight lattice with Zn modulo the diagonally embedded copy of Z, a weight
.a1; : : : ; an/ is q-restricted if 0� ai �aiC1 � q�1 for all 1� i � n�1.) Suppose
that � has highest weight .a1; : : : ; an/. Let g 2 SLn.k0/ be a semisimple element
with eigenvalues ˛1; : : : ; ˛n. Then, since g is conjugate to an element of T .k/, by
considering the formal character of the corresponding representation of SLn =k0,
we see that among the eigenvalues of �.g/ are each of the quantities

nY
iD1

˛
xi
i ;

where the xi are a permutation of a1; : : : ; an.
Our assumption on � and � implies that, for each such permutation,

Qn
iD1 ˛

xi
i

must be one of ˛1; : : : ; ˛n. In particular, if we let ˛ be a primitive .qn�1/=.q�1/-st
root of unity, we may consider a semisimple element g with eigenvalues

˛; ˛q; : : : ; ˛q
n�1

:

Then, for any x1; : : : ; xn as above, there must be an integer 0� ˇ � n�1 such that

qn�1x1C q
n�2x2C � � �C xn � q

ˇ .mod .qn� 1/=.q� 1//:

Fix some 1� i �n�1, and consider two permutations x1; : : : ; xn and x01; : : : ; x
0
n

as above which satisfy xiDx0i for 1� i �n�2, xn�1Dai , xnDaiC1, x0n�1DaiC1
and x0n D ai . Taking the difference of the two expressions

qn�1x1C q
n�2x2C � � �C xn and qn�1x01C q

n�2x02C � � �C x
0
n;

we conclude that there are integers 0� ˇ;  � n� 1 such that

.q� 1/.ai � aiC1/� q
ˇ
� q .mod .qn� 1/=.q� 1//:
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Since n � 3, we have 0 � .q � 1/.ai � aiC1/ � .q � 1/2 < .qn � 1/=.q � 1/, and
we conclude that either ˇ �  and .q � 1/.ai � aiC1/ D qˇ � q , or ˇ <  and
.q� 1/.ai � aiC1/D .q

n� 1/=.q� 1/C qˇ � q . In the second case, we have

.q� 1/2 � .q� 1/.ai � aiC1/

D .qn� 1/=.q� 1/C qˇ � q

� .qn� 1/=.q� 1/C 1� qn�1

D qn�2C � � �C qC 2:

This is a contradiction if n� 4. If nD 3, .q3�1/=.q�1/� 3 .mod q�1/, so that
.q� 1/ j 3, which is a contradiction as p > 2.

Thus it must be the case that ˇ �  and .q� 1/.ai � aiC1/D qˇ � q , so that
ai � aiC1 is congruent mod p to 0 or 1, and thus ai � aiC1 D 0 or 1. In particular,
for each i we have 0� ai � an � n� 1� p� 1.

We now repeat the above analysis. Fix some 1 � i � n � 1, and consider
two permutations x1; : : : ; xn and x01; : : : ; x

0
n as above which satisfy xi D x0i for

1� i �n�2, xn�1Dai , xnDan, x0n�1Dan and x0nDai . Taking the difference of
the two expressions qn�1x1Cqn�2x2C� � �Cxn and qn�1x01Cq

n�2x02C� � �Cx
0
n,

and using that 0 � ai � an � p � 1 � q � 1, we conclude as before that each
ai�anD0 or 1. Thus there must be an integer 1� r�nwith a1D� � �DarDanC1,
arC1 D � � � D an.

Returning to the original congruences

qn�1x1C q
n�2x2C � � �C xn � q

ˇ .mod .qn� 1/=.q� 1//;

we see that the left side is congruent to a sum of precisely r distinct values qj ,
1� j � n� 1. Thus r D 1, and � jSLn.k0/ is the standard representation of SLn.k0/,
i.e., � jSLn.k0/ Š �jSLn.k0/. By part (2) of Lemma 4.1.8, we see that there is a
character � WG! k� with �jSLn.k0/ D 1 such that � Š �˝�.

To complete the proof, we must show that � is trivial. Take g 2 G; we will
show that �.g/ D 1. If g0 2 G has detg0 D detg, then g.g0/�1 2 SLn.k0/, so
�.g0/D �.g/. First, note that by assumption we can write g D �h, with � 2 k�,
h 2 GLn.k0/. Choose h0 2 GLn.k0/ to have eigenvalues f1; : : : ; 1; det.h/g. Then
h.h0/�1 2 SLn.k0/�G, so g0 WD �h0 is an element of G. Then the hypothesis on
� and � shows that the eigenvalues of �.g0/g0 D �.g/g0 are contained in the set of
eigenvalues of g0, so that if �.g/¤ 1 we must have �.g/D det.h/D�1. Assume
for the sake of contradiction that this is the case. If n is odd, then we now choose
h0 to have eigenvalues f�1; : : : ;�1g, and we immediately obtain a contradiction
from the same argument. If n is even then since p � n we have p � 5 (recall that
we are assuming n� 3), and we may choose a 2 .k0/�, a¤˙1. Then choosing h0

to have eigenvalues f1; : : : ; 1; a;�1=ag gives a contradiction. �
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4.2. Representations whose image is generated by regular elements. Recall that
a square matrix with entries in k is said to be regular if its minimal polynomial and
characteristic polynomial coincide.

Lemma 4.2.1. If � WG! GLn.k/ and � WG! GLn.k/ are representations such
that the image �.G/ is generated by its subset of regular elements, and for every
g 2G the characteristic polynomial of �.g/ annihilates �.g/, then det �D det � .

Proof. Let g 2G be an element such that �.g/ is regular. Then the characteristic
polynomials of �.g/ and �.g/ must be equal (since the minimal and characteristic
polynomials of �.g/ coincide and the characteristic polynomial of �.g/ annihilates
�.g/), so det �.g/ D det �.g/. Since �.G/ is generated by its subset of regular
elements, the result follows. �

In fact, we actually need a slight generalisation of this result, where we simply
have a collection of characteristic polynomials, rather than a representation �.
Suppose that for each g 2G we have a monic polynomial

�g.X/DX
n
� a1.g/X

n�1
C � � �C .�1/nan.g/ 2 kŒX�

of degree n with the property that for all g, h 2G, we have an.gh/D an.g/an.h/.

Lemma 4.2.2. Suppose that � WG! GLn.k/ is a representation with the property
that �.G/ is generated by its subset of regular elements, and that for each g 2 G
we have �g.�.g//D 0. Then for each g 2G we have det �.g/D an.g/.

Proof. This may be proved in exactly the same way as Lemma 4.2.1. �

Let � WG! GL3.k/ be irreducible. Our goal is to give criteria for � to satisfy
the following hypothesis, in order to apply the previous lemmas:

Hypothesis 4.2.3. The image �.G/ is generated by its subset of regular elements.

Lemma 4.2.4. If � WG! GL3.k/ is irreducible, and if either

(1) � is isomorphic to an induction IndGH  , where H is a normal subgroup of
index 3 in G and  WH ! k� is a character, or

(2) �.G/ contains a regular unipotent element,

then � satisfies Hypothesis 4.2.3.

Proof. Suppose first that � is isomorphic to an induction IndGH  . Since H is a
proper subgroup of G, the set of elements G �H generates G. If g 2G �H then
the characteristic polynomial of �.g/ is of the form X3�˛. If p ¤ 3 then this has
distinct roots, so �.g/ is regular, and if p D 3 then it is easy to check that �.g/ is
the product of a scalar matrix and a unipotent matrix, and is regular.

Suppose now that �.G/ contains a regular unipotent element. For ease of notation,
we will refer to �.G/ as G from now on. Let H be the subgroup of G generated
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by the regular elements, and assume for the sake of contradiction that H is a proper
subgroup of G. We claim that H contains every scalar matrix in G; this is true
because the product of a scalar matrix and a regular matrix is again a regular matrix.
Consider an element g 2G �H ; since it is not regular, and not scalar, it acts as a
scalar on some unique plane in k3. We write `g for the corresponding line in P2.k/.

Let h be the given regular unipotent element in H . Then h stabilises a unique
line in k3, so a unique point P 2P2.k/. As g 2G�H , we also have gh 2G�H .
Then `g \ `gh is nonempty, so there is a point Q 2 P2.k/ which is fixed by g
and gh. It is thus also fixed by h, so in fact Q D P . Since g was an arbitrary
element of G �H , we see that every element of G �H fixes P , and since G is
generated by G�H , this implies that every element of G fixes P . This contradicts
the assumption that � is irreducible. �

Appendix: Cohomology of pairs

A.1. Étale cohomology of a pair. Let X be a scheme, finite-type and separated
over a field, let Z be a closed subscheme, and write j W U ,! X for the open
immersion of the complement U WDX nZ into X . As in Section 1, we let E be an
algebraic extension of Qp, where p is invertible on X , let kE denote the residue
field of E, and we let A be one of E or kE . We define the étale cohomology of
the pair .X;Z/ with coefficients in A to be the étale cohomology of the sheaf jŠA
on X , i.e., we write

H �ét.X;Z;A/ WDH
�

ét.X; jŠA/:

If i WZ ,!X is the closed immersion of Z, then the short exact sequence

0 �! jŠA �! A �! i�A �! 0

gives rise to a long exact sequence

� � � �!Hm
ét .Z;A/�!HmC1

ét .X;Z;A/�!HmC1
ét .X;A/�!HmC1

ét .Z;A/�!� � � ;

which is the long exact cohomology sequence of the pair .X;Z/.
We are particularly interested in the case of a pair .X nY;Z nY /, where X is a

smooth projective variety over a separably closed field, and Y and Z are smooth
divisors on X which meet transversely. In this case we have a Cartesian diagram of
open immersions

X n .Y [Z/
j

//

k0

��

X nY

k
��

X nZ
j 0

// X

(A.1.1)
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According to the above definition, the cohomology of the pair .X n Y;Z n Y / is
computed as the cohomology of the sheaf jŠA on X n Y , which is canonically
isomorphic to the cohomology of the complex Rk�jŠA on X . An important point
is that there is a canonical isomorphism

j 0ŠRk
0
�A �!
� Rk�jŠA: (A.1.2)

(See the discussion of §III (b) on p. 44 of [Faltings 1989].)

A.2. Verdier duality. Verdier duality [SGA 43 1973, Exposé XVIII; Verdier 1967]
states that if f WX ! S is a morphism of finite-type and separated schemes over a
separably closed field k, then, for any constructible étale A-sheaves F on X and G

on S , there is a canonical isomorphism (in the derived category) of complexes of
étale sheaves on S

RHom.RfŠF;G/ŠRf�RHom.F; f ŠG/:

We recall some standard special cases of this isomorphism, in the context of the
diagram (A.1.1).

Taking f to be k0 (and recalling that k0 is an open immersion), we obtain an
isomorphism

RHom.k0ŠA;A/ŠRk
0
�RHom.A;A/DRk0�A;

and hence, by double duality, an isomorphism

RHom.Rk0�A;A/Š k
0
ŠA: (A.2.1)

Next, taking f to be j 0, and taking into account (A.1.2) and (A.2.1), we obtain
isomorphisms

RHom.Rk�jŠA;A/ŠRHom.j 0ŠRk
0
�A;A/ŠRj

0
�RHom.Rk0�A;A/ŠRj

0
�k
0
ŠA:

Finally, taking f to the natural map X! Spec k, and recalling that in this case we
have

f ŠAD AŒ2d�.d/

(where d is the dimension of X ; see [SGA 43 1973, Exposé XVIII, Théorème
3.2.5]) and that Rf� D RfŠ (since f is proper, the variety X being projective by
assumption), we find that

RHom.Rf�Rk�jŠA;A/ŠRf�RHom.Rk�jŠA;AŒ2d �.d//

ŠRf�Rj
0
�k
0
ŠAŒ2d�.d/:

Passing to cohomology, we find that Hm
ét .X nY;Z nY;A/ is in natural duality with

H 2d�m.X nZ; Y nZ;A/.d/.
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A.3. Vanishing outside of, and torsion-freeness in, the middle degree. We con-
tinue to assume that X is a smooth projective variety of dimension d over the
separably closed field k, and that Y and Z are smooth divisors on X which meet
transversely, but, in addition, we now assume that the complementsX nY andX nZ
are affine (and hence also that Z nY and Y nZ are affine). This latter assumption
implies that Hm

ét .X nY;A/ vanishes if m> d and that Hm
ét .Z nY;A/ vanishes if

m� d [SGA 43 1973, Exposé XIV, Corollaire 3.3]. By the long exact cohomology
sequence of the pair .X nY; Y nZ/, we see that Hm

ét .X nY;Z nY;A/ vanishes if
m>d . Similarly, we see thatH 2d�m.XnZ; Y nZ;A/.d/ vanishes ifm<d . Hence,
by the duality between Hm

ét .X nY;Z nY;A/ and H 2d�m.X nZ; Y nZ;A/.d/, we
find that both vanish unless mD d .

Let OE denote the ring of integers in E. Suppose momentarily that E=Qp is
finite, and let $ be a uniformiser of OE . From a consideration of the cohomology
long exact sequence arising from the short exact sequence of sheaves

0 �! OE=$
n $ �
���! OE=$

nC1
�! kE �! 0;

and arguing inductively on n, we find that Hm
ét .X n Y;Z n Y;OE=$

n/ vanishes
in degrees other than mD d for all n. Passing to the projective limit over n, we
see that the same is true of Hm

ét .X nY;Z nY;OE /. Finally, a consideration of the
cohomology long exact sequence arising from the short exact sequence

0 �! OE
$ �
���! OE �! kE �! 0

shows that Hd
ét .X nY;Z nY;OE / is torsion-free.

By passage to the direct limit over subfields of E which are finite over Qp, we
see that these properties continue to hold for arbitrary algebraic extensions E=Qp .
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Homotopy exact sequences and orbifolds
Kentaro Mitsui

We generalize the homotopy exact sequences of étale fundamental groups for
proper separable fibrations to the case where fibrations are not necessarily proper
and separable. To treat the case where fibrations admit nonreduced geomet-
ric fibers, we introduce orbifolds within the framework of schemes and study
their fundamental groups. As an application, we give a criterion for simple-
connectedness of elliptic surfaces over an algebraically closed field by classifying
simply connected orbifold curves.
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1. Introduction

In algebraic geometry, the determination of fundamental groups of algebraic varieties
is a classical problem. However, the problem is difficult, especially in the positive-
characteristic case, where few results are known except for the one-dimensional case.
In this paper, we develop a method to compute étale fundamental groups of fibered
regular schemes, and apply the method to study elliptic surfaces, which provides
insight into the computation of étale fundamental groups of fibered varieties.

We denote the étale fundamental group of a pointed connected locally Noetherian
scheme .X;x/ by �1.X;x/. In the introduction, we omit the geometric point x for
simplicity. Let f W X ! S be a proper separable morphism between connected
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locally Noetherian schemes with OS D f�OX . The fibration f W X ! S may be
characterized by the following conditions:

(1) S is a connected locally Noetherian scheme.

(2) f WX ! S is a faithfully flat proper morphism.

(3) The homomorphism OS ! f�OX associated to f is an isomorphism.

(4) Any geometric fiber of f is reduced.

Choose a geometric fiber i WX0!X of f . In this case, Grothendieck showed in
[SGA 1 1971, X.1] that the morphisms i and f induce a homotopy exact sequence

�1.X0/
i�
���! �1.X /

f�
���! �1.S/ �! 1:

However, Condition (4) is too strong to compute fundamental groups of fibered
varieties, e.g., elliptic surfaces, which may admit nonreduced geometric fibers.

Introducing orbifolds and their fundamental groups, we generalize the above
homotopy exact sequence to the case where fibrations admit nonreduced geometric
fibers. Instead of considering all general connected locally Noetherian schemes, we
restrict ourselves to regular integral schemes. We consider a fibration f WX!S sat-
isfying the following conditions (see Definition 4.17 for slightly weaker conditions):

(10) X and S are regular integral schemes.

(20) f WX ! S is a faithfully flat morphism of finite type.

(30) OS is integrally closed in f�OX .

(40) The geometric generic fiber of f is reduced.

For example, all elliptic fibrations over curves satisfy these conditions (Section 6A).
In order to give a similar exact sequence with the same homomorphism i� in the
general case (Section 4C), we have to replace �1.S/ by its extension. To this end,
we introduce orbifolds within the framework of schemes and study their fundamental
groups (Section 3).

An orbifold .S;B/ is defined as a locally Noetherian normal scheme S with
data of ramifications B (Definition 3.6). Any orbifold curve over an algebraically
closed field may be regarded as a DM stack (Theorem B.1). However, in the higher
dimensional case, our orbifolds are different from DM stacks and more suitable
than DM stacks for our studies (Remark B.2). We denote the fundamental group of
a pointed orbifold .S;B; s/ by �1.S;B; s/ (Definition 3.22). The local invariants
associated to the nonreduced geometric fibers of f (Section 4B) endow S with an
orbifold structure. Our main result is the following (Section 4C):
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Theorem 1.1. Let .X;S; f / be a triple satisfying Condition (C�) (Definition 4.17).
Take the orbifold .S;B/ associated to f (Definition 4.23). Choose a connected
reduced geometric fiber i WX0!X of f over a regular point (e.g., the geometric
generic fiber of f ). Take a geometric point x0 on X0. Put x WD i.x0/ and s WDf .x/.
The morphisms i and f induce canonical homomorphisms i� W �1.X0;x0/ !

�1.X;x/ and f orb
� W �1.X;x/! �1.S;B; s/, respectively (Definition 4.25). Then

the sequence

�1.X0;x0/
i�
���! �1.X;x/

f orb
�
����! �1.S;B; s/ �! 1

is exact.

Next, we apply the above theorem to the case where f WX ! S is the structure
morphism of an elliptic surface over an algebraically closed field (Section 6).
We determine the data of ramifications B of the orbifold .S;B/ induced by f
(Section 6B), and determine which orbifold is induced by an elliptic surface
(Section 6C). As a result, we obtain a criterion for simple-connectedness of elliptic
surfaces (Section 6D):

Theorem 1.2. Let k be an algebraically closed field of characteristic p � 0. Let
C be a connected proper smooth k-curve. Let .X;C; f / be a relatively minimal
elliptic fibration (Definition 6.1). For each closed point s on C , we set

ms WD

�
m if f �1.s/ is of type mIn (n� 0) (the Kodaira symbol);
1 otherwise:

By ns we denote the maximum integer satisfying p−ns and ns jms (if p D 0, then
ns Dms). Then X is simply connected if and only if all of the following conditions
are satisfied:

(1) �.OX / > 0.

(2) C Š P1
k

.

(3) #fs 2 C.k/ j ns > 1g � 2.

(4) gcd.ns; nt /D 1 for s 6D t .

(5) If p > 0 and f �1.s/ is of type mIn (n> 0), then p−m.

(6) If p > 0 and .f �1.s//red is isomorphic to an ordinary elliptic curve, then the
OC;s-module .R1f�OX /s is torsion-free.

Furthermore, each of Conditions (1)–(6) is necessary.

We make a remark on Conditions (5) and (6) in the above theorem, which
appear only in the positive-characteristic case. Under certain technical assumptions,
Katsura and Ueno [1985, §§6–7] observed that an elliptic surface admits a nontrivial
étale covering if one of Conditions (5) and (6) is not satisfied. Localizing elliptic
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surfaces with respect to the base curve and using Galois cohomology groups, we
study this phenomenon in a systematic way (Section 6B).

We may give plenty of examples of elliptic fibrations with multiple fibers by
means of the algebraic analog [Lang 1986; Cossec and Dolgachev 1989, V, §4]
(Section 6C) and the rigid analytic analog [Mitsui 2013] of Kodaira’s logarithmic
transformation [1964, §4] for complex analytic elliptic fibrations. As for topological
fundamental groups in the complex analytic case, Moishezon [1977, Theorem 11,
II, §2, p. 191] gave a similar criterion by means of deformations of elliptic fibrations
in the category of differentiable manifolds. Although the determination of topolog-
ical fundamental groups is an old problem, no references can be found for étale
fundamental groups. Our proof is purely algebraic and applies in any characteristic.

Let us briefly review the studies on the fundamental group of an elliptic surface
f W X ! C in the complex analytic case. Take a smooth fiber i W X0! X of f .
The morphism i induces a homomorphism i� W �1.X0/! �1.X /. In order to study
�1.X /, Iitaka [1971, §4] determined Coker i�. He reduced the problem to the
case where X does not admit any multiple fiber by using Kodaira’s logarithmic
transformation and van Kampen’s theorem. In a similar way, Xiao [1991] studied
the case of more general compact complex analytic fibered surfaces. In another
point of view, the group Coker i� is relatively easy to deal with because it may be
interpreted as the fundamental group of the orbifold curve induced by the elliptic
fibration f [Ue 1986, §1; Friedman and Morgan 1994, 1.3.6]. If �.OX / D 0,
then the map f between the underlying topological spaces may be regarded as
a higher dimensional analog of a Seifert fibration [Seifert 1933; Thornton 1967].
Thurston [1980, §13.4] studied circle bundles over two-dimensional orbifolds in
the context of the geometry of three-manifolds, which clarified the structure of
Seifert fibrations: a Seifert fibration may be regarded as a circle bundle over a
two-dimensional orbifold. After these studies, Ue [1986, §1] showed that �1.X / is
isomorphic to the fundamental group of the orbifold curve induced by f whenever
�.OX / > 0. Using the orbifold curve, Friedman and Morgan [1994, 2.2.1 and 2.7.2]
discussed the general case in a systematic way. In the present paper, we develop
this idea of using orbifolds within the framework of schemes, and give homotopy
exact sequences as explained above.

As for Im i�, no difference appears between the characteristic-zero case and the
positive-characteristic case (Theorem 6.23). However, some differences appear
between the algebraic case of characteristic zero and the complex analytic case
(Remark 6.24). As for Coker i�, no difference appears between the algebraic case
of characteristic zero and the complex analytic case. As mentioned above, the group
Coker i� is isomorphic to the fundamental group of the orbifold curve induced by f .
Thus, it follows from the fact that any compact complex analytic curve is algebraic.
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However, several differences appear between the characteristic-zero case and the
positive-characteristic case, as explained below.

In the algebraic case of characteristic zero and in the complex analytic case,
the local structure of the orbifold curve is determined by the multiplicities of the
multiple fibers. On the other hand, in the positive-characteristic case, the local
structure is more complicated. This is because the completion of the local ring of
the base curve at any point admits lots of finite coverings even if we fix the degree
of the covering. For example, the completion admits infinitely many Artin–Schreier
coverings. In particular, the resolution of multiple fibers in the positive characteristic
case is much more difficult [Katsura and Ueno 1985, §§6–7; 1986, §2; Liu et al.
2004, §8.6] than that in the algebraic case of characteristic zero and in the complex
analytic case [Kodaira 1963, §6]. In order to determine the local structure of the
orbifold, we develop the above resolution of multiple fibers and study the minimal
regular models of torsors of elliptic curves (Section 6B). In conclusion, multiple
fibers of additive type [Katsura and Ueno 1986] do not affect the local structure of
the orbifold, and the local uniformizations of the orbifold are given by certain finite
cyclic coverings (Proposition 6.11).

In order to show Theorem 1.2, we classify simply connected orbifold curves
that are locally uniformized by finite cyclic coverings (Theorem 1.3(1)). More
precisely, we prove a generalized Fenchel conjecture (Theorem 1.3(2)). The original
conjecture states that any finitely generated Fuchsian group admits a torsion-free
subgroup of finite index, which was proved by a purely group-theoretic approach
in [Fox 1952] and [Chau 1983]. The conjecture is equivalent to the following:
any compact complex analytic orbifold curve minus finitely many points may be
trivialized by a finite branched covering except for some trivial cases. In other
words, except for some trivial cases, there exists a finite branched covering of a
given compact complex analytic curve minus finitely many points with prescribed
ramifications. Using the geometry of orbifold curves, we generalize this result in
any characteristic (Section 5):

Theorem 1.3. Let .C;B/ be a connected cyclic orbifold k-curve (Definition 5.1).
Take the tame part .C;Bt / and the wild part .C;Bw/ of .C;B/ (Definition 3.8).
Put M WD # Supp B and N WD # Supp Bt (Definition 3.6). For each s 2 Supp Bt ,
we put ns WD ŒB

t
s WKs �. Then:

(1) The orbifold .C;B/ is simply connected (Definition 3.19) if and only if one of
the following conditions is satisfied:
(a) C Š A1

k
, M D 0, and p D 0.

(b) C Š P1
k

, Bt D B, M � 2, and gcd.ns; nt /D 1 for s 6D t .

(2) There exists an orbifold trivialization of .C;B/ (Definition 3.10) if and only if
neither of the following conditions are satisfied:
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(a) C Š P1
k

, M DN D 1, and e.C;Bw/ > 0 (Definition 5.14).
(b) C Š P1

k
, Bt D B, M D 2, and ns 6D nt where Supp B D fs; tg.

Let us explain our proof. The problem may be reduced to showing the existence
or nonexistence of the following four types of coverings:

(1) a covering of the projective line with at most two tame branch points;

(2) a covering of the projective line with three tame branch points;

(3) a covering of a curve with one tame branch point;

(4) a covering of a curve with one wild branch point.

Case (1) is easy. In the other cases, difficulties arise when we construct a covering
of a curve with prescribed ramifications. In Case (2), we use the techniques of
degeneration of a covering of a curve over a mixed characteristic ring [Raynaud
1994, §6]. In Cases (3) and (4), we produce rational functions on étale coverings
with prescribed zeros and poles in order to apply Kummer theory and Artin–Schreier–
Witt theory.

Finally, the classification of simply connected orbifolds and the above studies on
the homotopy exact sequences give the desired criterion for simple-connectedness
of elliptic surfaces.

2. Notation and conventions

We denote the cardinality of a set A by #A and the degree of a finite field extension
L=K by ŒL W K�. We denote the field of fractions of an integral domain R by
Frac R and the strict Henselization of a local ring R by Rsh. For a ring R, an
R-curve is a faithfully flat separated R-scheme of finite type and of pure relative
dimension one. We denote the geometric genus of a proper curve C over a field
by g.C /. The multiplicity of a nonzero Weil divisor D on a locally Noetherian
normal scheme X is the maximum positive integer m such that there exists a Weil
divisor D0 on X satisfying D DmD0. A scheme Y over a scheme X is called an
étale covering space of X if the structure morphism Y ! X is finite, étale, and
surjective. A scheme X is said to be simply connected if X is connected and does
not admit any nontrivial connected étale covering space of X .

Let X be a connected locally Noetherian scheme. Take a geometric point
x W Spec� ! X on X , where � is a separably closed field. The pair .X;x/
is called a pointed connected locally Noetherian scheme. We denote the étale
fundamental group of .X;x/ by �1.X;x/. We sometimes omit x and denote
�1.X;x/ by �1.X / for simplicity.
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3. Orbifolds

Definition 3.1. A morphism f between schemes is said to be separable if f is flat
and the fiber of f over any point is geometrically reduced [SGA 1 1971, X.1.1].
A morphism f W X ! Y between schemes is said to be generically separable if
f maps any point x of codimension zero to a point y of codimension zero and
induces a separable morphism Spec OX ;x! Spec OY;y . A morphism f WX ! Y

between schemes is called a quasiseparable-covering (qsc) morphism if f is a
locally quasifinite generically separable morphism. We say that a morphism f

between locally Noetherian schemes preserves codimensions if f maps any point
to a point of the same codimension.

Remark 3.2. A separable-covering morphism between integral schemes is conven-
tionally defined as a finite generically separable morphism. The notion of a qsc
morphism is a generalization of this notion.

We frequently use the following:

Lemma 3.3. (1) Any locally Noetherian normal scheme is the disjoint union of
locally Noetherian integral schemes [Matsumura 1989, Exercise 9.11].

(2) The normalization of any locally Noetherian normal integral scheme X in
any finite separable field extension of the function field of X is finite over X

[Matsumura 1989, §33, Lemma 1].

(3) Any separated qsc morphism X ! Y between connected locally Noetherian
normal schemes decomposes into an open immersion X !Z and a finite qsc
morphism Z! Y where Z is a connected locally Noetherian normal scheme
[EGA IV3 1966, 8.12.11].

Lemma 3.4 [Matsumura 1989, 9.4 and 15.1]. Let � WA! B be a homomorphism
between Noetherian rings, and Q a prime ideal of B. Put P WD ��1.Q/. Then:

(1) ht Q� ht P C dim BQ=PBQ.

(2) If � is flat, then the equality in (1) holds.

(3) Any qsc morphism between locally Noetherian normal schemes preserves
codimensions.

Lemma 3.5 (Zariski–Nagata purity [SGA 1 1971, X.3.1]). Let f W X ! Y be a
qsc morphism between locally Noetherian schemes. Assume that X is normal and
Y is regular. Then any irreducible component of the non-étale locus of f is of
codimension one.

Definition 3.6. Let S be a locally Noetherian normal scheme. By P .S/ we denote
the set of all points on S of codimension one. For each s2P .S/ put Ks WDFrac Osh

S;s
.

Take a separable closure Ks of Ks . Let B be a map that associates s 2 P .S/ with
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a finite Galois extension Bs=Ks in Ks and satisfies the following condition: let
Supp B WD fs 2 P .S/ jBs 6DKsg; then Supp B is locally finite. The pair .S;B/
is called an orbifold. For a locally Noetherian normal scheme S , we denote the
orbifold obtained by equipping S with the trivial orbifold structure by .S/. Let P

be a property of schemes (e.g., connected, quasicompact, regular). We say that an
orbifold .S;B/ is P if S has the property P . Let P be a property of finite field
extensions (e.g., trivial, tame, wild, cyclic). We say that an orbifold .S;B/ is P if
Bs=Ks has the property P for any s 2 P .S/.

Remark 3.7. In the above definition, we restrict ourselves to the case where the data
of ramifications are given only in codimension one for our purpose of application
to homotopy exact sequences (see Remark 4.26 for a generalization).

Definition 3.8. Let .S;B/ be an orbifold. By Bt we denote the map that associates
s 2 P .S/ with the maximal tame field extension Bt

s=Ks in Bs . Then .S;Bt / is a
cyclic orbifold. The orbifold .S;Bt / is called the tame part of .S;B/. Assume
that .S;B/ is cyclic. By Bw we denote the map that associates s 2 P .S/ with the
minimum field extension Bws =Ks in Bs such that the equality Bt

sBws D Bs holds.
Then .S;Bw/ is a cyclic orbifold. The orbifold .S;Bt / is called the wild part of
.S;B/.

Lemma 3.9. Let u WS 0!S be a qsc morphism between locally Noetherian normal
schemes. Take s0 2 P .S 0/. Put s WD u.s0/. Then s 2 P .S/. Put Ks WD Frac Osh

S;s

and K0s0 WD Frac Osh
S 0;s0

. Then u induces a finite field extension K0s0=Ks .

Proof. We may assume that S and S 0 are affine. The first statement follows from
Lemma 3.4(3). The last statement follows from Lemma 3.3(3). �
Definition 3.10. Let .S;B/ and .S 0;B0/ be two orbifolds. We use the notation
introduced in Lemma 3.9. Composing the field extensions K0s0=Ks and B0s0=K

0
s0 ,

we obtain a field extension B0s0=Ks . Assume that there exists a Ks-algebra homo-
morphism �s0 WBs!B0s0 for all s0 2P .S 0/. Then u is called an orbifold morphism
.S 0;B0/! .S;B/. If �s0 is an isomorphism for all s0 2 P .S 0/, then u is called
an orbifold étale morphism .S 0;B0/! .S;B/. If u is finite, orbifold étale, and
surjective, then .S 0;B0/ is called an orbifold étale covering space of .S;B/. If
.S 0;B0/ is a trivial orbifold and an orbifold étale covering space of .S;B/, then u

is called an orbifold trivialization of .S;B/.

Remark 3.11. The homomorphisms �s0 are not part of the data of an orbifold
morphism. The image of �s0 does not depend on the choice of �s0 since Bs=Ks is
Galois. The composite of any two orbifold (étale) morphisms is an orbifold (étale)
morphism.

Definition 3.12. Let .S;B/ be an orbifold. We use the notation introduced in
Lemma 3.9. Assume that there exists a Ks-algebra homomorphism  s0 WK

0
s0!Bs
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for all s0 2 P .S 0/ (e.g., u is étale). Since Bs=K
0
s0 is Galois, we may define an

orbifold .S 0;B0/ by putting B0s0 WDBs for all s0 2P .S 0/. Then u is an orbifold étale
morphism .S 0;B0/! .S;B/. We say that u induces an orbifold étale morphism
.S 0;B0/! .S;B/.

Lemma 3.13. Let f W X ! S and g W Y ! S be two qsc morphisms between
locally Noetherian normal schemes. Take the normalization Z of X �S Y and
the canonical projections f 0 W Z! Y and g0 W Z! X . Then f 0 and g0 are qsc
morphisms between locally Noetherian normal schemes.

Proof. We may assume that X , Y , and S are affine. By (1) and (3) of Lemma 3.3,
we have only to show the case where f and g are finite qsc morphisms between
integral schemes. In this case, the lemma follows from Lemma 3.3(2). �
Lemma 3.14. Take a separable closure L of a field L. Let M and N be two finite
field extensions of L in L. Put P WDM \N and Q WDMN . By zQ we denote the
Galois closure of Q=L. Then the L-algebra M ˝L N is L-isomorphic to a finite
product of Q-subfields of zQ. If M=L is Galois then M ˝L N ŠQŒP WL� over L,
where the right-hand side is the product of ŒP WL� copies of Q. If M=L and N=L

are Galois, then zQDQ.

Proof. This follows from the L-algebra isomorphism M ˝L N Š P ˝L Q. �
By C (resp. Cét) we denote the category consisting of locally Noetherian normal

schemes and qsc morphisms (resp. étale morphisms). By Corb (resp. Corb;ét) we
denote the category consisting of orbifolds and orbifold morphisms (resp. orbifold
étale morphisms). We define a faithful functor Forb W C! Corb by S 7! .S/. In the
same way, we define a faithful functor Forb;ét W Cét! Corb;ét. By G W Cét! C and
Gorb W Corb;ét! Corb we denote the canonical faithful functors. Then Forb ıG is
naturally isomorphic to Gorb ıForb;ét.

Proposition 3.15. The categories C, Cét, Corb, and Corb;ét admit any finite fiber
product. In any case, the (underlying) scheme of any finite fiber product is isomor-
phic to the normalization of the fiber product of the (underlying) schemes, and any
base change of any (orbifold) étale morphism is an (orbifold) étale morphism. The
functors Forb, Forb;ét, G, and Gorb preserve any finite fiber product.

Proof. Let us show the first statement. Lemma 3.13 shows the cases of C and Cét.
Let .S1;B1/ and .S2;B2/ be two orbifolds over an orbifold .S0;B0/. We define
an orbifold .S3;B3/ in the following way. Take the normalization S3 of S1�S0

S2

and the canonical projection pi W S3 ! Si for i D 0, 1, and 2. Take s 2 P .S3/.
Put Ki WD Frac Osh

Si ;pi .s/
and K3 WD Frac Osh

S3;s
. The morphism pi induces a field

extension K3=Ki . Put Li WD Bi;pi .s/. Take a separable closure K3 of K3. By
L0i=K3 we denote the unique Galois extension in K3 that is K3-isomorphic to the
lifting of the Galois extension Li=Ki via K3=Ki . We define B3;s=K3 as the Galois
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extension L0
1
L0

2
=K3. We apply the same procedure to all s2P .S3/. Then we obtain

an orbifold .S3;B3/ and an orbifold morphism pi W .S3;B3/! .Si ;Bi/ for iD0; 1,
and 2. By construction, the orbifold .S3;B3/ is the fiber product of .S1;B1/ and
.S2;B2/ over .S0;B0/ in Corb. Thus, the category Corb admits any finite fiber
product. Assume that .S1;B1/ is orbifold étale over .S0;B0/. By definition, we
may regard L0, L1, and L2 as field extensions of K0 satisfying L1 D L0 � L2.
Since K3 �K1˝K0

K2 �L1˝K0
L2 ŠL

ŒL1WK0�
2

(Lemma 3.14), we may regard
K3 as a K2-subfield of L2. Then L2 Š B3;s over K2. Thus, the morphism
p2 W .S3;B3/! .S2;B2/ is orbifold étale. In particular, the category Corb;ét admits
any finite fiber product. The other statements follow from the construction. �
Definition 3.16. Let .S;B1/ and .S;B2/ be two orbifolds. For i D 1 and 2, the
identity on S is an orbifold morphism .S;Bi/! .S/. We define the composite
orbifold .S;B1B2/ of .S;B1/ and .S;B2/ as the fiber product of .S;B1/ and
.S;B2/ over .S/ in Corb.

Remark 3.17. By the proof of Proposition 3.15, the field .B1B2/s is equal to the
composite field of B1;s and B2;s for any s 2P .S/, where we regard the extensions
B1;s and B2;s of Ks as subfields of a fixed separable closure Ks .

Proposition 3.18. For i D 1 and 2, let ui W .Si/! .S;Bi/ be an orbifold trivi-
alization. Take the normalization S3 of S1 �S S2 and the canonical projection
pi W S3! Si for i D 1 and 2, which is an orbifold morphism .S3/! .Si/. Then
the orbifold morphism .S3/! .S;B1B2/ induced by u1 ı p1 and u2 ı p2 is an
orbifold trivialization.

Proof. The proposition follows from Lemma 3.14 and Remark 3.17. �
Definition 3.19. An orbifold .S;B/ is said to be simply connected if .S;B/ is
connected and does not admit any nontrivial connected orbifold étale covering
space. Let .S;B/ be a connected orbifold. Take a geometric point s W Spec�! S

on S , where � is a separably closed field. Assume that the image of s is a regular
point on S and not contained in the closure of Supp B (e.g., the image is the
generic point of S). The triple .S;B; s/ is called a pointed connected orbifold.
Let S D .S;B; s W Spec� ! S/ and S0 D .S 0;B0; s0 W Spec�0 ! S 0/ be two
pointed connected orbifolds. A pointed orbifold (étale) morphism S0 ! S is
a pair of an orbifold (étale) morphism u W .S 0;B0/ ! .S;B/ and a morphism
ˆ W Spec�0! Spec� between schemes such that the diagram

Spec�0 s0 //

ˆ
��

S 0

u

��
Spec� s // S

is commutative.
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Remark 3.20. By Zariski–Nagata purity (Lemma 3.5), any orbifold étale morphism
to .S;B/ is étale over the image of s.

Let .S;B; s/ be a pointed connected orbifold. By C.S;B/ we denote the category
of finite orbifold étale .S;B/-orbifolds and orbifold étale .S;B/-morphisms. We
define a functor Fs from C.S;B/ to the category of finite sets by sending an object
.S 0;B0/! .S;B/ to the underlying set of S 0�S s. We refer to [SGA 1 1971, V.5]
for the definition of a Galois category and a fiber functor (a fundamental functor).

Theorem 3.21. The category C.S;B/ is a Galois category with the fiber functor Fs .

Proof. We show the theorem in the same way as in the case of the category of finite
étale schemes over a pointed connected locally Noetherian scheme (see [SGA 1
1971, V.7]). We have only to verify that the pair .C.S;B/;Fs/ satisfies Axioms
(G1)–(G6) in [loc. cit., V.4]:

(G1) The orbifold .S;B/ is the final object in C.S;B/. The category C.S;B/ admits
any finite fiber product (Proposition 3.15).

(G2) The empty set equipped with the trivial orbifold structure is the initial object
in C.S;B/. Take an object u W .S 0;B0/! .S;B/ in C.S;B/. Assume that a
finite group G acts on an orbifold .S 0;B0/ over .S;B/ in C.S;B/. By S 00

we denote the spectrum of the OS -algebra of G-invariant sections of OS 0 .
Then S 00 is the quotient of S 0 by G in the category of S-schemes [loc. cit.,
V.1.8]. By v W S 0! S 00 we denote the morphism induced by the canonical
inclusion homomorphism OS 00 ! OS 0 . The morphism u factors as uD w ı v.
Since u is finite, the morphism v is finite. Since S is locally Noetherian and
u is finite, the morphism w is finite. Take a point s0 on S 0 of codimension
one. By I.s0/ � G we denote the inertia group of s0. We use the notation
B0s0=K

0
s0 introduced in Definition 3.10. Put s00 WD v.s0/, B00s00 WD B0s0 , and

K00s00 WD Frac Osh
S 00;s00

. Then the image under the homomorphism K00s00 !K0s0

induced by v is equal to .K0s0/
I.s0/. Furthermore, the extension B00s00=K

00
s00 is

finite and Galois. By construction, the pair .S 00;B00/ is an orbifold that is a
quotient of .S 0;B0/ by G in C.S;B/.

(G3) Lemma 3.3(1) implies that any morphism u W .S 0;B0/! .S;B/ in C.S;B/ fac-
tors as wıv W .S 0;B0/! .S 00;B00/! .S;B/ where v is a strict epimorphism,
w is a monomorphism, and .S 00;B00/ is a direct summand of .S;B/.

(G4) By definition, the functor Fs is left-exact.

(G5) By definition, the functor Fs preserves any finite direct sum and preserves
the quotient by any action of any finite group. Take a strict epimorphism
u in C.S;B/. We have to show that Fs.u/ is surjective. By s we denote the
image of s on S . By base change, we may replace S by Spec OS;s . Then u

is étale (Remark 3.20). Thus, the surjectivity follows from [loc. cit., V.3.5].
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(G6) Take a morphism u in C.S;B/. Assume that Fs.u/ is an isomorphism. We
have to show that u is an isomorphism. By s we denote the image of s

on S . By base change, we may replace S by Spec OS;s . Then u is étale
(Remark 3.20). Thus, it follows from [loc. cit., V.3.7].

Therefore, the pair .C.S;B/;Fs/ satisfies Axioms (G1)–(G6) in [loc. cit., V.4],
which proves the theorem. �

Definition 3.22. Let .S;B; s/ be a pointed connected orbifold. The functor Fs is
pro-representable by a profinite group (see [loc. cit., V.5]). This group is called the
fundamental group of .S;B; s/ and denoted by �1.S;B; s/. We sometimes omit s

and denote �1.S;B; s/ by �1.S;B/ for simplicity.

Let SD .S;B; s/ and S0D .S 0;B0; s0/ be two pointed connected orbifolds. Any
pointed orbifold (étale) morphism u WS0!S induces an (injective) homomorphism
u� W�1.S

0/!�1.S/ (see [loc. cit., V.6]). Since any connected finite étale S -scheme
induces a connected finite orbifold étale .S;B/-orbifold, we obtain a canonical
surjective homomorphism �S W �1.S/! �1.S; s/. If the regular locus of S is open
(e.g., S is excellent), then the singular locus of S is a closed subset of codimension
at least two. Thus, Zariski–Nagata purity (Lemma 3.5) shows the following:

Proposition 3.23. Let S D .S;B; s/ be a pointed connected orbifold. By S0

we denote the regular locus of S . Assume that S0 is an open subset of S . By
u W S0! S we denote the pointed orbifold étale morphism induced by the inclusion
morphism S0! S . Then the homomorphism u� W �1.S0/! �1.S/ induced by u

is an isomorphism. If S is trivial and regular, then �S is an isomorphism and, in
particular, �1.S/Š �1.S/.

Example 3.24. The homomorphism �.S/ W �1..S//! �1.S/ is not injective in
general, where .S/ is the trivial orbifold associated to S and we omit the geometric
points. Let k be an algebraically closed field of characteristic zero, n an integer
greater than one, and � a primitive n-th root of unity. Put S 0 WD A2

k
. Take the

coordinate functions .x;y/ of S 0. We define an automorphism � on S 0 by .x;y/ 7!
.�x; �y/. Take the quotient u W S 0 ! S of � . The scheme S is normal but not
regular. The morphism u ramifies only at the origin o of S 0. Since �1.S

0 n fog/Š

�1.S
0/Š 1 by Zariski–Nagata purity (Lemma 3.5), we obtain the isomorphisms

�1..S//Š Z=nZ and �1.S/Š 1. Thus, the homomorphism �.S/ is not injective.

4. Homotopy exact sequences

4A. Coverings of fibrations.

Lemma 4.1. Let f W X ! S be a quasicompact morphism between locally Noe-
therian schemes. Assume that X is reduced. Then the following are equivalent:
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(1) S is reduced and f is dominant.

(2) The homomorphism OS ! f�OX associated to f is injective.

Assume that (1) and (2) hold and that X is normal and integral. Then S is integral
and the following statements are equivalent:

(3) S is normal and the function field of S is algebraically closed in that of X .

(4) OS is integrally closed in f�OX .

If f is generically separable, then (3) and (4) are equivalent to the following:

(5) S is normal and the generic fiber of f is geometrically integral.

Proof. We may assume that S is affine. Put R WD �.S;OS / and W WD �.X;OX /.
Since W is reduced and the kernel of the homomorphism R!W associated to
f is the defining ideal of the closure of f .X /, the first equivalence holds. Let us
show the other statements. Since X is irreducible and f is dominant, the scheme S

is irreducible, which implies that S is integral. By K and L we denote the function
fields of S and X , respectively. By K0 and R0 we denote the algebraic closure
of K in L and the integral closure of R in K0, respectively. Then R0 DR if and
only if R is normal and K0 DK. Since X is normal and integral, the ring W is
normal and integral [Liu 2002, 4.1.5], which implies that R0 is the integral closure
of R in W . Thus, the second equivalence holds. The last statement follows from
[EGA IV2 1965, 4.6.3]. �

Lemma 4.2. Let u W X ! Y and v W Y ! Z be morphisms between integral
schemes. Assume that v ı u is dominant and generically separable and that v is
integral. Then u is dominant and generically separable and v is surjective and
generically separable.

Proof. Since v ıu is dominant and v is closed, the morphism v is surjective. Since
v is integral and dominant, the preimage of the generic point of Z under v consists
of the generic point of Y [Matsumura 1989, 9.3 (ii)]. Furthermore, since v ıu is
dominant and generically separable, the morphism u is dominant and the morphism
v is generically separable. Note the following: for any field extensions L=K, M=L,
and N=L, the ring M ˝L N may be regarded as a subring of M ˝K N since
M ˝K N ŠM ˝L N ˝L .L˝K L/ and L Š L˝K K � L˝K L. Thus, the
morphism u is generically separable. �

Definition 4.3. Condition (D) on morphisms f WX !S , u0 WX 0!X , u WS 0!S ,
and f 0 W X 0! S 0 between locally Noetherian schemes consists of the following
conditions:

(1) f is quasicompact, surjective, and generically separable.

(2) u0 is finite, surjective, and generically separable.
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(3) u is integral.

(4) The homomorphism OS ! f�OX associated to f is injective and OS is inte-
grally closed in f�OX .

(5) The homomorphism OS 0 ! f 0�OX 0 associated to f 0 is injective and OS 0 is
integrally closed in f 0�OX 0 .

(6) The diagram

X 0
u0 //

f 0

��

X

f
��

S 0
u // S

is commutative.

Remark 4.4. Conditions (1)–(3) imply that f 0 is quasicompact. Conditions (1)–(6)
imply that u is given by the integral closure of OS in .f ıu0/�OX 0 .

Proposition 4.5. Let f W X ! S , f 0 W X 0! S 0, u W S 0! S , and u0 W X 0! X be
morphisms between locally Noetherian schemes satisfying Condition (D). Suppose
that X is normal and that X 0 is connected and normal. Then:

(1) X , X 0, S , and S 0 are normal and integral.

(2) u is finite, surjective, and generically separable.

(3) f 0 is quasicompact, surjective, and generically separable.

Proof. Since X 0 is connected and u0 is surjective, the scheme X is connected.
Lemma 3.3(1) shows that X and X 0 are integral. Thus, Lemma 4.1 shows that S

and S 0 are integral and normal. Therefore, Statement (1) holds. Since f ı u0 is
surjective and generically separable and u is integral, Lemma 4.2 shows that f 0 is
dominant and generically separable and u is surjective and generically separable.
Thus, Lemma 3.3(2) shows that u is finite. Therefore, Statement (2) holds. Let us
show that f 0 is surjective. We may assume that the finite covering X 0=X is Galois
after replacing X 0 and S 0 by finite coverings. The Galois group G of X 0=X faithfully
acts on the finite covering S 0=S such that f 0 is G-equivariant. Since f 0.X 0/ is
stable under any element of G and the equalities u.f 0.X 0//D f .u0.X 0//DS hold,
the morphism f 0 is surjective. Thus, Statement (3) holds. �
Proposition 4.6. We use the same notation and assumption as in Proposition 4.5.
Let v W T ! S be one of the following morphisms between schemes:

(a) a smooth morphism;

(b) the localization at a point;

(c) the strict Henselization (or the Henselization) of the spectrum of a local ring;

(d) the completion of the spectrum of an excellent local ring at the closed point.
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By fT W XT ! T , f 0
T
W X 0

T
! S 0

T
, uT W S

0
T
! T , and u0

T
W X 0

T
! XT we denote

the base changes of the S-morphisms f , f 0, u, and u0 via v, respectively. Take
connected components Z and Z0 of T and S 0

T
, respectively. Then:

(1) Z, f �1
T
.Z/, Z0, and .f 0

T
/�1.Z0/ are locally Noetherian, normal, and integral.

(2) fT , f 0
T

, uT , and u0
T

satisfy Condition (D).

(3) If v is surjective, then u0 is étale if and only if u0
T

is étale.

Proof. By U we denote any of T , XT , S 0
T

, and X 0
T

. Then U is locally Noetherian.
Since any fiber of v is geometrically regular, the scheme U is normal [Matsumura
1989, 23.9]. The schemes Z and Z0 are integral (Lemma 3.3(1)). We may assume
that Z D T and f �1

T
.Z/ D XT . Since v is a dominant flat morphism between

integral schemes, Lemma 4.1 implies that XT is integral. In the same way, we
may show that .f 0

T
/�1.Z0/ is integral. Thus, Statement (1) holds. Let us show

Statement (2). We have only to show that OT and OS 0
T

are integrally closed in
fT�OXT

and f 0
T�

OX 0
T

, respectively. Thus, Statement (2) follows from Lemma 4.1.
Statement (3) follows from faithfully flat descent for étale morphisms. �

Lemma 4.7. Let u W X ! Y and v W Y ! Z be morphisms between locally
Noetherian schemes. Put w WD v ıu. Assume that Y and Z are normal. Suppose
that u is dominant, v is affine, and w is finite, étale, and dominant. Then u and v
are finite, étale, and surjective.

Proof. Since Z is normal and w is étale, the scheme X is normal. We may assume
that X , Y , and Z are integral (Lemma 3.3(1)). Then u and v are finite surjective
morphisms between locally Noetherian normal integral schemes. We have only to
show that u and v are étale over any point z on Z. Since w is finite, étale, and
surjective, there exists an étale morphism t W U ! Z such that z 2 t.U / and the
restriction of the base change XU ! U of w via t to any connected component of
XU is an isomorphism [Bosch et al. 1990, 2.3.8]. Thus, by faithfully flat descent
for étale morphisms, we may assume that w is an isomorphism. Then u and v
induce isomorphisms between the function fields of X , Y , and Z. Since X , Y ,
and Z are normal and integral and u and v are finite, the morphisms u and v are
isomorphisms, which implies that u and v are étale. �

Proposition 4.8. Let f W X ! S and u W S 0! S be morphisms between locally
Noetherian normal integral schemes. Assume that f is quasicompact, surjective,
and generically separable, u is finite, surjective, and generically separable, and OS

is integrally closed in f�OX . Then there exist a locally Noetherian normal integral
scheme X 0 and morphisms f 0 WX 0! S 0 and u0 WX 0!X satisfying the following:

(a) f , f 0, u, and u0 satisfy Condition (D).
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(b) For any normal integral scheme Y and any dominant morphisms h W Y ! S 0

and � W Y ! X satisfying f ı � D u0 ı h, there exists a unique morphism
� 0 W Y !X 0 such that u0 ı � 0 D � and f 0 ı � 0 D h.

Furthermore, the following statements hold:

(1) If � in (b) is finite and étale, then u0 and � 0 are finite, étale, and surjective.

(2) If u is étale, then u0 is étale.

(3) If f is separable and of finite type, then the converse of (2) holds.

Proof. By K, K0, and L we denote the function fields of S , S 0, and X , respectively.
Put L0 WD L˝K K0. Since K is algebraically closed in L (Lemma 4.1) and the
extension K0=K is finite and separable, the ring L0 is a field. Furthermore, the field
K0 is algebraically closed in L0 and the extension L0=L is finite and separable. Take
the normalization u0 WX 0!X of X in L0. Since u0 is finite (Lemma 3.3(2)), the
scheme X 0 is locally Noetherian, normal, and integral. Take the unique morphism
f 0 W X 0! S 0 such that f ı u0 D u ı f 0. Then OS 0 is integrally closed in f 0�OX 0

(Lemma 4.1). Thus, Condition (a) is satisfied. By construction, Condition (b) is
satisfied. Statement (1) follows from Lemma 4.7. By v WZ!X and w WZ! S 0

we denote the base change of u via f and the base change of f via u, respectively.
Then v is finite, and Z is an integral scheme with function field L0. Let us show
Statement (2). Assume that u is étale. Then v is étale and Z is normal. Thus,
the scheme Z is X -isomorphic to X 0, which implies that u0 is étale. Let us show
Statement (3). Assume that f is separable and of finite type and that u0 is étale.
Replacing X by the smooth locus of f , we may assume that f is smooth ([Bosch
et al. 1990, 2.2.16] and Lemma 4.1). Then Z is normal. Thus, the scheme Z is
X -isomorphic to X 0, which implies that v is étale. Therefore, Statement (3) follows
from faithfully flat descent for étale morphisms. �

4B. Base spaces of local étale coverings.

Definition 4.9. Let R be a strictly Henselian Noetherian normal local ring with
field of fractions K. Take a separable closure K of K. Put S WD Spec R. Let
f W X ! S be a surjective generically separable morphism between connected
Noetherian normal schemes. Assume that OS is integrally closed in f�OX . We
define the maximal base field zK (of étale coverings of the total space) of f in the
following way. Let � W Y ! X be a connected étale covering space. Then Y is
normal. Take the normalization

Y
h
��! S 0

u
��! S

of S in the composite f ı � W Y ! X ! S . By K� we denote the function field
of S 0. Then u induces a finite separable field extension K�=K (Proposition 4.5).
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We define zK as the composite field of all K-embeddings of the finite separable
extensions K�=K in K for all connected étale covering spaces � W Y !X of X .

Remark 4.10. By definition, the field extension zK=K is algebraic and Galois.

We use the notation introduced in Definition 4.9.

Proposition 4.11. Let g WX 0!X be a proper birational morphism between regular
integral schemes. Then the maximal base field of f ıg in K is equal to zK.

Proof. By Zariski–Nagata purity (Lemma 3.5; see also [SGA 1 1971, X.3.3]), the
base change of finite étale X -schemes via g induces an equivalence of categories
between the category of finite étale X -schemes and the category of finite étale
X 0-schemes, which proves the proposition. �

Lemma 4.12. Let L=K be a finite field extension in K. Then L� zK if and only if
there exists a connected étale covering space of X that induces the extension L=K.

Proof. The “if” part follows from the definition of zK. Since any finite fiber product
of étale covering spaces of X over X is an étale covering space of X , the “only if”
part follows from Proposition 4.8(1). �

By k we denote the residue field of R. By fZigi2I we denote the set of all
irreducible components of the special fiber Xk of f with the reduced structures.
Take the integral closure ki of k in �.Zi ;OZi

/.

Lemma 4.13. The ring ki is a field. If f is of finite type, then the field extension
ki=k is finite and purely inseparable for any i 2 I .

Proof. Since ki is an integral extension of the field k, the integral domain ki is a
field. Assume that f is of finite type. Since Zi is finite type over k, the function
field Ki of Zi is finitely generated over k. Since ki �Ki and k is separably closed,
the last statement holds. �

Suppose that R is a discrete valuation ring. Then f is flat. The closed subscheme
Xk is a divisor on X and, for any i 2 I , the closed subscheme Zi is a prime divisor
on X (Lemma 3.4(2)). We may write Xk D

P
i2I miZi .

Lemma 4.14. Suppose that R is a discrete valuation ring. Assume that f is of
finite type. Put ni WD Œki W k�, which is finite by Lemma 4.13. Let � W Y ! X be a
connected étale covering space. Take the normalization

Y
h
��! S 0

u
��! S

of S in the composite f ı � W Y ! X ! S . Then the degree of u divides
gcd.mi/i2I � gcd.ni/i2I .
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Proof. By m and n we denote the ramification index of S 0=S and the degree of the
residue field extension of S 0=S , respectively. Then m jmi and n j ni for any i 2 I

since � is étale and k is separably closed. Since R is a Henselian discrete valuation
ring, the degree of u is equal to mn, which concludes the proof. �

Proposition 4.15. We use the notation introduced in Definition 4.9. By k we denote
the residue field of R. Suppose that R is a discrete valuation ring. Assume that f is
of finite type. Then:

(1) The field extension zK=K is finite and Galois.

(2) If f is separable, then zK DK.

(3) If k is perfect, then Œ zK W K� divides the multiplicity of the special fiber of f
(Section 2).

(4) If f is proper and a finite field extension K0=K in K satisfies X.K0/ 6D ∅,
then zK �K0.

Proof. Statement (1) (resp. (2) and (3)) follows from Lemma 4.14 since zK=K is
Galois (Remark 4.10) (resp. mi D 1 and ki D k for any i 2 I , and ki D k for any
i 2 I (Lemma 4.13)). Let us show Statement (4). By Proposition 4.8(1), we may
assume that zK\K0 DK. By S 0 and zS we denote the normalizations of S in K0

and zK, respectively. Take the scheme X 0 (resp. zX ) and the morphism u0 WX 0!X

(resp. Qu W zX !X and Qf W zX ! zS ) given by Proposition 4.8. Then Qu W zX !X is an
étale covering space. Since the base change of Qu via u0 induces zKK0=K0, we have
only to show that zK DK whenever X.K/ 6D∅. Assume that X.K/ 6D∅. Then f
admits a section by the valuative criterion for properness. Since the pullback of any
section of f via Qu induces a section of Qf and S is strictly Henselian, the degree of
Qu is equal to 1, which concludes the proof. �

Example 4.16. Let us give an example of a morphism f W X ! S of finite type
with Œ zK W K� D 1 when dim S > 1. Assume that k is algebraically closed, the
characteristic of k is not equal to 3, and R D kŒŒx;y; z��=.x3 C y3 C z3/. By s

we denote the closed point of S . Put S0 WD S n fsg. Then �1..S// Š �1.S0/

(Proposition 3.23). Take the blowing-up f WX ! S of S at s. Then X is regular.
Put E WD f �1.s/. The reduction Ered of E is k-isomorphic to an elliptic curve
over k and the multiplicity of E is equal to 3. The morphism f is not flat at any point
on E (Lemma 3.4(2)). The inclusion morphisms S0!X , Ered!E, and E!X

induce a surjective homomorphism �1.S0/! �1.X /, an injective homomorphism
�1.Ered/! �1.E/, and an isomorphism �1.E/Š �1.X /, respectively [SGA 41

2

1977, IV.2.2]. Since �1.Ered/ is not finite, the extension zK=K is infinite.

4C. Homotopy exact sequences. In this subsection, we give homotopy exact se-
quences for fibrations satisfying the following conditions:
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Definition 4.17. Condition (C) on a triple .X;S; f / consists of the following
conditions:

(1) X and S are locally Noetherian normal integral schemes.

(2) f WX ! S is a surjective morphism of finite type.

(3) OS is integrally closed in f�OX (Conditions (1) and (2) imply that the homo-
morphism OS ! f�OX associated to f is injective (Lemma 4.1)).

(4) The geometric generic fiber of f is reduced.

Condition (C�) on a triple .X;S; f / is Condition (C) and the following conditions:

(5) X is regular.

(6) f is flat in codimension one.

Remark 4.18. In the case where f is proper, Conditions (2) and (3) are equivalent
to the following conditions:

(20) f WX ! S is proper.

(30) The homomorphism OS ! f�OX associated to f is an isomorphism.

Remark 4.19. In our studies on homotopy exact sequences, Condition (C�) is
necessary. This condition is used to describe the effect of the nonreduced geo-
metric fibers of f on étale covering spaces of X in terms of an orbifold .S;B/.
Conditions (1)–(3) are used to produce a finite covering space of S by taking the
normalization of S in the composite of a finite covering map of X and f . In the
case where f is proper, this normalization may be given by the Stein factorization of
the composite. Condition (5) is used to apply Zariski–Nagata purity (Lemma 3.5) to
a finite covering space of X . In particular, the condition that the finite covering map
is étale may be checked in codimension one. Condition (4) enables Condition (6)
to encode this condition as the data of ramifications B of an orbifold .S;B/. See
Theorem 4.22 and Remark 4.26 for Condition (C).

Example 4.20. Take k, n, u W S 0 ! S , and � as in Example 3.24. Let E be an
elliptic curve over k. Put X 0 WDE �k S 0. By f 0 WX 0! S 0 we denote the second
projection. Choose a primitive n-torsion point P on E. We define an action �
on X 0 as the product of the translation by the addition of P on E and the action
of � on S 0. We take the quotient u0 W X 0 ! X of � . Since f 0 is equivariant
with respect to � and � , we obtain a morphism f W X ! S . The triple .X;S; f /
satisfies Condition (C). The morphisms f , f 0, u, and u0 satisfy Condition (D)
(Definition 4.3). Since X is regular and S is not regular, the morphism f is not flat
[Matsumura 1989, 23.7 (i)]. However, the morphism f is flat in codimension one
since f is flat over the regular locus of S [Matsumura 1989, 23.1]. In particular,
the triple .X;S; f / satisfies Condition (C�).
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Example 4.21. Take k, u WS 0!S , and o as in Example 3.24. Take the blowing-ups
f W X ! S and f 0 W X 0 ! S 0 of S and S 0 at u.o/ and o, respectively. Then X

and X 0 are regular. The universal property of blowing-up shows that there exists
a unique morphism u0 W X 0 ! X such that f ı u0 D u ı f 0. The morphism u0

ramifies along the exceptional divisor of f 0. The morphisms f , f 0, u, and u0

satisfy Condition (D) (Definition 4.3). The triple .X;S; f / satisfies Condition (C).
However, the morphism f is not flat in codimension one (Lemma 3.4(2)). In
particular, the triple .X;S; f / does not satisfy Condition (C�).

We first generalize Grothendieck’s homotopy exact sequence to the case where
fibrations are not necessarily proper:

Theorem 4.22. Let .X;S; f / be a triple satisfying Condition (C) (Definition 4.17).
Assume that f is separable. Choose a connected geometric fiber i WX0!X of f
(e.g., the geometric generic fiber of f ). Take a geometric point x0 on X0. Put x WD

i.x0/ and s WD f .x/. The morphisms i and f induce canonical homomorphisms
i� W �1.X0;x0/! �1.X;x/ and f� W �1.X;x/! �1.S; s/, respectively. Then the
sequence

�1.X0;x0/
i�
���! �1.X;x/

f�
���! �1.S; s/ �! 1

is exact.

Proof. We have only to show the exactness at �1.X /. Since X0 is a geometric fiber
of f , the relation Im i� � Kerf� holds. Let us show that Kerf� � Im i�. Take
� 2 Kerf�. We have only to show the following: for any connected Galois étale
covering space � W Y !X , the element � acts trivially on �0.�

�1.X0//, where we
denote the base change of X0 via � by ��1.X0/. Take the normalization

Y
h
��! S 0

u
��! S

of S in the composite f ı � W Y !X ! S . Then u W S 0! S is an étale covering
space (Proposition 4.5(2) and Proposition 4.8(3)). The action of � on Y=X induces
an action of � on S 0=S . Since � 2 Kerf�, the element � acts trivially on S 0=S .
Thus, the element � acts trivially on �0.�

�1.X0//, which implies that � 2 Im i�.
Therefore, the sequence is exact. �
Definition 4.23. Let .X;S; f / be a triple satisfying Condition (C) (Definition 4.17).
We define the orbifold .S;B/ associated to f in the following way. By P .S/ we
denote the set of all points on S of codimension one. Take s 2 P .S/. Put Ks WD

Frac Osh
S;s

. By fs we denote the base change of f via the composite Spec Osh
S;s
!

Spec OS;s! S of the canonical morphisms. Take the maximal base field eKs of fs

(Definition 4.9). Proposition 4.15(1) shows that the field extension eKs=Ks is finite
and Galois. We define a map B on P .S/ by s 7! eKs=Ks (Definition 3.6). Let us
show that the pair .S;B/ is an orbifold. By S0 we denote the open subscheme of S
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that is the complement of the closure of Supp B. Take a nonempty open subscheme
S1 of S over which f is separable. Then S1 � S0 (Proposition 4.15(2)), which
implies that Supp B is locally finite. Thus, the pair .S;B/ is an orbifold.

Using the above orbifold, we give an étaleness criterion for finite coverings of X :

Theorem 4.24. Let .X;S; f / be a triple satisfying Condition (C�) (Definition 4.17).
Take the orbifold .S;B/ associated to f (Definition 4.23). Let u W S 0! S be a
finite surjective generically separable morphism between locally Noetherian normal
integral schemes. Take the scheme X 0 and the morphism u0 W X 0 ! X given by
Proposition 4.8. Then u0 is étale if and only if u induces an orbifold étale morphism
.S 0;B0/! .S;B/ (Definition 3.12).

Proof. First, we assume that S D Spec Q and S 0 D Spec Q0 where Q and Q0 are
discrete valuation rings. The morphism u induces a finite flat extension Q0=Q

of discrete valuation rings. Put J WD Frac Q, J 0 WD Frac Q0, K WD Frac Qsh, and
K0 WD J 0˝J K. The field extension J 0=J induced by u is finite and separable.
Take the maximal unramified extension I of J in J 0. We may embed I in K over J .
By (1) and (2) of Proposition 4.8, we may assume that J D I . Then K0 is a field.
By Proposition 4.6, we may assume that J DK and J 0 DK0. Then the theorem
follows from Lemma 4.12.

Next, let us show the general case. The “only if” part follows from the first
case and Proposition 4.6. Let us show the “if” part. Since f maps any point of
codimension one to a point of codimension at most one (Lemma 3.4(2)), the first
case and Proposition 4.6 show that u0 is étale in codimension one. Thus, Zariski–
Nagata purity (Lemma 3.5) shows that u0 is étale, which proves the “if” part. �
Definition 4.25. Let .X;S;f / be a triple satisfying Condition (C�) (Definition 4.17).
Take the orbifold .S;B/ associated to f (Definition 4.23). Choose a geometric
point x on X . Put s WD f .x/. Assume that the image of s on S is a regular point
on S (e.g., the generic point of S ). We define the homomorphism f orb

� W�1.X;x/!

�1.S;B; s/ induced by f in the following way. Let u W .S 0;B0/! .S;B/ be a
connected orbifold étale covering space. Take the scheme X 0 and the morphism
u0 W X 0 ! X given by Proposition 4.8. Then u0 W X 0 ! X is a connected étale
covering space (Theorem 4.24). Thus, we obtain a surjective homomorphism
f orb
� W �1.X;x/! �1.S;B; s/.

