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Let f be a primitive Hilbert modular form of parallel weight 2 and level N for the
totally real field F , and let p be a rational prime coprime to 2N . If f is ordinary
at p and E is a CM extension of F of relative discriminant 1 prime to N p, we
give an explicit construction of the p-adic Rankin–Selberg L-function L p( fE , · ).
When the sign of its functional equation is −1, we show, under the assumption
that all primes ℘ | p are principal ideals of OF that split in OE , that its central
derivative is given by the p-adic height of a Heegner point on the abelian variety A
associated with f .

This p-adic Gross–Zagier formula generalises the result obtained by Perrin-
Riou when F = Q and (N , E) satisfies the so-called Heegner condition. We
deduce applications to both the p-adic and the classical Birch and Swinnerton-
Dyer conjectures for A.
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Introduction

In this work, we generalise the p-adic analogue of the Gross–Zagier formula of
[Perrin-Riou 1987] to totally real fields, in a generality similar to [Zhang 2001a;
2001b; 2004]. We describe here the main result and its applications.

The p-adic Rankin–Selberg L-function. Let f be a primitive (that is, a normalised
new eigenform) Hilbert modular form of parallel weight 2, level N and trivial
character for the totally real field F of degree g and discriminant DF . Let p be a
rational prime coprime to 2N . Fix embeddings ι∞ and ιp of the algebraic closure Q

of F into C and Qp, respectively; we let v denote the valuation on Qp, normalised
by v(p)= 1.

Let E ⊂Q be a CM (that is, quadratic and purely imaginary) extension of F of
relative discriminant 1 coprime to DF N p; let

ε = εE/F : F×A /F×→ {±1}

be the associated Hecke character and N= NE/F be the relative norm. If

W : E×A/E×→Q×

is a finite-order Hecke character1 of conductor f= f(W) prime to N1, the Rankin–
Selberg L-function L( fE ,W, s) is the entire function defined for Re s > 3

2 by

L( fE ,W, s)= L N1(W)(εW|F×A
, 2s− 1)

∑
m

a( f,m)rW(m)
Nms ,

where 1(W)=1N(f), rW(m)=
∑

N(a)=m W(a) (the sum running over all nonzero
ideals of OE ) and

L N1(W)(εW|OF , s)=
∑

(m,N1(W))=1

ε(m)W(m)Nm−s .

This L-function admits a p-adic analogue (Section 4). Let E ′
∞

be the maximal
abelian extension of E unramified outside p and G′ = Gal(E ′

∞
/E).2 (It has rank

1+ δ+ g over Zp, where δ is the Leopoldt defect of F .) For each prime ℘ of OF

dividing p, let
P℘, f (X)= X2

− a( f, ℘)X + N℘

be the ℘-th Hecke polynomial of f , and assume that v(ιp(a( f, ℘))) = 0; in this
case, f is said to be ordinary, and there is a unique root α℘ ∈Q of P℘, f (X) such

1We will use the same notation throughout for a Hecke character, the associated ideal character
and the associated Galois character.

2The reason for the notation is that later in the paper we will denote by E∞ the maximal Zp-
subextension of E ′∞.
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that ιp(α℘) is a p-adic unit. Let L ⊂Qp be the finite extension of Qp generated by
the Fourier coefficients a( f,m) of f and by the α℘ for ℘ | p.

Theorem A. There exists a unique element L p( fE) of OL [[G
′
]]⊗OL L satisfying the

interpolation property

L p( fE)(W)=
W(d(p)F )τ (W)N(1(W))1/2Vp( f,W)W(1)

αf� f
L( fE ,W, 1)

for all finite-order characters W of G′ of conductor f(W). Here both sides are
algebraic numbers,3 W=W−1 and

� f = (8π2)g〈 f, f 〉N

with 〈 · , · 〉N the Petersson inner product (1.1.2); τ(W) is a normalised Gauss sum;
Vp( f,W) is a product of partial Euler factors at p; and finally αf =

∏
℘|p α

v℘(N(f))
℘ .

This is essentially a special case of [Panchishkin 1988; Hida 1991]; we reprove
it entirely here (see Section 4, especially Theorem 4.3.4) because the precise
construction of L p( fE) will be crucial for us. It is obtained, using a technique of
Hida and Perrin-Riou, by applying a p-adic analogue of the functional “Petersson
product with f ” to a convolution8 of Eisenstein and theta measures on G′ valued in
p-adic modular forms (so that8=8(W) is an analogue of the kernel of the classical
Rankin–Selberg convolution). The approach we follow is adelic; one novelty
introduced here is that the theta measure is constructed via the Weil representation,
which seems very natural and would generalise well to higher-rank cases.

