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We generalize the homotopy exact sequences of étale fundamental groups for
proper separable fibrations to the case where fibrations are not necessarily proper
and separable. To treat the case where fibrations admit nonreduced geomet-
ric fibers, we introduce orbifolds within the framework of schemes and study
their fundamental groups. As an application, we give a criterion for simple-
connectedness of elliptic surfaces over an algebraically closed field by classifying
simply connected orbifold curves.
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1. Introduction

In algebraic geometry, the determination of fundamental groups of algebraic varieties
is a classical problem. However, the problem is difficult, especially in the positive-
characteristic case, where few results are known except for the one-dimensional case.
In this paper, we develop a method to compute étale fundamental groups of fibered
regular schemes, and apply the method to study elliptic surfaces, which provides
insight into the computation of étale fundamental groups of fibered varieties.

We denote the étale fundamental group of a pointed connected locally Noetherian
scheme .X;x/ by �1.X;x/. In the introduction, we omit the geometric point x for
simplicity. Let f W X ! S be a proper separable morphism between connected
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locally Noetherian schemes with OS D f�OX . The fibration f W X ! S may be
characterized by the following conditions:

(1) S is a connected locally Noetherian scheme.

(2) f WX ! S is a faithfully flat proper morphism.

(3) The homomorphism OS ! f�OX associated to f is an isomorphism.

(4) Any geometric fiber of f is reduced.

Choose a geometric fiber i WX0!X of f . In this case, Grothendieck showed in
[SGA 1 1971, X.1] that the morphisms i and f induce a homotopy exact sequence

�1.X0/
i�
���! �1.X /

f�
���! �1.S/ �! 1:

However, Condition (4) is too strong to compute fundamental groups of fibered
varieties, e.g., elliptic surfaces, which may admit nonreduced geometric fibers.

Introducing orbifolds and their fundamental groups, we generalize the above
homotopy exact sequence to the case where fibrations admit nonreduced geometric
fibers. Instead of considering all general connected locally Noetherian schemes, we
restrict ourselves to regular integral schemes. We consider a fibration f WX!S sat-
isfying the following conditions (see Definition 4.17 for slightly weaker conditions):

(10) X and S are regular integral schemes.

(20) f WX ! S is a faithfully flat morphism of finite type.

(30) OS is integrally closed in f�OX .

(40) The geometric generic fiber of f is reduced.

For example, all elliptic fibrations over curves satisfy these conditions (Section 6A).
In order to give a similar exact sequence with the same homomorphism i� in the
general case (Section 4C), we have to replace �1.S/ by its extension. To this end,
we introduce orbifolds within the framework of schemes and study their fundamental
groups (Section 3).

An orbifold .S;B/ is defined as a locally Noetherian normal scheme S with
data of ramifications B (Definition 3.6). Any orbifold curve over an algebraically
closed field may be regarded as a DM stack (Theorem B.1). However, in the higher
dimensional case, our orbifolds are different from DM stacks and more suitable
than DM stacks for our studies (Remark B.2). We denote the fundamental group of
a pointed orbifold .S;B; s/ by �1.S;B; s/ (Definition 3.22). The local invariants
associated to the nonreduced geometric fibers of f (Section 4B) endow S with an
orbifold structure. Our main result is the following (Section 4C):
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Theorem 1.1. Let .X;S; f / be a triple satisfying Condition (C�) (Definition 4.17).
Take the orbifold .S;B/ associated to f (Definition 4.23). Choose a connected
reduced geometric fiber i WX0!X of f over a regular point (e.g., the geometric
generic fiber of f ). Take a geometric point x0 on X0. Put x WD i.x0/ and s WDf .x/.
The morphisms i and f induce canonical homomorphisms i� W �1.X0;x0/ !

�1.X;x/ and f orb
� W �1.X;x/! �1.S;B; s/, respectively (Definition 4.25). Then

the sequence

�1.X0;x0/
i�
���! �1.X;x/

f orb
�
����! �1.S;B; s/ �! 1

is exact.

Next, we apply the above theorem to the case where f WX ! S is the structure
morphism of an elliptic surface over an algebraically closed field (Section 6).
We determine the data of ramifications B of the orbifold .S;B/ induced by f
(Section 6B), and determine which orbifold is induced by an elliptic surface
(Section 6C). As a result, we obtain a criterion for simple-connectedness of elliptic
surfaces (Section 6D):

Theorem 1.2. Let k be an algebraically closed field of characteristic p � 0. Let
C be a connected proper smooth k-curve. Let .X;C; f / be a relatively minimal
elliptic fibration (Definition 6.1). For each closed point s on C , we set

ms WD

�
m if f �1.s/ is of type mIn (n� 0) (the Kodaira symbol);
1 otherwise:

By ns we denote the maximum integer satisfying p−ns and ns jms (if p D 0, then
ns Dms). Then X is simply connected if and only if all of the following conditions
are satisfied:

(1) �.OX / > 0.

(2) C Š P1
k

.

(3) #fs 2 C.k/ j ns > 1g � 2.

(4) gcd.ns; nt /D 1 for s 6D t .

(5) If p > 0 and f �1.s/ is of type mIn (n> 0), then p−m.

(6) If p > 0 and .f �1.s//red is isomorphic to an ordinary elliptic curve, then the
OC;s-module .R1f�OX /s is torsion-free.

Furthermore, each of Conditions (1)–(6) is necessary.

We make a remark on Conditions (5) and (6) in the above theorem, which
appear only in the positive-characteristic case. Under certain technical assumptions,
Katsura and Ueno [1985, §§6–7] observed that an elliptic surface admits a nontrivial
étale covering if one of Conditions (5) and (6) is not satisfied. Localizing elliptic
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surfaces with respect to the base curve and using Galois cohomology groups, we
study this phenomenon in a systematic way (Section 6B).

We may give plenty of examples of elliptic fibrations with multiple fibers by
means of the algebraic analog [Lang 1986; Cossec and Dolgachev 1989, V, §4]
(Section 6C) and the rigid analytic analog [Mitsui 2013] of Kodaira’s logarithmic
transformation [1964, §4] for complex analytic elliptic fibrations. As for topological
fundamental groups in the complex analytic case, Moishezon [1977, Theorem 11,
II, §2, p. 191] gave a similar criterion by means of deformations of elliptic fibrations
in the category of differentiable manifolds. Although the determination of topolog-
ical fundamental groups is an old problem, no references can be found for étale
fundamental groups. Our proof is purely algebraic and applies in any characteristic.

Let us briefly review the studies on the fundamental group of an elliptic surface
f W X ! C in the complex analytic case. Take a smooth fiber i W X0! X of f .
The morphism i induces a homomorphism i� W �1.X0/! �1.X /. In order to study
�1.X /, Iitaka [1971, §4] determined Coker i�. He reduced the problem to the
case where X does not admit any multiple fiber by using Kodaira’s logarithmic
transformation and van Kampen’s theorem. In a similar way, Xiao [1991] studied
the case of more general compact complex analytic fibered surfaces. In another
point of view, the group Coker i� is relatively easy to deal with because it may be
interpreted as the fundamental group of the orbifold curve induced by the elliptic
fibration f [Ue 1986, §1; Friedman and Morgan 1994, 1.3.6]. If �.OX / D 0,
then the map f between the underlying topological spaces may be regarded as
a higher dimensional analog of a Seifert fibration [Seifert 1933; Thornton 1967].
Thurston [1980, §13.4] studied circle bundles over two-dimensional orbifolds in
the context of the geometry of three-manifolds, which clarified the structure of
Seifert fibrations: a Seifert fibration may be regarded as a circle bundle over a
two-dimensional orbifold. After these studies, Ue [1986, §1] showed that �1.X / is
isomorphic to the fundamental group of the orbifold curve induced by f whenever
�.OX / > 0. Using the orbifold curve, Friedman and Morgan [1994, 2.2.1 and 2.7.2]
discussed the general case in a systematic way. In the present paper, we develop
this idea of using orbifolds within the framework of schemes, and give homotopy
exact sequences as explained above.

As for Im i�, no difference appears between the characteristic-zero case and the
positive-characteristic case (Theorem 6.23). However, some differences appear
between the algebraic case of characteristic zero and the complex analytic case
(Remark 6.24). As for Coker i�, no difference appears between the algebraic case
of characteristic zero and the complex analytic case. As mentioned above, the group
Coker i� is isomorphic to the fundamental group of the orbifold curve induced by f .
Thus, it follows from the fact that any compact complex analytic curve is algebraic.
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However, several differences appear between the characteristic-zero case and the
positive-characteristic case, as explained below.

In the algebraic case of characteristic zero and in the complex analytic case,
the local structure of the orbifold curve is determined by the multiplicities of the
multiple fibers. On the other hand, in the positive-characteristic case, the local
structure is more complicated. This is because the completion of the local ring of
the base curve at any point admits lots of finite coverings even if we fix the degree
of the covering. For example, the completion admits infinitely many Artin–Schreier
coverings. In particular, the resolution of multiple fibers in the positive characteristic
case is much more difficult [Katsura and Ueno 1985, §§6–7; 1986, §2; Liu et al.
2004, §8.6] than that in the algebraic case of characteristic zero and in the complex
analytic case [Kodaira 1963, §6]. In order to determine the local structure of the
orbifold, we develop the above resolution of multiple fibers and study the minimal
regular models of torsors of elliptic curves (Section 6B). In conclusion, multiple
fibers of additive type [Katsura and Ueno 1986] do not affect the local structure of
the orbifold, and the local uniformizations of the orbifold are given by certain finite
cyclic coverings (Proposition 6.11).

In order to show Theorem 1.2, we classify simply connected orbifold curves
that are locally uniformized by finite cyclic coverings (Theorem 1.3(1)). More
precisely, we prove a generalized Fenchel conjecture (Theorem 1.3(2)). The original
conjecture states that any finitely generated Fuchsian group admits a torsion-free
subgroup of finite index, which was proved by a purely group-theoretic approach
in [Fox 1952] and [Chau 1983]. The conjecture is equivalent to the following:
any compact complex analytic orbifold curve minus finitely many points may be
trivialized by a finite branched covering except for some trivial cases. In other
words, except for some trivial cases, there exists a finite branched covering of a
given compact complex analytic curve minus finitely many points with prescribed
ramifications. Using the geometry of orbifold curves, we generalize this result in
any characteristic (Section 5):

Theorem 1.3. Let .C;B/ be a connected cyclic orbifold k-curve (Definition 5.1).
Take the tame part .C;Bt / and the wild part .C;Bw/ of .C;B/ (Definition 3.8).
Put M WD # Supp B and N WD # Supp Bt (Definition 3.6). For each s 2 Supp Bt ,
we put ns WD ŒB

t
s WKs �. Then:

(1) The orbifold .C;B/ is simply connected (Definition 3.19) if and only if one of
the following conditions is satisfied:
(a) C Š A1

k
, M D 0, and p D 0.

(b) C Š P1
k

, Bt D B, M � 2, and gcd.ns; nt /D 1 for s 6D t .

(2) There exists an orbifold trivialization of .C;B/ (Definition 3.10) if and only if
neither of the following conditions are satisfied:
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(a) C Š P1
k

, M DN D 1, and e.C;Bw/ > 0 (Definition 5.14).
(b) C Š P1

k
, Bt D B, M D 2, and ns 6D nt where Supp B D fs; tg.

Let us explain our proof. The problem may be reduced to showing the existence
or nonexistence of the following four types of coverings:

(1) a covering of the projective line with at most two tame branch points;

(2) a covering of the projective line with three tame branch points;

(3) a covering of a curve with one tame branch point;

(4) a covering of a curve with one wild branch point.

Case (1) is easy. In the other cases, difficulties arise when we construct a covering
of a curve with prescribed ramifications. In Case (2), we use the techniques of
degeneration of a covering of a curve over a mixed characteristic ring [Raynaud
1994, §6]. In Cases (3) and (4), we produce rational functions on étale coverings
with prescribed zeros and poles in order to apply Kummer theory and Artin–Schreier–
Witt theory.

Finally, the classification of simply connected orbifolds and the above studies on
the homotopy exact sequences give the desired criterion for simple-connectedness
of elliptic surfaces.

2. Notation and conventions

We denote the cardinality of a set A by #A and the degree of a finite field extension
L=K by ŒL W K�. We denote the field of fractions of an integral domain R by
Frac R and the strict Henselization of a local ring R by Rsh. For a ring R, an
R-curve is a faithfully flat separated R-scheme of finite type and of pure relative
dimension one. We denote the geometric genus of a proper curve C over a field
by g.C /. The multiplicity of a nonzero Weil divisor D on a locally Noetherian
normal scheme X is the maximum positive integer m such that there exists a Weil
divisor D0 on X satisfying D DmD0. A scheme Y over a scheme X is called an
étale covering space of X if the structure morphism Y ! X is finite, étale, and
surjective. A scheme X is said to be simply connected if X is connected and does
not admit any nontrivial connected étale covering space of X .

Let X be a connected locally Noetherian scheme. Take a geometric point
x W Spec� ! X on X , where � is a separably closed field. The pair .X;x/
is called a pointed connected locally Noetherian scheme. We denote the étale
fundamental group of .X;x/ by �1.X;x/. We sometimes omit x and denote
�1.X;x/ by �1.X / for simplicity.
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3. Orbifolds

Definition 3.1. A morphism f between schemes is said to be separable if f is flat
and the fiber of f over any point is geometrically reduced [SGA 1 1971, X.1.1].
A morphism f W X ! Y between schemes is said to be generically separable if
f maps any point x of codimension zero to a point y of codimension zero and
induces a separable morphism Spec OX ;x! Spec OY;y . A morphism f WX ! Y

between schemes is called a quasiseparable-covering (qsc) morphism if f is a
locally quasifinite generically separable morphism. We say that a morphism f

between locally Noetherian schemes preserves codimensions if f maps any point
to a point of the same codimension.

Remark 3.2. A separable-covering morphism between integral schemes is conven-
tionally defined as a finite generically separable morphism. The notion of a qsc
morphism is a generalization of this notion.

We frequently use the following:

Lemma 3.3. (1) Any locally Noetherian normal scheme is the disjoint union of
locally Noetherian integral schemes [Matsumura 1989, Exercise 9.11].

(2) The normalization of any locally Noetherian normal integral scheme X in
any finite separable field extension of the function field of X is finite over X

[Matsumura 1989, §33, Lemma 1].

(3) Any separated qsc morphism X ! Y between connected locally Noetherian
normal schemes decomposes into an open immersion X !Z and a finite qsc
morphism Z! Y where Z is a connected locally Noetherian normal scheme
[EGA IV3 1966, 8.12.11].

Lemma 3.4 [Matsumura 1989, 9.4 and 15.1]. Let � WA! B be a homomorphism
between Noetherian rings, and Q a prime ideal of B. Put P WD ��1.Q/. Then:

(1) ht Q� ht P C dim BQ=PBQ.

(2) If � is flat, then the equality in (1) holds.

(3) Any qsc morphism between locally Noetherian normal schemes preserves
codimensions.

Lemma 3.5 (Zariski–Nagata purity [SGA 1 1971, X.3.1]). Let f W X ! Y be a
qsc morphism between locally Noetherian schemes. Assume that X is normal and
Y is regular. Then any irreducible component of the non-étale locus of f is of
codimension one.

Definition 3.6. Let S be a locally Noetherian normal scheme. By P .S/ we denote
the set of all points on S of codimension one. For each s2P .S/ put Ks WDFrac Osh

S;s
.