Proof of Theorem 1.1. We may show the theorem in the same way as in the proof of
Theorem 4.22. We have only to use Theorem 4.24 instead of Proposition 4.8(3). �
Remark 4.26. We generalize the definition of an orbifold .S;B/ (Definition 3.6)
by the following two modifications: replace P .S/ by all points on S ; remove
the finiteness assumption on Bs=Ks . We may define the fundamental group of
.S;B/ in the same way as in the case of an orbifold. The morphism f induces
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a generalized orbifold .S;B/. Note that if f is separable, then .S;B/ is trivial
(Proposition 4.8(3)). Replacing an orbifold by a generalized orbifold, we may
show Theorems 4.24 and 1.1 for any triple .X;S; f / satisfying Condition (C)
(Definition 4.17) without the regularity assumption on X and the flatness assumption
on f in codimension one (Examples 4.16 and 4.21).

5. Orbifold trivializations of orbifold curves

In this section, we fix an algebraically closed field k of characteristic p � 0. We
study orbifold trivializations of orbifold k-curves and classify simply connected
cyclic orbifold k-curves.

Definition 5.1. An orbifold .C;B/ (Definition 3.6) is called an orbifold k-curve
(resp. a proper orbifold k-curve) if C is a k-curve (resp. a proper k-curve). If p> 0

and ŒBs WKs � is power of p for any s 2 P .C /, we say that an orbifold .C;B/ is a
p-orbifold k-curve.

Since the underlying scheme of any orbifold k-curve is a smooth k-curve, we
study ramified coverings of smooth k-curves. The Riemann–Hurwitz formula shows
the following:

Lemma 5.2. Let u W C ! P1
k

be a finite tamely ramified k-morphism of degree d

between connected proper smooth k-curves. By N we denote the number of the
branched points of u. Then:

(1) N 6D 1.

(2) If N D 2, then C is isomorphic to P1
k

, u ramifies at exactly two points, and
both of the two ramification indices are equal to d .

Proposition 5.3. Let .P1
k
;B/ be a proper tame orbifold k-curve. If # Supp B � 1,

then .P1
k
;B/ is simply connected. Assume that Supp B D f0;1g. For sD 0 and1

we put ns WD ŒBs WKs �. Then:

(1) The orbifold .P1
k
;B/ is simply connected if and only if gcd.n0; n1/D 1.

(2) There exists an orbifold trivialization of .P1
k
;B/ if and only if n0 D n1.

In Statement (2), the restriction of the orbifold trivialization to any connected
component ramifies at exactly two points.

Proof. The first statement follows from Lemma 5.2(1). Let us show the other
statements. Put d WD gcd.n0; n1/. Take a parameter t of P1

k
so that t.0/D 0 and

t.1/ D 1. Then the k-morphism P1
k
! P1

k
, t 7! td induces an orbifold étale

morphism .P1
k
;B0/! .P1

k
;B/, where the equalities

ŒB0s WKs �D

�
ni=d if s D 0 or1;
1 otherwise:
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hold. Thus, Lemma 5.2 proves the proposition. �
Proposition 5.4. Let .P1

k
;B/ be a proper tame orbifold k-curve with Supp B D

f0; 1;1g. For sD 0, 1, and1, we put ns WD ŒBs WKs �. Assume that n0, n1, and n1
are pairwise coprime. Then there exists a Galois orbifold trivialization of .P1

k
;B/

with noncommutative simple Galois group.

Proof. First, we consider the case pD 0. By F2Dhx0;y0i we denote the free group
of rank two. Take the elements x, y, and z of the triangle group �.n0; n1; n1/ in
the definition of �.n0; n1; n1/ in Section A. We define a homomorphism � WF2!

�.n0; n1; n1/ by x0 7! x and y0 7! y. Then the equality �.y�1
0

x�1
0
/D z holds.

Since the étale fundamental group of P1
k
n f0; 1;1g is isomorphic to the profinite

completion of F2 (see [Lieblich and Olsson 2010] for a purely algebraic proof),
Theorem A.9 shows the proposition.

Next, we consider the case p > 0. Take a complete discrete valuation ring R

of characteristic zero whose residue field is isomorphic to k (e.g., the ring of Witt
vectors over k). Put K WD Frac R. The case p D 0 shows the following: replacing
R by a finite extension of R, there exist a finite noncommutative simple group G

and a K-morphism wK W YK ! P1
K

between connected proper smooth K-curves
satisfying the following condition:

(0) wK is the quotient morphism YK ! P1
K
D YK=G whose branch points are

equal to 0, 1, and1, over which each ramification index is equal to n0, n1,
and n1, respectively.

In the following, we take an appropriate R-model w of wK in the same way as
in [Raynaud 1994, §§6.1–6.3]. Remark that in [Raynaud 1994, §6] the group G

is a quasi-p-group and the ramification indices of wK are equal to powers of p.
However, these conditions are used only from Lemma 6.3.6. Replacing R by a
finite extension of R, we obtain an R-morphism w W Y ! P between R-schemes
satisfying Conditions (1)–(6):

(1) Y is a projective normal semistable R-curve that is an R-model of YK .

(2) P is a projective normal semistable R-curve that is an R-model of P1
K

.

(3) w is the quotient morphism Y ! P D Y=G.

(4) The restriction of w to the generic fibers is equal to wK .

(5) The closure of each branch point of wK in P is contained in the smooth locus
Psm of the R-scheme P .

To state Condition (6) below, we introduce notation. Condition (2) shows the
following two statements on the special fiber Pk of P : any irreducible component
is isomorphic to P1

k
, and the dual graph of the irreducible components is a tree �P .

By 0R , 1R , and1R we denote the closures of 0, 1, and1 on P1
K

in P , respectively.
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For s D 0, 1, and1, we denote the reduction of sR by sk . Condition (5) implies
that sk is contained in exactly one irreducible component Cs . We denote the vertex
of �P corresponding to Cs by es . Any two vertices es and et are connected by a
unique line lst on �P . The intersection l01\ l11\ l10 is exactly one vertex e011.
We denote the irreducible component corresponding to e011 by C011.

(6) P is a successive blowing-up of P1
R

, and the strict transform of the special
fiber of P1

R
is equal to C011.

Take a subgroup H of G. By Condition (1), we obtain an R-morphism u WY !X

between R-schemes satisfying Conditions (7) and (8) [Raynaud 1990, Corollaire
of Proposition 5]:

(7) X is a proper normal semistable R-curve with connected smooth generic fiber.

(8) u is the quotient morphism Y !X D Y=H .

Conditions (3) and (8) give an R-morphism v WX ! P between R-schemes such
that w D v ıu. Furthermore, the following condition is satisfied:

(9) u, v, and w are finite and surjective.

Since v and w are finite (Condition (9)), X and Y are Cohen–Macaulay (Condi-
tions (1) and (7) and [EGA IV2 1965, 5.8.6]), and Psm is regular (Condition (2)),
the following condition is satisfied [Matsumura 1989, 23.1]:

(10) v and w are flat over Psm.

By �Y and �X we denote the dual graphs of the irreducible components of the
special fibers Yk and Xk of Y and X . The group G acts on �Y . The quotient
morphisms u and v induce the quotient maps of the actions of G and H from the
vertices of �Y to the vertices of �P and �X , respectively. If an element g of G fixes
an edge e of �Y , then g does not exchange the two vertices on the edge e [Raynaud
1994, 6.3.5]. Thus, the quotients of the actions of G and H on �Y are canonically
isomorphic to �P and �X , respectively. Therefore, the morphisms u and v induce
maps �Y ! �X ! �P , respectively, that preserve the vertices and the edges.

Take the generic point � of an irreducible component of Pk . Choose the generic
point � of an irreducible component of Yk over �. Conditions (9) and (10) show that
OY;�=OP;� is a finite flat extension of discrete valuation rings. Conditions (1) and (2)
imply that the ramification index of OY;�=OP;� is equal to 1. Thus, the inertia group
I� of OY;�=OP;� is a p-group. Since G is a noncommutative simple group and any
simple p-group is commutative, the inequality G 6D I� holds. We take the above
subgroup H of G so that H D I�. Put � WD u.�/. Then the extension of the residue
fields of OX ;�=OP;� is separable. Conditions (2) and (7) imply that the ramification
index of OX ;�=OP;� is equal to 1. Thus, the extension OX ;�=OP;� is étale.
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Take g 2 G. Replacing � and H by g� and gHg�1, respectively, we obtain
X g and �g corresponding to X and � , respectively, in the same way as in the
above argument. Furthermore, the extension OX g;�g=OP;� is étale. Since v is
finite (Condition (9)) and R is excellent, the normalization Y 0 of the fiber product
of X g for all g 2 G over P is finite over P . By Y 0

K
we denote the generic

fiber of Y 0. Since G is simple and G 6DH , the intersection
T

g2G gHg�1 is the
trivial group. Thus, any connected component of Y 0

K
is PK -isomorphic to YK

(Lemma 3.14). Since Y is normal (Condition (1)) and w is finite (Condition (9)),
any connected component of Y 0 is P -isomorphic to Y . Thus, the product of �g for
all g 2G over � gives a point �0 on Y over � such that the extension OY;�0

=OP;�

is étale. Since w is a Galois covering, the extension OY;g�0
=OP;� is étale for

any g 2 G. Since � is arbitrary, the morphism w is étale at the generic point of
any irreducible component of Yk . Put P 0 WD Psm n .0R [ 1R [1R/. By w0 we
denote the restriction wjw�1.P 0/ W w

�1.P 0/! P 0. Condition (0) implies that the
restriction of w0 to the generic fibers is étale. Thus, the morphism w0 is étale in
codimension one. Therefore, Zariski–Nagata purity (Lemma 3.5) shows that w0

is étale. Thus, by Lemma 5.2 and the same method as above, we may assume that
�P D l01[ l11[ l10 after successive blowing-down of exceptional curves on Y

and P (Condition (6)).
The normalizations of the preimages of Cs and C011 under w are proper smooth

k-curves C 0s and C 0
011

, respectively. The covering C 0s=Cs branches at sk , over
which each ramification index is equal to ns ([Raynaud 1994, 6.3.2] and Condi-
tions (0), (4), and (5)). Sincew0 is étale, Lemma 5.2 implies that the preimage C 0

011

is connected and the covering C 0
011

=C011 branches at exactly three points, over
which each ramification index is equal to n0, n1, and n1, respectively. Therefore,
the covering C 0

011
=C011 induces a desired orbifold trivialization. �

Lemma 5.5. Let C be a connected proper smooth k-curve of positive genus. Take
a closed point s on C and an integer n. Assume that p−n. Then there exists a
connected étale covering space u W C 0 ! C , a divisor D on C 0, and a rational
function h on C 0 such that u�Œs�� nD D .h/, where Œs� and .h/ are the divisors
defined by s and h, respectively.

Proof. We may assume that n is positive. Since the genus of C is positive and
p−n, we may take a connected étale covering space u W C 0 ! C of degree n.
We denote the genus of C 0 by g. By J we denote the Jacobian variety of C 0

over k. Take a closed point s0 on C 0. Since the morphism .C 0/g ! J defined
by .si/

g
iD1
7!

Pg
iD1

.Œsi � � Œs0�/ is surjective and the multiplication of J by n

is surjective, there exists .si/
g
iD1
2 .C 0.k//g such that u�Œs� � nŒs0� is linearly

equivalent to n
Pg

iD1
.Œsi �� Œs0�/, which proves the lemma. �
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Proposition 5.6. Let .C;B/ be a connected proper tame orbifold k-curve with
# Supp B D 1. Assume that the genus of C is positive. Then there exists an orbifold
trivialization of .C;B/ that is the composite u ı v W C 00 ! C 0 ! C of two finite
coverings where u is étale and v is totally ramified over each branch point.

Proof. Take s 2 Supp B. Put n WD ŒBs WKs �. Take a connected étale covering space
u W C 0! C and a rational function h on C 0 given by Lemma 5.5. By v W C 00! C 0

we denote the normal model of the equation zn D h. Then u ı v induces a desired
orbifold trivialization. �

Proposition 5.7. Let .C;B/ be a connected tame orbifold k-curve. Put M WD

# Supp B. For each s 2 Supp B, we put ns WD ŒBs;Ks �. Then there exists an
orbifold trivialization of .C;B/ if and only if neither of the following conditions
are satisfied: (a) C Š P1

k
and M D 1; (b) C Š P1

k
, M D 2, and ns 6D nt where

Supp B D fs; tg.

Proof. In the proof of the “if” part, we may replace C by the smooth compactification
of C . Thus, we may assume that C is proper over k. By Proposition 3.18, we
have only to consider the following cases: (1) g.C /D 0 and M � 2; (2) g.C /D 0,
M D 3, and gcd.ns; nt /D 1 for s 6D t ; (3) g.C / > 0 and M D 1. Cases (1), (2),
and (3) follow from Propositions 5.3, 5.4, and 5.6, respectively. �

In the following, we provide steps in order to prove Proposition 5.12. Assume
that p > 0. Let C be a connected proper smooth k-curve. We denote the sheaf of
rational functions on C by MC . Put PC WDMC =OC . The exact sequence of abelian
sheaves 0! OC !MC ! PC ! 0 induces a long exact sequence

H 0.C;MC /
�C
���!H 0.C;PC /

 C
����!H 1.C;OC /:

By FC we denote the absolute Frobenius endomorphism of C and its actions on the
cohomology groups H 0.C;PC / and H 1.C;OC /. We define F0

C
as the identity map

and, for each positive integer d , we inductively define Fd
C

by Fd
C
WD Fd�1

C
ıFC .

Lemma 5.8. For any � 2H 0.C;PC /, there exists a connected étale covering space
u W C 0 ! C , a nonnegative integer d , and a rational function h on C 0 such that
u�Fd

C
� D �C 0.h/, where u� is the homomorphism H 0.C;PC /! H 0.C 0;PC 0/

induced by u.

Proof. Since the k-vector space H 1.C;OC / is finite-dimensional, we may take
a nonnegative integer d and a polynomial G.X / D

Pn
iD0 ciX

i 2 kŒX � so that
c0 6D 0 and G.FC /� D 0, where we put � WD Fd

C
 C �. Take an affine covering

UDfUig of C and a representative faij g2C 1.U;OC / of �. We define a polynomial
G.p/.X / 2 kŒX � by G.p/.X / WD

Pn
iD0 ciX

pi

. Since G.FC /� D 0, there exists
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faig 2 C 0.U;OC / such that G.p/.aij /D aj � ai for all i and all j . Thus, we may
define an étale covering space u W C 0! C by the equations�

G.p/.zi/D ai on Ui ;

zj � zi D aij on Ui \Uj :

By definition, the pullback of � via u splits, which proves the lemma. �

We denote the cokernel of an endomorphism � of a module M by M� .

Lemma 5.9. Let R be an excellent discrete valuation ring of positive characteristic
with separably closed residue field. By yR we denote the completion of R with respect
to the maximal ideal. Put K WD Frac R, Ksh WD Frac Rsh, and yK WD Frac yR. We
denote the Frobenius endomorphisms on these fields by F . The canonical inclusion
homomorphisms K!Ksh and Ksh! yK induce the canonical homomorphisms
˛ WK!Ksh

F�1
and ˇ WKsh

F�1
! yKF�1, respectively. Then:

(1) ˛ is surjective and R� Ker˛.

(2) ˇ is an isomorphism.

Proof. Since Ksh is algebraically closed in yK by the approximation property [Bosch
et al. 1990, 3.6.9], Artin–Schreier theory shows that ˇ is injective. Since yR is
isomorphic to the formal power series ring over the separably closed residue field
of R, the relation yR� .F �1/ yK holds, which implies that ˇ ı˛ is surjective. Thus,
Statement (2) holds, which implies Statement (1). �

We recall the definition of the addition of the ring of Witt vectors W .A/ with
coefficient ring A. Let n be a nonnegative integer. Put

Wn.X0; : : : ;Xn/ WD

nX
iD0

piX
pn�i

i 2 ZŒX0; : : : ;Xn�:

We inductively define Sn as the unique polynomial in ZŒX0; : : : ;Xn;Y0; : : : ;Yn�

satisfying the equality Wn.S0; : : : ;Sn/DWn.X0; : : : ;Xn/CWn.Y0; : : : ;Yn/. For
aD .a0; : : : ; an; : : : / 2W .A/ and b D .b0; : : : ; bn; : : : / 2W .A/, the addition of
Witt vectors is defined by

aC b WD .S0.a0; b0/; : : : ;Sn.a0; : : : ; an; b0; : : : ; bn/; : : : /:

Lemma 5.10. We denote the ideal of ZŒX0; : : : ;Xn;Y0; : : : ;Yn� generated by
fXiYj g0�i;j�n by I . Then the equality Sn �XnCYn mod I holds. In particular,
the equality

.a0; : : : ; an�1; an; : : :/C .0; : : : ; 0; bn; : : :/D .a0; : : : ; an�1; anC bn; : : :/

holds in W .A/.
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Proof. Let us show the first equality by induction on n. The case n D 0 is clear.
Assume that the case i is proved for any i < n. By the induction hypothesis, the
equality pnSn � pnXnCpnYn mod I holds, which proves the case n. Thus, the
first equality holds for any n. The first equality shows the last equality. �

For a positive integer n, we denote the ring of length-n Witt vectors with
coefficient ring A by Wn.A/. We denote the Frobenius endomorphism on Wn.A/

by F . Take a connected étale covering space u WC 0!C , a closed point s on C , and
s0 2 u�1.s/. Put Ks WD Frac Osh

C;s
and K0s0 WD Frac Osh

C 0;s0
. The extensions K0s0=Ks

for all s0 2 u�1.s/ induce a homomorphism

�u;s;n WWn.Ks/F�1!

M
s02u�1.s/

Wn.K
0
s0/F�1:

Put Au;s WD OC 0.C
0�u�1.s//. The canonical homomorphisms Au;s!K0s0 for all

s0 2 u�1.s/ induce a homomorphism

�u;s;n WWn.Au;s/F�1!

M
s02u�1.s/

Wn.K
0
s0/F�1:

Put�C;s;n WD lim
��!u

�u;s;n and �C;s;n WD lim
��!u

�u;s;n, where u WC 0!C runs through
all connected étale covering spaces of C . By construction, the homomorphisms
�C;s;n and �C;s;n are compatible with the reductions of the rings of Witt vectors.

Lemma 5.11. The relation Im�C;s;n � Im�C;s;n holds.

Proof. Take � 2 Wn.Ks/F�1. Put � WD �C;s;n.�/. We have to show that � 2
Im�C;s;n. By induction on n, we have only to consider the following cases: (1)
nD 1; (2) n> 1 and � is contained in the kernel of the reduction homomorphism
Wn.Ks/!Wn�1.Ks/. Note that W1.A/DA for any ring A. Lemma 5.10 reduces
Case (2) to Case (1). Thus, we may assume that nD 1. Lemma 5.9(1) shows that
the canonical homomorphism MC;s ! Ks induces a surjective homomorphism
P W PC;s! .Ks/F�1. Thus, we have only to show that �C;s;1.P .�// 2 Im�C;s;1

for any � 2 PC;s . Since the equality X d D 1C
�Pd�1

iD0 X i
�
.X � 1/ holds in the

polynomial ring kŒX � for any positive integer d , we may replace � by Fd� for any
positive integer d . Thus, the lemma follows from Lemma 5.8. �
Proposition 5.12. Assume that p > 0. Let .C;B/ be a connected proper cyclic
p-orbifold k-curve with # Supp B D 1. Then there exists an orbifold trivialization
of .C;B/ that is the composite u ı v W C 00! C 0! C of two finite coverings where
u is étale and v is totally ramified over each branch point.

Proof. Take s 2 Supp B. Take an integer n so that ŒBs W Ks � D pn. Since
H 1.Ks;Wn/D 0, the exact sequence of Gal.Ks=Ks/-modules

0 �! Z=pnZ �!Wn.Ks/
F�1
�����!Wn.Ks/ �! 0
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induces an isomorphism H 1.Ks;Z=p
nZ/ŠWn.Ks/F�1. In particular, the field ex-

tension Bs=Ks is induced by an element � 2Wn.Ks/F�1. Lemma 5.11 gives a con-
nected étale covering space u WC 0!C and an element � 2Wn.Au;s/F�1 such that
the equality �u;s;n.�/D �u;s;n.�/ holds. By K0 we denote the function field of C 0.
The image of � under the canonical homomorphism Wn.Au;s/F�1!Wn.K

0/F�1

induces a cyclic extension K00=K0 of degree pn. Take the normalization v WC 00!C 0

of C 0 in K00. By the choice of �, the morphism u ı v induces a desired orbifold
trivialization. �

Proposition 5.13. Let .C;B/ be a connected p-orbifold k-curve. Then there exists
an orbifold trivialization of .C;B/.

Proof. We may replace C by the smooth compactification of C . Thus, we
may assume that C is proper over k. By Proposition 3.18, we may assume that
# Supp B D 1. Take s 2 Supp B. Put m WD ŒBs WKs �. Let us show the proposition
by induction on m. The case m D 1 is clear. Assume that m > 1. Since Bs=Ks

is solvable, we may take a Galois extension B0s=Ks of degree p in Bs . For each
t 2 P .C / n fsg, we put B0t WDKt . We define a map B0 on P .C / by t 7! B0t=Kt

(Definition 3.6). Then the pair .C;B0/ is an orbifold. Applying Proposition 5.12 to
.C;B0/, we may reduce the case m to the case m=p. Thus, the case m holds by
the induction hypothesis. �

Definition 5.14. The Euler characteristic e.C / of a proper smooth k-curve C is
the `-adic Euler characteristic of C , which does not depend on the choice of the
prime number ` that is prime to p. Let .C;B/ be a proper orbifold k-curve. Take
s 2 Supp B. We use the notation Bs=Ks introduced in Definition 3.6. By Bıs
and Kıs we denote the valuation rings of the discrete valuation fields Bs and Ks ,
respectively. We define the orbifold Euler characteristic e.C;B/ of .C;B/ by

e.C;B/ WD e.C /�
X

s2Supp B

1

ŒBs WKs �
lengthKıs

.�1
Bıs =K

ı
s
/:

The Riemann–Hurwitz formula shows the following:

Proposition 5.15. Let .C;B/ and .C 0;B0/ be two proper orbifold k-curves. If there
exists an orbifold étale morphism .C 0;B0/! .C;B/ of degree n, then the equality
e.C 0;B0/D ne.C;B/ holds. In particular, if e.C;B/ > 0 and C is connected, then
the underlying curve of any connected orbifold étale covering space of .C;B/ is
isomorphic to P1

k
.

Proof of Theorem 1.3. Let us show Statement (2). Assume that C is not proper
over k. Take the smooth compactification C of C . We may choose an extension
B of B to P .C / so that the orbifold .C ;B/ satisfies neither Condition (a) nor
Condition (b). Thus, we may assume that C is proper over k. First, we consider
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the “if” part. By Propositions 3.18, 5.15, and 5.13, we may assume that Bt DB.
In that case, the “if” part follows from Proposition 5.7. Next, we consider the
“only if” part. Take s 2 Supp B and an orbifold trivialization C1 ! .C;B/. By
Proposition 5.7, we have only to show that Condition (a) is not satisfied. Assume
that Condition (a) is satisfied. Since C is simply connected, Proposition 5.12
gives an orbifold trivialization u W C2! .C;Bw/ that is totally ramified over the
unique branch point s. Condition (a) and Proposition 5.15 imply that C2 Š P1

k
.

Take the normalization C3 of C1 �C C2 and the canonical projection v W C3! C2.
Lemma 3.14 shows that v is tamely ramified over the unique branch point u�1.s/,
which contradicts Lemma 5.2. Thus, Condition (a) is not satisfied.

Let us show Statement (1). The “if part” follows from Proposition 5.3. We
consider the “only if” part. Assume that Condition (a) is not satisfied. State-
ment (2) implies that C Š P1

k
and M � 2. Proposition 5.13 implies that Bt D B.

Proposition 5.3 implies that gcd.ns; nt / D 1 for s 6D t . Thus, Condition (b) is
satisfied. Therefore, the “only if” part holds. �

6. Fundamental groups of elliptic fibrations

6A. Elliptic fibrations. We study elliptic surfaces by localizing the fibrations with
respect to the base curves. To this end, we generalize the definition of elliptic
surfaces. We refer to [Liu 2002, §§8–9] for fibered surfaces.

Definition 6.1. An elliptic fibration is a triple .X;C; f / satisfying the following
conditions:

(1) C and X are excellent regular integral schemes of dimension one and two,
respectively.

(2) f WX ! C is a proper morphism.

(3) The homomorphism OC ! f�OX associated to f is an isomorphism.

(4) The generic fiber of f is a proper smooth curve of genus one.

Let .X;C; f / be an elliptic fibration. A prime divisor D on X is said to be a
(�1)-curve if the following conditions are satisfied. Put k WD �.D;OD/. Then D

is k-isomorphic to P1
k

and deg OX .D/jD D�1. If any fiber of f does not contain
a (�1)-curve, then .X;C; f / is said to be relatively minimal. The multiplicity of
a closed fiber F of f is the multiplicity of the divisor F on X (Section 2). The
minimal regular C -model of the Jacobian of the generic fiber of f is called the
Jacobian fibration of f .

Remark 6.2. Conditions (2) and (3) show that f is surjective. Thus, Condition (1)
shows that f is flat. The multiplicity of F does not depend on the choice of the
proper regular C -model of the generic fiber of f [Liu 2002, 9.2.7].
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Lemma 6.3. Let .X;C; f / be an elliptic fibration and � W Y ! X a connected
étale covering space. Take the Stein factorization

Y
h
��!D

v
��! C

of the composite f ı � W Y !X ! C . Then:

(1) .Y;D; h/ is an elliptic fibration.

(2) v is finite, flat, surjective, and generically separable.

Choose an integral scheme C 0 and a finite flat morphism u W C 0! C such that v
factors through u. Take the normalization X 0 of X �C C 0, the canonical projections
u0 W X 0! X and f 0 W X 0! C 0, and the unique morphism � 0 W Y ! X 0 satisfying
� D u0 ı � 0 and hD f 0 ı � 0. Then:

(3) .X 0;C 0; f 0/ is an elliptic fibration.

(4) u0 and � 0 are finite, étale, and surjective.

Proof. Since X is regular and � is étale, the scheme Y is regular. Thus, Statements (1)
and (2) follow from Proposition 4.5. Statement (4) follows from Lemma 4.7. Since
X is regular and u0 is étale, the scheme X 0 is regular. Thus, Statement (3) follows
from Proposition 4.5. �

We frequently use the following:

Proposition 6.4 [Liu et al. 2004, 6.6]. Let C be the spectrum of a complete discrete
valuation ring with algebraically closed residue field and field of fractions K. Let
.X;C; f / be a relatively minimal elliptic fibration with Jacobian fibration .E;C;g/.
By XK and EK we denote the generic fibers of f and g, respectively. Then the
special fiber of f is of type mT (the Kodaira symbol) if and only if the special fiber
of g is of type T and the order of the torsor ŒXK � 2H 1.K;EK / is equal to m.

We refer to [Liu 2002, 8.3.39, 8.3.44, 9.3.31, and 9.3.32] for desingularizations
and the minimal desingularizations of fibered surfaces.

Lemma 6.5. Let .X;C; f / be an elliptic fibration with generic fiber XK and
�K W YK ! XK a finite morphism between geometrically connected K-curves of
genus one. Take the normalization � W Y !X of X in �K . Assume that f is smooth
and that the residue field at any closed point on C is algebraically closed. Then the
triple .Y;C; f ı �/ is a relatively minimal elliptic fibration.

Proof. We may assume that C is the spectrum of a discrete valuation ring. Take
the minimal desingularization � W yY ! Y of Y . By Xk , Yk , and yYk we denote
the special fibers of f , f ı �, and f ı � ı �, respectively. Choose an irreducible
component D of Yk and an irreducible component yD of yYk dominating D. Since
1 D g.Xk/ � g.D/ � g. yD/, the Néron–Kodaira classification of singular fibers
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implies that yD is the unique irreducible component of yYk whose geometric genus is
equal to 1. Thus, the component D is the unique irreducible component of Yk , and
the component yD is the unique irreducible component of yYk that dominates D. Since
� is the minimal desingularization, the morphism � is an isomorphism. Therefore,
the triple .Y;C; f ı �/ is a relatively minimal elliptic fibration. �

Lemma 6.6. Let .X;C; f / be an elliptic fibration with Jacobian fibration .E;C;g/.
Assume that the reduction of any closed fiber of f is isomorphic to an elliptic
curve and that the residue field at any closed point on C is algebraically closed.
By XK and EK we denote the generic fibers of f and g, respectively. Take a
positive multiple n of the order of the torsor ŒXK � 2 H 1.K;EK /. Then there
exists a C -morphism X ! E whose restriction to the generic fibers induces the
multiplication of their Jacobian EK by n.

Proof. Take a finite Galois extension K0=K so that X.K0/ 6D ∅. Put G WD

Gal.K0=K/ and XK 0 WD XK �K K0. Choose a cocycle c 2 Z1.G;E.K0// repre-
senting ŒXK �. The curve XK=K may be obtained as the quotient of a G-equivariant
action on XK 0=K

0 induced by c (see Section 6B). Moreover, an endomorphism of
Z1.G;E.K0// induces a G-equivariant endomorphism of XK 0 , whose quotient is
a K-morphism between torsors of EK . Since the endomorphism on H 1.K;EK /

induced by the multiplication of EK by n maps the torsor ŒXK � to the trivial
torsor ŒEK �, the endomorphism induces a K-morphism �K W XK ! EK . Take
the normalization Y ! E of E in �K . Proposition 6.4 shows that g is smooth.
By Lemma 6.5, the scheme Y is the minimal regular C -model of XK . Since the
minimal regular C -model of XK is unique up to unique C -isomorphism, the C -
scheme Y is C -isomorphic to X , which concludes the proof. �

Corollary 6.7. Let C be the spectrum of a complete discrete valuation ring with
algebraically closed residue field. Let .X;C; f / be a relatively minimal elliptic
fibration with Jacobian fibration .E;C;g/. Then the reduction of the special fiber
of f is isomorphic to an ordinary elliptic curve if and only if the special fiber of g

is an ordinary elliptic curve.

6B. Étale coverings of local elliptic fibrations. Let R be a complete discrete valu-
ation ring with algebraically closed residue field k of characteristic p�0 and field of
fractions K. Put C WD Spec R. Let .X;C; f / be an elliptic fibration with Jacobian
fibration .E;C;g/. By XK and EK we denote the generic fibers of f and g,
respectively. By ŒXK � we denote the element of H 1.K;EK / corresponding to the
torsor XK of EK . Take a separable closure K of K. Take the maximal base field
zK of f in K (Definition 4.9). In this subsection, we determine the extension zK=K.

Take a finite Galois extension K0=K in K so that X.K0/ 6D∅. Put GK 0=K WD

Gal.K0=K/. The group H 1.GK 0=K ;E.K
0// may be regarded as a subgroup of
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H 1.K;EK / by the inflation homomorphism. Then the torsor ŒXK � 2H 1.K;EK /

is contained in H 1.GK 0=K ;E.K
0// since ŒXK � splits over K0. Choose a cocycle

c 2Z1.GK 0=K ;E.K
0// representing ŒXK �. The extension K0=K induces a finite

covering C 0=C . By .E0;C 0;g0/ we denote the Jacobian fibration of XK �K K0. By
the uniqueness of the normalization C 0 of C in K0 and the Jacobian fibration g0, we
obtain a homomorphism � WGK 0=K ! Aut.C 0=C /! Aut.E0=C /, where the first
arrow is induced by the automorphisms on the generic point of C 0 and the second
arrow is induced by the base change of the automorphisms via g0. Furthermore,
we obtain a map � W GK 0=K ! E.K0/! Aut.E0=C 0/, where the first arrow is
given by c and the second arrow is induced by the translation by addition. Since
c is a cocycle, the map Q� W GK 0=K ! Aut.E0=C / defined by � 7! �.�/ ı �.�/ is
a homomorphism. By � WE0!Z WDE0= Im Q� we denote the quotient morphism
of the action Q� . The quotient Z is a normal scheme over C whose generic fiber is
isomorphic to XK .

Lemma 6.8. If any element of Im Q� fixes any closed point on E0, then zK DK.

Proof. We may assume that X is the minimal desingularization of Z. Since Z

is normal, we may take a regular closed point z on Z. By x 2 X we denote the
preimage of z. The extension zK=K induces a finite covering zC=C . Take the
minimal desingularization X 0 of X �C C 0 (resp. zX of X �C

zC ) and the canonical
projection u0 W X 0 ! X (resp. Qu W zX ! X ). By the choice of x, the preimage
.u0/�1.x/ consists of one closed point on X 0. By Proposition 4.15(4) and the
definitions of u0 and Qu, the morphism u0 factors through the finite étale surjective
morphism Qu. Thus, the degree of Qu is equal to one, which implies that zK DK. �

Assume that .X;C; f / is relatively minimal. Put GK WD Gal.K=K/. By mT

we denote the type of the special fiber of f (the Kodaira symbol). The type T is
divided into the following three cases, (A), (M), and (E):

Case (A). Additive type: T 6D In (n�0). Since the residue field k of R is algebraically
closed and the special fiber of f is simply connected, Lemma 6.3 implies that X is
simply connected. In particular, the equality zK DK holds.

Case (M). Multiplicative type: T D In (n> 0). Tate’s uniformization gives an exact
sequence of GK -modules

0 �! Z �! Gm;K .K/
�
��!EK .K/ �! 0;

where � maps 1 to q 2 K satisfying 0 < jqj < 1. The exact sequence induces a
long exact sequence

H 1.K;Gm;K / �!H 1.K;EK / �!H 2.K;Z/ �!H 2.K;Gm;K /:
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Since H 1.K;Gm;K /DH 2.K;Gm;K /D 0 and H 2.K;Z/ŠHom.GK ;Q=Z/, we
obtain an isomorphism �M WH

1.K;EK /ŠHom.GK ;Q=Z/. Put M WD�M .ŒXK �/.
The group Im M is finite and cyclic. The Galois extension L=K corresponding to
Ker M is the minimum separable field extension that splits ŒXK �. By D we denote
the normalization of C in L. Put d WD ŒL WK�. Then the normalization Y of X�C D

is a relatively minimal elliptic fibration over D with special fiber of type Idn, and the
induced morphism Y ! X is étale (see the proof of [Liu et al. 2004, 8.3(b)]). In
particular, the relation zK �L holds. Proposition 4.15(4) gives the relation zK �L.
Thus, the equality zK DL holds.

Case (E). Elliptic type: T D I0. By yE we denote the formal group law associated
to E. By R and m we denote the integral closure of R in K and the maximal ideal
of R, respectively. Then yE gives a group structure on m. By yE.m/ we denote
this group. Since the canonical homomorphism E.R/!E.K/ is a GK -module
isomorphism by the valuative criterion for properness, we obtain an exact sequence
of GK -modules

0 �! yE.m/ �!E.K/ �!E.k/ �! 0:

The exact sequence induces a long exact sequence

0 �!H 1.K; yE.m//
�
��!H 1.K;EK / �!H 1.K;E.k//

 
���!H 2.K; yE.m//:

Since GK acts trivially on E.k/, we obtain an isomorphism H 1.K;E.k// Š

Hom.GK ;E.k//.

Lemma 6.9. If p D 0, then the group H i.K; yE.m// is trivial for any positive
integer i . Otherwise the group H i.K; yE.m// is p-primary for any positive integer i .

Proof. Any i -th Galois cohomology group is torsion for any positive integer i . Take
an integer n so that p−n. Then the multiplication of yE.m/ by n is an isomorphism
[Silverman 2009, IV.2.3(b)]. These facts show the lemma. �
Lemma 6.10. The homomorphism  is the zero map.

Proof. By Lemma 6.9, we may assume that p > 0. Furthermore, we have only
to show the image of any element of H 1.K;E.k// of p-power order under  is
equal to zero. If the special fiber of E is ordinary, then the statement follows from
[Raynaud 1970, 9.4.1(iii)]. Otherwise, the group E.k/ is p-torsion free. Thus, the
group H 1.K;E.k// is p-torsion free, which implies that the statement holds. �

From Lemma 6.10 we get a surjective homomorphism �E W H
1.K;EK / !

Hom.GK ;E.k//. Put E WD �E.ŒXK �/. The group Im E is finite and cyclic. The
Galois extension L=K corresponding to Ker E is the minimum separable field
extension that splits the image of ŒXK � in H 1.K;E.k//. By D we denote the
normalization of C in L. Put d WD ŒL WK�. Then the normalization Y of X �C D is
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a relatively minimal elliptic fibration over D with special fiber of type m=d I0, and
the canonical projection Y !X is étale. In particular, the relation zK �L holds. If
ŒXK � 2 �.H

1.GK ; yE.m///, then any element of Im Q� fixes any closed point on E0.
Thus, Lemma 6.8 gives the equality zK DL.

We summarize the above results:

Proposition 6.11. Assume that .X;C; f / is relatively minimal. By mT we denote
the type of the special fiber of f . Take the maximal base field zK of f (Definition 4.9).
Then Œ zK WK� divides m (Proposition 4.15(3)). Moreover:

(A) If T 6D In (n� 0), then X is simply connected and zK DK.

(M) If T D In (n>0), then zK=K corresponds to Ker M in Case (M) and Œ zK WK�D
# Im M Dm.

(E) If T D I0, then zK=K corresponds to Ker E in Case (E), Œ zK WK�D # Im E ,
and one of the following statements holds: (1) pD0 and Œ zK WK�Dm; (2) p>0

and m=Œ zK WK� is a power of p.

In particular, the extension zK=K is finite and cyclic.

Lemma 6.12. Assume that .X;C; f / is relatively minimal. By m we denote the
multiplicity of the special fiber Xk of f . We define a divisor F on X by F WDXk=m.
By n we denote the order of the normal bundle of F in the Picard group Pic F .
Then:

(1) The OC -module R1f�OX is torsion-free if and only if the equality mD n holds.

(2) If p D 0, then the equality mD n holds. Otherwise, there exists a nonnegative
integer e such that the equality mD npe holds.

(3) We use the notation introduced in Lemma 6.3. Take m0 and n0 for .X 0;C 0; f 0/
in the same way. By d we denote the degree of u. Assume that F is isomorphic
to an elliptic curve and p−d . Then the equalities mD dm0 and nD dn0 hold.

Proof. Statements (1) and (2) follow from Proposition 1 in [Mitsui 2013]. Let us
show Statement (3). Since u0 is étale, the equality uıf 0D f ıu0 gives the equality
mDdm0. By � WF 0!F we denote the base change of u0 via the inclusion morphism
F !X . Since u0 is a finite étale surjective morphism of degree d , the base change
� is a finite étale surjective morphism of degree d . Since F is isomorphic to an
elliptic curve, the morphism � may be regarded as a morphism between elliptic
curves over k. The morphism � induces a homomorphism �� W Pic F ! Pic F 0.
Since u0 is étale, the divisor F 0 is equal to the pullback of the divisor F via u0,
which implies that NF 0=X D �

�NF=X . Since p−d , the relation p−.n=n0/ holds.
Thus, the equality mD dm0 and Statement (2) give the equality nD dn0. �
Lemma 6.13 [EGA III1 1961, 7.7.5(II), 7.8.4, and 7.9.4]. The following conditions
are equivalent:
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(1) f is cohomologically flat in dimension zero [EGA III2 1963, 7.8.1]; i.e., the
formation of the direct image f�OX commutes with any base change.

(2) R1f�OX is torsion-free.

Lemma 6.14. We use the notation introduced in Lemma 6.3. Suppose that the
reduction of the special fiber of f is isomorphic to an elliptic curve and that
p− deg v. Then R1f�OX is torsion-free if and only if R1h�OY is torsion-free.

Proof. By [Raynaud 1970, 9.4.2] and Lemma 6.13, we may assume that � 0 is an
isomorphism. Then the lemma follows from (1) and (3) of Lemma 6.12. �

Proposition 6.15. Suppose that p> 0. Assume that .X;C; f / is relatively minimal.
By mT we denote the type of the special fiber of f . Take the maximal base field zK
of f (Definition 4.9). By .Xk/red we denote the reduction of the special fiber of f .
Then p− Œ zK WK� if and only if one of the following conditions is satisfied:

(1) T 6D In (n� 0).

(2) p−m.

(3) .Xk/red is isomorphic to a supersingular elliptic curve.

(4) .Xk/red is isomorphic to an ordinary elliptic curve and R1f�OX is torsion-free.

Proof. By (A) and (M) of Proposition 6.11, we have only to consider the case
T D I0. By Proposition 6.11(E), the extension zK=K corresponds to Ker E and
the equality Œ zK WK�D # Im E holds. If .Xk/red is isomorphic to a supersingular
elliptic curve, then the group Hom.GK ;E.k// is p-torsion free (Corollary 6.7).
Thus, we may assume that .Xk/red is isomorphic to an ordinary elliptic curve. By
Lemmas 6.3 and 6.14, we may assume that Œ zK W K� is a power of p. Then the
proposition follows from [Raynaud 1970, 9.4.1(iii)] and Lemma 6.13. �

Proposition 6.16. Let L=K be a finite cyclic extension in K and .E0;C;g0/ a
relatively minimal elliptic fibration with section. By E0

k
we denote the special fiber

of g0. Then the following two conditions are equivalent:

(1) There exists a relatively minimal elliptic fibration .X 0;C; f 0/ satisfying the
following conditions:

(a) The maximal base field of f 0 is equal to L (Definition 4.9).
(b) The Jacobian fibration of f 0 is given by g0.

(2) The following conditions are satisfied:

(a) If E0
k

is not of type In (n� 0), then LDK.
(b) If p > 0 and E0

k
is isomorphic to a supersingular elliptic curve, then

p− ŒL WK�.
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Proof. Propositions 6.11 and 6.15 show that Condition (1) implies Condition (2).
Let us show the converse. We may assume that E0

k
is of type In (n � 0). Put

d WD ŒL W K� and GL=K WD Gal.L=K/. First, we consider the case n > 0. By
assumption, there exists an element M 2Hom.GL=K ;Q=Z/�Hom.GK ;Q=Z/ of
order d . Since �M is surjective, the case n> 0 follows from Proposition 6.11(M).
Next, we consider the case nD 0. By assumption, there exists an element E 2

Hom.GL=K ;E.k//�Hom.GK ;E.k// of order d . Since �E is surjective, the case
nD 0 follows from Proposition 6.11(E). �
Proposition 6.17. Let .Y;C; h/ be a relatively minimal elliptic fibration with spe-
cial fiber of type In (n� 0). Let � W Y !X be a finite étale surjective C -morphism
of degree d . We regard the restriction �K W YK !XK of � to the generic fibers as
a homomorphism between elliptic curves, which is determined by the choice of an
element of Y .K/. By G we denote the subgroup of Y .K/ consisting of all d -torsion
elements. Put H WD �K .G/. By G and H we denote the sets of the closures of all
elements of G and H in Y and X , respectively. Assume that p−d . Then:

(1) d j n, #G D d2, and #H D d .

(2) All elements of G are disjoint.

(3) All elements of H are disjoint.

(4) There exists an irreducible component of the special fiber of f that intersects
with all elements of H , and any other irreducible component of the special
fiber of f is disjoint from all elements of H .

Proof. Since � is étale, the relation d j n holds and the special fiber of f is of type Il ,
where we set l WD n=d . We may regard the smooth loci yX and yY of f and h as the
Néron models of XK and YK , respectively. By the Néron mapping property, the
homomorphism �K induces the unique C -homomorphism y� W yY ! yX , which is the re-
striction of � to the smooth loci yX and yY . The restriction y�k of y� to the special fibers
of yX and yY is a finite étale surjective k-homomorphism of degree d . If nD0, then y�k
is a homomorphism between elliptic curves. If n> 0, then y�k is the homomorphism

Gm;k � .Z=nZ/ �! Gm;k � .Z= lZ/; .z; e mod n/ 7�! .z; e mod l/:

Thus, the closure of G in Y is finite and étale over C [Bosch et al. 1990, 7.3.2],
which concludes the proof. �

6C. Elliptic surfaces with prescribed orbifolds. In this subsection, we use the
following notation. Let k be an algebraically closed field of characteristic p� 0 and
C a connected proper smooth k-curve with function field K. An elliptic fibration
.X;C; f / is said to be trivial if there exists an elliptic curve F over k such that
X is C -isomorphic to the C -scheme F �k C . Recall the following result on the
global-to-local map:
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Proposition 6.18 [Cossec and Dolgachev 1989, 5.4.6]. Let EK be an elliptic
curve over K. Take the minimal regular C -model .E;C;g/ of EK . Assume
that the elliptic fibration .E;C;g/ is nontrivial. For each closed point s on C ,
we put Ks WD Frac Osh

C;s
and EKs

WD EK �K Ks . Then the global-to-local map
H 1.K;EK /!

L
s2C H 1.Ks;EKs

/ is surjective.

Theorem 6.19. Let .C;B/ be a connected cyclic orbifold k-curve and .E;C;g/
a nontrivial relatively minimal elliptic fibration with section. We use the nota-
tion Bs=Ks introduced in Definition 3.6. Then the following two conditions are
equivalent:

(1) There exists a relatively minimal elliptic fibration .X;C; f / satisfying the
following conditions:
(a) The orbifold associated to f is isomorphic to .C;B/ (Definition 4.23).
(b) The Jacobian fibration of f is given by g.

(2) The following conditions are satisfied for any closed point s on C :
(a) If g�1.s/ is not of type In (n� 0), then Bs DKs .
(b) If p > 0 and g�1.s/ is isomorphic to a supersingular elliptic curve, then

p− ŒBs WKs �.

Proof. The theorem follows from Propositions 6.16 and 6.18. �
Proposition 6.20. Let .X;C; f / be a relatively minimal elliptic fibration with
Jacobian fibration .E;C;g/. Then the following conditions are equivalent:

(1) �.OX /� 0.

(2) �.OX /D 0.

(3) The reduction of any closed fiber of f is isomorphic to an elliptic curve.

(4) g is smooth.

Proof. The equivalence of (1) and (2) follows from Proposition 2 in [Mitsui 2014].
The equivalence of (2) and (3) follows from Proposition 2 in [Mitsui 2013]. The
equivalence of (3) and (4) follows from Proposition 6.4. �
Corollary 6.21. Let .C;B/ be a connected cyclic orbifold k-curve. Then there
exists a relatively minimal elliptic fibration .X;C; f / with �.OX / > 0 such that the
orbifold associated to f is isomorphic to .C;B/ (Definition 4.23).

Proof. Take a relatively minimal elliptic fibration .E;C;g/ satisfying the following
conditions: (1) g is not smooth; (2) g admits a section; (3) for any s 2 Supp B, the
closed fiber g�1.s/ is isomorphic to an ordinary elliptic curve. Since the elliptic
fibration .E;C;g/ is nontrivial, Theorem 6.19 gives a relatively minimal elliptic
fibration .X;C; f / such that the orbifold associated to f is isomorphic to .C;B/.
Proposition 6.20 shows that the inequality �.OX / > 0 holds. �
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6D. Fundamental groups of elliptic surfaces. In this subsection, we use the fol-
lowing notation. Let k be an algebraically closed field of characteristic p � 0,
C a connected proper smooth k-curve with function field K, and .X;C; f / an
elliptic fibration. We denote the intersection number of divisors D1 and D2 on X

by D1 �D2.

Lemma 6.22. Assume that two sections D1 and D2 of f satisfy the following:

(1) OX .D1�D2/jXK
is torsion in Pic.XK /, where XK is the generic fiber of f .

(2) For any closed point x on C , there exists an irreducible component of the fiber
f �1.x/ that intersects with both of D1 and D2, and any other irreducible
component of the fiber f �1.x/ is disjoint from both of D1 and D2.

Then the equality D1 �D2 D��.OX / holds.

Proof. First, we assume that D1 DD2. Put D WDD1 DD2 and F WD OX .D/=OX .
Since the genus of XK is equal to one and the effective divisor DjXK

on XK is
of degree one, the long exact sequence induced by the functor f� and the exact
sequence of OX -modules

0 �! OX �! OX .D/ �! F �! 0

gives an isomorphism f�F!R1f�OX . In particular, the equalities

D �D D deg OX .D/jD D degf�FD deg R1f�OX

hold. The Riemann–Roch theorem for the line bundle R1f�OX on C and the Leray
spectral sequence for f give the equalities

deg R1f�OX D �.R
1f�OX /��.OC /D��.OX /:

Thus, the equality D �D D��.OX / holds.
Next, we consider the general case. By n we denote the order of OX .D1�D2/jXK

in Pic.XK / (Condition (1)). Then n.D1�D2/ is linearly equivalent to a vertical
divisor V . Condition (2) gives the equality D0 � .D1 �D2/ D 0 for any vertical
prime divisor D0. Thus, the equality V � V D 0 holds, which gives the equality
.D1�D2/ � .D1�D2/D 0. Therefore, the first case shows the general case. �

Theorem 6.23. Choose a smooth closed fiber i W X0 ! X of f . Take a geo-
metric point x0 on X0. Put x WD i.x0/ and s WD f .x/. By .C;B/ we denote
the connected proper orbifold k-curve associated to f (Definition 4.23). The
morphisms i and f induce canonical homomorphisms i� W �1.X0;x0/! �1.X;x/

and f orb
� W �1.X;x/! �1.C;B; s/, respectively (Theorem 1.1). Then:

(1) If �.OX / > 0, then i� is trivial and f orb
� is an isomorphism.

(2) If �.OX /D 0, then i� is injective.
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Remark 6.24. In the complex analytic case, Statement (2) does not hold in general
for topological fundamental groups although Statement (1) holds and i� is nontrivial
whenever �.OX /D 0 [Friedman and Morgan 1994, 2.2.1 and 2.7.2]. For example,
if X is a Hopf surface, then �.OX /D 0, Ker i� Š Z, Coker i� D 0, and �1.X /Š

Im i� Š Z˚Z=nZ for some positive integer n.

Proof. By .E;C;g/ we denote the Jacobian fibration of f . First, let us show
Statement (1). We have only to show the following: for any connected étale
covering space � W Y !X , any connected component of ��1.X0/ is X0-isomorphic
to X0. Assume that the above statement does not hold. Choose � that does not
satisfy the above statement. Take the Stein factorization

Y
h
��! C 0

u
��! C

of f ı � W Y ! X ! C . Take the elliptic fibration .X 0;C 0; f 0/ and the étale
morphisms � 0 W Y ! X 0 and u0 W X 0! X given by Lemma 6.3. By assumption,
the morphism � 0 is not an isomorphism. Replacing � by � 0, we may assume that
.Y;C; f ı �/ is an elliptic fibration.

Since � is étale, any closed fiber is of type mIn (n � 0). Since �.OX / > 0,
Proposition 6.20 shows that f admits a closed fiber of type mIn (n > 0). In
particular, the j -invariant of g is nonconstant (Proposition 6.4). By d we denote
the degree of � . If p> 0, then p−d since f admits a closed fiber that is isomorphic
to a supersingular elliptic curve (Corollary 6.7) and � is étale. Choose a connected
proper smooth k-curve C 0 and a finite morphism u WC 0!C satisfying the following
condition: the morphism u induces an extension of the function fields K0=K; by JK

we denote the Jacobian of the generic fiber of Y=C ; then Y .K0/ 6D∅ and JK .K
0/

contains d2 d-torsion elements. Take a desingularization X 0 of X �C C 0 and the
canonical projection u0 WX 0!X . Since � 0 is étale, the base change � 0 W Y 0!X 0

of � via u0 is étale. Thus, we obtain an étale C 0-morphism � 00 W Y 00!X 00 between
the minimal regular C 0-models of Y 0 and X 0 after successive blowing-downs of
(�1)-curves on Y 0 and X 0. Replacing � by � 00, we may assume that � is a morphism
between Jacobian fibrations and Y .K/ contains d2 d -torsion elements.

By H we denote the image of the d-torsion elements of Y .K/ under �. By H

we denote the set of the closures of all elements of H in X . Proposition 6.17 shows
the following: (a) #H D d > 1; (b) all elements of H are disjoint; (c) for any
closed point x on C , there exists an irreducible component of the fiber f �1.x/ that
intersects with all elements of H , and any other irreducible component of the fiber
f �1.x/ is disjoint from all elements of H . This contradicts Lemma 6.22 since
�.OX / > 0. Therefore the homomorphism i� is trivial.

Next, let us show Statement (2). We have only to show that, for any connected
étale covering space � WX 0

0
!X0, there exists an étale covering � WY !X such that
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any connected component of the preimage ��1.X0/ is X0-isomorphic to X 0
0
. Since

�.OX /D 0, Proposition 6.20 shows that g is smooth. Take an integer n� 3 so that
p−n. Since the n-torsion C -subgroup scheme of E=C is finite and étale, we may
take a connected étale covering space u WC 0!C satisfying the following condition:
let u0 W E0 ! E denote the base change of u via g; then E0.C 0/ contains n2 n-
torsion elements. Since g is smooth, the j -invariant of E is contained in k. Thus,
the elliptic curve E0 over C 0 induces a constant morphism from C 0 to the moduli
scheme of elliptic curves with level n. Therefore, we obtain a C 0-isomorphism
E0ŠX0�k C 0. Take the base change � 0 WE00!E0 of � via the structure morphism
C 0! Spec k. Take the C -morphism h W X ! E given by Lemma 6.6. Then the
base change of u0 ı � 0 via h is the desired morphism � . �

Lemma 6.25. Let R be a strictly Henselian excellent discrete valuation ring of
equicharacteristic. By yR we denote the completion of R with respect to the maximal
ideal. Put K WD Frac R and yK WD Frac yR. Let yL= yK be a finite Galois extension.
Then there exists a unique extension L=K in yL such that yLD yKL. Furthermore,
the extension L=K is Galois, of degree Œ yL W yK�, and linearly disjoint from yK=K.

Proof. Since R is algebraically closed in yR by the approximation property [Bosch
et al. 1990, 3.6.9], we have only to show the existence of L. We denote the
characteristic of R by l . Put d WD Œ yL W yK�. By assumption, the extension yL= yK is
solvable. Thus, by induction on d , we may assume that l −d or d D l > 0. The case
l −d follows from Kummer theory since R contains a primitive d-th root of unity.
The case d D l > 0 follows from Lemma 5.9(2) and Artin–Schreier theory. �

Finally, we give a proof of the criterion for simple-connectedness of elliptic
surfaces:

Proof of Theorem 1.2. We use the notation introduced in Theorem 6.23. Theorems
1.1 and 6.23 show that �1.X / is trivial if and only if �1.C;B/ is trivial and
�.OX / > 0. Proposition 6.11 shows that the orbifold .C;B/ is cyclic. Thus,
Theorem 1.3 shows that �1.C;B/ is trivial if and only if C Š P1

k
, Bt D B,

# Supp B � 2, and gcd.ns; nt /D 1 for s 6D t , where we put ns WD ŒBs WKs � for each
s 2 Supp B. Lemma 6.25 and Propositions 4.6, 6.11, and 6.15 imply that the above
conditions on .C;B/ are equivalent to Conditions (2)–(6).

Let us show that each of Conditions (1)–(6) is necessary. We remark that
�.OX /> 0 if and only if the Jacobian fibration of f is not smooth (Proposition 6.20).
The necessity of Conditions (1) and (2) is clear. The necessity of Conditions (3) and
(4) follows from Corollary 6.21. The necessity of Conditions (5) and (6) follows
from Proposition 6.15 and Theorem 6.19. �
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Appendix A: Triangle groups and projective special linear groups

The result of this section is used in the proof of Proposition 5.4. Let a, b, and c be
integers greater than 1. We define the triangle group �.a; b; c/ by

�.a; b; c/ WD hx;y; z jxa
D yb

D zc
D xyz D idi:

Let p be a prime number and q a power of p. In this section, we study homo-
morphisms �.a; b; c/! SL.2; Fq/ and �.a; b; c/! PSL.2; Fq/ that preserve the
orders of x, y, and z. Take an algebraic closure Fq of Fq . For each positive integer n

prime to p, we take a primitive n-th root of unity �n in Fq . Put �n WD �nC �
�1
n .

The proofs of Lemmas A.1–A.4 are straightforward.

Lemma A.1. �n 2 Fq if and only if n j .q2� 1/.

Lemma A.2. We have equalities # SL.2; Fq/ D q.q2 � 1/ and # PSL.2; Fq/ D

q.q2�1/=gcd.2;p� 1/. The projection SL.2; Fq/!PSL.2; Fq/maps any element
of order n to an element of order n=gcd.2;p� 1; n/.

Lemma A.3. Take X 2SL.2; Fq/. Then the image of X in SL.2; Fq/ is conjugate to�
1 1

0 1

�
;

�
�1 1

0 �1

�
; or

�
˛ 0

0 ˛�1

�
;

where ˛ 2 Fq
�. By n we denote the order of ˛ in Fq

�. If p 6D 2, then the order of
X is equal to p, 2p, or n, respectively. Otherwise, the order of X is equal to 2, 2,
or n, respectively. The order of the image of X in PSL.2; Fq/ is equal to p, p, or
n= gcd.2;p� 1; n/, respectively.

Lemma A.4. Take X 2 SL.2; Fq/. Let n be an integer prime to p. Assume that
n> 2 and tr X D �n. Then the order of X is equal to n.

Lemma A.5. Assume that a, b, and c are greater than 2 and divide q2� 1. Then
there exist X , Y , and Z in SL.2; Fq/, of orders a, b, and c, respectively, such that
XYZ D I , where I is the identity matrix of SL.2; Fq/.

Proof. Lemma A.1 shows that �a, �b , and �c are contained in Fq . Put

X WD

�
0 �1

1 �a

�
2 SL.2; Fq/:

We have only to construct Y and Z in SL.2; Fq/ so that tr Y D �b , tr Z D �c , and
XYZ D 1 (Lemma A.4). We write

Y D

�
˛ ˇ

 ı

�
:
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Then we have only to choose ˛, ˇ,  , and ı in Fq so that ˛ı�ˇ D 1, ˛CıD�b ,
and ˇ �  C�aı D �c . Thus, we have only to show that there exists a solution
.˛; ˇ/ 2 Fq � Fq of the equation F.˛; ˇ/D 0, where we put

F.u; v/ WD u2
��auvC v2

��buC .�a�b ��c/vC 1:

If elements ˛0, ˛1, ˇ0, and ˇ1 in Fq satisfy ˛ D ˛0C ˛1 and ˇ D ˇ0Cˇ1, then
the equality

F.˛; ˇ/D F.˛0; ˇ0/C
@F

@u
.˛0; ˇ0/˛1C

@F

@v
.˛0; ˇ0/ˇ1C˛

2
1 ��a˛1ˇ1Cˇ

2
1

holds. Note that the equalities�
.@F=@u/.u; v/D 2u��av��b;

.@F=@v/.u; v/D��auC 2vC�a�b ��c

hold. Since a> 2 and gcd.p; a/D 1, the inequality �2
a 6D 4 holds. Thus, we may

take .˛0; ˇ0/2Fq�Fq so that .@F=@u/.˛0; ˇ0/D .@F=@v/.˛0; ˇ0/D 0. Therefore,
we have only to show that there exists a solution .˛1; ˇ1/ 2 Fq �Fq of the equation
G.˛1; ˇ1/ D �F.˛0; ˇ0/, where we put G.u; v/ WD u2 � �auv C v2. If p 6D 2

(resp. pD 2), then the quadratic form G.u; v/ is nondegenerate (resp. nondefective),
which concludes the proof. �

Lemma A.6. Assume that the following conditions are satisfied:

(1) If p 6D 2, then aD p or 2p.

(2) If p D 2, then aD 2.

(3) b and c are greater than 2 and divide q2� 1.

Then there exist X , Y , and Z in SL.2; Fq/ of orders a, b, and c, respectively, such
that XYZ D I , where I is the identity matrix of SL.2; Fq/.

Proof. Lemma A.1 shows that �b and �c are contained in Fq . First, we consider
the case aD p. We define X , Y , and Z in SL.2; Fq/ by

X WD

�
1 1

0 1

�
; Y WD

�
�b 0

�c ��b ��1
b

�
; and Z WD

�
��1

b
���1

b

�b ��c �c � �
�1
b

�
:

Then the order of X is equal to p. Moreover, the equalities tr Y D �b , tr Z D �c ,
and XYZD I hold. Thus, the elements X , Y , and Z satisfy the desired conditions
(Lemma A.4). Next, we consider the case p 6D 2 and aD 2p. In that case, we have
only to replace X , Y , and Z by

X WD

�
�1 1

0 �1

�
; Y WD

�
�b 0

�bC�c ��1
b

�
; and Z WD

�
���1

b
���1

b

�bC�c ��1
b
C�c

�
: �
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Proposition A.7. Assume that a, b, and c are pairwise coprime. Take the elements
x, y, and z of �.a; b; c/ in the definition of �.a; b; c/. Put G WD SL.2; Fq/ or
PSL.2; Fq/. Then there exists a homomorphism � W �.a; b; c/! G such that the
orders of �.x/, �.y/, and �.z/ are equal to a, b, and c, respectively, if and only if
the following three conditions are satisfied:

(1) abc j #G.

(2) If G D SL.2; Fq/ and one of a, b, and c is equal to 2, then p D 2.

(3) If an integer u is equal to a, b, or c and is divisible by p, then u satisfies one of
the following conditions: (a) uD p: (b) G D SL.2; Fq/, p 6D 2, and uD 2p.

Proof. First, let us show the “only if” part. Since a, b, and c are pairwise coprime,
the condition on � implies Condition (1). Lemma A.3 and the condition on � imply
Condition (3). Assume that G D SL.2; Fq/, aD 2, and p 6D 2. Then �.x/D�I ,
where I is the identity matrix of SL.2; Fq/. Thus, the equality �.y/D��.z/ holds,
which contradicts the assumption that b is prime to c. Therefore, Condition (2)
holds. The “if” part follows from Lemmas A.2, A.5, and A.6. �

Lemma A.8. Assume that a, b, and c are pairwise coprime. Let G be a nontrivial
finite group. If there exists a surjective homomorphism �.a; b; c/!G, then G is
nonsolvable.

Proof. Assume that G is solvable. Then there exists a nontrivial cyclic group H

and a surjective homomorphism � W �.a; b; c/! H . We may write H D Z=nZ,
where n is an integer greater than 1. Take the elements x, y, and z of �.a; b; c/
in the definition of �.a; b; c/. The orders of x, y, and z are equal to a, b, and
c, respectively. By a, b, and c we denote the orders of �.x/, �.y/, and �.z/,
respectively. Then a j a, b j b, c j c and abc 6D 1. In particular, the integers a, b,
and c are pairwise coprime. Since xyz D id, the equality �.x/C�.y/C�.z/D 0

holds, which contradicts the facts that a, b, and c are pairwise coprime and abc 6D 1.
Therefore, the group G is nonsolvable. �

Theorem A.9. Assume that a, b, and c are pairwise coprime. If fa; b; cgDf2; 3; 5g,
then we suppose that p D 5. Otherwise, we suppose that 2abc j .p2� 1/. Take the
elements x, y, and z of �.a; b; c/ in the definition of �.a; b; c/. Then there exists a
surjective homomorphism � W�.a; b; c/! PSL.2; Fp/ such that the orders of �.x/,
�.y/, and �.z/ are equal to a, b, and c, respectively. Furthermore, there exists a
prime number p such that 2abc j .p2� 1/.

Remark A.10. If q > 3, then the group PSL.2; Fq/ is noncommutative and simple.

Proof. Let us show the first statement. By Lemma A.2, we may take � in
Proposition A.7. We have only to show that � is surjective. Lemma A.8 shows
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that the image of � is nonsolvable. Thus, the case fa; b; cg D f2; 3; 5g follows from
the fact that any proper subgroup of PSL.2; F5/.Š A5/ is solvable. Assume that
fa; b; cg 6D f2; 3; 5g. By the classification of the subgroups of PSL.2; Fp/ [Dickson
1958, p. 285, XII, 260], any nonsolvable subgroup of PSL.2; Fp/ is isomorphic
to PSL.2; F5/ or PSL.2; Fp/. Suppose that � is not surjective. Then the image
of � is isomorphic to PSL.2; F5/. Since the order of any nontrivial element in
PSL.2; F5/.Š A5/ is equal to 2, 3 or 5, the equality fa; b; cg D f2; 3; 5g holds,
which contradicts the assumption. Thus, the homomorphism � is surjective. The
last statement follows from Dirichlet’s theorem on arithmetic progressions. �

Appendix B: Comparison between orbifolds and stacks

Let k be an algebraically closed field of characteristic p � 0. For a nonnegative
integer n, a DM stack S is said to be of dimension n if an atlas of S is of dimension n.
A stack orbifold S is a locally Noetherian normal DM stack that admits an open
dense substack that is isomorphic to a scheme. A stack orbifold k-curve S is a
separated smooth k-stack of dimension one that is a stack orbifold. In the following,
we see that the notion of an orbifold k-curve coincides with the notion of a stack
orbifold k-curve.

We construct a stack orbifold k-curve from an orbifold k-curve. Let .S;B/
be a connected orbifold k-curve. Put S0 WD S n Supp B. Take s 2 S . Choose an
affine open subset U containing s. By .U;BjU / we denote the orbifold obtained by
restricting .S;B/ to U . We may take a Galois orbifold trivialization U 0! .U;BjU /

of .U;BjU / (Theorem 1.3). We may regard the open subscheme U \S0 of U as
an open substack of the quotient stack ŒU 0=G�. Pasting ŒU 0=G� for all s 2 S , we
obtain a stack orbifold k-curve with coarse moduli space S .

We construct an orbifold k-curve from a stack orbifold k-curve. Let S be a
connected stack orbifold k-curve. Take an open dense substack S0 of S that is
isomorphic to a scheme S0. Take the coarse moduli space � W S! S of S [Rydh
2013]. We may regard S0 as an open subscheme of S . Thus, the equality deg�D 1

holds [Vistoli 1989, 1.15]. Therefore, the scheme S is of finite type over k. Since
S is connected and normal, the scheme S is connected and normal. Since k is
perfect, the scheme S is a connected smooth k-curve.

By P .S/ we denote the set of all closed points on S . Take s 2P .S/. By Aut.s/
we denote the automorphism group of s. If s 2 S0, then Aut.s/ is trivial. By Ss

and Ss we denote the schemes obtained by the strict Henselizations of S and S

at s, respectively [Laumon and Moret-Bailly 2000, 6.2.1]. Take the quotient stack
�s W Ss! Ts WD ŒSs=Aut.s/� and the canonical morphism �s W Ts! S [Laumon
and Moret-Bailly 2000, 6.2.1]. By Bs , Ls , and Ks , we denote the fields of rational
functions of Ss , Ts , and Ss , respectively [Vistoli 1989, 1.14]. Since the composite
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�ı�s WTs!S induces an isomorphism Ks!Ls , the composite �ı�sı�s WSs!S

induces a finite Galois extension Bs=Ks with Galois group Aut.s/.
Take a separable closure Ks of Ks . We embed Bs in Ks over Ks . Since Bs=Ks

is Galois, the image does not depend on the choice of the embedding. We define
a map B on P .S/ by s 7! Bs=Ks (Definition 3.6). Then Supp B is locally finite
since S0 is open dense in S. Thus, the pair .S;B/ is a connected orbifold k-curve.