On the other hand, Manin [1976], Dimitrov [2013] and others have constructed
a p-adic L-function L p( f, · ) ∈ OL [[GF ]] as an analogue of the standard L-function
L( f, s), where G′F is the Galois group of the maximal abelian extension of F
unramified outside p; it is characterised by the interpolation property

L p( f, χ)= χ(d(p)F )
τ (χ)N(f(χ))1/2

αf(χ)

L( f, χ, 1)
�+f

for all finite-order characters χ of conductor f(χ) that are trivial at infinity and
ramified at all primes v | p. (Here �+f is a suitable period (see Section 9.1) and
τ(χ) is again a normalised Gauss sum.) The corresponding formula for complex
L-functions implies a factorisation (4.4.1)

L p( fE , χ ◦N)= χ(1)
2
�+f �

+

fε

D−1/2
E � f

L p( f, χ)L p( fε, χ),

where fε is the form with coefficients a( fε,m)= ε(m)a( f,m) and DE = N(1).

3By a well-known theorem of [Shimura 1978]. They are compared via ι−1
p and ι−1

∞ .
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Heegner points on Shimura curves and the main theorem. Suppose that ε(N )=
(−1)g−1, where g = [F : Q]. Then for each embedding τ : F → C, there is a
quaternion algebra B(τ ) over F ramified exactly at the finite places v | N for
which ε(Nv)=−1 and the infinite places different from τ ; it admits an embedding
ρ : E ↪→ B(τ ), and we can consider an order R of B(τ ) of discriminant N and
containing ρ(OE). These data define a Shimura curve X . It is an algebraic curve
over F , whose complex points for any embedding τ : F→ C are described by

X (Cτ )= B(τ )× \H±× B̂(τ )×/F̂× R̂× ∪ {cusps}.

It plays the role of the modular curve X0(N ) in the works of Gross and Zagier
[1986] and Perrin-Riou [1987], who consider the case F =Q and ε(v)= 1 for all
v | N (it is only in this case that the set of cusps is not empty).

The curve X is connected but not geometrically connected. Let J (X) be its
Albanese (∼= Jacobian) variety; it is an abelian variety defined over F , geometrically
isomorphic to the product of the Albanese varieties of the geometrically connected
components of X . There is a natural map ι : X→ J (X)⊗Q given by ι(x)=[x]−[ξ ],
where [ξ ] ∈ Cl(X)⊗Q is a canonical divisor class constructed in [Zhang 2001a]
having degree 1 in every geometrically connected component of X ; an integer
multiple of ι gives a morphism X→ J (X) defined over F .

As in the modular curve case, the curve X admits a finite collection of Heegner
points defined over the Hilbert class field H of E and permuted simply transitively
by Gal(H/E). They are the points represented by (x0, t) for t ∈ Ê×/E× F̂×Ô×E
when we use the complex description above and view E ⊂ B via ρ. We let y be
any such Heegner point, and let [z] denote the class

[z] = u−1ι(TrH/E y) ∈ J (X)(E)⊗Q,

where u = [O×E : O
×

F ].
As a consequence of Jacquet–Langlands theory, the Hecke algebra on Hilbert

modular forms of level N acts through its quaternionic quotient on J (X). Let
z f ∈ J (X)(E)⊗Q be the f -component of [z].

Heights and the formula. On any curve X over a number field E , there is a notion
(Section 5.2) of p-adic height 〈 · , · 〉` attached to the auxiliary choices of splittings
of the Hodge filtrations on H 1

dR(X/Ew) for w | p and of a p-adic logarithm
` : E×A/E× → Qp. It is a symmetric bilinear pairing on the group of degree-0
divisors on X modulo rational equivalence, which we can view as a pairing on
J (X)(E). More generally, for any abelian variety A/E , there is defined a p-adic
height pairing on A(E)× A∨(E). In our case, there is a canonical choice for the
Hodge splittings on the f -components of the Albanese variety J (X), given by the
unit root subspaces, and we choose our height pairing on J (X) to be compatible
with this choice.
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Under the assumption ε(N ) = (−1)g−1, the value L p( fE ,1) is zero by the
complex functional equation and the interpolation property; in fact, we have more
generally L p( fE ,W)= 0 for any anticyclotomic character W of G. We can then
consider its derivative in a cyclotomic direction. Let thus W be a Hecke character
of E induced from a Hecke character of F taking values in 1+ pZp ⊂ Z×p , and
assume W is ramified at all places dividing p. The derivative of L p( fE) in the
W-direction is

L ′p,W( fE ,1)=
d
ds

∣∣∣∣
s=0

L p( fE)(W
s).