Take a separable closure Ks of Ks . Let B be a map that associates s 2 P .S/ with
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a finite Galois extension Bs=Ks in Ks and satisfies the following condition: let
Supp B WD fs 2 P .S/ jBs 6DKsg; then Supp B is locally finite. The pair .S;B/
is called an orbifold. For a locally Noetherian normal scheme S , we denote the
orbifold obtained by equipping S with the trivial orbifold structure by .S/. Let P

be a property of schemes (e.g., connected, quasicompact, regular). We say that an
orbifold .S;B/ is P if S has the property P . Let P be a property of finite field
extensions (e.g., trivial, tame, wild, cyclic). We say that an orbifold .S;B/ is P if
Bs=Ks has the property P for any s 2 P .S/.

Remark 3.7. In the above definition, we restrict ourselves to the case where the data
of ramifications are given only in codimension one for our purpose of application
to homotopy exact sequences (see Remark 4.26 for a generalization).

Definition 3.8. Let .S;B/ be an orbifold. By Bt we denote the map that associates
s 2 P .S/ with the maximal tame field extension Bt

s=Ks in Bs . Then .S;Bt / is a
cyclic orbifold. The orbifold .S;Bt / is called the tame part of .S;B/. Assume
that .S;B/ is cyclic. By Bw we denote the map that associates s 2 P .S/ with the
minimum field extension Bws =Ks in Bs such that the equality Bt

sBws D Bs holds.
Then .S;Bw/ is a cyclic orbifold. The orbifold .S;Bt / is called the wild part of
.S;B/.

Lemma 3.9. Let u WS 0!S be a qsc morphism between locally Noetherian normal
schemes. Take s0 2 P .S 0/. Put s WD u.s0/. Then s 2 P .S/. Put Ks WD Frac Osh

S;s

and K0s0 WD Frac Osh
S 0;s0

. Then u induces a finite field extension K0s0=Ks .

Proof. We may assume that S and S 0 are affine. The first statement follows from
Lemma 3.4(3). The last statement follows from Lemma 3.3(3). �
Definition 3.10. Let .S;B/ and .S 0;B0/ be two orbifolds. We use the notation
introduced in Lemma 3.9. Composing the field extensions K0s0=Ks and B0s0=K

0
s0 ,

we obtain a field extension B0s0=Ks . Assume that there exists a Ks-algebra homo-
morphism �s0 WBs!B0s0 for all s0 2P .S 0/. Then u is called an orbifold morphism
.S 0;B0/! .S;B/. If �s0 is an isomorphism for all s0 2 P .S 0/, then u is called
an orbifold étale morphism .S 0;B0/! .S;B/. If u is finite, orbifold étale, and
surjective, then .S 0;B0/ is called an orbifold étale covering space of .S;B/. If
.S 0;B0/ is a trivial orbifold and an orbifold étale covering space of .S;B/, then u

is called an orbifold trivialization of .S;B/.

Remark 3.11. The homomorphisms �s0 are not part of the data of an orbifold
morphism. The image of �s0 does not depend on the choice of �s0 since Bs=Ks is
Galois. The composite of any two orbifold (étale) morphisms is an orbifold (étale)
morphism.

Definition 3.12. Let .S;B/ be an orbifold. We use the notation introduced in
Lemma 3.9. Assume that there exists a Ks-algebra homomorphism  s0 WK

0
s0!Bs
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for all s0 2 P .S 0/ (e.g., u is étale). Since Bs=K
0
s0 is Galois, we may define an

orbifold .S 0;B0/ by putting B0s0 WDBs for all s0 2P .S 0/. Then u is an orbifold étale
morphism .S 0;B0/! .S;B/. We say that u induces an orbifold étale morphism
.S 0;B0/! .S;B/.

Lemma 3.13. Let f W X ! S and g W Y ! S be two qsc morphisms between
locally Noetherian normal schemes. Take the normalization Z of X �S Y and
the canonical projections f 0 W Z! Y and g0 W Z! X . Then f 0 and g0 are qsc
morphisms between locally Noetherian normal schemes.

Proof. We may assume that X , Y , and S are affine. By (1) and (3) of Lemma 3.3,
we have only to show the case where f and g are finite qsc morphisms between
integral schemes. In this case, the lemma follows from Lemma 3.3(2). �
Lemma 3.14. Take a separable closure L of a field L. Let M and N be two finite
field extensions of L in L. Put P WDM \N and Q WDMN . By zQ we denote the
Galois closure of Q=L. Then the L-algebra M ˝L N is L-isomorphic to a finite
product of Q-subfields of zQ. If M=L is Galois then M ˝L N ŠQŒP WL� over L,
where the right-hand side is the product of ŒP WL� copies of Q. If M=L and N=L

are Galois, then zQDQ.

Proof. This follows from the L-algebra isomorphism M ˝L N Š P ˝L Q. �
By C (resp. Cét) we denote the category consisting of locally Noetherian normal

schemes and qsc morphisms (resp. étale morphisms). By Corb (resp. Corb;ét) we
denote the category consisting of orbifolds and orbifold morphisms (resp. orbifold
étale morphisms). We define a faithful functor Forb W C! Corb by S 7! .S/. In the
same way, we define a faithful functor Forb;ét W Cét! Corb;ét. By G W Cét! C and
Gorb W Corb;ét! Corb we denote the canonical faithful functors. Then Forb ıG is
naturally isomorphic to Gorb ıForb;ét.

Proposition 3.15. The categories C, Cét, Corb, and Corb;ét admit any finite fiber
product. In any case, the (underlying) scheme of any finite fiber product is isomor-
phic to the normalization of the fiber product of the (underlying) schemes, and any
base change of any (orbifold) étale morphism is an (orbifold) étale morphism. The
functors Forb, Forb;ét, G, and Gorb preserve any finite fiber product.

Proof. Let us show the first statement. Lemma 3.13 shows the cases of C and Cét.
Let .S1;B1/ and .S2;B2/ be two orbifolds over an orbifold .S0;B0/. We define
an orbifold .S3;B3/ in the following way. Take the normalization S3 of S1�S0

S2

and the canonical projection pi W S3 ! Si for i D 0, 1, and 2. Take s 2 P .S3/.
Put Ki WD Frac Osh

Si ;pi .s/
and K3 WD Frac Osh

S3;s
. The morphism pi induces a field

extension K3=Ki . Put Li WD Bi;pi .s/. Take a separable closure K3 of K3. By
L0i=K3 we denote the unique Galois extension in K3 that is K3-isomorphic to the
lifting of the Galois extension Li=Ki via K3=Ki . We define B3;s=K3 as the Galois
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extension L0
1
L0

2
=K3. We apply the same procedure to all s2P .S3/. Then we obtain

an orbifold .S3;B3/ and an orbifold morphism pi W .S3;B3/! .Si ;Bi/ for iD0; 1,
and 2. By construction, the orbifold .S3;B3/ is the fiber product of .S1;B1/ and
.S2;B2/ over .S0;B0/ in Corb. Thus, the category Corb admits any finite fiber
product. Assume that .S1;B1/ is orbifold étale over .S0;B0/. By definition, we
may regard L0, L1, and L2 as field extensions of K0 satisfying L1 D L0 � L2.
Since K3 �K1˝K0

K2 �L1˝K0
L2 ŠL

ŒL1WK0�
2

(Lemma 3.14), we may regard
K3 as a K2-subfield of L2. Then L2 Š B3;s over K2. Thus, the morphism
p2 W .S3;B3/! .S2;B2/ is orbifold étale. In particular, the category Corb;ét admits
any finite fiber product. The other statements follow from the construction. �
Definition 3.16. Let .S;B1/ and .S;B2/ be two orbifolds. For i D 1 and 2, the
identity on S is an orbifold morphism .S;Bi/! .S/. We define the composite
orbifold .S;B1B2/ of .S;B1/ and .S;B2/ as the fiber product of .S;B1/ and
.S;B2/ over .S/ in Corb.

Remark 3.17. By the proof of Proposition 3.15, the field .B1B2/s is equal to the
composite field of B1;s and B2;s for any s 2P .S/, where we regard the extensions
B1;s and B2;s of Ks as subfields of a fixed separable closure Ks .

Proposition 3.18. For i D 1 and 2, let ui W .Si/! .S;Bi/ be an orbifold trivi-
alization. Take the normalization S3 of S1 �S S2 and the canonical projection
pi W S3! Si for i D 1 and 2, which is an orbifold morphism .S3/! .Si/. Then
the orbifold morphism .S3/! .S;B1B2/ induced by u1 ı p1 and u2 ı p2 is an
orbifold trivialization.

Proof. The proposition follows from Lemma 3.14 and Remark 3.17. �
Definition 3.19. An orbifold .S;B/ is said to be simply connected if .S;B/ is
connected and does not admit any nontrivial connected orbifold étale covering
space. Let .S;B/ be a connected orbifold. Take a geometric point s W Spec�! S

on S , where � is a separably closed field. Assume that the image of s is a regular
point on S and not contained in the closure of Supp B (e.g., the image is the
generic point of S). The triple .S;B; s/ is called a pointed connected orbifold.
Let S D .S;B; s W Spec� ! S/ and S0 D .S 0;B0; s0 W Spec�0 ! S 0/ be two
pointed connected orbifolds. A pointed orbifold (étale) morphism S0 ! S is
a pair of an orbifold (étale) morphism u W .S 0;B0/ ! .S;B/ and a morphism
ˆ W Spec�0! Spec� between schemes such that the diagram

Spec�0 s0 //

ˆ
��

S 0

u

��
Spec� s // S

is commutative.
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Remark 3.20. By Zariski–Nagata purity (Lemma 3.5), any orbifold étale morphism
to .S;B/ is étale over the image of s.

Let .S;B; s/ be a pointed connected orbifold. By C.S;B/ we denote the category
of finite orbifold étale .S;B/-orbifolds and orbifold étale .S;B/-morphisms. We
define a functor Fs from C.S;B/ to the category of finite sets by sending an object
.S 0;B0/! .S;B/ to the underlying set of S 0�S s. We refer to [SGA 1 1971, V.5]
for the definition of a Galois category and a fiber functor (a fundamental functor).

Theorem 3.21. The category C.S;B/ is a Galois category with the fiber functor Fs .

Proof. We show the theorem in the same way as in the case of the category of finite
étale schemes over a pointed connected locally Noetherian scheme (see [SGA 1
1971, V.7]). We have only to verify that the pair .C.S;B/;Fs/ satisfies Axioms
(G1)–(G6) in [loc. cit., V.4]:

(G1) The orbifold .S;B/ is the final object in C.S;B/. The category C.S;B/ admits
any finite fiber product (Proposition 3.15).

(G2) The empty set equipped with the trivial orbifold structure is the initial object
in C.S;B/. Take an object u W .S 0;B0/! .S;B/ in C.S;B/. Assume that a
finite group G acts on an orbifold .S 0;B0/ over .S;B/ in C.S;B/. By S 00

we denote the spectrum of the OS -algebra of G-invariant sections of OS 0 .
Then S 00 is the quotient of S 0 by G in the category of S-schemes [loc. cit.,
V.1.8]. By v W S 0! S 00 we denote the morphism induced by the canonical
inclusion homomorphism OS 00 ! OS 0 . The morphism u factors as uD w ı v.
Since u is finite, the morphism v is finite. Since S is locally Noetherian and
u is finite, the morphism w is finite. Take a point s0 on S 0 of codimension
one. By I.s0/ � G we denote the inertia group of s0. We use the notation
B0s0=K

0
s0 introduced in Definition 3.10. Put s00 WD v.s0/, B00s00 WD B0s0 , and

K00s00 WD Frac Osh
S 00;s00

. Then the image under the homomorphism K00s00 !K0s0

induced by v is equal to .K0s0/
I.s0/. Furthermore, the extension B00s00=K

00
s00 is

finite and Galois. By construction, the pair .S 00;B00/ is an orbifold that is a
quotient of .S 0;B0/ by G in C.S;B/.

(G3) Lemma 3.3(1) implies that any morphism u W .S 0;B0/! .S;B/ in C.S;B/ fac-
tors as wıv W .S 0;B0/! .S 00;B00/! .S;B/ where v is a strict epimorphism,
w is a monomorphism, and .S 00;B00/ is a direct summand of .S;B/.

(G4) By definition, the functor Fs is left-exact.

(G5) By definition, the functor Fs preserves any finite direct sum and preserves
the quotient by any action of any finite group. Take a strict epimorphism
u in C.S;B/. We have to show that Fs.u/ is surjective. By s we denote the
image of s on S . By base change, we may replace S by Spec OS;s . Then u

is étale (Remark 3.20). Thus, the surjectivity follows from [loc. cit., V.3.5].
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(G6) Take a morphism u in C.S;B/. Assume that Fs.u/ is an isomorphism. We
have to show that u is an isomorphism. By s we denote the image of s

on S . By base change, we may replace S by Spec OS;s . Then u is étale
(Remark 3.20). Thus, it follows from [loc. cit., V.3.7].

Therefore, the pair .C.S;B/;Fs/ satisfies Axioms (G1)–(G6) in [loc. cit., V.4],
which proves the theorem. �

Definition 3.22. Let .S;B; s/ be a pointed connected orbifold. The functor Fs is
pro-representable by a profinite group (see [loc. cit., V.5]). This group is called the
fundamental group of .S;B; s/ and denoted by �1.S;B; s/. We sometimes omit s

and denote �1.S;B; s/ by �1.S;B/ for simplicity.

Let SD .S;B; s/ and S0D .S 0;B0; s0/ be two pointed connected orbifolds. Any
pointed orbifold (étale) morphism u WS0!S induces an (injective) homomorphism
u� W�1.S

0/!�1.S/ (see [loc. cit., V.6]). Since any connected finite étale S -scheme
induces a connected finite orbifold étale .S;B/-orbifold, we obtain a canonical
surjective homomorphism �S W �1.S/! �1.S; s/. If the regular locus of S is open
(e.g., S is excellent), then the singular locus of S is a closed subset of codimension
at least two. Thus, Zariski–Nagata purity (Lemma 3.5) shows the following:

Proposition 3.23. Let S D .S;B; s/ be a pointed connected orbifold. By S0

we denote the regular locus of S . Assume that S0 is an open subset of S . By
u W S0! S we denote the pointed orbifold étale morphism induced by the inclusion
morphism S0! S . Then the homomorphism u� W �1.S0/! �1.S/ induced by u

is an isomorphism. If S is trivial and regular, then �S is an isomorphism and, in
particular, �1.S/Š �1.S/.

Example 3.24. The homomorphism �.S/ W �1..S//! �1.S/ is not injective in
general, where .S/ is the trivial orbifold associated to S and we omit the geometric
points. Let k be an algebraically closed field of characteristic zero, n an integer
greater than one, and � a primitive n-th root of unity. Put S 0 WD A2

k
. Take the

coordinate functions .x;y/ of S 0. We define an automorphism � on S 0 by .x;y/ 7!
.�x; �y/. Take the quotient u W S 0 ! S of � . The scheme S is normal but not
regular. The morphism u ramifies only at the origin o of S 0. Since �1.S

0 n fog/Š

�1.S
0/Š 1 by Zariski–Nagata purity (Lemma 3.5), we obtain the isomorphisms

�1..S//Š Z=nZ and �1.S/Š 1. Thus, the homomorphism �.S/ is not injective.

4. Homotopy exact sequences

4A. Coverings of fibrations.