Theorem B.1. The above two correspondences give an equivalence between the
category of orbifold k-curves and orbifold (étale) k-morphisms and the category
of stack orbifold k-curves and (étale) k-morphisms that induce qsc morphisms
between coarse moduli spaces. In particular, the fundamental group of any orbifold
k-curve coincides with the fundamental group of the corresponding stack orbifold
k-curve in [Noohi 2004, §4].

Remark B.2. The theorem does not hold for general orbifolds. There exists an
orbifold étale covering space of a trivial orbifold .S;B/ that is not an étale covering
space of the scheme S (Examples 3.24 and 4.16).

Theorem B.1 follows from the local structure theorem on DM stacks [Laumon
and Moret-Bailly 2000, 6.2]. The detail of the proof of the theorem is left to the
readers.
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Factorially closed subrings
of commutative rings

Sagnik Chakraborty, Rajendra Vasant Gurjar and Masayoshi Miyanishi

We prove some new results about factorially closed subrings of commutative rings.
We generalize this notion to quasifactorially closed subrings of commutative rings
and prove some results about them from algebraic and geometric viewpoints. We
show that quasifactorially closed subrings of polynomial and power series rings
of dimension at most three are again polynomial (resp. power series) rings in a
smaller number of variables. As an application of our results, we give a short
proof of a result of Lê Dũng Tráng in connection with the Jacobian problem.

Introduction

We assume throughout the article that the base field k is an algebraically closed field
of characteristic 0. Whenever we use topological arguments, k is tacitly assumed to
be the field of complex numbers C. By assuming naturally that k is embedded into
C, we can see that the results proved over C can be proved over k. For an integral
domain S, the field of fractions of S is denoted by Q(S), and the multiplicative
group of units by S∗.

The present article grew out of the discussions we had during the workshop
Automorphisms of affine varieties, held at the Kerala School of Mathematics, India
(February 17–22, 2014). In particular, a part of our discussion was inspired by a
talk given by Neena Gupta [2014] and a question asked by A. Kanel-Belov.

Let A ⊆ B be integral domains. Then A is said to be factorially closed, or fc,
in B if for any two nonzero elements b1, b2 ∈ B, b1b2 ∈ A implies that b1, b2 ∈ A.
In some papers an fc subring is also called an inert subring. Factorially closed
subrings appear naturally as the rings of invariants of the action of the additive
group Ga , or a connected semisimple group on a polynomial ring.

The notion of fc subring is not well-behaved in the case of local rings due
to the existence of too many units. Hence we have introduced a weaker notion:
quasifactorially closed subrings. For any integral domains A ⊆ B, A is said to
be quasifactorially closed, or qfc, in B if, for any nonzero b ∈ B, if there exists
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some nonzero b′ ∈ B such that bb′ ∈ A, then there exists a unit u ∈ B such that
bu ∈ A. It turns out that quasifactorial closedness is more geometric and has several
interesting applications. For example, we have proved that a qfc subring of a power
series ring in at most three variables is again isomorphic to a power series ring in a
smaller number of variables.

The fc property is also related to the property of the existence of nonconstant
invertible regular functions on general fibers of the corresponding morphism of
schemes.

We now mention the main results proved in this paper (with some hypothesis):

(1) An inclusion of graded domains A ⊆ B is fc if and only if it is graded fc.
Further, A is fc in B if and only if the localization of A at its irrelevant maximal
ideal is fc in the corresponding localization of B (Theorems 2 and 3).

(2) For an inclusion of affine normal domains A ⊆ B the fc locus is always open
(Corollary 4.1).

(3) For an inclusion of affine UFDs A⊆ B the qfc locus is open if at most finitely
many prime elements of A split in B (Theorem 5). (An example in Section 3
shows that the reverse implication is false.)

(4) If an inclusion of complete local normal domains A⊆ B over k is qfc then A is
algebraically closed in B. Further, any irreducible element of A is irreducible
in B (Theorem 6 and its corollaries).

(5) An fc subring of a polynomial ring in at most three variables is again a
polynomial ring (Theorem 1). Similarly, a complete qfc subring of a power
series ring in at most three variables is again a power series ring (Theorem 8).

(6) If an inclusion of affine normal domains A ⊆ B (with a suitable hypothesis) is
fc, then a general fiber of the corresponding morphism of affine varieties does
not have any nonconstant invertible regular functions (Theorem 11).

Using this we give a new short proof of a result proved by many authors (M. Razar,
R. Heitmann, S. Friedland, L. D. Tráng, C. Weber, W. Neumann, P. Norbury) in
connection with the Jacobian problem [Neumann and Norbury 1998; Tráng 2008].

In Section 3 we give some examples of ring extensions which shed more light
on the fc (and qfc) property.

In Section 4 we have listed some open problems about fc and qfc extensions.

1. Factorially closed subrings

We start with some basic properties of factorial closedness. Some easy proofs have
been omitted.
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Lemma 1 (local properties of factorial closedness). The following statements are
equivalent for an inclusion of integral domains A ⊆ B:

(1) The ring A is fc in B.

(2) For any multiplicatively closed set S in A, S−1 A ⊆ S−1 B is fc.

(3) For any prime ideal p ∈ Spec A, Ap ⊆ Bp is fc.

(4) For any maximal ideal m ∈Max A, Am ⊆ Bm is fc.

(5) There exist finitely many nonzero elements a1, a2, . . . , an ∈ A, generating the
unit ideal, such that Aai is fc in Bai for each i = 1, 2, . . . , n.

Moreover, if A is normal, the above statements are equivalent to the following one:

(7) For each prime ideal p ∈ Spec A of height 1, Ap ⊆ Bp is fc.

Proof. Omitted. �

Lemma 2 (transitive and sandwich properties of factorial closedness). Let A ⊆
B ⊆ C be integral domains.

(1) If the ring A is fc in B and B is fc in C , then A is fc in C.

(2) If A is fc in C then it is fc in B. However, in this case B need not be fc in C.

The example k ⊆ k[t2
] ⊆ k[t] shows that B need not be fc in C .

Lemma 3. Let A be an fc subring of B.

(1) The ring A is algebraically closed in B.

(2) If Q(A) is the field of fractions of A, then Q(A)∩ B = A. This is the same
thing as saying that each principal ideal of A is a contracted ideal.

(3) If B is integrally closed (or a UFD), then so is A. In fact, in the case of Krull
domains, the natural homomorphism of divisor class groups Cl(A)→ Cl(B)
is an injection whenever it is defined.

(4) Any unit of B is in A.

Proof. The first assertion follows from the slightly more general fact that, for a
pair of integral domains A ⊆ B, if B \ A is closed under multiplication then A is
algebraically closed in B.

The other three statements follow from the first one and the next observation. �

Remark. For an inclusion of Krull domains A ⊂ B, there is a natural homomor-
phism Cl(A)→ Cl(B) if and only if no height 1 prime ideal of B contracts to a
prime ideal of height > 1 in A [Samuel 1964].
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If I is an ideal of A such that the ideal I B is principal, then, since A is fc in B,
I itself must be principal. This observation will be implicitly used later.

Lemma 4. Let A be an fc subring of B. Then the Jacobson radical of B, Jac B, is
contained in A. Moreover, if Jac B 6= 0 then A = B. In particular, if B is semilocal
then A = B.

Proof. If b ∈ Jac B, 1+ b ∈ B∗. So, by Lemma 3(4), 1+ b ∈ A implies that b ∈ A.
Now, if b is a nonzero element in Jac B, for any x ∈ B, xb is also in Jac B and
consequently in A. So x ∈ A. If B is semilocal, and not a field, then Jac B 6= 0 and
the rest of the assertion follows. If B is a field then every nonzero element in B is
a unit, and since A is fc in B we again get A = B. �

Lemma 5. If A1 ⊆ A2 ⊆ A3 ⊆ · · · and B1 ⊆ B2 ⊆ B3 ⊆ · · · are two sequences of
integral domains, such that Ai ⊆ Bi is an fc subring for each i , then

⋃
i Ai ⊆

⋃
i Bi

is also factorially closed.

Lemma 6. If A ⊆ B ⊆ C are integral domains with A an fc subring of B, then, for
any subring D of C , D ∩ A ⊆ D ∩ B is also factorially closed.

Before looking into the ring-theoretic properties of factorial closedness, we would
like to describe the structure of a factorially closed subalgebra of the polynomial
ring R = k[x1, . . . , xn]. This question can be answered if n ≤ 3, and the answer is
simply a polynomial subalgebra. We consider only the case where n = 3. The case
n = 2 has a similar answer and is easier.

Theorem 1. Let A be a factorially closed subring of R = k[x, y, z].

(1) If dim A = 3, then A = R.

(2) If dim A = 2, then A is a polynomial ring in two variables.

(3) If dim A = 1, then A = k[ f ], where f − c is irreducible in k[x, y, z] for
every c ∈ k.

Proof. (1) In this case, the transcendence degree of A over k is 3. So A, being
algebraically closed in k[x, y, z] by Lemma 3(1), must be equal to k[x, y, z].

In the other two cases, since A is a UFD (by Lemma 3(3)) of transcendence
degree ≤ 2, by a result of Zariski [Nagata 1965, p. 52, Theorem 4] A is affine.

So the assertion (3) follows from the fact that, when A has dimension 1, A is an
affine PID with trivial units.

(2) Note that A is a normal affine domain of dimension 2. We assume for simplicity
that k = C. Let Y = Spec R and X = Spec A. The inclusion A ↪→ R defines a
dominant morphism p : Y → X . Then every fiber of p is either the empty set or is
1-dimensional. For, if there exists a fiber component D of dimension 2, let it be
defined by f = 0 with f ∈ R. Since p(D) is a closed point of X corresponding to
a maximal ideal m of A, we have m⊆mR ⊆ f R. This implies that any nonzero
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element of m is divisible by f , whence f ∈ A. This is a contradiction since A is
2-dimensional. Furthermore, a general fiber of p is irreducible since A is factorially
closed in R. By [Miyanishi 1986, Theorem 3], X is isomorphic to either A2 or
an affine hypersurface x2

1 + x3
2 + x5

3 = 0 in A3. But, arguing as in the proof of
[Miyanishi 1986, Theorem 4], we can show that the latter case cannot occur. �

Let B :=
⊕

i Bi be a Z-graded domain and A :=
⊕

i Ai a graded subring of B,
i.e., Ai ⊆ Bi for each i . We say that A is graded factorially closed or gfc, in short,
in B if, given any two nonzero homogeneous elements bi , b j ∈ B, bi b j ∈ A implies
that bi , b j ∈ A. First, the following lemma shows that gfc is a local property:

Lemma 7. Let A ⊆ B be Z-graded domains. Then the following statements are
equivalent:

(1) The ring A is gfc in B.

(2) For any multiplicative set S in A, generated by homogeneous elements, S−1 A⊆
S−1 B is gfc.

(3) For any homogeneous prime ideal p ∈ Spec A, A(p) ⊆ B(p), where A(p) and
B(p) denote the localizations of A and B respectively at the multiplicative set
consisting of all homogeneous elements of A not contained in p, is gfc.

If , moreover, A happens to be positively graded, the above statements are equivalent
to the following:

(4) For any homogeneous maximal ideal m ∈ Max A, A(m) ⊆ B(m) is graded
factorially closed.

Proof. We only show (3) =⇒ (1). Let x, y ∈ B be homogeneous elements such
that xy ∈ A. So, x, y ∈ A(p) for every homogeneous prime ideal p. But the set
(A : x) := {a ∈ A | ax ∈ A} is a homogeneous ideal in A. So, if x /∈ A, then (A : x)
must be proper ideal and hence contained in a homogeneous prime ideal, leading
to a contradiction. For positively graded rings, note that any homogeneous ideal is
actually contained in a homogeneous maximal ideal. �

Note that properties analogous to the fc property as expressed in Lemmas 1, 2
and 3 also hold for graded factorially closed subrings. The reader is invited to come
up with the precise formulations and their proofs.

Next we take our first step in building a bridge between factorial closedness and
graded factorial closedness.

Lemma 8. Let A⊆ B be Z-graded domains and p a homogeneous prime ideal of A.
If Ap ⊆ Bp is fc then A(p) ⊆ B(p) is gfc.
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Proof. Let x, y ∈ B(p) be homogeneous elements such that xy ∈ A(p). Let x = x ′/s
and y = y′/t with x ′, y′ ∈ B and s, t ∈

⋃
i Ai − p. Since Ap ⊆ Bp is factorially

closed, x, y ∈ Ap. So there exist nonzero elements in A, a =
∑

j a j and α=
∑

j α j

with α /∈ p such that x ′/s = a/α. Again, α being outside p implies that α j∗ /∈ p

for some j∗. So x ′α j∗ ∈ A and consequently x ∈ A(p). Similarly y ∈ A(p), and this
finishes the proof. �

It is natural to ask whether gfc implies fc. Our next few results show that this
is indeed true. We first treat the easy case of polynomial ring extensions and then
show that the general case, under minor restrictions, reduces to this special case.

Lemma 9. Let A be a factorially closed subring of an integral domain B. Then the
polynomial ring A[x] is also factorially closed in B[x].

Proof. Let f (x), g(x) ∈ B[x] − {0} be such that f (x)g(x) ∈ A[x]. It is enough to
show that f (x) ∈ A[x]. We consider the following two possible cases:

Case 1: A is infinite. Since f and g can have only finitely many roots, there
exist infinitely many a ∈ A such that f (a), g(a) are nonzero elements of B and
f (a)g(a)∈ A, and consequently f (a)∈ A, since A is factorially closed in B. In par-
ticular, if f has degree n, there exist n+1 distinct values in A, say a1, a2, . . . , an+1,
such that f (ai ) ∈ A for each i = 1, 2, . . . , n+ 1. So, treating the coefficients of f
as variables, and plugging in the values ai , we get n+ 1 linear equations in n+ 1
variables. The simultaneous linear equations have a solution in B. If we look at the
corresponding Vandermonde matrix, it is obvious that the solution actually lies in
Q(A). Since Q(A)∩ B = A by Lemma 3(2), f (x) ∈ A[x].

Case 2: A is a field. Without any loss of generality we may assume that f and g
are monic polynomials. Let L be a splitting field of f g over Q(B). The roots of
f g, and hence in particular the roots of f , are integral over Q(A). Consequently,
the coefficients of f , being symmetric functions of the roots, are integral over
Q(A) and hence algebraic over A. But since A is algebraically closed in B by
Lemma 3(1), the coefficients are actually in A, and hence f (x) ∈ A[x]. �

For the general case, let A be a graded factorially closed subring of a Z-graded
domain B such that Ai 6= 0 and Ai+1 6= 0 for some integer i . We want to show that
A⊆ B is factorially closed. Let S be the multiplicative set consisting of all nonzero
homogeneous elements of A. Note that if S−1 A ⊆ S−1 B is factorially closed then
so is A ⊆ B. If K := (S−1 A)0 and B̃ := (S−1 B)0, then K is a field which is
factorially closed in B̃. Choose any nonzero elements ai ∈ Ai , ai+1 ∈ Ai+1, and let
t := ai+1/ai . Then t ∈ (S−1 A)1 and S−1 A = K [t, t−1

]. To show that K [t, t−1
] is

factorially closed in S−1 B, let b := bi0+bi1+· · ·+bir and c := c j0+c j1+· · ·+c js ,
with bi0, bir and c j0, c js nonzero, be elements of S−1 B such that bc∈ S−1 A. Writing
biα := biα t−iα for α= 0, 1, . . . , r and c jβ := c jβ t− jβ for β = 0, 1, . . . , s, we get that
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b= bi0 t i0+bi1 t i1+· · ·+bir t ir , c= c j0 t j0+c j1 t j1+· · ·+c js t
js ∈ B̃[t, t−1

]. But since
K is factorially closed in B̃, so is K [t] ⊆ B̃[t], and consequently, by Lemmas 1
and 2, K [t, t−1

] is factorially closed in B̃[t, t−1
]. So b, c ∈ S−1 A, proving that

S−1 A ⊆ S−1 B is factorially closed, and hence A ⊆ B is also factorially closed.
Therefore, we have proved the following result:

Theorem 2. Let A ⊆ B be Z-graded domains with Ai 6= 0 and Ai+1 6= 0 for some
integer i . Then A is factorially closed in B if it is graded factorially closed.

Question. Is the hypothesis that Ai , Ai+1 are nonzero for some i necessary?

We do not know the answer to the above question in general. But we sketch
below a different proof of Theorem 2 without assuming the condition that Ai and
Ai+1 are nonzero for some i . However it works only when B is a UFD.

Let A⊆ B be Z-graded domains with B a UFD. Now, assuming that A is graded
factorially closed in B, we would like to show that A is factorially closed in B.
After inverting all nonzero homogeneous elements of A, we may assume that A is
of the form k[t, t−1

], where t is a homogeneous prime element of positive degree
in B. Further, since k[t] is factorially closed in B0[t] by Theorem 9, it suffices to
prove that B0[t] is factorially closed in B+ :=

⊕
i≥0 Bi . So, if f, g ∈ B+ are such

that f g ∈ B0[t], we want to show that f, g ∈ B0[t]. Let f = f0+ f1+· · ·+ fm and
g = g0+ g1+ · · ·+ gn , with fm and gn nonzero. We can write f and g as

f = f ′0tα0 + f ′1tα1 + · · ·+ f ′m tαm and g = g′0tβ0 + g′1tβ1 + · · ·+ g′m tβm ,

where fi = f ′i tαi and t does not divide f ′i unless it is zero, in which case we also take
αi to be zero, and similarly for g. If either f ′i ∈ B0 for each i or g′j ∈ B0 for each j ,
we are done. Otherwise, we define α∗ and β∗ to be the minimums of the αi for fi 6=0
and the β j for g j 6= 0, respectively. Let us also define i∗ :=max{i | αi = α∗} and
j∗ :=max{ j | β j = β∗}. Note that i∗<m and j∗< n. Looking at the homogeneous
component of degree i∗+ j∗ in f g, we get

( f g)i∗+ j∗ = f ′i∗g
′

j∗ t
α∗+β∗ + (elements divisible by tα∗+β∗+1).

But that means f ′i∗g
′

j∗ must be divisible by t , which is a contradiction.
Finally, we put together the results connecting factorial closedness and graded

factorial closedness in the form of the following theorem:

Theorem 3. For positively graded domains A ⊆ B, if we assume that A1 6= 0, then
the following statements are equivalent:

(1) A ⊆ B is fc.

(2) For any homogeneous prime ideal p, A(p) ⊆ B(p) is gfc.

(3) For any homogeneous prime ideal p, Ap ⊆ Bp is fc.

(4) For any homogeneous maximal ideal m, A(m) ⊆ B(m) is gfc.
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(5) For any homogeneous maximal ideal m, Am ⊆ Bm is fc.

Proof. Follows directly from Lemmas 7 and 8 and Theorem 2. �

In particular, if A0 is a field, A is positively graded, A1 6= (0) and m is the
irrelevant maximal ideal of A, then A ⊆ B will be factorially closed if Am ⊆ Bm is
factorially closed.

Given a subring A of an integral domain B, we define the factorially closed locus
or fc locus of A in B to be FC(A : B) := {p∈Spec A | Ap⊆ Bp is factorially closed}.
We intend to investigate the nature of this fc locus in the Zariski topology. We start
with a few definitions: let A/B := {b ∈ B | bb′ ∈ A for some b′ ∈ B−{0}}, which
is an A-module. If A denotes the algebraic closure of A in B, it is easy to see that
A⊆ Q(A)∩ B ⊆ A⊆ A/B ⊆ B. Taking A to be the ring of integers Z and B to be
Z[
√

2, x, y, 1/2y], one can see that the inclusions can be proper at each stage. By
Lemma 1(2), factorial closedness is preserved under localization. So FC(A : B) is
closed under generalization. The following lemma gives a necessary and sufficient
condition for the nonemptiness of the fc locus.

Lemma 10. With notation as above, the following statements are equivalent:

(1) There exists a prime ideal p ∈ Spec A such that Ap ⊆ Bp is fc.

(2) The inclusion Q(A)⊆ S−1 B is fc, where S := A−{0}.

(3) There is an equality Q(A)∗ = (S−1 B)∗.

(4) There is an equality A/B = Q(A)∩ B.

Proof. We will only give the proof that (4) implies (2). The other implications are
similar and easy.

Assume that A/B = Q(A)∩ B. We will show that Q(A) is fc in S−1 B.
Let (b1/s1) ·(b2/s2)∈ Q(A), where the si are nonzero elements of A. Then there

is a nonzero element α ∈ A such that b1b2α ∈ A. This implies that bi ∈ A/B, and
hence bi ∈ Q(A). �

Note that Q(A)∗ = (S−1 B)∗ implies that B∗ ⊆ Q(A). But the converse is false
as the example K [xz, yz] ⊆ K [x, y, z] with K a field shows.

To give conditions for the openness of the fc locus, we need a few auxiliary
lemmas.

Lemma 11. Let A ⊆ B be integral domains. If p ∈ Spec A is a prime ideal of
height 1 which is not in the image of Spec B, then V (p) := {q ∈ Spec A | p ⊆ q}

does not meet FC(A : B).
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Proof. Otherwise, if q ∈ V (p)∩FC(A : B), then Ap ⊆ Bp is factorially closed by
Lemma 1. But, since p is not in the image of Spec B, each prime ideal of Bp contracts
to (0) in Ap. Consequently, every nonzero element of Ap is a unit in Bp which is a
contradiction by Lemma 3. Hence we must have that V (p)∩FC(A : B)=∅. �

Lemma 12. Let A ⊆ B be integral domains with A noetherian and normal. If the
image of Spec B contains all prime ideals p ∈ Spec A of height 1, then either the fc
locus FC(A : B) is empty or A is factorially closed in B.

Proof. If A/B 6= Q(A)∩ B, we know that the factorially closed locus will be empty.
So we are interested in showing that, if A/B = Q(A)∩ B, then A is factorially
closed in B. In order to prove factorial closedness, first note that it suffices to prove
that any principal ideal of A is contracted from some ideal of B, or, equivalently,
that x B ∩ A = x A for any x ∈ A. For, if it is true, let us consider b1, b2 ∈ B−{0}
such that b1b2 = a ∈ A. Since A/B = Q(A)∩ B, b1 ∈ Q(A). Let b1 = α/β, with
α, β ∈ A−{0}. Now α ∈ βB ∩ A= βA, implying that b1 ∈ A, and consequently A
is factorially closed in B. So all we need to show is that any principal ideal of A
is contracted from some ideal of B. But since A is a noetherian normal domain,
any prime ideal associated to a principal ideal has height 1, and, as a result, using
primary decomposition any principal ideal of A can be written as a finite intersection
of primary ideals of height 1. So it is enough to prove that any height-1 primary
ideal of A is a contracted ideal. Now, given any prime ideal p ∈ Spec A of height 1,
let us consider the commutative diagram

B Bp

A Ap

The local ring Ap is a DVR and pAp is a contracted ideal. So each pAp-primary
ideal is also contracted. Again, p-primary ideals of A are in a one-to-one corre-
spondence with the pAp-primary ideals of Ap. So we conclude that each p-primary
ideal of A is contracted from some ideal in B, and this completes the proof. �

Note. Let A ⊆ B be integral domains with A noetherian. We have proved that if
Ap is a DVR for some p ∈ Spec A then p ∈ FC(A : B) if and only if it is in the
image of Spec B.

Now we are in a position to characterize the openness of the fc locus:

Theorem 4. Let A ⊆ B be integral domains with A noetherian and normal. Then
FC(A : B), if nonempty, is open in Spec A if and only if the image of Spec B misses
only finitely many height-1 prime ideals.
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Proof. If FC(A : B) is open, its complement contains at most finitely many prime
ideals of height 1. So, by Lemma 12, the image of Spec B misses at most finitely
many height-1 prime ideals. Conversely, assume that p1, p2, . . . , pn are the only
prime ideals of height 1 lying outside the image of Spec B. In view of Lemma 12, it
is enough to show that any q∈ Spec A not contained in

⋃n
i=1 V (pi ) is in FC(A : B).

So, let us choose any q ∈ Spec A −
⋃n

i=1 V (pi ). We can find x ∈
⋂n

i=1 pi − q.
Considering the inclusion Ax ⊆ Bx , all height-1 prime ideals of Ax are in the image
of Spec Bx . Since we are only interested in the case when FC(A : B) 6=∅, we may
assume by Lemma 10 that A/B = Q(A)∩ B. Consequently Ax/Bx = Q(Ax)∩ Bx .
Therefore, Lemma 11 applies to show that Ax is factorially closed in Bx . Hence
FC(A : B)= Spec A−

(⋃n
i=1 V (pi )

)
is open. �

Corollary 4.1. With notation as in Theorem 4, if B is a finitely generated algebra
over A then FC(A : B) is always open.

Proof. This follows from Theorem 4, since the corresponding dominant morphism of
affine schemes Spec B→ Spec A always contains a nonempty open set in its image,
and consequently the image of Spec B can miss at most finitely many height-1
primes of Spec A. �

2. Quasifactorially closed subrings

If we attempt to generalize Lemma 9 to the case of formal power series rings
A[[x]]( B[[x]] the attempt fails quite badly. For, suppose that A ( B is factorially
closed. If b ∈ B − A, then the element 1+ bx + x2

+ x3
+ x4
+ · · · is a unit in

B[[x]] which is not in A[[x]]. So the extension A[[x]] ⊆ B[[x]] is never factorially
closed unless A= B. The presence of ‘extra units’ in the bigger ring turns out to be
an obvious obstruction. To rectify this problem, we come up with a weaker notion
of quasifactorially closedness.

Recall that, given an inclusion of integral domains A ⊆ B, A is said to be
quasifactorially closed, or qfc for short, in B if, for any nonzero b ∈ B, if there
exists some nonzero b′ ∈ B such that bb′ ∈ A, then there exists a unit u ∈ B such
that bu ∈ A.

If A and B have the same units then the notions of factorial closedness and
quasifactorial closedness coincide. Also note that A ⊆ B is quasifactorially closed
whenever either A or B is a field. But quasifactorial closedness, in general, is
more of a geometric notion and does not behave well with algebraic operations.
For example, although it is closed under localization, we are not yet sure if global
information can be retrieved from local data as in Lemma 1. The sandwich property,
as in Lemma 2, also fails, as any integral domain is always quasifactorially closed
in any field containing it. The following example shows that the transitive property
need not hold true either.
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Example. Factorial closedness holds for K [x] ⊆ K [x, y, z, w]/(xy − zw), and
A := K [x, y, z, w]/(xy− zw) is qfc in A[1/y]. But K [x] is not qfc in A[1/y], as
there is no unit u in A[1/y] such that uz ∈ K [x].

Note that the above example also shows that in the definition of quasifactorial
closedness it may not be possible to get a unit u ∈ B such that bu, b′u−1

∈ A. In
fact, if it were true then one can check that, for integral domains A ⊆ B ⊆ C , if
A ⊆ B is fc and B ⊆ C is qfc then A ⊆ C would also be qfc, which is clearly not
true, as the above example shows.

The following example shows that A ⊆ B being qfc does not imply that A[x] ⊆
B[x] is qfc:

Example. Take any nontrivial algebraic field extension L/K . Then K ⊆ L is qfc
but K [x] ⊆ L[x] is not qfc. If K = R and L = C, take b = i x − 1 and b′ = i x + 1.
Then bb′ ∈ R[x], but there is no unit u ∈ C[x] such that bu ∈ R[x].

Let A⊆ B be fc. Then any irreducible element of A remains irreducible in B. If
A is a UFD but B is not, then prime elements of A need not remain prime in B,
as the example k[x] ⊆ k[x, y, z]/(xy − z2

− 1) shows, where the prime element
x of k[x] does not remain a prime in k[x, y, z]/(xy − z2

− 1). But if B is also a
UFD then A⊆ B is fc if and only if each prime element of A remains a prime in B
and A∗ = B∗. For UFDs A ⊆ B, primes of A remaining primes in B is a sufficient
condition for qfc. But it is not necessary, as the first example in Section 4 will show.
However, it follows from Theorem 6 and its corollaries that the converse is also
true in the case of complete local UFDs.

For integral domains A⊆ B, we define the qfc locus of A in B by QFC(A : B) :=
{p∈Spec A | Ap⊆ Bp is qfc}. Just like the fc locus, the qfc locus is also closed under
generalization. Note that QFC(A : B) is always nonempty since (0) ∈QFC(A : B).
For, let S = A−{0}. If (b1/s1).(b2/c2) ∈ Q(A) then bi/si are units in S−1 B. Then
(bi/si ).(si/bi ) ∈ Q(A), implying that Q(A) is qfc in S−1 B.

Next, we prove an openness criterion, analogous to Theorem 4, for the qfc locus,
albeit for a somewhat restricted class of rings.

Theorem 5. Let A⊆ B be affine UFDs. Assume that A and B have the same group
of units and Q(A) is algebraically closed in Q(B). Then QFC(A : B) is a nonempty
open set if one, and hence all, of the following equivalent conditions hold:

(1) Given any prime ideal p ∈ Spec A of height ≥ 2, pB has height ≥ 2.

(2) No prime element of B divides two distinct prime elements of A.

(3) Any two coprime elements of A continue to be coprime in B.

(4) There are only finitely many prime elements of A which either split in B or are
units in B.



1148 Sagnik Chakraborty, Rajendra Vasant Gurjar and Masayoshi Miyanishi

Proof. Since A and B are UFDs, the proof of the equivalence of (1), (2) and (3) in
the above statement is easy. This part does not need openness of QFC(A : B).

Let V and W denote the irreducible affine varieties corresponding to A and B
respectively, and let f :W → V be the induced morphism.

First we consider the case when dim A = 1.
By assumption, Q(A) is algebraically closed in Q(B). Then it is well-known (by

a suitable application of Bertini’s theorem) that only finitely many scheme-theoretic
fibers of the morphism W → V are either empty or not reduced and irreducible.
This shows that (4) is also always true, so that conditions (1)–(4) are equivalent.

Now we will assume that dim A ≥ 2.
Assume now that the equivalent conditions (1), (2) and (3) hold. We will show

that (4) holds.
Again, since Q(A) is algebraically closed in Q(B), there is a proper closed

subvariety S ⊂ V such that the inverse image of any point p 6∈ S is scheme-
theoretically reduced and irreducible. By (1), the inverse image of any closed
subvariety of V of codim ≥ 2 does not contain any divisor in W . Now we can
see that the only possible irreducible divisors D ⊂ V which split in W are those
contained in S.

The image f (W ) contains a nonempty Zariski-open subset since f is dominant.
Hence f (W ) can miss at most finitely many divisors in V . This shows that (4) is true.

Next, we will show that (4) implies (1). Suppose that this is not true. Then there is
a closed irreducible subvariety S⊂V of codimension>1 such that the inverse image
of S in W contains an irreducible divisor1, defined by a prime element q . Now, if D
is any irreducible divisor in V which contains S then the prime element defining D
will split in B. Since dim B > 1, there are infinitely many such prime elements in A.

This proves the equivalence of (1)–(4).
Now we will assume that the equivalent conditions (1)–(4) hold. We will show

that QFC(A : B) is a nonempty open set.
Let p1, . . . , pr be the prime elements in A such that pi is a non-unit in B and

not a prime element in B.
We will show that QFC(A : B)=Spec A\

⋃r
i=1 V (pi A), and hence QFC(A : B)

is nonempty and open.
First we will show that if a prime element p ∈ A is not a unit in B and does not

remain a prime element in B, then V (p A)∩QFC(A : B)=∅.
So, let p ∈ A be such a prime element and let q ∈ V (p A). If Aq ⊆ Bq is qfc then

so is Ap ⊆ Bp, where p := p A. Since p is not a prime element in B, there exists
b1, b2 ∈ B − B∗ such that p = b1b2. But Ap ⊆ Bp being qfc implies that either
b1 or b2 must be a unit in Bp. Without any loss of generality, let us assume that
b1 ∈ B∗p . So b1 divides some element s ∈ A−p. But s and p are coprime in A, and
hence in B by (3). So b1 must be a unit in B, which is a contradiction.
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By assumption, there are only finitely many prime elements pi ∈ A such that
pi is a non-unit in B and not a prime element in B. We have already seen that⋃n

i=1 V (pi A) ⊆ QFC(A : B)c. So it suffices to show that any prime ideal of A
which does not contain any of the pi is in QFC(A : B). Let q ∈ Spec A be such a
prime ideal. Choose any a ∈

⋂n
i=1 pi A− q. Then Aa ⊆ Ba is qfc since each prime

element in Aa continues to be a prime element in Ba . Consequently, Aq ⊆ Bq is
also qfc, and this completes the proof. �

Remark. In Section 3, we will give an example to show that QFC(A : B) can be
open and nonempty even when there are infinitely many prime elements in A which
are not units in B and are not prime elements in B.

The following theorem shows that the qfc property has some nice consequences
in the case of complete local domains:

Theorem 6. Let (A,mA)⊆ (B,mB) be local domains such that mA =mB ∩ A and
A/mA = B/mB . Moreover, assume that A is complete in the mA-adic topology and⋂
∞

n=1 m
n
B = (0). If A is qfc in B then A is algebraically closed in B.

Proof. Let b ∈ B be algebraic over A. We will construct a sequence (an) ∈ AN

such that, for each n, an+1 = an + α1α2 · · ·αnαn+1 and b = an + α1α2 · · ·αnβn

for some α1, α2, . . . , αn, αn+1 ∈ mA and βn ∈ mB . Any such sequence will be a
Cauchy sequence in the mA-adic topology of A which converges to b in the mB-adic
topology of B, implying that b ∈ A.

Since b is algebraic over A, there exist elements c0, c1, . . . , cr ∈ A, with c0 and
cr nonzero, such that

c0+ c1b+ · · ·+ cr br
= 0,

implying that b(c1+c2b+· · ·+cr br−1)∈ A. Since A is qfc in B, there exists a unit
u ∈ B∗ such that bu= a ∈ A or, equivalently, b= au−1. We can write u−1

= u′1+b1

for some u′1 ∈ A∗ and b1 ∈ mB , so that b = a(u′1 + b1). Setting a1 := au′1, the
induction hypothesis is satisfied for n = 1.

Next, suppose that we have already found elements a1, a2, . . . , an ∈ A satisfying
the required conditions. To find an+1, note that b = an +α1α2 · · ·αnβn , implying
that α1α2 · · ·αnβn is also algebraic over A, and consequently there exists a unit
un+1 ∈ B∗ such that βn = αn+1un+1 for some αn+1 ∈mA. Writing un+1 as un+1 =

u′n+1+βn+1, where u′n+1 ∈ A∗ and βn+1 ∈mB , we get

b = an +α1α2 · · ·αnαn+1(u′n+1+βn+1).

It is obvious that an+1 := an+α1α2 · · ·αnαn+1u′n+1 satisfies the required properties.
This, together with induction, completes the proof. �

With notation as in Theorem 6, we have the following easy corollaries:

Corollary 6.1. There is an equality Q(A)∩ B = A.
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Corollary 6.2. If B is normal, then so is A.

Corollary 6.3. If B satisfies the ascending chain condition for principal ideals,
then so does A.

Corollaries 6.1, 6.2 and 6.3 are immediate consequence of Theorem 6.

Corollary 6.4. Any irreducible element of A remains irreducible in B.

This can be proved in the same way as the proof of Theorem 6. We leave the
details to the reader.

Corollary 6.5. If a ∈ A is a prime element of B, then it is already a prime element
in A.

Corollary 6.6. Let a, a′ ∈ A. Then a A= a′A if and only if aB= a′B. In particular,
if two elements of A are not associates in A, they cannot become associates in B.

This follows easily from Corollary 6.1. For, if a′ ∈ aB, then, writing a′ = ab
with b ∈ B, by Corollary 6.1 we have b ∈ Q(A)∩ B = A.

Corollary 6.7. If B is a UFD, then so is A.

Proof. Corollary 6.3 shows that any element in A can be written as a product of
irreducible elements in A. By Corollary 6.4, any irreducible element in A remains
irreducible and hence a prime in B. Now Corollary 6.5 finishes the proof. �

Corollary 6.8. If two elements of A have no common factor in A, they cannot have
a common factor in B.

Proof. If b ∈mB is a common factor of a, a′ ∈mA, then there is a unit u ∈ B∗ such
that bu ∈mA. But then, by Corollary 6.1, bu is a common factor of a and a′ in A,
leading to a contradiction. �

Corollary 6.9. If B is a UFD, then, for any prime ideal p ∈ Spec A of height ≥ 2,
pB has height ≥ 2.

Now we prove an analogue of Theorem 1 for power series rings. First, we
consider the 2-dimensional case.

Theorem 7. Let k ( A ( B := k[[x, y]] be a noetherian complete (with respect to
its maximal ideal) local qfc subring of B, the power series ring in two variables.
Then A is isomorphic to a power series ring in one variable over k.

Proof. By Corollary 6.7, A is a UFD. Let p∈ A be a prime element. By Corollary 6.4,
p is a prime element in B, and since A is qfc in B we have pB ∩ A = p A. This
gives an inclusion of integral domains A/p A ⊆ B/pB. Now dim B/pB = 1, and
hence any two elements in B/pB are analytically dependent. Thus, dim A/p A≤ 1.
Now dim A ≤ 2. If dim A = 1, then A is clearly isomorphic to a power series ring
in one variable over k.
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Now assume that dim A=2. We will show that A= k[[x, y]]. For that, choose any
two relatively prime elements u, v from the maximal ideal of A. By Corollaries 6.4
and 6.6, u and v are nonassociate prime elements of k[[x, y]]. So, in particular,
the extension of the maximal ideal of A to B is (x, y)-primary. Since A, B are
complete, we infer that B is integral over A. But then by Theorem 6 A must be
equal to k[[x, y]]. �

Next we consider the case when dim B = 3.

Theorem 8. Let k ⊆ A⊆ B := k[[X, Y, Z ]], where A is a 2-dimensional noetherian
complete (with respect to its maximal ideal) local qfc subring of B. Then A is
isomorphic to a power series ring in two variables over k.

Proof. The proof is similar to the proof of Theorem 7.
Note that A is a UFD by Corollary 6.7.
By Brieskorn’s theorem [1968], either A is isomorphic to a power series in two

variables over k, or A∼= k[[u, v, w]]/(u2
+v3
+w5). We have to show that A cannot

be isomorphic to k[[u, v, w]]/(u2
+ v3
+ w5). By the argument in the proof of

Theorem 7, the extended ideal (u, v, w)B has height > 1. We know that A is the
ring of invariants of the binary icosahedral group of order 120 acting on a power
series ring k[[s, t]]. The morphism Spec k[[s, t]] \ {(s, t)} → Spec A \ {(u, v, w)} is
finite unramified. Since Spec B \ V ((u, v, w)) is simply connected, by covering
space theory we have a factorization

Spec B \ V ((u, v, w))→ Spec k[[s, t]] \ {(s, t)} → Spec A \ {(u, v, w)}.

By Hartog’s theorem, we have A ⊂ k[[s, t]] ⊆ B. But then A is not algebraically
closed in B, contradicting Theorem 6. This shows that A is isomorphic to a power
series ring in two variables over k. �

Question. In Theorem 8, is the assumption dim A = 2 necessary, i.e., can a proper
qfc subring of k[[x, y, z]] have dimension > 2?

It is well-known that, if A ⊆ B are affine normal domains over an algebraically
closed field of characteristic 0 such that Q(A) is algebraically closed in Q(B), then a
general fiber of the morphism Spec B→Spec A is irreducible. By Theorem 6, if A⊆
B are complete normal domains over an algebraically closed field of characteristic 0
such that A is qfc in B, then Q(A) is algebraically closed in Q(B). In view of the
above observation we can ask the following question:

Question. Let (V, p), (W, q) be normal complex analytic germs and f : (W, q)→
(V, p) a complex analytic morphism such that the analytic local ring of V is
algebraically closed in that of W . Is a general fiber of f irreducible?

We have the following modest result as an affirmative answer to this question:
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Theorem 9. Let (W, q) be a normal complex analytic germ and f : W → C a
complex analytic morphism of germs. Assume that the ring C{ f } ⊂ OW,q is qfc.
Then a general fiber of f is connected.

Proof. We will use a result of Tráng [1977] on the topology of singular points,
which generalizes Milnor’s results.

Tráng [1977] proved that there are positive numbers 0< δ� ε� 1 such that if
D is a disc of radius δ in C then the morphism Bε ∩W ∩ f −1(D−{0})→ D−{0}
is a topological fiber bundle, where Bε is a ball of radius ε with center q in Cn , such
that (W, q)⊆ (Cn, 0) is a closed embedding of germs. Since C{ f } ⊂ OW,q is qfc,
the fiber { f = 0} is irreducible by Corollary 6.4. We have a long exact sequence of
homotopy groups

π1(F)−→ π1(Bε ∩W ∩ f −1(D−{0}))−→ π1(D−{0})−→ π0(F)

−→ π0(Bε ∩W ∩ f −1(D−{0}))−→ π0(D−{0})−→ (1).

Here F is a general fiber of Bε ∩W ∩ f −1(D−{0})→ D−{0}. Both Bε ∩W ∩
f −1(D−{0}) and D−{0} are connected. Since { f = 0} is reduced and irreducible,
a small transverse loop in Bε ∩W ∩ f −1(D−{0}) maps onto the generator of the
fundamental group of D−{0}, hence the homomorphism

π1(Bε ∩W ∩ f −1(D−{0}))→ π1(D−{0})

is surjective. It follows that F is connected, and this proves the result. �

The next result is an interesting consequence of the property of being factorially
closed. To state the result, we need a definition. Let f : Y → X be a dominant
morphism of smooth algebraic varieties such that the general fibers are irreducible
and reduced. Then there exist an open immersion ι : Y ↪→ W and a projective
morphism f :W → X such that f = f ◦ ι, where W is a smooth algebraic variety
and D :=W \Y is a divisor with simple normal crossings. Let D = D1+· · ·+ Dr

be the irreducible decomposition. We further assume that D intersects transversally
the fiber FP = f −1(P) for every closed point P ∈ X . We say that f is an SNC-
completion of f . Suppose that for every P ∈ X and every 1≤ i ≤ r the intersection
Di ·FP is irreducible and reduced. If there exists such an SNC-completion of f , we
say that f is fiberwise integral at infinity. If there is an open set U of X such that
f : f −1(U )→U has a completion which is fiberwise integral at infinity, then we
say that f is generically fiberwise integral at infinity. This condition is equivalent
to saying that the generic fiber Yη, with η the generic point of X , can be embedded
into a projective smooth variety Wη defined over the field k(η) in such a way that
Dη =Wη \ Yη is a divisor consisting of geometrically integral smooth components
with simple normal crossings.
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Theorem 10. Let A be an affine domain of dimension 1 over k. Assume that A is fc
in a regular affine domain R over k. Let X =Spec A, Y =Spec R and f :Y→ X be
the induced morphism. Assume that f has an SNC-completion which is generically
fiberwise integral at infinity. Then there is a maximal ideal m of A such that the
affine domain R/mR is regular and has no nontrivial units.

Proof. Since A is fc in R and R is normal, it follows that A is normal, and
hence regular as dim A = 1. A general fiber of the morphism f is reduced and
irreducible. In particular, by Bertini’s theorem, R/mR is a regular affine domain
for all but finitely many maximal ideals in A. Removing from X the closed points
corresponding to these maximal ideals, we may assume that f is a smooth morphism.
Let f :W → X be an SNC-completion which is fiberwise integral at infinity. Here
we may have to replace X by a suitable open set. Let D =W \ Y be the divisor at
infinity and let D = D1+ D2+ · · ·+ Dr be the irreducible decomposition of D. If
the result is not true, then we may assume that R/mR has a nontrivial unit for every
maximal ideal m of A. Note that, by definition, each Di meets each fiber FP of f
transversally and the intersection Di · FP is integral, i.e., irreducible and reduced.

Let P be a closed point of X . The fiber f −1(P) has a nonconstant unit u P , and
the divisor (u P) in FP := f −1(P) has the form

∑
i a(P)i Di |FP with a(P)i ∈ Z.

Note that the subgroup
∑

i ZDi of Pic(W ), which is generated by the irreducible
components of D, is a countable group. Choosing a nonconstant unit u P for every
P ∈ X (k), we have a mapping P 7→ (u P) from X (k) to the group

∑
i ZDi , where

X (k) is the set of closed points of X and (u P) is identified with
∑

i a(P)i Di . Since
each Di ∩FP is irreducible and reduced for each i , such an identification is possible.
Then we can find a fixed divisor D0 =

∑
i ai Di and an infinite set 3 of X (k) such

that D0 · FP = (u P) for each P of 3. This means that the line bundle O(D0) on W
restricts to a trivial line bundle on FP for each P ∈3. By the upper-semicontinuity
theorem [Hartshorne 1977, Chapter III, Theorem 12.8], the set of points in X such
that the restriction of D0 to FP is trivial is a closed subvariety T of X containing the
infinite set 3. (Use the theorem for L and L−1 so that dimk H 0(FP ,L|FP )≥ 0 and
dimk H 0(FP ,L−1

|FP )≥ 0.) Since dim X = 1, T = X and D0 restricts to a trivial
line bundle on every fiber of f . By [Hartshorne 1977, Chapter III, Exercise 12.4],
D0 is linearly equivalent to the pullback by f of a divisor of the form

∑s
j=1 b j Q j

on X . Thus, the restriction of D0 to f −1(X \{Q1, . . . , Qs}) is linearly equivalent to
zero. Write D0 as the divisor of a rational function (ϕ) on f −1(X \ {Q1, . . . , Qs}).
Then ϕ gives a nonconstant unit of f −1(X \ {Q1, . . . , Qs}). Since the units on
f −1(X \ {Q1, . . . , Qs}) and X \ {Q1, . . . , Qs} are the same by the assumption of
factorial closedness, ϕ is constant on each fiber of f . However, ϕ restricts onto the
unit u P up to a nonzero constant for every P ∈3. This is a contradiction because
u P is not a constant. �
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Without the assumption that f has an SNC-completion which is fiberwise integral
at infinity, Theorem 10 does not hold.

Example. Let W be the Hirzebruch surface P1
×P1 with vertical and horizontal P1-

fibrations. Let p1 :W→P1 be the vertical one with a fiber L , and let the horizontal
one p2 be given by a linear system |M |. Let D1 be an irreducible curve such that
D1 ∼ 2M + L . Then the restriction p1|D1 : D1 → P1, being a double covering,
has two branch points. Let L1, L2 be two fibers of p1 over these branch points.
Let D = D1 + L1 + L2, and let Y := W \ D and X := P1

− {two branch points}.
Let f = p1|Y . Then every fiber of f : Y → X is irreducible; hence k(X) is
algebraically closed in k(Y ) and it is easy to see that A is factorially closed in
R, where X = Spec A and Y = Spec R, because A = k[t, t−1

] and every prime
element of A is t − c with some nonzero constant c ∈ k. Then the fiber over t = c
is irreducible. Hence t − c is a prime element in R. Furthermore, the units of R are
the same as the units of A because the only linear relation among the components
of D is the one between L1 and L2. But every closed fiber of f has a nontrivial unit
because it is isomorphic to A1

∗
. Note that R is not factorial since Pic(R)= Z/2Z.

Remark. In this example, the fibration f : Y→ X is a twisted A1
∗
-fibration. Let X ′

be the curve D1 with two ramifying points for p1|D1 removed, and let f ′ : Y ′→ X ′

be the base change of f by X ′ → X . Then Y ′ ∼= A1
∗
× A1

∗
. Write Y = Spec R,

X = Spec A and X ′ = Spec A′. Then A is fc in R, but A′ is not fc in R′ := R⊗A A′.
In fact, R′∗/k∗ ∼= Z×Z and A′∗/k∗ ∼= Z. If A′ were fc in R′, then we must have
R′∗= A′∗. Note that A′/A is a finite étale extension. Hence the factorial closedness
is not preserved even by an étale base change.

Using Theorem 10 we can now give a very short proof of a result of [Neumann
and Norbury 1998].

Theorem 11. Let f, g ∈ C[X, Y ] be a pair of polynomials in two variables with
nonzero constant Jacobian determinant. Suppose that the following conditions are
satisfied:

(a) For all c ∈ C, the polynomial f − c is irreducible and defines a rational curve.

(b) Let C2
⊂ Y be an open embedding in a smooth quasiprojective surface such

that f : C2
→ C extends to a proper morphism Y → C and Y \C2 is a simple

normal crossing divisor such that each irreducible component of Y \C2 is a
cross-section of the morphism Y → C.

Then { f = 0} ∼= C, and hence the Jacobian Conjecture is true for the pair ( f, g).

Remark. In [Neumann and Norbury 1998] f is called a simple rational polynomial.
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Proof. By assumption, f−c is an irreducible polynomial for all constants c. Also, C2

has no nonconstant invertible regular functions. Hence the morphism C2
→ C is an

fc morphism. Condition (b) implies that f :C2
→C is generically fiberwise integral

at infinity. By Theorem 10 and condition (a), for all but finitely many c∈C the affine
curve { f = c} is smooth rational irreducible with no nonconstant invertible regular
functions. Hence it is isomorphic to C. By the Abhyankar–Moh–Suzuki theorem,
after a suitable automorphism of C[X, Y ] the polynomial f is mapped onto X . It
is well-known that this implies that the Jacobian Conjecture is true for ( f, g). �

The next result is another interesting example of qfc subrings.

Theorem 12. Let A = C{z1, z2, . . . , zn}/P be an analytic local domain which is a
UFD. Then A is qfc in Â.

Proof. We use Artin’s approximation theorem [1968].
It is known that Â is also a UFD. To show that A is qfc in Â, it follows easily

from the definition of a qfc subring that it is enough to show that any prime element
of A remains a prime element in Â.

Suppose that f ∈ A is a prime element. Assume that there are non-units g, h
in Â such that f = gh. Let P be generated by f1, f2, . . . , fr . Let w1, w2, . . . , wr ,
wr+1, wr+2 be new indeterminates. Consider the system of equations in the variables
z1, . . . , zn, w1, w2, . . . , wr+2

f1−w1 = 0= f2−w2 = · · · = fr −wr = f −wr+1wr+2.

This system has solutionsw1= f1,. . .,wr= fr ,wr+1=g,wr+2=h in C[[z1,. . .,zn]].
By Artin’s theorem, we can find solutions g0,h0 in C{z1, . . . , zn} such that f = g0h0

modulo P and g0, h0 approximate g, h to any order. In particular, g0 and h0 cannot
be units. Thus, every prime element in A remains a prime element in Â, and
consequently A is qfc in Â. �

Corollary 12.1. Any element of C[[z1,. . .,zn]]which is algebraic over C{z1,. . .,zn}

is itself convergent. (Here, z1, z2, . . . , zn are indeterminates over C.)

Question. Is Theorem 12 valid without assuming that A is a UFD?

3. Examples

We give some examples which shed more light on fc and qfc extensions.

(1) The following example shows that a qfc extension A ⊆ B of local domains can
be quite strange if A is not complete.

Let k be any field. Consider A := k[x, ex
− 1](x,ex−1) and B := k[[x]]. Then

A ⊆ B is a local inclusion of local UFDs. Note that A is a regular local ring of
dimension 2, whereas B has only one nonzero prime ideal, namely (x). From these
observations we can easily deduce the following properties:
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(a) Infinitely many primes of A split in B.

(b) Infinitely many distinct primes of A become associates in B.

(c) The dimension of A is bigger than the dimension of B.

(d) A prime element of B, namely x , divides infinitely many distinct prime ele-
ments of A.

(2) The properties of being a qfc extension and a flat extension are independent.
For, a ring of invariants A of a semisimple group acting on a polynomial ring B

is fc in B, but the extension is not flat in general.
On the other hand, the extension k[t2

] ⊆ k[t] is flat but not qfc.

(3) For an extension of normal affine domains A ⊆ B, the set of points m ∈Max B
such that Am∩A ⊆ Bm is qfc is in general not Zariski-open in Max B.

An example of this is the inclusion A := k[x] ⊆ B := k[x, y, z]/(xy− z2). If m0

is the maximal ideal corresponding to the origin (0, 0, 0) in B, then A(x) is qfc in
Bm0 , but for maximal ideals corresponding to nearby points (0, λ, 0) this is not true.

Remark. One may ask a similar question for fc extensions. But at least in the case
of affine domains it is not very interesting, for then by Lemma 4 Am∩A = Bm. So
A and B must be birational where the set of such points is clearly open.

(4) The ring extension A := k[xy] ⊆ B := k[x, y] is such that A is algebraically
closed in B and A∗ = B∗, but the fc locus FC(A : B) is empty.

(5) The ring extension A := k[x] ⊂ B := k[x, y, z]/(x2
+ y2

+ z2
− 1) has the

property that any irreducible element of A remains irreducible in B, the extension
is faithfully flat and both rings have same units, but A is not fc in B. Note that B is
not factorial.

(6) Let A := k[x, xy] ⊂ B := k[x, y], where x, y are indeterminates. Then Q(A)⊂
Q(B) is maximally algebraic. Any element of the form x+axy is a prime element
in A but not a prime element in B, where a ∈ k∗.

If q is any prime ideal in A other than (x, xy), then either x or xy is a unit in Aq.
Hence both x, y are units in Bq. It follows that any prime element in Aq is either a
prime element in Bq or a unit in Bq. This shows that FC(A : B)= Spec A\{(x, xy)}
is nonempty and open, but infinitely many prime elements in A are non-units in B
and are not prime elements in B.

If p is any height-1 prime ideal in A, then at least one of x, xy does not lie in p.
Hence, in Bp, x is always a prime element. From this we see that Ap ⊂ Bp is qfc.

Clearly A is not fc in B. Since A, B are UFDs and have the same units, A is not
qfc in B.

This shows that the local analogue of Lemma 1(6) does not hold for the qfc
property.
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4. Open problems

(1) Let A ⊆ B be normal complete local domains over k such that A is qfc in B.
Is the power series ring in one variable A[[x]] qfc in B[[x]]?

(2) Suppose that A⊆ B are normal affine domains such that for any maximal ideal
m⊂ A the extension Am ⊆ Bm is qfc. Is A qfc in B?

(3) Let A ⊆ B be an qfc inclusion of normal complete domains over k. Is
dim A ≤ dim B?

(4) Is any fc subring of a PID also a PID?
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Coherent analogues
of matrix factorizations

and relative singularity categories
Alexander I. Efimov and Leonid Positselski

We define the triangulated category of relative singularities of a closed subscheme
in a scheme. When the closed subscheme is a Cartier divisor, we consider
matrix factorizations of the related section of a line bundle, and their analogues
with locally free sheaves replaced by coherent ones. The appropriate exotic
derived category of coherent matrix factorizations is then identified with the
triangulated category of relative singularities, while the similar exotic derived
category of locally free matrix factorizations is its full subcategory. The latter
category is identified with the kernel of the direct image functor corresponding
to the closed embedding of the zero locus and acting between the conventional
(absolute) triangulated categories of singularities. Similar results are obtained for
matrix factorizations of infinite rank; and two different “large” versions of the
triangulated category of relative singularities, corresponding to the approaches
of Orlov and Krause, are identified in the case of a Cartier divisor. A version of
the Thomason–Trobaugh–Neeman localization theorem is proven for coherent
matrix factorizations and disproven for locally free matrix factorizations of finite
rank. Contravariant (coherent) and covariant (quasicoherent) versions of the
Serre–Grothendieck duality theorems for matrix factorizations are established,
and pull-backs and push-forwards of matrix factorizations are discussed at length.
A number of general results about derived categories of the second kind for
curved differential graded modules (CDG-modules) over quasicoherent CDG-
algebras are proven on the way. Hochschild (co)homology of matrix factorization
categories are discussed in an appendix.
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Introduction

A matrix factorization of an element w in a commutative ring R is a pair of square
matrices .ˆ;‰/ of the same size, with entries from R, such that both the products
ˆ‰ and ‰ˆ are equal to w times the identity matrix. In the coordinate-free
language, a matrix factorization is a pair of finitely generated free R-modules M 0

andM 1 together with R-module homomorphismsM 0!M 1 andM 1!M 0 such
that both the compositionsM 0!M 1!M 0 andM 1!M 0!M 1 are equal to the
multiplication with w. Matrix factorizations were introduced by Eisenbud [1980]
and used by Buchweitz [1986] for the study of the maximal Cohen–Macaulay
modules over hypersurface local rings.

Another name for this notion is “D-branes in the Landau–Ginzburg B model” (as
suggested by Kontsevich) [Kapustin and Li 2003]; in this context, the element w is
called the potential. One generalizes the above definition, replacing free modules
with projective modules [Kapustin and Li 2003; Orlov 2004], with locally free
sheaves [Orlov 2012], and finally with coherent sheaves [Lin and Pomerleano 2013].
The importance of the latter generalization is emphasized in the present paper.

Being particular cases of curved DG-modules over a curved DG-ring [Kapustin
and Li 2003; Positselski 2011b], matrix factorizations form a DG-category. So one
can consider the corresponding category of closed degree-zero morphisms up to
chain homotopy, which is a triangulated category. Generally speaking, however, the
homotopy category is “too big” for most purposes, and one would like to pass from
it to an appropriately defined derived category. One can use the homotopy category
in lieu of the derived one when dealing with projective modules [Kapustin and Li
2003; Orlov 2004]; for locally free matrix factorizations over a nonaffine scheme,
there is an option of working with the quotient category of the homotopy category
by the locally contractible objects [Polishchuk and Vaintrob 2011, Definition 3.13].
When dealing with coherent (analogues of) matrix factorizations, having some kind
of derived category construction is apparently unavoidable.

The relevant concept of a derived category is that of the derived category of
the second kind, as developed in [Positselski 2010; 2011b]. There are several
versions of this notion; the appropriate one for quasicoherent sheaves is called the
coderived category and for coherent sheaves it is the absolute derived category. The
absolute derived category of locally free matrix factorizations was studied in [Orlov
2012]; for coherent matrix factorizations over a smooth variety, it was considered
in [Lin and Pomerleano 2013]. These two absolute derived categories are equivalent
for regular schemes, but can be different otherwise (as we show with an explicit
counterexample).

The triangulated category of singularities of a Noetherian scheme was defined
by D. Orlov [2004] as the quotient category of the bounded derived category of
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coherent sheaves by its full triangulated subcategory of perfect complexes, i.e.,
the objects locally presentable as finite complexes of locally free sheaves. This
triangulated category vanishes if and only if the Noetherian scheme is regular. It
was shown in [Orlov 2004, Theorem 3.9], under mild assumptions on an affine
regular Noetherian scheme X and a potential (regular function) w on it, that the
homotopy category of locally free matrix factorizations of w over X is equivalent
to the triangulated category of singularities of the zero locus X0 of w in X .

Orlov [2012] showed that the affineness assumption on X can be dropped in this
result if one replaces the homotopy category of locally free matrix factorizations with
their absolute derived category. He also considers the general case of a nonaffine
singular scheme X , for which he obtains a fully faithful functor from the absolute
derived category of locally free matrix factorizations over X to the triangulated
category of singularities of X0. The problem of studying the difference between
these two triangulated categories was posed in the introduction to [Orlov 2012].

The first aim of the present paper is to provide an alternative proof of these results
of Orlov for regular schemes, an alternative generalization of them to singular
schemes, and a more precise version of Orlov’s original generalization. We replace
the triangulated category at the source of Orlov’s fully faithful functor by a “larger”
category (containing the original one) and the triangulated category at the target
by a “smaller” category (a quotient of the original one), thereby transforming this
functor into an equivalence of triangulated categories. We also describe the image
of Orlov’s fully faithful functor as the kernel of a certain other triangulated functor.

More precisely, we show that the absolute derived category of coherent matrix
factorizations of w over X is equivalent to what we call the triangulated category of
singularities of X0 relative to X . The latter category is a certain quotient category
of the triangulated category of singularities of X0; it measures, roughly speaking,
how much worse are the singularities of X0 compared to those of X . As to the
image of Orlov’s fully faithful embedding, it consists precisely of those objects
of the conventional (absolute) triangulated category of singularities of X0 whose
direct images vanish in the triangulated category of singularities of X .

The paper consists of three sections and two appendices. In Section 1, we prove
three rather general technical assertions about derived categories of the second
kind for curved differential graded modules (CDG-modules) over a quasicoherent
CDG-algebra with a restriction on the homological dimension. One of them, claim-
ing that certain embeddings of DG-categories of CDG-modules induce equivalences
of the derived categories of the second kind, is a generalization of [Polishchuk
and Positselski 2012, Theorem 3.2] based on a modification of the same argument,
originally introduced for the proof of [Positselski 2010, Theorem 7.2.2].

The idea of the proof of the other assertion, according to which certain natural
functors between derived categories of the second kind are fully faithful, is new.
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The third technical assertion explains when the coderived category coincides with
the absolute derived category of the same class of CDG-modules: e.g., for the
locally projective CDG-modules this is true.

A version of (the former two of) these results is used in Section 2 to extend
Orlov’s cokernel functor from the absolute derived category of locally free matrix
factorizations to the absolute derived category of coherent ones. This extension of the
cokernel functor admits a simple construction of a functor in the opposite direction,
suggested in [Lin and Pomerleano 2013]. We use these constructions to obtain a
new proof of Orlov’s theorem, and our own generalization of it to the singular case.

When X is regular, Orlov’s and our results amount to the same assertion since
the absolute derived categories of locally free and coherent matrix factorizations are
equivalent by our Theorem 1.4. When X is singular, the natural functor between
these two absolute derived categories is fully faithful by our Proposition 1.5, and
Orlov’s full-and-faithfulness theorem follows from ours by virtue of an appropriate
semiorthogonality property.

We also compare a “large” version of the triangulated category of relative singular-
ities with the coderived category of quasicoherent matrix factorizations, strengthen-
ing some results of Polishchuk and Vaintrob [2011]. A “large” version of the absolute
triangulated category of singularities, defined by Orlov [2004], is identified with
H. Krause’s stable derived category [2005] in the case of a divisor in a regular scheme.
A similar result is proven in the case of a Cartier divisor in a singular scheme, where
we extend Krause’s theory by defining the relative stable derived category. For
any closed subscheme of finite flat dimension in a separated Noetherian scheme,
the relative stable derived category is compactly generated by its full triangulated
subcategory equivalent to the triangulated category of relative singularities.

The homotopy categories of unbounded complexes of projective modules over
a ring and injective quasicoherent sheaves over a scheme were studied by Jør-
gensen [2005] and Krause [2005]; subsequently, Iyengar and Krause [2006] con-
structed an equivalence between these two categories for rings with dualizing com-
plexes. These results were extended to quasicoherent sheaves over schemes by Nee-
man [2008] and Murfet [2007], who found a way to define a replacement of the homo-
topy category of (nonexistent) projective sheaves in terms of the flat ones. The equiv-
alence between these two categories is a covariant version of Serre–Grothendieck du-
ality [Hartshorne 1966]. It is also very similar to the derived comodule-contramodule
correspondence theory, developed by the second author [Positselski 2010; 2011b].

Serre–Grothendieck duality for matrix factorizations in the situation of a smooth
variety X (and an isolated singularity of X0) was studied in [Murfet 2013]. In
this paper we extend the duality to matrix factorizations over much more general
schemes X , constructing an equivalence between two “large” exotic derived cate-
gories, namely, the coderived category of flat (or locally free) matrix factorizations
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of possibly infinite rank and the coderived category of quasicoherent matrix factor-
izations. Unless X is Gorenstein, this equivalence is not provided by the natural
functor induced by the embedding of DG-categories, but rather differs from it in
that the tensor product with the dualizing complex has to be taken along the way.
A contravariant Serre duality in the form of an auto-antiequivalence of the absolute
derived category of coherent matrix factorizations is also obtained.

There was some attention paid to pull-backs and push-forwards of matrix fac-
torizations recently [Polishchuk and Vaintrob 2011; 2014; Dyckerhoff and Murfet
2013]. In Section 3, we approach this topic with our techniques, constructing the
push-forwards of locally free matrix factorizations of infinite rank for any morphism
of finite flat dimension between schemes of finite Krull dimension, and the push-
forwards of locally free matrix factorizations of finite rank for any such morphism
for which the induced morphism of the zero loci of w is proper. At the price of
having to adjoin the images of idempotent endomorphisms, the preservation of
finite rank under push-forwards is proven assuming only the support of the matrix
factorization [Polishchuk and Vaintrob 2011] to be proper over the base.

Push-forwards of quasicoherent matrix factorizations are well-defined for any
morphism of Noetherian schemes, and push-forwards of coherent matrix factor-
izations exist under properness assumptions similar to the above. A general study
of category-theoretic and set-theoretic supports of quasicoherent and coherent
CDG-modules is undertaken in this paper in order to obtain an independent proof
of the preservation of coherence under the push-forwards not based on the passage
to the triangulated categories of singularities.

The compatibility with pull-backs and push-forwards is an organic part of
Serre–Grothendieck duality theory. The contravariant duality agrees with push-
forwards of coherent sheaves (or matrix factorizations) with respect to proper
morphisms [Hartshorne 1966], while the covariant duality transforms the conven-
tional inverse image of flat matrix factorizations into the extraordinary inverse
image of quasicoherent ones [Positselski 2012]. We use the latter result in order
to construct the extraordinary inverse image functor of Hartshorne and Deligne,
which is denoted by f Š in [Hartshorne 1966] and which we denote by f C, in the
case of quasicoherent matrix factorizations.

Appendix A contains proofs of some basic facts about flat, locally projective,
and injective quasicoherent graded modules which are occasionally used in the
main body of the paper. Appendix B can be viewed as a complement to the
paper [Polishchuk and Positselski 2012]. While Section B.1 contains some vari-
ations of and improvements on the results about Hochschild (co)homology of
(C)DG-categories and (locally free) matrix factorizations in [loc. cit.], Section B.2
presents an alternative approach to the Hochschild (co)homology of coherent matrix
factorizations based on the techniques developed in the main body of this paper.
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1. Exotic derived categories of quasicoherent CDG-modules

1.1. CDG-rings and CDG-modules. A CDG-ring (curved differential graded ring)
B D .B; d; h/ is defined as a graded ring B D

L
i2ZB

i endowed with an odd
derivation d W B ! B of degree 1 and an element h 2 B2 such that d2.b/ D
Œh; b� for all b 2 B and d.h/ D 0. So one should have d W B i ! B iC1 and
d.ab/D d.a/bC .�1/jajad.b/; the brackets Œ�;�� denote the supercommutator
Œa; b�D ab� .�1/jajjbjba. The element h is called the curvature element.

A morphism of CDG-rings B! A is a pair .f; a/, with a morphism of graded
rings f W B! A and an element a 2 A1 such that f .dBb/D dAf .b/C Œa; f .b/�
for all b 2 B and f .hB/ D hA C dAaC a2. The composition of morphisms of
CDG-rings is defined by the obvious rule .f; a/ ı .g; b/D .f ıg; aCf .b//. The
element a is called the change-of-connection element. A discussion of the origins
of these definitions can be found in the paper [Positsel0skiı̆ 1993], where the above
terminology first appeared (see also an earlier paper [Getzler and Jones 1990],
where the motivation was entirely different).