Theorem B. Assume that 1E/F is totally odd and that every prime ℘ | p is a
principal ideal in OF and splits in OE . Suppose that εE/F (N ) = (−1)g−1. Then
L p( fE ,1)= 0 and

L ′p,W( fE ,1)= D−2
F

∏
℘|p

(
1−

1
α℘

)2(
1−

1
ε(℘)α℘

)2

〈z f , z f 〉W

where 〈 · , · 〉W is the height pairing on J (X)(E) associated with the logarithm
`= d

ds

∣∣
s=0Ws .

The hypothesis that the primes ℘ | p are principal is a technical assumption
that intervenes only in Proposition 8.1.1.4 The assumption that they split in E is
essential to the argument, but like the assumption on 1E/F , it can be removed
a posteriori if the left-hand side of the formula below is nonzero — see Section 8.2.

Applications to the conjecture of Birch and Swinnerton-Dyer. It is conjectured
that to any Hilbert modular newform f one can attach a simple abelian variety
A= A f over F , characterised uniquely up to isogeny5 by the equality of L-functions

L(A, s)=
∏

σ : M f→C

L( f σ , s).

Here M = M f is the field generated by the Fourier coefficients of f ; A has
dimension [M :Q], and its endomorphism algebra contains M (we say that A is
of GL2(M)-type; in fact since F is totally real, A is of strict GL2-type; that is, its
endomorphism algebra equals M — see, e.g., [Yuan et al. 2013, Lemma 3.3]). The
conjecture is known to be true [Zhang 2001a, Theorem B] when

either [F :Q] is odd or v(N ) is odd for some finite place v (∗)

(the assumptions of Theorem B above imply that one of these conditions holds);
in this case, A is a quotient φ of J (X) for a suitable Shimura curve X of the type

4A somewhat more sophisticated approach to our main result should remove this and other
restrictions [Disegni 2015].

5Thanks to Faltings’s isogeny theorem [1983].
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described above. Vice versa, any abelian variety of GL2-type (for some field M)
over a totally real field F is conjectured to be associated with a Hilbert modular
form f as above. This is known to be true for all elliptic curves A over F when
F is Q or a real quadratic field and for all but possibly finitely many geometric
isomorphism classes if F is a general totally real field (see [Le Hung 2014], whose
result is somewhat stronger than this, and [Freitas et al. 2015]; the results build on
the method of Wiles for F =Q).

In view of known Aut(C/Q)-equivariance properties of automorphic L-functions
and the above equality, the order of vanishing of L(A, s) at s = 1 will be an integer
multiple r [M :Q] of the dimension of A. We call r the M-order of vanishing of
L(A, s) or the analytic M-rank of A.

Conjecture (Birch and Swinnerton-Dyer). Let A be an abelian variety of GL2(M)-
type over a totally real field F of degree g.

(1) The M-order of vanishing of L(A, s) at s = 1 is equal to the dimension of
A(F)Q as M-vector space.

(2) The Tate–Shafarevich group X(A/F) is finite, and the leading term of L(A, s)
at s = 1 is given by

L∗(A, 1)
�A

= D−d/2
F |X(A/F)|RA

∏
v-∞

cv = BSD(A),

where d = dim A = [M :Q], the cv are the Tamagawa numbers of A at finite
places (almost all equal to 1),

�A =
∏

τ : F→R

∫
A(Rτ )
|ωA|τ

for a Néron differential6 ωA and

RA =
det〈xi , y j 〉

[A(F) :
∑

Zxi ][A∨(F) :
∑

Zy j ]

is the regulator of the Néron–Tate height paring on A(F)× A∨(F), defined
using any subsets {xi } and {y j } of A(F) and A∨(F) inducing bases of A(F)Q
and A∨(F)Q.