Lemma 4.1. Let f W X ! S be a quasicompact morphism between locally Noe-
therian schemes. Assume that X is reduced. Then the following are equivalent:
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(1) S is reduced and f is dominant.

(2) The homomorphism OS ! f�OX associated to f is injective.

Assume that (1) and (2) hold and that X is normal and integral. Then S is integral
and the following statements are equivalent:

(3) S is normal and the function field of S is algebraically closed in that of X .

(4) OS is integrally closed in f�OX .

If f is generically separable, then (3) and (4) are equivalent to the following:

(5) S is normal and the generic fiber of f is geometrically integral.

Proof. We may assume that S is affine. Put R WD �.S;OS / and W WD �.X;OX /.
Since W is reduced and the kernel of the homomorphism R!W associated to
f is the defining ideal of the closure of f .X /, the first equivalence holds. Let us
show the other statements. Since X is irreducible and f is dominant, the scheme S

is irreducible, which implies that S is integral. By K and L we denote the function
fields of S and X , respectively. By K0 and R0 we denote the algebraic closure
of K in L and the integral closure of R in K0, respectively. Then R0 DR if and
only if R is normal and K0 DK. Since X is normal and integral, the ring W is
normal and integral [Liu 2002, 4.1.5], which implies that R0 is the integral closure
of R in W . Thus, the second equivalence holds. The last statement follows from
[EGA IV2 1965, 4.6.3]. �

Lemma 4.2. Let u W X ! Y and v W Y ! Z be morphisms between integral
schemes. Assume that v ı u is dominant and generically separable and that v is
integral. Then u is dominant and generically separable and v is surjective and
generically separable.

Proof. Since v ıu is dominant and v is closed, the morphism v is surjective. Since
v is integral and dominant, the preimage of the generic point of Z under v consists
of the generic point of Y [Matsumura 1989, 9.3 (ii)]. Furthermore, since v ıu is
dominant and generically separable, the morphism u is dominant and the morphism
v is generically separable. Note the following: for any field extensions L=K, M=L,
and N=L, the ring M ˝L N may be regarded as a subring of M ˝K N since
M ˝K N ŠM ˝L N ˝L .L˝K L/ and L Š L˝K K � L˝K L. Thus, the
morphism u is generically separable. �

Definition 4.3. Condition (D) on morphisms f WX !S , u0 WX 0!X , u WS 0!S ,
and f 0 W X 0! S 0 between locally Noetherian schemes consists of the following
conditions:

(1) f is quasicompact, surjective, and generically separable.

(2) u0 is finite, surjective, and generically separable.
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(3) u is integral.

(4) The homomorphism OS ! f�OX associated to f is injective and OS is inte-
grally closed in f�OX .

(5) The homomorphism OS 0 ! f 0�OX 0 associated to f 0 is injective and OS 0 is
integrally closed in f 0�OX 0 .

(6) The diagram

X 0
u0 //

f 0

��

X

f
��

S 0
u // S

is commutative.

Remark 4.4. Conditions (1)–(3) imply that f 0 is quasicompact. Conditions (1)–(6)
imply that u is given by the integral closure of OS in .f ıu0/�OX 0 .

Proposition 4.5. Let f W X ! S , f 0 W X 0! S 0, u W S 0! S , and u0 W X 0! X be
morphisms between locally Noetherian schemes satisfying Condition (D). Suppose
that X is normal and that X 0 is connected and normal. Then:

(1) X , X 0, S , and S 0 are normal and integral.

(2) u is finite, surjective, and generically separable.

(3) f 0 is quasicompact, surjective, and generically separable.

Proof. Since X 0 is connected and u0 is surjective, the scheme X is connected.
Lemma 3.3(1) shows that X and X 0 are integral. Thus, Lemma 4.1 shows that S

and S 0 are integral and normal. Therefore, Statement (1) holds. Since f ı u0 is
surjective and generically separable and u is integral, Lemma 4.2 shows that f 0 is
dominant and generically separable and u is surjective and generically separable.
Thus, Lemma 3.3(2) shows that u is finite. Therefore, Statement (2) holds. Let us
show that f 0 is surjective. We may assume that the finite covering X 0=X is Galois
after replacing X 0 and S 0 by finite coverings. The Galois group G of X 0=X faithfully
acts on the finite covering S 0=S such that f 0 is G-equivariant. Since f 0.X 0/ is
stable under any element of G and the equalities u.f 0.X 0//D f .u0.X 0//DS hold,
the morphism f 0 is surjective. Thus, Statement (3) holds. �
Proposition 4.6. We use the same notation and assumption as in Proposition 4.5.
Let v W T ! S be one of the following morphisms between schemes:

(a) a smooth morphism;

(b) the localization at a point;

(c) the strict Henselization (or the Henselization) of the spectrum of a local ring;

(d) the completion of the spectrum of an excellent local ring at the closed point.
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By fT W XT ! T , f 0
T
W X 0

T
! S 0

T
, uT W S

0
T
! T , and u0

T
W X 0

T
! XT we denote

the base changes of the S-morphisms f , f 0, u, and u0 via v, respectively. Take
connected components Z and Z0 of T and S 0

T
, respectively. Then:

(1) Z, f �1
T
.Z/, Z0, and .f 0

T
/�1.Z0/ are locally Noetherian, normal, and integral.

(2) fT , f 0
T

, uT , and u0
T

satisfy Condition (D).

(3) If v is surjective, then u0 is étale if and only if u0
T

is étale.

Proof. By U we denote any of T , XT , S 0
T

, and X 0
T

. Then U is locally Noetherian.
Since any fiber of v is geometrically regular, the scheme U is normal [Matsumura
1989, 23.9]. The schemes Z and Z0 are integral (Lemma 3.3(1)). We may assume
that Z D T and f �1

T
.Z/ D XT . Since v is a dominant flat morphism between

integral schemes, Lemma 4.1 implies that XT is integral. In the same way, we
may show that .f 0

T
/�1.Z0/ is integral. Thus, Statement (1) holds. Let us show

Statement (2). We have only to show that OT and OS 0
T

are integrally closed in
fT�OXT

and f 0
T�

OX 0
T

, respectively. Thus, Statement (2) follows from Lemma 4.1.
Statement (3) follows from faithfully flat descent for étale morphisms. �

Lemma 4.7. Let u W X ! Y and v W Y ! Z be morphisms between locally
Noetherian schemes. Put w WD v ıu. Assume that Y and Z are normal. Suppose
that u is dominant, v is affine, and w is finite, étale, and dominant. Then u and v
are finite, étale, and surjective.

Proof. Since Z is normal and w is étale, the scheme X is normal. We may assume
that X , Y , and Z are integral (Lemma 3.3(1)). Then u and v are finite surjective
morphisms between locally Noetherian normal integral schemes. We have only to
show that u and v are étale over any point z on Z. Since w is finite, étale, and
surjective, there exists an étale morphism t W U ! Z such that z 2 t.U / and the
restriction of the base change XU ! U of w via t to any connected component of
XU is an isomorphism [Bosch et al. 1990, 2.3.8]. Thus, by faithfully flat descent
for étale morphisms, we may assume that w is an isomorphism. Then u and v
induce isomorphisms between the function fields of X , Y , and Z. Since X , Y ,
and Z are normal and integral and u and v are finite, the morphisms u and v are
isomorphisms, which implies that u and v are étale. �

Proposition 4.8. Let f W X ! S and u W S 0! S be morphisms between locally
Noetherian normal integral schemes. Assume that f is quasicompact, surjective,
and generically separable, u is finite, surjective, and generically separable, and OS

is integrally closed in f�OX . Then there exist a locally Noetherian normal integral
scheme X 0 and morphisms f 0 WX 0! S 0 and u0 WX 0!X satisfying the following:

(a) f , f 0, u, and u0 satisfy Condition (D).
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(b) For any normal integral scheme Y and any dominant morphisms h W Y ! S 0

and � W Y ! X satisfying f ı � D u0 ı h, there exists a unique morphism
� 0 W Y !X 0 such that u0 ı � 0 D � and f 0 ı � 0 D h.

Furthermore, the following statements hold:

(1) If � in (b) is finite and étale, then u0 and � 0 are finite, étale, and surjective.

(2) If u is étale, then u0 is étale.

(3) If f is separable and of finite type, then the converse of (2) holds.

Proof. By K, K0, and L we denote the function fields of S , S 0, and X , respectively.
Put L0 WD L˝K K0. Since K is algebraically closed in L (Lemma 4.1) and the
extension K0=K is finite and separable, the ring L0 is a field. Furthermore, the field
K0 is algebraically closed in L0 and the extension L0=L is finite and separable. Take
the normalization u0 WX 0!X of X in L0. Since u0 is finite (Lemma 3.3(2)), the
scheme X 0 is locally Noetherian, normal, and integral. Take the unique morphism
f 0 W X 0! S 0 such that f ı u0 D u ı f 0. Then OS 0 is integrally closed in f 0�OX 0

(Lemma 4.1). Thus, Condition (a) is satisfied. By construction, Condition (b) is
satisfied. Statement (1) follows from Lemma 4.7. By v WZ!X and w WZ! S 0

we denote the base change of u via f and the base change of f via u, respectively.
Then v is finite, and Z is an integral scheme with function field L0. Let us show
Statement (2). Assume that u is étale. Then v is étale and Z is normal. Thus,
the scheme Z is X -isomorphic to X 0, which implies that u0 is étale. Let us show
Statement (3). Assume that f is separable and of finite type and that u0 is étale.
Replacing X by the smooth locus of f , we may assume that f is smooth ([Bosch
et al. 1990, 2.2.16] and Lemma 4.1). Then Z is normal. Thus, the scheme Z is
X -isomorphic to X 0, which implies that v is étale. Therefore, Statement (3) follows
from faithfully flat descent for étale morphisms. �

4B. Base spaces of local étale coverings.

Definition 4.9. Let R be a strictly Henselian Noetherian normal local ring with
field of fractions K. Take a separable closure K of K. Put S WD Spec R. Let
f W X ! S be a surjective generically separable morphism between connected
Noetherian normal schemes. Assume that OS is integrally closed in f�OX . We
define the maximal base field zK (of étale coverings of the total space) of f in the
following way. Let � W Y ! X be a connected étale covering space. Then Y is
normal. Take the normalization

Y
h
��! S 0

u
��! S

of S in the composite f ı � W Y ! X ! S . By K� we denote the function field
of S 0. Then u induces a finite separable field extension K�=K (Proposition 4.5).
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We define zK as the composite field of all K-embeddings of the finite separable
extensions K�=K in K for all connected étale covering spaces � W Y !X of X .

Remark 4.10. By definition, the field extension zK=K is algebraic and Galois.

We use the notation introduced in Definition 4.9.

Proposition 4.11. Let g WX 0!X be a proper birational morphism between regular
integral schemes. Then the maximal base field of f ıg in K is equal to zK.

Proof. By Zariski–Nagata purity (Lemma 3.5; see also [SGA 1 1971, X.3.3]), the
base change of finite étale X -schemes via g induces an equivalence of categories
between the category of finite étale X -schemes and the category of finite étale
X 0-schemes, which proves the proposition. �

Lemma 4.12. Let L=K be a finite field extension in K. Then L� zK if and only if
there exists a connected étale covering space of X that induces the extension L=K.

Proof. The “if” part follows from the definition of zK. Since any finite fiber product
of étale covering spaces of X over X is an étale covering space of X , the “only if”
part follows from Proposition 4.8(1). �

By k we denote the residue field of R. By fZigi2I we denote the set of all
irreducible components of the special fiber Xk of f with the reduced structures.
Take the integral closure ki of k in �.Zi ;OZi

/.

Lemma 4.13. The ring ki is a field. If f is of finite type, then the field extension
ki=k is finite and purely inseparable for any i 2 I .

Proof. Since ki is an integral extension of the field k, the integral domain ki is a
field. Assume that f is of finite type. Since Zi is finite type over k, the function
field Ki of Zi is finitely generated over k. Since ki �Ki and k is separably closed,
the last statement holds. �

Suppose that R is a discrete valuation ring. Then f is flat. The closed subscheme
Xk is a divisor on X and, for any i 2 I , the closed subscheme Zi is a prime divisor
on X (Lemma 3.4(2)). We may write Xk D

P
i2I miZi .

Lemma 4.14. Suppose that R is a discrete valuation ring. Assume that f is of
finite type. Put ni WD Œki W k�, which is finite by Lemma 4.13. Let � W Y ! X be a
connected étale covering space. Take the normalization

Y
h
��! S 0

u
��! S

of S in the composite f ı � W Y ! X ! S . Then the degree of u divides
gcd.mi/i2I � gcd.ni/i2I .
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Proof. By m and n we denote the ramification index of S 0=S and the degree of the
residue field extension of S 0=S , respectively. Then m jmi and n j ni for any i 2 I

since � is étale and k is separably closed. Since R is a Henselian discrete valuation
ring, the degree of u is equal to mn, which concludes the proof. �

Proposition 4.15. We use the notation introduced in Definition 4.9. By k we denote
the residue field of R. Suppose that R is a discrete valuation ring. Assume that f is
of finite type. Then:

(1) The field extension zK=K is finite and Galois.

(2) If f is separable, then zK DK.

(3) If k is perfect, then Œ zK W K� divides the multiplicity of the special fiber of f
(Section 2).

(4) If f is proper and a finite field extension K0=K in K satisfies X.K0/ 6D ∅,
then zK �K0.

Proof. Statement (1) (resp. (2) and (3)) follows from Lemma 4.14 since zK=K is
Galois (Remark 4.10) (resp. mi D 1 and ki D k for any i 2 I , and ki D k for any
i 2 I (Lemma 4.13)). Let us show Statement (4). By Proposition 4.8(1), we may
assume that zK\K0 DK. By S 0 and zS we denote the normalizations of S in K0

and zK, respectively. Take the scheme X 0 (resp. zX ) and the morphism u0 WX 0!X

(resp. Qu W zX !X and Qf W zX ! zS ) given by Proposition 4.8. Then Qu W zX !X is an
étale covering space. Since the base change of Qu via u0 induces zKK0=K0, we have
only to show that zK DK whenever X.K/ 6D∅. Assume that X.K/ 6D∅. Then f
admits a section by the valuative criterion for properness. Since the pullback of any
section of f via Qu induces a section of Qf and S is strictly Henselian, the degree of
Qu is equal to 1, which concludes the proof. �

Example 4.16. Let us give an example of a morphism f W X ! S of finite type
with Œ zK W K� D 1 when dim S > 1. Assume that k is algebraically closed, the
characteristic of k is not equal to 3, and R D kŒŒx;y; z��=.x3 C y3 C z3/. By s

we denote the closed point of S . Put S0 WD S n fsg. Then �1..S// Š �1.S0/

(Proposition 3.23). Take the blowing-up f WX ! S of S at s. Then X is regular.
Put E WD f �1.s/. The reduction Ered of E is k-isomorphic to an elliptic curve
over k and the multiplicity of E is equal to 3. The morphism f is not flat at any point
on E (Lemma 3.4(2)). The inclusion morphisms S0!X , Ered!E, and E!X

induce a surjective homomorphism �1.S0/! �1.X /, an injective homomorphism
�1.Ered/! �1.E/, and an isomorphism �1.E/Š �1.X /, respectively [SGA 41

2

1977, IV.2.2]. Since �1.Ered/ is not finite, the extension zK=K is infinite.