A left CDG-module M D .M; dM / over a CDG-ring B is a graded B-module
endowed with an odd derivation dM WM !M compatible with the derivation d
on B such that d2M .m/ D hm for all m 2M . Given a morphism of CDG-rings
.f; a/ WB!A and a CDG-module .M; d/ overA, the CDG-module .M; d 0/ overB
is defined by the rule d 0.m/D d.m/C am.

Given graded left B-modules M and N , homogeneous B-module morphisms
f WM !N of degree n are defined as homogeneous maps supercommuting with
the action of B; i.e., f .bm/D .�1/njbjbf .m/. When M and N are CDG-modules,
the homogeneous B-module morphisms M !N form a complex of abelian groups
with the differential d.f /.m/Dd.f .m//�.�1/jf jf .d.m//. The curvature-related
terms cancel out in the computation of the square of this differential, so one has
d2.f /D 0. Therefore, left CDG-modules over B form a DG-category.

Two aspects of the above definitions are worth pointing out. First, the CDG-rings
or modules have no cohomology modules, as their differentials do not square to
zero. Second, given a CDG-ring B , there is no natural way to define a CDG-module
structure on the free graded B-module B (though B is naturally a CDG-bimodule
over itself, in the appropriate sense).

We refer the reader to [Positselski 2011b, Section 3.1] or [Positselski 2010,
Sections 0.4.3–0.4.5] for more detailed discussions of the above notions. We will
not need to consider any gradings different from Z-gradings in this paper, though
all the general results will be equally applicable in the �-graded situation in the
sense of [Polishchuk and Positselski 2012, Section 1.1].

1.2. Quasicoherent CDG-algebras. Throughout this paper, unless specified other-
wise, X is a separated Noetherian scheme with enough vector bundles; in other
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words, it is assumed that every coherent sheaf on X is the quotient sheaf of a
locally free sheaf of finite rank. Note that the class of all schemes satisfying these
conditions is closed under the passages to open and closed subschemes [Orlov 2004,
Section 1.2] and contains all regular separated Noetherian schemes [Hartshorne
1977, Exercise III.6.8].

Recall the definition of a quasicoherent CDG-algebra from [Positselski 2011b,
Appendix B]. A quasicoherent CDG-algebra B over X is a graded quasicoherent
OX -algebra such that for each affine open subscheme U �X , the graded ring B.U /
is endowed with a structure of CDG-ring, i.e., a (not necessarily OX -linear) odd
derivation d W B.U /! B.U / of degree 1 and an element h 2 B2.U /. For each pair
of embedded affine open subschemes U �V �X , an element aUV 2B1.U / is fixed
such that the restriction morphism B.V /! B.U / together with the element aUV
form a morphism of CDG-rings. The obvious compatibility condition is imposed
for triples of embedded affine open subschemes U � V �W �X .

A quasicoherent left CDG-module M over B is an OX -quasicoherent (or, equiva-
lently, B-quasicoherent) sheaf of graded left modules over B together with a family
of differentials d WM.U /!M.U / defined for all affine open subschemes U �X
such that M.U / is a CDG-module over B.U / and the appropriate compatibility con-
dition holds with respect to the restriction morphisms of CDG-rings B.V /! B.U /.
Specifically, for a quasicoherent left CDG-module M, one should have

d.s/jU D d.sjU /C aUV sjU for any s 2M.V /:

Quasicoherent left CDG-modules over a quasicoherent CDG-algebra B form a
DG-category [Positselski 2011b]. The complex of morphisms between CDG-mod-
ules N and M is the graded abelian group of homogeneous B-module morphisms
f WN!M with the differential d.f / defined locally as the supercommutator of f
with the differentials in N .U / and M.U /. We denote this DG-category by B-qcoh.

We will call a quasicoherent graded algebra B over X Noetherian if the graded
ring B.U / is left Noetherian for any affine open subscheme U �X . Equivalently,
B is Noetherian if the abelian category of quasicoherent graded left B-modules is a
locally Noetherian Grothendieck category. In this case, the full DG-subcategory in
B-qcoh formed by CDG-modules whose underlying graded B-modules are coherent
(i.e., finitely generated over B) is denoted by B-coh.

Given a quasicoherent graded left B-module M and a quasicoherent graded right
B-module N , one can define their tensor product N˝BM, which is a quasicoherent
graded OX -module. A quasicoherent graded left B-module M is called flat if the
functor �˝B M is exact on the abelian category of quasicoherent graded right
B-modules. Equivalently, M is flat if the graded left B.U /-module M.U / is flat for
any affine open subscheme U �X . The flat dimension of a quasicoherent graded
module M is the minimal length of its flat left resolution.
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The full DG-subcategory in B-qcoh formed by CDG-modules whose underlying
graded B-modules are flat is denoted by B-qcohfl, and the full subcategory formed by
CDG-modules whose underlying graded B-modules have finite flat dimension is de-
noted by B-qcohffd. The similarly defined DG-categories of coherent CDG-modules
are denoted by B-cohfl and B-cohffd.

All the above DG-categories of quasicoherent CDG-modules (and the similar
ones defined below in this paper) admit shifts and twists, and, in particular, cones.
It follows that their homotopy categories H 0.B-qcoh/, H 0.B-qcohfl/, H 0.B-coh/,
etc. are triangulated. Besides, to any finite complex (of objects and closed mor-
phisms) in one of these DG-categories, one can assign its total object, which is an
object of (i.e., a CDG-module belonging to) the same DG-category [Positselski
2011b, Section 1.2].

The DG-categories B-qcoh and B-qcohfl also admit infinite direct sums. Hence
in these two DG-categories one can totalize even an unbounded complex by taking
infinite direct sums along the diagonals.

The DG-category B-qcoh also admits infinite products (which one can obtain us-
ing the coherator construction from [Thomason and Trobaugh 1990, Section B.14]),
but these are not well-behaved (neither exact nor local), so we will not use them.

1.3. Derived categories of the second kind. The nonexistence of the cohomology
groups for curved structures stands in the way of the conventional definition of the
derived category of CDG-modules, which therefore does not seem to make sense.
The suitable class of constructions of derived categories for CDG-modules is that
of the derived categories of the second kind [Positselski 2010; 2011b].

Let B be a quasicoherent CDG-algebra over X ; assume that the quasicoherent
graded algebra B is Noetherian. Then a coherent CDG-module over B is called
absolutely acyclic if it belongs to the minimal thick subcategory of the homotopy
category of coherent CDG-modules H 0.B-coh/ containing the total CDG-modules
of all the short exact sequences of coherent CDG-modules over B (with closed
morphisms between them). The quotient category of H 0.B-coh/ by the thick sub-
category of absolutely acyclic CDG-modules is called the absolute derived category
of coherent CDG-modules over B and denoted by Dabs.B-coh/ [Positselski 2011b].

For any quasicoherent CDG-algebra B over X , a quasicoherent CDG-module
over B is called coacyclic if it belongs to the minimal triangulated subcategory of
the homotopy category of quasicoherent CDG-modules H 0.B-qcoh/ containing the
total CDG-modules of all the short exact sequences of quasicoherent CDG-modules
over B and closed under infinite direct sums. The quotient category of H 0.B-coh/
by the thick subcategory of coacyclic CDG-modules is called the coderived category
of quasicoherent CDG-modules over B and denoted by Dco.B-qcoh/ [Positselski
2010; 2011b].
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Given an exact subcategory E in the abelian category of quasicoherent graded
left B-modules, one can define the absolute derived category of left CDG-modules
over B with the underlying graded B-modules belonging to E as the quotient cat-
egory of the corresponding homotopy category by its minimal thick subcategory
containing the total CDG-modules of all the exact triples of CDG-modules with the
underlying graded B-modules belonging to E. The objects of the latter subcategory
are called absolutely acyclic with respect to E (or with respect to the DG-category
of CDG-modules with the underlying graded modules belonging to E) [Polishchuk
and Positselski 2012].

In particular, one defines the absolute derived categories Dabs.B-cohffd/ and
Dabs.B-cohfl/ as the quotient categories of the homotopy categories H 0.B-cohffd/

and H 0.B-cohfl/ by the thick subcategories of CDG-modules absolutely acyclic
with respect to B-cohffd and B-cohfl, respectively.

When the exact subcategory E is closed under infinite direct sums, the thick
subcategory of CDG-modules coacyclic with respect to E is the minimal triangulated
subcategory of the homotopy category CDG-modules with the underlying graded
modules belonging to E, containing the total CDG-modules of all the exact triples
of CDG-modules with the underlying graded modules belonging to E and closed
under infinite direct sums. The quotient category by this thick subcategory is called
the coderived category of left CDG-modules over B with the underlying graded
modules belonging to E [Positselski 2010; Polishchuk and Positselski 2012].

Thus one defines the coderived category Dco.B-qcohfl/ as the quotient categories
of the homotopy category H 0.B-qcohfl/ by the thick subcategory of CDG-modules
coacyclic with respect to B-qcohfl. A little more care is needed for the definition
of the coderived category Dco.B-qcohffd/ since the class of graded modules of
finite flat dimension is not in general closed under infinite direct sums. An object
M 2H 0.B-qcohffd/ is said to be coacyclic with respect to B-qcohffd if there exists
an integer d � 0 such that M is coacyclic with respect to the exact category of
quasicoherent CDG-modules of flat dimension at most d . The coderived category
of quasicoherent CDG-modules of finite flat dimension is, by the definition, the
quotient category of H 0.B-qcohffd/ by the above-defined thick subcategory of
coacyclic CDG-modules [Polishchuk and Positselski 2012, Section 3.2].

Remark 1.3. One may wonder whether coacyclicity (absolute acyclicity) of quasi-
coherent CDG-modules (of a certain class) is a local notion. One general approach
to this kind of problem is to consider the Mayer–Vietoris/Čech exact sequence

0 �!M �!
M
˛

jU˛�j
�
U˛

M �!
M
˛<ˇ

jU˛\Uˇ�j
�
U˛\Uˇ

M �! � � � �! 0

for a finite affine open covering U˛ of X . Since the inverse and direct images with
respect to affine open embeddings are exact and compatible with direct sums, they
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preserve coacyclicity (absolute acyclicity). Hence if the restrictions of M to all U˛
are coacyclic (absolutely acyclic), then so is M itself.

Alternatively, one can base this kind of argument on the implications of the
Noetherianness assumption, rather than the separatedness assumption. For this
purpose, one replaces a quasicoherent CDG-module M with its injective resolution
(see Lemma 1.7(b)) before writing down its Čech resolution. In this approach, the
covering need not be affine, as injective coacyclic objects are contractible, and
direct images preserve contractibility; but it is important that the restrictions to
open subschemes should preserve injectivity of quasicoherent graded B-modules
(see [Hartshorne 1966, Theorem II.7.18] and Theorem A.3; cf. [Thomason and
Trobaugh 1990, Appendix B]).

When one is working with coherent CDG-modules, the Čech sequence argument
is to be used in conjunction with Proposition 1.5 below. (Cf. Sections 1.10 and 3.2.)

1.4. Finite flat dimension theorem. The next theorem is our main technical result
on which the proofs in Section 2 are based.

Though we generally prefer the coderived categories of (various classes of)
infinitely generated CDG-modules over their absolute derived categories, technical
considerations sometimes force us to deal with the latter (see Remark 1.5). Therefore,
let Dabs.B-qcohfl/, Dabs.B-qcohffd/, and Dabs.B-qcoh/ denote the absolute derived
categories of (flat, of finite flat dimension, or arbitrary) quasicoherent CDG-modules
over a quasicoherent CDG-algebra B.

Theorem 1.4. (a) For any quasicoherent CDG-algebra B over X , the functor

Dco.B-qcohfl/ �! Dco.B-qcohffd/

induced by the embedding of DG-categories B-qcohfl! B-qcohffd is an equiv-
alence of triangulated categories.

(b) For any quasicoherent CDG-algebra B over X , the functor

Dabs.B-qcohfl/ �! Dabs.B-qcohffd/

induced by the embedding of DG-categories B-qcohfl! B-qcohffd is an equiv-
alence of triangulated categories.

(c) For any quasicoherent CDG-algebra B over X such that the underlying quasi-
coherent graded algebra B is Noetherian, the functor

Dabs.B-cohfl/ �! Dabs.B-cohffd/

induced by the embedding of DG-categories B-cohfl! B-cohffd is an equiva-
lence of triangulated categories.
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Proof. The proof follows that of [Polishchuk and Positselski 2012, Theorem 3.2]
(see also [Positselski 2010, Theorem 7.2.2]) with some modifications. We will
prove part (a); the proofs of parts (b) and (c) are similar. (Alternatively, parts (b)
and (c) can be deduced from Proposition 1.5(a) and (b) below.)

Given an affine open subscheme U �X and a graded module P over the graded
ring B.U /, one can construct the freely generated CDG-module GC.P / over the
CDG-ring B.U / in the way explained in [Positselski 2011b, proof of Theorem 3.6].
The elements ofGC.P / are formal expressions of the form pCdq, where p, q 2P .
Given a quasicoherent graded module P over B, the CDG-modules GC.P.U //
glue together to form a quasicoherent CDG-module GC.P/ over B. For any
quasicoherent CDG-module M over B, there is a bijective correspondence between
morphisms of graded B-modules P!M and closed morphisms of CDG-modules
GC.P/!M over B. There is a natural short exact sequence of quasicoherent
graded B-modules P!GC.P/!PŒ�1�. The quasicoherent CDG-moduleGC.P/
is naturally contractible with the contracting homotopy tP given by the composition

GC.P/ �! PŒ�1� �!GC.P/Œ�1�:

Due to our assumption on X , for any quasicoherent OX -module K over X there
exists a surjective morphism E ! K onto K from a direct sum E of locally free
sheaves of finite rank on X . Hence for any quasicoherent graded B-module M
there is a surjective morphism onto M from a flat quasicoherent graded B-module
P D

L
n B˝OX EnŒn�, and for any quasicoherent CDG-module M over B there is

a surjective closed morphism onto M from the CDG-module GC.P/ 2 B-qcohfl.
(In fact, parts (a) and (b) of this theorem can be proven without the assumption
of enough vector bundles on X since there are always enough flat sheaves; see
Remark 2.6 and Lemma A.1.)

Now the construction from [loc. cit., proof of Theorem 3.6] provides for any
object M of B-qcohffd a closed morphism onto M from an object of B-qcohfl

with the cone absolutely acyclic with respect to B-qcohffd. To obtain this mor-
phism, one picks a finite left resolution of M consisting of objects from B-qcohfl

with closed morphisms between them, and takes the total CDG-module of this
resolution. By [loc. cit., Lemma 1.6], it follows that the triangulated category
Dco.B-qcohffd/ is equivalent to the quotient category of H 0.B-qcohfl/ by its inter-
section in H 0.B-qcohffd/ with the thick subcategory of CDG-modules coacyclic
with respect to B-qcohffd. It only remains to show that any object of H 0.B-qcohfl/

that is coacyclic with respect to B-qcohffd is coacyclic with respect to B-qcohfl.
Let us call a quasicoherent CDG-module M over B d -flat if its underlying

quasicoherent graded B-module M has flat dimension not exceeding d . A d -flat
quasicoherent CDG-module is said to be d -coacyclic if it is homotopy equivalent
to a CDG-module obtained from the total CDG-modules of exact triples of d -flat
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CDG-modules using the operations of cone and infinite direct sum. Our goal is to
show that any 0-flat d -coacyclic CDG-module is 0-coacyclic. For this purpose, we
will prove that any .d�1/-flat d -coacyclic CDG-module is .d�1/-coacyclic; the
desired assertion will then follow by induction.

It suffices to construct for any d -coacyclic CDG-module M a .d�1/-coacyclic
CDG-module L with a .d�1/-coacyclic CDG-submodule K such that the quotient
CDG-module L=K is isomorphic to M. Then if M is .d�1/-flat, it would follow
that both the cone of the morphism K! L and the total CDG-module of the exact
triple K! L!M are .d�1/-coacyclic, so M also is. The construction is based
on four lemmas similar to those in [Polishchuk and Positselski 2012, Section 3.2].

Lemma A. Let M be the total CDG-module of an exact triple of d -flat quasico-
herent CDG-modules M0 !M00 !M000 over B. Then there exists a surjective
closed morphism onto M from a contractible 0-flat CDG-module P with a .d�1/-
coacyclic kernel K.

Proof. Choose 0-flat quasicoherent CDG-modules P 0 and P 000 such that there
exist surjective closed morphisms P 0!M0 and P 000!M00. Then there exists a
surjective morphism from the exact triple of CDG-modules P 0! P 0˚P 000! P 000

onto the exact triple M0!M00!M000. The rest of the proof is similar to that
in [Polishchuk and Positselski 2012]. �

Lemma B. (a) Let K0 � L0 and K00 � L00 be .d�1/-coacyclic CDG-submodules
in .d�1/-coacyclic CDG-modules, and let L0=K0! L00=K00 be a closed mor-
phism of CDG-modules. Then there exists a .d�1/-coacyclic CDG-module L
with a .d�1/-coacyclic CDG-submodule K such that

L=K' cone.L0=K0! L00=K00/:

(b) In the situation of (a), assume that the morphism L0=K0! L00=K00 is injective
with a d -flat cokernel M0. Then there exists a .d�1/-coacyclic CDG-module
L0 with a .d�1/-coacyclic CDG-submodule K0 such that L0=K0 'M0.

Proof. The proof is similar to that in [Polishchuk and Positselski 2012]. �

Lemma C. For any contractible d -flat CDG-module M there exists a surjec-
tive closed morphism onto M from a contractible 0-flat CDG-module L with a
.d�1/-coacyclic kernel K.

Proof. Let p W P !M be a surjective morphism onto the quasicoherent graded
B-module M from a flat quasicoherent graded B-module P , and Qp WGC.P/!M
be the induced surjective closed morphism of quasicoherent CDG-modules. Let
t WM!M be a contracting homotopy for M and tP WGC.P/!GC.P/ be the
natural contracting homotopy for GC.P/. Then QuD QptP � t Qp W GC.P/!M is
a closed morphism of quasicoherent CDG-modules of degree �1. Denote by u
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the restriction of Qu to P � GC.P/. There exists a surjective morphism from a
flat quasicoherent graded B-module Q onto the fibered product of the morphisms
p WP!M and u WP!M. Hence we obtain a surjective morphism of quasicoherent
graded B-modules q WQ! P and a morphism of quasicoherent graded B-modules
v WQ! P of degree �1 such that uq D pv.

The morphism q induces a surjective closed morphism of quasicoherent CDG-
modules Qq W GC.Q/! GC.P/. The morphism Qq is homotopic to zero with the
natural contracting homotopy QqtQ D tP Qq. The morphism v induces a closed
morphism of CDG-modules Qv W GC.Q/! GC.P/ of degree �1. The morphism
tP Qq � Qv is another contracting homotopy for Qq. The latter homotopy forms a
commutative square with the morphisms Qp, Qp Qq, and the contracting homotopy t
for the CDG-module M.

Let N be the kernel of the morphism Qp Qq WGC.Q/!M and K be the kernel of the
morphism Qp WGC.P/!M. Then the natural surjective closed morphism r WN!K
is homotopic to zero; the restriction of the map tP Qq� Qv provides the contracting
homotopy that we need. In addition, the kernel GC.ker q/ of the morphism r is
contractible. So the cone of the morphism r is isomorphic to K˚N Œ1�, and on the
other hand, there is an exact triple GC.ker q/Œ1�! cone.r/! cone.idK/. Since K
is .d�1/-flat and ker q is flat, this proves that K is .d�1/-coacyclic. It remains to
take LDGC.P/. �
Lemma D. Let M ! M0 be a homotopy equivalence of d -flat CDG-modules
such that M0 is the quotient CDG-module of a .d�1/-coacyclic CDG-module by a
.d�1/-coacyclic CDG-submodule. Then M is also such a quotient.

Proof. The proof is similar to that in [Polishchuk and Positselski 2012]. �
It is clear that the property of a CDG-module to be presentable as the cokernel

of an injective closed morphism of .d�1/-coacyclic CDG-modules is stable under
infinite direct sums. This finishes our construction and the proof of Theorem. �
Remark 1.4. The assertion of part (c) of Theorem 1.4 can be equivalently rephrased
with flat modules replaced by locally projective ones. Indeed, a finitely presented
module over a ring is flat if and only if it is projective.

In the infinitely generated situation of parts (a) and (b), flatness of quasicoherent
sheaves is different from their local projectivity (which is a stronger condition), but
the assertions remain true after one replaces the former with the latter. The same
applies to Proposition 1.5(a) below. Indeed, by Theorem A.2, for any quasicoherent
graded algebra B over an affine scheme U , projectivity of a graded module over the
graded ring B.U / is a local notion. Taking this fact into account, our proof goes
through for locally projective quasicoherent graded modules in place of flat ones
and the locally projective dimension (defined as the minimal length of a locally
projective resolution) in place of the flat dimension.
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When B D OX , local projectivity of quasicoherent modules is equivalent to
local freeness [Bass 1963, Corollary 4.5]. Furthermore, in this case, assuming
additionally that X has finite Krull dimension, the classes of quasicoherent sheaves
of finite flat dimension and of finite locally projective dimension coincide [Raynaud
and Gruson 1971, Corollaire II.3.3.2].

1.5. Fully faithful embedding. The next proposition is stronger than Theorem 1.4
in some respects, and is proven by an entirely different technique.

Proposition 1.5. (a) For any quasicoherent CDG-algebra B over X , the functor
Dabs.B-qcohfl/! Dabs.B-qcoh/ induced by the embedding of DG-categories
B-qcohfl! B-qcoh is fully faithful.

Furthermore, let B be a quasicoherent CDG-algebra over X such that the
underlying quasicoherent graded algebra B is Noetherian. Then

(b) the functor Dabs.B-cohfl/!Dabs.B-coh/ induced by the embedding of DG-cat-
egories B-cohfl! B-coh is fully faithful;

(c) the functor Dabs.B-coh/!Dabs.B-qcoh/ induced by the embedding of DG-cat-
egories B-coh! B-qcoh is fully faithful;

(d) the functor Dabs.B-coh/! Dco.B-qcoh/ induced by the embedding of DG-cat-
egories B-coh! B-qcoh is fully faithful and its image forms a set of compact
generators for Dco.B-qcoh/.

Proof. The proof of part (d) in the case when X is affine can be found in [Positselski
2011b, Section 3.11] (the part concerning compact generation belongs to D. Arinkin).
The proof in the general case is similar, and part (c) can be also proven in the way
similar to [loc. cit., Theorem 3.11.1]. Part (b) in the affine case is easy and follows
from the semiorthogonality property of CDG-modules with projective underly-
ing graded modules and absolutely acyclic/contraacyclic CDG-modules [loc. cit.,
Theorem 3.5(b)] since finitely generated flat modules over a Noetherian ring are
projective. A detailed proof of part (b) in the general case is given below; and the
proof of part (a) (which does not automatically simplify in the affine case) is similar.

We will show that any morphism E! L from a CDG-module E 2H 0.B-cohfl/

to a CDG-module L 2H 0.B-coh/ absolutely acyclic with respect to B-coh can be
annihilated by a morphism P! E from a CDG-module P 2H 0.B-cohfl/ with a
cone of the morphism P! E being absolutely acyclic with respect to B-cohfl. By
the definition, the CDG-module L is a direct summand of a CDG-module homotopy
equivalent to a CDG-module obtained from the totalizations of exact triples of
CDG-modules in B-coh using the operation of passage to the cone of a closed
morphism repeatedly. It suffices to consider the case when L itself is obtained from
totalizations of exact triples using cones. We proceed by induction in the number
of operations of passage to the cone in such a construction of L.
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So we assume that there is a distinguished triangle K! L!M! K Œ1� in
H 0.B-coh/ such that M is the total CDG-module of an exact triple of CDG-modules
in B-coh, while the CDG-module K has the desired property with respect to mor-
phisms into it from all CDG-modules F 2H 0.B-cohfl/. If we knew that the object
M also has the same property, it would follow that the composition E!L!M can
be annihilated by a morphism F ! E with F 2H 0.B-cohfl/ and a cone absolutely
acyclic with respect to B-cohfl. The composition F ! E ! L then factorizes
through K, and the morphism F ! K can be annihilated by a morphism P! F
with P 2H 0.B-cohfl/ and a cone absolutely acyclic with respect to B-cohfl. The
composition P! F ! E provides the desired morphism P! E .

Thus it remains to construct a morphism F ! E with the required properties
annihilating a morphism E!M, where M is the total CDG-module of an exact
triple of CDG-modules U!V!W . For any graded module N over B, morphisms
of graded B-modules N!M of degree n are represented by triples .f; g; h/, where
f WN ! U is a morphism of degree nC 1, g WN ! V is a morphism of degree n,
and h WN !W is a morphism of degree n� 1. Denote the closed morphisms in
the exact triple U ! V!W by j W U ! V and k W V!W .

Lemma E. Let N be a CDG-module over B and M be the total CDG-module of
an exact triple of CDG-modules U ! V!W as above. Then

(a) the differential of a morphism of graded B-modules N !M of degree n
represented by a triple .f; g; h/ is given by the rule

d.f; g; h/D .�df; �jf C dg; kg� dh/I

(b) when .f; g; h/ is a closed morphism of CDG-modules of degree n and the
morphism of graded B-modules h W N ! W can be lifted to a morphism
of graded B-modules t W N ! V of degree n� 1, the morphism .f; g; h/ is
homotopic to zero.

Proof. We know that the complex of morphisms in the DG-category of CDG-modules
HomB.N ;M/ is the total complex of the bicomplex of abelian groups

HomB.N ;U/ �! HomB.N ;V/ �! HomB.N ;W/:

The formula in (a) is the formula for the differential of a total complex.
Furthermore, the sequence 0!HomB.N ;U/!HomB.N ;V/!HomB.N ;W/

is exact. Let Hom0B.N ;W/ denote the cokernel of the morphism of complexes
HomB.N ;U/!HomB.N ;V/; then Hom0B.N ;W/ is a subcomplex of HomB.N ;W/

and the total complex of the bicomplex

HomB.N ;U/ �! HomB.N ;V/ �! Hom0B.N ;W/
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is an acyclic subcomplex of HomB.N ;M/. Hence any cocycle in HomB.N ;M/

that belongs to this subcomplex is a coboundary.
To present the same argument using our letter notation for morphisms, assume

that kt D h. Then k.dt �g/D dh�kgD 0, so there exists a morphism of graded
B-modules s WN ! U of degree n such that dt�gD js. Then jdsD�dgD�jf ;
hence ds D�f and d.s; t; 0/D .f; g; h/. �

Recall the notation GC.Q/ for the CDG-module freely generated by a graded
B-module Q (see the beginning of the proof of Theorem 1.4).

Lemma F. Let M be the total CDG-module of an exact triple of CDG-modules
U ! V!W as above, and let Q be a graded B-module. Assume that a morphism
of graded B-modules p W Q !M of degree n with the components .f; g; h/ is
given such that the component h WQ!W can be lifted to a morphism of graded
B-modules t WQ! V of degree n� 1. Let Qp WGC.Q/!M be the induced closed
morphism of CDG-modules of degree n and . Qf ; Qg; Qh/ be its three components. Then
the morphism of graded B-modules Qh WGC.Q/!W can be lifted to a morphism
of graded B-modules Qt WGC.Q/! V of degree n� 1.

Proof. Notice that any closed morphism of CDG-modules GC.Q/!M is homo-
topic to zero since the CDG-module GC.Q/ is contractible. The conclusion of the
lemma is stronger, and we will need its full strength. The argument consists of a
computation in the letter notation for morphisms.

For any CDG-module N over B, morphisms of graded B-modules

Qr WGC.Q/ �!N

of degree n� 1 are uniquely determined by their restriction to Q and the restriction
to Q of their differential d Qr , which can be arbitrary morphisms of graded B-modules
Q!N of degrees n� 1 and n, respectively. Extend our morphism t WQ! V to a
morphism of graded B-modules Qt WGC.Q/!V of degree n�1 such that .d Qt /jQDg.
Then k Qt jQ D kt D hD QhjQ and .d.k Qt //jQ D k.d Qt /jQ D kgD k QgjQ D .d Qh/jQ by
Lemma E(a), and hence k Qt D Qh. �

Now represent a closed morphism E !M by a triple .f; g; h/ of morphisms
of degrees 1, 0, and �1, respectively. Let Q be a flat coherent graded B-module
mapping surjectively onto the fibered product of the morphisms k W V !W and
h W E!W (see the beginning of the proof of Theorem 1.4 again). Then there is a
surjective morphism of graded B-modules q WQ! E and its composition with the
morphism h W E!W can be lifted to a morphism of graded B-modules t WQ! V
of degree �1. Consider the induced morphism of CDG-modules Qq WGC.Q/! E .
By Lemma F, the composition h Qq WGC.Q/!W can be lifted to a morphism of
graded B-modules Qt WGC.Q/! V of degree �1.
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Let R denote the kernel of the closed morphism Qq. Then the cone F of the
embedding R!GC.Q/ maps naturally onto E with the cone absolutely acyclic
with respect to B-cohfl. As a graded B-module, the CDG-module F is isomorphic to
GC.Q/˚RŒ1�; the composition F!E!M factorizes through the direct summand
GC.Q/, where it is defined by the triple .f Qq; g Qq; h Qq/. Since the morphism h Qq

can be lifted to V , so can the corresponding component F !W of the morphism
F !M. Thus the latter morphism is homotopic to zero by Lemma E(b). �

In some cases, the use of Lemma F in the above proof of part (b) can be avoided.
Assume that X is a projective scheme over a Noetherian ring and the category of
coherent graded B-modules is equivalent to the category of coherent modules over
some coherent (graded) OX -algebra A. In this situation, one takes Q to be the
graded B-module corresponding to the (graded) A-module induced from a large
enough finite direct sum of (shifts of) copies of a sufficiently negative invertible
OX -module; then there is a surjective morphism of graded B-modules Q! E and
any morphism of graded B-modules GC.Q/!W lifts to V .

Remark 1.5. We do not know how to extend the proof of Proposition 1.5 (a) and (b)
to the coderived categories of quasicoherent CDG-modules. Instead, this argument
appears to be well-suited for use with the contraderived categories (see [Positselski
2011b, Section 3.3] for the definition). In particular, it allows to show that the
contraderived category of left CDG-modules over a CDG-ring B with a right
coherent underlying graded ring is equivalent to the contraderived category of
CDG-modules whose underlying graded B-modules are flat (cf. [loc. cit., paragraph
after the proof of Theorem 3.8]).

This is the main reason why we sometimes find it easier to deal with the absolute
derived rather than the coderived categories of infinitely generated CDG-modules
(cf. Remark 2.8). On the other hand, for the coderived category of quasicoherent
CDG-modules we have the compact generation result (part (d) of Proposition 1.5),
the results and arguments of Sections 1.7, 1.10, 2.5, 2.9, etc. The conditions under
which these two versions of the construction of the derived category of the second
kind for a given class of CDG-modules lead to the same triangulated category are
discussed below in Section 1.6.

1.6. Finite homological dimension theorem. Let B-qcohlp denote the DG-cate-
gory of quasicoherent CDG-modules over B whose underlying graded B-modules
are locally projective (see Remark 1.4 and Theorem A.2). Denote by Dco.B-qcohlp/

and Dabs.B-qcohlp/ the corresponding coderived and absolute derived categories.

Theorem 1.6. The triangulated categories Dco.B-qcohlp/ and Dabs.B-qcohlp/ coin-
cide; i.e., every CDG-module over B that is coacyclic with respect to B-qcohlp is
also absolutely acyclic with respect to B-qcohlp.
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Proof. The reason for this assertion to be true is that the exact category of lo-
cally projective graded B-modules has finite homological dimension [Orlov 2004,
Lemma 1.12] and exact functors of infinite direct sums. If this exact category also
had enough injectives, the simple argument from [Positselski 2011b, Theorem 3.6(a)
and Remark 3.6] would suffice to establish the desired Dco D Dabs isomorphism
for it (see also [Positselski 2010, Remark 2.1]). The lengthy argument below is
designed to provide a way around the injective objects issue in this kind of proof.

Our aim is to show that for any closed morphism P! L from a CDG-module
P 2 B-qcohlp to a CDG-module L absolutely acyclic with respect to B-qcohlp, there
exists an exact sequence 0!Qd!Qd�1!� � �!Q0!P! 0 of CDG-modules
and closed morphisms in B-qcohlp such that the induced morphism from the total
CDG-module of Qd ! � � � ! Q0 to L is homotopic to zero. Here d is a fixed
integer equal to the homological dimension of the exact category of locally projective
graded B-modules, which does not exceed the number of open subsets in an affine
covering of X minus one.

Taking P DL and the morphism P!L to be the identity, we will then conclude
that P is isomorphic to a direct summand of the total CDG-module of Qd ! � � �!
Q0! P in H 0.B-qcohlp/. Hence an object of H 0.B-qcohlp/ is absolutely acyclic
with respect to B-qcohlp if and only if it is isomorphic to a direct summand of
the total CDG-module of a .dC2/-term exact sequence of CDG-modules from
B-qcohlp with closed morphisms between them. It will immediately follow that the
class of CDG-modules absolutely acyclic with respect to B-qcohlp is closed under
infinite direct sums, so it coincides with the class of coacyclic CDG-modules.

We can suppose that there exists a sequence of distinguished triangles

Ki�1 �! Ki �!Mi �! Ki�1Œ1�

in H 0.B-qcohlp/ such that K0 D 0, Kn D L, and Mi is the total CDG-module of
an exact triple Ui ! Vi !Wi of CDG-modules from B-qcohlp for all 1 � i � n.
We will start with constructing an exact sequence 0!Q0n! � � � !Q00! P! 0

with the above properties, but of the length n rather than d . Then we will use the
finite homological dimension property of locally projective graded B-modules in
order to obtain the desired resolution Q� of a fixed length d from a resolution Q0

�
.

Lemma G. Let M be the total CDG-module of an exact triple U ! V !W of
CDG-modules from B-qcohlp and K! L!M!K Œ1� be a distinguished triangle
in H 0.B-qcohlp/. Then for any CDG-module P 2 B-qcohlp and a morphism P! L
in H 0.B-qcohlp/ there exists an exact triple R! Q! P of CDG-modules from
B-qcohlp and a morphism RŒ1�! K in H 0.B-qcohlp/ such that the composition
F ! P! L, where F is the cone of the closed morphism R!Q, is equal to the
composition F !RŒ1�! K! L in H 0.B-qcohlp/.
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Proof. The argument is based on Lemmas E and F from Section 1.5. We can assume
that L is the cone of a closed morphism MŒ�1�! K and fix a closed morphism
P ! L representing the given morphism in the homotopy category. Arguing as
in the proof of Proposition 1.5, we can construct a surjective closed morphism
Q0 ! P onto P from a CDG-module Q0 2 B-qcohlp such that the composition
Q0!P!L!M!WŒ�1� lifts to a morphism of graded B-modules Q0!VŒ�1�.
Here it suffices to apply the functor GC to the fibered product of the morphisms of
graded B-modules P!WŒ�1� and VŒ�1�!WŒ�1� and use Lemma F.

Then the morphism Q0!M is homotopic to zero with a natural contracting
homotopy (provided by the proof of Lemma E), so the morphism Q0!L factorizes,
up to a homotopy, as the composition of a naturally defined closed morphism
Q0! K and the closed morphism K! L. Set Q to be the cocone of the closed
morphism Q0! K; then we have a surjective closed morphism Q!Q0 such that
the composition Q!Q0! K is homotopic to zero.

Let R be kernel of the morphism Q! P and F be the cone of the morphism
R! Q; then there is a natural closed morphism F ! P . Using Lemma E and
arguing as in the end of the proof of Proposition 1.5 again, we can conclude that
the composition F ! P! L!M is homotopic to zero. Indeed, the composition
F !M!WŒ�1� lifts to a graded B-module morphism F ! VŒ�1� since F '
Q˚RŒ�1� as a graded B-module, the morphism F !M factorizes through the
projection of F onto Q, and the morphism Q! Q0 ! WŒ�1� lifts to a graded
B-module morphism Q!Q0! VŒ�1� by our construction.

Notice that the contracting homotopy that we have obtained for the closed
morphism F ! M forms a commutative diagram with the closed morphisms
Q! F , Q!Q0, and the contracting homotopy that we have previously had for
the closed morphism Q0!M (since so do the liftings F!VŒ�1� and Q0!VŒ�1�).
This allows to factorize, up to a homotopy, the closed morphism F ! L as the
composition of a closed morphism F ! K and the closed morphism K! L in
such a way that the morphism F ! K forms a commutative diagram with the
closed morphisms Q! F , Q! Q0, and the closed morphism Q0! K that we
have previously constructed. The composition Q! F ! K, being equal to the
composition Q! Q0 ! K, is homotopic to zero; hence the morphism F ! K
factorizes through the closed morphism F !RŒ1� in H 0.B-qcohlp/. �

Applying Lemma G to the morphism P ! L and the distinguished triangle
Kn�1!L!Mn!Kn�1, we obtain an exact triple R00!Q00!P and a morphism
R00Œ1�!Kn�1 in H 0.B-qcohlp/. Applying the same lemma again to the morphism
R00Œ1�!Kn�1 and the distinguished triangle Kn�2!Kn�1!Mn�1!Kn�2Œ1�,
we construct an exact triple R01 ! Q01 ! R00 and a morphism R01Œ2�! Kn�2,
etc. Finally we obtain an exact triple R0n�1 ! Q0n�1 ! R0n�2 and a morphism
R0n�1Œn�! K0 D 0.
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Let us check that the natural morphism from the total CDG-module of the
complex 0! R0n�1 ! Q0n�1 ! � � � ! Q00 to the CDG-module L is homotopic
to zero. Denote this morphism by fn. It factorizes naturally through the cone
F0 of the closed morphism R00! Q00, and the morphism F0! L is homotopic
to the composition F0! R00Œ1�! Kn�1! L. Hence, up to the homotopy, the
morphism fn factorizes through the morphism fn�1 from the total CDG-module of
the complex 0!R0n�1!Q0n�1! � � � !Q01 to Kn�1 induced by the morphism
R00Œ1�!Kn�1. Continuing to argue in this way, we conclude that the morphism f

factorizes, up to a homotopy, through the morphism f0 WR0n�1Œn�! K0 D 0.
It remains to “cut” our exact sequence of an unknown length n to a fixed size d .

For this purpose, we will assume that n > d and construct from our exact sequence
of length n another exact sequence with the same properties, but of the length n�1.
This part of the argument is based on the following lemma.

Lemma H. For any CDG-module M 2 B-qcohlp, locally projective graded B-mod-
ule E , and a homogeneous surjective morphism of locally projective graded B-mod-
ules E!M, there exist a CDG-module Q2B-qcohlp, a surjective closed morphism
of CDG-modules Q !M, and a homogeneous surjective morphism of locally
projective graded B-modules Q! E such that the triangle Q! E!M commutes.

Proof. For any open subscheme U � X , one can simply define Qi .U / as the
abelian group of all pairs .e02E iC1.U /; e2E i .U // such that df .e/Df .e0 /, where
f denotes the morphism of graded B-modules E!M and d is the differential in M.
The action of B in Q is defined by the formula b.e0; e/D ..�1/jbjbe0Cd.b/e; be/;
the differential in Q is given by the obvious rule d.e0; e/D .he; e0/. The morphism
Q! E is defined as .e0; e/ 7�! e; the morphism Q!M, given by .e0; e/ 7�! f .e/,
obviously commutes with the differentials.

It remains to check that the graded B-module Q is locally projective. This can
be done by comparing the above construction with the constructions of the freely
(co)generated CDG-modules GC.E/ and G�.E/ from [Positselski 2011b, proof of
Theorem 3.6] (see the beginning of the proof of Theorem 1.4). One can simply
define G�.E/ as being isomorphic to GC.E/Œ1�. Since M is a CDG-module, there
is a natural closed morphism of CDG-modules M!G�.M/. The CDG-module Q
is the fibered product of the surjective closed morphism of CDG-modules G�.E/!
G�.M/ and the closed morphism M!G�.M/; hence the graded B-module Q
is locally projective. The morphism Q! E is induced by the natural morphism of
graded B-modules G�.E/! E . It forms a commutative diagram with the morphism
E!M, since the composition M!G�.M/!M is the identity morphism. �

The exact sequence of CDG-modules

0 �!R0n�1 �!Q0n�1 �! � � � �!Q00 �! P �! 0
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represents a certain Yoneda Ext class of degree n between the locally projective
graded B-modules P and R0n�1. Since the homological dimension of the exact
category of such B-modules is equal to d and we assume that n > d , this Ext class
has to vanish. This means that there exists an exact sequence of locally projective
graded B-modules 0 ! R0n�1 ! En�1 ! � � � ! E0 ! P ! 0 mapping to our
original exact sequence, with the maps on the rightmost and leftmost terms being
the identity maps, such that the embedding of B-modules R0n�1! En�1 splits.

As explained in [Positselski 2011a, proof of Lemma 4.4], one can assume the
morphisms Ei !Q0i to be surjective. Applying Lemma H, we obtain a surjective
closed morphism of CDG-modules Q0!Q00 and a morphism of graded B-modules
Q0! E0 forming a commutative triangle with the morphism E0!Q00. Applying
Lemma H to the surjective morphism of fibered products Q0�E0E1!Q0�Q00Q

0
1,

we obtain a surjective closed morphism Q1!Q01 and a closed morphism Q1!Q0
forming a commutative square with the closed morphisms Q0!Q00 and Q01!Q00.
Besides, the sequence Q1!Q0! P is exact at Q0. We also obtain a morphism
of graded B-modules Q1! E1 forming a commutative triangle with the morphisms
to Q01 and a commutative square with the morphisms to E0.

Proceeding in this way, we construct a sequence Qn�2! � � � !Q0! P! 0,
which is exact at all the middle terms, maps onto the sequence Q0n�2 ! � � � !
Q00! P by closed morphisms, and maps into the sequence En�2! � � � ! E0! P
so that the triangle of the maps of sequences commutes. Finally, notice that
En�1 ' En�2 �Q0n�2 Q

0
n�1, and set Qn�1 D Qn�2 �Q0n�2 Q

0
n�1. Then the exact

sequence of CDG-modules 0!R0n�1!Qn�1! � � � !Q0! P! 0 maps onto
the exact sequence 0!R0n�1!Q0n�1!� � �!Q00!P! 0 by closed morphisms,
and this map of exact sequences factorizes through the exact sequence of graded
B-modules 0! R0n�1 ! En�1 ! � � � ! E0 ! P ! 0. The composition of the
morphism Qn�1!En�1 with the splitting En�1!R0n�1 of the embedding R0n�1!
En�1 provides a graded B-module splitting Qn�1! R0n�1 of the embedding of
CDG-modules R0n�1!Qn�1.

Denote by Rn�2 the image of the morphism of CDG-modules Qn�1!Qn�2.
The morphism from the total CDG-module of the complex R0n�1!Q0n�1!���!Q00
to the CDG-module L is homotopic to zero; hence so is the morphism to L
from the total CDG-module of the complex R0n�1 ! Qn�1 ! � � � ! Q0. The
latter morphism factorizes naturally through the total CDG-module of the complex
Rn�2 ! Qn�2 ! � � � ! Q0. The cone of this closed morphism between two
total CDG-modules is homotopy equivalent to the total CDG-module of the exact
triple R0n�1 ! Qn�1 ! Rn�2. Since this exact triple splits as an exact triple
of graded B-modules, its total CDG-module is contractible. Consequently, the
morphism between the total CDG-modules of R0n�1 ! Qn�1 ! � � � ! Q0 and
Rn�2!Qn�2! � � � !Q0 is a homotopy equivalence.
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It follows that the natural morphism from the total CDG-module of the resolution
Rn�2 ! Qn�2 ! � � � ! Q0 of the CDG-module P to the CDG-module L is
homotopic to zero, and we are done. �

So far we have only considered flat coherent CDG-modules over quasicoherent
CDG-algebras B whose underlying quasicoherent graded algebras are Noetherian.
But the latter restriction is not necessary, as flat and locally finitely presented
(or, which is equivalent, locally projective and finitely generated) quasicoherent
graded B-modules always form an exact subcategory of flat (or locally projective)
graded B-modules. The notation B-cohlp (understood in the obvious sense as
the DG-category of CDG-modules over B with coherent and locally projective
underlying graded B-modules) is synonymous with B-cohfl (see Remark 1.4).

Corollary 1.6. The functor Dabs.B-cohlp/! Dco.B-qcohlp/ induced by the embed-
ding of DG-categories B-cohlp! B-qcohlp is fully faithful.

Proof. When B is Noetherian, one can show that the functor Dabs.B-cohlp/ !

Dabs.B-qcohlp/ is fully faithful by comparing parts (a)–(c) of Proposition 1.5 (with
the flatness condition replaced by the local projectivity). In the general case, one
proves this assertion directly, using an argument similar to the proof of Proposi-
tion 1.5(a) and (b). Then it remains to use Theorem 1.6. �

When every flat quasicoherent graded module over B has finite locally projective
dimension (see Remark 1.4), one has

Dco.B-qcohlp/' Dco.B-qcohfl/' Dco.B-qcohffd/;

Dabs.B-qcohlp/' Dabs.B-qcohfl/' Dabs.B-qcohffd/

by appropriate versions of Theorem 1.4. Consequently, it follows from Theorem 1.6
that Dabs.B-qcohfl/D Dco.B-qcohfl/ and Dabs.B-qcohffd/D Dco.B-qcohffd/ in this
case. Thus the functor Dabs.B-cohfl/! Dco.B-qcohfl/ is fully faithful; when B is
Noetherian, so is the functor Dabs.B-cohffd/! Dco.B-qcohffd/.

1.7. Gorenstein case. Here we establish a sufficient condition for the functor
Dco.B-qcohfl/! Dco.B-qcoh/ to be an equivalence of triangulated categories.

Let B-qcohinj denote the full DG-subcategory in B-qcoh consisting of the CDG-
modules whose underlying quasicoherent graded B-modules are injective. Fur-
thermore, let B-qcohfid be the full DG-subcategory in B-qcoh consisting of the
CDG-modules whose underlying quasicoherent graded B-modules have finite injec-
tive dimension (i.e., admit a finite right resolution by injective quasicoherent graded
B-modules). Let Dabs.B-qcohfid/ and Dco.B-qcohfid/ denote the corresponding
derived categories of the second kind. (The difficulty in the definition of the latter
category, similar to the difficulty in the definition of Dco.B-qcohffd/ discussed in
Section 1.3, does not actually arise, as it is clear from part (a) of the next lemma.)
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Lemma 1.7. (a) For any quasicoherent CDG-algebra B over X , the natural
functorsH 0.B-qcohinj/!Dabs.B-qcohfid/!Dco.B-qcohfid/ are equivalences
of triangulated categories.

(b) Let B be a quasicoherent CDG-algebra over X whose underlying quasico-
herent graded algebra B is Noetherian. Then the functor H 0.B-qcohinj/!

Dco.B-qcoh/ induced by the embedding B-qcohinj! B-qcoh is an equivalence
of triangulated categories.

Proof. Part (a) is provided by [Positselski 2011b, Theorem and Remark in Sec-
tion 3.6]. Part (b) is a particular case of [loc. cit., Theorem and Remark in Sec-
tion 3.7] since the class of injective quasicoherent graded B-modules is closed
under infinite direct sums in its assumptions. (Cf. [Lin and Pomerleano 2013,
Proposition 2.4].) �

Proposition 1.7. Let B be a quasicoherent CDG-algebra over X such that the
quasicoherent graded algebra B is Noetherian and the classes of quasicoherent
graded B-modules of finite flat dimension and of finite injective dimension coincide.
Then the functors Dabs.B-qcohfl/! Dco.B-qcohfl/! Dco.B-qcoh/ induced by the
embedding B-qcohfl! B-qcoh are equivalences of triangulated categories.

Proof. Since B-qcohffdDB-qcohfid, the isomorphism of categories Dabs.B-qcohffd/D

Dco.B-qcohffd/ follows from part (a) of Lemma 1.7. Applying Theorem 1.4, we
obtain the isomorphism of categories Dabs.B-qcohfl/! Dco.B-qcohfl/. Similarly, it
suffices to compare parts (a) and (b) of Lemma 1.7 in order to conclude that the
functor Dco.B-qcohfid/! Dco.B-qcoh/ is an equivalence of categories; hence so
are the functors Dco.B-qcohfl/! Dco.B-qcohffd/! Dco.B-qcoh/. (Cf. [Positselski
2011b, Section 3.9].) �

1.8. Pull-backs and push-forwards. Let f W Y !X be a morphism of separated
Noetherian schemes, BX be a quasicoherent CDG-algebra over X , and BY be a
quasicoherent CDG-algebra over Y . A morphism of quasicoherent CDG-algebras
BX!BY compatible with the morphism Y !X is the data of a CDG-ring morphism
BX .U /! BY .V / for each pair of affine open subschemes U � X and V � Y
such that f .V /� U . This data should satisfy the obvious compatibility condition:
for any affine open subschemes U 0 � U and V 0 � V such that f .V 0/ � U 0, the
square diagram of CDG-ring morphisms between the CDG-rings BX .U /, BX .U 0/,
BY .V /, and BY .V 0/ must be commutative.

Let BX ! BY be a morphism of quasicoherent CDG-algebras compatible with a
morphism of schemes Y !X . Then for any quasicoherent left CDG-module M
over BX , the quasicoherent graded left module f �MDBY f̋ �1BX f

�1M over BY
has a natural structure of quasicoherent CDG-module over BY . Similarly, for any
quasicoherent left CDG-module N over BY the quasicoherent graded left module
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f�N over BX has a natural structure of quasicoherent CDG-module over BX .
These CDG-module structures are defined in terms of the CDG-ring morphisms
BX .U /!BY .V /. The above constructions provide the underived direct and inverse
image functors, which can be viewed as triangulated functors f � WH 0.BX-qcoh/!
H 0.BY -qcoh/ and f� W H 0.BY -qcoh/! H 0.BX-qcoh/. The functor f� is right
adjoint to the functor f �.

The derived inverse image functor Lf � is in general only defined on CDG-mod-
ules satisfying certain finite flat dimension conditions. Restricting the functor f �

to flat CDG-modules, we obtain a triangulated functor

H 0.BX-qcohfl/ �!H 0.BY -qcohfl/;

which takes objects coacyclic with respect to BX-qcohfl to objects coacyclic with
respect to BY -qcohfl since the inverse image preserves infinite direct sums and short
exact sequences of flat quasicoherent graded modules. Hence there is the induced
triangulated functor Dco.BX-qcohfl/! Dco.BY -qcohfl/. Applying Theorem 1.4(a),
we construct the derived inverse image functor

Lf � W Dco.BX-qcohffd/ �! Dco.BY -qcohffd/:

Assuming that there are enough vector bundles on X and Y , and restricting
the functor f � to flat coherent CDG-modules, we obtain a triangulated functor
H 0.BX-cohfl/!H 0.BY -cohfl/, which induces a triangulated functor

Dabs.BX-cohfl/ �! Dabs.BY -cohfl/:

Assuming additionally that the quasicoherent graded algebras BX and BY are
Noetherian and applying Theorem 1.4(c), we construct the derived inverse image
functor

Lf � W Dabs.BX-cohffd/ �! Dabs.BY -cohffd/:

When f is an affine morphism, the direct image of quasicoherent sheaves is an ex-
act functor (preserving also infinite direct sums), so the functor f� WH 0.BY -qcoh/!
H 0.BX-qcoh/ induces a triangulated functor Dco.BY -qcoh/! Dco.BX-qcoh/. To
construct the derived direct image functor between the coderived categories in the
general case, we need to use injective resolutions.

From now on we assume that BX and BY are Noetherian; so Lemma 1.7(b) is ap-
plicable to BY . Restricting the functor f� to the full subcategoryH 0.BY -qcohinj/�

H 0.BY -qcoh/ and composing it with the localization functor H 0.BX-qcoh/ !
Dco.BX-qcoh/, we obtain the derived direct image functor

Rf� W D
co.BY -qcoh/ �! Dco.BX-qcoh/:
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Proposition 1.8. Assume that there are enough vector bundles on X and Y . Then
the functors Lf � W Dabs.BX-cohffd/! Dabs.BY -cohffd/ and Rf� W D

co.BY -qcoh/!
Dco.BX-qcoh/ are partially adjoint to each other in the following sense: for any
objects M2Dabs.BX-cohffd/ and N 2Dco.BY -qcoh/, there is a natural isomorphism
of abelian groups

HomDco.BX-qcoh/.�XM; Rf�N /' HomDco.BY -qcoh/.�Y Lf �M; N /;
where

�X W D
abs.BX-cohffd/ �! Dco.BX-qcoh/;

�Y W D
abs.BX-cohffd/ �! Dco.BY -qcoh/

are the natural fully faithful triangulated functors.

Proof. The functors �X and �Y are fully faithful by Theorem 1.4(c) and Proposi-
tion 1.5(b) and (d). Using Theorem 1.4(c), let us assume that M 2 Dabs.BX-cohfl/.
We can also assume that N 2H 0.BY -qcohinj/.

Then the left-hand side is the (filtered) inductive limit of

HomH0.BX-qcoh/.M
00; f�N /

over all morphisms M00!M inH 0.BX-qcoh/with a cone coacyclic with respect to
BX-qcoh. According to the proofs of Proposition 1.5(b) and [Positselski 2011b, The-
orem 3.11.1], any morphism from M to an object coacyclic with respect to BX-qcoh
factorizes through an object absolutely acyclic with respect to BX-cohfl. Thus the
above inductive limit coincides with the similar limit taken over all morphisms
M0!M in H 0.BX-cohfl/ with a cone absolutely acyclic with respect to BX-cohfl.

By [loc. cit., Theorem 3.5(a), Remark 3.5, and Lemma 1.3], the right-hand side
is isomorphic to HomH0.BY -qcoh/.f

�M;N / and to HomH0.BY -qcoh/.f
�M0;N /

since the objects of H 0.BY -qcohinj/ are right orthogonal to any coacyclic objects
in H 0.BY -qcoh/. So the assertion follows from the adjointness of the functors f �

and f� on the level of the homotopy categories of quasicoherent CDG-modules. �

Remark 1.8. It is not immediately obvious from the above construction that the
derived functor Rf� is compatible with the compositions; i.e., for g W Z ! Y

and f W Y ! X , one has R.fg/� ' Rf� ı Rg�. The problem is that the direct
image functor f� does not preserve injectivity of quasicoherent graded modules
in general. When the derived direct image functors are adjoint to appropriately
defined derived inverse images (see Section 1.9 below for some results of this kind),
the problem reduces to checking that the derived inverse images are compatible
with the compositions, which may be easier to see from our definitions.

One general approach to this problem is to replace injective quasicoherent graded
B-modules with quasicoherent graded B-modules that are flabby as sheaves of
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graded abelian groups in our construction of the derived direct images. The class
of flabby sheaves of abelian groups is closed under infinite direct sums since the
underlying topological space of the scheme is Noetherian; it is also always closed
under extensions and cokernels of injective morphisms. Whenever the quasicoherent
graded algebra B is Noetherian, all injective quasicoherent graded B-modules are
flabby by Theorem A.3. Therefore, the coderived category of flabby quasicoherent
CDG-modules over B is equivalent to the homotopy category H 0.B-qcohinj/ by a
version of Lemma 1.7(b); hence it is also equivalent to the coderived category of
all quasicoherent CDG-modules Dco.B-qcoh/ (cf. the proof of Proposition 1.7).

The direct images preserve exact triples of flabby sheaves, so derived direct
images can be defined using flabby resolutions. The direct images also take flabby
sheaves to flabby sheaves; hence the desired compatibility of their derived functors
with the compositions of scheme morphisms follows.

Moreover, assuming additionally that the scheme has finite Krull dimension, the
absolute derived category of flabby quasicoherent CDG-modules is equivalent to
Dabs.B-qcoh/ by a dual version of Theorem 1.4(b), as the “flabby dimension” of
any quasicoherent graded B-module is finite. This allows us to define the derived
direct images on the absolute derived categories of quasicoherent CDG-modules
(another approach to this question is to use the construction from the proof of
Proposition 1.9 below). Notice that all our constructions of derived inverse images
are also applicable to the categories Dabs.B-qcoh/.

Finally, let us point out that for any morphism of quasicoherent CDG-algebras
BX ! BY with Noetherian underlying quasicoherent graded algebras BX and BY
compatible with a morphism of separated Noetherian schemes f W Y ! X , the
functor Rf� has a right adjoint functor

f Š W Dco.BX-qcoh/ �! Dco.BY -qcoh/:

Indeed, the triangulated category Dco.BY -qcoh/ is compactly generated by Proposi-
tion 1.5(d), and the functor Rf� preserves infinite direct sums since the class of
injective quasicoherent graded BY -modules is closed under infinite direct sums, due
to Noetherianness of BY . So it remains to apply [Neeman 1996, Theorem 4.1].

There is a special situation when one can construct the above functor f Š explicitly.
Assume that f W Y !X is an affine morphism. Let us say that the quasicoherent
graded algebra BY is finite over BX if for any affine open subscheme U �X , the
graded BX .U /-module BY .f �1.U // is finitely generated, or in other words, if the
quasicoherent graded BX -module f�BY is coherent.

Let BX!BY be a morphism of Noetherian quasicoherent CDG-algebras compat-
ible with an affine morphism of separated Noetherian schemes f W Y !X such that
the quasicoherent graded algebra BY is finite over BX . Given a quasicoherent graded
left module M over BX , we set .f ŠM/.f �1.U // to be the graded left module of
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homogeneous morphisms (of various degrees) HomBX .U /.BY .f
�1.U //;M.U //

over the graded ring BY .f �1.U // for any affine open subscheme U �X . Due to
the finiteness condition on BY over BX , for any affine open subscheme V �U , there
are natural isomorphisms .f ŠM/.f �1.V //'OX .V /˝OX .U /.f

ŠM/.f �1.U //'

OY .f �1.V //˝OY .f �1.U // .f
ŠM/.f �1.U //, which allow us to extend the assign-

ment f �1.U / 7�! .f ŠM/.f �1.U // to a quasicoherent graded module f Š.M/

over the quasicoherent graded algebra BY .
Given a quasicoherent CDG-module M over BX , the conventional rule

d.g/.m/D d.g.m//� .�1/jgjg.d.m//

(with the usual change-of-connection modifications) defines the structure of a quasi-
coherent CDG-module over BY on the quasicoherent graded module f Š.M/. This
construction provides a triangulated functor f Š WH 0.BX-qcoh/!H 0.BY -qcoh/
right adjoint to the triangulated functor f� WH 0.BY -qcoh/!H 0.BX-qcoh/. Re-
stricting the functor f Š W H 0.BX-qcoh/! H 0.BY -qcoh/ to the full subcategory
of injective quasicoherent CDG-modules in H 0.BX-qcoh/ and taking into account
Lemma 1.7(b), we obtain the right derived functor

Rf Š W Dco.BX-qcoh/ �! Dco.BY -qcoh/;

which is right adjoint to the (underived, as the morphism f is affine) direct image
functor f� W Dco.BY -qcoh/ ! Dco.BX-qcoh/. In other words, the functor Rf Š

coincides with the above adjoint functor f Š WDco.BX-qcoh/!Dco.BY -qcoh/ in our
special case.

1.9. Morphisms of finite flat dimension. Let f W Y ! X be a morphism of
separated Noetherian schemes, and let BX ! BY be a compatible morphism of
quasicoherent CDG-algebras. We will say that the quasicoherent graded algebra BY
has finite flat dimension over BX if (the left derived functor of) the functor of
inverse image f � acting between the abelian categories of quasicoherent graded
modules over BX and BY has finite homological dimension. Equivalently, for any
affine open subschemes U �X and V � Y such that f .V /� U , the graded right
BX .U /-module BY .V / should have finite flat dimension.

A quasicoherent graded BX -module is said to be adjusted to f � if its derived
inverse image under f , as an object of the derived category of the abelian category
of quasicoherent graded BY -modules, coincides with the underived inverse image.
Denote the DG-category of quasicoherent CDG-modules over BX whose underlying
graded BX-modules are adjusted to f � by BX-qcohf-adj. When BX is Noetherian,
let BX-cohf-adj denote the similarly defined DG-category of coherent CDG-modules.
We will use our usual notation for the absolute derived and coderived categories of
these DG-categories of CDG-modules.
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Lemma 1.9. Assume that the quasicoherent graded algebra BY has finite flat
dimension over BX . Then

(a) the functor Dco.BX-qcohf-adj/ ! Dco.BX-qcoh/ induced by the embedding
of DG-categories BX-qcohf-adj! BX-qcoh is an equivalence of triangulated
categories;

(b) the functor Dabs.BX-qcohf-adj/! Dabs.BX-qcoh/ induced by the embedding
of DG-categories BX-qcohf-adj! BX-qcoh is an equivalence of triangulated
categories;

(c) if there are enough vector bundles on X and BX is Noetherian, the functor
Dabs.BX-cohf-adj/!Dabs.BX-coh/ induced by the embedding of DG-categories
BX-cohf-adj! BX-coh is an equivalence of triangulated categories.

Proof. This is a version of Theorem 1.4, provable in the same way (cf. Corollary 2.6
below). The assertions hold, because any quasicoherent graded BX -module has a
finite left resolution consisting of quasicoherent CDG-modules adjusted to f �, and
it is similar for coherent CDG-modules. �

The functor of inverse image f � WH 0.BX-qcoh/!H 0.BY -qcoh/ takes CDG-
modules coacyclic with respect to BX-qcohf-adj to CDG-modules coacyclic with
respect to BY -qcoh, and hence induces a triangulated functor Dco.BX-qcohf-adj/!

Dco.BY -qcoh/. Taking Lemma 1.9 into account, we construct the derived inverse
image functor

Lf � W Dco.BX-qcoh/ �! Dco.BY -qcoh/:

One shows that this functor is left adjoint to the functor Rf� constructed in Sec-
tion 1.8 in the way analogous to (but simpler than) the proof of Proposition 1.8.

When there are enough vector bundles on X , and BX and BY are Noetherian,
we construct the derived inverse image functor

Lf � W Dabs.BX-coh/ �! Dabs.BY -coh/

in a similar way.
Let Bop

X and Bop
Y denote the quasicoherent graded algebras with the opposite

multiplication to BX and BY .

Proposition 1.9. When Bop
Y has finite flat dimension over Bop

X , the derived inverse
image functor Lf � WDco.BX-qcohffd/!Dco.BY -qcohffd/ constructed in Section 1.8
has a right adjoint functor

Rf� W D
co.BY -qcohffd/ �! Dco.BX-qcohffd/:
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Proof. Let fU˛g be a finite affine covering of Y . To any object N 2 BY -qcohffd,
assign the total CDG-module RfU˛gf�N of the finite Čech complexM

˛

f jU˛�.N jU˛ / �!
M
˛<ˇ

f jU˛\Uˇ�.N jU˛\Uˇ / �! � � �

of CDG-modules over BX .
The terms of this complex belong to BX-qcohffd since the morphism f jV WV !X

is affine for any intersection V of a nonempty subset of affine open subschemes
U˛ �Y and the quasicoherent graded algebra Bop

Y has finite flat dimension over Bop
X .

Hence one has RfU˛gf�N 2 BX-qcohffd; it is clear that RfU˛gf� is a DG-functor
BY -qcohffd! BX-qcohffd taking coacyclic objects to coacyclic objects. So we have
the induced functor Rf� between the coderived categories.

It remains to obtain the adjunction isomorphism

HomDco.BX-qcohffd/
.M;Rf�N /' HomDco.BY -qcohffd/

.Lf �M;N /

for M 2 Dco.BX-qcohffd/. Denote by NC the total CDG-module of the finite
complex

C �
fU˛g

N D
�M

˛

jU˛�j
�
U˛

N �!
M
˛<ˇ

jU˛\Uˇ�j
�
U˛\Uˇ

N �! � � �
�

of CDG-modules over BY (where jV W V ! Y denotes the embedding of an affine
open subscheme). Then we have RfU˛gf�N ' f�NC. There is a natural closed
morphism N !NC of CDG-modules over BY with the cone coacyclic (and even
absolutely acyclic) with respect to BY -qcohffd.

For any CDG-module Q 2 BY -qcohffd such that f�Q 2 BX -qcohffd, there is a
natural map

 W HomDco.BX-qcohffd/
.M; f�Q/ �! HomDco.BY -qcohffd/

.Lf �M;Q/:

Indeed, by the proof of Theorem 1.4(a), any morphism M!f�Q in Dco.BX -qcohffd/

can be represented as a fraction formed by a morphism M0!M inH 0.BX-qcohffd/,
with M0 2 BX-qcohfl and a cone coacyclic with respect to BX-qcohffd, and a mor-
phism M0! f�Q in H 0.BX-qcohffd/. To such a fraction, the map  assigns the
related morphism Lf �MD f �M0!Q.

For a fixed M, the map  is a morphism of cohomological functors of the
argument Q 2H 0.BY -qcohffd/ with f�Q 2 BX -qcohffd. Thus in order to show that
it is an isomorphism for QDNC, it suffices to check that it is an isomorphism for
QD jV �P for every affine V � Y and P 2 BY jV -qcohffd. This follows from the
adjunction isomorphism

HomDco.BX-qcohffd/
.M; f jV �P/' HomDco.BY jV -qcohffd/

.Lf j�VM;P/
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and the similar isomorphism for the embedding jV , which hold because the functors
f jV � and jV � are exact, the morphisms f jV and jV being affine. �

Remark 1.9. One can also use the above Čech complex approach in order to
construct a version of the derived functor Rf� W D

co.BY -qcoh/! Dco.BX-qcoh/.
One can check that this construction agrees with the injective resolution construction
from Section 1.8, using the fact that the restrictions of injective quasicoherent
graded BY -modules to open subschemes are injective (Theorem A.3). Alternatively,
in the assumption of finite flat dimension of BY over BX , one checks that both
constructions provide functors right adjoint to Lf �, hence they are isomorphic.

This allows us to conclude that the derived functors Rf� acting on arbitrary qua-
sicoherent CDG-modules and quasicoherent CDG-modules of finite flat dimension
form a commutative diagram with the natural functors from the coderived categories
of the latter to the coderived categories of the former.

1.10. Supports of CDG-modules. LetX be a Noetherian scheme. The set-theoretic
support of a quasicoherent sheaf M on X is the minimal closed subset T �X such
that the restriction of M to the open subscheme XnT vanishes. Given a Noetherian
quasicoherent graded algebra B over X and a quasicoherent graded B-module M,
the set-theoretic support T D SuppM of M is defined similarly. It only depends
on the underlying quasicoherent OX -module of M.

Let B be a quasicoherent CDG-algebra over X whose underlying quasicoherent
graded algebra B is Noetherian. Fix a closed subset T �X . Denote by B-qcohT the
full DG-subcategory in B-qcoh consisting of all the quasicoherent CDG-modules
whose underlying quasicoherent graded B-modules have their set-theoretic supports
contained in T . The DG-category B-cohT of coherent CDG-modules with set-
theoretic support in T is defined similarly.