By the automorphic description of L(A, s) and [Shimura 1978], we know that
L(A, s)/

∏
σ : M f→C�

+

f σ is an algebraic number. Comparison with the Birch and
Swinnerton-Dyer conjecture suggests the following conjecture:

6 When it exists, which is only guaranteed if F = Q. Otherwise, we take for ωA any generator
of H0(A, �d

A/F ) and to define �A we divide by the product of the indices [H0(Av, �
d
Av/OF,v

) :

OF,vω̃A] of (the extension of) ωA in the space of top differentials on the local Néron models Av/OF,v
of A.
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Conjecture (period conjecture). We have

�A ∼
∏

σ : M f→C

�+f σ in C×/Q×.

The conjecture is known for F = Q [Shimura 1981] or when A has complex
multiplication (over Q) [Blasius 1986]; see Section 9 below for a more precise
conjecture and some further evidence and motivation.

Assuming the conjecture, we can define a p-adic L-function L p(A) for A by

L p(A)=

∏
σ �
+

f σ

�A

∏
σ : M f→C

L p( f σ )

for any prime p such that A has good ordinary reduction at all primes above p.
Then, fixing a ramified Hecke character ν : G′F→1+pZp⊂Z×p that we omit from

the notation, one can formulate a p-adic version of the Birch and Swinnerton-Dyer
conjecture similarly as above for L p(A, νs):7 the conjectural formula reads∏

℘|p

(1−α−1
℘ )−2L∗p(A,1)= BSDp(A)

where BSDp(A) differs from BSD(A) only in the regulator term, which is now
the regulator of the p-adic height pairing on A(F)× A∨(F) associated with the
p-adic logarithm ` deduced from ν as in Theorem B. One can also formulate a
main conjecture of Iwasawa theory for L p(A) [Schneider 1985].

Then, just as in [Perrin-Riou 1987], we can deduce the following arithmetic
application of Theorem B:

Theorem C. Assume the period conjecture holds for the abelian variety A = A f

and that A satisfies (∗). For an ordinary prime p > 2 decomposing into principal
prime ideals in OF :

(1) The following are equivalent:

(a) The p-adic L-function L p(A, νs) has M f -order of vanishing r ≤ 1 at the
central point.

(b) The complex L-function L(A, s) has M f -order of vanishing r ≤ 1 at
the central point, and the p-adic height pairing associated with ν is
nonvanishing on A(F).

(2) If either of the above assumptions holds, the rank parts of the classical and
the p-adic Birch and Swinnerton-Dyer conjecture are true for A and the
Tate–Shafarevich group of A is finite.

7Here s ∈ Zp and the central point is s = 0, corresponding to ν0
= 1.
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(3) If moreover the cyclotomic Iwasawa main conjecture is true for A, then the
classical and the p-adic Birch and Swinnerton-Dyer formulas for A are true
up to a p-adic unit.

Proof. In part (1), the statement follows trivially from the construction of L p(A) if
r = 0; if r = 1, both conditions are equivalent to the assertion that, for a suitable
CM extension E , the Heegner point z f = z f,E is nontorsion: this is obvious from
our main theorem in case (a); in case (b), by [Zhang 2001a; 2001b] (generalising
[Gross and Zagier 1986; Kolyvagin 1988; Kolyvagin and Logachëv 1991]), the
Heegner point

P =
∑
σ

TrE/F φ(z f σ ,E) ∈ A(F)⊗Q

(with φ : J (X)→ A) generates A(F)⊗Q as M f -vector space so that the p-adic
height pairing on A(F) is nonvanishing if and only if it is nonzero at z f . Part (2)
then follows from (1) and [Zhang 2001a; 2001b].

Schneider [1985] proves an “arithmetic” version of the p-adic Birch–Swinnerton-
Dyer formula for (the Iwasawa L-function associated with) A, which under the
assumption of (3) can be compared to the analytic p-adic formula as explained in
[Perrin-Riou 1987] to deduce the p-adic Birch and Swinnerton-Dyer formula up to
a p-adic unit. In the analytic rank-0 case, the classical Birch and Swinnerton-Dyer
formula follows immediately. In the case of analytic rank 1, recall that the main
result of [Zhang 2001a; 2004] is, in our normalisation, the formula

L ′( fE , 1)
� f

=
1

D2
F D1/2

E

〈z f , z f 〉 =: D
−1/2
E GZ( fE)

(where 〈 · , · 〉 denotes the Néron–Tate height), whereas we introduce the notation
GZp( fE) to write our formula (for any fixed ramified cyclotomic character W=

ν ◦N) as

L ′p( fE ,1)=
∏
℘|p

(
1−

1
α℘

)2(
1−

1
ε(℘)α℘

)2

GZp( fE).