4C. Homotopy exact sequences. In this subsection, we give homotopy exact se-
quences for fibrations satisfying the following conditions:
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Definition 4.17. Condition (C) on a triple .X;S; f / consists of the following
conditions:

(1) X and S are locally Noetherian normal integral schemes.

(2) f WX ! S is a surjective morphism of finite type.

(3) OS is integrally closed in f�OX (Conditions (1) and (2) imply that the homo-
morphism OS ! f�OX associated to f is injective (Lemma 4.1)).

(4) The geometric generic fiber of f is reduced.

Condition (C�) on a triple .X;S; f / is Condition (C) and the following conditions:

(5) X is regular.

(6) f is flat in codimension one.

Remark 4.18. In the case where f is proper, Conditions (2) and (3) are equivalent
to the following conditions:

(20) f WX ! S is proper.

(30) The homomorphism OS ! f�OX associated to f is an isomorphism.

Remark 4.19. In our studies on homotopy exact sequences, Condition (C�) is
necessary. This condition is used to describe the effect of the nonreduced geo-
metric fibers of f on étale covering spaces of X in terms of an orbifold .S;B/.
Conditions (1)–(3) are used to produce a finite covering space of S by taking the
normalization of S in the composite of a finite covering map of X and f . In the
case where f is proper, this normalization may be given by the Stein factorization of
the composite. Condition (5) is used to apply Zariski–Nagata purity (Lemma 3.5) to
a finite covering space of X . In particular, the condition that the finite covering map
is étale may be checked in codimension one. Condition (4) enables Condition (6)
to encode this condition as the data of ramifications B of an orbifold .S;B/. See
Theorem 4.22 and Remark 4.26 for Condition (C).

Example 4.20. Take k, n, u W S 0 ! S , and � as in Example 3.24. Let E be an
elliptic curve over k. Put X 0 WDE �k S 0. By f 0 WX 0! S 0 we denote the second
projection. Choose a primitive n-torsion point P on E. We define an action �
on X 0 as the product of the translation by the addition of P on E and the action
of � on S 0. We take the quotient u0 W X 0 ! X of � . Since f 0 is equivariant
with respect to � and � , we obtain a morphism f W X ! S . The triple .X;S; f /
satisfies Condition (C). The morphisms f , f 0, u, and u0 satisfy Condition (D)
(Definition 4.3). Since X is regular and S is not regular, the morphism f is not flat
[Matsumura 1989, 23.7 (i)]. However, the morphism f is flat in codimension one
since f is flat over the regular locus of S [Matsumura 1989, 23.1]. In particular,
the triple .X;S; f / satisfies Condition (C�).
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Example 4.21. Take k, u WS 0!S , and o as in Example 3.24. Take the blowing-ups
f W X ! S and f 0 W X 0 ! S 0 of S and S 0 at u.o/ and o, respectively. Then X

and X 0 are regular. The universal property of blowing-up shows that there exists
a unique morphism u0 W X 0 ! X such that f ı u0 D u ı f 0. The morphism u0

ramifies along the exceptional divisor of f 0. The morphisms f , f 0, u, and u0

satisfy Condition (D) (Definition 4.3). The triple .X;S; f / satisfies Condition (C).
However, the morphism f is not flat in codimension one (Lemma 3.4(2)). In
particular, the triple .X;S; f / does not satisfy Condition (C�).

We first generalize Grothendieck’s homotopy exact sequence to the case where
fibrations are not necessarily proper:

Theorem 4.22. Let .X;S; f / be a triple satisfying Condition (C) (Definition 4.17).
Assume that f is separable. Choose a connected geometric fiber i WX0!X of f
(e.g., the geometric generic fiber of f ). Take a geometric point x0 on X0. Put x WD

i.x0/ and s WD f .x/. The morphisms i and f induce canonical homomorphisms
i� W �1.X0;x0/! �1.X;x/ and f� W �1.X;x/! �1.S; s/, respectively. Then the
sequence

�1.X0;x0/
i�
���! �1.X;x/

f�
���! �1.S; s/ �! 1

is exact.

Proof. We have only to show the exactness at �1.X /. Since X0 is a geometric fiber
of f , the relation Im i� � Kerf� holds. Let us show that Kerf� � Im i�. Take
� 2 Kerf�. We have only to show the following: for any connected Galois étale
covering space � W Y !X , the element � acts trivially on �0.�

�1.X0//, where we
denote the base change of X0 via � by ��1.X0/. Take the normalization

Y
h
��! S 0

u
��! S

of S in the composite f ı � W Y !X ! S . Then u W S 0! S is an étale covering
space (Proposition 4.5(2) and Proposition 4.8(3)). The action of � on Y=X induces
an action of � on S 0=S . Since � 2 Kerf�, the element � acts trivially on S 0=S .
Thus, the element � acts trivially on �0.�

�1.X0//, which implies that � 2 Im i�.
Therefore, the sequence is exact. �
Definition 4.23. Let .X;S; f / be a triple satisfying Condition (C) (Definition 4.17).
We define the orbifold .S;B/ associated to f in the following way. By P .S/ we
denote the set of all points on S of codimension one. Take s 2 P .S/. Put Ks WD

Frac Osh
S;s

. By fs we denote the base change of f via the composite Spec Osh
S;s
!

Spec OS;s! S of the canonical morphisms. Take the maximal base field eKs of fs

(Definition 4.9). Proposition 4.15(1) shows that the field extension eKs=Ks is finite
and Galois. We define a map B on P .S/ by s 7! eKs=Ks (Definition 3.6). Let us
show that the pair .S;B/ is an orbifold. By S0 we denote the open subscheme of S
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that is the complement of the closure of Supp B. Take a nonempty open subscheme
S1 of S over which f is separable. Then S1 � S0 (Proposition 4.15(2)), which
implies that Supp B is locally finite. Thus, the pair .S;B/ is an orbifold.

Using the above orbifold, we give an étaleness criterion for finite coverings of X :

Theorem 4.24. Let .X;S; f / be a triple satisfying Condition (C�) (Definition 4.17).
Take the orbifold .S;B/ associated to f (Definition 4.23). Let u W S 0! S be a
finite surjective generically separable morphism between locally Noetherian normal
integral schemes. Take the scheme X 0 and the morphism u0 W X 0 ! X given by
Proposition 4.8. Then u0 is étale if and only if u induces an orbifold étale morphism
.S 0;B0/! .S;B/ (Definition 3.12).

Proof. First, we assume that S D Spec Q and S 0 D Spec Q0 where Q and Q0 are
discrete valuation rings. The morphism u induces a finite flat extension Q0=Q

of discrete valuation rings. Put J WD Frac Q, J 0 WD Frac Q0, K WD Frac Qsh, and
K0 WD J 0˝J K. The field extension J 0=J induced by u is finite and separable.
Take the maximal unramified extension I of J in J 0. We may embed I in K over J .
By (1) and (2) of Proposition 4.8, we may assume that J D I . Then K0 is a field.
By Proposition 4.6, we may assume that J DK and J 0 DK0. Then the theorem
follows from Lemma 4.12.

Next, let us show the general case. The “only if” part follows from the first
case and Proposition 4.6. Let us show the “if” part. Since f maps any point of
codimension one to a point of codimension at most one (Lemma 3.4(2)), the first
case and Proposition 4.6 show that u0 is étale in codimension one. Thus, Zariski–
Nagata purity (Lemma 3.5) shows that u0 is étale, which proves the “if” part. �
Definition 4.25. Let .X;S;f / be a triple satisfying Condition (C�) (Definition 4.17).
Take the orbifold .S;B/ associated to f (Definition 4.23). Choose a geometric
point x on X . Put s WD f .x/. Assume that the image of s on S is a regular point
on S (e.g., the generic point of S ). We define the homomorphism f orb

� W�1.X;x/!

�1.S;B; s/ induced by f in the following way. Let u W .S 0;B0/! .S;B/ be a
connected orbifold étale covering space. Take the scheme X 0 and the morphism
u0 W X 0 ! X given by Proposition 4.8. Then u0 W X 0 ! X is a connected étale
covering space (Theorem 4.24). Thus, we obtain a surjective homomorphism
f orb
� W �1.X;x/! �1.S;B; s/.

Proof of Theorem 1.1. We may show the theorem in the same way as in the proof of
Theorem 4.22. We have only to use Theorem 4.24 instead of Proposition 4.8(3). �
Remark 4.26. We generalize the definition of an orbifold .S;B/ (Definition 3.6)
by the following two modifications: replace P .S/ by all points on S ; remove
the finiteness assumption on Bs=Ks . We may define the fundamental group of
.S;B/ in the same way as in the case of an orbifold. The morphism f induces
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a generalized orbifold .S;B/. Note that if f is separable, then .S;B/ is trivial
(Proposition 4.8(3)). Replacing an orbifold by a generalized orbifold, we may
show Theorems 4.24 and 1.1 for any triple .X;S; f / satisfying Condition (C)
(Definition 4.17) without the regularity assumption on X and the flatness assumption
on f in codimension one (Examples 4.16 and 4.21).

5. Orbifold trivializations of orbifold curves

In this section, we fix an algebraically closed field k of characteristic p � 0. We
study orbifold trivializations of orbifold k-curves and classify simply connected
cyclic orbifold k-curves.

Definition 5.1. An orbifold .C;B/ (Definition 3.6) is called an orbifold k-curve
(resp. a proper orbifold k-curve) if C is a k-curve (resp. a proper k-curve). If p> 0

and ŒBs WKs � is power of p for any s 2 P .C /, we say that an orbifold .C;B/ is a
p-orbifold k-curve.

Since the underlying scheme of any orbifold k-curve is a smooth k-curve, we
study ramified coverings of smooth k-curves. The Riemann–Hurwitz formula shows
the following:

Lemma 5.2. Let u W C ! P1
k

be a finite tamely ramified k-morphism of degree d

between connected proper smooth k-curves. By N we denote the number of the
branched points of u. Then:

(1) N 6D 1.

(2) If N D 2, then C is isomorphic to P1
k

, u ramifies at exactly two points, and
both of the two ramification indices are equal to d .

Proposition 5.3. Let .P1
k
;B/ be a proper tame orbifold k-curve. If # Supp B � 1,

then .P1
k
;B/ is simply connected. Assume that Supp B D f0;1g. For sD 0 and1

we put ns WD ŒBs WKs �. Then:

(1) The orbifold .P1
k
;B/ is simply connected if and only if gcd.n0; n1/D 1.

(2) There exists an orbifold trivialization of .P1
k
;B/ if and only if n0 D n1.

In Statement (2), the restriction of the orbifold trivialization to any connected
component ramifies at exactly two points.

Proof. The first statement follows from Lemma 5.2(1). Let us show the other
statements. Put d WD gcd.n0; n1/. Take a parameter t of P1

k
so that t.0/D 0 and

t.1/ D 1. Then the k-morphism P1
k
! P1

k
, t 7! td induces an orbifold étale

morphism .P1
k
;B0/! .P1

k
;B/, where the equalities

ŒB0s WKs �D

�
ni=d if s D 0 or1;
1 otherwise:
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hold. Thus, Lemma 5.2 proves the proposition. �
Proposition 5.4. Let .P1

k
;B/ be a proper tame orbifold k-curve with Supp B D

f0; 1;1g. For sD 0, 1, and1, we put ns WD ŒBs WKs �. Assume that n0, n1, and n1
are pairwise coprime. Then there exists a Galois orbifold trivialization of .P1

k
;B/

with noncommutative simple Galois group.

Proof. First, we consider the case pD 0. By F2Dhx0;y0i we denote the free group
of rank two. Take the elements x, y, and z of the triangle group �.n0; n1; n1/ in
the definition of �.n0; n1; n1/ in Section A. We define a homomorphism � WF2!

�.n0; n1; n1/ by x0 7! x and y0 7! y. Then the equality �.y�1
0

x�1
0
/D z holds.

Since the étale fundamental group of P1
k
n f0; 1;1g is isomorphic to the profinite

completion of F2 (see [Lieblich and Olsson 2010] for a purely algebraic proof),
Theorem A.9 shows the proposition.

Next, we consider the case p > 0. Take a complete discrete valuation ring R

of characteristic zero whose residue field is isomorphic to k (e.g., the ring of Witt
vectors over k). Put K WD Frac R. The case p D 0 shows the following: replacing
R by a finite extension of R, there exist a finite noncommutative simple group G

and a K-morphism wK W YK ! P1
K

between connected proper smooth K-curves
satisfying the following condition:

(0) wK is the quotient morphism YK ! P1
K
D YK=G whose branch points are

equal to 0, 1, and1, over which each ramification index is equal to n0, n1,
and n1, respectively.

In the following, we take an appropriate R-model w of wK in the same way as
in [Raynaud 1994, §§6.1–6.3]. Remark that in [Raynaud 1994, §6] the group G

is a quasi-p-group and the ramification indices of wK are equal to powers of p.
However, these conditions are used only from Lemma 6.3.6. Replacing R by a
finite extension of R, we obtain an R-morphism w W Y ! P between R-schemes
satisfying Conditions (1)–(6):

(1) Y is a projective normal semistable R-curve that is an R-model of YK .

(2) P is a projective normal semistable R-curve that is an R-model of P1
K

.

(3) w is the quotient morphism Y ! P D Y=G.

(4) The restriction of w to the generic fibers is equal to wK .

(5) The closure of each branch point of wK in P is contained in the smooth locus
Psm of the R-scheme P .

To state Condition (6) below, we introduce notation. Condition (2) shows the
following two statements on the special fiber Pk of P : any irreducible component
is isomorphic to P1

k
, and the dual graph of the irreducible components is a tree �P .

By 0R , 1R , and1R we denote the closures of 0, 1, and1 on P1
K

in P , respectively.
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For s D 0, 1, and1, we denote the reduction of sR by sk . Condition (5) implies
that sk is contained in exactly one irreducible component Cs . We denote the vertex
of �P corresponding to Cs by es . Any two vertices es and et are connected by a
unique line lst on �P . The intersection l01\ l11\ l10 is exactly one vertex e011.
We denote the irreducible component corresponding to e011 by C011.

(6) P is a successive blowing-up of P1
R

, and the strict transform of the special
fiber of P1

R
is equal to C011.

Take a subgroup H of G. By Condition (1), we obtain an R-morphism u WY !X

between R-schemes satisfying Conditions (7) and (8) [Raynaud 1990, Corollaire
of Proposition 5]:

(7) X is a proper normal semistable R-curve with connected smooth generic fiber.

(8) u is the quotient morphism Y !X D Y=H .

Conditions (3) and (8) give an R-morphism v WX ! P between R-schemes such
that w D v ıu. Furthermore, the following condition is satisfied:

(9) u, v, and w are finite and surjective.

Since v and w are finite (Condition (9)), X and Y are Cohen–Macaulay (Condi-
tions (1) and (7) and [EGA IV2 1965, 5.8.6]), and Psm is regular (Condition (2)),
the following condition is satisfied [Matsumura 1989, 23.1]:

(10) v and w are flat over Psm.

By �Y and �X we denote the dual graphs of the irreducible components of the
special fibers Yk and Xk of Y and X . The group G acts on �Y . The quotient
morphisms u and v induce the quotient maps of the actions of G and H from the
vertices of �Y to the vertices of �P and �X , respectively. If an element g of G fixes
an edge e of �Y , then g does not exchange the two vertices on the edge e [Raynaud
1994, 6.3.5]. Thus, the quotients of the actions of G and H on �Y are canonically
isomorphic to �P and �X , respectively. Therefore, the morphisms u and v induce
maps �Y ! �X ! �P , respectively, that preserve the vertices and the edges.