Let Dco.B-qcohT / and Dabs.B-cohT / denote the coderived and the absolute
derived category of these DG-categories of CDG-modules. Finally, let B-qcohT;inj

denote the DG-category of quasicoherent CDG-modules over B whose underlying
quasicoherent graded modules are injective objects of the abelian category of
quasicoherent graded B-modules with set-theoretic support contained in T .

Proposition 1.10. (a) The functor H 0.B-qcohT;inj/! Dco.B-qcohT / induced by
the embedding of DG-categories B-qcohT;inj! B-qcohT is an equivalence of
triangulated categories.

(b) The functor Dabs.B-cohT / ! Dco.B-qcohT / induced by the embedding of
DG-categories B-cohT ! B-qcohT is fully faithful and its image is a set of
compact generators of the target category.

(c) The functor Dco.B-qcohT / ! Dco.B-qcoh/ induced by the embedding of
DG-categories B-qcohT ! B-qcoh is fully faithful.
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(d) The functor Dabs.B-cohT /! Dabs.B-coh/ induced by the embedding of DG-
categories B-cohT ! B-coh is fully faithful.

Proof. Part (a) is essentially a particular case of [Positselski 2011b, Theorem and
Remark in Section 3.7]. It is only important here that there are enough injective
objects in the abelian category of quasicoherent graded B-modules supported set-
theoretically in T and the class of such injective objects is closed under infinite direct
sums. This is so because the abelian category in question is a locally Noetherian
Grothendieck category (since X and B are Noetherian). Part (b) can be proven
in the same way as the results of [loc. cit., Section 3.11]. Part (d) follows from
parts (b) and (c) and Proposition 1.5(d).

Finally, part (c) follows from part (a), Lemma 1.7(b), and the fact that any
injective object J in the category of quasicoherent graded B-modules supported
set-theoretically in T is also an injective object in the category of arbitrary qua-
sicoherent graded B-modules. The latter is essentially a reformulation of the
Artin–Rees lemma.

Indeed, it suffices to check that for any coherent graded B-module M and its
coherent graded B-submodule N , any morphism of quasicoherent graded B-modules
� WN ! J can be extended to M. Let Z be a closed subscheme structure on the
closed subset T � X . Then there is an integer n � 0 such that the morphism �

annihilates InZN (where IZ is the sheaf of ideals of the closed subscheme Z). By
Lemma A.3, there exists m � 0 such that ImZM\N � InZN . Then there exists
a morphism M=ImZM! J of quasicoherent graded B-modules supported set-
theoretically in T which extends the given morphism into J from the quasicoherent
graded B-submodule N=.ImZM\N /�M=ImZM. �

Let U �X denote the open subscheme X nT .

Theorem 1.10. (a) The functor of restriction to the open subscheme Dco.B-qcoh/!
Dco.BjU -qcoh/ is the Verdier localization functor by the thick subcategory

Dco.B-qcohT /� Dco.B-qcoh/:

In particular, the kernel of the restriction functor coincides with the subcategory
Dco.B-qcohT /.

(b) The functor of restriction to the open subscheme Dabs.B-coh/! Dabs.BjU -coh/
is the Verdier localization functor by the triangulated subcategory

Dabs.B-cohT /� Dabs.B-coh/:

In particular, the kernel of the restriction functor coincides with the thick envelope
of (i.e., the minimal thick subcategory containing) Dabs.B-cohT / in Dabs.B-coh/.
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Proof. Let j WU!X denote the natural open embedding. To prove part (a), consider
the functor Rj� W D

co.BjU -qcoh/ ! Dco.B-qcoh/ as constructed in Section 1.8.
Since the quasicoherent graded algebra BjU is flat over B, the functor Rj� is right
adjoint to the restriction functor j � WDco.B-qcoh/!Dco.BjU -qcoh/. Obviously, the
composition j �Rj� is the identity functor. It follows that the functor j � is a Verdier
localization functor by its kernel, which is the full subcategory consisting of all the
cones of the adjunction morphisms M! Rj�j

�M, where M 2 Dco.B-qcoh/.
Represent the object M by a CDG-module with an injective underlying quasico-

herent graded B-module. By Theorem A.3, the quasicoherent graded BjU -module
j �M is then also injective, so we have Rj�j

�MD j�j �M. Obviously, both the
kernel and the cokernel of the closed morphism of CDG-modules M! j�j

�M
belong to B-qcohT , and it follows, in view of Proposition 1.10(c), that the cone
also belongs to Dco.B-qcohT /.

To prove part (b), notice first that any coherent CDG-module over BjU can be
extended to a coherent CDG-module over B (because a coherent sheaf K on U can
be extended to a coherent subsheaf of j�K), so the restriction functor is essentially
surjective. Taking this observation into account, part (b) follows from part (a),
Proposition 1.10(b), Proposition 1.5(d), and the standard results about localization
of compactly generated triangulated categories [Neeman 1992, Lemma 2.5 to
Theorem 2.1]. �

Define the category-theoretic support suppM of a quasicoherent CDG-moduleM
over B as the minimal closed subset T � X such that the restriction MjU of M
to the open subscheme U D X n T is a coacyclic CDG-module over BjU . In
other words, X n suppM is the union of all open subschemes V � X such that
MjV is a coacyclic CDG-module over BjV (see Remark 1.3). Obviously, one has
suppM� SuppM.

The category-theoretic support of a coherent CDG-module M over B can be
equivalently defined as the minimal closed subset T �X such that the restriction
MjU of M to the open subscheme U D X n T is absolutely acyclic. Indeed,
any CDG-module from BjU -coh that is coacyclic with respect to BjU -qcoh is also
absolutely acyclic with respect to BjU -coh by Proposition (d).

Corollary 1.10. (a) For any quasicoherent CDG-module M over B with category-
theoretic support suppM contained in T , there exists a quasicoherent CDG-
module M0 over B such that M is isomorphic to M0 in Dco.B-qcoh/ and
set-theoretic support SuppM0 is contained in T .

(b) For any coherent CDG-module M over B with category-theoretic support
suppM contained in T , there exists a coherent CDG-module M0 over B
such that M is isomorphic to a direct summand of M0 in Dabs.B-coh/ and
set-theoretic support SuppM0 is contained in T .
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Proof. Follows immediately from Theorem 1.10. �

Remark 1.10. One can prove that the restriction functor in Theorem 1.10(a) is a
Verdier localization functor without assuming the quasicoherent graded algebra
B to be Noetherian. Indeed, one can construct a right adjoint functor Rj� to the
restriction functor j � in the way similar to that of Proposition 1.9; then it is easy to
see that j �Rj� is the identity functor.

When B is Noetherian, Theorem 1.10 can be generalized as follows. Let S and T
be closed subsets inX ; set U DXnT . Then the restriction functor Dco.B-qcohS /!
Dco.BjU -qcohU\S / is the Verdier localization functor by the thick subcategory
Dco.B-qcohT\S /, and the restriction functor Dabs.B-cohS /! Dabs.BjU -cohU\S /
is the Verdier localization functor by the triangulated subcategory Dabs.B-cohT\S /.
The proof is similar to the above.

It is not difficult to deduce from the latter assertions, using the result of [Neeman
1996, Theorem 2.1(5)], that the property of an object of Dco.B-qcoh/ to belong to
the thick envelope of Dabs.B-coh/ is local in X . Using the Čech exact sequence as
in Remark 1.3, one can easily see that the property of an object of Dabs.B-qcoh/ to
belong to Dabs.B-qcohfl/ is also local.

We do not know whether the property of an object of Dabs.B-coh/ or Dabs.B-qcohfl/

to belong to Dabs.B-cohfl/ is local in general. In the particular case of matrix
factorizations, such results will be proven in Section 3.2 using the connection with
singularity categories (cf. Remark 3.6).

Notice that the theory of localization for compactly generated triangulated cate-
gories, on which the proof of Theorem 1.10(b) is based, was originally applied in
algebraic geometry for the purposes of the Thomason–Trobaugh localization theory
of perfect complexes. In this section we apply it to coherent CDG-modules. In fact,
we will see in Section 3.3 that the localization theory fails for locally free matrix
factorizations of finite rank.

2. Triangulated categories of relative singularities

2.1. Relative singularity category. Recall that X denotes a separated Noetherian
scheme with enough vector bundles. The triangulated category of singularities
Db

Sing.X/ of the scheme X is defined [Orlov 2004, Section 1.2] as the quotient
category of the bounded derived category Db.X-coh/ of coherent sheaves on X by
its thick subcategory Perf .X/ of perfect complexes on X .

The perfect complexes, in our assumptions, can be simply defined as bounded
complexes of locally free sheaves of finite rank, so Perf .X/D Db.X-cohlf/ is the
bounded derived category of the exact category X-cohlf of locally free sheaves of
finite rank on X . Equivalently, the perfect complexes are the compact objects of the
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unbounded derived category of quasicoherent sheaves D.X-qcoh/ on the scheme X
[Neeman 1996, Examples 1.10–1.11 and Corollary 2.3].

Let Z � X be a closed subscheme such that OZ has finite flat dimension as
an OX -module. In this case the derived inverse image functor Li� for the closed
embedding i WZ!X acts on the bounded derived categories of coherent sheaves,
Db.X-coh/! Db.Z-coh/. We call the quotient category of Db.Z-coh/ by the thick
subcategory generated by the objects in the image of this functor the triangulated
category of singularities of Z relative to X and denote it by Db

Sing.Z=X/.
Note that the triangulated category of relative singularities Db

Sing.Z=X/ is a
quotient category of the conventional (absolute) triangulated category of singularities
Db

Sing.Z/ of the scheme Z. Indeed, the thick subcategory Perf .Z/� Db.Z-coh/ is
generated by any ample family of vector bundles on Z since any such family is a set
of compact generators of the unbounded derived category of quasicoherent sheaves
D.Z-qcoh/ on Z [Neeman 1996]; in particular, it is generated by the restrictions
to Z of vector bundles from X (see also Lemma 2.8).

The functor Li� W Db.X-coh/! Db.Z-coh/ induces a triangulated functor

iı W Db
Sing.X/ �! Db

Sing.Z/:

Furthermore, since the sheaf i�OZ belongs to Perf .X/, the functor i� WDb.Z-coh/!
Db.X-coh/ takes Perf .Z/ to Perf .X/ (cf. [Orlov 2004, paragraphs before Propo-
sition 1.14]). Hence the functor i� induces a triangulated functor iı W Db

Sing.Z/!

Db
Sing.X/ right adjoint to iı. The triangulated category Db

Sing.Z=X/ is the quotient
category of Db

Sing.Z/ by the thick subcategory generated by the image of the
functor iı.

When X is regular, any coherent sheaf on X has a finite resolution by locally
free sheaves of finite rank. So Db

Sing.X/D 0, and hence the triangulated categories
Db

Sing.Z/ and Db
Sing.Z=X/ coincide. The converse is also true: the structure sheaf

of the reduced scheme structure on the closure of any singular point of X is not a
perfect complex on X , so Db

Sing.X/¤ 0 when X is not regular.

Remark 2.1. Roughly speaking, the triangulated category of relative singularities
Db

Sing.Z=X/ measures how much worse the singularities of Z are compared to the
singularities of X in a neighborhood of Z.

The basic formal properties of Db
Sing.Z=X/ are similar to those of Db

Sing.Z/.
When the OX -module OZ has finite flat dimension, the derived category Db.X-coh/
is generated by coherent sheaves adjusted to i�. Let EZ=X denote the minimal
full subcategory of the abelian category of coherent sheaves on Z containing the
restrictions of such coherent sheaves from X and closed under extensions and the
kernels of epimorphisms of sheaves. Then EZ=X is naturally an exact category and
its bounded derived category Db.EZ=X / is equivalent to the thick subcategory of
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Db.Z-coh/ generated by the derived restrictions of coherent sheaves from X , so
Db

Sing.Z=X/D Db.Z-coh/=Db.EZ=X /. One can define the E-homological dimen-
sion of a coherent sheaf (or bounded complex) on Z as the minimal length of a left
resolution consisting of objects from EZ=X . This dimension does not depend on
the choice of a resolution (in the same sense that the conventional flat dimension
doesn’t). The thick subcategory Db.EZ=X / consists of those objects of Db.Z-coh/
that have finite E-homological dimensions.

Unlike in the case of perfect complexes, we do not know whether the property
to belong to EZ=X or Db.EZ=X / is local, though. In the case when Z is a Cartier
divisor, locality can be established using Theorem 2.7 below and Remark 1.3.

2.2. Matrix factorizations. Following [Polishchuk and Vaintrob 2011], we will
consider matrix factorizations of a global section of a line bundle. So let L be a
line bundle (invertible sheaf) on X and w 2 L.X/ be a fixed section, called the
potential.

Let B D .X;L; w/ denote the following Z-graded quasicoherent CDG-algebra
over X . The component Bn is isomorphic to L˝n=2 for n 2 2Z and vanishes
for n 2 2ZC 1, the multiplication in B being given by the natural isomorphisms
L˝n=2˝OX L˝m=2 ! L˝.nCm/=2. For any affine open subscheme U � X , the
differential on B.U / is zero, and the curvature element is wjU 2 B2.U /D L.U /.
The elements aUV defining the restriction morphisms of CDG-rings B.V /!B.U /
all vanish.

The category of quasicoherent Z-graded B-modules is equivalent to the category
of quasicoherent Z=2-graded OX -modules, the equivalence assigning to a graded
B-module M the pair of OX -modules which we denote symbolically by U0 DM0

and U1 ˝ L˝1=2 DM1. Conversely, Mn ' Un mod 2 ˝OX L˝n=2 for all n 2 Z

(the meaning of the notation in the right-hand side being the obvious one). This
equivalence of abelian categories preserves all the properties of coherence, flatness,
flat dimension, local projectivity/local freeness, etc. that we were interested in in
Section 1.

Following [Lin and Pomerleano 2013], we will consider CDG-modules over
B D .X;L; w/ whose underlying graded B-modules correspond to coherent or qua-
sicoherent OX -modules, rather than just locally free sheaves (as in the conventional
matrix factorizations). A quasicoherent CDG-module over .X;L; w/ is the same
thing as a pair of quasicoherent OX -modules U0 and U1˝L˝1=2 endowed with
OX -linear morphisms U0! U1˝L˝1=2 and U1˝L˝1=2! U0˝OX L such that
both compositions

U0!U1˝L˝1=2!U0˝OXL and U1˝L˝1=2!U0˝OXL!U1˝OXL˝3=2

are equal to the multiplications with w.
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2.3. Exotic derived categories of matrix factorizations. The following corollary
is a restatement of the results of Section 1 in the application to the quasicoherent
CDG-algebra BD .X;L; w/. We will use the notation .X;L; w/-cohlf (instead of
the previously introduced B-cohfl) for the DG-category of locally free matrix factor-
izations of finite rank, and the notation .X;L; w/-qcohlf (instead of the previously
introduced B-qcohlp) for the DG-category of locally free matrix factorizations of
possibly infinite rank (see Remark 1.4). The rest of our notation system for various
classes of quasicoherent CDG-modules over B D .X;L; w/ remains in use.

In addition, we also denote by .X;L; w/-qcohlfd the DG-category of quasicoher-
ent CDG-modules of finite locally free/locally projective dimension over .X;L; w/
(see Remark 1.4 again). Let Dco..X;L; w/-qcohlfd/ and Dabs..X;L; w/-qcohlfd/ be
the corresponding derived categories of the second kind.

Corollary 2.3. (a) The functor Dco..X;L;w/-qcohfl/!Dco..X;L;w/-qcohffd/ in-
duced by the embedding of DG-categories .X;L; w/-qcohfl! .X;L; w/-qcohffd is
an equivalence of triangulated categories.

(b) The functor Dabs..X;L; w/-qcohfl/! Dabs..X;L; w/-qcohffd/ induced by the
embedding of DG-categories .X;L; w/-qcohfl ! .X;L; w/-qcohffd is an equiva-
lence of triangulated categories.

(c) The functors

Dco..X;L; w/-qcohlf/ �! Dco..X;L; w/-qcohlfd/;

Dabs..X;L; w/-qcohlf/ �! Dabs..X;L; w/-qcohlfd/

induced by the embedding of DG-categories .X;L;w/-qcohlf ! .X;L;w/-qcohlfd

are equivalences of triangulated categories.

(d) The triangulated categories Dco..X;L; w/-qcohlf/ and Dabs..X;L; w/-qcohlf/

coincide, as do the categories Dco..X;L; w/-qcohlfd/ and Dabs..X;L; w/-qcohlfd/.
The natural functors between these four categories form a commutative square of
equivalences of triangulated categories.

(e) When the scheme X has finite Krull dimension, the functors

Dco..X;L; w/-qcohlf/ �! Dco..X;L; w/-qcohfl/;

Dabs..X;L; w/-qcohlf/ �! Dabs..X;L; w/-qcohfl/

induced by the embedding of DG-categories .X;L; w/-qcohlf ! .X;L; w/-qcohfl

are equivalences of triangulated categories. The natural functors between these
four categories form a commutative square of equivalences.

(f) When the scheme X has finite Krull dimension, the triangulated category
Dco..X;L; w/-qcohfl/ coincides with Dabs..X;L; w/-qcohfl/ and the triangulated
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category Dco..X;L; w/-qcohffd/ coincides with Dabs..X;L; w/-qcohffd/. The natu-
ral functors between these four categories form a commutative square of equiva-
lences.

(g) The functor Dabs..X;L; w/-cohlf/! Dabs..X;L; w/-cohffd/ induced by the em-
bedding of DG-categories .X;L; w/-cohlf ! .X;L; w/-cohffd is an equivalence of
triangulated categories.

(h) The triangulated functors

Dabs..X;L; w/-qcohlf/! Dabs..X;L; w/-qcohfl/! Dabs..X;L; w/-qcoh/

induced by the embeddings of DG-categories .X;L;w/-qcohlf!.X;L;w/-qcohfl!

.X;L;w/-qcoh are fully faithful.

(i) The triangulated functor Dabs..X;L; w/-cohlf/! Dabs..X;L; w/-coh/ induced
by the embedding of DG-categories .X;L; w/-cohlf! .X;L; w/-coh is fully faithful.

(j) The triangulated functor Dabs..X;L; w/-cohlf/!Dco..X;L; w/-qcohlf/ induced
by the embedding of DG-categories .X;L; w/-cohlf ! .X;L; w/-qcohlf is fully
faithful.

(k) The triangulated functor Dabs..X;L; w/-coh/! Dabs..X;L; w/-qcoh/ induced
by the embedding of DG-categories .X;L; w/-coh! .X;L; w/-qcoh is fully faithful.

(l) The triangulated functor Dabs..X;L; w/-coh/! Dco..X;L; w/-qcoh/ induced
by the embedding of DG-categories .X;L; w/-coh! .X;L; w/-qcoh is fully faithful
and its image forms a set of compact generators for Dco..X;L; w/-qcoh/.

Proof. Parts (a), (b) and (g) are particular cases of Theorem 1.4, and the proof
of part (c) is similar (see Remark 1.4). Part (g) also essentially follows from
Proposition 1.5(b) (and part (b) can be proven similarly). Parts (h), (i), (k) and (l)
are particular cases of Proposition 1.5 (except for “locally free half” of part (h),
which is similar to the “flat half”). Part (d) is Theorem 1.6 together with part (c).
Part (j) is Corollary 1.6. Part (e) follows from parts (a)–(c) and Remark 1.4 (cf. the
discussion in the end of Section 1.6). Part (f) follows from parts (a), (b), (d) and (e);
alternatively, it can be proven directly in the way similar to part (d), using the fact
that the exact category of flat quasicoherent sheaves on X has finite homological
dimension when the Krull dimension of X is finite. �

2.4. Regular and Gorenstein scheme cases. When the scheme X is regular or
Gorenstein, the assertions of Corollary 2.3 simplify as follows.

Corollary 2.4. (a) When the scheme X is Gorenstein of finite Krull dimension,
the functors

Dabs..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcoh/



Coherent analogues of matrix factorizations and relative singularity categories 1197

induced by the embedding of DG-categories .X;L;w/-qcohfl!.X;L;w/-qcoh
are equivalences of triangulated categories.

(b) When the scheme X is regular of finite Krull dimension, the natural func-
tors between the categories Dabs..X;L; w/-qcohfl/, Dco..X;L; w/-qcohfl/,
Dabs..X;L; w/-qcoh/, and Dco..X;L; w/-qcoh/ form a commutative square of
equivalences of triangulated categories.

(c) When the scheme X is regular, the natural functor Dabs..X;L; w/-cohlf/!

Dabs..X;L; w/-coh/ is an equivalence of triangulated categories.

Proof. Part (a) is a particular case of Proposition 1.7. Part (c) follows from
Corollary 2.3(g) since any coherent sheaf on a regular scheme has finite flat di-
mension. In the assumptions of part (b), the functor Dabs..X;L; w/-qcoh/ !
Dco..X;L; w/-qcoh/ is an isomorphism of triangulated categories by [Positselski
2011b, Theorem 3.6(a) and Remark 3.6] since the abelian category of quasicoherent
sheaves on a regular scheme of finite Krull dimension has finite homological
dimension and enough injectives (cf. Theorem 1.6). The remaining assertions of
part (b) follow from Corollary 2.3(a) and (b), or alternatively from part (a). �

Assuming that X has finite Krull dimension, the assertions of Corollaries 2.3
and 2.4 may be summarized by the following commutative diagram of triangulated
functors. Here, as above, B denotes the quasicoherent CDG-algebra .X;L; w/:

Dabs.B-cohlf/ Dabs.B-cohffd/

Dabs.B-coh/

DcoDabs.B-qcohlfd/

DcoDabs.B-qcohlf/ DcoDabs.B-qcohffd/ Dco.B-qcoh/

DcoDabs.B-qcohfl/ Dabs.B-qcoh/

��

��

��

��

--

--

D whenX regular

��

��

comp.
gener.

{{

{{

//D whenX Gorenstein

++
++

D whenX
regular

33 33

D whenX
regular

The four categories in the left lower area are coderived categories coinciding with
absolute derived categories (of the same classes of quasicoherent CDG-modules).
The five double lines between these four categories are equivalences, as is the upper
left horizontal line. All the arrows going down are fully faithful functors. The
image of the rightmost vertical arrow is a set of compact generators in the target
category. The only arrow going up is a Verdier localization functor.

Nothing is claimed about the long horizontal arrow in the right lower area of
the diagram in general; but when X is Gorenstein, this functor is an equivalence
of categories. When X is regular, all the arrows going right are equivalences of
categories (so the whole diagram reduces to one triangulated category with infinite
direct sums, containing a full triangulated subcategory of compact generators).
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Recall also that, by Lemma 1.7, for any X we have a commutative diagram of
triangulated functors

H 0.B-qcohinj/ DcoDabs.B-qcohfid/ Dco.B-qcoh/

Dabs.B-qcoh/

**

**

44 44

with equivalences of categories in the upper line. The fully faithful embedding
Dabs.B-qcohfid/ ! Dabs.B-qcoh/, which in the Gorenstein case (of finite Krull
dimension) coincides with the embedding Dabs.B-qcohffd/ ! Dabs.B-qcoh/, is
always right adjoint to the localization functor Dabs.B-qcoh/! Dco.B-qcoh/.

Remark 2.4. When X is an affine Noetherian scheme of finite Krull dimen-
sion, the embeddings of DG-categories .X;L; w/-qcohlp ! .X;L; w/-qcohfl !

.X;L; w/-qcoh induce equivalencesH 0.B-qcohlp/'Dabs.B-qcohfl/'Dctr.B-qcoh/
between the homotopy category of (locally) projective matrix factorizations of
infinite rank, the absolute derived category of flat matrix factorizations, and the con-
traderived category of arbitrary quasicoherent matrix factorizations (see [Positselski
2011b, Section 3.8]; cf. Remark 1.5).

2.5. Serre–Grothendieck duality. The aim of this section is to show that the
somewhat mysterious long horizontal arrow in the above large diagram is actu-
ally a functor between two equivalent triangulated categories, for a rather wide
class of schemes X . The functor Dco..X;L; w/-qcohfl/ ! Dco..X;L; w/-qcoh/
in the above diagram, which is induced by the embedding of DG-categories
.X;L; w/-qcohfl ! .X;L; w/-qcoh, is not the equivalence that we have in mind,
however (unless the scheme is Gorenstein). Instead, the equivalence between the
categories Dco..X;L; w/-qcohfl/ and Dco..X;L; w/-qcoh/ is constructed using a
dualizing complex on X [Hartshorne 1966, Section V.2].

Before recalling the definition of a dualizing complex, let us discuss the no-
tion of the quasicoherent internal Hom. Given quasicoherent sheaves M and N
over X , the quasicoherent sheaf HomX-qc.M;N / is defined by the isomorphism
HomOX .�˝OX M; N / ' HomOX .� ;HomX-qc.M;N // of functors from the
category of quasicoherent sheaves to the category of abelian groups. Equiva-
lently, the quasicoherent sheaf HomX-qc.M;N / can be obtained by applying
the coherator functor [Thomason and Trobaugh 1990, Sections B.12–B.14] to
the sheaf of OX -modules HomOX .M;N /. Whenever M is a coherent sheaf,
the sheaf HomOX .M;N / of OX -module internal Hom is quasicoherent, and
HomX-qc.M;N /'HomOX .M;N /.

Notice that the construction of the sheaf HomX-qc.M;N / is not local in general;
i.e., it does not commute with the restrictions of quasicoherent sheaves to open
subschemes; when the sheaf M is coherent, it does.
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Lemma 2.5. (a) For any injective quasicoherent sheaf J over a separated Noe-
therian scheme X , the functor M 7�!HomX-qc.M;J / is exact.

(b) For any flat quasicoherent sheaf F and injective quasicoherent sheaf J overX ,
the quasicoherent sheaves F ˝OX J and HomX-qc.F ;J / are injective.

(c) For any injective quasicoherent sheaves J 0 and J over X , the quasicoherent
sheaf HomX-qc.J 0;J / is flat.

Proof. The second assertion of part (b) is obvious from the universal property defin-
ing HomX-qc. To prove the first one, notice that injectivity of quasicoherent sheaves
over a Noetherian scheme is a local property ([Hartshorne 1966, Lemma II.7.16 and
Theorem II.7.18] or Theorem A.3), a flat quasicoherent sheaf over an affine scheme
is a filtered inductive limit of locally free sheaves of finite rank [Bourbaki 1980,
Numéros 1.5–6], and injectivity of modules over a Noetherian ring is preserved by
filtered inductive limits.

The proof of parts (a) and (c) follows the argument in [Murfet 2007, Lemma 8.7].
Choose a finite affine covering U˛ of the scheme X and consider the morphism
J !

L
˛ jU˛�j

�
U˛

J . Being an embedding of injective quasicoherent sheaves, it
splits, so J is a direct summand of the direct sum of jU˛�j

�
U˛

J . Hence it suffices
to prove both assertions in the case when J D jV �J 00, where J 00 is an injective
quasicoherent sheaf on an affine open subscheme V �X .

Now we have HomX-qc.M; jV �J 00 /'jV �HomV -qc.j
�
VM;J 00 /. Since V !X

is a flat affine morphism, the functor jV � is exact and preserves the flatness of quasi-
coherent sheaves. This proves part (a) and reduces (c) to the case of an affine scheme
XDV . It remains to apply [Cartan and Eilenberg 1956, Proposition VI.5.3]. �

For our purposes, a dualizing complex D�X on X is a finite complex of injective
quasicoherent sheaves such that the cohomology sheaves of D�X are coherent and for
any coherent sheaf M over X , the natural morphism of finite complexes of quasi-
coherent sheaves M!HomX-qc.HomX-qc.M;D�X /;D

�

X / is a quasi-isomorphism.
Note that it follows from the former two conditions on D�X that the complex
HomX-qc.M;D�X / has coherent cohomology sheaves. This makes the conditions
imposed on D�X actually local in X , so the restriction D�U D D�X jU of the complex
of sheaves D�X to an open subscheme U �X is a dualizing complex on U .

Given a quasicoherent CDG-algebra B over X , a quasicoherent left CDG-module
M over B, and a complex of quasicoherent sheaves F � onX , consider the complexes
of quasicoherent left CDG-modules F � ˝OX M and HomX-qc.F �;M/ over B.
Taking their totalizations (formed, if necessary, by taking infinite direct sums along
the diagonals), construct two triangulated functors H 0.B-qcoh/! H 0.B-qcoh/
depending on a complex F �. Given a right CDG-module N over B (see [Positselski
2011b, Sections 3.1 and B.1]), similarly construct a complex of quasicoherent left
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CDG-modules HomX-qc.N ;F �/ over B, obtaining a triangulated functor from the
homotopy category of right CDG-modules H 0.qcoh-B/ to H 0.B-qcoh/.

In the particular case of matrix factorizations, we conclude that the covariant
functors F �˝OX � and HomX-qc.F �;� / take quasicoherent matrix factorizations
of a potential w 2 L.X/ to (complexes of) quasicoherent matrix factorizations
of w, while the contravariant functor HomX-qc.� ;F �/ transforms quasicoherent
matrix factorizations of the opposite potential �w 2 L.X/ into (complexes of) qua-
sicoherent matrix factorizations of w. Of course, the quasicoherent CDG-algebras
.X;L; w/ and .X;L;�w/ over a scheme X are naturally isomorphic, but we prefer
to keep the distinction between the two.

The next proposition provides the matrix factorization version of the conventional
(contravariant) Serre–Grothendieck duality for bounded complexes of coherent
sheaves. We assume that X is a separated Noetherian scheme with a dualizing
complex D�X . Recall that any such scheme has finite Krull dimension [Hartshorne
1966, Corollary V.7.2]. We denote by Dop the opposite category to a category D.

Proposition 2.5. The triangulated functor

HomX-qc.� ;D�X / WH
0..X;L;�w/-qcoh/op

�!H 0..X;L; w/-qcoh/

induces a well-defined triangulated functor between the absolute derived categories
Dabs..X;L;�w/-qcoh/op and Dabs..X;L; w/-qcoh/ taking the full triangulated sub-
category Dabs..X;L;�w/-coh/op � Dabs..X;L;�w/-qcoh/op into the full subcate-
gory Dabs..X;L; w/-coh/� Dabs..X;L; w/-qcoh/. The composition of the duality
functors Dabs..X;L; w/-coh/!Dabs..X;L;�w/-coh/op!Dabs..X;L; w/-coh/ is
the identity functor.

Proof. The functor HomX-qc.� ;D�X / preserves absolute acyclicity, because D�X
is a complex of injective quasicoherent sheaves, so Lemma 2.5(a) applies. Given
a coherent matrix factorization M, the finite complex of matrix factorizations
HomX-qc.� ;D�X / has coherent cohomology matrix factorizations, so one can use
its canonical truncations in order to prove by induction that its totalization belongs
to the triangulated subcategory Dabs..X;L; w/-coh/.

Finally, for any quasicoherent matrix factorization M, consider the bicomplex of
matrix factorizations HomX-qc.HomX-qc.M;D�X /;D

�

X / and take its totalization in
the two directions where it is a complex, obtaining a complex of matrix factorizations.
Then there is a natural morphism of finite complexes of matrix factorizations M!
HomX-qc.HomX-qc.M;D�X /;D

�

X /, which is a quasi-isomorphism of complexes of
matrix factorizations when M is coherent. The induced closed morphism of the
total matrix factorizations is an isomorphism in Dabs..X;L; w/-qcoh/ since the to-
talization of a finite acyclic complex of matrix factorizations is absolutely acyclic. It
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remains to use the fact that the functor Dabs..X;L; w/-coh/!Dabs..X;L; w/-qcoh/
is fully faithful (see Corollary 2.3(k)) again. �

The next result is our covariant Serre–Grothendieck duality theorem for matrix
factorizations. It is the matrix factorization analogue of the similar results for
complexes of projective and injective modules [Iyengar and Krause 2006, The-
orem 4.2] and sheaves [Murfet 2007, Theorem 8.4]. It also strongly resembles
the derived comodule-contramodule correspondence theory (see [Positselski 2010,
Corollaries 5.4 and 6.3; 2011b, Theorem 5.2]; cf. Remark 2.4 above). Notice that
our proof is more akin to the arguments in [Positselski 2010; 2011b] than those
of [Iyengar and Krause 2006; Murfet 2007] in that we give a direct proof of the
covariant duality independent of both the contravariant duality and any descriptions
of the compact objects in the categories to be compared.

Theorem 2.5. The functors

D�X ˝OX � WH
0..X;L; w/-qcohfl/ �!H 0..X;L; w/-qcohinj/;

HomX-qc.D�X ;� / WH
0..X;L; w/-qcohinj/ �!H 0..X;L; w/-qcohfl/

induce mutually inverse equivalences between the coderived categories

Dco..X;L; w/-qcohfl/ and Dco..X;L; w/-qcoh/:

Proof. Recall that H 0..X;L; w/-qcohinj/' Dco..X;L; w/-qcoh/ by Lemma 1.7(b)
and Dabs..X;L; w/-qcohfl/DDco..X;L; w/-qcohfl/ by Corollary 2.3(f) (though we
will reprove the latter fact rather than use it in the following argument; see also
Remark 2.6 below and Lemma A.1). The functor

D�X ˝OX � WH
0..X;L; w/-qcohfl/ �!H 0..X;L; w/-qcohinj/

obviously takes matrix factorizations coacyclic with respect to .X;L; w/-qcohfl

to matrix factorizations coacyclic with respect to .X;L; w/-qcohinj, which are all
contractible. It remains to check that the induced functors are mutually inverse.

Let E be a matrix factorization from .X;L; w/-qcohfl. As in the previous proof,
consider the bicomplex of matrix factorizations HomX-qc.D�X ; D

�

X ˝OX E/ and
take its total complex of matrix factorizations. Then there is a natural morphism
E!HomX-qc.D�X ; D

�

X ˝OX E/ of finite complexes of matrix factorizations from
.X;L; w/-qcohfl. To prove that the induced morphism of the total matrix factoriza-
tions is an isomorphism in Dco..X;L; w/-qcohfl/, we once again use the fact that
the totalization of a finite acyclic complex of matrix factorizations is absolutely
acyclic. So it suffices to check that for any flat quasicoherent sheaf F over X ,
the natural morphism F !HomX-qc.D�X ; D

�

X ˝OX F / is a quasi-isomorphism of
complexes of flat quasicoherent sheaves. This will be done below.



1202 Alexander I. Efimov and Leonid Positselski

Similarly, let M be a matrix factorization from .X;L; w/-qcohinj. Consider
the morphism of finite complexes of injective matrix factorizations given by
D�X ˝OX HomX-qc.D�X ;M/!M. To prove that the cone of the induced morphism
of the total matrix factorizations is contractible, it suffices to check that for any
injective quasicoherent sheaf J over X , the natural morphism of complexes of
injective sheaves D�X ˝OX HomX-qc.D�X ;J /! J is a quasi-isomorphism.

Let 0D�X denote a finite complex of coherent sheaves over X endowed with a
quasi-isomorphism 0D�X!D�X . Then the morphism HomX-qc.D�X ; D

�

X˝OX F /!
HomX-qc.

0D�X ; D
�

X ˝OX F / is a quasi-isomorphism for any flat quasicoherent
sheaf F . The construction of the composition

F �!HomX-qc.D�X ; D
�

X ˝OX F / �!HomX-qc.
0D�X ; D

�

X ˝OX F /

is local in X , so it suffices to check that the composition is a quasi-isomorphism
when X is affine. Then, using the passage to the filtered inductive limit, we may
assume that F is locally free of finite rank, and further that F DOX . It remains to
recall that the morphism OX !HomX-qc.

0D�X ;D
�

X / is a quasi-isomorphism by the
definition of D�X .

Let 00D�X be a bounded-above complex of flat quasicoherent sheaves mapping
quasi-isomorphically to 0D�X . Then for any injective quasicoherent sheaf J over X
there are quasi-isomorphisms

00D�X ˝OX HomX-qc.D�X ;J / �! D�X ˝OX HomX-qc.D�X ;J /;
00D�X ˝OX HomX-qc.D�X ;J / �!

00D�X ˝OX HomX-qc.
0D�X ;J /

forming a commutative diagram with the evaluation morphisms into J . Hence
it remains to check that the morphism 00D�X ˝OX HomX-qc.

0D�X ;J / ! J is a
quasi-isomorphism, which is a local question. Assume further that 00D�X is a
bounded-above complex of locally free sheaves of finite rank. Then there is a
natural isomorphism of complexes of sheaves

00D�X ˝OX HomX-qc.
0D�X ;J /'HomX-qc.HomX-qc.

00D�X ;
0D�X /;J /:

The related morphism

HomX-qc.HomX-qc.
00D�X ;

0D�X /;J / �! J

is induced by the natural morphism of complexes OX!HomX-qc.
00D�X ;

0D�X /. The
latter is again a quasi-isomorphism essentially by the definition of D�X . �

From this point on we resume assuming that X has enough vector bundles.
Notice that the equivalence functor

D�X ˝OX � W D
co..X;L; w/-qcohlf/ �! Dco..X;L; w/-qcoh/
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that we constructed takes the full triangulated subcategory Dabs..X;L; w/-cohlf/�

Dco..X;L; w/-qcohlf/ into the full triangulated subcategory Dabs..X;L; w/-coh/�
Dco..X;L; w/-qcoh/. This is so because the dualizing complex D�X has bounded
coherent cohomology sheaves.

Now we will use Proposition 2.5 and Theorem 2.5 in order to construct compact
generators of the triangulated category Dco..X;L; w/-qcohlf/ (cf. [Jørgensen 2005;
Neeman 2008]).

Consider the abelian category Z0..X;L;�w/-coh/ of coherent matrix factor-
izations of �w and closed morphisms of degree 0 between them, and its exact
subcategory of locally free matrix factorizations of finite rankZ0..X;L;�w/-cohlf/.
The natural functor between the bounded-above derived categories of our abelian
category and its exact subcategory

D�.Z0..X;L;�w/-cohlf// �! D�.Z0..X;L;�w/-coh//

is an equivalence of triangulated categories. The vector bundle duality functor
HomX-qc.� ;OX / W Z0..X;L;�w/-cohlf/

op! Z0..X;L; w/-cohlf/ induces a tri-
angulated functor D�.Z0..X;L;�w/-cohlf//

op!DC.Z0..X;L; w/-cohlf// taking
bounded-above complexes to bounded-below ones.

Let DC.Z0..X;L; w/-qcohlf// denote the bounded-below derived category of the
exact category of locally free matrix factorizations of possibly infinite rank. Since the
bounded-below acyclic complexes over any exact category with infinite direct sums
are coacyclic [Positselski 2010, Lemma 2.1], there is a well-defined, triangulated
direct sum totalization functor DC.Z0..X;L; w/-qcohlf//!Dco..X;L; w/-qcohlf/.
Consider the composition

Z0..X;L;�w/-coh/op
�! D�.Z0..X;L;�w/-coh//op

' D�.Z0..X;L;�w/-cohlf//
op
�! DC.Z0..X;L; w/-cohlf//

�! DC.Z0..X;L; w/-qcohlf// �! Dco..X;L; w/-qcohlf/;

where two of the functors are the duality and the totalization discussed above, while
the other two are the natural embedding and the functor induced by such.

One easily checks that this composition takes cones of closed morphisms in
Z0..X;L;�w/-coh/ to cocones in Dco..X;L; w/-qcohlf/; hence it induces a triangu-
lated functorH 0..X;L;�w/-coh/op!Dco..X;L; w/-qcohlf/. Similarly, the above
composition takes the totalizations of short exact sequences in .X;L;�w/-coh to ob-
jects corresponding to the totalizations of short exact sequences in .X;L; w/-qcohlf ;
one checks this by considering a left locally free resolution of a short exact sequence
of coherent matrix factorizations. Thus we obtain a triangulated functor

� W Dabs..X;L;�w/-coh/op
�! Dco..X;L; w/-qcohlf/:
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Corollary 2.5. The functor � is fully faithful, and its image forms a set of compact
generators in Dco..X;L; w/-qcohlf/. The following diagram of triangulated functors
is commutative:

Dabs..X;L;�w/-cohlf/
op Dabs..X;L;�w/-coh/op

Dabs..X;L; w/-cohlf/ Dabs..X;L; w/-coh/

Dco..X;L; w/-qcohlf/ Dco..X;L; w/-qcoh/

// //�op

HomX-qc.� ;OX / HomX-qc.� ;D�X /

ww

ww

�

// //
D�X˝OX�

��

��

�

��

��


comp.
gener.

D�X˝OX�

HomX-qc.D�X ;� /

Here � , �, and  denote the fully faithful functors induced by the natural embeddings
of DG-categories of CDG-modules. The two upper vertical lines are the natural
contravariant dualities (antiequivalences) on the (absolute derived) categories of
locally free matrix factorizations of finite rank and coherent matrix factorizations.
The lower horizontal line is the equivalence of categories from Theorem 2.5, and
the middle horizontal arrow is the fully faithful functor discussed after the proof of
Theorem 2.5.

The above diagram is to be compared with the following subdiagram of the large
diagram in the end of Section 2.4:

Dabs..X;L; w/-cohlf/ Dabs..X;L; w/-coh/

Dco..X;L; w/-qcohlf/ Dco..X;L; w/-qcoh/

// //�

��

��

�

��

��


comp.
gener.

//�

Here � denotes the triangulated functor induced by the embedding of DG-categories
of CDG-modules .X;L; w/-qcohlf ! .X;L; w/-qcoh.

Notice that it is clear from these two diagrams that the functor � is an equiv-
alence of triangulated categories whenever the functor � is. Indeed, if � is an
equivalence of categories, then the image of � is a set of compact generators in
the target category, and � is an infinite direct sum-preserving triangulated functor
identifying triangulated subcategories of compact generators, and hence � is an
equivalence. In this case, the functor D�X ˝OX � becomes an autoequivalence of
the triangulated category Dco..X;L; w/-qcoh/ and restricts to an autoequivalence
of its full subcategory of compact generators Dabs..X;L; w/-coh/.

Proof of Corollary 2.5. The assertions in the first sentence follow from the second
one, as we know  to be fully faithful and its image to be a set of compact generators
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by Corollary 2.3(l). The commutativity of both squares and the upper left triangle is
clear. To check commutativity of the lower right triangle, consider a coherent matrix
factorization M of the potential �w; let E� be its left resolution in the abelian
category Z0..X;L;�w/-coh/ whose terms En belong to Z0..X;L;�w/-cohlf/.
Then the finite complex of matrix factorizations HomX-qc.M;D�X / maps quasi-
isomorphically to the bounded-below complex of injective matrix factorizations
HomX-qc.E�;D�X /' D�X ˝OX HomX-qc.E�;OX /, so the cone of the corresponding
morphism of the total matrix factorizations is coacyclic. �

2.6. w-flat matrix factorizations. From now on we will assume that for any affine
open subscheme U �X the element wjU is not a zero divisor in the O.U /-module
L.U /; in other words, the morphism of sheaves w WOX ! L is injective.

The following results will be used in the proof of the main theorem and its
analogues below. Let us call a quasicoherent OX -module E w-flat if the map
w W E ! E ˝OX L is injective. Notice that any submodule of a w-flat module is
w-flat, so the “w-flat dimension” of a quasicoherent sheaf over X never exceeds 1.

Denote by .X;L; w/-cohw-fl the DG-category of coherent CDG-modules over
.X;L; w/ withw-flat underlying graded OX -modules and by .X;L; w/-qcohw-fl the
similar DG-category of quasicoherent CDG-modules. Let Dabs..X;L; w/-cohw-fl/,
Dabs..X;L; w/-qcohw-fl, and Dco..X;L; w/-qcohw-fl/ denote the corresponding de-
rived categories of the second kind.

Furthermore, denote by .X;L; w/-cohw-fl\ffd the DG-category of coherent CDG-
modules over .X;L; w/ whose underlying graded OX -modules are both w-flat
and of finite flat dimension, and by .X;L; w/-qcohw-fl\lfd the DG-category of
w-flat quasicoherent CDG-modules of finite locally free dimension. Let the cor-
responding exotic derived categories be denoted by Dabs..X;L; w/-cohw-fl\ffd/,
Dabs..X;L; w/-qcohw-fl\lfd/, and Dco..X;L; w/-qcohw-fl\lfd/.

Corollary 2.6. (a) The functor Dco..X;L;w/-qcohw-fl/!Dco..X;L;w/-qcoh/ in-
duced by the embedding of DG-categories .X;L;w/-qcohw-fl! .X;L;w/-qcoh is
an equivalence of triangulated categories.

(b) The functor Dabs..X;L; w/-qcohw-fl/! Dabs..X;L; w/-qcoh/ induced by the
embedding of DG-categories .X;L; w/-qcohw-fl ! .X;L; w/-qcoh is an equiva-
lence of triangulated categories.

(c) The functor Dabs..X;L; w/-cohw-fl/! Dabs..X;L; w/-coh/ induced by the em-
bedding of DG-categories .X;L; w/-cohw-fl! .X;L; w/-coh is an equivalence of
triangulated categories.

(d) The functor Dco..X;L; w/-qcohw-fl\lfd/! Dco..X;L; w/-qcohlfd/ induced by
the embedding of DG-categories .X;L; w/-qcohw-fl\lfd! .X;L; w/-qcohlfd is an
equivalence of triangulated categories.
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(e) The functor Dabs..X;L; w/-qcohw-fl\lfd/! Dabs..X;L; w/-qcohlfd/ induced by
the embedding of DG-categories .X;L; w/-qcohw-fl\lfd! .X;L; w/-qcohlfd is an
equivalence of triangulated categories.

(f) The functor Dabs..X;L; w/-cohw-fl\ffd/ ! Dabs..X;L; w/-cohffd/ induced by
the embedding of DG-categories .X;L; w/-cohw-fl\ffd ! .X;L; w/-cohffd is an
equivalence of triangulated categories.

Proof. The proofs are analogous to those of Corollary 2.3(a)–(c) and (g) (except
that no induction in d is needed, as it suffices to consider the case d D 1). Parts (d),
(e), (f) are analogous to parts (a), (b), (c), respectively. Parts (b), (c), (e), and (f)
can be also proven in the way similar to Corollary 2.3(h) and (i). �

Remark 2.6. The assertions of parts (a) and (b) hold under somewhat weaker
assumptions than above: namely, one does not need to assume the existence of
enough vector bundles on X . And one can make parts (d) and (e) hold without
vector bundles by replacing the finite locally free dimension condition in their
formulation with the finite flat dimension condition. The reason is that there are
enough flat sheaves on any reasonable scheme (see Lemma A.1).

In fact, even part (c) does not depend on the existence of vector bundles since a
surjective morphism onto a given coherent sheaf M from a w-flat coherent sheaf
can be easily constructed, e.g., by starting from a surjective morphism onto M
from a flat quasicoherent sheaf F and picking a large enough coherent subsheaf
in F . Accordingly, one does not need vector bundles to prove the equivalence of
categories in the lower horizontal line in Theorem 2.7 below and the other two
equivalences in Theorem 2.8. Replacing locally free sheaves with flat ones in the
relevant definitions and assuming the Krull dimension to be finite, one can have the
whole of Proposition 2.8 hold without vector bundles as well.

Another alternative is to use very flat quasicoherent sheaves, which there are
always enough of and which always form a category of finite homological dimension
on a quasicompact semiseparated scheme [Positselski 2012, Section 4.1]. Similarly,
the existence of vector bundles is not needed for the validity of Theorem 1.4(a)
and (b), Proposition 1.5(a), (c), and (d), all the assertions of Sections 1.7 and 1.10,
Corollary 2.3(a), (b), (f), (k), and (l), Corollary 2.4(a) and (b), Proposition 2.5,
Theorem 2.5, and some other results.

2.7. Main theorem. Let X0 �X be the closed subscheme defined locally by the
equation wD 0, and i WX0!X be the natural closed embedding. The next theorem
is the main result of this paper.

Theorem 2.7. There is a natural equivalence of triangulated categories

Dabs..X;L; w/-coh/ ' Db
Sing.X0=X/:
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Together with the functor † W Dabs..X;L; w/-cohlf/! Db
Sing.X0/ constructed in

[Orlov 2012], this equivalence forms the following diagram of triangulated functors:

Db
Sing.X/

0 Dabs..X;L; w/-cohlf/ Db
Sing.X0/

Dabs..X;L; w/-coh/ Db
Sing.X0=X/

0

::

zz

i�; iı

iı

// // //†

��

�� ����
L„

‡

��

where the upper horizontal arrow † is fully faithful, the left vertical arrow is
fully faithful, the right vertical arrow is a Verdier localization functor, and the
lower horizontal line L„ D ‡�1 is an equivalence of categories. The square is
commutative; the three diagonal arrows i�, iı, iı (the middle one pointing down
and the two other ones pointing up) are adjoint.

Furthermore, the image of the functor † is precisely the full subcategory of ob-
jects annihilated by the functor iı, or equivalently, by the functor i�. In other words,
the image of † is equal both to the left and to the right orthogonal complements to
the thick subcategory generated by the image of the functor iı; that is, an object
F 2 Db

Sing.X0/ is isomorphic to †.M/ for some M 2 Dabs..X;L; w/-cohlf/ if and
only if for every E 2 Db

Sing.X/, one has

HomDb
Sing.X0/

.iıE ;F /D 0;

or equivalently, for every E 2 Db
Sing.X/, one has HomDb

Sing.X0/
.F ; iıE/D 0.

The thick subcategory generated by the image of the functor iı is the kernel of
the right vertical arrow. So the upper horizontal arrow and the right vertical arrow
are included into “exact sequences” of triangulated categories (as marked by the
zeros at the ends; there is no exactness at the uppermost rightmost end).

When X is a regular scheme, the functor

Dabs..X;L; w/-cohlf/ �! Dabs..X;L; w/-coh/

is an equivalence of categories by Corollary 2.4(c), and so is the functor Db
Sing.X0/!

Db
Sing.X0=X/ (as explained in Section 2.1). Hence it follows that the functor † is
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an equivalence of categories, too. Thus we recover the result of Orlov [2012, Theo-
rem 3.5] claiming the equivalence of triangulated categories Dabs..X;L; w/-cohlf/'

Db
Sing.X0/ for a regular X .
A counterexample in Section 3.3 will show that whenX is not regular, the functor

Dabs..X;L; w/-cohlf/! Dabs..X;L; w/-coh/ does not have to be an equivalence,
and indeed, the thick subcategory generated by Dabs..X;L; w/-cohlf/ can be a
proper strictly full subcategory in Dabs..X;L; w/-coh/.

Proof of the lower horizontal equivalence. To obtain the equivalence of triangulated
categories in the lower horizontal line, we will construct triangulated functors in
both directions and then check that they are mutually inverse. Given a bounded
complex of coherent sheaves F � over X0, consider the CDG-module ‡.F �/ over
.X;L; w/ with the underlying coherent graded module given by the rule

‡n.F �/ D
L
m2Z i�Fn�2m˝OX L˝m

and the differential induced by the differential on F �. Since d2 D 0 on F � and w
acts by zero in i�Fj , this is a CDG-module. It is clear that ‡ is a well-defined
triangulated functor Db.X0-coh/! Dabs..X;L; w/-coh/ since the derived category
of bounded complexes over an abelian category coincides with their absolute
derived category.

Let us check that ‡ annihilates the image of the functor Li�. It suffices to
consider a w-flat coherent sheaf E on X and check that ‡.cokerw/ D 0, where
w WE˝OX L˝�1!E . Indeed, ‡.cokerw/ is the cokernel of the injective morphism
of contractible coherent CDG-modules N ! M, where N 2nC1 D M2nC1 D

E ˝OX L˝n and N 2n D E ˝OX L˝n�1, while M2n D E ˝OX L˝n for n 2 Z.
This provides the desired triangulated functor

‡ W Db
Sing.X0=X/ �! Dabs..X;L; w/-coh/:

The functor in the opposite direction is a version of Orlov’s cokernel functor, but in
our situation it has to be constructed as a derived functor since the functor of the
cokernel of an arbitrary morphism is not exact. Recall the equivalence of triangulated
categories Dabs..X;L; w/-cohw-fl/! Dabs..X;L; w/-coh/ from Corollary 2.6(c).

Define the functor „ WZ0..X;L; w/-cohw-fl/!Db
Sing.X0=X/ from the category

of w-flat coherent CDG-modules over .X;L; w/ and closed morphisms of degree 0
between them to the triangulated category of relative singularities by the rule

„.M/ D coker.d WM�1!M0/ D coker.i�d W i�M�1! i�M0/;

where the former cokernel, which is by definition a coherent sheaf on X annihilated
by w, is considered as a coherent sheaf on X0. One can immediately see that the
functor „ transforms morphisms homotopic to zero into morphisms factorizable
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through the restrictions to X0 of w-flat coherent sheaves on X . Hence the functor„
factorizes through the homotopy category H 0..X;L; w/-cohw-fl/.

It is explained in [Polishchuk and Vaintrob 2011, Lemma 3.12] that the functor„
is triangulated (see also Lemma 3.6 below) and in [Orlov 2012, Proposition 3.2] that
the functor „ factorizes through Dabs..X;L; w/-cohw-fl/. The latter assertion can
be also deduced by considering the complex (1.3) from [Polishchuk and Vaintrob
2011]. Indeed, the complex i�M corresponding to the total CDG-module M of
an exact triple in B-cohw-fl is the total complex of an exact triple of complexes
in the exact category EX0=X from Remark 2.1; hence the complex i�M is exact
with respect to EX0=X and the cokernels of its differentials belong to this exact
subcategory in the abelian category of coherent sheaves over X0. So we obtain the
triangulated functor

„ W Dabs..X;L; w/-cohw-fl/ �! Db
Sing.X0=X/;

and consequently, the left derived functor

L„ W Dabs..X;L; w/-coh/ �! Db
Sing.X0=X/:

Let us check that the two functors ‡ and L„ are mutually inverse. For any
w-flat coherent CDG-module M over .X;L; w/, there is a natural surjective closed
morphism of CDG-modules � WM!‡„.M/ with a contractible kernel. Clearly,
� W Id! ‡L„ is an (iso)morphism of functors.

Conversely, any object of Db
Sing.X0=X/ can be represented by a coherent sheaf

onX0, and any morphism in Db
Sing.X0=X/ is isomorphic to a morphism coming from

the abelian category of such coherent sheaves. Indeed, the bounded-above derived
category D�.X0-coh/ of coherent sheaves over X0 is equivalent to the bounded-
above derived category D�.X0-cohlf/ of locally free sheaves; using a truncation far
enough to the left, one can represent any object or morphism in Db

Sing.X0=X/ by
a long enough shift of a coherent sheaf or a morphism of coherent sheaves. Now
for any coherent sheaf F on X0, there is a natural distinguished triangle

F ˝OX0 i
�L˝�1Œ1� �! Li�i�F �! F �! F ˝OX0 i

�L˝�1Œ2�

in Db.X0-coh/, which provides a natural isomorphism F ' F ˝OX0 i
�L˝�1Œ2� in

Db
Sing.X0=X/.
Let F be a coherent sheaf on X0; pick a vector bundle E on X together with a

surjective morphism E! i�F with the kernel E 0. Then the CDG-module M over
.X;L; w/with the components M2nDE˝OXL˝n and M2n�1DE 0˝OXL˝n maps
surjectively onto ‡.F / with a contractible kernel, and L„‡.F /D„.M/D F
(cf. [Lin and Pomerleano 2013, Lemma 2.18]). Denote the isomorphism we
have constructed by  W L„‡.F /! F . The composition ‡ ı �‡ W ‡.F /!
‡L„‡.F /!‡.F / is clearly the identity morphism. It is obvious that commutes
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with any morphism of coherent sheaves F on X0, but checking that it commutes
with all morphisms, or all isomorphisms, in Db

Sing.X0=X/ is a little delicate (cf.
Remark 2.7 below).

Notice that ‡ is an (iso)morphism of functors since �‡ is, and consequently
L„‡ is an (iso)morphism of functors. Thus it remains to check that the functor
L„‡ is faithful, i.e., does not annihilate any morphisms. Indeed, any morphism
in Db

Sing.X0=X/ is isomorphic to a morphism coming from the abelian category
of coherent sheaves on X0, and the functor L„‡ transforms such morphisms into
isomorphic ones. The construction of the equivalence of categories in the lower
horizontal line is finished. One still has to check that the isomorphisms � commute
with the isomorphisms ‡„.MŒ1�/' ‡„.M/Œ1�, but this is straightforward.

Alternatively, one can use w-flat coherent sheaves on X or objects of the exact
category EX0=X of coherent sheaves on X0 (as applicable) instead of the locally
free sheaves everywhere in the above argument. �

Proof of “exactness” in the upper line. We start with a discussion of the three
adjoint functors in the right upper corner. The functor iı right adjoint to the functor
iı W Db

Sing.X/! Db
Sing.X0/ was constructed in Section 2.1.

To construct the left adjoint functor to iı, notice that the right derived functor of
the subsheaf with scheme-theoretic support in the closed subscheme

Ri Š W Db.X-coh/ �! Db.X0-coh/

only differs from the functor Li� by a shift and a twist; Ri ŠE� ' Li�E� ˝OX0
LjX0 Œ�1�. One can check this first for w-flat coherent sheaves E , when both objects
to be identified are shifts of sheaves, so it suffices to compare their direct images
under i , which are both computed by the same two-term complex E! E ˝OX L;
then replace a complex E� with a finite complex of w-flat coherent sheaves (for a
general result of this kind, see [Neeman 1996, Theorem 5.4]).

Hence the functor Ri Š takes Perf .X/ to Perf .X0/ and induces a triangulated
functor i� W Db

Sing.X/! Db
Sing.X0/ right adjoint to iı. It follows that the functor

i�.F /D iı.F /˝OX LŒ�1� is left adjoint to the functor iı.
To prove the vanishing of the composition of functors in the upper line and the

orthogonality assertions, notice that

HomDb
Sing.X0/

.iıE ; †M/ ' HomDb
Sing.X/

.E ; iı†M/

and i�†.M/D coker.M�1!M0/2Perf .X/ for any M2Dabs..X;L; w/-cohlf/

since the morphism M�1!M0 of locally free sheaves onX is injective. Similarly,

HomDb
Sing.X0/

.†M; iıE/ ' HomDb
Sing.X/

.i�†M; E/

and i�†.M/D iı†.M/˝OX LŒ�1�D 0 in Db
Sing.X/.
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Obviously, our derived cokernel functor L„ makes a commutative diagram with
the cokernel functor † from [Orlov 2012]. The left vertical arrow is fully faithful
by Corollary 2.3(i). The assertion that the upper horizontal arrow is fully faithful is
due to Orlov [2012, Theorem 3.4]. We have just obtained a new proof of it with
our methods. Indeed, it follows from orthogonality that the functor Db

Sing.X0/!

Db
Sing.X0=X/ induces isomorphisms on the groups of morphisms between any

two objects, one of which comes from Dabs..X;L; w/-cohlf/. Conversely, Orlov’s
theorem together with the orthogonality argument and the equivalence of categories
in the lower horizontal line imply that the left vertical arrow is fully faithful.

Now assume that iıF D 0 for some F 2 Db
Sing.X0/. Clearly, there exists m� 0

and a coherent sheaf K on X0 such that F ' KŒm� in Db
Sing.X0/. Then i�K is a

perfect complex, i.e., a coherent sheaf of finite flat dimension on X . Let us view it
as an object of .X;L; w/-cohffd; i.e., consider the CDG-module N over .X;L; w/
with the components N 2n D i�K˝OX L˝n and N 2nC1 D 0.

The construction of the cokernel functor † can be straightforwardly extended to
w-flat coherent matrix factorizations of finite flat dimension, providing a triangulated
functor

z† W Dabs..X;L; w/-cohw-fl\ffd/ �! Db
Sing.X0/:

The functor z† is well-defined since one has i�M2Perf .X0/ for anyw-flat coherent
sheaf M of finite flat dimension on X . Using the equivalence of triangulated cate-
gories Dabs..X;L; w/-cohw-fl\ffd/' Dabs..X;L; w/-cohffd/ from Corollary 2.6(f),
one constructs the derived functor

Lz† W Dabs..X;L; w/-cohffd/ �! Db
Sing.X0/

in the same way as it was done above for the derived functor L„. Since the functor
Dabs..X;L; w/-cohlf/! Dabs..X;L; w/-cohffd/ is an equivalence of categories by
Corollary 2.3(g), the (essential) images of the functors † and Lz† coincide.

Let us check that Lz†.N / ' K as an object of Db
Sing.X0/. We argue as above,

picking a vector bundle E on X together with a surjective morphism E ! i�K
with the kernel E 0. Then the CDG-module M over .X;L; w/ with the components
M2n D E ˝OX L˝n and M2n�1 D E 0˝OX L˝n maps surjectively onto N with
a contractible kernel. Hence the object M 2 .X;L; w/-cohw-fl\ffd is isomorphic
to N in Dabs..X;L; w/-cohffd/, and we have Lz†.N / D z†.M/ D K. Therefore,
the object K 2 Db

Sing.X0/ belongs to the (essential) image of the functor †, and it
follows that so does the object F ' KŒm�.

One can strengthen the above argument so as to obtain a construction of the
(partial) inverse functor � to the functor † similar to the above construction of the
functor ‡ inverse to the functor L„. Consider the full subcategory FX0=X �X0-coh
in the abelian category of coherent sheaves on X0 consisting of all the sheaves F
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such that the sheaf i�F has finite flat dimension (i.e., is a perfect complex) on X .
The category FX0=X contains all the locally free sheaves on X0 and is closed under
the kernels of surjections, the cokernels of embeddings, and the extensions.

Hence FX0=X is an exact subcategory in X0-coh. The natural functor

Db.FX0=X / �! Db.X0-coh/

is fully faithful; its image coincides with the kernel of the composition of the direct
image and Verdier localization functors Db.X0-coh/! Db.X-coh/! Db

Sing.X/.
Accordingly, the quotient category Db.FX0=X /=D

b.X0-cohlf/ is identified with the
kernel of the direct image functor iı W Db

Sing.X0/! Db
Sing.X/.

Now the functor

� W Db.FX0=X /=D
b.X0-cohlf/ �! Dabs..X;L; w/-cohffd/

is constructed in the way similar to the construction of the functor ‡ , by taking the
direct image from X0 to X and applying the periodicity summation. That is,

�n.F �/ D
L
m2Z i�Fn�2m˝OX L˝m

for any F � 2Db.FX0=X /. One checks that the functor� is inverse to the functor Lz†,
the latter being viewed as a functor taking values in the triangulated subcategory
Db.FX0=X /=D

b.X0-cohlf/� Db
Sing.X0/, in the same way as it was done above for

the functors‡ and L„. This provides yet another proof of the fact that the functor†
is fully faithful, together with another proof of our description of its image. It is also
obvious from the constructions that the functor � makes a commutative diagram
with the functor ‡ . �

Remark 2.7. The somewhat tricky technical argument in the first part of the above
proof can be clarified and generalized using the approach developed by the first
author in [Efimov 2013, Appendix A].

Let C be an abelian category, L W C! C be its covariant autoequivalence, and
w W Id! L be a natural transformation commuting with L (that is for any object
B 2 C, one has wL.B/ D L.wB/). Let MF.C; L;w/ denote the abelian category of
“matrix factorizations of w in C”, i.e., pairs of objects U 0, L1=2.U 1/ 2 C endowed
with pairs of morphisms U 0 ! L1=2.U 1/, L1=2.U 1/ ! L.U 0/ such that the
compositions

U 0 �! L1=2.U 1/ �! L.U 0/ and L1=2.U 1/ �! L.U 0/ �! L3=2.U 1/

are equal to wU 0 and wL1=2.U 1/, respectively. Given a matrix factorization M D
.U 0; U 1/, one sets

M n
D Ln=2.U n mod 2/:
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Passing to the quotient category by the ideal of morphisms homotopic to zero,
one obtains the homotopy category of matrix factorizations of w in C, and their
absolute derived category, denoted by Dabs.C; L;w/, is produced by the Verdier
localization procedure similar to the one discussed in Section 1.3. (Cf. [Positselski
2011a, Remark 4.3].)

Let C0� C denote the full subcategory formed by all the objects A2 C for which
wA D 0; so C0 is an abelian subcategory in C closed under subobjects and quotient
objects. An object B 2 C is said to have no w-torsion if the morphism wB is
injective; and one says that the potential (natural transformation) w does not divide
zero in C if every object of C is the quotient object of an object without w-torsion.
Let i� W C0 ! C denote the exact identity embedding functor and i� W C! C0
be the functor left adjoint to i�, so i�.B/ D coker.wL�1.B/ W L

�1.B/ ! B/.
Assuming that w does not divide zero (as we do in the sequel), one can construct
the left derived functor Li� W Db.C/! Db.C0/ with Lsi

�.B/D 0 for all s ¤ 0, 1
and any object B 2 C. The functor Li� is left adjoint to the triangulated functor
i� W D

b.C0/! Db.C/ induced by the identity embedding i� W C0! C.
Similarly, let �n W C0!MF.C; L;w/ denote the exact functor assigning to an

object A 2 C0 the matrix factorization M with M n D A and M nC1 D 0, and
let �n WMF.C; L;w/! C0 be the functor left adjoint to �n, assigning the object
coker.M n�1!M n/ 2 C0 to a matrix factorization M . Considering the bounded
derived category DbMF.C; L;w/ of the abelian category MF.C; L;w/, one can
construct the left derived functor

L�n W DbMF.C; L;w/ �! Db.C0/I

once again, the functor L�n is left adjoint to �n WDb.C0/!DbMF.C; L;w/ and one
has Ls�

n.M/D 0 for all s ¤ 0, 1 and any matrix factorization M 2MF.C; L;w/.
Then the composition of the functor �n W Db.C0/! DbMF.C; L;w/ with the

totalization functor DbMF.C; L;w/! Dabs.C; L;w/ induces an equivalence of
triangulated categories

‡n W Db.C0/=hLi
�Db.C/i �! Dabs.C; L;w/

between the quotient category of the derived category Db.C0/ by the thick subcate-
gory generated by the image of the functor Li� and the absolute derived category
of matrix factorizations. The composition of the functor L�n W DbMF.C; L;w/!
Db.C0/ with the Verdier localization functor Db.C0/! Db.C0/=hLi

�Db.C/i factor-
izes through the totalization functor DbMF.C; L;w/! Dabs.C; L;w/, providing
the triangulated functor

L„n W Dabs.C; L;w/ �! Db.C0/=hLi
�Db.C/i

inverse to ‡n.
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Indeed, let F n WMF.C; L;w/! C denote the forgetful functor taking a matrix
factorization M to the object M n 2 C, and let Gn� W C!MF.C; L;w/ denote the
functor left adjoint to F n�1 (and right adjoint to F n); so the functor Gn� takes an
object B 2 C to a contractible matrix factorization M with M n�1 DM n D B (cf.
the constructions of the functors GC and G� in the proofs in Sections 1.4 and 1.6).
It is claimed that the induced triangulated functors Gn� WDb.C/!DbMF.C; L;w/
and �n W Db.C0/ ! DbMF.C; L;w/ are fully faithful and their images form a
semiorthogonal decomposition of the derived category DbMF.C; L;w/.