Take the generic point � of an irreducible component of Pk . Choose the generic
point � of an irreducible component of Yk over �. Conditions (9) and (10) show that
OY;�=OP;� is a finite flat extension of discrete valuation rings. Conditions (1) and (2)
imply that the ramification index of OY;�=OP;� is equal to 1. Thus, the inertia group
I� of OY;�=OP;� is a p-group. Since G is a noncommutative simple group and any
simple p-group is commutative, the inequality G 6D I� holds. We take the above
subgroup H of G so that H D I�. Put � WD u.�/. Then the extension of the residue
fields of OX ;�=OP;� is separable. Conditions (2) and (7) imply that the ramification
index of OX ;�=OP;� is equal to 1. Thus, the extension OX ;�=OP;� is étale.
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Take g 2 G. Replacing � and H by g� and gHg�1, respectively, we obtain
X g and �g corresponding to X and � , respectively, in the same way as in the
above argument. Furthermore, the extension OX g;�g=OP;� is étale. Since v is
finite (Condition (9)) and R is excellent, the normalization Y 0 of the fiber product
of X g for all g 2 G over P is finite over P . By Y 0

K
we denote the generic

fiber of Y 0. Since G is simple and G 6DH , the intersection
T

g2G gHg�1 is the
trivial group. Thus, any connected component of Y 0

K
is PK -isomorphic to YK

(Lemma 3.14). Since Y is normal (Condition (1)) and w is finite (Condition (9)),
any connected component of Y 0 is P -isomorphic to Y . Thus, the product of �g for
all g 2G over � gives a point �0 on Y over � such that the extension OY;�0

=OP;�

is étale. Since w is a Galois covering, the extension OY;g�0
=OP;� is étale for

any g 2 G. Since � is arbitrary, the morphism w is étale at the generic point of
any irreducible component of Yk . Put P 0 WD Psm n .0R [ 1R [1R/. By w0 we
denote the restriction wjw�1.P 0/ W w

�1.P 0/! P 0. Condition (0) implies that the
restriction of w0 to the generic fibers is étale. Thus, the morphism w0 is étale in
codimension one. Therefore, Zariski–Nagata purity (Lemma 3.5) shows that w0

is étale. Thus, by Lemma 5.2 and the same method as above, we may assume that
�P D l01[ l11[ l10 after successive blowing-down of exceptional curves on Y

and P (Condition (6)).
The normalizations of the preimages of Cs and C011 under w are proper smooth

k-curves C 0s and C 0
011

, respectively. The covering C 0s=Cs branches at sk , over
which each ramification index is equal to ns ([Raynaud 1994, 6.3.2] and Condi-
tions (0), (4), and (5)). Sincew0 is étale, Lemma 5.2 implies that the preimage C 0

011

is connected and the covering C 0
011

=C011 branches at exactly three points, over
which each ramification index is equal to n0, n1, and n1, respectively. Therefore,
the covering C 0

011
=C011 induces a desired orbifold trivialization. �

Lemma 5.5. Let C be a connected proper smooth k-curve of positive genus. Take
a closed point s on C and an integer n. Assume that p−n. Then there exists a
connected étale covering space u W C 0 ! C , a divisor D on C 0, and a rational
function h on C 0 such that u�Œs�� nD D .h/, where Œs� and .h/ are the divisors
defined by s and h, respectively.

Proof. We may assume that n is positive. Since the genus of C is positive and
p−n, we may take a connected étale covering space u W C 0 ! C of degree n.
We denote the genus of C 0 by g. By J we denote the Jacobian variety of C 0

over k. Take a closed point s0 on C 0. Since the morphism .C 0/g ! J defined
by .si/

g
iD1
7!

Pg
iD1

.Œsi � � Œs0�/ is surjective and the multiplication of J by n

is surjective, there exists .si/
g
iD1
2 .C 0.k//g such that u�Œs� � nŒs0� is linearly

equivalent to n
Pg

iD1
.Œsi �� Œs0�/, which proves the lemma. �
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Proposition 5.6. Let .C;B/ be a connected proper tame orbifold k-curve with
# Supp B D 1. Assume that the genus of C is positive. Then there exists an orbifold
trivialization of .C;B/ that is the composite u ı v W C 00 ! C 0 ! C of two finite
coverings where u is étale and v is totally ramified over each branch point.

Proof. Take s 2 Supp B. Put n WD ŒBs WKs �. Take a connected étale covering space
u W C 0! C and a rational function h on C 0 given by Lemma 5.5. By v W C 00! C 0

we denote the normal model of the equation zn D h. Then u ı v induces a desired
orbifold trivialization. �

Proposition 5.7. Let .C;B/ be a connected tame orbifold k-curve. Put M WD

# Supp B. For each s 2 Supp B, we put ns WD ŒBs;Ks �. Then there exists an
orbifold trivialization of .C;B/ if and only if neither of the following conditions
are satisfied: (a) C Š P1

k
and M D 1; (b) C Š P1

k
, M D 2, and ns 6D nt where

Supp B D fs; tg.

Proof. In the proof of the “if” part, we may replace C by the smooth compactification
of C . Thus, we may assume that C is proper over k. By Proposition 3.18, we
have only to consider the following cases: (1) g.C /D 0 and M � 2; (2) g.C /D 0,
M D 3, and gcd.ns; nt /D 1 for s 6D t ; (3) g.C / > 0 and M D 1. Cases (1), (2),
and (3) follow from Propositions 5.3, 5.4, and 5.6, respectively. �

In the following, we provide steps in order to prove Proposition 5.12. Assume
that p > 0. Let C be a connected proper smooth k-curve. We denote the sheaf of
rational functions on C by MC . Put PC WDMC =OC . The exact sequence of abelian
sheaves 0! OC !MC ! PC ! 0 induces a long exact sequence

H 0.C;MC /
�C
���!H 0.C;PC /

 C
����!H 1.C;OC /:

By FC we denote the absolute Frobenius endomorphism of C and its actions on the
cohomology groups H 0.C;PC / and H 1.C;OC /. We define F0

C
as the identity map

and, for each positive integer d , we inductively define Fd
C

by Fd
C
WD Fd�1

C
ıFC .

Lemma 5.8. For any � 2H 0.C;PC /, there exists a connected étale covering space
u W C 0 ! C , a nonnegative integer d , and a rational function h on C 0 such that
u�Fd

C
� D �C 0.h/, where u� is the homomorphism H 0.C;PC /! H 0.C 0;PC 0/

induced by u.

Proof. Since the k-vector space H 1.C;OC / is finite-dimensional, we may take
a nonnegative integer d and a polynomial G.X / D

Pn
iD0 ciX

i 2 kŒX � so that
c0 6D 0 and G.FC /� D 0, where we put � WD Fd

C
 C �. Take an affine covering

UDfUig of C and a representative faij g2C 1.U;OC / of �. We define a polynomial
G.p/.X / 2 kŒX � by G.p/.X / WD

Pn
iD0 ciX

pi

. Since G.FC /� D 0, there exists
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faig 2 C 0.U;OC / such that G.p/.aij /D aj � ai for all i and all j . Thus, we may
define an étale covering space u W C 0! C by the equations�

G.p/.zi/D ai on Ui ;

zj � zi D aij on Ui \Uj :

By definition, the pullback of � via u splits, which proves the lemma. �

We denote the cokernel of an endomorphism � of a module M by M� .

Lemma 5.9. Let R be an excellent discrete valuation ring of positive characteristic
with separably closed residue field. By yR we denote the completion of R with respect
to the maximal ideal. Put K WD Frac R, Ksh WD Frac Rsh, and yK WD Frac yR. We
denote the Frobenius endomorphisms on these fields by F . The canonical inclusion
homomorphisms K!Ksh and Ksh! yK induce the canonical homomorphisms
˛ WK!Ksh

F�1
and ˇ WKsh

F�1
! yKF�1, respectively. Then:

(1) ˛ is surjective and R� Ker˛.

(2) ˇ is an isomorphism.

Proof. Since Ksh is algebraically closed in yK by the approximation property [Bosch
et al. 1990, 3.6.9], Artin–Schreier theory shows that ˇ is injective. Since yR is
isomorphic to the formal power series ring over the separably closed residue field
of R, the relation yR� .F �1/ yK holds, which implies that ˇ ı˛ is surjective. Thus,
Statement (2) holds, which implies Statement (1). �

We recall the definition of the addition of the ring of Witt vectors W .A/ with
coefficient ring A. Let n be a nonnegative integer. Put

Wn.X0; : : : ;Xn/ WD

nX
iD0

piX
pn�i

i 2 ZŒX0; : : : ;Xn�:

We inductively define Sn as the unique polynomial in ZŒX0; : : : ;Xn;Y0; : : : ;Yn�

satisfying the equality Wn.S0; : : : ;Sn/DWn.X0; : : : ;Xn/CWn.Y0; : : : ;Yn/. For
aD .a0; : : : ; an; : : : / 2W .A/ and b D .b0; : : : ; bn; : : : / 2W .A/, the addition of
Witt vectors is defined by

aC b WD .S0.a0; b0/; : : : ;Sn.a0; : : : ; an; b0; : : : ; bn/; : : : /:

Lemma 5.10. We denote the ideal of ZŒX0; : : : ;Xn;Y0; : : : ;Yn� generated by
fXiYj g0�i;j�n by I . Then the equality Sn �XnCYn mod I holds. In particular,
the equality

.a0; : : : ; an�1; an; : : :/C .0; : : : ; 0; bn; : : :/D .a0; : : : ; an�1; anC bn; : : :/

holds in W .A/.
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Proof. Let us show the first equality by induction on n. The case n D 0 is clear.
Assume that the case i is proved for any i < n. By the induction hypothesis, the
equality pnSn � pnXnCpnYn mod I holds, which proves the case n. Thus, the
first equality holds for any n. The first equality shows the last equality. �

For a positive integer n, we denote the ring of length-n Witt vectors with
coefficient ring A by Wn.A/. We denote the Frobenius endomorphism on Wn.A/

by F . Take a connected étale covering space u WC 0!C , a closed point s on C , and
s0 2 u�1.s/. Put Ks WD Frac Osh

C;s
and K0s0 WD Frac Osh

C 0;s0
. The extensions K0s0=Ks

for all s0 2 u�1.s/ induce a homomorphism

�u;s;n WWn.Ks/F�1!

M
s02u�1.s/

Wn.K
0
s0/F�1:

Put Au;s WD OC 0.C
0�u�1.s//. The canonical homomorphisms Au;s!K0s0 for all

s0 2 u�1.s/ induce a homomorphism

�u;s;n WWn.Au;s/F�1!

M
s02u�1.s/

Wn.K
0
s0/F�1:

Put�C;s;n WD lim
��!u

�u;s;n and �C;s;n WD lim
��!u

�u;s;n, where u WC 0!C runs through
all connected étale covering spaces of C . By construction, the homomorphisms
�C;s;n and �C;s;n are compatible with the reductions of the rings of Witt vectors.

Lemma 5.11. The relation Im�C;s;n � Im�C;s;n holds.

Proof. Take � 2 Wn.Ks/F�1. Put � WD �C;s;n.�/. We have to show that � 2
Im�C;s;n. By induction on n, we have only to consider the following cases: (1)
nD 1; (2) n> 1 and � is contained in the kernel of the reduction homomorphism
Wn.Ks/!Wn�1.Ks/. Note that W1.A/DA for any ring A. Lemma 5.10 reduces
Case (2) to Case (1). Thus, we may assume that nD 1. Lemma 5.9(1) shows that
the canonical homomorphism MC;s ! Ks induces a surjective homomorphism
P W PC;s! .Ks/F�1. Thus, we have only to show that �C;s;1.P .�// 2 Im�C;s;1

for any � 2 PC;s . Since the equality X d D 1C
�Pd�1

iD0 X i
�
.X � 1/ holds in the

polynomial ring kŒX � for any positive integer d , we may replace � by Fd� for any
positive integer d . Thus, the lemma follows from Lemma 5.8. �
Proposition 5.12. Assume that p > 0. Let .C;B/ be a connected proper cyclic
p-orbifold k-curve with # Supp B D 1. Then there exists an orbifold trivialization
of .C;B/ that is the composite u ı v W C 00! C 0! C of two finite coverings where
u is étale and v is totally ramified over each branch point.

Proof. Take s 2 Supp B. Take an integer n so that ŒBs W Ks � D pn. Since
H 1.Ks;Wn/D 0, the exact sequence of Gal.Ks=Ks/-modules

0 �! Z=pnZ �!Wn.Ks/
F�1
�����!Wn.Ks/ �! 0
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induces an isomorphism H 1.Ks;Z=p
nZ/ŠWn.Ks/F�1. In particular, the field ex-

tension Bs=Ks is induced by an element � 2Wn.Ks/F�1. Lemma 5.11 gives a con-
nected étale covering space u WC 0!C and an element � 2Wn.Au;s/F�1 such that
the equality �u;s;n.�/D �u;s;n.�/ holds. By K0 we denote the function field of C 0.
The image of � under the canonical homomorphism Wn.Au;s/F�1!Wn.K

0/F�1

induces a cyclic extension K00=K0 of degree pn. Take the normalization v WC 00!C 0

of C 0 in K00. By the choice of �, the morphism u ı v induces a desired orbifold
trivialization. �

Proposition 5.13. Let .C;B/ be a connected p-orbifold k-curve. Then there exists
an orbifold trivialization of .C;B/.

Proof. We may replace C by the smooth compactification of C . Thus, we
may assume that C is proper over k. By Proposition 3.18, we may assume that
# Supp B D 1. Take s 2 Supp B. Put m WD ŒBs WKs �. Let us show the proposition
by induction on m. The case m D 1 is clear. Assume that m > 1. Since Bs=Ks

is solvable, we may take a Galois extension B0s=Ks of degree p in Bs . For each
t 2 P .C / n fsg, we put B0t WDKt . We define a map B0 on P .C / by t 7! B0t=Kt

(Definition 3.6). Then the pair .C;B0/ is an orbifold. Applying Proposition 5.12 to
.C;B0/, we may reduce the case m to the case m=p. Thus, the case m holds by
the induction hypothesis. �

Definition 5.14. The Euler characteristic e.C / of a proper smooth k-curve C is
the `-adic Euler characteristic of C , which does not depend on the choice of the
prime number ` that is prime to p. Let .C;B/ be a proper orbifold k-curve. Take
s 2 Supp B. We use the notation Bs=Ks introduced in Definition 3.6. By Bıs
and Kıs we denote the valuation rings of the discrete valuation fields Bs and Ks ,
respectively. We define the orbifold Euler characteristic e.C;B/ of .C;B/ by

e.C;B/ WD e.C /�
X

s2Supp B

1

ŒBs WKs �
lengthKıs

.�1
Bıs =K

ı
s
/:

The Riemann–Hurwitz formula shows the following:

Proposition 5.15. Let .C;B/ and .C 0;B0/ be two proper orbifold k-curves. If there
exists an orbifold étale morphism .C 0;B0/! .C;B/ of degree n, then the equality
e.C 0;B0/D ne.C;B/ holds. In particular, if e.C;B/ > 0 and C is connected, then
the underlying curve of any connected orbifold étale covering space of .C;B/ is
isomorphic to P1

k
.

Proof of Theorem 1.3. Let us show Statement (2). Assume that C is not proper
over k. Take the smooth compactification C of C . We may choose an extension
B of B to P .C / so that the orbifold .C ;B/ satisfies neither Condition (a) nor
Condition (b). Thus, we may assume that C is proper over k. First, we consider
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the “if” part. By Propositions 3.18, 5.15, and 5.13, we may assume that Bt DB.
In that case, the “if” part follows from Proposition 5.7. Next, we consider the
“only if” part. Take s 2 Supp B and an orbifold trivialization C1 ! .C;B/. By
Proposition 5.7, we have only to show that Condition (a) is not satisfied. Assume
that Condition (a) is satisfied. Since C is simply connected, Proposition 5.12
gives an orbifold trivialization u W C2! .C;Bw/ that is totally ramified over the
unique branch point s. Condition (a) and Proposition 5.15 imply that C2 Š P1

k
.

Take the normalization C3 of C1 �C C2 and the canonical projection v W C3! C2.
Lemma 3.14 shows that v is tamely ramified over the unique branch point u�1.s/,
which contradicts Lemma 5.2. Thus, Condition (a) is not satisfied.

Let us show Statement (1). The “if part” follows from Proposition 5.3. We
consider the “only if” part. Assume that Condition (a) is not satisfied. State-
ment (2) implies that C Š P1

k
and M � 2. Proposition 5.13 implies that Bt D B.

Proposition 5.3 implies that gcd.ns; nt / D 1 for s 6D t . Thus, Condition (b) is
satisfied. Therefore, the “only if” part holds. �

6. Fundamental groups of elliptic fibrations

6A. Elliptic fibrations. We study elliptic surfaces by localizing the fibrations with
respect to the base curves. To this end, we generalize the definition of elliptic
surfaces. We refer to [Liu 2002, §§8–9] for fibered surfaces.

Definition 6.1. An elliptic fibration is a triple .X;C; f / satisfying the following
conditions:

(1) C and X are excellent regular integral schemes of dimension one and two,
respectively.

(2) f WX ! C is a proper morphism.

(3) The homomorphism OC ! f�OX associated to f is an isomorphism.

(4) The generic fiber of f is a proper smooth curve of genus one.

Let .X;C; f / be an elliptic fibration. A prime divisor D on X is said to be a
(�1)-curve if the following conditions are satisfied. Put k WD �.D;OD/. Then D

is k-isomorphic to P1
k

and deg OX .D/jD D�1. If any fiber of f does not contain
a (�1)-curve, then .X;C; f / is said to be relatively minimal. The multiplicity of
a closed fiber F of f is the multiplicity of the divisor F on X (Section 2). The
minimal regular C -model of the Jacobian of the generic fiber of f is called the
Jacobian fibration of f .

Remark 6.2. Conditions (2) and (3) show that f is surjective. Thus, Condition (1)
shows that f is flat. The multiplicity of F does not depend on the choice of the
proper regular C -model of the generic fiber of f [Liu 2002, 9.2.7].
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Lemma 6.3. Let .X;C; f / be an elliptic fibration and � W Y ! X a connected
étale covering space. Take the Stein factorization

Y
h
��!D

v
��! C

of the composite f ı � W Y !X ! C . Then:

(1) .Y;D; h/ is an elliptic fibration.

(2) v is finite, flat, surjective, and generically separable.

Choose an integral scheme C 0 and a finite flat morphism u W C 0! C such that v
factors through u. Take the normalization X 0 of X �C C 0, the canonical projections
u0 W X 0! X and f 0 W X 0! C 0, and the unique morphism � 0 W Y ! X 0 satisfying
� D u0 ı � 0 and hD f 0 ı � 0. Then:

(3) .X 0;C 0; f 0/ is an elliptic fibration.

(4) u0 and � 0 are finite, étale, and surjective.

Proof. Since X is regular and � is étale, the scheme Y is regular. Thus, Statements (1)
and (2) follow from Proposition 4.5. Statement (4) follows from Lemma 4.7. Since
X is regular and u0 is étale, the scheme X 0 is regular. Thus, Statement (3) follows
from Proposition 4.5. �

We frequently use the following:

Proposition 6.4 [Liu et al. 2004, 6.6]. Let C be the spectrum of a complete discrete
valuation ring with algebraically closed residue field and field of fractions K. Let
.X;C; f / be a relatively minimal elliptic fibration with Jacobian fibration .E;C;g/.
By XK and EK we denote the generic fibers of f and g, respectively. Then the
special fiber of f is of type mT (the Kodaira symbol) if and only if the special fiber
of g is of type T and the order of the torsor ŒXK � 2H 1.K;EK / is equal to m.

We refer to [Liu 2002, 8.3.39, 8.3.44, 9.3.31, and 9.3.32] for desingularizations
and the minimal desingularizations of fibered surfaces.

Lemma 6.5. Let .X;C; f / be an elliptic fibration with generic fiber XK and
�K W YK ! XK a finite morphism between geometrically connected K-curves of
genus one. Take the normalization � W Y !X of X in �K . Assume that f is smooth
and that the residue field at any closed point on C is algebraically closed. Then the
triple .Y;C; f ı �/ is a relatively minimal elliptic fibration.

Proof. We may assume that C is the spectrum of a discrete valuation ring. Take
the minimal desingularization � W yY ! Y of Y . By Xk , Yk , and yYk we denote
the special fibers of f , f ı �, and f ı � ı �, respectively. Choose an irreducible
component D of Yk and an irreducible component yD of yYk dominating D. Since
1 D g.Xk/ � g.D/ � g. yD/, the Néron–Kodaira classification of singular fibers
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implies that yD is the unique irreducible component of yYk whose geometric genus is
equal to 1. Thus, the component D is the unique irreducible component of Yk , and
the component yD is the unique irreducible component of yYk that dominates D. Since
� is the minimal desingularization, the morphism � is an isomorphism. Therefore,
the triple .Y;C; f ı �/ is a relatively minimal elliptic fibration. �

Lemma 6.6. Let .X;C; f / be an elliptic fibration with Jacobian fibration .E;C;g/.
Assume that the reduction of any closed fiber of f is isomorphic to an elliptic
curve and that the residue field at any closed point on C is algebraically closed.
By XK and EK we denote the generic fibers of f and g, respectively. Take a
positive multiple n of the order of the torsor ŒXK � 2 H 1.K;EK /. Then there
exists a C -morphism X ! E whose restriction to the generic fibers induces the
multiplication of their Jacobian EK by n.

Proof. Take a finite Galois extension K0=K so that X.K0/ 6D ∅. Put G WD

Gal.K0=K/ and XK 0 WD XK �K K0. Choose a cocycle c 2 Z1.G;E.K0// repre-
senting ŒXK �. The curve XK=K may be obtained as the quotient of a G-equivariant
action on XK 0=K

0 induced by c (see Section 6B). Moreover, an endomorphism of
Z1.G;E.K0// induces a G-equivariant endomorphism of XK 0 , whose quotient is
a K-morphism between torsors of EK . Since the endomorphism on H 1.K;EK /

induced by the multiplication of EK by n maps the torsor ŒXK � to the trivial
torsor ŒEK �, the endomorphism induces a K-morphism �K W XK ! EK . Take
the normalization Y ! E of E in �K . Proposition 6.4 shows that g is smooth.
By Lemma 6.5, the scheme Y is the minimal regular C -model of XK . Since the
minimal regular C -model of XK is unique up to unique C -isomorphism, the C -
scheme Y is C -isomorphic to X , which concludes the proof. �

Corollary 6.7. Let C be the spectrum of a complete discrete valuation ring with
algebraically closed residue field. Let .X;C; f / be a relatively minimal elliptic
fibration with Jacobian fibration .E;C;g/. Then the reduction of the special fiber
of f is isomorphic to an ordinary elliptic curve if and only if the special fiber of g

is an ordinary elliptic curve.

6B. Étale coverings of local elliptic fibrations. Let R be a complete discrete valu-
ation ring with algebraically closed residue field k of characteristic p�0 and field of
fractions K. Put C WD Spec R. Let .X;C; f / be an elliptic fibration with Jacobian
fibration .E;C;g/. By XK and EK we denote the generic fibers of f and g,
respectively. By ŒXK � we denote the element of H 1.K;EK / corresponding to the
torsor XK of EK . Take a separable closure K of K. Take the maximal base field
zK of f in K (Definition 4.9). In this subsection, we determine the extension zK=K.

Take a finite Galois extension K0=K in K so that X.K0/ 6D∅. Put GK 0=K WD

Gal.K0=K/. The group H 1.GK 0=K ;E.K
0// may be regarded as a subgroup of
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H 1.K;EK / by the inflation homomorphism. Then the torsor ŒXK � 2H 1.K;EK /

is contained in H 1.GK 0=K ;E.K
0// since ŒXK � splits over K0. Choose a cocycle

c 2Z1.GK 0=K ;E.K
0// representing ŒXK �. The extension K0=K induces a finite

covering C 0=C . By .E0;C 0;g0/ we denote the Jacobian fibration of XK �K K0. By
the uniqueness of the normalization C 0 of C in K0 and the Jacobian fibration g0, we
obtain a homomorphism � WGK 0=K ! Aut.C 0=C /! Aut.E0=C /, where the first
arrow is induced by the automorphisms on the generic point of C 0 and the second
arrow is induced by the base change of the automorphisms via g0. Furthermore,
we obtain a map � W GK 0=K ! E.K0/! Aut.E0=C 0/, where the first arrow is
given by c and the second arrow is induced by the translation by addition. Since
c is a cocycle, the map Q� W GK 0=K ! Aut.E0=C / defined by � 7! �.�/ ı �.�/ is
a homomorphism. By � WE0!Z WDE0= Im Q� we denote the quotient morphism
of the action Q� . The quotient Z is a normal scheme over C whose generic fiber is
isomorphic to XK .

Lemma 6.8. If any element of Im Q� fixes any closed point on E0, then zK DK.

Proof. We may assume that X is the minimal desingularization of Z. Since Z

is normal, we may take a regular closed point z on Z. By x 2 X we denote the
preimage of z. The extension zK=K induces a finite covering zC=C . Take the
minimal desingularization X 0 of X �C C 0 (resp. zX of X �C

zC ) and the canonical
projection u0 W X 0 ! X (resp. Qu W zX ! X ). By the choice of x, the preimage
.u0/�1.x/ consists of one closed point on X 0. By Proposition 4.15(4) and the
definitions of u0 and Qu, the morphism u0 factors through the finite étale surjective
morphism Qu. Thus, the degree of Qu is equal to one, which implies that zK DK. �

Assume that .X;C; f / is relatively minimal. Put GK WD Gal.K=K/. By mT

we denote the type of the special fiber of f (the Kodaira symbol). The type T is
divided into the following three cases, (A), (M), and (E):

Case (A). Additive type: T 6D In (n�0). Since the residue field k of R is algebraically
closed and the special fiber of f is simply connected, Lemma 6.3 implies that X is
simply connected. In particular, the equality zK DK holds.

Case (M). Multiplicative type: T D In (n> 0). Tate’s uniformization gives an exact
sequence of GK -modules

0 �! Z �! Gm;K .K/
�
��!EK .K/ �! 0;

where � maps 1 to q 2 K satisfying 0 < jqj < 1. The exact sequence induces a
long exact sequence

H 1.K;Gm;K / �!H 1.K;EK / �!H 2.K;Z/ �!H 2.K;Gm;K /:
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Since H 1.K;Gm;K /DH 2.K;Gm;K /D 0 and H 2.K;Z/ŠHom.GK ;Q=Z/, we
obtain an isomorphism �M WH

1.K;EK /ŠHom.GK ;Q=Z/. Put M WD�M .ŒXK �/.
The group Im M is finite and cyclic. The Galois extension L=K corresponding to
Ker M is the minimum separable field extension that splits ŒXK �. By D we denote
the normalization of C in L. Put d WD ŒL WK�. Then the normalization Y of X�C D

is a relatively minimal elliptic fibration over D with special fiber of type Idn, and the
induced morphism Y ! X is étale (see the proof of [Liu et al. 2004, 8.3(b)]). In
particular, the relation zK �L holds. Proposition 4.15(4) gives the relation zK �L.
Thus, the equality zK DL holds.

Case (E). Elliptic type: T D I0. By yE we denote the formal group law associated
to E. By R and m we denote the integral closure of R in K and the maximal ideal
of R, respectively. Then yE gives a group structure on m. By yE.m/ we denote
this group. Since the canonical homomorphism E.R/!E.K/ is a GK -module
isomorphism by the valuative criterion for properness, we obtain an exact sequence
of GK -modules

0 �! yE.m/ �!E.K/ �!E.k/ �! 0:

The exact sequence induces a long exact sequence

0 �!H 1.K; yE.m//
�
��!H 1.K;EK / �!H 1.K;E.k//

 
���!H 2.K; yE.m//:

Since GK acts trivially on E.k/, we obtain an isomorphism H 1.K;E.k// Š

Hom.GK ;E.k//.

Lemma 6.9. If p D 0, then the group H i.K; yE.m// is trivial for any positive
integer i . Otherwise the group H i.K; yE.m// is p-primary for any positive integer i .

Proof. Any i -th Galois cohomology group is torsion for any positive integer i . Take
an integer n so that p−n. Then the multiplication of yE.m/ by n is an isomorphism
[Silverman 2009, IV.2.3(b)]. These facts show the lemma. �
Lemma 6.10. The homomorphism  is the zero map.

Proof. By Lemma 6.9, we may assume that p > 0. Furthermore, we have only
to show the image of any element of H 1.K;E.k// of p-power order under  is
equal to zero. If the special fiber of E is ordinary, then the statement follows from
[Raynaud 1970, 9.4.1(iii)]. Otherwise, the group E.k/ is p-torsion free. Thus, the
group H 1.K;E.k// is p-torsion free, which implies that the statement holds. �

From Lemma 6.10 we get a surjective homomorphism �E W H
1.K;EK / !

Hom.GK ;E.k//. Put E WD �E.ŒXK �/. The group Im E is finite and cyclic. The
Galois extension L=K corresponding to Ker E is the minimum separable field
extension that splits the image of ŒXK � in H 1.K;E.k//. By D we denote the
normalization of C in L. Put d WD ŒL WK�. Then the normalization Y of X �C D is
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a relatively minimal elliptic fibration over D with special fiber of type m=d I0, and
the canonical projection Y !X is étale. In particular, the relation zK �L holds. If
ŒXK � 2 �.H

1.GK ; yE.m///, then any element of Im Q� fixes any closed point on E0.
Thus, Lemma 6.8 gives the equality zK DL.

We summarize the above results:

Proposition 6.11. Assume that .X;C; f / is relatively minimal. By mT we denote
the type of the special fiber of f . Take the maximal base field zK of f (Definition 4.9).
Then Œ zK WK� divides m (Proposition 4.15(3)). Moreover:

(A) If T 6D In (n� 0), then X is simply connected and zK DK.

(M) If T D In (n>0), then zK=K corresponds to Ker M in Case (M) and Œ zK WK�D
# Im M Dm.

(E) If T D I0, then zK=K corresponds to Ker E in Case (E), Œ zK WK�D # Im E ,
and one of the following statements holds: (1) pD0 and Œ zK WK�Dm; (2) p>0

and m=Œ zK WK� is a power of p.

In particular, the extension zK=K is finite and cyclic.