To check the first assertion, it suffices to notice that the triangulated functor Gn�

is left adjoint to the functor F n�1 WDbMF.C; L;w/!Db.C/, and their composition
F n�1 ıGn� is the identity endofunctor on Db.C/. Similarly, the composition of
triangulated functors L�n ı �n is the identity endofunctor on Db.C0/, so �n is
fully faithful as a functor between the derived categories. Furthermore, one has
F n�1 ı �n D 0 D L�n ıGn�, implying the semiorthogonality. Finally, for any
matrix factorization M whose terms are objects without w-torsion, there is a short
exact sequence

0 �!Gn�F.M/ �!M �! �n�nM �! 0

in MF.C; L;w/ and L�nM D �nM , proving the decomposition claim.
Now we notice that for any object B 2 C having no w-torsion, there is a short

exact sequence

0 �!G.nC2/�.B/ �!G.nC1/�.B/ �! �nj �B �! 0

in MF.C; L;w/. According to (the proof of) [Efimov 2013, Proposition A.3(1)
and (2)], the totalization functor DbMF.C; L;w/! Dabs.C; L;w/ is the Verdier
localization functor by the thick subcategory generated by the objects of the form
Gn�.B/ D G.nC2/�L.B/ and G.nC1/�.B/ 2 MF.C; L;w/ � DbMF.C; L;w/.
The assertions about the existence of triangulated functors ‡n and L„n and their
being mutually inverse equivalences of categories follow from these observations.

Returning to a separated Noetherian scheme X with enough vector bundles and
the Cartier divisor X0�X of a global section w of a line bundle L on X , the above
approach based on [loc. cit., Proposition A.3] provides an elegant construction of
Orlov’s triangulated cokernel functor† WDabs..X;L; w/-cohlf/!Db

Sing.X0/ in addi-
tion to a proof of our equivalence of categories Dabs..X;L; w/-coh/' Db

Sing.X0=X/.

2.8. Infinite matrix factorizations. Following [Orlov 2004, paragraphs after Re-
mark 1.9], one can define a “large” version of the triangulated category of singular-
ities D0Sing.X/ of a scheme X as the quotient category of the bounded derived cate-
gory of quasicoherent sheaves Db.X-qcoh/ by the thick subcategory Db.X-qcohlf/

of bounded complexes of locally free sheaves (of infinite rank). When X has
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finite Krull dimension, the latter subcategory coincides with the thick subcategory
Db.X-qcohfl/ of bounded complexes of flat sheaves (see Remark 1.4).

Similarly, letZ�X be a closed subscheme such that OZ has finite flat dimension
as an OX -module. Let us define a “large” triangulated category of relative singular-
ities D0Sing.Z=X/ as the quotient category of Db.Z-qcoh/ by the minimal thick sub-
category containing the image of the functor Li� W Db.X-qcoh/! Db.Z-qcoh/ and
closed under those infinite direct sums that exist in Db.Z-qcoh/. The quotient cate-
gory of Db.Z-qcoh/ by the minimal thick subcategory containing Li�Db.X-qcoh/
(without the direct sum closure) will be also of interest to us; let us denote it
by D00Sing.Z=X/.

Lemma 2.8. The triangulated categories D0Sing.Z=X/ and D00Sing.Z=X/ are quo-
tient categories of D0Sing.Z/. When the schemeX is regular of finite Krull dimension,
these three triangulated categories coincide.

Proof. To prove the first assertion, let us show that any locally free sheaf on Z,
considered as an object of Db.Z-qcoh/, is a direct summand of a bounded complex
whose terms are direct sums of locally free sheaves of finite rank restricted from X .
Indeed, pick a finite left resolution of a given locally free sheaf onZ with the middle
terms as above, long enough compared to the number of open subsets in an affine cov-
ering ofZ. Then the corresponding Ext class between the cohomology sheaves at the
rightmost and leftmost terms has to vanish in view of the Mayer–Vietoris sequence
for Ext groups between quasicoherent sheaves [Orlov 2004, Lemma 1.12]. Hence
the rightmost term is a direct summand of the complex formed by the middle terms.

The second assertion holds for the categories D00Sing.Z=X/ and D0Sing.Z/ since
any quasicoherent sheaf on a regular scheme of finite Krull dimension has a finite
left resolution consisting of locally free sheaves. To identify these two categories
with D0Sing.Z=X/, one needs to know that the subcategory of bounded complexes
of locally free sheaves on Z is closed under those infinite direct sums that exist
in Db.Z-qcoh/. The latter is true for any Noetherian scheme Z of finite Krull
dimension with enough vector bundles since the finitistic projective dimension of
a commutative ring of finite Krull dimension is finite [Raynaud and Gruson 1971,
Théorème II.3.2.6]. �

Now let L be a line bundle on X , w 2 L.X/ be a global section corresponding
to an injective morphism of sheaves OX ! L, and X0 �X be the locus of w D 0.

Proposition 2.8. There is a natural equivalence of triangulated categories

Dabs..X;L; w/-qcoh/ ' D00Sing.X0=X/:

Together with the infinite-rank version †0 W Dabs..X;L; w/-qcohlf/! D0Sing.X0/ of
Orlov’s cokernel functor † from [Orlov 2012], this equivalence forms the following
diagram of triangulated functors:
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D0Sing.X/

0 Dabs..X;L; w/-qcohlf/ D0Sing.X0/

Dabs..X;L; w/-qcoh/ D00Sing.X0=X/

0

::

zz

i�; iı

iı

// // //†0

��

�� ����

��

where the upper horizontal arrow †0 is fully faithful, the left vertical arrow is fully
faithful, the right vertical arrow is the Verdier localization functor by the thick
subcategory generated by the image of the diagonal down arrow iı, and the lower
horizontal line is an equivalence of categories. The square is commutative; the three
diagonal arrows i�, iı, iı are adjoint.

Furthermore, the image of the functor †0 is precisely the full subcategory of ob-
jects annihilated by the functor iı, or equivalently, by the functor i�. In other words,
the image of †0 is equal both to the left and to the right orthogonal complements to
(the thick subcategory generated by) the image of the functor iı.

Proof. The proof is completely similar to that of Theorem 2.7. It uses Corollar-
ies 2.6(b), 2.3(h), 2.6(e), and 2.3(c). The first assertion can be also obtained as a
particular case of the result of Remark 2.7.

Alternatively, one can prove that the functor †0 is fully faithful in the same way
as it was done for the functor † in [Orlov 2012, Theorem 3.4], and deduce the
assertion that the left vertical arrow is fully faithful from the orthogonality.

Note that one can check in a straightforward way that the functor †0 annihilates
the objects coacyclic with respect to .X;L; w/-qcohlf . This provides another proof
of Corollary 2.3(d), working in the assumption that w is a local nonzero-divisor. �

The functors † and †0 together with the direct image functors iı form the com-
mutative diagram of an embedding of “exact sequences” of triangulated functors:

0 Dabs..X;L; w/-cohlf/ Db
Sing.X0/ Db

Sing.X/

0 Dco..X;L; w/-qcohlf/ D0Sing.X0/ D0Sing.X/

// // //†

��

��

//
iı

��

��

��

��

// // //†0 //
iı

The leftmost vertical arrow is fully faithful by Corollary 2.3(j). The other two ver-
tical arrows are fully faithful by Orlov’s theorem [2004, Proposition 1.13] claiming
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that the functor Db
Sing.X/! D0Sing.X/ is fully faithful for any separated Noetherian

scheme X with enough vector bundles. The leftmost nontrivial terms in both lines
are the kernels of the rightmost arrows by Theorem 2.7 and Proposition 2.8.

Theorem 2.8. There is a natural equivalence of triangulated categories

Dco..X;L; w/-qcoh/ ' D0Sing.X0=X/

forming a commutative diagram of triangulated functors:

��

��

comp.
gener.

Dabs..X;L; w/-coh/ Db
Sing.X0=X/

Dabs..X;L; w/-qcoh/ D00Sing.X0=X/

Dco..X;L; w/-qcoh/ D0Sing.X0=X/

��

��

��

��

����
����

��

��

comp.
gener.

with the equivalences of categories from Theorem 2.7 and Proposition 2.8. The
upper vertical arrows are fully faithful, the lower ones are Verdier localization
functors, and the vertical compositions are fully faithful. The categories in the lower
line admit arbitrary direct sums, and the images of the vertical compositions are
sets of compact generators in the target categories.

Proof. The construction of the desired equivalence of categories is very similar to
the construction of the equivalence of categories in Theorem 2.7 and Proposition 2.8.
Using Corollary 2.6(a), one defines the infinite-rank version of the functor L„, then
shows that the obvious infinite-rank version of the functor ‡ is inverse to it. Notice
that the functor „ W Z0..X;L; w/-qcohw-fl/ ! Db.X0-qcoh/ preserves infinite
direct sums and the functor ‡ W Db.X0-qcoh/! Dco..X;L; w/-qcoh/ preserves
those infinite direct sums that exist in Db.X0-qcoh/, so the functors

„ W Dco..X;L; w/-qcohw-fl/ �! D0Sing.X0=X/;

‡ W D0Sing.X0=X/ �! Dco..X;L; w/-qcoh/

are well-defined.
The upper left vertical arrow is fully faithful by Corollary 2.3(k); it follows that

the upper right vertical arrow is fully faithful, too. The assertions about the vertical
compositions are proved similarly. The category D0Sing.X0=X/ admits arbitrary
direct sums, since the category Dco..X;L; w/-qcoh/ does. By Corollary 2.3(l), the
left vertical composition is fully faithful and its image is a set of compact generators
in the target, so the right vertical composition has the same properties. �
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The following square diagram of triangulated functors is commutative:

Dco..X;L; w/-qcohlf/ D0Sing.X0/

Dco..X;L; w/-qcoh/ D0Sing.X0=X/

// //†0

��
����

The upper horizontal arrow †0 is fully faithful; the right vertical arrow is a Verdier
localization functor. The lower line is an equivalence of triangulated categories.
Nothing is claimed about the left vertical arrow in general.

When the scheme X is Gorenstein of finite Krull dimension, the left vertical
arrow is an equivalence of categories by Corollary 2.4(a). When X is also regular,
the right vertical arrow is an equivalence of categories by Lemma 2.8. So †0 is an
equivalence of categories Dabs..X;L; w/-qcohlf/'D0Sing.X0/ and we have obtained
a strengthened version of [Polishchuk and Vaintrob 2011, Theorem 4.2] (in the
scheme case).

Remark 2.8. It is well-known that the Verdier localization functor of a triangulated
category with infinite direct sums by a thick subcategory closed under infinite
direct sums preserves infinite direct sums [Neeman 2001, Lemma 3.2.10]. This
result is not applicable to the localization functors Db.X-qcoh/! D0Sing.X/ and
Db.Z-qcoh/! D0Sing.Z=X/, as the category Db.X-qcoh/ does not admit arbitrary
infinite direct sums.

Using the equivalence of categories from Theorem 2.8 and the observation that
the functor ‡ preserves infinite direct sums, one can show that the localization
functor Db.X0-qcoh/! D0Sing.X0=X/ takes those infinite direct sums that exist in
Db.X0-qcoh/ into direct sums in the triangulated category of relative singularities
D0Sing.X0=X/ of the zero locus of w in X . However, there is no obvious reason
why the localization functor Db.X0-qcoh/! D0Sing.X0/ should take those infinite
direct sums that exist in Db.X0-qcoh/ into direct sums in the absolute triangulated
category of singularities D0Sing.X0/.

That is the problem one encounters attempting to prove that the kernel of the
localization functor D0Sing.X0/! D0Sing.X0=X/ is semiorthogonal to the image of
the functor †0.

2.9. Stable derived category. Following Krause [2005], we define the stable de-
rived category of a Noetherian scheme X as the homotopy category of acyclic
unbounded complexes of injective quasicoherent sheaves on X . As explained below,
this is another (and in some respects better) “large” version of the triangulated
category of singularities of X ; for this reason, we denote it by Dst

Sing.X/.
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In view of Lemma 1.7(b) (see also [Positselski 2010, Remark 5.4]), one can
equivalently define Dst

Sing.X/ as the quotient category of the homotopy category
of acyclic complexes of quasicoherent sheaves over X by the thick subcategory
of coacyclic complexes, or as the full subcategory of acyclic complexes in the
coderived category Dco.X-qcoh/ of (complexes of) quasicoherent sheaves over X .
It is the latter definition that will be used in the sequel.

Clearly, the category Dst
Sing.X/ has arbitrary infinite direct sums. Krause [2005,

Corollary 5.4] constructs a fully faithful functor Db
Sing.X/! Dst

Sing.X/ and proves
that its image is a set of compact generators of the target category.

Theorem 2.9. For any separated Noetherian schemeZ with enough vector bundles,
there is a natural triangulated functor D0Sing.Z/!Dst

Sing.Z/ forming a commutative
diagram with the natural functors from Db

Sing.Z/ into both these categories. The
composition

Db.Z-qcoh/ �! D0Sing.Z/ �! Dst
Sing.Z/

preserves those infinite direct sums that exist in Db.Z-qcoh/. When Z D X0 is a
divisor in a regular separated Noetherian scheme of finite Krull dimension, the
functor D0Sing.X0/! Dst

Sing.X0/ is an equivalence of triangulated categories.

Proof. The construction of the functor Db
Sing.Z/! Dst

Sing.Z/ in [Krause 2005] is
given in terms of the Verdier localization functor Q W Dco.Z-qcoh/! D.Z-qcoh/
by the triangulated subcategory Dst

Sing.Z/� Dco.Z-qcoh/ and its adjoint functors
on both sides, which exist according to [loc. cit., Corollary 4.3]. The proof of
our theorem is based on explicit constructions of the restrictions of these adjoint
functors to some subcategories of bounded complexes in D.Z-qcoh/.

It is well known that the Verdier localization functor H 0.Z-qcoh/!D.Z-qcoh/
from the homotopy category of (complexes of) quasicoherent sheaves on Z to their
derived category has a right adjoint functor D.Z-qcoh/!H 0.Z-qcoh/. The objects
in the image of this functor are called homotopy injective complexes of quasicoherent
sheaves on Z. The composition D.Z-qcoh/!H 0.Z-qcoh/! Dco.Z-qcoh/ pro-
vides the functor Q� W D.Z-qcoh/! Dco.Z-qcoh/ right adjoint to Q. In particular,
any bounded-below complex in D.Z-qcoh/ has a bounded-below injective resolution
and any bounded-below complex of injectives is homotopy injective. Furthermore,
any bounded-below acyclic complex is coacyclic [Positselski 2010, Lemma 2.1].
It follows that any bounded-below complex from DC.Z-qcoh/, considered as an
object of Dco.Z-qcoh/, represents its own image under the functor Q�.

On the other hand, any bounded-above complex from D.Z-qcoh/ has a locally
free left resolution defined uniquely up to a quasi-isomorphism of complexes in
the exact category of locally free sheaves; i.e., there is an equivalence of bounded
above derived categories D�.Z-qcohlf/' D�.Z-qcoh/. Since the exact category
Z-qcohlf has finite homological dimension, any acyclic complex in it is coacyclic
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(and even absolutely acyclic [loc. cit., Remark 2.1]), so there are natural functors
D�.Z-qcohlf/! D.Z-qcohlf/' Dco.Z-qcohlf/! Dco.Z-qcoh/.

Lemma 2.9. The composition of the embedding D�.Z-qcoh/! D.Z-qcoh/ with
the functor Q� W D.Z-qcoh/! Dco.Z-qcoh/ left adjoint to Q is isomorphic to the
functor D�.Z-qcoh/! Dco.Z-qcoh/ constructed above.

Proof. We have to show that HomDco.Z-qcoh/.L�; E�/D 0 for any bounded-above
complex of locally free sheaves L� and any acyclic complex E� of quasicoherent
sheaves on Z. Let us check that any morphism L�! E� in H 0.Z-qcoh/ factorizes
through a coacyclic complex of quasicoherent sheaves. Clearly, we can assume
that the complex E� is bounded above, too. Let K� be the cocone of a closed
morphism of complexes L�! E�; then K� is bounded above and the composition
K�! L�! E� is homotopic to zero. Pick a bounded-above complex of locally
free sheaves F � together with a quasi-isomorphism F �!K�. Then the cone of the
composition F �! K�! L�, being a bounded-above acyclic complex of locally
free sheaves, is coacyclic. Since the composition F �! L�! E� is homotopic to
zero, the morphism L�! E� factorizes, up to homotopy, through this cone. �

Now we can describe the action of the functor I� WDco.Z-qcoh/!Dst
Sing.Z-qcoh/

left adjoint to the embedding Dst
Sing.Z-qcoh/! Dco.Z-qcoh/ on bounded-above

complexes in Dco.Z-qcoh/. If K� is a bounded-above complex of quasicoherent
sheaves and F � is its locally free left resolution, then the cone of the closed
morphism F � ! K� represents the object I�.K�/ 2 Dst

Sing.Z-qcoh/. In view of
Lemma 2.9, this cone is functorial and does not depend on the choice of F � for the
usual semiorthogonality reasons.

The embedding of compact generators Db
Sing.Z/ ! Dst

Sing.Z/ is constructed
in [Krause 2005] as the functor induced by the restriction of the composition
I� ıQ� W D.Z-qcoh/! Dst

Sing.Z/ to the full subcategory Db.Z-coh/� D.Z-qcoh/.
Let us explain why this is so. By Proposition 1.5(d) (cf. [loc. cit., Proposition 2.3
and Remark 3.8]), the natural functor Db.Z-coh/! Dco.Z-qcoh/ is fully faithful
and its image is a set of compact generators in the target. This is the image of
Db.Z-coh/ � D.Z-qcoh/ under the functor Q�, as constructed above. It is clear
from the above construction of the functor Q� that it preserves compactness (and
in fact coincides with the functor Q� on perfect complexes in D.Z-qcoh/ [loc. cit.,
Lemma 5.2]). Since the functors Q� and I�, being left adjoints, preserve infinite
direct sums, and I� is a Verdier localization functor by the image of Q�, it follows
that the image of any set of compact generators of Dco.Z-qcoh/ under I� is a set
of compact generators of Dst

Sing.Z/ [Neeman 1996, Theorem 2.1(4)].
In order to define the desired functor

D0Sing.Z/ �! Dst
Sing.Z/;
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restrict the same composition I� ı Q� to the full subcategory Db.Z-qcoh/ �
D.Z-qcoh/. According to the above, this restriction assigns to any bounded complex
of quasicoherent sheaves K� on Z the cone of a morphism F �! K� into it from
its locally free left resolution F �. Clearly, the functor

Db.Z-qcoh/ �! Dst
Sing.Z/

that we have constructed preserves those infinite direct sums that exist in Db.Z-qcoh/
and annihilates the triangulated subcategory Db.Z-qcohlf/� Db.Z-qcoh/. So we
have the induced functor D0Sing.Z/! Dst

Sing.Z/, and the first two assertions of the
theorem are proven.

To prove the last assertion, we use the results of Section 2.8. Assume that
Z D X0 is the zero locus of a section w 2 L.X/ of a line bundle on X ; as usual,
w W OX ! L has to be an injective morphism of sheaves. Then by Theorem 2.8
and Lemma 2.8, the category D0Sing.Z/ admits infinite direct sums and the image of
the fully faithful functor Db

Sing.X0/! D0Sing.X0/ is a set of compact generators in
the target. Furthermore, it follows from the proof of Theorem 2.8 that any object
of D0Sing.X0/ can be represented by a quasicoherent sheaf on X0 and the direct
sum of an infinite family of such objects is represented by the direct sums of such
sheaves (see Remark 2.8). Thus the functor D0Sing.Z/! Dst

Sing.Z/, being an infinite
direct sum-preserving triangulated functor identifying triangulated subcategories of
compact generators, is an equivalence of triangulated categories. �

We keep the assumptions of Theorem 2.9 and the notation of the last paragraph of
its proof; i.e., X is a regular separated Noetherian scheme of finite Krull dimension
with enough vector bundles and X0 �X is the divisor of zeros of a locally nonzero-
dividing section w 2 L.X/. The closed embedding X0!X is denoted by i .

Corollary 2.9. The functor

ƒ W Dco..X;L; w/-qcohlf/' Dco..X;L; w/-qcoh/ �! Dst
Sing.X0/

assigning to a locally free (or just w-flat) quasicoherent matrix factorization M
the acyclic complex of locally free (or quasicoherent) sheaves i�M on X0 is an
equivalence of triangulated categories.

Proof. Given a w-flat matrix factorization M, the complex of sheaves i�M on X0
is acyclic by [Polishchuk and Vaintrob 2011, Lemma 1.5]. Clearly, the assignment
M 7�! i�M defines a triangulated functor Dco..X;L; w/-qcohw-fl/! Dst

Sing.X0/.
To prove that this functor is an equivalence of categories, it suffices to identify it,

up to a shift, with the composition of the equivalences

Dco..X;L; w/-qcohlf/ �! D0Sing.X0/ �! Dst
Sing.X0/:
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Here one simply notices that for any M 2 Dco..X;L; w/-qcohlf/ the complex
i�M is isomorphic in Dst

Sing.X0/ to its canonical truncation ��1i�M, and the latter
complex is the cocone of the morphism into †.M/ from one of its left locally free
resolutions. So the functor ƒ is identified with †Œ�1�. �

2.10. Relative stable derived category. The goal of this section is to generalize
the results of the previous one to the case of a singular Noetherian scheme X .
The relative version of stable derived category, defined for a closed embedding of
finite flat dimension i WZ! X , is equivalent to the categories D0Sing.X0=X/ and
Dco..X;L; w/-qcoh/ in the case of the Cartier divisor Z DX0 corresponding to a
locally nonzero-dividing section w of a line bundle L on X .

Let X be a separated Noetherian scheme of finite Krull dimension and i WZ!X

be a closed embedding of schemes such that i�OZ has finite flat dimension as an
OX -module. According to Section 1.9, there is a left derived inverse image functor
Li� W Dco.X-qcoh/! Dco.Z-qcoh/. This functor forms a commutative diagram
with the similar functor Li� W D.X-qcoh/! D.Z-qcoh/, and consequently, takes
acyclic complexes in Dco.X-qcoh/ to acyclic complexes in Dco.Z-qcoh/.

Proposition 2.10. The following four triangulated categories are naturally equiva-
lent:

(a) the full subcategory in Dco.Z-qcoh/ consisting of all the objects annihilated by
the direct image functor i� W Dco.Z-qcoh/! Dco.X-qcoh/;

(b) the quotient category of the homotopy category of complexes overZ-qcoh whose
direct images are coacyclic complexes over X-qcoh by the thick subcategory of
coacyclic complexes over Z-qcoh;

(c) the quotient category of Dco.Z-qcoh/ by its minimal triangulated subcategory,
containing the objects in Li�Dco.X-qcoh/ and closed under infinite direct sums;

(d) the quotient category of the full subcategory of acyclic complexes in Dco.Z-qcoh/
by its minimal triangulated subcategory, containing the left derived inverse images
of acyclic complexes in Dco.X-qcoh/ and closed under infinite direct sums.

Proof. The equivalence of (a) and (b) is obvious. To show that the natural functor
from the category (d) to the category (c) is an equivalence, notice that the minimal
triangulated subcategory containing flat quasicoherent sheaves and closed under
infinite direct sums together with the triangulated subcategory of acyclic complexes
form a semiorthogonal decomposition of Dco.X-qcoh/, and similarly forZ [Positsel-
ski 2012, Corollary A.4.7]. Since flat quasicoherent sheaves onZ belong to the thick
subcategory in Db.Z-qcoh/� Dco.Z-qcoh/ generated by the inverse images of flat
quasicoherent sheaves from X (see the proof of Lemma 2.8), the assertion follows.

Finally, the functor Li� preserves infinite direct sums and compactness of objects
since its right adjoint functor i� preserves infinite direct sums. Hence the minimal
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triangulated subcategory in Dco.Z-qcoh/ containing Li�Dco.X-qcoh/ and closed
under infinite direct sums is compactly generated by some objects which are compact
in Dco.Z-qcoh/. By Brown representability, the quotient category in (c) is equivalent
to the right orthogonal complement to this triangulated subcategory, which is the
kernel category in (a). �

We call any of the equivalent triangulated categories in Proposition 2.10 the rela-
tive stable derived category of Z over X and denote it by Dst

Sing.Z=X/ (cf. [Becker
2014, Section 2]). In particular, defining the relative stable derived category by the
construction (c), we have natural triangulated functors

Db.Z-qcoh/ �! Dco.Z-qcoh/ �! Dst
Sing.Z=X/:

Clearly, the composition Db.Z-qcoh/! Dst
Sing.Z=X/ factorizes through the rela-

tive singularity category D0Sing.Z=X/, providing a natural functor D0Sing.Z=X/!

Dst
Sing.Z=X/.

Lemma 2.10. The composition of triangulated functors

Db
Sing.Z=X/ �! D0Sing.Z=X/ �! Dst

Sing.Z=X/

is fully faithful and its image forms a set of compact generators for the triangulated
category Dst

Sing.Z=X/.

Proof. By Proposition 1.5(d), the full triangulated subcategory Dabs.Z-coh/ com-
pactly generates the triangulated category Dco.Z-qcoh/, and similarly this holds
for X . In view of the construction (c) and the argument in the proof of Proposi-
tion 2.10, the assertion follows from [Neeman 1992, Theorem 2.1]. �

Now let L be a line bundle on X , let w 2 L.X/ be a locally nonzero-dividing
section of L, and let i WX0!X be closed embedding of the zero locus ofw. Defining
the category Dst

Sing.X0=X/ by the construction (d), let Lƒ W Dco..X;L; w/-qcoh/!
Dst

Sing.X0=X/ be the triangulated functor assigning to a w-flat quasicoherent matrix
factorization M the acyclic complex i�M over X0-qcoh.

Since any bounded-below acyclic complex over X0-qcoh is coacyclic, and
any bounded-above complex belongs to the minimal triangulated subcategory in
Dco.X0-qcoh/ generated by its terms and closed under infinite direct sums, the
following diagram of triangulated functors is commutative (cf. Corollary 2.9):

Dco..X;L; w/-qcoh/ D0Sing.X0=X/

Dst
Sing.X0=X/

//
L„Œ�1�

))Lƒ uu
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Theorem 2.10. For any locally nonzero-dividing section w of a line bundle L on a
separated Noetherian scheme X of finite Krull dimension, all the three functors on
the above diagram are equivalences of triangulated categories.

Proof. The functor L„ is an equivalence by Theorem 2.8. To show that the functor
Lƒ is an equivalence, let us check that it identifies compact generators. By Propo-
sition 1.5(d), the category Dco..X;L; w/-qcoh/ is compactly generated by its full
triangulated subcategory Dabs..X;L; w/-coh/, while according to Lemma 2.10 the
category Dst

Sing.X0=X/ is compactly generated by its full triangulated subcategory
Db

Sing.X0=X/. The restriction of the functor Lƒ being an equivalence between these
two subcategories (in view of commutativity of the diagram and) by Theorem 2.7,
it follows that the functor Lƒ itself is an equivalence, too. �

Remark 2.10. Another proof of Theorem 2.10 can be obtained using the approach
based on [Efimov 2013, Appendix A]. In the notation and assumptions of Re-
mark 2.7, suppose that C is an abelian category with exact functors of arbitrary
infinite direct sums. Then so is the abelian category MF.C; L;w/; the full abelian
subcategory C0�C is closed under infinite direct sums; and the triangulated functors
i�, Li�, �n, L�n, F n, Gn� act between the coderived categories Dco.C/, Dco.C0/,
and DcoMF.C; L;w/.

As in Remark 2.7, one proves that the functors Gn� WDco.C/!DcoMF.C; L;w/
and �n W Dco.C0/! DcoMF.C; L;w/ are fully faithful and their images form a
semiorthogonal decomposition of the coderived category DcoMF.C; L;w/. By (the
proof of) [loc. cit., Proposition A.3(3) and (4)], the totalization functor

DcoMF.C; L;w/ �! Dco.C; L;w/

acting between the coderived category of the abelian category MF.C; L;w/ and the
coderived category of matrix factorizations Dco.C; L;w/ (defined as in Section 1.3)
is the Verdier localization by the minimal triangulated subcategory containing the
objectsGn�.B/ andG.nC1/�.B/ for allB 2C and closed under infinite direct sums.

It follows that the composition of the functor �n W Dco.C0/! DcoMF.C; L;w/
with the totalization functor DcoMF.C; L;w/! Dco.C; L;w/ induces an equiva-
lence of triangulated categories

Dco.C0/=hLi
�Dco.C/i˚ �! Dco.C; L;w/

between the quotient category of the coderived category Dco.C0/ by its minimal
triangulated subcategory containing the image of the functor Li� WDco.C/!Dco.C0/

and closed under infinite direct sums, and the coderived category of matrix fac-
torizations. The composition of the functor L�n W DcoMF.C; L;w/ ! Dco.C0/

with the Verdier localization functor Dco.C0/! Dco.C0/=hLi
�Dco.C/i˚ factorizes
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through the totalization functor, providing the inverse equivalence Dco.C; L;w/!

Dco.C0/=hLi
�Dco.C/i˚.

Returning to quasicoherent matrix factorizations of a global section w 2L.X/ of
a line bundle L on a separated Noetherian scheme X with the zero locus X0 �X ,
we obtain direct constructions of two mutually inverse triangulated equivalences
between the coderived category Dco..X;L; w/-qcoh/ and the relative stable derived
category Dst

Sing.X0=X/ as defined in part (c) of Proposition 2.10.

3. Supports, pull-backs, and push-forwards

3.1. Supports. This section paves the ground for the results about preservation of
finite rank or coherence by the push-forwards of matrix factorizations with proper
supports, which will be proven in Sections 3.5–3.6.

Let X be a separated Noetherian scheme and T �X be a Zariski closed subset.
Denote by X-cohT the abelian category of coherent sheaves on X with set-theoretic
support in T ; and we will use similar notation for quasicoherent sheaves.

It is a well-known fact (essentially, a reformulation of the Artin–Rees lemma)
that the embedding of abelian categories X-qcohT ! X-qcoh takes injectives to
injectives. It follows that the functor Db.X-cohT /! Db.X-coh/ is fully faithful.
Clearly, its image is a thick subcategory and the corresponding quotient category
can be naturally identified with Db.U -coh/, where U DX nT (cf. Section 1.10).

Assume additionally thatX has enough vector bundles. Let Perf T .X/�Perf .X/
denote the full subcategory of perfect complexes with the cohomology sheaves set-
theoretically supported in T . By the above result, Perf T .X/ can be considered as a
thick subcategory in Db.X-cohT /. According to [Orlov 2011, Lemma 2.6], the func-
tor Db.X-cohT /=Perf T .X/!Db

Sing.X/ induced by the embedding Db.X-cohT /!
Db.X-coh/ is fully faithful. We denote the source (or the image) category of this
functor by Db

Sing.X; T /.
By [Chen 2010, Theorem 1.3], the restriction functor Db

Sing.X/! Db
Sing.U / is

the Verdier localization functor by the triangulated subcategory Db
Sing.X; T /. In

particular, the kernel of the restriction functor coincides with the thick envelope of
(i.e., the minimal thick subcategory containing) Db

Sing.X; T / in Db
Sing.X/.

Now we are going to establish the similar results for the triangulated cate-
gories of relative singularities. Let i W Z ! X be a closed subscheme such that
i�OZ 2 Perf .X/, and let Perf .Z=X/ D Db.EZ=X / (see Remark 2.1) denote the
thick subcategory in Db.Z-coh/ generated by Li�Db.X-coh/. Let T � Z be a
Zariski closed subset; put U DX nT and V DZ nT . We denote by Perf T .Z=X/
the full subcategory of all objects of Perf .Z=X/ with the cohomology sheaves
set-theoretically supported in T . Consider it as a thick subcategory in Db.Z-cohT /,
and denote by Db

Sing.Z=X; T / the quotient category Db.Z-cohT /=Perf T .Z=X/.
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Lemma 3.1. (a) The functor Db
Sing.Z=X; T /! Db

Sing.Z=X/ induced by the em-
bedding Db.Z-cohT /! Db.Z-coh/ is fully faithful.

(b) The restriction functor Db
Sing.Z=X/ ! Db

Sing.V=U / is the Verdier localiza-
tion functor by the triangulated subcategory Db

Sing.Z=X; T /. In particular,
the kernel of the restriction functor coincides with the thick envelope of
Db

Sing.Z=X; T / in Db
Sing.Z=X/.

Proof. The proof of (a) is similar to that of [Orlov 2011, Lemma 2.6]. One only needs
to notice that the tensor product of an object of Perf .Z=X/with an object of Perf .Z/
belongs to Perf .Z=X/. This follows from the fact that Perf .Z/ as a thick subcat-
egory in Db.Z-coh/ is generated by the restrictions of vector bundles from X (see
Section 2.1). Part (b) is true since the thick subcategory Perf .V=U /�Db.V -coh/ is
generated by the image of the restriction functor Perf .Z=X/! Perf .V=U /, which
is true because any coherent sheaf onU can be extended to a coherent sheaf onX . �

Let L be a line bundle over X and w 2L.X/ be a section; set X0DfwD 0g�X .
The definitions of the set-theoretic and category-theoretic supports SuppM and
suppM of a coherent matrix factorization M 2 .X;L; w/-coh were given (in a
greater generality of coherent CDG-modules) in Section 1.10.

Given a locally free matrix factorization of finite rank M 2 .X;L; w/-cohlf ,
define the (category-theoretic) support suppM�X as the minimal closed subset
T � X such that the restriction MjU of M to the open subscheme U D X nT
is absolutely acyclic with respect to .U;LjU ; wjU /-cohlf . By Corollary 2.3(i), the
definitions of category-theoretic supports of coherent matrix factorizations and of
locally free matrix factorizations of finite rank agree when they are both applicable.

Equivalently, for a locally free matrix factorization M of finite rank over X , the
open subscheme XnsuppM is the union of all affine open subschemes U �X such
that the matrix factorization MjU is contractible (see Remark 1.3). For any coherent
matrix factorization M, one has suppM�X0 since any matrix factorization of an
invertible potential is contractible (cf. [Polishchuk and Vaintrob 2011, Section 5]).

Let T � X be a closed subset. Denote by Dabs
T ..X;L; w/-cohlf/ (respectively

Dabs
T ..X;L; w/-coh/) the quotient category of the homotopy category of locally free

matrix factorizations of finite rank (resp. coherent matrix factorizations) supported
category-theoretically inside T by the thick subcategory of matrix factorizations
absolutely acyclic with respect to .X;L; w/-cohlf (resp. .X;L; w/-coh). Clearly, the
functors Dabs

T ..X;L; w/-cohlf/!Dabs..X;L; w/-cohlf/ and Dabs
T ..X;L; w/-coh/!

Dabs..X;L; w/-coh/ are fully faithful [loc. cit.].
By the definition, the thick subcategories

Dabs
T ..X;L; w/-cohlf/� Dabs..X;L; w/-cohlf/;

Dabs
T ..X;L; w/-coh/� Dabs..X;L; w/-coh/
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only depend on the intersection X0 \ T (rather than the whole of T ). Equiv-
alently, they can be defined as the full subcategories of objects annihilated by
the restriction functors Dabs..X;L; w/-cohlf/ ! Dabs..U;LjU ; wjU /-cohlf/ and
Dabs..X;L; w/-coh/! Dabs..U;LjU ; wjU /-coh/, where U DX nT .

As in Section 1.10, we denote by Dabs..X;L; w/-cohT / the absolute derived
category of coherent matrix factorizations with set-theoretic support in T . The
functor Dabs..X;L; w/-cohT /! Dabs..X;L; w/-coh/ is fully faithful by Proposi-
tion 1.10(d). By Corollary 1.10(b), the full subcategory

Dabs
T ..X;L; w/-coh/� Dabs..X;L; w/-coh/

is the thick envelope of the full subcategory Dabs..X;L; w/-cohT /.
Now assume that w WOX ! L is an injective morphism of sheaves.

Proposition 3.1. (a) The equivalence of categories

Dabs..X;L; w/-coh/' Db
Sing.X0=X/

identifies the triangulated subcategory Dabs..X;L; w/-cohT / with the triangu-
lated subcategory Db

Sing.X0=X; X0\T /. In particular, the former triangulated
subcategory only depends on the intersection X0\T .

(b) The full preimage of the thick envelope of the triangulated subcategory

Db
Sing.X0; X0\T /� Db

Sing.X0/

under the fully faithful functor† WDabs..X;L; w/-cohlf/!Db
Sing.X0/ coincides

with the triangulated subcategory Dabs
T ..X;L; w/-cohlf/.

Proof. Part (b) follows from the fact that the thick envelope of Db
Sing.X0; X0\T / is

the kernel of the restriction functor Db
Sing.X0/! Db

Sing.X0 nT /, the similar fact for
Dabs
T ..X;L; w/-cohlf/, and the compatibility of the functors † with the restrictions

to open subschemes, together with their full-and-faithfulness.
To prove part (a), notice first that the functor ‡ obviously takes Db

Sing.X0=X;

X0 \ T / into Dabs..X;L; w/-cohT /. Let us check that the functor L„ takes
Dabs..X;L; w/-cohT / into Db

Sing.X0=X; X0 \ T /. Let M be a coherent matrix
factorization supported set-theoretically in T . Present M as the cokernel of an in-
jective morphism of w-flat coherent matrix factorizations K!N . Since the functor
L„ is triangulated, the object L„.M/ 2 Db

Sing.X0=X/ is isomorphic to the cone of
the morphism „.K/!„.N / (cf. Lemma 3.6). The morphism „.K/!„.N / of
coherent sheaves on X0 is an isomorphism outside T , so its kernel and cokernel are
supported in X0\T . Thus the cone is quasi-isomorphic to a two-term complex of
coherent sheaves on X0 with the terms supported set-theoretically in X0\T . �
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3.2. Locality of local freeness. The aim of this section is to show that the property
of an object of Dabs..X;L; w/-qcohfl/ or Dabs..X;L; w/-coh/ to be a direct sum-
mand of an object from Dabs..X;L; w/-cohlf/ is local in a separated Noetherian
scheme X with a dualizing complex and enough vector bundles, assuming that the
potential w 2 L.X/ is not locally zero-dividing.

Let Z be a Noetherian scheme of finite Krull dimension with enough vector
bundles. Recall that the natural functor Db

Sing.Z/!D0Sing.Z/ is fully faithful [Orlov
2004, Proposition 1.13] (cf. Section 2.8).

Proposition 3.2. Let Z DU [V be a covering by two open subschemes. Then any
object of D0Sing.Z/ whose restrictions to U and V belong to the full subcategories
Db

Sing.U /� D0Sing.U / and Db
Sing.V /� D0Sing.V /, respectively, is a direct summand

of an object belonging to the full subcategory Db
Sing.Z/� D0Sing.Z/.

Proof. Consider the bounded derived category of quasicoherent sheaves Db.Z-qcoh/
on Z and two full triangulated subcategories Db.Z-coh/ and Db.Z-qcohfl/ in it.
Clearly, the intersection Db.Z-coh/\Db.Z-qcohfl/ coincides with the full subcate-
gory of perfect complexes Perf .Z/D Db.Z-cohlf/� Db.Z-qcoh/.

Lemma 3.2. Any morphism from an object of the full subcategory Db.Z-qcohfl/

into an object of the full subcategory Db.Z-coh/� Db.Z-qcoh/ factorizes through
an object belonging to Db.Z-cohlf/.

Proof. See the proof of [Orlov 2004, Proposition 1.13]. �

It follows from Lemma 3.2 ( by the way of the octahedron axiom) that any object
K� of the full triangulated subcategory Db.Z-qcoh/fl-c generated by Db.Z-qcohfl/

and Db.Z-coh/ in Db.Z-qcoh/ can be included in a distinguished triangle

F � �! K� �!M�
�! F �Œ1�;

with F � 2 Db.Z-qcohfl/ and M� 2 Db.Z-coh/. Besides, the natural functor
Db.Z-qcohfl/=D

b.Z-cohlf/! Db.Z-qcoh/=Db.Z-coh/ is fully faithful.
To prove Proposition 3.2, one has to show that any object K� 2 Db.Z-qcoh/

whose restrictions to U and V belong to the subcategories Db.U -qcoh/fl-c and
Db.V -qcohfl-c/, respectively, is a direct summand of an object from Db.Z-qcoh/fl-c�

Db.Z-qcoh/. According to the above, there exist two objects F �U 2 D
b.U -qcohfl/

and F �V 2 D
b.V -qcohfl/ and two morphisms F �U ! K�jU and F �V ! K�jV whose

cones belong to Db.U -coh/ and Db.V -coh/, respectively.
SetW DU \V �Z; then the restrictions of F �U and F �V toW are isomorphic in

Db.W -qcoh/=Db.W -coh/, and consequently, in Db.W -qcohfl/=D
b.W -cohlf/, too.

Notice that the category Perf .W / D Db.W -cohlf/ is idempotent complete, and
therefore, a thick subcategory in Db.W -qcohfl/. It follows that there exists a finite
complex of flat quasicoherent sheaves F �W on W together with two morphisms
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F �U jW ! F �W and F �V jW ! F �W whose cones are perfect complexes. Denote the
cocones of these morphisms by G�W and H�W .

For any object A of a triangulated category D, let us denote by 0A the object
A˚AŒ1�. For any triangulated subcategory C� D, whenever an object A 2 D is
a direct summand of an object from C, the object 0A belongs to C, as A˚B 2 C
implies A˚AŒ1� 2 C in view of the distinguished triangle A˚B ! A˚B !

A˚AŒ1�! AŒ1�˚BŒ1� [Thomason 1997, Theorem 2.1].
By the Thomason–Trobaugh theorem [1990, Section 5], the objects 0G�W and 0H�W

can be extended to perfect complexes on U and V , respectively. Moreover, these
extensions G�U 2 D

b.U -cohlf/ and H�V 2 D
b.V -cohlf/ can be chosen in such a way

that the morphisms 0G�W !
0F �U jW and 0H�W !

0F �V jW would be extendable to
morphisms G�U !

0F �U and H�V !
0F �V [Neeman 1996, Theorem 2.1(4) and (5)].

Furthermore, the objects 0G�U and 0H�V can be extended to perfect complexes G�

and H� on the whole scheme Z so that the compositions of morphisms

0G�U �!
00F �U �!

00K�jU and 0H�V �!
00F �V �!

00K�jV

would be extendable to morphisms G�! 00K� and H�! 00K�. Denote by K�
.1/

a cone
of the morphism G�˚H�!00K�, by F �

U;.1/
a cone of the morphism 0G�U !

00F �U ,
and by F �

V;.1/
a cone of the morphism 0H�V !

00F �V . We have come back to the orig-
inal situation with an object K�

.1/
2Db.Z-qcoh/, two objects F �

U;.1/
2Db.U -qcohfl/

and F �
V;.1/
2 Db.V -qcohfl/, and two morphisms

F �U;.1/ �! K�.1/jU and F �V;.1/ �! K�.1/jV

whose cones belong to Db.U -coh/ and Db.V -coh/, respectively. In addition, the
objects F �

U;.1/
jW and F �

V;.1/
jW are now isomorphic in Db.W -qcohfl/.

The construction does not guarantee commutativity of the diagram formed by
the isomorphism

F �U;.1/jW D F �W;.1/ ' F �V;.1/jW

and the restrictions of the morphisms F �
U;.1/

! K�
.1/

and F �
V;.1/

! K�
.1/

to W .
However, the original choice of the morphisms

F �U jW �! F �W and F �V jW �! F �W

makes this diagram commute in the quotient category Db.W -qcoh/=Db.W -coh/.
Hence the difference of two morphisms F �

W;.1/
� K�

.1/
jW factorizes through a

bounded complex of coherent sheaves on W , and consequently (according to
Lemma 3.2) also through a perfect complex on W . Denote the latter by E� 2
Db.W -cohlf/.
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Now let j W U ! Z, k W V ! Z, and h W W ! Z denote the natural open
embeddings. Consider the square diagram formed by the morphisms

Rj�F �U;.1/˚Rk�F �V;.1/ �! Rh�F �U;.1/jW ;
Rj�K�.1/jU ˚Rk�K�.1/jV �! Rh�K�.1/jW :

According to the above, this diagram is not necessarily commutative; but it can
be made commutative by adding the new direct summand Rh�E� to the term
Rj�K�.1/jU ˚ Rk�K�.1/jV with the morphism Rh�E� ! Rh�K�.1/jW induced by
the morphism E�!K�

.1/
jW and the morphism Rj�F �U;.1/˚Rk�F �V;.1/ equal to zero

on the first direct summand and induced by the morphism F �
V;.1/
jW 'F �

W;.1/
! E�

on the second one.
Let F � denote a cocone of the morphism

Rj�F �U;.1/˚Rk�F �V;.1/ �! Rh�F �U;.1/jW

and L� denote a cocone of the morphism

Rj�K�.1/jU ˚Rk�K�.1/jV ˚Rh�E� �! Rh�K�.1/jW :

Then the commutative square can be extended to a morphism of distinguished
triangles, so we obtain a morphism F � ! L�. Since K�

.1/
is a cocone of the

morphism
Rj�K�.1/jU ˚Rk�K�.1/jV �! Rh�K�.1/jW ;

there is also a distinguished triangle K�
.1/
! L�! Rh�E! K�

.1/
Œ1�.

Notice that the complexes F � and Rh�E� belong to Db.Z-qcohfl/ (since the class
of bounded complexes of flat quasicoherent sheaves is preserved by the derived direct
images with respect to flat morphisms of Noetherian schemes; cf. Proposition 1.9).
Furthermore, the complex Rh�E� is perfect overW . Restricting toW our morphism
of distinguished triangles, and recalling that cones of the morphisms

F �U;.1/ �! K�.1/jU and F �V;.1/ �! K�.1/jV

are coherent complexes over U and V , one easily concludes that a cone of the
morphism F �! L� is a coherent complex over W .

Denote this cone temporarily by K�
.2/

. Clearly, in order to show that the original
complex K� is a direct summand of an object from Db.Z-qcoh/fl-c in Db.Z-qcoh/
(which is our goal), it suffices to check that the complex K�

.2/
is as well. It also

follows from the constructions that the restrictions of the complex K�
.2/

to U and
V belong to Db.U -qcoh/fl-c and Db.V -qcohfl-c/, respectively. Dropping the lower
index and redenoting K�

.2/
simply by K�, we are coming back to the situation in the

beginning of the proof with the new knowledge that K� may be assumed to be a
coherent complex over W .
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The next segment of our proof is based on the localization theory for coderived cat-
egories of quasicoherent sheaves on Noetherian schemes (similar to the Thomason–
Trobaugh–Neeman theorem for the conventional derived categories, the difference
being that arbitrary bounded complexes of coherent sheaves play the role of per-
fect complexes). What we need is a particular case of the theory developed in
Section 1.10 (corresponding to the choice of the quasicoherent CDG-algebra OZ
over Z).

Specifically, it follows from Proposition 1.5(d) and Theorem 1.10 together with
[Neeman 1996, Theorem 2.1(5)] that any morphism from an object of Db.W -coh/
into a restriction toW of an object K� from Db.Z-qcoh/ (or even from Dco.Z-qcoh/)
can be extended to a morphism to K� from an object of Db.Z-coh/. Applying this
assertion to the identity morphism K�jW !K�jW in the above situation, we obtain
a morphism M�!K� into K� from a coherent complex M� over Z that is a quasi-
isomorphism over W . Passing to a cone of this morphism, we may assume K� to
be acyclic over W .

By Corollary 1.10, such a complex K� is quasi-isomorphic to a (bounded) com-
plex of quasicoherent sheaves on Z whose terms are concentrated set-theoretically
in the complement Z nW . The latter is a disjoint union of two nonintersecting
closed subsets in Z, namely, the complements S D Z nU and T D Z nV . Now
the complex K� decomposes into a direct sum of two complexes with set-theoretic
supports inside S and T , respectively.

One can consider the two direct summands separately. We have to show that
any bounded complex of quasicoherent sheaves K� on Z, which is supported
set-theoretically in T and whose restriction to U belongs to Db.U -qcoh/fl-c, itself
belongs to Db.Z-qcoh/fl-c. Arguing as in the beginning of this proof, we have
an object G� 2 Db.U -qcohfl/ together with a morphism G�! K�jU whose cone
belongs to Db.U -coh/. The restriction G�jW then belongs to both Db.W -qcohfl/

and Db.W -coh/, and is, therefore, a perfect complex on W .
Again by the Thomason–Trobaugh theorem, the object 0G�jW can be extended

to a perfect complex H� on V . A cocone of the morphism

Rj�
0G�˚Rk�H� �! Rh�

0G�jW

provides an object F � 2 Db.Z-qcohfl/ isomorphic to 0G� over U and to H� over V .
Now the morphism 0G�! 0K�jU over U extends uniquely to a morphism F �! 0K�

over Z since the set-theoretic support of 0K� is contained in a closed subset lying
inside U . A cone of the morphism F �! 0K� is a coherent complex on Z since it
is so in restrictions to U and V . Thus, the proposition is proven. �

Now let X be a separated Noetherian scheme of finite Krull dimension with
enough vector bundles, L be a line bundle on X , and w 2 L.X/ be a locally
nonzero-dividing potential. Let X0 �X be the zero locus of w.
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Corollary 3.2. Let X D U \V be a covering by two open subschemes. Then any
object of Dco..X;L; w/-qcohfl/ whose restrictions to U and V belong to the full
triangulated subcategories

Dabs..U;LjU ; wjU /-cohlf/� Dco..U;LjU ; wjU /-qcohfl/;

Dabs..V;LjV ; wjV /-cohlf/� Dco..V;LjV ; wjV /-qcohfl/;

respectively, is a direct summand of an object from the full triangulated subcategory
Dabs..X;L; w/-cohlf/� Dco..X;L; w/-qcohfl/.

Proof. By Proposition 2.8, the category Dco..X;L; w/-qcohfl/ is a full triangulated
subcategory of the triangulated category D0Sing.X0/. The (essential) intersection
of the full subcategories Dco..X;L; w/-qcohfl/ and Db

Sing.X0/ in D0Sing.X0/ is the
triangulated category Dabs..X;L; w/-cohlf/.

Indeed, an object of F 2 Db
Sing.X0/ belongs to Dabs..X;L; w/-cohlf/ if and only

if the object iıF vanishes in Db
Sing.X/ (Theorem 2.7); an object F 2 D0Sing.X0/

belongs to Dco..X;L; w/-qcohfl/ if and only if the object iıF vanishes in D0Sing.X/

(Proposition 2.8); and the functor Db
Sing.X/! D0Sing.X/ is fully faithful.

Moreover, the (essential) intersection of Dco..X;L; w/-qcohfl/ with the thick
envelope of Db

Sing.X0/ in D0Sing.X0/ is the thick envelope of Dabs..X;L; w/-cohlf/

in D0Sing.X0/. Indeed, let M be an object of the intersection; then M˚MŒ1� belongs
to both Dco..X;L; w/-qcohfl/ and Db

Sing.X0/, hence also to Dabs..X;L; w/-cohlf/,
and consequently M belongs to the thick envelope of Dabs..X;L; w/-cohlf/.

Now let K be our object of Dco..X;L; w/-qcohfl/; it can be also viewed as an ob-
ject of D0Sing.X0/. If its restrictions to U and V belong to Dabs..U;LjU ; wjU /-cohlf/

and Dabs..V;LjV ; wjV /-cohlf/, they also belong to Db
Sing.U0/ � D0Sing.U0/ and

Db
Sing.V0/� D0Sing.V0/ (where we set U0 D U \X0 and V0 D V \X0).
Applying Proposition 3.2, we can conclude that K belongs to the thick envelope of

Db
Sing.X0/ in D0Sing.X0/. The assertion of Corollary 3.2 follows from the above. �
Assume additionally that the scheme X admits a dualizing complex D�X .

Theorem 3.2. Let X D U \V be a covering by two open subschemes. Then any
object of Dabs..X;L; w/-coh/ whose restrictions to U and V belong to the thick
envelopes of the triangulated subcategories

Dabs..U;LjU ; wjU /-cohlf/� Dabs..U;LjU ; wjU /-coh/;
Dabs..V;LjV ; wjV /-cohlf/� Dabs..V;LV ; wjV /-coh/

itself belongs to the thick envelope of the triangulated subcategory

Dabs..X;L; w/-cohlf/� Dabs..X;L; w/-coh/:

Proof. The argument is based on the Serre–Grothendieck duality theory for matrix
factorizations as developed in Section 2.5, which allows us to reduce the question to
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the result of Corollary 3.2. Specifically, let M be our coherent matrix factorization
overX . Replacing, if necessary, M with M˚MŒ1�, we may assume the restrictions
of M to U and V to be isomorphic to locally free matrix factorizations of finite rank.

Let us apply the construction of functor

� W Dabs..X;L; w/-coh/op
�! Dco..X;L;�w/-qcohfl/

from Section 2.5 to the matrix factorization M. That is, we pick a left res-
olution of M by locally free matrix factorizations of finite rank, dualize by
applying HomX-qc.� ;OX /, and totalize using infinite direct sums. By Corol-
lary 2.5, the functor � is fully faithful; it also identifies Dabs..X;L; w/-cohlf/

op

with Dabs..X;L;�w/-cohlf/. Hence it suffices to check that the matrix fac-
torization �.M/ belongs to the thick envelope of Dabs..X;L;�w/-cohlf/ in
Dco..X;L;�w/-qcohlf/. But we know as much from Corollary 3.2. �

3.3. Nonlocalization of local freeness. The lack of a workable notion of the con-
ventional derived category (as opposed to the coderived category) for quasicoherent
matrix factorizations stands in the way of a direct extension of the Thomason–
Trobaugh–Neeman localization theorem for perfect complexes [Thomason and
Trobaugh 1990; Neeman 1992; 1996] to locally free matrix factorizations of finite
rank. We have seen in Section 1.10 how the localization theory can be developed
for coherent matrix factorizations. In this section we demonstrate a counterexample
showing that the localization theory, in its conventional form, actually does not
hold for locally free matrix factorizations.

In other words, the restriction

Dabs..X;L; w/-cohlf/ �! Dabs..U;LjU ; wjU /-cohlf/

for an open subscheme U � X is not always a Verdier quotient functor, even up
to the direct summands. Moreover, the triangulated category Dabs..X;L; w/-cohlf/

may fail to be generated by a single object, unlike in the case of the categories of
perfect complexes on quasicompact quasiseparated schemes.

All the potentials in our example will be simply regular functions, i.e., sections of
the trivial line bundle OX or OU , etc.; so we drop the line bundle L from our notation
in the rest of the section and write simply Dabs..X;w/-cohlf/ or Dabs..X;w/-coh/,
etc. For simplicity, we will work over the basic field of complex numbers C.

Consider the 3-dimensional affine quadratic cone

X D fxy D zwg � A4 D Spec CŒx; y; z; w�:

Further, let us take the open subset

U D fz ¤ 0g �X:
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Clearly, we have an isomorphism of pairs (algebraic variety, regular function on it)

.U;w/ �!� .A2t1;t2 �Gm; t1t2/; .x; y; z; w/ 7�!
��
x;
y

z

�
; z
�
; (1)

where we denote A2t1;t2 D Spec CŒt1; t2� and, as usual, Gm D A1 nf0g.

Lemma 3.3. (a) We have a natural equivalence of triangulated categories

Dabs..U;w/-coh/' Dabs..Gm; 0/-coh/:

(b) The restriction functor

Dabs..X;w/-coh/ �! Dabs..U;w/-coh/

is an equivalence.

Here the category of matrix factorizations of the zero potential Dabs..Y; 0/-coh/
is, of course, simply the derived category of 2-periodic complexes of coherent
sheaves on a smooth variety Y .

Proof. Part (a): By (1), we have the equivalence

Dabs..U;w/-coh/' Dabs..A2t1;t2 �Gm; t1t2/-coh/:

By Knörrer periodicity (cf. [Orlov 2006, Theorem 3.1]), we have the equivalence

Dabs..A2t1;t2 �Gm; t1t2/-coh/' Dabs..Gm; 0/-coh/:

Part (b): Let us put D D X nU . By Theorem 1.10(b) (see also Section 3.1), we
have the short exact sequence of triangulated categories

0 �! Dabs
D ..X;w/-coh/ �! Dabs..X;w/-coh/ �! Dabs..U;w/-coh/ �! 0

Thus, we need to show that the category Dabs
D ..X;w//-coh/ is zero. It suffices to

check that the category Dabs..D;w/-coh/ is zero.
Let us put S D fxy D 0g � A2. Then we have the isomorphism

.D;w/ �!� .S �A1t ; t /; .x; y; 0; w/ 7�! ..x; y/; w/:

Since Dabs..A1t ; t /-coh/D 0, it follows that

Dabs..D;w/-coh/' Dabs..S �A1t ; t /-coh/D 0: �

Since U is smooth, we have the equivalence

Dabs..U;w/-cohlf/' Dabs..U;w/-coh/:

Now we turn to the category Dabs..X;w/-cohlf/. As usual, we put

X0 D fw D 0g � X:
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According to Theorem 2.7, the triangulated category Dabs..X;w/-cohlf/ is equiv-
alent to the kernel of the direct image functor iı W Db

Sing.X0/! Db
Sing.X/ acting

between the triangulated categories of singularities of the schemes X0 and X . This
can be rephrased by saying that Dabs..X;w/-cohlf/ is equivalent to the quotient cate-
gory of the category of bounded complexes of coherent sheaves on X0 whose direct
images are perfect complexes on X by the category of perfect complexes on X0.
Denoting the triangulated category of coherent complexes on X0 whose direct
images are perfect on X by Perf .X0; X/� Db.X0-coh/, we have the equivalence
of triangulated categories

Dabs..X;w/-cohlf/' Perf .X0; X/=Perf .X0/: (2)

Note that we have the natural isomorphism

X0 ' S �A1; .x; y; z; 0/ 7�! ..x; y/; z/:

It follows immediately that

Db
Sing.X0/' Dabs..A1; 0/-coh/: (3)

Proposition 3.3. (a) We have the natural equivalence of triangulated categories

Perf .X0; X/=Perf .X0/' Dabs..Gm; 0/-coh/0-dim;

where Dabs..Gm; 0/-coh/0-dim � Dabs..Gm; 0/-coh/ is the subcategory of complexes
with zero-dimensional support.

Moreover, we have a commutative diagram of fully faithful triangulated functors:

Perf .X0; X/=Perf .X0/ Db
Sing.X0/

Dabs..Gm; 0/-coh/0-dim Dabs..A1; 0/-coh/;

// //

// //
j�

where j W Gm! A1 is the open embedding.

(b) We have a commutative diagram of fully faithful triangulated functors and
equivalences:

Dabs..X;w/-cohlf/ Dabs..U;w/-cohlf/

Dabs..Gm; 0/-coh/0-dim Dabs..Gm; 0/-coh/;

// //

// //�

where � is the tautological embedding.
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Proof. Part (a): Indeed, from the equivalence (3) we have the natural fully faithful
triangulated functor

Perf .X0; X/=Perf .X0/ �! Dabs..A1; 0/-coh/:

Let us denote by T � Dabs..A1; 0/-coh/ the essential image of this functor. For
each z0 2 C n f0g we have a line lz0 WD fy D 0; z D z0g � X0: Since lz0 � U
and U is smooth, the coherent sheaf Olz0 is contained in Perf .X0; X/: Further,
its image in Db

Sing.X0/ corresponds to the skyscraper Oz0 2 Dabs..A1; 0/-coh/
under the equivalence (3). It follows that the triangulated category T contains
j�.D

abs..Gm; 0/-coh/0-dim/ as a full subcategory.
Suppose that T is strictly bigger than j�.Dabs..Gm; 0/-coh/0-dim/. Then it con-

tains an object F0 D O0˚O0Œ1� 2 Dabs..A1; 0/-coh/, where O0 is the structure
sheaf of the origin. Denote by O 2 X0 the origin .0; 0; 0; 0/. Then the image
of the coherent sheaf OO 2 X0-coh in Db

Sing.X0/ corresponds to F0 under the
equivalence (3). But the object OO 2Db.X0-coh/ is not relatively perfect under the
inclusion X0!X (i.e., it does not belong to Perf .X0; X/) since O is the singular
point of X . We get a contradiction.

Thus, we have an equivalence T' j�.D
abs..Gm; 0/-coh/0-dim/. This proves (a).

Part (b) follows immediately from part (a) and the equivalence (2). �
In particular, we see that the functor Dabs..X;w/-cohlf/! Dabs..U;w/-cohlf/ is

not essentially surjective, even up to the direct summands. Moreover, the triangu-
lated category Dabs..X;w/-cohlf/ does not even have a countable set of generators.

3.4. Pull-backs and push-forwards in singularity categories. Let f W Y !X be
a morphism of separated Noetherian schemes with enough vector bundles. The
morphism f is said to have finite flat dimension if the derived inverse image functor
Lf � W D�.X-qcoh/! D�.Y -qcoh/ takes Db.X-qcoh/ to Db.Y -qcoh/.

In this case, the functor Lf � induces the inverse image functors on the triangu-
lated categories of singularities

f ı W D0Sing.X/ �! D0Sing.Y /

f ı W Db
Sing.X/ �! Db

Sing.Y /:

Under the same assumption of finite flat dimension, the derived direct image
functor Rf� W D

b.Y -qcoh/! Db.X-qcoh/ takes Db.Y -qcohfl/ to Db.X-qcohfl/, as
one can see by computing Rf� in terms of an affine covering of Y in the spirit of the
proof of Proposition 1.9. When the scheme X has finite Krull dimension, one has
Db.X-qcohfl/D Db.X-qcohlf/, so the functor Rf� induces the direct image functor

fı W D
0
Sing.Y / �! D0Sing.X/;

which is right adjoint to f ı.
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Whenever the morphism f is proper of finite type and has finite flat dimension, the
functor Rf� takes Db.Y -coh/ to Db.X-coh/ [Grothendieck 1961, Théorème 3.2.1]
and induces the direct image functor

fı W D
b
Sing.Y / �! Db

Sing.X/;

which is right adjoint to f ı [Orlov 2004, paragraphs before Proposition 1.14]. More
generally, for a morphism f of finite flat dimension and any closed subset T � Y
such that (a closed subscheme structure on) T is proper of finite type over X , the
functor Rf� takes Db.Y -cohT / to Db.X-coh/ and induces the direct image functor

fı W D
b
Sing.Y; T / �! Db

Sing.X/:

Indeed, the intersection of Db.X-qcohfl/ and Db.X-coh/ in Db.X-qcoh/ is equal
to Db.X-cohlf/, as any complex of finite flat dimension with bounded coherent
cohomology is easily seen to be perfect.

Let Z � X and W � Y be closed subschemes such that OZ is a perfect
OX -module, OW is a perfect OY -module, and f .W / � Z. Assume that both
morphisms f W Y ! X and f jW WW ! Z have finite flat dimensions. Then the
derived inverse image functor Lf j�W W D

b.Z-qcoh/! Db.W -qcoh/ induces the
inverse image functors on the triangulated categories of relative singularities

f ı W D0Sing.Z=X/ �! D0Sing.W=Y /

f ı W Db
Sing.Z=X/ �! Db

Sing.W=Y /:

Now let Z � X be a closed subscheme; set W D Z �X Y . Denote the closed
embeddings Z!X and W ! Y by i and i 0, respectively; also let f 0 denote the
morphism f jW WW !Z. Assume that W coincides with the derived product of Z
and Y over X ; i.e., Lf �i�OZ D i 0�OW . Assume further that i�OZ is a perfect
OX -module; then also i 0�OW is a perfect OY -module.

For any M 2 Db.Y -qcoh/, there is a natural morphism

�M W Li
�Rf�M �! Rf 0�Li 0�M

in Db.Z-qcoh/. Using the projection formula for tensor products with perfect
complexes, one easily checks that the morphism i��M is an isomorphism. Hence,
so is the morphism �M since the functor i� does not annihilate any objects of the
derived category. Hence we obtain the induced functor of direct image

fı W D
0
Sing.W=Y / �! D0Sing.Z=X/:

When the morphism f is proper of finite type, there is also the induced functor

fı W D
b
Sing.W=Y / �! Db

Sing.Z=X/:
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Assume additionally that the morphism f has finite flat dimension; then so does
the morphism f 0. In this case, the functor fı WD0Sing.W=Y /!D0Sing.Z=X/ is right
adjoint to the functor f ı W D0Sing.Z=X/! D0Sing.W=Y /. When the morphism f is
proper of finite type, the functor fı W Db

Sing.W=Y /! Db
Sing.Z=X/ is right adjoint

to the functor f ı W Db
Sing.Z=X/! Db

Sing.W=Y /.

Remark 3.4. In the case when Z is a Cartier divisor in X , we will construct the
functor fı W Db

Sing.W=Y / ! Db
Sing.Z=X/ under somewhat weaker assumptions

below in Section 3.5. Namely, it will suffice that the morphism f 0 WW ! Z be
proper of finite type, while the morphism f W Y !Z need not be. A generalization
to the case of proper support will also be obtained.

3.5. Push-forwards of matrix factorizations. Let f W Y ! X be a morphism of
separated Noetherian schemes with enough vector bundles, L be a line bundle on X ,
and w 2 L.X/ be a section.

Set BX D .X;L; w/ and BY D .Y; f �L; f �w/; then there is a natural morphism
of CDG-algebras BX ! BY compatible with the morphism of schemes f W Y !X .
Therefore, according to Section 1.8, there are the derived inverse image functors

Lf � W Dco..X;L; w/-qcohffd/ �! Dco..Y; f �L; f �w/-qcohffd/;

Lf � W Dabs..X;L; w/-cohffd/ �! Dabs..Y; f �L; f �w/-cohffd/

and the derived direct image functor

Rf� W D
co..Y; f �L; f �w/-qcoh/ �! Dco..X;L; w/-qcoh/:

The latter two functors are “partially adjoint” to each other.
Given a triangulated category D, we denote by D its idempotent completion.

By [Balmer and Schlichting 2001, Section 1], the category D has the natural structure
of a triangulated category.

Lemma 3.5. For any closed subset T � Y such that ( for a closed subscheme
structure on T ) the morphism f jT W T !X is proper of finite type, the functor Rf�
takes the full subcategory Dabs..Y; f �L; f �w/-cohT /�Dco..Y; f �L; f �w/-qcoh/
into the full subcategory Dabs..X;L; w/-coh/� Dco..X;L; w/-qcoh/, thus defining
a triangulated functor of direct image

Rf� W D
abs..Y; f �L; f �w/-cohT / �! Dabs..X;L; w/-coh/:

Consequently, there is the triangulated functor

Rf� W D
abs
T ..Y; f �L; f �w/-coh/ �! Dabs..X;L; w/-coh/:

Proof. We will use the construction of the functor

Rf� W D
co..Y; f �L; f �w/-qcoh/ �! Dco..X;L; w/-qcoh/
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similar to the one in the proof of Proposition 1.9 (see Remark 1.9). According
to this construction, given a matrix factorization M 2 .Y; f �L; f �w/-qcoh, the
object Rf�M 2 Dco..X;L; w/-qcoh/ is represented by the total matrix factoriza-
tion RfU˛gf�M of the finite Čech complex f�C �fU˛gM of matrix factorizations
on X . The derived functor of direct image of complexes of quasicoherent sheaves
Rf� W D

b.Y -qcoh/! Db.X-qcoh/ can be constructed in the same way.
By [Grothendieck 1961, Théorème 3.2.1], the latter functor takes Db.Y -cohT /

into Db.X-coh/. Hence the cohomology matrix factorizations of the finite complex
of matrix factorizations f�C �fU˛gM belong to .X;L; w/-coh when the matrix fac-
torization M belongs to .Y; f �L; f �w/-cohT . It follows that the object Rf�M
belongs to Dabs..X;L; w/-coh/� Dco..X;L; w/-qcoh/ in this case.