Lemma 6.12. Assume that .X;C; f / is relatively minimal. By m we denote the
multiplicity of the special fiber Xk of f . We define a divisor F on X by F WDXk=m.
By n we denote the order of the normal bundle of F in the Picard group Pic F .
Then:

(1) The OC -module R1f�OX is torsion-free if and only if the equality mD n holds.

(2) If p D 0, then the equality mD n holds. Otherwise, there exists a nonnegative
integer e such that the equality mD npe holds.

(3) We use the notation introduced in Lemma 6.3. Take m0 and n0 for .X 0;C 0; f 0/
in the same way. By d we denote the degree of u. Assume that F is isomorphic
to an elliptic curve and p−d . Then the equalities mD dm0 and nD dn0 hold.

Proof. Statements (1) and (2) follow from Proposition 1 in [Mitsui 2013]. Let us
show Statement (3). Since u0 is étale, the equality uıf 0D f ıu0 gives the equality
mDdm0. By � WF 0!F we denote the base change of u0 via the inclusion morphism
F !X . Since u0 is a finite étale surjective morphism of degree d , the base change
� is a finite étale surjective morphism of degree d . Since F is isomorphic to an
elliptic curve, the morphism � may be regarded as a morphism between elliptic
curves over k. The morphism � induces a homomorphism �� W Pic F ! Pic F 0.
Since u0 is étale, the divisor F 0 is equal to the pullback of the divisor F via u0,
which implies that NF 0=X D �

�NF=X . Since p−d , the relation p−.n=n0/ holds.
Thus, the equality mD dm0 and Statement (2) give the equality nD dn0. �
Lemma 6.13 [EGA III1 1961, 7.7.5(II), 7.8.4, and 7.9.4]. The following conditions
are equivalent:
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(1) f is cohomologically flat in dimension zero [EGA III2 1963, 7.8.1]; i.e., the
formation of the direct image f�OX commutes with any base change.

(2) R1f�OX is torsion-free.

Lemma 6.14. We use the notation introduced in Lemma 6.3. Suppose that the
reduction of the special fiber of f is isomorphic to an elliptic curve and that
p− deg v. Then R1f�OX is torsion-free if and only if R1h�OY is torsion-free.

Proof. By [Raynaud 1970, 9.4.2] and Lemma 6.13, we may assume that � 0 is an
isomorphism. Then the lemma follows from (1) and (3) of Lemma 6.12. �

Proposition 6.15. Suppose that p> 0. Assume that .X;C; f / is relatively minimal.
By mT we denote the type of the special fiber of f . Take the maximal base field zK
of f (Definition 4.9). By .Xk/red we denote the reduction of the special fiber of f .
Then p− Œ zK WK� if and only if one of the following conditions is satisfied:

(1) T 6D In (n� 0).

(2) p−m.

(3) .Xk/red is isomorphic to a supersingular elliptic curve.

(4) .Xk/red is isomorphic to an ordinary elliptic curve and R1f�OX is torsion-free.

Proof. By (A) and (M) of Proposition 6.11, we have only to consider the case
T D I0. By Proposition 6.11(E), the extension zK=K corresponds to Ker E and
the equality Œ zK WK�D # Im E holds. If .Xk/red is isomorphic to a supersingular
elliptic curve, then the group Hom.GK ;E.k// is p-torsion free (Corollary 6.7).
Thus, we may assume that .Xk/red is isomorphic to an ordinary elliptic curve. By
Lemmas 6.3 and 6.14, we may assume that Œ zK W K� is a power of p. Then the
proposition follows from [Raynaud 1970, 9.4.1(iii)] and Lemma 6.13. �

Proposition 6.16. Let L=K be a finite cyclic extension in K and .E0;C;g0/ a
relatively minimal elliptic fibration with section. By E0

k
we denote the special fiber

of g0. Then the following two conditions are equivalent:

(1) There exists a relatively minimal elliptic fibration .X 0;C; f 0/ satisfying the
following conditions:

(a) The maximal base field of f 0 is equal to L (Definition 4.9).
(b) The Jacobian fibration of f 0 is given by g0.

(2) The following conditions are satisfied:

(a) If E0
k

is not of type In (n� 0), then LDK.
(b) If p > 0 and E0

k
is isomorphic to a supersingular elliptic curve, then

p− ŒL WK�.
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Proof. Propositions 6.11 and 6.15 show that Condition (1) implies Condition (2).
Let us show the converse. We may assume that E0

k
is of type In (n � 0). Put

d WD ŒL W K� and GL=K WD Gal.L=K/. First, we consider the case n > 0. By
assumption, there exists an element M 2Hom.GL=K ;Q=Z/�Hom.GK ;Q=Z/ of
order d . Since �M is surjective, the case n> 0 follows from Proposition 6.11(M).
Next, we consider the case nD 0. By assumption, there exists an element E 2

Hom.GL=K ;E.k//�Hom.GK ;E.k// of order d . Since �E is surjective, the case
nD 0 follows from Proposition 6.11(E). �
Proposition 6.17. Let .Y;C; h/ be a relatively minimal elliptic fibration with spe-
cial fiber of type In (n� 0). Let � W Y !X be a finite étale surjective C -morphism
of degree d . We regard the restriction �K W YK !XK of � to the generic fibers as
a homomorphism between elliptic curves, which is determined by the choice of an
element of Y .K/. By G we denote the subgroup of Y .K/ consisting of all d -torsion
elements. Put H WD �K .G/. By G and H we denote the sets of the closures of all
elements of G and H in Y and X , respectively. Assume that p−d . Then:

(1) d j n, #G D d2, and #H D d .

(2) All elements of G are disjoint.

(3) All elements of H are disjoint.

(4) There exists an irreducible component of the special fiber of f that intersects
with all elements of H , and any other irreducible component of the special
fiber of f is disjoint from all elements of H .

Proof. Since � is étale, the relation d j n holds and the special fiber of f is of type Il ,
where we set l WD n=d . We may regard the smooth loci yX and yY of f and h as the
Néron models of XK and YK , respectively. By the Néron mapping property, the
homomorphism �K induces the unique C -homomorphism y� W yY ! yX , which is the re-
striction of � to the smooth loci yX and yY . The restriction y�k of y� to the special fibers
of yX and yY is a finite étale surjective k-homomorphism of degree d . If nD0, then y�k
is a homomorphism between elliptic curves. If n> 0, then y�k is the homomorphism

Gm;k � .Z=nZ/ �! Gm;k � .Z= lZ/; .z; e mod n/ 7�! .z; e mod l/:

Thus, the closure of G in Y is finite and étale over C [Bosch et al. 1990, 7.3.2],
which concludes the proof. �

6C. Elliptic surfaces with prescribed orbifolds. In this subsection, we use the
following notation. Let k be an algebraically closed field of characteristic p� 0 and
C a connected proper smooth k-curve with function field K. An elliptic fibration
.X;C; f / is said to be trivial if there exists an elliptic curve F over k such that
X is C -isomorphic to the C -scheme F �k C . Recall the following result on the
global-to-local map:
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Proposition 6.18 [Cossec and Dolgachev 1989, 5.4.6]. Let EK be an elliptic
curve over K. Take the minimal regular C -model .E;C;g/ of EK . Assume
that the elliptic fibration .E;C;g/ is nontrivial. For each closed point s on C ,
we put Ks WD Frac Osh

C;s
and EKs

WD EK �K Ks . Then the global-to-local map
H 1.K;EK /!

L
s2C H 1.Ks;EKs

/ is surjective.

Theorem 6.19. Let .C;B/ be a connected cyclic orbifold k-curve and .E;C;g/
a nontrivial relatively minimal elliptic fibration with section. We use the nota-
tion Bs=Ks introduced in Definition 3.6. Then the following two conditions are
equivalent:

(1) There exists a relatively minimal elliptic fibration .X;C; f / satisfying the
following conditions:
(a) The orbifold associated to f is isomorphic to .C;B/ (Definition 4.23).
(b) The Jacobian fibration of f is given by g.

(2) The following conditions are satisfied for any closed point s on C :
(a) If g�1.s/ is not of type In (n� 0), then Bs DKs .
(b) If p > 0 and g�1.s/ is isomorphic to a supersingular elliptic curve, then

p− ŒBs WKs �.

Proof. The theorem follows from Propositions 6.16 and 6.18. �
Proposition 6.20. Let .X;C; f / be a relatively minimal elliptic fibration with
Jacobian fibration .E;C;g/. Then the following conditions are equivalent:

(1) �.OX /� 0.

(2) �.OX /D 0.

(3) The reduction of any closed fiber of f is isomorphic to an elliptic curve.

(4) g is smooth.

Proof. The equivalence of (1) and (2) follows from Proposition 2 in [Mitsui 2014].
The equivalence of (2) and (3) follows from Proposition 2 in [Mitsui 2013]. The
equivalence of (3) and (4) follows from Proposition 6.4. �
Corollary 6.21. Let .C;B/ be a connected cyclic orbifold k-curve. Then there
exists a relatively minimal elliptic fibration .X;C; f / with �.OX / > 0 such that the
orbifold associated to f is isomorphic to .C;B/ (Definition 4.23).

Proof. Take a relatively minimal elliptic fibration .E;C;g/ satisfying the following
conditions: (1) g is not smooth; (2) g admits a section; (3) for any s 2 Supp B, the
closed fiber g�1.s/ is isomorphic to an ordinary elliptic curve. Since the elliptic
fibration .E;C;g/ is nontrivial, Theorem 6.19 gives a relatively minimal elliptic
fibration .X;C; f / such that the orbifold associated to f is isomorphic to .C;B/.
Proposition 6.20 shows that the inequality �.OX / > 0 holds. �
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6D. Fundamental groups of elliptic surfaces. In this subsection, we use the fol-
lowing notation. Let k be an algebraically closed field of characteristic p � 0,
C a connected proper smooth k-curve with function field K, and .X;C; f / an
elliptic fibration. We denote the intersection number of divisors D1 and D2 on X

by D1 �D2.

Lemma 6.22. Assume that two sections D1 and D2 of f satisfy the following:

(1) OX .D1�D2/jXK
is torsion in Pic.XK /, where XK is the generic fiber of f .

(2) For any closed point x on C , there exists an irreducible component of the fiber
f �1.x/ that intersects with both of D1 and D2, and any other irreducible
component of the fiber f �1.x/ is disjoint from both of D1 and D2.

Then the equality D1 �D2 D��.OX / holds.

Proof. First, we assume that D1 DD2. Put D WDD1 DD2 and F WD OX .D/=OX .
Since the genus of XK is equal to one and the effective divisor DjXK

on XK is
of degree one, the long exact sequence induced by the functor f� and the exact
sequence of OX -modules

0 �! OX �! OX .D/ �! F �! 0

gives an isomorphism f�F!R1f�OX . In particular, the equalities

D �D D deg OX .D/jD D degf�FD deg R1f�OX

hold. The Riemann–Roch theorem for the line bundle R1f�OX on C and the Leray
spectral sequence for f give the equalities

deg R1f�OX D �.R
1f�OX /��.OC /D��.OX /:

Thus, the equality D �D D��.OX / holds.
Next, we consider the general case. By n we denote the order of OX .D1�D2/jXK

in Pic.XK / (Condition (1)). Then n.D1�D2/ is linearly equivalent to a vertical
divisor V . Condition (2) gives the equality D0 � .D1 �D2/ D 0 for any vertical
prime divisor D0. Thus, the equality V � V D 0 holds, which gives the equality
.D1�D2/ � .D1�D2/D 0. Therefore, the first case shows the general case. �

Theorem 6.23. Choose a smooth closed fiber i W X0 ! X of f . Take a geo-
metric point x0 on X0. Put x WD i.x0/ and s WD f .x/. By .C;B/ we denote
the connected proper orbifold k-curve associated to f (Definition 4.23). The
morphisms i and f induce canonical homomorphisms i� W �1.X0;x0/! �1.X;x/

and f orb
� W �1.X;x/! �1.C;B; s/, respectively (Theorem 1.1). Then:

(1) If �.OX / > 0, then i� is trivial and f orb
� is an isomorphism.

(2) If �.OX /D 0, then i� is injective.
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Remark 6.24. In the complex analytic case, Statement (2) does not hold in general
for topological fundamental groups although Statement (1) holds and i� is nontrivial
whenever �.OX /D 0 [Friedman and Morgan 1994, 2.2.1 and 2.7.2]. For example,
if X is a Hopf surface, then �.OX /D 0, Ker i� Š Z, Coker i� D 0, and �1.X /Š

Im i� Š Z˚Z=nZ for some positive integer n.

Proof. By .E;C;g/ we denote the Jacobian fibration of f . First, let us show
Statement (1). We have only to show the following: for any connected étale
covering space � W Y !X , any connected component of ��1.X0/ is X0-isomorphic
to X0. Assume that the above statement does not hold. Choose � that does not
satisfy the above statement. Take the Stein factorization

Y
h
��! C 0

u
��! C

of f ı � W Y ! X ! C . Take the elliptic fibration .X 0;C 0; f 0/ and the étale
morphisms � 0 W Y ! X 0 and u0 W X 0! X given by Lemma 6.3. By assumption,
the morphism � 0 is not an isomorphism. Replacing � by � 0, we may assume that
.Y;C; f ı �/ is an elliptic fibration.

Since � is étale, any closed fiber is of type mIn (n � 0). Since �.OX / > 0,
Proposition 6.20 shows that f admits a closed fiber of type mIn (n > 0). In
particular, the j -invariant of g is nonconstant (Proposition 6.4). By d we denote
the degree of � . If p> 0, then p−d since f admits a closed fiber that is isomorphic
to a supersingular elliptic curve (Corollary 6.7) and � is étale. Choose a connected
proper smooth k-curve C 0 and a finite morphism u WC 0!C satisfying the following
condition: the morphism u induces an extension of the function fields K0=K; by JK

we denote the Jacobian of the generic fiber of Y=C ; then Y .K0/ 6D∅ and JK .K
0/

contains d2 d-torsion elements. Take a desingularization X 0 of X �C C 0 and the
canonical projection u0 WX 0!X . Since � 0 is étale, the base change � 0 W Y 0!X 0

of � via u0 is étale. Thus, we obtain an étale C 0-morphism � 00 W Y 00!X 00 between
the minimal regular C 0-models of Y 0 and X 0 after successive blowing-downs of
(�1)-curves on Y 0 and X 0. Replacing � by � 00, we may assume that � is a morphism
between Jacobian fibrations and Y .K/ contains d2 d -torsion elements.

By H we denote the image of the d-torsion elements of Y .K/ under �. By H

we denote the set of the closures of all elements of H in X . Proposition 6.17 shows
the following: (a) #H D d > 1; (b) all elements of H are disjoint; (c) for any
closed point x on C , there exists an irreducible component of the fiber f �1.x/ that
intersects with all elements of H , and any other irreducible component of the fiber
f �1.x/ is disjoint from all elements of H . This contradicts Lemma 6.22 since
�.OX / > 0. Therefore the homomorphism i� is trivial.

Next, let us show Statement (2). We have only to show that, for any connected
étale covering space � WX 0

0
!X0, there exists an étale covering � WY !X such that
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any connected component of the preimage ��1.X0/ is X0-isomorphic to X 0
0
. Since

�.OX /D 0, Proposition 6.20 shows that g is smooth. Take an integer n� 3 so that
p−n. Since the n-torsion C -subgroup scheme of E=C is finite and étale, we may
take a connected étale covering space u WC 0!C satisfying the following condition:
let u0 W E0 ! E denote the base change of u via g; then E0.C 0/ contains n2 n-
torsion elements. Since g is smooth, the j -invariant of E is contained in k. Thus,
the elliptic curve E0 over C 0 induces a constant morphism from C 0 to the moduli
scheme of elliptic curves with level n. Therefore, we obtain a C 0-isomorphism
E0ŠX0�k C 0. Take the base change � 0 WE00!E0 of � via the structure morphism
C 0! Spec k. Take the C -morphism h W X ! E given by Lemma 6.6. Then the
base change of u0 ı � 0 via h is the desired morphism �. �

Lemma 6.25. Let R be a strictly Henselian excellent discrete valuation ring of
equicharacteristic. By yR we denote the completion of R with respect to the maximal
ideal. Put K WD Frac R and yK WD Frac yR. Let yL= yK be a finite Galois extension.
Then there exists a unique extension L=K in yL such that yLD yKL. Furthermore,
the extension L=K is Galois, of degree Œ yL W yK�, and linearly disjoint from yK=K.

Proof. Since R is algebraically closed in yR by the approximation property [Bosch
et al. 1990, 3.6.9], we have only to show the existence of L. We denote the
characteristic of R by l . Put d WD Œ yL W yK�. By assumption, the extension yL= yK is
solvable. Thus, by induction on d , we may assume that l −d or d D l > 0. The case
l −d follows from Kummer theory since R contains a primitive d-th root of unity.
The case d D l > 0 follows from Lemma 5.9(2) and Artin–Schreier theory. �

Finally, we give a proof of the criterion for simple-connectedness of elliptic
surfaces:

Proof of Theorem 1.2. We use the notation introduced in Theorem 6.23. Theorems
1.1 and 6.23 show that �1.X / is trivial if and only if �1.C;B/ is trivial and
�.OX / > 0. Proposition 6.11 shows that the orbifold .C;B/ is cyclic. Thus,
Theorem 1.3 shows that �1.C;B/ is trivial if and only if C Š P1

k
, Bt D B,

# Supp B � 2, and gcd.ns; nt /D 1 for s 6D t , where we put ns WD ŒBs WKs � for each
s 2 Supp B. Lemma 6.25 and Propositions 4.6, 6.11, and 6.15 imply that the above
conditions on .C;B/ are equivalent to Conditions (2)–(6).

Let us show that each of Conditions (1)–(6) is necessary. We remark that
�.OX /> 0 if and only if the Jacobian fibration of f is not smooth (Proposition 6.20).
The necessity of Conditions (1) and (2) is clear. The necessity of Conditions (3) and
(4) follows from Corollary 6.21. The necessity of Conditions (5) and (6) follows
from Proposition 6.15 and Theorem 6.19. �



1130 Kentaro Mitsui

Appendix A: Triangle groups and projective special linear groups

The result of this section is used in the proof of Proposition 5.4. Let a, b, and c be
integers greater than 1. We define the triangle group �.a; b; c/ by

�.a; b; c/ WD hx;y; z jxa
D yb

D zc
D xyz D idi:

Let p be a prime number and q a power of p. In this section, we study homo-
morphisms �.a; b; c/! SL.2; Fq/ and �.a; b; c/! PSL.2; Fq/ that preserve the
orders of x, y, and z. Take an algebraic closure Fq of Fq . For each positive integer n

prime to p, we take a primitive n-th root of unity �n in Fq . Put �n WD �nC �
�1
n .

The proofs of Lemmas A.1–A.4 are straightforward.

Lemma A.1. �n 2 Fq if and only if n j .q2� 1/.

Lemma A.2. We have equalities # SL.2; Fq/ D q.q2 � 1/ and # PSL.2; Fq/ D

q.q2�1/=gcd.2;p� 1/. The projection SL.2; Fq/!PSL.2; Fq/maps any element
of order n to an element of order n=gcd.2;p� 1; n/.

Lemma A.3. Take X 2SL.2; Fq/. Then the image of X in SL.2; Fq/ is conjugate to�
1 1

0 1

�
;

�
�1 1

0 �1

�
; or

�
˛ 0

0 ˛�1

�
;

where ˛ 2 Fq
�. By n we denote the order of ˛ in Fq

�. If p 6D 2, then the order of
X is equal to p, 2p, or n, respectively. Otherwise, the order of X is equal to 2, 2,
or n, respectively. The order of the image of X in PSL.2; Fq/ is equal to p, p, or
n= gcd.2;p� 1; n/, respectively.

Lemma A.4. Take X 2 SL.2; Fq/. Let n be an integer prime to p. Assume that
n> 2 and tr X D �n. Then the order of X is equal to n.

Lemma A.5. Assume that a, b, and c are greater than 2 and divide q2� 1. Then
there exist X , Y , and Z in SL.2; Fq/, of orders a, b, and c, respectively, such that
XYZ D I , where I is the identity matrix of SL.2; Fq/.

Proof. Lemma A.1 shows that �a, �b , and �c are contained in Fq . Put

X WD

�
0 �1

1 �a

�
2 SL.2; Fq/:

We have only to construct Y and Z in SL.2; Fq/ so that tr Y D �b , tr Z D �c , and
XYZ D 1 (Lemma A.4). We write

Y D

�
˛ ˇ

 ı

�
:
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Then we have only to choose ˛, ˇ,  , and ı in Fq so that ˛ı�ˇ D 1, ˛CıD�b ,
and ˇ �  C�aı D �c . Thus, we have only to show that there exists a solution
.˛; ˇ/ 2 Fq � Fq of the equation F.˛; ˇ/D 0, where we put

F.u; v/ WD u2
��auvC v2

��buC .�a�b ��c/vC 1:

If elements ˛0, ˛1, ˇ0, and ˇ1 in Fq satisfy ˛ D ˛0C ˛1 and ˇ D ˇ0Cˇ1, then
the equality

F.˛; ˇ/D F.˛0; ˇ0/C
@F

@u
.˛0; ˇ0/˛1C

@F

@v
.˛0; ˇ0/ˇ1C˛

2
1 ��a˛1ˇ1Cˇ

2
1

holds. Note that the equalities�
.@F=@u/.u; v/D 2u��av��b;

.@F=@v/.u; v/D��auC 2vC�a�b ��c

hold. Since a> 2 and gcd.p; a/D 1, the inequality �2
a 6D 4 holds. Thus, we may

take .˛0; ˇ0/2Fq�Fq so that .@F=@u/.˛0; ˇ0/D .@F=@v/.˛0; ˇ0/D 0. Therefore,
we have only to show that there exists a solution .˛1; ˇ1/ 2 Fq �Fq of the equation
G.˛1; ˇ1/ D �F.˛0; ˇ0/, where we put G.u; v/ WD u2 � �auv C v2. If p 6D 2

(resp. pD 2), then the quadratic form G.u; v/ is nondegenerate (resp. nondefective),
which concludes the proof. �

Lemma A.6. Assume that the following conditions are satisfied:

(1) If p 6D 2, then aD p or 2p.

(2) If p D 2, then aD 2.

(3) b and c are greater than 2 and divide q2� 1.

Then there exist X , Y , and Z in SL.2; Fq/ of orders a, b, and c, respectively, such
that XYZ D I , where I is the identity matrix of SL.2; Fq/.

Proof. Lemma A.1 shows that �b and �c are contained in Fq . First, we consider
the case aD p. We define X , Y , and Z in SL.2; Fq/ by

X WD

�
1 1

0 1

�
; Y WD

�
�b 0

�c ��b ��1
b

�
; and Z WD

�
��1

b
���1

b

�b ��c �c � �
�1
b

�
:

Then the order of X is equal to p. Moreover, the equalities tr Y D �b , tr Z D �c ,
and XYZD I hold. Thus, the elements X , Y , and Z satisfy the desired conditions
(Lemma A.4). Next, we consider the case p 6D 2 and aD 2p. In that case, we have
only to replace X , Y , and Z by

X WD

�
�1 1

0 �1

�
; Y WD

�
�b 0

�bC�c ��1
b

�
; and Z WD

�
���1

b
���1

b

�bC�c ��1
b
C�c

�
: �
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Proposition A.7. Assume that a, b, and c are pairwise coprime. Take the elements
x, y, and z of �.a; b; c/ in the definition of �.a; b; c/. Put G WD SL.2; Fq/ or
PSL.2; Fq/. Then there exists a homomorphism � W �.a; b; c/! G such that the
orders of �.x/, �.y/, and �.z/ are equal to a, b, and c, respectively, if and only if
the following three conditions are satisfied:

(1) abc j #G.

(2) If G D SL.2; Fq/ and one of a, b, and c is equal to 2, then p D 2.

(3) If an integer u is equal to a, b, or c and is divisible by p, then u satisfies one of
the following conditions: (a) uD p: (b) G D SL.2; Fq/, p 6D 2, and uD 2p.

Proof. First, let us show the “only if” part. Since a, b, and c are pairwise coprime,
the condition on � implies Condition (1). Lemma A.3 and the condition on � imply
Condition (3). Assume that G D SL.2; Fq/, aD 2, and p 6D 2. Then �.x/D�I ,
where I is the identity matrix of SL.2; Fq/. Thus, the equality �.y/D��.z/ holds,
which contradicts the assumption that b is prime to c. Therefore, Condition (2)
holds. The “if” part follows from Lemmas A.2, A.5, and A.6. �

Lemma A.8. Assume that a, b, and c are pairwise coprime. Let G be a nontrivial
finite group. If there exists a surjective homomorphism �.a; b; c/!G, then G is
nonsolvable.

Proof. Assume that G is solvable. Then there exists a nontrivial cyclic group H

and a surjective homomorphism � W �.a; b; c/! H . We may write H D Z=nZ,
where n is an integer greater than 1. Take the elements x, y, and z of �.a; b; c/
in the definition of �.a; b; c/. The orders of x, y, and z are equal to a, b, and
c, respectively. By a, b, and c we denote the orders of �.x/, �.y/, and �.z/,
respectively. Then a j a, b j b, c j c and abc 6D 1. In particular, the integers a, b,
and c are pairwise coprime. Since xyz D id, the equality �.x/C�.y/C�.z/D 0

holds, which contradicts the facts that a, b, and c are pairwise coprime and abc 6D 1.
Therefore, the group G is nonsolvable. �

Theorem A.9. Assume that a, b, and c are pairwise coprime. If fa; b; cgDf2; 3; 5g,
then we suppose that p D 5. Otherwise, we suppose that 2abc j .p2� 1/. Take the
elements x, y, and z of �.a; b; c/ in the definition of �.a; b; c/. Then there exists a
surjective homomorphism � W�.a; b; c/! PSL.2; Fp/ such that the orders of �.x/,
�.y/, and �.z/ are equal to a, b, and c, respectively. Furthermore, there exists a
prime number p such that 2abc j .p2� 1/.

Remark A.10. If q > 3, then the group PSL.2; Fq/ is noncommutative and simple.

Proof. Let us show the first statement. By Lemma A.2, we may take � in
Proposition A.7. We have only to show that � is surjective. Lemma A.8 shows
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that the image of � is nonsolvable. Thus, the case fa; b; cg D f2; 3; 5g follows from
the fact that any proper subgroup of PSL.2; F5/.Š A5/ is solvable. Assume that
fa; b; cg 6D f2; 3; 5g. By the classification of the subgroups of PSL.2; Fp/ [Dickson
1958, p. 285, XII, 260], any nonsolvable subgroup of PSL.2; Fp/ is isomorphic
to PSL.2; F5/ or PSL.2; Fp/. Suppose that � is not surjective. Then the image
of � is isomorphic to PSL.2; F5/. Since the order of any nontrivial element in
PSL.2; F5/.Š A5/ is equal to 2, 3 or 5, the equality fa; b; cg D f2; 3; 5g holds,
which contradicts the assumption. Thus, the homomorphism � is surjective. The
last statement follows from Dirichlet’s theorem on arithmetic progressions. �

Appendix B: Comparison between orbifolds and stacks

Let k be an algebraically closed field of characteristic p � 0. For a nonnegative
integer n, a DM stack S is said to be of dimension n if an atlas of S is of dimension n.
A stack orbifold S is a locally Noetherian normal DM stack that admits an open
dense substack that is isomorphic to a scheme. A stack orbifold k-curve S is a
separated smooth k-stack of dimension one that is a stack orbifold. In the following,
we see that the notion of an orbifold k-curve coincides with the notion of a stack
orbifold k-curve.

We construct a stack orbifold k-curve from an orbifold k-curve. Let .S;B/
be a connected orbifold k-curve. Put S0 WD S n Supp B. Take s 2 S . Choose an
affine open subset U containing s. By .U;BjU / we denote the orbifold obtained by
restricting .S;B/ to U . We may take a Galois orbifold trivialization U 0! .U;BjU /

of .U;BjU / (Theorem 1.3). We may regard the open subscheme U \S0 of U as
an open substack of the quotient stack ŒU 0=G�. Pasting ŒU 0=G� for all s 2 S , we
obtain a stack orbifold k-curve with coarse moduli space S .

We construct an orbifold k-curve from a stack orbifold k-curve. Let S be a
connected stack orbifold k-curve. Take an open dense substack S0 of S that is
isomorphic to a scheme S0. Take the coarse moduli space � W S! S of S [Rydh
2013]. We may regard S0 as an open subscheme of S . Thus, the equality deg�D 1

holds [Vistoli 1989, 1.15]. Therefore, the scheme S is of finite type over k. Since
S is connected and normal, the scheme S is connected and normal. Since k is
perfect, the scheme S is a connected smooth k-curve.

By P .S/ we denote the set of all closed points on S . Take s 2P .S/. By Aut.s/
we denote the automorphism group of s. If s 2 S0, then Aut.s/ is trivial. By Ss

and Ss we denote the schemes obtained by the strict Henselizations of S and S

at s, respectively [Laumon and Moret-Bailly 2000, 6.2.1]. Take the quotient stack
�s W Ss! Ts WD ŒSs=Aut.s/� and the canonical morphism �s W Ts! S [Laumon
and Moret-Bailly 2000, 6.2.1]. By Bs , Ls , and Ks , we denote the fields of rational
functions of Ss , Ts , and Ss , respectively [Vistoli 1989, 1.14]. Since the composite
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�ı�s WTs!S induces an isomorphism Ks!Ls , the composite �ı�sı�s WSs!S

induces a finite Galois extension Bs=Ks with Galois group Aut.s/.
Take a separable closure Ks of Ks . We embed Bs in Ks over Ks . Since Bs=Ks

is Galois, the image does not depend on the choice of the embedding. We define
a map B on P .S/ by s 7! Bs=Ks (Definition 3.6). Then Supp B is locally finite
since S0 is open dense in S. Thus, the pair .S;B/ is a connected orbifold k-curve.

Theorem B.1. The above two correspondences give an equivalence between the
category of orbifold k-curves and orbifold (étale) k-morphisms and the category
of stack orbifold k-curves and (étale) k-morphisms that induce qsc morphisms
between coarse moduli spaces. In particular, the fundamental group of any orbifold
k-curve coincides with the fundamental group of the corresponding stack orbifold
k-curve in [Noohi 2004, §4].

Remark B.2. The theorem does not hold for general orbifolds. There exists an
orbifold étale covering space of a trivial orbifold .S;B/ that is not an étale covering
space of the scheme S (Examples 3.24 and 4.16).

Theorem B.1 follows from the local structure theorem on DM stacks [Laumon
and Moret-Bailly 2000, 6.2]. The detail of the proof of the theorem is left to the
readers.
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