To prove the last assertion, it remains to apply Corollary 1.10(b). �
Now assume that both morphisms of sheaves w WOX!L and f �w WOY !f �L

are injective. Let X0�X and Y0� Y denote the closed subschemes defined locally
by the equations w D 0 and f �w D 0, respectively. In this setting, we will
compare the constructions of direct image functors for matrix factorizations and
for the triangulated categories of relative singularities, and prove the assertions of
Lemma 3.5 in a different way. Recall that in Section 3.4 we constructed the functor
of direct image fı W D0Sing.Y0=Y /! D0Sing.X0=X/.

Proposition 3.5. (a) Whenever the morphism f0 D f jY0 W Y0! X0 is proper of
finite type, the functor Rf� takes the full subcategory

Dabs..Y; f �L; f �w/-coh/� Dco..Y; f �L; f �w/-qcoh/

into the full subcategory

Dabs..X;L; w/-coh/� Dco..X;L; w/-qcoh/;

thus defining a triangulated functor

Rf� W D
abs..Y; f �L; f �w/-coh/ �! Dabs..X;L; w/-coh/:

(b) For any closed subset T � Y0 such that ( for a closed subscheme structure
on T ) the morphism f0jT W T ! X0 is proper of finite type, the functor fı
takes the full subcategory Db

Sing.Y0=Y; T /� D0Sing.Y0=Y / into the full subcategory
Db

Sing.X0=X/� D0Sing.X0=X/, thus defining a triangulated functor

fı W D
b
Sing.Y0=Y; T / �! Db

Sing.X0=X/:

(c) The equivalences of categories Dabs..Y; f �L; f �w/-cohT /' Db
Sing.X0=X; T /

from Proposition 3.1(a) and Dabs..X;L; w/-coh/'Db
Sing.X0=X/ from Theorem 2.7

transform the direct image functor

Rf� W D
abs..Y; f �L; f �w/-cohT / �! Dabs..X;L; w/-coh/

from Lemma 3.5 into the direct image functor fı from part (b).
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Proof. Part (a) follows from Lemma 3.5 and Proposition 3.1(a), or alternatively,
from part (b) and the proof of part (c) below. In part (b), the fact of key im-
portance is that the functor Db

Sing.X0=X/ ! D0Sing.X0=X/ is fully faithful (by
Theorem 2.8). The functor fı takes Db

Sing.Y0=Y; T / into Db
Sing.X0=X/ because the

functor Rf0� W D
b.Y0-qcoh/! Db.X0-qcoh/ takes Db.Y0-cohT / into Db.X0-coh/

[Grothendieck 1961]. To prove part (c), we will check that the equivalences of cate-
gories from Theorem 2.8 transform the functor Rf� WD

co..Y; f �L; f �w/-qcoh/!
Dco..X;L; w/-qcoh/ into the functor fı W D0Sing.Y0=Y / ! D0Sing.X0=X/. (To-
gether with part (b) and Proposition 3.1(a), this will also provide another proof of
Lemma 3.5.)

For this purpose, extend the functor

‡Y W D
b.Y0-qcoh/ �! Dco..Y; f �L; f �w/-qcoh/

to the functor z‡Y W DC.Y0-qcoh/! Dco..Y; f �L; f �w/-qcoh/ in the obvious way
(taking infinite direct sums of quasicoherent sheaves in the construction of the
matrix factorization z‡Y .F �/). The functor z‡Y is well-defined since any bounded-
below acyclic complex of quasicoherent sheaves is coacyclic [Positselski 2010,
Lemma 2.1]. Furthermore, the functor z‡Y can be presented as the composition of the
“periodicity summation” functor DC.Y0-qcoh/!Dco..Y0; i

0�f �L; 0/-qcoh/ taking
values in the coderived category of quasicoherent matrix factorizations of the zero
potential on Y0, and the functor of direct image i 0� W D

co..Y0; i
0�f �L; 0/-qcoh/!

Dco..Y; f �L; f �w/-qcoh/ with respect to the closed embedding i 0.
The functors

Rf0� W D
C.Y0-qcoh/ �! DC.X0-qcoh/;

Rf� W D
co..Y; f �L; f �w/-qcoh/ �! Dco..X;L; w/-qcoh/

form a commutative diagram with the functors z‡X and z‡Y . Indeed, the “periodicity
summations” of bounded-below complexes of quasicoherent sheaves on Y0 and X0,
taking injective resolutions to injective resolutions, obviously commute with the
derived direct images with respect to f 0, as the direct image preserves infinite direct
sums. Furthermore, the derived direct images of quasicoherent matrix factorizations
are compatible with the compositions of morphisms of schemes (see Remark 1.8),
and hence also commute with each other. It follows that the functors Rf� and fı
agree as they should. (Alternatively, one can prove this in the way similar to the
proof of Proposition 3.6 below.) �

3.6. Push-forwards for morphisms of finite flat dimension. Let f W Y ! X be
a morphism of finite flat dimension between separated Noetherian schemes with
enough vector bundles, L be a line bundle on X , and w 2 L.X/ be a section. As
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in Section 3.5, we have a natural morphism of CDG-algebras BX D .X;L; w/!
BY D .Y; f �L; f �w/ compatible with the morphism of schemes Y !X .

The quasicoherent graded algebra BY has finite flat dimension over BX . There-
fore, according to Section 1.9, there are derived inverse image functors

Lf � W Dco..X;L; w/-qcoh/ �! Dco..Y; f �L; f �w/-qcoh/

Lf � W Dabs..X;L; w/-coh/ �! Dabs..Y; f �L; f �w/-coh/;

the former of which is left adjoint to the functor

Rf� W D
co..Y; f �L; f �w/-qcoh/ �! Dco..X;L; w/-qcoh/

from Section 3.5.
Furthermore, according to Proposition 1.9, there is a derived direct image functor

Rf� W D
co..Y; f �L; f �w/-qcohffd/' Dco..Y; f �L; f �w/-qcohfl/

�! Dco..X;L; w/-qcohffd/' Dco..X;L; w/-qcohfl/;

which is right adjoint to the functor

Lf � W Dco..X;L; w/-qcohffd/ �! Dco..Y; f �L; f �w/-qcohffd/

from Section 3.5.
Now assume that X and Y have finite Krull dimensions. Recall that the

natural triangulated functors Dabs..X;L; w/-cohlf/ ! Dco..X;L; w/-qcohfl/ and
Dabs..Y; f �L; f �w/-cohlf/ ! Dco..Y; f �L; f �w/-qcohfl/ are fully faithful by
Corollary 2.3(e) and (j).

As in the second half of Section 3.5, assume that both morphisms of sheaves
w W OX ! L and f �w W OY ! f �L are injective, and denote by f0 W Y0! X0
the induced morphism between the zero loci schemes of f �w and w. Since the
morphism f has finite flat dimension, so does the morphism f0.

Proposition 3.6. (a) Whenever the morphism f0 is proper of finite type, the functor

Rf� W D
co..Y; f �L; f �w/-qcohfl/ �! Dco..X;L; w/-qcohfl/

takes the full subcategory Dabs..Y;f �L;f �w/-cohlf/�Dco..Y;f �L;f �w/-qcohfl/

into the full subcategory Dabs..X;L; w/-cohlf/ � Dco..X;L; w/-qcohfl/. Besides,
the functor

f0ı W D
b
Sing.Y0/ �! Db

Sing.X0/

takes the full subcategory Dabs..Y; f �L; f �w/-cohlf/ � Db
Sing.Y0/ into the full

subcategory Dabs..X;L; w/-cohlf/� Db
Sing.X0/. Both restrictions define the same

triangulated functor

Rf� W D
abs..Y; f �L; f �w/-cohlf/ �! Dabs..X;L; w/-cohlf/:
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(b) For any closed subset T � Y0 such that ( for a closed subscheme structure on T )
the morphism f0jT W T !X0 is proper of finite type, the functor

Rf� W D
co..Y; f �L; f �w/-qcohfl/ �! Dco..X;L; w/-qcohfl/

takes the full subcategory Dabs
T ..Y;f �L;f �w/-cohlf/�Dco..Y;f �L;f �w/-qcohfl/

into the thick envelope of the full subcategory

Dabs..X;L; w/-cohlf/� Dco..X;L; w/-qcohfl/:

Besides, the triangulated functor

f0ı W D
b
Sing.Y0; T / �! Db

Sing.X0/

takes the full subcategory Dabs
T ..Y; f �L; f �w/-cohlf/� Db

Sing.Y0; T / into the thick
envelope of the full subcategory

Dabs..X;L; w/-cohlf/� Db
Sing.X0/:

Both restrictions define the same triangulated functor

Rf� W D
abs
T ..Y; f �L; f �w/-cohlf/ �! Dabs..X;L; w/-cohlf/:

Proof. Both categories Dco..X;L; w/-qcohfl/ and Db
Sing.X0/ are full triangulated

subcategories of the triangulated category D0Sing.X0/ (see Proposition 2.8 and [Orlov
2004, Proposition 1.13]). According to the proof of Corollary 3.2, the intersection
of Dco..X;L; w/-qcohfl/ with (the thick envelope of) Db

Sing.X0/ in D0Sing.X0/ (is
the thick envelope of) the subcategory Dabs..X;L; w/-cohlf/� D0Sing.X0/.

Thus it suffices to show that the direct image functor

Rf� W D
co..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcohfl/

agrees with the direct image functor f0ı W D0Sing.Y0/ ! D0Sing.X0/. The latter
assertion does not depend on any properness assumptions.

Recall that the derived functor Rf� was constructed in the proof of Proposition 1.9
in terms of the Čech complex whose terms are direct sums of the CDG-modules
f jV �MjV , where M 2 Dco..Y; f �L; f �w/-qcohffd/ and V � Y . The derived
direct image Rf0� WD

b.Y0-qcoh/!Db.X0-qcoh/ can be constructed in the similar
way; moreover, one can use for this purpose the restriction to Y0 of an affine open
covering U˛ of the scheme Y .

We will make use of the flat dimension analogue of Corollary 2.6(d). Let z†0X and
z†0Y denote the obvious extensions of the functors†0 from .X;L; w/-qcohlf to the cat-
egory of w-flat matrix factorizations of finite flat dimension .X;L; w/-qcohw-fl\ffd

and from .Y; f �L; f �w/-qcohlf to .Y; f �L; f �w/-qcohf �w-fl\ffd (see the proofs
of Proposition 2.8 and Theorem 2.7). Notice that the direct image functors f jV �
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take f �w-flat sheaves to w-flat sheaves and .V; f �LjV ; f �wjV /-qcohf �w-fl\ffd

to .X;L; w/-qcohw-fl\ffd.
Let N be a matrix factorization from .Y; f �L; f �w/-qcohf �w-fl\ffd. Since the

open subschemes V are presumed to be affine, there are natural isomorphisms

z†0X .f jV �N jV /' f0jV\Y0 � z†
0
Y .N /jV\Y0

of quasicoherent sheaves on X0. Now it remains to use the next lemma. �

Lemma 3.6. Let M�n ! � � � ! MN be a finite complex of matrix factoriza-
tions from .X;L; w/-qcohw-fl\ffd and M be its totalization. Then the complex
z†0.M�n/! � � � ! z†0.MN / and the quasicoherent sheaf z†0.M/ on X0 represent
naturally isomorphic objects in the triangulated category of singularities D0Sing.X0/.
The same applies to a finite complex of matrix factorizations from .X;L; w/-qcohw-fl,
the functor „, and the triangulated category of relative singularities D00Sing.X0=X/.

Proof. For each �n � p � N , the restriction of the matrix factorization Mp to
the closed subscheme X0 �X is an unbounded complex of quasicoherent sheaves
i�Mp;�. By [Polishchuk and Vaintrob 2011, Lemma 1.5], this complex is acyclic.

The complex z†0.M�n/ ! � � � ! z†0.MN / of quasicoherent sheaves on X0
is quasi-isomorphic to the total complex of the bicomplex K�;� with the terms
Kp;0 D i�Mp;0, Kp;�1 D i�Mp;�1, Kp;�2 D ker.i�Mp;�1 ! i�Mp;0/, and
Kp;q D 0 for q ¤ 0, �1, �2. Similarly, the quasicoherent sheaf z†0.M/ on X0
is quasi-isomorphic to the total complex of the bicomplex E�;� with the terms
Ep;p D i�Mp;p, Ep;p�1 D i�Mp;p�1, Ep;p�2 D ker.i�Mp;p�1! i�Mp;p/,
and Ep;q D 0 for q�p ¤ 0, �1, �2.

We can assume that N; n � 0. Consider the bicomplex F�;� with the terms
Fp;q D i�Mp;q for �n� 1� q �N , Fp;�n�2 D ker.i�Mp;�n�1! i�Mp;�n/,
and Fp;qD 0 for q <�n�2 or q >N . Then there are natural surjective morphisms
of bicomplexes F�;� ! K�;� and F�;� ! E�;�. The kernels of both morphisms
are the direct sums of a finite bicomplex of quasicoherent sheaves of finite flat
dimension on X0 and a finite bicomplex of quasicoherent sheaves on X0 with
acyclic columns. Thus both morphisms become isomorphisms in D0Sing.X0/. �

Remark 3.6. One would like to have a theory of set-theoretic supports for locally
free matrix factorizations of finite rank that would allow us to prove Proposition 3.6
in the way similar to the proof of Lemma 3.5. However, we do not know how to do
this. In particular, we do not know whether every locally free matrix factorization
of finite rank with category-theoretic support in T is isomorphic in the absolute
derived category to a direct summand of an object represented by a coherent
matrix factorization of finite flat dimension with set-theoretic support in T (cf.
Corollary 1.10 and Section 3.3).
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Another alternative approach to proving Proposition 3.6 would be to show that the
intersection of the full subcategories Dabs..X;L;w/-coh/ and Dabs..X;L;w/-qcohlf/

in the absolute derived category Dabs..X;L; w/-qcoh/ coincides with the full sub-
category Dabs..X;L; w/-cohlf/. We do not know whether this is true.

3.7. Duality and push-forwards. In the following two sections we discuss the
compatibility properties of the derived direct and inverse image functors for matrix
factorizations with the Serre–Grothendieck duality functors from Section 2.5.

Let X be a separated Noetherian scheme with a dualizing complex D�X , and let
f WY !X be a separated morphism of finite type. As usually, we set D�Y Df

CD�X ,
where f C is the functor denoted by f Š in [Hartshorne 1966] (right adjoint to Rf� for
proper morphisms f and left adjoint to Rf� for open embeddings f ; see [Neeman
1996, Example 4.2] and [Hartshorne 1966, Remark before Proposition V.8.5 and
Deligne’s Appendix]). This formula defines the dualizing complex D�Y up to a
natural quasi-isomorphism only, and we presume this derived category object (as
well as D�X ) to be represented by a finite complex of injective quasicoherent sheaves.

Proposition 3.7. Let T � Y0 be a closed subset such that (for some closed sub-
scheme structure on T ) the morphism f jT W T ! X0 is proper. Then the derived
direct image functor

Rf� W D
abs
T ..Y; f �L; f �w/-coh/ �! Dabs..X;L; w/-coh/

and the similar functor for the potential �w form a commutative diagram with the
Serre duality functors

HomX-qc.� ;D�X / W D
abs..X;L;�w/-coh/op

�! Dabs..X;L; w/-coh/;
HomY -qc.� ;D�Y / W D

abs
T ..Y; f �L;�f �w/-coh/op

�! Dabs
T ..Y; f �L; f �w/-coh/:

Two proofs of Proposition 3.7 are given below. One of them is based on the
theory of set-theoretic supports of coherent CDG-modules developed in Section 1.10
and the arguments similar to the proof of Lemma 3.5. It does not depend on the
assumption about w and f �w being local nonzero-divisors and does not mention
the zero loci. The other proof is based on the passage to the triangulated categories
of relative singularities and uses Proposition 3.5(c).

First proof. First of all, the duality functor

HomY -qc.� ;D�Y / WD
abs..Y;f �L;�f �w/-qcoh/op

�!Dabs..Y;f �L;f �w/-qcoh/

obviously takes the full subcategory Dabs..Y; f �L;�f �w/-cohT /op into

Dabs..Y; f �L; f �w/-cohT /

and vice versa. Furthermore, for any quasicoherent sheaf K on Y denote by
�TK � K the maximal quasicoherent subsheaf with set-theoretic support in T .
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Then for any matrix factorization M 2 Dabs..Y; f �L;�f �w/-cohT /, the natu-
ral morphism HomY -qc.M; �TD�Y /! HomY -qc.M;D�Y / is an isomorphism in
Dabs..Y; f �L; f �w/-cohT /.

As in the proof of Lemma 3.5, we will use the construction of the functor

Rf� W D
abs..Y; f �L; f �w/-qcoh/ �! Dabs..X;L; w/-qcoh/

similar to the one from the proof of Proposition 1.9 (see Remarks 1.8 and 1.9). Let
fU˛g and fVˇ g be two affine open coverings of the scheme Y . For any matrix fac-
torization N 2 .Y; f �L;�f �w/-qcoh, there is a natural morphism of bicomplexes
of matrix factorizations

f�C
�

fU˛g
HomY -qc.N ; �TD�Y / �!HomX-qc.f�N ; f�C �fU˛g�TD

�

Y /:

Passing to the total complexes and taking the composition with the adjunction
morphism f�CfU˛g

��TD�Y D Rf�.�TD�Y /! D�X , we obtain a natural morphism
of complexes of matrix factorizations

f�C
�

fU˛g
HomY -qc.N ; �TD�Y / �!HomX-qc.f�N ; D�X /

(cf. [Neeman 1996, beginning of Section 6]).
Substituting N D C �

fVˇg
M for some M 2 .Y; f �L;�f �w/-qcoh, we get a

natural morphism of bicomplexes of matrix factorizations

f�C
�

fU˛g
HomY -qc.C

�

fVˇg
M; �TD�Y / �!HomX-qc.f�C

�

fVˇg
M; D�X /:

When M is a coherent matrix factorization supported set-theoretically in T , the
induced morphism of the total complexes is a quasi-isomorphism of complexes of
matrix factorizations by the conventional Serre–Grothendieck duality theorem for
bounded derived categories of coherent sheaves and proper morphisms of schemes
(see [Hartshorne 1966, Theorem VII.3.3] or [Neeman 1996, Section 6]). Hence
the induced morphism of the total matrix factorizations is an isomorphism in
Dabs..X;L; w/-qcoh/, and consequently also in Dabs..X;L; w/-coh/. �

Second proof. Assume that w and f �w are locally nonzero-dividing sections of
the respective line bundles. Let i WX0!X be the zero locus of w and i 0 W Y0! Y

be the zero locus of f �w. As above, we set D�X0 D Ri ŠD�X and D�Y0 D Ri 0ŠD�Y
[Hartshorne 1966, Proposition V.2.4], and presume all these dualizing complexes
to be finite complexes of injective quasicoherent sheaves.

The duality functor

HomY -qc.� ;D�Y / W D
abs..Y; f �L;�f �w/-coh/op

�! Dabs..Y; f �L; f �w/-coh/

is compatible with the restrictions to the open subscheme Y nT and thus identifies
the full subcategories Dabs

T ..Y; f �L;�f �w/-coh/op and Dabs
T ..Y; f �L; f �w/-coh/.

To prove the proposition, we will define the Serre duality functors on the triangulated
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categories of relative singularities Db
Sing.Y0=Y / and Db

Sing.X=X0/, then check that
the equivalences of triangulated categories L„D ‡�1 commute with the dualities,
and finally reduce to the conventional Serre–Grothendieck duality theorem for
bounded complexes of coherent sheaves.

The duality functor HomX0-qc.� ;D�X0/ W D
b.X0-coh/op ! Db.X0-coh/ takes

objects of the form Li�K�, where K� 2 Db.X-coh/, to similar objects. Indeed, one
has

HomX0-qc.Li
�K�;D�X0/' Ri ŠHomX-qc.K�;D�X /

[loc. cit., Proposition V.8.5] and Ri Š ' LjX0 Œ�1� ˝OX0 Li� (see the proof of
Theorem 2.7). Therefore, we have the induced duality functor

HomX0-qc.� ;D�X0/ W D
b
Sing.X0=X/

op
�! Db

Sing.X0=X/:

Similarly, the duality functor

HomY0-qc.� ;D�Y0/ W D
b.Y0-coh/op

�! Db.Y0-coh/

takes the full subcategory Db.Y0-cohT /op into Db.Y0-cohT / and Perf T .Y0=Y /
op

into Perf T .Y0=Y /. Hence the induced duality functor

HomY0-qc.� ;D�Y0/ W D
b
Sing.Y0=Y; T /

op
�! Db

Sing.Y0=Y; T /:

Checking that the equivalence of categories Dabs..X;L; w/-coh/'Db
Sing.X0=X/

commutes with the dualities is easily done using the functor ‡ . It suffices to notice
the functorial quasi-isomorphism HomX-qc.i�F �;D�X / ' i�HomX0-qc.F �;D�X0/
for any complex F � 2 Db.X0-coh/ [loc. cit., Theorem III.6.7]. The same applies to
the equivalence of categories

Dabs
T ..Y; f �L; f �w/-coh/' Db

Sing.Y0=Y; T /:

Furthermore, by Proposition 3.5(c), the equivalences of categories L„ D ‡�1

transform the derived direct image functor

Rf� W D
abs
T ..Y; f �L; f �w/-coh/ �! Dabs..X;L; w/-coh/

into (the idempotent closure of) the direct image functor fı W Db
Sing.Y0=Y; T /!

Db
Sing.X0=X/.
Finally, the direct image functor fı W Db

Sing.Y0=Y; T / ! Db
Sing.X0=X/ com-

mutes with the Serre duality functors since so do the derived direct image functors
Rf jT � WD

b. zT -coh/!Db.X0-coh/ for all the closed subscheme structures zT � Y0
on the closed subset T and the similar functors related to the closed embeddings
zT 0! zT 00 of various such subscheme structures into each other. This is the conven-
tional Serre–Grothendieck duality theorem for proper morphisms of schemes. �
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3.8. Duality and pull-backs. Let X be a separated Noetherian scheme with a
dualizing complex D�X and f W Y !X be a separated morphism of finite type; set
D�Y D f

CD�X . Let L be a line bundle on X and w 2 L.X/ be a section.
Let us first suppose that the morphism f is smooth of relative dimension n.

Then the functor f C W DC.X-qcoh/ ! DC.Y -qcoh/ is naturally isomorphic to
!Y=X Œn�˝OY f

�, where !Y=X is the line bundle of relative top forms.
In particular, D�Y '!Y=X Œn�˝OY f

�D�X (where f �D�X is also presumed to have
been replaced by a complex of injectives). Then it is clear that the equivalences of
categories

D�X ˝OX � W D
co..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcoh/;

f �D�X ˝OY � W D
co..Y; f �L; f �w/-qcohfl/ �! Dco..Y; f �L; f �w/-qcoh/

from Section 2.5 transform the inverse image functor for flat matrix factorizations
f � W Dco..X;L; w/-qcohfl/! Dco..Y; f �L; f �w/-qcohfl/ into the (underived, as
the morphism f is flat) inverse image functor for quasicoherent matrix factorizations
f � W Dco..X;L; w/-qcoh/! Dco..Y; f �L; f �w/-qcoh/.

Furthermore, for any quasicoherent matrix factorization M onX there is a natural
morphism of finite complexes of matrix factorizations f �HomX-qc.M;D�X /!
HomY -qc.f

�M; f �D�X / on Y . When M is a coherent matrix factorization, this
is a quasi-isomorphism of complexes of matrix factorizations (since the similar
assertion holds for coherent sheaves [Hartshorne 1966, Proposition II.5.8]), so the
related morphism of total matrix factorizations has an absolutely acyclic cone. Thus
the antiequivalences of categories

HomX-qc.� ;D�X / WD
abs..X;L;�w/-coh/op

�!Dabs..X;L;w/-coh/;
HomY -qc.� ;f

�D�X /WD
abs..Y;f �L;�f �w/-coh/op

�!Dabs..Y;f �L;f �w/-coh/

form a commutative diagram with the inverse image functors f � for coherent matrix
factorizations.

Now suppose that f is a proper morphism of finite type. The following the-
orem describes the compatibility property of the covariant Serre–Grothendieck
duality with the inverse images of matrix factorizations (cf. [Positselski 2012,
Theorem 5.15.3], where a similar result is proven for complexes of quasicoherent
sheaves).

Theorem 3.8. The equivalences of categories

D�X ˝OX � W D
abs..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcoh/;

D�Y ˝OY � W D
abs..Y; f �L; f �w/-qcohfl/ �! Dco..Y; f �L; f �w/-qcoh/

transform the inverse image functor

f � W Dabs..X;L; w/-qcohfl/ �! Dabs..Y; f �L; f �w/-qcohfl/
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into the functor f Š W Dco..X;L; w/-qcoh/! Dco..Y; f �L; f �w/-qcoh/ right ad-
joint to the direct image functor

Rf� W D
co..Y; f �L; f �w/-qcoh/ �! Dco..X;L; w/-qcoh/

(see the end of Section 1.8).

Proof. For any quasicoherent matrix factorization N on Y and any flat quasicoherent
matrix factorization E on X , we have to construct an isomorphism

HomDco..X;L;w/-qcoh/.Rf�N ; D�X ˝OX E/
' HomDco..Y;f �L;f �w/-qcoh/.N ; D�Y ˝OY f

�E/:

The composition

HomY .N ; D�Y ˝OY f
�E/ �! HomX .Rf�N ; Rf�.D�Y ˝OY f

�E//
' HomX .Rf�N ; f�D�Y ˝OX E/ �! HomX .Rf�N ; D�X ˝OX E/

provides a morphism from the right-hand to the left-hand side. Here all the Hom
functors are taken in the coderived categories of quasicoherent matrix factorizations
on Y and X ; the middle isomorphism holds since D�Y ˝OY f

�E is an injective
matrix factorization on Y (so the derived direct image can be computed for it by
applying the underived direct image functor f� termwise) and by the projection
formula; the last morphism is induced by the adjunction f�D�Y ! D�X .

Furthermore, on both sides of the desired isomorphism we have injective matrix
factorizations in the second arguments of the Hom functors; hence the Hom can
be computed in the homotopy category of matrix factorizations instead of the
coderived category in both cases. Finally, one can assume N to be an injective
matrix factorization, too, and compute Rf�N D f�N termwise (alternatively, one
could use the Čech construction). Similarly, the tensor products in the second
arguments are totalizations of termwise tensor products.

Now one can fix the components involved for both matrix factorizations N
and E , obtaining a morphism of finite complexes of abelian groups of the same
kind as above, but related to (one-term) complexes of quasicoherent sheaves rather
than matrix factorizations. The latter is an isomorphism by [Positselski 2012,
Theorem 5.15.3]. It remains to notice that the totalization of an acyclic finite
complex of (unbounded) complexes of abelian groups is acyclic. �

The next corollary is a matrix factorization version of the main result of Deligne’s
appendix to [Hartshorne 1966] (see also [Positselski 2012, Section 5.16]).

Corollary 3.8. For any morphism of finite type between separated Noetherian
schemes with dualizing complexes f W Y !X , a line bundle L on X , and a section
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w 2 L.X/, one can define a triangulated functor

f C W Dco..X;L; w/-qcoh/ �! Dco..Y; f �L; f �w//-qcoh/

in such a way that

(i) for an open embedding f , one has f CDf �, and more generally, for a smooth
morphism f of relative dimension n one has f C D !Y=X Œn�˝OY f

�;

(ii) for a proper morphism f , the functor f C D f Š is right adjoint to Rf�;

(iii) the construction is compatible with the compositions of the morphisms f .

Proof. It suffices to define f C WDco..X;L; w/-qcoh/!Dco..Y; f �L; f �w/-qcoh/
as the functor corresponding to the inverse image of flat quasicoherent matrix
factorizations f � W Dabs..X;L; w/-qcohfl/ ! Dabs..Y; f �L; f �w/-qcohfl/ under
the identifications of categories

D�X ˝OX � W D
abs..X;L; w/-qcohfl/ �! Dco..X;L; w/-qcoh/;

D�Y ˝OY � W D
abs..Y; f �L; f �w/-qcohfl/ �! Dco..Y; f �L; f �w/-qcoh/;

where D�X is any dualizing complex on X and D�Y D f
CD�X . �

Appendix A. Quasicoherent graded modules

A.1. Flat quasicoherent sheaves. I am grateful to A. Neeman for suggesting that
a result of the following kind can be proven without much difficulty.

Lemma A.1. On any quasicompact semiseparated scheme, any quasicoherent sheaf
is the quotient sheaf of a flat quasicoherent sheaf.

Proof. Let X be our scheme. Assume that a quasicoherent sheaf M over X is flat
over an open subscheme V �X ; given an affine open subscheme U �X , we will
construct a surjective morphism N !M onto M from a quasicoherent sheaf N
over X that is flat over U [V . Let j denote the embedding U !X . There exists
a surjective morphism onto j �M from a flat quasicoherent sheaf F over U ; let K
denote the kernel of this morphism of sheaves.

Since the morphism j W U ! X is affine and flat, the functor j� is exact and
preserves flatness. Consider the pull-back of the exact triple j�K! j�F! j�j

�M
with respect to the morphism M! j�j

�M; denote the middle term of the resulting
exact triple by N . One has N jU DF jU , so N is flat over U . Furthermore, the sheaf
j �M is flat over V \U ; hence, so is the sheaf K. The embedding U \ V ! V

is an affine flat morphism, so the sheaf j�K is flat over V . From the exact triple
j�K!N !M, we conclude that N is flat over V . �

It follows immediately that any quasicoherent graded module over a quasicoherent
graded algebra B over X is a quotient module of a flat quasicoherent graded module.
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A.2. Locally projective quasicoherent graded modules. The following result is
essentially due to Raynaud and Gruson [1971] (for a discussion, see [Drinfeld 2006,
Section 2]); here we just briefly explain how to deduce the formulation that interests
us from their assertions.

Theorem A.2. Let X be an affine scheme and fU˛g be its finite affine covering.
Let B be a quasicoherent graded algebra over X and P be a quasicoherent graded
module over B. Then the graded B.X/-module P.X/ is projective if and only if the
graded B.U˛/-module P.U˛/ is projective for every ˛.

Proof. First of all, a graded module P over a graded ring B is projective if and only
if it is projective as an ungraded module. Indeed, if P is graded projective, then it is
a homogeneous direct summand of a free graded module; hence P is also ungraded
projective. Conversely, pick a homogeneous (of degree 0) surjective homomorphism
F ! P onto a given graded module P from a free graded module F . If P is
ungraded projective, this homomorphism has a (perhaps nonhomogeneous) section s,
and the homogeneous component of s of degree 0 provides a homogeneous section.
Hence it suffices to consider ungraded modules over an ungraded quasicoherent
algebra B.

It is clear that if P.X/ is a projective B.X/-module, then P.V / is a projective
B.V /-module for any affine open subscheme V �X . Conversely, assume that the
B.U˛/-module P.U˛/ is projective for every ˛. Then by the result of [Kaplansky
1958], the B.U˛/-modules P.U˛/ are direct sums of countably generated modules,
and it follows easily that so is the B.X/-module P.X/ (essentially, since a connected
graph with an at most countable set of edges at each vertex has a countable number of
vertices). Hence we can assume the B.X/-module P.X/ to be countably generated.

Besides, the B.U˛/-modules P.U˛/ are flat; hence so is the B.X/-module P.X/.
By [Raynaud and Gruson 1971, Corollaire II.2.2.2], it remains to show that the
B.X/-module P.X/ satisfies the Mittag-Leffler condition; this can be easily deduced
from the similar property of the B.U˛/-modules P.U˛/ using the formulation of this
condition given in Proposition II.2.1.4(iii) or Propositions II.2.1.4(ii) and II.2.1.1(i)
of [Raynaud and Gruson 1971] (cf. Sections II.2.5 and II.3.1 of the same paper). �

A.3. Injective quasicoherent graded modules. The following result is a noncom-
mutative generalization of a theorem of Hartshorne [1966, Theorem II.7.18] about
injective quasicoherent sheaves on Noetherian schemes. Our proof method, based
on the Artin–Rees lemma, is different from the one in [loc. cit.].

Theorem A.3. Let B be a Noetherian quasicoherent graded algebra over a Noe-
therian schemeX . Then any injective object in the category of quasicoherent graded
left modules over B is also an injective object of the category of arbitrary sheaves
of graded B-modules over X .
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Consequently, the restriction J jU of an injective quasicoherent graded module J
over B to an open subscheme U �X is an injective quasicoherent graded module
over BjU . Conversely, if U˛ is an open covering of X and the quasicoherent graded
BjU˛ -modules J jU˛ are injective, then a quasicoherent graded B-module J is
injective. Besides, the underlying sheaf of graded abelian groups of any injective
quasicoherent graded B-module J is flabby.

Proof. First of all, notice that the abelian category B-qcoh of quasicoherent graded
modules over B is a locally Noetherian Grothendieck category with coherent graded
modules forming the subcategory of Noetherian generators [Hartshorne 1977, Ex-
ercise II.5.15]; so, in particular, B-qcoh has enough injectives and the assertions
of Theorem A.3 are not vacuous. The category of sheaves of graded B-modules
B-mod has similar properties, with the extensions by zero of the restrictions of B to
(small) open subschemes of X forming a set of Noetherian generators [Hartshorne
1966, Theorem II.7.8].

Secondly, let us check that the main result in the first paragraph implies the
assertions in the second one. Indeed, injective sheaves of graded B-modules have
all the properties we are interested in. They remain injective after being restricted to
an open subscheme since the extension by zero from an open subscheme is an exact
functor. They are flabby since given two open subschemes U � V �X and jU , jV
being their identity embeddings U , V ! X , the morphism of sheaves of graded
B-modules jU ŠBjU ! jV ŠBjV is injective. And their property is local [loc. cit.,
Lemma II.7.16] because sheaves of graded B-modules supported inside one of the
subschemes U˛ form a set of generators of the category B-mod.

Now let J be an injective quasicoherent graded module over B. To prove the main
assertion, we have to show that for any open subscheme U �X and a subsheaf of
graded B-modules G � jU ŠBjU , any homogeneous morphism of sheaves of graded
B-modules G! J can be extended to a similar morphism jU ŠBjU ! J . Indeed,
G is a subsheaf of graded B-modules in the coherent graded B-module B; hence
according to the following proposition, there exists a quasicoherent graded B-module
G � F � B such that the morphism G ! J can be extended to a homogeneous
morphism of quasicoherent graded B-modules F ! J .

Since J is injective in B-qcoh, the latter morphism can in turn be extended to a
similar morphism B! J . Restricting to jU ŠBjU , we obtain the desired morphism
of sheaves of graded B-modules jU ŠBjU ! J . �

Proposition A.3. In the assumptions of Theorem A.3, let E be a coherent graded
left B-module, G � E be a subsheaf of graded B-modules, M be a quasicoherent
graded B-module, and � W G!M be a morphism of sheaves of graded B-modules.
Then there exists a coherent graded B-module G � F � E such that the morphism �

can be extended to F .
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Proof. Before proving Proposition A.3, let us reformulate its conclusion as follows.
In the same setting, there exists a quasicoherent graded B-module K together with
an injective morphism M! K and a morphism E ! K forming a commutative
diagram with the embedding G! E and the morphism � W G!M. Indeed, if a
coherent B-module F exists, one can take K to be the fibered coproduct of E and M
over F ; conversely, if a quasicoherent B-module K exists, one can take F to be
the full preimage of M� K under the morphism E! K. Notice also that one can
always replace M with its sufficiently big coherent graded B-submodule.

Now let us state the version of Artin–Rees lemma that we will use.

Lemma A.3. In the assumptions of Theorem A.3, let M be a coherent graded
B-module, N �M a coherent graded B-submodule, andZ�X a closed subscheme
with the sheaf of ideals IZ �OX . Then for any n� 0, there exists m� 0 such that
the intersection ImZM\N is contained in InZN .

Proof. Clearly, the question is local, so it suffices to consider the case of an affine
scheme X . Then (the graded version of) the Artin–Rees lemma for ideals generated
by central elements in noncommutative Noetherian rings [Goodearl and Warfield
1989, Theorem 13.3] applies. �

Being a Noetherian object, the sheaf of graded B-modules G is generated by
a finite number of homogeneous sections sn 2 G.Un/, where Un � X are some
open subschemes. If all of these subschemes coincide with X , the sheaf G, being
a subsheaf of a coherent sheaf generated by global sections, is itself coherent, so
there is nothing to prove. In the general case, we will argue by induction on the
number of open subschemes Un that are not equal to X .

Let U D U1 ¨ X be one such open subscheme, and T D X nU be its closed
complement. We can assume that M is a coherent graded B-module. Let N
denote its maximal coherent graded B-submodule supported set-theoretically in T .
Applying Lemma A.3 to N �M, we conclude that there is a closed subscheme
structure i W Z ! X on T such that the morphism N ! i�i

�M is injective.
Consequently, so is the morphism M! i�i

�M˚ j�j �M, where j denotes the
open embedding U !X .

Let us show that there is a thicker closed subscheme structure i 0 WZ0!X on T
such that the kernel of the morphism of sheaves i 0�i

0�G! i 0�i
0�E is contained in

the kernel of the morphism of sheaves i 0�i
0�G! i�i

�G. Indeed, there exists a finite
collection of subsheaves of graded B-modules in G, each of them an extension by
zero of a coherent graded BjV -module from some open subscheme V �X such that
the stalk of G at each point of X coincides with the stalk of one of these subsheaves.
So the assertion reduces to the case when G is a coherent graded B-submodule in E
when it is an equivalent reformulation of Lemma A.3.



Coherent analogues of matrix factorizations and relative singularity categories 1253

Let H� i 0�E denote the image of the morphism of sheaves of graded i 0�B-mod-
ules i 0�G ! i 0�E over the scheme Z0. Let � W Z ! Z0 be the natural closed
embedding. Then, according to the above, the morphism of sheaves of graded
i 0�B-modules i 0�G! ��i

�G induces a morphism H! ��i
�G.

The sheaf of graded i 0�B-modules H is generated by the images of the restrictions
of the sections sn, n � 2, to the closed subschemes Z0 \ Un � Un. Hence the
induction assumption is applicable to H, and we can conclude that there exists a
quasicoherent graded i 0�B-module K on the scheme Z0 together with an injective
morphism ��i

�M!K and a morphism i 0�E!K forming a commutative diagram
with the embedding H! i 0�E and the composition H! ��i

�G! ��i
�M.

Similarly, the sheaf of graded BjU -modules j �G is generated by the restrictions of
the sections sn to the open subschemes U1\Un�Un, among which the (restriction
of) the section s1 is a global section over U DU1. Hence the induction assumption
is applicable to j �G, and there exists a quasicoherent graded BjU -module L together
with an injective morphism j �M!L and a morphism j �E!L forming a commu-
tative diagram with the embedding j �G! j �E and the morphism j �G! j �M.

Now the injective morphism M! i 0�K˚ j�L (whose first component is the
composition M! i�i

�M' i 0���i�M! i 0�K) and the morphism E! i 0�K˚ j�L
provide the desired commutative diagram of morphisms of sheaves of graded
B-modules over X . �

Appendix B. Hochschild (co)homology of matrix factorizations

This appendix complements the paper [Polishchuk and Positselski 2012] in two
ways. Section B.1 contains some modifications and improvements of the main
results of [loc. cit.] generally, and as applied to locally free matrix factorizations of
finite rank in particular. The main thrust consists of replacing the finite homological
dimension conditions in [loc. cit.] with the Noetherianness conditions to the (limited)
extent possible.

Section B.2, on the other hand, presents an elementary approach to the comp-
utation of Hochschild (co)homology of coherent matrix factorizations, entirely un-
related to that in [loc. cit.] and not based on any notion of Hochschild (co)homology
of the second kind, but rather on the Serre–Grothendieck duality theory.

B.1. Locally free matrix factorizations of finite rank. In Sections B.1.1–B.1.4, we
start with a bit of categorical nonsense, following the lines of [Polishchuk and Posit-
selski 2012, Sections 3.3–3.5], but with the additional coherence/Noetherianness
conditions imposed from the very beginning. We use the notation from [loc. cit.]
rather than that of the main body of this paper. Then in Section B.1.5, we turn
to locally free matrix factorizations of finite rank over certain possibly singular,
affine algebraic varieties. Finally, Section B.1.6 presents an improvement over
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the discussion of matrix factorizations over smooth affine varieties in [loc. cit.,
Section 4.8]. An example of an application of our techniques to nonaffine varieties
can be found in the preprint [Efimov 2012].

B.1.1. Coherent and Noetherian CDG-categories. Let .�; �; 1/ be a grading group
data [Polishchuk and Positselski 2012, Section 1.1] and B# be a small �-graded
preadditive category [Positselski 2011a, Section A.1]. Both left and right �-graded
B#-modules form abelian categories.

A �-graded B#-module is said to be finitely generated (respectively, finitely
presented) if it is a quotient module of a finitely generated free �-graded B#-module
[Polishchuk and Positselski 2012, Section 1.5] (respectively, the cokernel of a
morphism of finitely generated free �-graded B#-modules).

A �-graded preadditive category B# is called left Noetherian if any submodule of
a finitely generated �-graded left B#-module is finitely generated, or equivalently,
if the abelian category of �-graded left B#-modules is locally Noetherian. A
�-graded preadditive category B# is called left coherent if any submodule of a
finitely presented �-graded left B#-module is finitely presented.

Let B be a small (�-graded) CDG-category [loc. cit., Section 1.2] and B#

be its underlying �-graded preadditive category. Following [loc. cit.], we de-
note the DG-categories of left and right CDG-modules over B by B-modcdg

and modcdg-B . The DG-subcategories of left CDG-modules whose underlying
�-gradedB#-modules are flat or injective are denoted byB-modcdg

fl andB-modcdg
inj �

B-modcdg. Similarly, the DG-subcategories of left and right CDG-modules over B
whose underlying �-graded B#-modules are projective and finitely generated are
denoted by B-modcdg

fgp and modcdg
fgp -B .

Assuming that the �-graded category B# is left Noetherian, the DG-subcategory
of left CDG-modules whose underlying �-graded B#-modules are finitely generated
is denoted by B-modcdg

fg � B-modcdg. Assuming that the �-graded category B#

is right coherent, the DG-subcategory of right CDG-modules whose underlying
�-graded B#-modules are finitely presented is denoted by modcdg

fp -B .
The coderived and contraderived categories of left CDG-modules over B are

denoted by Dco.B-modcdg/ and Dctr.B-modcdg/, respectively [loc. cit., Section 3.2].
Assuming that the �-graded category B# is right coherent, the class of flat �-graded
left B-modules [loc. cit., Section 2.2] is closed under infinite products, so the
contraderived category Dctr.B-modcdg

fl / is well-defined. The homotopy category of
the DG-category B-modcdg

inj is denoted, as usually, by H 0.B-modcdg
inj /.

In the respective assumptions of left Noetherianness or right coherence of the
�-graded categoryB#, the absolute derived categories of CDG-modules with finitely
generated or finitely presented underlying �-graded B#-modules are denoted by
Dabs.B-modcdg

fg / and Dabs.modcdg
fp -B/, respectively.
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B.1.2. Derived functors of the second kind. Let k be a commutative ring and B
be a small k-linear CDG-category. Assume that the �-graded category B# is left
Noetherian. Let L and M be left CDG-modules over B; suppose that the �-graded
left B#-module L# underlying the CDG-module L over B is finitely generated.

As in [Polishchuk and Positselski 2012, §§ 2.1–2], we denote by Z0.B-modcdg/

and Z0.modcdg-B/ the abelian categories of left and right CDG-modules over B .
LetZ0.B-modcdg

fg /�Z
0.B-modcdg/ andH 0.B-modcdg

fg /�H
0.B-modcdg/ denote

the abelian and homotopy categories of left CDG-modules over B with finitely gen-
erated underlying �-graded B#-modules, and Z0.modcdg

fp -B/�Z0.modcdg-B/ and
H 0.modcdg

fp -B/�H 0.modcdg-B/ be the similar categories of right CDG-modules
with finitely presented underlying �-graded modules.

Let J � be a right resolution of M in Z0.B-modcdg/ such that the �-graded
left B#-modules J i # are injective, and let J be the total CDG-module of the
complex of CDG-modules J � constructed by taking infinite direct sums along the
diagonals. Then the complex Tot˚HomB.L; J �/ computing ExtIIB .L;M/ [loc. cit.,
Section 2.2] is isomorphic to the complex HomB.L; J / [loc. cit., formula (6)],
which computes the k-modules of morphisms from L into MŒ�� in the coderived
category Dco.B-modcdg/ [Positselski 2011b, Theorems 3.5(a) and 3.7]. Thus,

H� ExtIIB .L;M/ ' HomDco.B-modcdg/.L;MŒ��/:

Just as in [Polishchuk and Positselski 2012, Section 3.3], one can lift this iso-
morphism from the level of cohomology modules to that of the derived category
D.k-mod/ in the following way. Consider the functor

HomB WH 0.B-modcdg/op
�H 0.B-modcdg/ �! D.k-mod/;

and restrict it to the full subcategory H 0.B-modcdg
inj / in the second argument. This

restriction factorizes through the coderived category Dco.B-modcdg/ in the first
argument. Taking into account [Positselski 2011b, Theorem 3.7], we obtain a right
derived functor

Dco.B-modcdg/op
�Dco.B-modcdg/ �! D.k-mod/:

Restricting to the full subcategory Dabs.B-modcdg
fg /

op � Dco.B-modcdg/op [loc. cit.,
Theorem 3.11.1] in the first argument, we have the derived functor

Dabs.B-modcdg
fg /

op
�Dco.B-modcdg/ �! D.k-mod/: (4)

The composition of this functor with the localization functors

Z0.B-modcdg
fg / �! Dabs.B-modcdg

fg / and Z0.B-modcdg/ �! Dco.B-modcdg/

agrees with the derived functor ExtIIB where the former is defined.
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Now assume that the �-graded category B# is right coherent. Consider the
functor [Polishchuk and Positselski 2012, formula (5)]

˝B WH
0.modcdg-B/�H 0.B-modcdg/ �! D.k-mod/

and restrict it to the Cartesian product of full subcategories

H 0.modcdg
fp -B/�H 0.B-modcdg

fl /�H 0.modcdg-B/�H 0.B-modcdg/:

Since the tensor product with a finitely presented �-graded right B#-module com-
mutes with infinite products of �-graded left B#-modules, this restriction factorizes
through the contraderived category Dctr.B-modcdg

fl / in the second argument. Clearly,
it also factorizes through the absolute derived category Dabs.modcdg

fp -B/ in the
first argument.

By Remark 1.5 of the main body of this paper (see also [Positselski 2012,
Proposition A.3.1(b)]), the natural functor Dctr.B-modcdg

fl /!Dctr.B-modcdg/ is an
equivalence of triangulated categories. Hence we obtain the left derived functor

Dabs.modcdg
fp -B/�Dctr.B-modcdg/ �! D.k-mod/: (5)

Up to composing with the localization functors Z0.modcdg
fp -B/! Dabs.modcdg

fp -B/
and Z0.B-modcdg/!Dctr.B-modcdg/, this functor agrees with the derived functor
TorB;II from [Polishchuk and Positselski 2012, Section 2.2] where the former
is defined.

Indeed, let N be an object of Z0.modcdg
fp -B/. Let P� be a left resolution of

an object M 2Z0.B-modcdg/ by left CDG-modules over B with flat underlying
�-graded B#-modules, and let P be the total CDG-module of the complex P�
constructed by taking infinite products along the diagonals. Then the complex
Totu.N ˝B P�/ computing TorB;II .N;M/ is isomorphic to the complex N ˝B P
computing the derived functor (5) on the objects N and M .

B.1.3. Comparison of the two theories. Let C be a small k-linear (�-graded)
DG-category. The above constructions applicable to CDG-categories and CDG-mod-
ules over them can be also applied to DG-categories and DG-modules as a particular
case. Following [Polishchuk and Positselski 2012], we denote the DG-categories of
left and right DG-modules over C by C -moddg and moddg-C , and generally use
the upper index “dg” instead of “cdg” in the notation related to DG-modules.

As in [loc. cit., Sections 2.1, 3.1 and 3.4], we denote by H 0.C -moddg/inj and
H 0.C -moddg/fl the homotopy categories of h-injective and h-flat left DG-modules
over C . The notation H 0.C -moddg

inj/inj and H 0.C -moddg
fl /fl stands for the full

triangulated subcategories in H 0.C -moddg/ formed by h-injective DG-modules
over C whose underlying �-graded C #-modules are injective, or h-flat DG-modules
whose underlying �-graded C #-modules are flat, respectively. Finally, we let
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H 0.C -moddg
fgp/prj �H

0.C -moddg/ and H 0.moddg
fgp-C/fl �H 0.moddg-C/ denote

the full triangulated subcategories of h-projective left and h-flat right DG-modules
whose underlying �-graded C #-modules are projective and finitely generated.

Assume that the �-graded category C # is left Noetherian. Let L be an object
of Z0.C -moddg

fg /. Given a left DG-module M over C , pick its injective resolution
J � in the exact category Z0.C -moddg/ [loc. cit., Section 2.1]. Let Tot˚.J �/!
Totu.J �/ be the natural closed morphism between the total DG-modules of the
complex J � constructed by taking infinite direct sums and infinite products along
the diagonals. Then the induced morphism of complexes of k-modules

HomC .L; Tot˚.J �// �! HomC .L; Totu.J �//

represents the comparison morphism ExtIIC .L;M/! ExtC .L;M/ [loc. cit., for-
mula (10)] in D.k-mod/ between the two kinds of Ext objects for the DG-modules
L and M .

Similarly, assume that the �-graded category C # is right coherent. Let N be an
object of Z0.moddg

fp -C/. Given a left DG-module M over C , pick its projective
resolution P� in the exact category Z0.C -moddg/. Let Tot˚.P�/! Totu.P�/ be
the natural closed morphism between the total DG-modules of the complex P�
constructed by taking infinite direct sums and infinite products along the diagonals.
Then the induced morphism of complexes of k-modules

N ˝C Tot˚.P�/ �!N ˝C Totu.P�/

represents the comparison morphism TorC .N;M/ ! TorC;II .N;M/ [loc. cit.,
formula (9)] in D.k-mod/ between the two kinds of Tor objects for the DG-modules
N and M .

Proposition A. Assume that the �-graded category C # is left Noetherian. Let L
be a left DG-module over C whose underlying �-graded left C #-module is finitely
generated, and let M be a left DG-module over C . Then the natural morphism
ExtIIC .L;M/! ExtC .L;M/ is an isomorphism provided that either

(i) the objectM 2Dco.C -moddg/ belongs to the image of the fully faithful functor
H 0.C -moddg

inj/inj! Dco.C -moddg/; or

(ii) the object L 2Dabs.C -moddg/ belongs to the image of the fully faithful functor
H 0.C -moddg

fgp/prj! Dabs.C -moddg
fg /.

Proof. Let J � be an injective resolution of the DG-module M in the exact cat-
egory Z0.C -moddg/. Then the natural morphism M ! Tot˚.J �/ is always an
isomorphism in Dco.C -moddg/ [Positselski 2011b, proof of Theorem 3.7], while
the morphism M ! Totu.J �/ is an isomorphism in the conventional derived
category D.C -moddg/ [loc. cit., proofs of Theorems 1.4-5]. Furthermore, one has
Tot˚.J �/ 2H 0.C -moddg

inj/ and Totu.J �/ 2H 0.C -moddg
inj/inj.
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Part (i): The functor is fully faithful by [loc. cit., Theorem 3.5(a) and Lemma 1.3].
According to formula (4) from Section B.1.2 and [Polishchuk and Positselski
2012, Section 3.1], both kinds of Ext involved are well-defined as functors of the
argumentM 2Dco.C -moddg/. Hence one can assumeM 2H 0.C -moddg

inj/inj. Then
both morphisms M ! Tot˚.J �/ and M ! Totu.J �/ are homotopy equivalences
by semiorthogonality; hence so is the morphism Tot˚.J �/! Totu.J �/ and the
assertion follows.

Part (ii): In view of the first paragraph of this proof, a cone K of the morphism
Tot˚.J �/! Totu.J �/ in H 0.C -moddg/ is an acyclic DG-module over C whose
underlying �-graded C #-module is injective. Hence the complex of morphisms
HomC .� ; K/ is a well-defined functor Dabs.C -moddg

fg /
op!D.k-mod/ annihilating

H 0.C -moddg
fgp/prj. �

Proposition B. Assume that the �-graded category C # is right coherent. Let N be
a right DG-module over C whose underlying �-graded right C #-module is finitely
presented, and let M be a left DG-module over C . Then the natural morphism
TorC .N;M/! TorC;II .N;M/ is an isomorphism provided that either

(i) there exists a closed morphism P ! M into M from a DG-module P 2
H 0.C -moddg

fl /fl with a cone contraacyclic with respect to C -moddg or com-
pletely acyclic with respect to C -moddg

fl (see [Polishchuk and Positselski 2012,
Sections 3.2 and 4.7]); or

(ii) the objectN 2Dabs.moddg-C/ belongs to the image of the fully faithful functor
H 0.moddg

fgp-C/fl! Dabs.moddg
fp -C/.

Proof. Let P� be a projective resolution of the DG-module M in the exact
category Z0.C -moddg/. Then the natural morphism Totu.P�/ ! M is always
an isomorphism in Dctr.C -moddg/ [Positselski 2011b, proof of Theorem 3.8],
while the morphism Tot˚.P�/!M is an isomorphism in D.C -moddg/ [loc. cit.,
proof of Theorem 1.4]. Furthermore, one has Totu.P�/ 2 H 0.C -moddg

fl / and
Tot˚.P�/ 2H 0.C -moddg

fl /fl.

Part (i): Acyclic DG-modules in the second argument are annihilated by the func-
tor TorC by [Polishchuk and Positselski 2012, Section 3.1], while contraacyclic
DG-modules in the second argument are annihilated by the functor TorC;II .N;� /
according to the formula (5). The latter also applies to DG-modules completely
acyclic with respect to C -moddg

fl since the functor of a tensor product with a finitely
presented DG-module preserves infinite direct sums and products. So one can
replace M with P and assume that M 2H 0.C -moddg

fl /fl.
Then a cone of the morphism Totu.P�/!M is contraacyclic with respect to

C -moddg with a flat underlying �-graded C #-module, and hence also contraacyclic
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with respect toC -moddg
fl . On the other hand, a cone of the morphism Tot˚.P�/!M

is acyclic and h-flat. It follows that the functor N ˝C � transforms both of these
morphisms, and therefore also the morphism Tot˚.P�/! Totu.P�/, into quasi-
isomorphisms of complexes of k-modules.

Part (ii): A cone K of the morphism Tot˚.P�/! Totu.P�/ in H 0.C -moddg/ is an
acyclic DG-module over C whose underlying �-graded C #-module is flat. Hence
the tensor product �˝C K is a well-defined functor Dabs.moddg

fp -C/! D.k-mod/
annihilating H 0.moddg

fgp-C/fl. �

In particular, assuming that the category C # is left Noetherian, the natural
morphism ExtIIC .L;M/! ExtC .L;M/ is an isomorphism for all L 2 C -moddg

fg
and M 2C -moddg provided that the Verdier localization functor Dco.C -moddg/!

D.C -moddg/ is an equivalence of triangulated categories. Assuming that the cate-
gory C # is right coherent, the natural morphism TorC .N;M/! TorC;II .N;M/

is an isomorphism for all N 2 moddg
fp -C and M 2 C -moddg provided that the

Verdier localization functor Dctr.C -moddg/! D.C -moddg/ is an equivalence of
categories, or alternatively, that any acyclic DG-module fromC -moddg

fl is completely
acyclic with respect to C -moddg

fl .

B.1.4. Comparison for the DG-category of CDG-modules. Let B be a k-linear
CDG-category and C D modcdg

fgp -B be the DG-category of right CDG-modules
overB whose underlying �-gradedB#-modules are projective and finitely generated.
The DG-categories of (left or right) CDG-modules over B and DG-modules over C
are naturally equivalent [Polishchuk and Positselski 2012, Sections 1.5 and 2.6] (as
are the categories of �-graded modules over B# and C #).

Following [loc. cit., Section 3.5], we denote by MC the DG-module over C
corresponding to a CDG-module M over B .

Let k_ be an injective cogenerator of the abelian category of k-modules. Intro-
duce the notation B-modcdg

prj �B-modcdg for the DG-category of left CDG-modules
over B with projective underlying �-graded B#-modules. The results below in this
section are to be compared with those from [loc. cit., Sections 3.5 and 4.7].

Proposition A0. Assume that the �-graded category B# is left Noetherian. LetL be
a left CDG-module over B whose underlying �-graded left B#-module L# is finitely
generated, and let M be a left CDG-module over B . Then the natural morphism
ExtIIC .LC ;MC /! ExtC .LC ;MC / is an isomorphism provided that either

(i) the objectM belongs to the minimal triangulated subcategory of Dco.B-modcdg/

containing the objects Homk.F; k_/ for all F 2H 0.modcdg
fgp -B/ and closed

under infinite products; or

(ii) the object L belongs to the minimal thick subcategory of Dabs.B-modcdg
fg /

containing the image of H 0.B-modcdg
fgp /.
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Proof. Part (i): The equivalence of categories

H 0.C -moddg
inj/inj ' D.C -moddg/

makes the embedding functor H 0.C -moddg
inj/inj! Dco.C -moddg/ right adjoint to

the localization functor Dco.C -moddg/! D.C -moddg/. It follows that the functor
H 0.C -moddg

inj/inj ! Dco.C -moddg/ preserves infinite products (also, all infinite
products exist in the coderived category since it is compactly generated [Positselski
2011b, Theorem 3.11.2]). Since the category H 0.C -moddg

inj/inj is the minimal
triangulated subcategory of H 0.C -moddg/ containing the objects Homk.FC ; k_/
and closed under infinite products [loc. cit., Theorem 1.5], the assertion follows
from Proposition A(i).

Part (ii): The equivalence of absolute derived categories

Dabs.B-modcdg
fg /' Dabs.C -moddg

fg /

takes objects of the full subcategory H 0.B-modcdg
fgp / � Dabs.B-modcdg

fg / to repre-
sentable (and, consequently, perfect and h-projective) DG-modules in

H 0.C -moddg
fgp/� Dabs.C -moddg

fg /;

so it remains to apply Proposition A(ii). �

Proposition B0. Assume that the �-graded category B# is right coherent. Let N be
a right CDG-module over B whose underlying �-graded right B#-module N # is
finitely presented, and let M be a left CDG-module over B . Then the natural mor-
phism TorC .NC ;MC /!TorC;II .NC ;MC / is an isomorphism provided that either

(i) the object M belongs to the minimal triangulated subcategory of

H 0.B-modcdg
prj /� Dctr.B-modcdg/

containing the image ofH0.B-modcdg
fgp / and closed under infinite direct sums; or

(ii) the object N belongs to the minimal thick subcategory of Dabs.modcdg
fp -B/ con-

taining the image of H 0.modcdg
fgp -B/.

Proof. Similar to that of Proposition A0 and based on Proposition B. �

Now assume that the commutative ring k has finite weak homological dimension
and all the �-graded k-modules of morphisms in the category B# are flat. Clearly,
the DG-categories of left and right CDG-modules over the CDG-category B˝kBop

are naturally equivalent, as are the DG-categories of left and right DG-modules over
the DG-category C ˝k C op. The DG-category of CDG-modules over B ˝k Bop

is also naturally equivalent to the DG-category of DG-modules over C ˝k C op
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[Polishchuk and Positselski 2012, Section 2.6]. As above, we denote by MC the
DG-module over C ˝k C op corresponding to a CDG-module M over B˝k Bop.

To any left CDG-module G and right CDG-module F over B , one can assign the
left CDG-module G˝k F and the right CDG-module F ˝k G (corresponding to
each other under the above equivalence) over the CDG-category B˝k Bop. There
are also the natural diagonal CDG-module B over B˝k Bop and DG-module C
over C ˝k C op [loc. cit., Section 2.4]; these also correspond to each other with
respect to the above equivalence of DG-categories.

For any DG-module MC over C ˝k C op, we are interested in the comparison
morphisms between the two kinds of Hochschild cohomology HH II;�.C;MC /!

HH�.C;MC / and Hochschild homologyHH�.C;MC /!HH
II
� .C;MC / [loc. cit.,

formula (23)].

Proposition C. Assume that the �-graded category B# ˝k B
#op is Noetherian

and the diagonal �-graded module B# over it is finitely generated. Let M be a
CDG-module over B ˝k Bop. Then the natural morphism HH II;�.C;MC /!

HH�.C;MC / is an isomorphism provided that either

(i) the object M belongs to the minimal triangulated subcategory of

Dco.B˝k B
op-modcdg/

containing the CDG-modulesHomk.F˝kG; k_/ for all F 2H 0.modcdg
fgp -B/

and G 2H 0.B-modcdg
fgp / and closed under infinite products; or

(ii) the diagonal CDG-module B over B ˝k Bop belongs to the minimal thick
subcategory of

Dabs.B˝k B
op-modcdg

fg /

containing the CDG-modules G ˝k F for all F 2 H 0.modcdg
fgp -B/ and G 2

H 0.B-modcdg
fgp /.

Proposition D. Assume that the �-graded category B#˝kB
#op is coherent and the

diagonal �-graded moduleB# over it is finitely presented. LetM be a CDG-module
over B ˝k Bop. Then the natural morphism HH�.C;MC /! HH II

� .C;MC / is
an isomorphism provided that either

(i) the object M belongs to the minimal triangulated subcategory of

H 0.B-modcdg
prj /� Dctr.B˝k B

op-modcdg/

containing the CDG-modules G ˝k F for all F 2 H 0.modcdg
fgp -B/ and G 2

H 0.B-modcdg
fgp / and closed under infinite direct sums; or
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(ii) the diagonal CDG-module B over B ˝k Bop belongs to the minimal thick
subcategory of Dabs.B˝kB

op-modcdg
fg / containing the CDG-modulesG˝kF

for all F 2H 0.modcdg
fgp -B/ and G 2H 0.B-modcdg

fgp /.

Proofs of Propositions C and D. Similar to the proofs of Propositions A0 and B0. �

In particular, assume that the �-graded category B#˝k B
#op is Noetherian and

the diagonal �-graded module B# over it is finitely generated. Suppose that the
diagonal CDG-module B over B˝k Bop belongs to the minimal thick subcategory
of Dabs.B ˝k B

op-modcdg
fg / containing the CDG-modules G ˝k F for all F 2

H 0.modcdg
fgp -B/ and G 2 H 0.B-modcdg

fgp /. Then, according to [Polishchuk and
Positselski 2012, formulas (44-45) in Section 2.6] and parts (ii) of Propositions C
and D, there are natural isomorphisms

HH�.C;MC /'HH
II;�.C;MC /'HH

II;�.B;M/; (6)

HH�.C;MC /'HH
II
� .C;MC /'HH

II
� .B;M/ (7)

for any CDG-module M over B˝k Bop. Specializing to the case of the diagonal
CDG-module M D B and DG-module MC D C , we obtain

HH�.C /'HH II;�.C /'HH II;�.B/;

HH�.C /'HH
II
� .C /'HH

II
� .B/:

(8)

B.1.5. Locally free matrix factorizations. Let k be a regular commutative Noether-
ian ring of finite Krull dimension and X be an affine scheme of finite type over
Spec k. Let w 2O.X/ be a global regular function on X . Consider the Z=2-graded
CDG-algebra B over k with B0DO.X/, B1D 0, d D 0, and hD�w 2B0. We
will find it convenient to denote the CDG-algebra B simply by .X; h/D .X;�w/
(cf. Section 2.2 of the main body of this paper).

Then C Dmodcdg
fgp -B is the Z=2-graded DG-category of locally free matrix fac-

torizations of finite rank of the potential w on X . Furthermore, one has B˝kBopD

.X�kX; w2�w1/, wherewi Dp�i w 2O.X�kX/, i D 1, 2, and pi WX�kX!X

denote the coordinate projections. Let � WX!X �kX be the diagonal embedding
and ��OX be the corresponding coherent sheaf on X �k X .

Consider the coherent matrix factorization of the potential w2�w1 on X �X
whose even-degree component is the sheaf ��OX , while the odd-degree com-
ponent vanishes. We will denote this “diagonal” matrix factorization simply by
��OX 2H 0..X �k X; w2�w1/-modcdg

fg /. Applying the machinery of the previ-
ous sections leads to the following result (cf. [Polishchuk and Positselski 2012,
Sections 4.8–4.10]).
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Corollary B.1.5. Suppose that the diagonal matrix factorization ��OX belongs
to the minimal thick subcategory of Dabs..X �k X; w2�w1/-modcdg

fg / containing
the external tensor products of locally free matrix factorizations of finite rank
p�1G ˝k p

�
2F for all G 2 H 0..X;�w/-modcdg

fgp / and F 2 H 0..X;w/-modcdg
fgp /.

Then the natural isomorphisms (8) hold for the CDG-algebra B D .X;w/ and the
DG-category of locally free matrix factorizations C Dmodcdg

fgp -B . �

Notice that the condition under which the conclusion of Corollary B.1.5 has been
proven is a rather strong one, particularly when X is not assumed to be a regular
scheme. Then it is not even clear when or why the diagonal matrix factorization
��OX should belong to the thick envelope of the full triangulated subcategory of
locally free matrix factorizations

H 0..X �k X; w2�w1/-modcdg
fgp /� Dabs..X �k X; w2�w1/-modcdg

fg /

on X �kX , let alone to the thick subcategory generated by external tensor products
of locally free matrix factorizations from the two copies of X .

B.1.6. Smooth stratifications. A scheme X of finite type over a field k is said to
admit a smooth stratification [Efimov 2013] if it can be presented as a disjoint union
of its locally closed subsets X D

F
˛ S˛ so that each S˛, when endowed with the

structure of a reduced locally closed subscheme in X , becomes a smooth scheme
over k. In particular, every scheme of finite type over a perfect field k admits a
smooth stratification, as any regular scheme of finite type over a perfect field is
smooth over it [Grothendieck 1967, Corollaires 17.15.2 and 17.15.13]. Notice that
a scheme of finite type over a field admits a smooth stratification if and only if its
maximal reduced closed subscheme does.

The definition of a regular stratification of a Noetherian scheme is similar, except
that the strata S˛ are only required to be regular schemes in their reduced locally
closed subscheme structures. Any scheme of finite type over a field admits a regular
stratification [Grothendieck 1965, Scholie 7.8.3(iii)–(iv) and Proposition 7.8.6(i)].

Let X be a smooth affine scheme over a field k and w 2 O.X/ be a regular
function on X . Set X0 D fw D 0g � X to be the zero locus of w. The following
result is a slight generalization of [Polishchuk and Positselski 2012, Corollary 4.8.A]
based on the above definitions.

Corollary B.1.6. Assume that there exists a closed subscheme Z � X such that
w W X nZ ! A1

k
is a smooth morphism, wjZ D 0, and the scheme Z admits a

smooth stratification over k. Then the conditions of Corollary B.1.5 are satisfied,
so its conclusions apply.

Proof. According to the argument in [Polishchuk and Positselski 2012, Section 4.8],
it suffices to show that the bounded derived category of coherent sheaves on Z�Z
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is generated by external tensor products of coherent sheaves on the two Cartesian
factors. This is a particular case of the following lemma. �

Lemma B.1.6. Let Z0 and Z00 be schemes of finite type over a field k. Assume that
the scheme Z0 admits a smooth stratification. Then the bounded derived category of
coherent sheaves Db..Z0 �Z00/-coh/ on the Cartesian product Z0 �k Z00 coincides
with its minimal thick subcategory containing the external tensor products K0˝kK00

of coherent sheaves on K0 on Z0 and K00 on Z00.

Proof. One proceeds by induction on the total number of strata in a smooth
stratification of Z0 and a regular stratification of Z00. Clearly, one can replace
Z0 and Z00 with their maximal reduced closed subschemes. Now if S˛0 is an
open stratum in Z0 and Tˇ0 is an open stratum in Z00, then S˛0 is smooth as an
open subscheme in Z0 and Tˇ0 is regular as an open subscheme in Z00, while the
induction assumption applies to .Z0nS˛0/�kZ

00 andZ0�k .Z00nTˇ0/. The scheme
S˛0 �k Tˇ0 is regular since it is smooth over a regular scheme. The rest of the
argument is based on [Orlov 2011, Proposition 2.7] and follows the lines of [Lin
and Pomerleano 2013, proof of Theorem 3.7]. �

B.2. Coherent matrix factorizations. In this section, we return to the notation
system typical for the main body of this paper. The notion of a critical value of a
regular function on a singular variety is defined in Section B.2.1. In Section B.2.2
we show that the external tensor product of coherent matrix factorizations is a fully
faithful functor between the absolute derived categories and provide a sufficient
condition for the pretriangulated extension of its DG-category version to be a
quasiequivalence. The Hochschild cohomology of the DG-category corresponding
to the absolute derived category of coherent matrix factorizations of a potential
having no critical values but zero is computed in Section B.2.4.

The notion of cotensor product of complexes of quasicoherent sheaves and
quasicoherent matrix factorizations is discussed in Sections B.2.5–B.2.6 and used in
order to compute the Hochschild homology of the (same) DG-category of coherent
matrix factorizations in Section B.2.7. The direct sum formula for the Hochschild
(co)homology of the DG-categories of coherent matrix factorizations of a potential
with several critical values is established in Section B.2.8.

In some sense, the results of this section (as compared to those of Section B.1)
suggest that the DG-category corresponding to the absolute derived category of
coherent matrix factorizations on a singular variety may be better behaved than the
similar category of locally free matrix factorizations of finite rank. Other (and in
some way related) arguments in support of the same conclusion are provided by
the results of the papers [Lunts 2010; Efimov 2013] showing that the DG-category
corresponding to the absolute derived category of coherent matrix factorizations is
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smooth (and even homotopically finitely presented), under suitable conditions on
the field k. (Cf. the counterexample in Section 3.3.)

B.2.1. Noncritical functions. Let k be a field and X be a scheme of finite type
over Spec k. Let f 2O.X/ be a global regular function on X .

Let Y be a scheme of finite type over Spec k and g 2O.Y / be a global regular
function. Let p1 WX �k Y !X and p2 WX �k Y ! Y be the natural projections.
Consider the regular function f1Cg2 D p�1f Cp

�
2g on X �k Y .

Suppose that f WX ! A1
k

is a flat morphism from X to the affine line (when k
is algebraically closed, this means that the function f � c is a local nonzero-divisor
on X for every c 2 k). Then the morphism f1Cg2 WX �k Y ! A1

k
is also flat as

it is the composition of two flat morphisms

X �k Y �! A1k �k Y �! A1k

(the former morphism being flat since the morphism f WX ! A1
k

is and the latter
one because the polynomial xCg does not divide zero in BŒx� for any commutative
ring B and element g 2 B). In particular, it follows that the function f1Cg2 is a
local nonzero-divisor on the Cartesian product X �k Y .

A function f 2O.X/ is said to be noncritical (or to have no critical values) if for
any regular function g 2O.Y / on a scheme Y of finite type over Spec k the absolute
derived category of coherent matrix factorizations Dabs..X �k Y; O; f1Cg2/-coh/
vanishes (i.e., is equivalent to the zero category). According to Remark 1.3 and
Theorem 1.10(b), this condition is local in both X and Y .

Therefore, given a scheme X of finite type over Spec k and a regular function
f 2O.X/, there is a unique maximal open subschemeX 0

f
�X where the function f

is noncritical. We will see below that the open subscheme X 0
f

is always dense in X
if the morphism f WX ! A1

k
is flat and the field k has zero characteristic.

Similarly, there is a unique maximal open subscheme A1
k;f
� A1

k
such that the

restriction of f to its full preimage in X is noncritical. The scheme A1
k;f

is always
nonempty if the field k has zero characteristic. The points in the complement
A1
k
nA1

k;f
are called the critical values of f . In particular, one says that f has no

critical values but zero if the restriction of f to f �1.A1
k
nf0g/�X is noncritical.

Notice that when the schemes X and Y are separated and the morphism of
schemes f W X ! A1

k
is flat, the category Dabs..X �k Y; O; f1 C g2/-coh/ is

equivalent to the triangulated category Db
Sing.ff1C g2 D 0g=X �k Y / of relative

singularities of the zero locus of the function f1Cg2 on X �k Y (see Theorem 2.7).

Remark B.2.1. It would be interesting to have a geometric characterization of non-
criticality of functions on singular schemes. For example, how does our definition
of noncriticality relate to the condition that the differential of f at every closed
point x 2X be a nonzero element of the Zariski cotangent space T �x X ? We do not
know this; cf. the smooth stratification approach below.
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Lemma B.2.1. Let X D
F
˛ S˛ be a scheme of finite type over Spec k presented

as a disjoint union of its locally closed subsets, endowed with their reduced
locally closed subscheme structures. Let L be a line bundle on X and w 2
L.X/ be its global section. In this setting, if the absolute derived categories
Dabs..S˛;LjS˛ ; wjS˛ /-coh/ vanish for all ˛, then so does the absolute derived
category Dabs..X;L; w/-coh/.

Proof. Proceeding by induction on the number of strata in the stratification S˛, it
suffices to consider the case when there are only two of them, namely, a closed subset
S �X and its open complement X nS . One can also replace X with its maximal
reduced closed subscheme. Then the desired assertion follows from Theorem 1.10(b)
since the triangulated category Dabs..X;L; w/-cohS / is generated by the image of
the natural functor Dabs..S;LjS ;wjS /-coh/!Dabs..X;L;w/-cohS /. �

Proposition B.2.1. Let X be a scheme of finite type over Spec k and f 2O.X/ be
a regular function on X . Let X D

F
˛ S˛ be a smooth stratification of the scheme

X over k (see Section B.1.6) such that the morphisms of schemes f jS˛ W S˛! A1
k

are smooth for all ˛. Then the function f is noncritical on X .

Proof. Let Y be a scheme of finite type over Spec k and g 2O.Y / be a regular func-
tion. We have to show that the triangulated category Dabs..X�kY;O; f1Cg2/-coh/
vanishes. Choosing a stratification of Y by regular locally closed subschemes and
applying Lemma B.2.1, one can assume that X is smooth over k and Y is regular.

Then the scheme X �k Y is also regular, the derivative of the function f1Cg2 2
O.X �k Y /, viewed as an element of the Zariski cotangent space, does not vanish
at any points where the function itself does (and, in a sense, at any other closed
points, too), and it follows that the zero locus of f1 C g2 in X �k Y is also a
regular scheme. It remains to use Theorem 2.7 (or [Orlov 2012, Theorem 3.5] and
Corollary 2.4(c)). �

It follows from Proposition B.2.1 that for any scheme of finite type X with a
smooth stratification X D

F
˛ S˛ over Spec k and any regular function f 2O.X/,

the set of critical values of the function f on X is contained in the union of the
sets of critical values of the functions f jS˛ . In particular, if the characteristic of k
is zero, then all of these sets are finite.

B.2.2. External tensor products. Let X 0 and X 00 be separated schemes of finite
type over a field k, and let w0 2O.X 0/ and w00 2O.X 00/ be regular functions. Let
X 0 �k X

00 be the Cartesian product, p1 and p2 be its natural projections onto the
factors X 0 and X 00, and w01Cw

00
2 D p

�
1w
0Cp�2w

00 be the related regular function
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on X 0 �k X 00. Then there is the external tensor product functor

˝k W D
co..X 0;O; w0/-qcoh/�Dco..X 00;O; w00/-qcoh/

�! Dco..X 0 �k X
00; O; w01Cw

00
2/-qcoh/; (9)

which restricts to the similar functor

˝k W D
abs..X 0;O; w0/-coh/�Dabs..X 00;O; w00/-coh/

�! Dabs..X 0 �k X
00; O; w01Cw

00
2/-coh/ (10)

on coherent matrix factorizations.

Proposition B.2.2. Let K0 and M0 be coherent matrix factorizations of the poten-
tial w0 on the scheme X 0, and let K00 and M00 be coherent matrix factorizations of
the potential w00 on the scheme X 00. Then the natural map of Z=2-graded k-vector
spaces of morphisms

HomDabs..X 0;O;w 0/-coh/.K0;M0Œ��/˝k HomDabs..X 00;O;w 00/-coh/.K00;M00Œ��/

�! HomDabs..X 0�kX 00;O;w 01Cw
00
2 /-coh/.K0˝k K00; M0˝kM00Œ��/ (11)

induced by the additive functor of two arguments (10) is an isomorphism.

Proof. By Proposition 1.5(d), it suffices to show that the natural map

HomDco..X 0;O;w 0/-qcoh/.K0;M0Œ��/˝k HomDco..X 00;O;w 00/-qcoh/.K00;M00Œ��/

�! HomDco..X 0�kX 00;O;w 01Cw
00
2 /-qcoh/.K0˝k K00; M0˝kM00Œ��/ (12)

induced by the functor (9) is an isomorphism for any coherent matrix factorizations
K0, K00 and quasicoherent matrix factorizations M0, M00 of the potentialsw0 andw00.
One easily checks that the desired assertion holds for the Hom spaces in the
homotopy categories of matrix factorizations (since it holds for morphisms between
the external tensor products of coherent and quasicoherent sheaves).

Furthermore, one can assume the quasicoherent matrix factorizations M0 and
M00 to be injective. Then the Hom spaces in the left-hand side of the map (12)
coincide with the similar Hom spaces computed in the homotopy categories of
matrix factorizations. Let I � be a right resolution of M0˝k M00 in the abelian
category of quasicoherent matrix factorizations (and closed morphisms between
them) consisting of injective matrix factorizations, and let J be the total matrix
factorization of the complex I � constructed by taking infinite direct sums along the
diagonals. Then the k-vector spaces of morphisms from K0˝k K00 into J in the
homotopy category of matrix factorizations are isomorphic to the right-hand side
of (12) [Positselski 2011b, Theorem 3.7].
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It remains to show that the spaces of morphisms from K0˝k K00 to M0˝kM00

in the homotopy category of matrix factorizations are isomorphic to the similar
spaces of morphisms from K0˝k K00 to J . Indeed, taking the termwise Hom from
K0˝k K00 preserves exactness of the sequence 0!M0˝k M00 ! I � since the
higher Ext spaces from the components of K0 ˝k K00 into those of M0 ˝k M00

in the abelian category of quasicoherent sheaves on X 0˝k X 00 vanish. The latter
assertion can be checked for affine schemes X 0, X 00 using projective resolutions
and then globally for the cohomology of quasicoherent sheaves using, e.g., the
Čech approach. �

Theorem B.2.2. Assume that the morphisms of schemes

w0 WX 0! A1k and w00 WX 00! A1k

are flat. Suppose that there exist closed subschemes Z0 � X 0 and Z00 � X 00 such
that w0jZ0 D 0 D w00Z00 , the functions w0 and w00 are noncritical on X 0 nZ0 and
X 00nZ00, and the schemeZ0 admits a smooth stratification over k. Then the absolute
derived category Dabs..X 0 �k X

00; O; w01Cw
00
2/-coh/ coincides with its minimal

thick subcategory containing the image of the functor (10).

Proof. By the definition of noncriticality, one has

Dabs....X 0 nZ0/�k X
00/; O; w01Cw

00
2/-coh/D 0

D Dabs...X 0 �k .X
00
nZ00//; O; w01Cw

00
2/-coh/:

Therefore, any coherent matrix factorization of the potential w01Cw
00
2 on X 0�kX 00

has its category-theoretic support inside Z0�k Z00, and is consequently isomorphic
in Dabs..X 0�kX

00; O; w01Cw
00
2/-coh/ to a direct summand of an object represented

by a coherent matrix factorization supported set-theoretically inside Z0 �k Z00 (see
Corollary 1.10(b)). It follows that the triangulated category

Dabs..X 0 �k X
00; O; w01Cw

00
2/-coh/

is generated by the direct images of coherent matrix factorizations of the zero
potential from the closed embedding Z0 �k Z00!X 0 �k X

00.
Furthermore, let X 00, X 000 , and Y0 denote the zero loci of the functions w0, w00,

and w01Cw
00
2 on X 0, X 00, and X 0 �k X 00, respectively. Denote the natural closed

embeddings by i 0 W X 00! X 0, i 00 W X 000 ! X 00, � W X 00 �X
00
0 ! Y0, and h W Y0!

X 0�X 00. The external tensor product functor (cf. [Polishchuk and Positselski 2012,
Lemma 4.8.B])

˝k W D
b
Sing.X

0
0=X

0/�Db
Sing.X

00
0 =X

00/ �! Db
Sing.Y0=.X

0
�k X

00// (13)

is well-defined since for any bounded complexes of coherent sheaves F � on X 0 and
K� on X 000 one has ��.Li 0�F �˝kK�/' Lh�..idX 0 �i 00/�.F �˝kK�//. Indeed, the
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square diagram of closed embeddings

X 00 �k X
00
0 X 0 �k X

00
0

Y0 X 0 �X 00

//

�� ��

//

is Cartesian and the higher derived tensor products related to the construction of
this relative Cartesian product of schemes all vanish.

The functor ‡ W Db
Sing.Y0=.X

0 �k X
00//! Dabs..X 0 �k X

00; O; w01Cw
00
2/-coh/

(see Section 2.7) and the similar functors for the potentials w0 and w00 on X 0 and
X 00 transform the external product functor (10) into the external tensor product
functor (13). By the assumption, one has Z0 � X 00 and Z00 � X 000 . It remains to
apply Lemma B.1.6 in order to finish the proof of the theorem. �

B.2.3. Internal Hom of matrix factorizations. Let X be a separated Noetherian
scheme. Let L be a line bundle onX andw0, w00 2L.X/ be its global sections. Then
given a matrix factorization U0! U1˝L˝1=2! U0˝OX L of the potential w0

and a matrix factorization V0 ! V1 ˝ L˝1=2 ! V0 ˝OX L of the potential w00

on the scheme X (in the symbolic notation of Section 2.2), one can construct the
matrix factorization

U0˝OX V0˚U1˝OX V1

�! U1˝L˝1=2˝OX V0˚U0˝OX V1˝L˝1=2

�! U0˝OX V0˝OX L˚U1˝OX V1˝OX L

of the potential w0Cw00 on X . Here the tensor product U1˝OX V1 is defined as
the sheaf .U1˝L˝1=2/˝OX .V1˝L˝1=2/˝OX L˝�1 on X , while the differential
on the tensor product of matrix factorizations is given by the conventional rule
d.u˝ v/D d.u/˝ vC .�1/juju˝ d.v/.

We denote the matrix factorization so obtained by U˝OX V and call it the tensor
product of two matrix factorizations U and V of two sections w0 and w00 of the
same line bundle L on a scheme X . Restricting to the cases when one or both
matrix factorizations are flat, and passing to the coderived categories, one obtains
the induced tensor product functors

˝OX W D
co..X;L; w0/-qcohfl/�Dco..X;L; w00/-qcohfl/

�! Dco..X; L; w0Cw00/-qcohfl/ (14)

and

˝OX W D
co..X;L; w0/-qcohfl/�Dco..X;L; w00/-qcoh/

�! Dco..X; L; w0Cw00/-qcoh/: (15)
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The functors (14) and (15) are well-defined since the tensor product with a flat
(quasicoherent) matrix factorization takes a short exact sequence of flat matrix
factorizations to a short exact sequence of flat matrix factorizations, the tensor
product with a flat matrix factorization takes a short exact sequence of quasicoherent
matrix factorizations to a short exact sequence of quasicoherent matrix factorizations,
and the tensor product with a quasicoherent matrix factorization takes a short exact
sequence of flat matrix factorizations to a short exact sequence of quasicoherent
matrix factorizations. Also, the tensor product functor preserves infinite direct sums.

Given a quasicoherent matrix factorization U0! U1˝L˝1=2! U0˝OX L of a
potential w0 2L.X/ and a quasicoherent matrix factorization V0! V1˝L˝1=2!
V1 ˝OX L of a potential w00 2 L.X/ on the scheme X , one can construct the
quasicoherent matrix factorization

HomX-qc.U0;V0/˚HomX-qc.U1;V1/

�!HomX-qc.U0; V1˝L˝1=2/˚HomX-qc.U1;V0/˝L˝1=2

�!HomX-qc.U0;V0/˝OX L˚HomX-qc.U1;V1/˝OX L

of the potential w00�w0 on X . Here the sheaf HomX-qc.U1;V0/˝L˝1=2 is defined
as the tensor product HomX-qc.U1˝L˝1=2; V0/˝OXL, while the differential on the
internal Hom is given by the conventional rule d.g/.u/Dd.g.u//�.�1/jgjg.d.u//.

We denote the matrix factorization so obtained by HomX-qc.U ;V/ and call it
the matrix factorization of quasicoherent internal Hom between the quasicoherent
matrix factorizations U and V of two sections w0 and w00 of the same line bundle L
on a scheme X . Restricting to the case when the matrix factorization in the second
argument is injective, one obtains the induced internal Hom functor

HomX-qc W D
abs..X;L; w0/-qcoh/op

�H 0..X;L; w00/-qcohinj/

�! Dabs..X; L; w00�w0/-qcoh/; (16)

which can be also viewed as the right derived internal Hom functor

RHomX-qc W D
abs..X;L; w0/-qcoh/op

�Dco..X;L; w00/-qcoh/

�! Dabs..X; L; w00�w0/-qcoh/: (17)

Remark B.2.3. Alternatively, one could restrict the quasicoherent internal Hom
functor to pairs of quasicoherent matrix factorizations which are both injective,
obtaining the triangulated functor

HomX-qc WH
0..X;L; w0/-qcohinj/

op
�H 0..X;L; w00/-qcohinj/

�!H 0..X; L; w00�w0/-qcohfl/; (18)
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which can be also viewed as a derived internal Hom functor

LRHomX-qc W D
co..X;L; w0/-qcoh/op

�Dco..X;L; w00/-qcoh/

�! Dabs..X; L; w00�w0/-qcohfl/ (19)

that is a left derived functor in its first argument and a right derived functor in the
second one. Notice that the derived functor so obtained does not agree with the right
derived functor defined above; i.e., the composition of the functor (19) with the natu-
ral fully faithful functor Dabs..X;L; w00�w0/-qcohfl/!Dabs..X;L; w00�w0/-qcoh/
and the Verdier localization functor Dabs..X;L; w0/-qcoh/!Dco..X;L; w0/-qcoh/
is not isomorphic to the functor (17).

In particular, when w0 D w00, the functors (16) and (17) take values in the
absolute derived category of quasicoherent matrix factorizations of the zero potential
0 2 L.X/. The objects of this category are simply complexes of quasicoherent
sheaves M� on X endowed with a 2-periodicity isomorphism M�Œ2�'M�˝OX L.
So there is a natural forgetful functor

Dco..X;L; 0/-qcoh/ �! Dco.X-qcoh/ (20)

and the similar functors acting on the homotopy, absolute derived, etc. categories
of flat, coherent, locally free, etc. matrix factorizations.

Furthermore, there is the derived global sections functor

R�.X;� / W Dco.X-qcoh/ �! D.Z-mod/ (21)

taking values in the derived category of abelian groups and defined using either the
injective resolutions or the Čech construction (see Sections 1.8–1.9). In fact, the
functor (21) factorizes through the conventional derived category D.X-qcoh/.

Composing the forgetful functor with the functor of underived global sections of
complexes of quasicoherent sheaves, one obtains a triangulated functor

�.X;� / WH 0..X;L; 0/-qcoh/ �! D.Z-mod/: (22)

Alternatively, the functor (22) can be defined as the functor Hom.X;L;0/-qcoh.OX ;� /,
where the structure sheaf OX is viewed as a matrix factorization .U0;U1/ of the
potential 0 2 L.X/ with the components U0 DOX and U1˝L˝1=2 D 0.

Similarly, composing the functors (20) and (21), one obtains a triangulated
functor

R�.X;� / W Dco..X;L; 0/-qcoh/ �! D.Z-mod/; (23)

which can be alternatively described as the functor HomDco..X;L;0/-qcoh/.OX ;�Œ��/.
In the case when LDOX , the functors (22) and (23) can be viewed as taking values
in the derived category of Z=2-graded (2-periodic) complexes of abelian groups.



1272 Alexander I. Efimov and Leonid Positselski

For any quasicoherent matrix factorizations K and M of a potential w 2 L.X/
on the scheme X there is a natural isomorphism of complexes of abelian groups

Hom.X;L;w/-qcoh.K;M/' �.X;HomX-qc.K;M//; (24)

and more generally, for any quasicoherent matrix factorizations K and E of potentials
w0 and w00 2 L.X/ and a quasicoherent matrix factorization M of the potential
w0Cw00 on the scheme X there is a natural isomorphism of complexes

Hom.X;L;w 0Cw 00/-qcoh.K˝OX E ; M/' Hom.X;L;w 00/-qcoh.E ;HomX-qc.K;M//:

(25)

Lemma B.2.3. Let K be a quasicoherent matrix factorization and M be an injective
quasicoherent matrix factorization of a potential w 2 L.X/. Let

HomX-qc.K;M/ �! J

be a closed morphism with a coacyclic cone between quasicoherent matrix factor-
izations of the potential 0 2 L.X/ from the matrix factorization of quasicoherent
internal Hom into an injective matrix factorization J . Then the induced morphism

�.X;HomX-qc.K;M// �! �.X;J /

is a quasi-isomorphism of complexes of abelian groups.

Proof. Let 0!HomX-qc.K;M/! I � be a right resolution of the matrix factoriza-
tion HomX-qc.K;M/ by injective matrix factorization Ii . Then one can take J to
be the total matrix factorization of the complex I � constructed by passing to the
infinite direct sums along the diagonals. Notice that the functor of global sections of
quasicoherent sheaves on X commutes with the infinite direct sums. It remains to
show that the functor �.X;� /DHom.X;L;w 00/-qcoh.OX ;� / preserves the exactness
of the sequence 0!HomX-qc.K;M/! I � (cf. the proof of Proposition B.2.2).

In fact, we claim that the Ext groups from flat quasicoherent sheaves to the com-
ponents of HomX-qc.K;M/ vanish in the abelian category X-qcoh. This assertion
follows from the results of [Positselski 2012, Lemma 2.5.3(c) and Corollary 4.1.9(b)]
(the argument is based essentially on the above Lemma A.1). �

We recall the constructions of the (underived and derived) direct and inverse
image functors for matrix factorizations from Sections 1.8–1.9 and 3.5–3.6. In
addition to the conventional adjunction of the (underived) direct and inverse image
functors f� and f � (as mentioned in Section 1.8), there is also the “internal Hom
adjunction”, formulated as follows.

Let f WZ!Y be a morphism of separated Noetherian schemes, L be a line bundle
on Y , and w0, w00 2 L.Y / be two global sections. Let K 2 H 0..Y;L; w0/-qcoh/
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and M 2H 0..Z; f �L; f �w00/-qcoh/ be quasicoherent matrix factorizations on
Y and Z. Then there is a natural isomorphism

f�HomZ-qc.f
�K;M/'HomY -qc.K; f�M/ (26)

of quasicoherent matrix factorizations of the potential w00�w0 on Y .
Now let X be a separated scheme of finite type over a field k, and let w0; w00 2

O.X/ be two global regular functions on X . Denote by p1 and p2 the natural
projectionsX�kX�X , and consider the regular functionw01Cw

00
2Dp

�
1w
0Cp�2w

00

on X �k X . Let � WX !X �k X denote the diagonal map.
Let N and K be quasicoherent matrix factorizations of the potentials w0 and w00

on X . Then there is a natural isomorphism N ˝OX K ' ��.N ˝k K/ of matrix
factorizations of the potentialw0Cw00 onX . Therefore, given a quasicoherent matrix
factorization M of the potential w0Cw00 2O.X/, one has a natural isomorphism
of Z=2-graded complexes of abelian groups

Hom.X;O;w 00/-qcoh.K;HomX-qc.N ;M//

' Hom.X�kX;O;w 01Cw 002 /-qcoh.N ˝k K; ��M/: (27)

Proposition B.2.3. (a) Assume that the matrix factorization N is coherent and the
matrix factorization M is injective. Let ��M! J be a closed morphism with a
coacyclic cone between quasicoherent matrix factorizations of the potentialw01Cw

00
2

on X �k X from the direct image ��M into an injective matrix factorization J .
Then there is a natural closed morphism with a coacyclic cone HomX-qc.N ;M/!

p2�HomX�kX -qc.p
�
1N ;J / of quasicoherent matrix factorizations of the poten-

tial w00 on X , and the matrix factorization p2�HomX�kX -qc.p
�
1N ;J / is injective.

(b) There is a natural isomorphism of Z=2-graded complexes of abelian groups

Hom.X;O;w 00/-qcoh.K; p2�HomX�kX -qc.p
�
1N ;J //

' Hom.X�kX;O;w 01Cw 002 /-qcoh.N ˝k K; J /:

Proof. Part (a): The desired closed morphism is provided by the composition

HomX-qc.N ;M/ ' p2���HomX-qc.�
�p�1N ;M/

' p2�HomX�kX -qc.p
�
1N ; ��M/ �! p2�HomX�kX -qc.p

�
1N ;J /:

To prove that this morphism has a coacyclic cone, pick a right resolution I � of
the matrix factorization ��M on X �k X by injective matrix factorizations, and
take J to be the totalization of the complex of matrix factorizations I � constructed
by passing to the infinite direct sums along the diagonals.

Then the complex of matrix factorizations 0!HomX�kX -qc.p
�
1N ; ��M/!

HomX�kX -qc.p
�
1N ; I

�/ is acyclic since for any affine open subscheme U �X the
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higher Ext spaces between the components of the restrictions of p�1N and ��M to
U �kU vanish. The latter assertion follows from the adjunction of derived functors
L�� and �� D R�� or p�1 D Lp�1 and Rp1� together with the agreement of the
derived direct/inverse images of (complexes of) quasicoherent sheaves with the
compositions of morphisms of separated Noetherian schemes.

It remains to show that our complex will stay acyclic after applying the direct im-
age functorp2�. According to the argument in the proof of Lemma B.2.3, the compo-
nents of the matrix factorizations HomX�kX -qc.p

�
1N ; I

i / are acyclic for the direct
image; so are the components of the matrix factorization HomX�kX -qc.p

�
1N ;��M/,

in view of the above local argument and since for any affine open subscheme U �X ,
the higher Ext spaces between the components of the restrictions of p�1N and��M
to X �k U vanish. The latter assertion is checked in the same way as above.

Finally, the claim that the matrix factorization in question is injective follows
from the computation in part (b), which shows that the left-hand side is an exact
functor of the argument K, because the right-hand side is.

Part (b) is straightforward:

Hom.X;O;w 00/-qcoh.K; p2�HomX�kX -qc.p
�
1N ;J //

' Hom.X�kX;O;w 002 /-qcoh.p
�
2K; HomX�kX -qc.p

�
1N ;J //

' Hom.X�kX;O;w 01Cw 002 /-qcoh.p
�
1N ˝OX�kX p

�
2K; J /

' Hom.X�kX;O;w 01Cw 002 /-qcoh.N ˝k K; J /: �

B.2.4. Hochschild cohomology. Our goal in the rest of this appendix is to compute
the Hochschild (co)homology of the DG-category DGabs..X;O; w/-coh/ corre-
sponding to the triangulated category Dabs..X;O; w/-coh/. The word “correspond-
ing” here means, first of all, that there is a natural equivalence of (triangulated)
categoriesH 0DGabs..X;O; w/-coh/'Dabs..X;O; w/-coh/ (see [Positselski 2011b,
Section 1.2]).

As the absolute derived category is constructed from the homotopy category of
matrix factorizations using the Verdier localization procedure, so the DG-category
DGabs..X;O; w/-coh/ is obtained by applying a DG-version of localization to the
DG-category of coherent matrix factorizations .X;O; w/-coh of the potential w
on the scheme X (see Section 1.2). Several such localization procedures are
known, leading to naturally quasiequivalent DG-categories. As the Hochschild
(co)homology of DG-categories are preserved by quasiequivalences [Polishchuk and
Positselski 2012, Sections 2.1 and 2.4], it is not very important which localization
procedure to choose. To be specific, let us say that we prefer Drinfeld’s localiza-
tion [Drinfeld 2004]. Similarly one localizes the DG-category .X;O; w/-qcoh and
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obtains a DG-category DGco..X;O; w/-qcoh/ “corresponding” to the coderived
category Dco..X;O; w/-qcoh/.

Our method will naturally allow us to compute the Hochschild cohomology
HH�.DGabs..X;O; w/-coh// together with its structure of an associative (in fact,
supercommutative, but we will neither prove nor use this fact) Z=2-graded algebra
over k. Similarly, the Hochschild homology HH�.DGabs..X;O; w/-coh// will be
computed together with its structure of a Z=2-graded module over the Z=2-graded
associative algebra HH�.DGabs..X;O; w/-coh//.

Let X be a separated scheme of finite type over a field k and w 2 O.X/ be a
global regular function. Assume that the morphism of schemes w W X ! A1

k
is

flat. Consider the Cartesian square X �k X and endow it with the potential (global
function) w2�w1 D p�2 .w/�p

�
1 .w/.

Any Z=2-graded complex of quasicoherent sheaves K� on X can be viewed
as a matrix factorization of the potential 0 2 O.X/. Furthermore, one can take
its direct image ��K� with respect to the diagonal embedding � WX !X �k X

and consider it as a quasicoherent matrix factorization of the potential w2�w1 on
X �k X . Given a bounded Z-graded complex of quasicoherent sheaves K�, one
can associate a Z=2-complex with it (by taking direct sums of all terms with the
same parity) and then apply the above constructions.

Theorem B.2.4. Assume that there exists a closed subscheme Z � X such that
wjZ D 0, the function w is noncritical on X nZ, and the schemeZ admits a smooth
stratification over k. In particular, if the field k is perfect, it suffices to require
that the function w on X have no critical values but zero (and take Z D fw D 0g).
Then there is a natural isomorphism between the Hochschild cohomology algebra
HH�.DGabs..X;O; w/-coh// and the Ext algebra

HomDco..X�kX;O;w2�w1/-qcoh/.��D�X ; ��D
�

X Œ��/;

where D�X denotes a dualizing complex on X .

Proof. By the definition, the Hochschild cohomology algebra of a Z=2-graded
DG-category DG is the Z=2-graded algebra HomD.DG˝kDGop-mod/.DG;DGŒ��/,
where the Hom is taken in the conventional derived category D.DG˝k DG

op-mod/

of DG-bimodules over DG (or DG-modules over DG˝k DGop) between two copies
of the diagonal DG-bimodule DG over DG [Polishchuk and Positselski 2012,
Sections 2.4 and 3.1].

Specializing to the case of the DG-category DGw D DGabs..X;O; w/-coh/,
we notice, first of all, that the contravariant Serre–Grothendieck duality functor
M 7�!HomOX .M;D�X / (see Section 2.5) provides a quasiequivalence between the
DG-categories DGabs..X;O; w/-coh/op and DGabs..X;O;�w/-coh/. Furthermore,
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the external tensor product is a DG-functor

DGabs..X;O;�w/-coh/˝k DGabs..X;O; w/-coh/

�! DGabs..X �k X; O; w2�w1/-coh/; (28)

which, according to Proposition B.2.2 and Theorem B.2.2, induces an equiv-
alence between the derived categories of (left or right) DG-modules over the
two DG-categories in the left-hand and right-hand sides. Composing the Serre–
Grothendieck duality with the external tensor product, we obtain (perhaps, after
replacing our DG-categories with naturally quasiequivalent ones) a DG-functor

DGabs..X;O; w/-coh/op
˝k DG

abs..X;O; w/-coh/

�! DGabs..X �k X; O; w2�w1/-coh/ (29)

having the same property with respect to the derived categories of DG-modules
over the left-hand and right-hand sides as the DG-functor (28).

We are interested specifically in the diagonal right DG-module over DGop
w˝kDGw ,

that is, the contravariant functor from DG
op
w ˝k DGw to the DG-category of Z=2-

graded complexes of k-vector spaces taking an object .Mop;K/ to the complex
HomDG.K;M/. It is claimed that the diagonal DG-module is naturally quasi-
isomorphic to the DG-module obtained by composing the DG-functor (29) with
the right DG-module over the right-hand side represented by the object

��D�X 2DG
abs..X�kX; O; w2�w1/-coh/�DGco..X�kX; O; w2�w1/-qcoh/:

Indeed, for any quasicoherent matrix factorizations K and N of the potentials w
and �w on X there is a natural isomorphism of Z=2-graded complexes of abelian
groups (see (27))

Hom.X;O;w/-qcoh.K;HomOX .N ;D
�

X //

' Hom.X�kX;O;w2�w1/-qcoh.N ˝k K; ��D�X /:

Proposition B.2.3 shows how one can pass from this isomorphism to a quasi-isomor-
phism of the similar complexes of morphisms in the DG-categories DGco..X;O; w/
-qcoh/ and DGco..X �k X; O; w2�w1/-qcoh/.

Now morphisms between representable DG-modules in the derived category of
DG-modules over a DG-category DG are computed by the complex of morphisms
in DG between the representing objects, so our proof is finished. �

Remark B.2.4. Given a separated scheme X of finite type over a field k, let D�X
be a dualizing complex on X and D�X�kX be a dualizing complex on X �k X such
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that D�X ' R�Š.D�X�kX /. Then the antiequivalence of absolute derived categories

HomX�kX -qc.� ; D�X�kX / W D
abs..X �k X; O; w1�w2/-coh/op

' Dabs..X �k X; O; w2�w1/-coh/

from Proposition 2.5 transforms the object��OX 2Dabs..X�kX;O; w1�w2/-coh/
into the object ��D�X 2 Dabs..X �k X; O; w2 �w1/-coh/ (see Proposition 3.7).
Therefore, in the assumptions of Theorem B.2.4, the Hochschild cohomology
algebra HH�.Dabs..X;O; w/-coh// of the DG-category DGabs..X;O; w/-coh/ can
be also identified with the Ext algebra

HomDabs..X�kX;O;w1�w2/-coh/.��OX ; ��OX Œ��/op

(cf. Remark B.2.7 below).

B.2.5. Cotensor product of complexes of quasicoherent sheaves. Let X be a sepa-
rated Noetherian scheme. Then there is a tensor product functor on the coderived
category of (Z-graded complexes of) flat quasicoherent sheaves on X (cf. [Murfet
2007, Chapter 6])

˝OX W D
co.X-qcohfl/�Dco.X-qcohfl/ �! Dco.X-qcohfl/; (30)

and a similar functor of the tensor product on the coderived categories of flat and
arbitrary quasicoherent sheaves (see [Positselski 2012, Section 4.12])

˝OX W D
co.X-qcohfl/�Dco.X-qcoh/ �! Dco.X-qcoh/: (31)

Now let D�X be a dualizing complex on X (viewed, as usual, as a finite com-
plex of injective quasicoherent sheaves). Then the equivalence of triangulated
categories Dco.X-qcohfl/' Dco.X-qcoh/ constructed using the dualizing complex
D�X (see [Murfet 2007, Chapter 8]) transforms the tensor product functor (30) into
the tensor product functor (31). One can use the same equivalence of categories
to define a tensor triangulated category structure with the unit object D�X on the
coderived category Dco.X-qcoh/. We call this operation the cotensor product of
complexes of quasicoherent sheaves on X and denote it by

�D�X
W Dco.X-qcoh/�Dco.X-qcoh/ �! Dco.X-qcoh/: (32)

Explicitly, N � �D�X
M� D D�X ˝OX HomX-qc.D�X ;N

�/˝OX HomX-qc.D�X ;M
�/

for any complexes of injective quasicoherent sheaves N � and M� on X (cf.
Lemma 1.7(b)) and also N � �D�X

M� D HomX-qc.D�X ;N
�/ ˝OX M� for any

complex of injective quasicoherent sheaves N � and any complex of quasicoherent
sheaves M� on X .

Recall that the full triangulated subcategory of bounded-below complexes in
Dco.X-qcoh/ is equivalent to DC.X-qcoh/ (see [Positselski 2010, Lemma 2.1 and
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Remark 4.1] or [Positselski 2012, Lemma A.1.2]). Denote by DCcoh.X-qcoh/ the
full triangulated subcategory in DC.X-qcoh/ consisting of complexes with coherent
cohomology sheaves; then the category DCcoh.X-qcoh/ can be also viewed as a full
triangulated subcategory in Dco.X-qcoh/.

For any complexes of quasicoherent sheaves N � and M� on X there is a natural
morphism of complexes of quasicoherent sheaves

D�X ˝OX HomX-qc.D�X ;N
�/˝OX HomX-qc.D�X ;M

�/

�!HomX-qc.HomX-qc.N �;D�X /˝OX HomX-qc.M�;D�X /; D
�

X / (33)

on X defined in terms of the composition morphisms

HomX-qc.D�X ;K
�/˝OX HomX-qc.K�;D�X / �!HomX-qc.D�X ;D

�

X /

for complexes of quasicoherent sheaves K� onX and the natural quasi-isomorphism

D�X ˝OX HomX-qc.D�X ;D
�

X /˝OX HomX-qc.D�X ;D
�

X / �! D�X :

Theorem B.2.5. For any bounded-below complexes of injective quasicoherent
sheaves N � and M� with coherent cohomology sheaves on a separated Noetherian
scheme X with a dualizing complex D�X , the natural morphism (33) is a homotopy
equivalence of bounded-below complexes of injective quasicoherent sheaves on X
with coherent cohomology sheaves.

Proof. By Lemma 2.5(b) and (c), both sides of (33) are bounded-below complexes
of injective quasicoherent sheaves. Since the functor

HomX-qc.� ;D�X / W D.X-qcoh/ �! D.X-qcoh/

takes DCcoh.X-qcoh/� DC.X-qcoh/ into D�.X-coh/� D�.X-qcoh/ and vice versa,
while the derived tensor product functor

˝
L
X W D

�.X-qcoh/�D�.X-qcoh/ �! D�.X-qcoh/

takes D�.X-coh/�D�.X-coh/ into D�.X-coh/, the right-hand side has coherent
cohomology sheaves.

It remains to prove the homotopy equivalence claim. Since the homotopy category
of bounded-below complexes of injectives is equivalent to DC.X-qcoh/, one only
has to check that the map is a quasi-isomorphism. Let us first show that it suffices
to do so for complexes of sheaves on affine open subschemes U �X .

Indeed, for any quasicoherent sheaves E and K on X there is a natural mor-
phism of quasicoherent sheaves HomX-qc.E ;K/jU ! HomU -qc.EjU ;KjU / on U .
The morphism of complexes of quasicoherent sheaves HomX-qc.E�;K�/jU !
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HomU -qc.E�jU ;K�jU / is a quasi-isomorphism whenever the complex E� has co-
herent cohomology, K� is a complex of injective quasicoherent sheaves, and one of
the complexes E� and K� is finite.

Finally, the tensor product in the right-hand side preserves quasi-isomorphisms
of bounded-above complexes of flat quasicoherent sheaves, while the one in the
left-hand side is well-defined on the coderived category of (complexes of) flat
quasicoherent sheaves. It remains to notice that the functor HomX-qc.D�X ;� / in
the equivalence of categories in Theorem 2.5 agrees with the restrictions to open
subschemes since so does its inverse functor D�X ˝OX �.

Now that we are on an affine scheme U , pick bounded-above complexes of vector
bundles 0N � and 0M� isomorphic to HomU -qc.N �;D�U / and HomU -qc.M�;D�U /,
respectively, in D�.U -coh/. Given the isomorphisms

HomU -qc.D�U ;HomU -qc.
0N �;D�U //'HomU -qc.

0N �;HomU -qc.D�U ;D
�

U //

'HomU -qc.
0N �;OU /;

and similar isomorphisms for 0M� in Dco.U -qcohfl/, the assertion reduces to the
obvious isomorphism of complexes

D�X ˝OX HomU -qc.
0N �;OU /˝OU HomU -qc.

0M�;OU /
' HomU -qc.

0N �˝OX
0M�; D�U /: �

For any complexes of quasicoherent sheaves K� and M� on X we denote by
Hom˚X-qc.K

�;M�/ the complex of quasicoherent sheaves on X obtained by totaliz-
ing the bicomplex of quasicoherent internal Hom sheaves HomX-qc.Ki ;Mj / by
taking infinite direct sums along the diagonals. Assuming that M� is a complex
of injective quasicoherent sheaves, the complex Hom˚X-qc.K

�;M�/ is absolutely
acyclic with respect to X-qcoh whenever the complex K� is (see Lemma 2.5(a)).

In the same assumption, the complex Hom˚X-qc.K
�;M�/ is also coacyclic with

respect to X-qcoh whenever the complex of quasicoherent sheaves K� is acyclic
and bounded from above [Positselski 2010, Lemma 2.1]. Therefore, representing
the second argument of Hom˚X-qc by complexes of injectives, one can construct the
right derived functors

RHom˚X-qc W D
abs.X-qcoh/op

�Dco.X-qcoh/ �! Dabs.X-qcoh/ (34)

and

RHom˚X-qc W D
�.X-qcoh/op

�Dco.X-qcoh/ �! Dco.X-qcoh/ (35)

of the functor Hom˚X-qc.
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For any complexes of quasicoherent sheaves N � and M� on X there is a natural
morphism of complexes of quasicoherent sheaves

N �˝OX HomX-qc.D�X ;M
�/ �!Hom˚X-qc.HomX-qc.N �;D�X /; M

�/ (36)

on X defined in terms of the composition/evaluation morphism

N �˝OX HomX-qc.N �;D�X /˝OX HomX-qc.D�X ;M
�/ �!M�:

Proposition B.2.5. For any bounded-below complex of injective quasicoherent
sheaves N � with coherent cohomology sheaves and any complex of injective quasi-
coherent sheaves M� on X , the natural morphism (36) is a homotopy equivalence
of complexes of injective quasicoherent sheaves on X .

Proof. It suffices to check that the morphism (36) is an isomorphism in Dco.X-qcoh/.
Since both sides of the desired isomorphism are well-defined as functors of the ar-
gument N � 2DC.X-qcoh/ taking values in Dco.X-qcoh/, one can freely replace N �

with any quasi-isomorphic bounded-below complex of quasicoherent sheaves. The
same applies to the bounded-above complex HomX-qc.N �;D�X / in the right-hand
side of (36).

Since all the functors involved are local in X up to isomorphism in the relevant
triangulated categories, it suffices to consider complexes of sheaves over affine open
subschemesU �X (see Remark 1.3). Representing the object HomU -qc.N �;D�U /2
D�.U -coh/� D�.U -qcoh/ by a bounded-above complex of vector bundles 0N �, it
remains to notice the isomorphism of complexes

HomU -qc.
0N �;D�U /˝OU F � 'Hom˚U -qc.

0N �; D�U ˝OU F �/

for any complex of quasicoherent sheaves F � on U and point out that the functor
Hom˚U -qc.

0N �;� / takes a homotopy equivalence

D�U ˝OU HomU -qc.D�U ;M
�/ �!M�

to a homotopy equivalence. �

In the particular cases when either N � is a finite complex of quasicoherent
sheaves with coherent cohomology sheaves, or N � is a bounded-below complex of
quasicoherent sheaves with coherent cohomology sheaves and M� is a bounded-
below complex of quasicoherent sheaves, the direct sum totalization of the bicomplex
HomX-qc in the right-hand side of the isomorphism (36) in the coderived category
Dco.X-qcoh/ is no different from the conventional direct product totalization.

Finally, letX be a separated scheme of finite type over a field k and� WX!Speck
be its structure morphism. Then D�X ' �

COSpeck (see Section 3.7) is a natural
choice of the dualizing complex on X . Let � �k � W X �k X ! Spec k be the
structure morphism of the Cartesian square ofX over k. Then the dualizing complex
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D�X�kX D .� �k �/
COSpeck on X �k X is quasi-isomorphic to the external tensor

product D�X ˝k D
�

X , and one has D�X '�
C.D�X�kX /' R�Š.D�X ˝k D

�

X /, where
� WX !X �k X denotes the diagonal map.

The equivalence of categories Dco.X�kX-qcohfl/'Dco.X�kX-qcoh/ constructed
using the dualizing complex D�X�kX and the similar equivalence Dco.X-qcohfl/'

Dco.X-qcoh/ constructed using the dualizing complex D�X transform the external
tensor product functor

˝k W D
co.X-qcohfl/�Dco.X-qcohfl/ �! Dco.X �k X-qcohfl/

into the external tensor product functor

˝k W D
co.X-qcoh/�Dco.X-qcoh/ �! Dco.X �k X-qcoh/

since so do the functors D�X ˝OX � and D�X�kX ˝OX�kX �.
Let N � and M� be two complexes of injective quasicoherent sheaves on X , and

let J � be a complex of injective quasicoherent sheaves on X �k X isomorphic to
N �˝kM� in Dco.X�kX-qcoh/. Then in the coderived categories of quasicoherent
sheaves one has

N ��D�X
M�
D D�X ˝OX �

�.HomOX .D
�

X ;N
�/˝k HomOX .D

�

X ;M
�//

' D�X ˝OX �
�HomOX .D

�

X�kX
;J �/' R�Š.N �˝kM�/

by [Positselski 2012, Theorem 5.15.3] applied to the proper morphism (actually,
closed embedding) �. We have obtained the formula

N ���COSpeck
M�
' R�Š.N �˝kM�/ (37)

for the cotensor product of complexes of quasicoherent sheaves on the scheme X
(see the end of Section 1.8 for the notation Rf Š as applied to objects of the coderived
category of quasicoherent sheaves).

B.2.6. Cotensor product of matrix factorizations. The equivalences of triangulated
categories

Dco..X;L; w00/-qcohfl/' Dco..X;L; w00/-qcoh/
Dco..X; L; w0Cw00/-qcohfl/' Dco..X; L; w0Cw00/-qcoh/

constructed using a dualizing complex D�X (see Section 2.5) transform the tensor
product functor (14) into the tensor product functor (15). So one can use the same
equivalences of categories together with the similar equivalence

Dco..X;L; w0/-qcohfl/' Dco..X;L; w0/-qcoh/
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(constructed using the same dualizing complex D�X ) in order to define a triangulated
functor of two arguments

�D�X
W Dco..X;L; w0/-qcoh/�Dco..X;L; w00/-qcoh/

�! Dco..X; L; w0Cw00/-qcoh/; (38)

which we call the cotensor product of matrix factorizations.
As in the case of complexes of quasicoherent sheaves, one explicitly has

N �D�X
MD D�X ˝OX HomX-qc.D�X ;N /˝OX HomX-qc.D�X ;M/

for any injective quasicoherent matrix factorizations N and M on X , and also

N �D�X
MDHomX-qc.D�X ;N /˝OX M

for any injective quasicoherent matrix factorization N and any quasicoherent matrix
factorization M onX . As in Section B.2.3, N and M must be matrix factorizations
of two sections w0 and w00 of the same line bundle L on a scheme X ; then the
cotensor product N �D�X

M is a matrix factorization of the section w0Cw00 of the
line bundle L.

Remark B.2.6. While a matrix factorization version of Proposition B.2.5 is pre-
sented below, Remark B.2.3 explains the reason why a matrix factorization version of
Theorem B.2.5 cannot be formulated in the way similar to the version for complexes
of quasicoherent sheaves above. Still, let N and M be coherent matrix factoriza-
tions of sections w0 and w00 of the same line bundle L on a separated Noetherian
scheme X with enough vector bundles. Let P and Q be coherent matrix factoriza-
tions of the potentials �w0 and �w00 2 L.X/ isomorphic to HomX-qc.N ;D�X / and
HomX-qc.M;D�X / in the respected coderived categories.

Let E� and F� be left resolutions of the matrix factorizations P and Q by locally
free matrix factorizations of finite rank (of the respected potentials). Then the total-
izations of the bounded-below complexes of matrix factorizations HomX-qc.E�;D�X /,
HomX-qc.F�;D�X /, and HomX-qc.E�˝OX F�; D�X / represent objects naturally iso-
morphic to N , M and N�D�X

M in the coderived categories of matrix factorizations
of the potentials w0, w00, and w0Cw00 (cf. Corollary 2.5).

For any quasicoherent matrix factorizations M and N of sections w0 and w00

of the same line bundle L on the scheme X , there is a natural morphism of quasi-
coherent matrix factorizations of the section w0Cw00 of the line bundle L on X

N ˝OX HomX-qc.D�X ;M/ �!HomX-qc.HomX-qc.N ;D�X /; M/ (39)

constructed in the same way as it was done for complexes of quasicoherent sheaves
in Section B.2.5.
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Proposition B.2.6. For any coherent matrix factorization N and injective quasico-
herent matrix factorization M of sections w0 and w00 of the same line bundle L on
a separated Noetherian scheme X , the natural morphism (39) is an isomorphism
in the coderived category of quasicoherent matrix factorizations of the potential
w0Cw00 2 L.X/.

Proof. The argument follows the lines of the proof of Proposition B.2.5. The left-
hand side of the desired isomorphism is well-defined as a functor of the argument
N 2 Dco..X;L; w00/-qcoh/ taking values in Dco..X; L; w0Cw00/-qcoh/, while the
right-hand side is well-defined as a functor of the argument N2Dabs..X;L;w00/-coh/
taking values, say, in the same coderived category. Besides, the right-hand side,
viewed as an object of the coderived category, only depends on the matrix factor-
ization HomX-qc.N ;D�X / viewed as an object of the absolute derived category.

Furthermore, the contravariant Serre–Grothendieck duality HomX-qc.� ;D�X /
is well-defined as a functor Dabs..X;L; w00/-qcoh/! Dabs..X;L;�w00/-qcoh/ and
takes Dabs..X;L; w00/-coh/�Dabs..X;L; w00/-qcoh/ into Dabs..X;L;�w00/-coh/�
Dabs..X;L;�w00/-coh/, inducing an equivalence between these two subcategories
(see Proposition 2.5). In particular, one can conclude that all the functors involved
are local in X , and it suffices to prove the desired assertion for matrix factorizations
over affine open subschemes U �X .

Now let K be a coherent matrix factorization of the potential �w00 isomorphic
to HomU -qc.N ;D�U / in Dabs..U;L;�w00/-qcoh/, and let E� be its left resolution by
locally free matrix factorizations of the same potential�w002L.U /. Then the matrix
factorization HomX-qc.K;M/ is isomorphic in Dco..X; L; w0Cw00/-qcoh/ to the
totalization of the complex of matrix factorizations HomX-qc.E�;M/ constructed
by taking infinite direct sums along the diagonals; and the matrix factorization
N 'HomX-qc.K;D�X / can be described similarly (cf. the proof of Corollary 2.5).

It remains to notice that the functor of tensoring with HomX-qc.E�;OX / and
totalizing by taking infinite direct sums along the diagonals takes the homotopy
equivalence

D�X ˝OX HomX-qc.D�X ;M/ �!M

to a homotopy equivalence of matrix factorizations. �

As in Section B.2.5, we finish by discussing the case of a separated scheme
X of finite type over a field k. From now on we also assume that L D OX . So
let w0; w00 2O.X/ be two global regular functions on X ; as in Section B.2.2, we
consider the regular function w01Cw

00
2 D p

�
1w
0Cp�2w

00 on X �k X . We use the
dualizing complexes D�X D �

COSpeck and D�X�kX D .� �k �/
COSpeck .

The equivalence of categories

Dco..X �k X; O; w01Cw
00
2/-qcohfl/' Dco..X �k X; O; w01Cw

00
2/-qcoh/
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constructed using the dualizing complex D�X�kX and the similar equivalences of
coderived categories of matrix factorizations of the potentials w0 and w00 on X
constructed using the dualizing complex D�X transform the external tensor product
functor (cf. (9))

˝k W D
co..X;O; w0/-qcohfl/�Dco..X;O; w00/-qcohfl/

�! Dco..X �k X; O; w01Cw
00
2/-qcohfl/

into the external tensor product functor

˝k W D
co..X;O; w0/-qcoh/�Dco..X;O; w00/-qcoh/

�! Dco..X �k X; O; w01Cw
00
2/-qcoh/

since so do the functors D�X ˝OX � and D�X�kX ˝OX�kX �.
Let N and M be injective quasicoherent matrix factorizations of the potentials

w0 and w00 on X , and let J be an injective quasicoherent matrix factorization of
the potential w01Cw

00
2 on X �k X isomorphic to N ˝kM in

Dco..X �k X; O; w01Cw
00
2/-qcoh/:

Then in the coderived categories of quasicoherent matrix factorizations one has

N �D�X
MD D�X ˝OX �

�.HomOX .D
�

X ;N /˝k HomOX .D
�

X ;M//

' D�X ˝OX �
�HomOX .D

�

X�kX
;J /' R�Š.N ˝kM/

by the result of Theorem 3.8 applied to the proper morphism �. We have obtained
the formula

N ��COSpeck
M ' R�Š.N ˝kM/ (40)

for the cotensor product of quasicoherent matrix factorizations on the scheme X .

B.2.7. Hochschild homology. Let X be a separated scheme of finite type over a
field k and � WX ! Spec k be its structure morphism. Let w 2O.X/ be a global
regular function; as in Section B.2.4, we assume that the morphism of schemes
w WX ! A1

k
is flat. Consider the scheme X �k X and endow it with the potential

w2�w1 D p
�
2 .w/�p

�
1 .w/. Let � WX !X �k X denote the diagonal morphism.

Theorem B.2.7. In the assumptions of Theorem B.2.4, there is a natural isomor-
phism between the Hochschild homology moduleHH�.DGabs..X;O; w/-coh// over
the algebra HH�.DGabs..X;O; w/-coh// and the Ext module

HomDco..X�kX;O;w2�w1/-qcoh/.��OX ; ��D�X Œ��/
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over the algebra

HomDco..X�kX;O;w2�w1/-qcoh/.��D�X ; ��D
�

X Œ��/:

Here D�X denotes the dualizing complex �COSpeck on X .

Proof. By the definition, the Hochschild homology of a Z=2-graded DG-category
DG is the Z=2-graded vector space TorDG˝kDGop

� .DG;DG/ for the diagonal right
and left DG-modules DG over the DG-category DG ˝k DGop [Polishchuk and
Positselski 2012, Sections 2.4 and 3.1]. This is the conventional derived tensor
product (“of the first kind”) of a left and a right DG-module over a small DG-category.
The Hochschild cohomology algebra HomD.DG˝kDGop/.DG;DGŒ��/ acts on the
Hochschild homology space via its action on, say, the first argument of the Tor.

As in the proof of Theorem B.2.4, we set DGw DDGabs..X;O; w/-coh/; accord-
ingly, DG�w D DGabs..X;O;�w/-coh/ and

DGw2�w1 D DGabs..X �k X; O; w2�w1/-coh/:

The DG-functor DGop
w ˝k DGw ! DGw2�w1 (29) induces a fully faithful functor

between the homotopy categories H 0.DGw/
op˝k H

0.DGw/! H 0.DGw2�w1/

such that every object in the target category can be obtained from objects in the
image using the operations of a cone and the passage to a direct summand.

Let DG.mod-DGop
w ˝k DGw/ denote the DG-category version of the (conven-

tional) derived category of right DG-modules over the DG-category DG
op
w ˝k DG

(i.e., contravariant DG-functors from DG
op
w ˝kDG into the DG-category DG.k-vect/

of Z=2-graded complexes of k-vector spaces). Let DG.mod-DGop
w ˝k DGw/

0 �

DG.mod-DGop
w ˝k DGw/ denote the full DG-subcategory of DG-modules corre-

sponding to compact objects of the derived category D.mod-DGop
w ˝kDGw/ of right

DG-modules.
The derived tensor product with the left DG-module DGw over DGop

w ˝k DGw
can be viewed as a covariant DG-functor DG.mod-DGop

w ˝k DGw/! DG.k-vect/.
We are interested in the restriction of this DG-functor to the DG-subcategory
DG.mod-DGop

w ˝k DGw/
0; let us denote it by

F W DG.mod-DGop
w ˝k DGw/

0
�! D.k-vect/:

There is a natural DG-functor DGop
w ˝k DGw ! DG.mod-DGop

w ˝k DGw/
0 as-

signing to any object of DGop
w ˝k DGw the contravariant DG-functor represented by

it. Similarly one constructs a DG-functor DGw2�w1 ! DG.mod-DGop
w ˝k DGw/

0

whose composition with the DG-functor DGop
w ˝k DGw ! DGw2�w1 is naturally

quasi-isomorphic to the DG-functor DGop
w ˝k DGw ! DG.mod-DGop

w ˝k DGw/
0.

It is claimed that the composition of the DG-functor

DGw2�w1 �! DG.mod-DGop
w ˝k DGw/

0
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with the DG-functor F W DG.mod-DGop
w ˝k DGw/

0! D.k-vect/ is naturally quasi-
isomorphic to the DG-functor HomDGw2�w1

.��OX ; � /. Since the derived cat-
egories of left DG-modules over DGw1�w2 and DG

op
w ˝k DGw are equivalent, it

suffices to construct a quasi-isomorphism between the compositions of the two
DG-functors in question with the DG-functor DGop

w ˝k DGw ! DGw2�w1 .
Indeed, let .Kop;M/ be an object of DG

op
w ˝k DGw . Then the functor of the

(derived or underived) tensor product with the diagonal left DG-module DGw takes
the right DG-module over DGop

w ˝k DGw represented by .Kop;M/ to the complex
of k-vector spaces HomDGw .K;M/. Substituting K D HomX-qc.N ;D�X / with
N 2 DG�w and assuming M to be represented by an injective matrix factorization
isomorphic to the given coherent one in DGco..X;O; w/-qcoh/, we have to compute
the complex of k-vector spaces Hom.X;O;w/-qcoh.HomX-qc.N ;D�X /;M/.

Now the formula (24) together with Lemma B.2.3 allow us to interpret this com-
plex as R�.X;HomX-qc.HomX-qc.N ;D�X /;M//. According to Proposition B.2.6
together with the formula (40), this is the same as R�.X; R�Š.N ˝kM//, or, in
other notation, HomDGco..X;O;0/-qcoh/.OX ; R�Š.N˝kM//. Finally, the adjunction
of �� and R�Š allows us to rewrite the complex in question as

HomDGco..X�kX;O;w2�w1/-qcoh/.��OX ; N ˝kM/:

The desired quasi-isomorphism of DG-functors is obtained.
It remains to recall that, according to the proof of Theorem B.2.4, the diagonal

right DG-module DGw over DGop
w ˝k DGw is represented by the object ��D�X 2

DGw2�w1 , in order to finish our proof here. �

Remark B.2.7. The Hochschild homology module HH�..DGabs.X;O; w/-coh//
over the Hochschild cohomology algebra HH�..DGabs.X;O; w/-coh// can be also
computed as the Ext module

HomDco..X�kX;O;w1�w2/-qcoh/.��OX ; ��D�X Œ��/

over the Ext algebra

HomDabs..X�kX;O;w1�w2/-coh/.��OX ; ��OX Œ��/op;

according to Remark B.2.4. Moreover, the contravariant Serre duality for matrix
factorizations over X�kX can be used in order to obtain an alternative proof of our
Hochschild homology computation. Indeed, for any coherent matrix factorizations
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N and M of the potentials �w and w on X there are natural quasi-isomorphisms

HomDGabs..X;O;w/-coh/.HomX-qc.N ;D�X /;M/

'HomDGabs..X;O;w/-coh/.HomX-qc.N ;D�X /;HomX-qc.HomX-qc.M;D�X /;D
�

X //

'HomDGabs..X�kX;O;w1�w2/-coh/.HomX-qc.N;D�X/˝kHomX-qc.M;D�X/;��D
�

X/

'HomDGabs..X�kX;O;w1�w2/-coh/.HomX�kX -qc.N˝kM;D�X�kX /;��D
�

X /

'HomDGabs..X�kX;O;w2�w1/-coh/.��OX ;N˝kM/

by Proposition 2.5 and the proof of Theorem B.2.4. In other words, while the right
diagonal DG-module DGw over DGop

w ˝k DGw is represented by the object

��D�X 2 DG
abs..X �k X; O; w2�w1/-coh/

as a contravariant DG-functor on DG
op
w ˝k DGw � DGw2�w1 , the left diagonal

DG-bimodule DGw over DGop
w ˝k DGw is represented by the object

��O�X 2 DG
abs..X �k X; O; w2�w1/-coh/

as a covariant DG-functor on

DGop
w ˝k DGw � DGw2�w1 D DGabs..X �k X; O; w2�w1/-coh/:

B.2.8. Direct sum over the critical values. Let X be a separated scheme of fi-
nite type over a field k and � W X ! Spec k be its structure morphism. As in
Sections B.2.5–B.2.7 (see also Section 3.7), we choose the dualizing complex
D�X ' �

COSpeck on X . Let w 2O.X/ be a global regular function on X such that
the morphism of schemes w WX ! A1

k
is flat (cf. [Orlov 2004; 2012]).

Let c1, : : : , cn 2 k be a finite number of different elements of the ground field.
Assume that there exist closed subschemes Zi � X such that the function w is
noncritical onXn.Z1[� � �[Zn/, the restriction ofw toZi is equal to the constant ci ,
and the schemes Zi admit smooth stratifications over k.

In particular, if the field k is perfect, it suffices to require that the function w has
only a finite number of critical values c1, : : : , cn 2 A1

k
(i.e., the open subscheme

A1
k;f
� A1

k
is nonempty; see Section B.2.1), and all of these values belong to the

field k (rather than its algebraic closure). When the field k has zero characteristic,
the former condition holds automatically. Then one simply takes Zi to be the zero
locus of the function wi � ci on X .

Consider the Cartesian square X �k X with the global function w2 � w1 D
p�2 .w/ � p

�
1 .w/ on it. Let � W X ! X �k X denote the diagonal morphism.

The following result is to be compared with [Polishchuk and Positselski 2012,
Corollary 4.10].
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Corollary B.2.8. There are natural isomorphisms of Z=2-graded k-algebrasLn
iD1HH

�.DGabs..X; O; w� ci /-coh//
' HomDco..X�kX;O;w2�w1/-qcoh/.��D�X ; ��D

�

X Œ��/

' HomDabs..X�kX;O;w1�w2/-coh/.��OX ; ��OX Œ��/op: (41)

There are also natural isomorphisms of Z=2-graded k-modulesLn
iD1HH�.DG

abs..X; O; w� ci /-coh//
' HomDco..X�kX;O;w2�w1/-qcoh/.��OX ; ��D�X Œ��/

' HomDco..X�kX;O;w1�w2/-qcoh/.��OX ; ��D�X Œ��/ (42)

over the Z=2-graded k-algebra (41).

Proof. For each i D 1, : : : , n, let Yi denote the open subscheme X n
S
j¤i Zi �X .

Let wi 2O.Yi / denote the restriction of the regular function w�ci to Yi . The argu-
ment is based on the results of Sections B.2.4 and B.2.7 applied to the schemes Yi
(or their open subschemes) endowed with the potentials wi .

The restriction of morphisms (in the coderived categories) of quasicoherent
matrix factorizations to the open subschemes Yi �X defines a Z=2-graded k-algebra
morphism from the (middle or) right-hand side to the left-hand side of (41), and
a Z=2-graded k-module morphism from the (middle or) right-hand side to the
left-hand side of (42). It remains to show that these morphisms are isomorphisms.

For this purpose, one can start with replacing ��D�X or ��OX in the second
argument of the Hom spaces in the middle or right-hand sides of (41) and (42) with
an injective matrix factorization J on X �k X representing the same object in the
coderived category. Then one notices that the restriction from X �k X to its open
subscheme V D

Sn
iD1 Yi �k Yi does not change the Hom spaces in the right-hand

sides, as the image of � is contained in V .
Finally, one writes down the Čech resolution of the matrix factorization J jV

corresponding to the covering of the scheme V by its open subschemes Yi�kYi . This
is a finite acyclic complex of injective matrix factorizations, so applying the functor
Hom.V;O; .w2�w1/jV /-qcoh.K;� / from any quasicoherent matrix factorization K
preserves its acyclicity. Since the Hom spaces on any intersection of at least two
different open subschemes in the covering are zero by Theorems B.2.4– B.2.7 (as
w is noncritical on Yi \Yj for any i ¤ j ), the desired isomorphisms follow. �

Remark B.2.8. The Hochschild cohomology algebra and the Hochschild homology
module of the DG-category version DGb.X-coh/ of the bounded derived category
Db.X-coh/ of (complexes of) coherent sheaves on a separated scheme X of finite
type over a field k can be computed in the way similar to (but simpler than) the
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above. The answers are the same as in Theorems B.2.4 and B.2.7:

HH�.DGb.X-coh// ' HomD.X�kX-qcoh/.��D�X ; ��D
�

X Œ��/

' HomDb.X�kX-coh/.��OX ; ��OX Œ��/op (43)

and
HH�.DG

b.X-coh// ' HomD.X�kX-qcoh/.��OX ; ��D�X Œ��/; (44)

the only difference being that DGb.X-coh/ is a Z-graded DG-category and the right-
hand sides describe the Hochschild (co)homology as a Z-graded algebra and module.
The only assumption is that the scheme X should admit a smooth stratification
over k (i.e., it suffices that the field k be perfect).
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the original manuscript. The manuscript will be reformatted to use the journal’s
preferred fonts and layout.

Proofs. Page proofs will be made available to authors (or to the designated corre-
sponding author) at a Web site in PDF format. Failure to acknowledge the receipt of
proofs or to return corrections within the requested deadline may cause publication
to be postponed.
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