Then, after choosing E suitably so that L( fε, 1) 6= 0 (which can be done by
[Bump et al. 1990; Waldspurger 1985]), we can argue as in [Perrin-Riou 1987] to
compare the p-adic and the complex Birch and Swinnerton-Dyer formulas via the
corresponding Gross–Zagier formulas to get the result. Namely, we have

L∗(A, 1)
�A BSD(A)

=

∏
σ �
+

f σ

�A

1
BSD(A)

∏
σ

L ′( f σE , 1)
� f σ

� f σ

�+f σ�
+

f σε

�+f σε

L( f σε , 1)

=

∏
σ �
+

f σ

�A

∏
σ GZ( f σE )
BSD(A)

∏
σ

D−1/2
E � f σ

�+f σ�
+

f σε

�+f σε

L( f σε , 1)
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by the complex Gross–Zagier formula and the factorisation of L( fE , s). Similarly,

∏
℘|p

(1−α−1
℘ )−2 L∗p(A, 1)

BSDp(A)
=

∏
σ �
+

f σ

�A

∏
σ GZp( f σE )
BSDp(A)

∏
σ

D−1/2
E � f σ

�+f σ�
+

f σε

�+f σε

L( f σε , 1)

by the p-adic Gross–Zagier formula, the factorisation of L p( fE) and the interpola-
tion property of L p( fε). Since we are assuming to know that the left-hand side of
the last formula is a p-adic unit, the result follows from observing the equality∏

σ GZ( f σE )
BSD(A)

=

∏
σ GZp( f σE )
BSDp(A)

of rational numbers.8 �

Alternative approaches to the Birch and Swinnerton-Dyer formula in rank 1 have
recently been proposed, at least for the case F = Q, by Wei Zhang [2014] and
Xin Wan.

Discussion of the assumptions. The conjecture on periods could be dispensed of
if one were willing to work with a “wrong” p-adic L-function for A (namely, one
without the period ratio appearing in the definition above). Then at least the rank
part of the p-adic Birch and Swinnerton-Dyer conjecture makes sense and parts (1)
and (2) of Theorem C hold. The nonvanishing of the p-adic height pairing is only
known for CM elliptic curves [Bertrand 1984]. The Iwasawa main conjecture is
known in most cases for ordinary elliptic curves over Q thanks to the work of Rubin,
Kato and Skinner and Urban [2014]. For Hilbert modular forms, one divisibility in
the CM case is proved by [Hsieh 2014]; results on the general case are obtained
by [Wan 2013]. We can then record the following unconditional result, whose
assumptions are inherited from [Hsieh 2014]:

Theorem D. Let A/F be an elliptic curve with complex multiplication by the ring of
integers OK of an imaginary quadratic field K . Let K ′= F K , and let h−K ′ = hK ′/hK

be the relative class number of K ′/F. Let p - 6h−K ′DF be a prime such that, for all
primes ℘ | p, ℘ is principal and A has good ordinary reduction at ℘. Suppose that
A satisfies (∗) and that ords=1L(A, s)≤ 1. Then

vp

(
L∗(A, 1)

RA�A

)
≤ vp

(
|X(A/F)|

∏
v-∞

cv

)
.

8The rationality of the ratios follows from the fact that the z f σ essentially belong to J (X)(F)—
that is, they belong to the +1-eigenspace for the action of Gal(E/F) on J (X)(E)⊗Q — and that, in
this sense, their images φ(z f σ ) form a Gal(Q/Q)-invariant basis of A(F)⊗Q, orthogonal for the
height pairing.
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Results toward the divisibility in the opposite direction can be obtained from the
method of Kolyvagin; see [Kolyvagin 1991] (for F =Q) and [Howard 2004] (for
general F but excluding the CM case).

Plan of the proof. The proof of the main formula follows the strategy of [Perrin-
Riou 1987]. It is enough (see Section 8) to study the case where W is cyclotomic
(W = Wc) since both sides of the formula are zero when W is anticyclotomic
(WWc

= 1).
In the first part of this paper, we construct the measure 8 on G valued in p-adic

modular forms such that L p( fE)(W) essentially equals l fα (8(W)), where l fα is a
p-adic analogue of the functional “Petersson product with f ” on p-adic modular
forms. This allows us to write

L ′p,W( fE ,1)
.
= l fα (8

′

W),

where .
= denotes equality up to suitable nonzero factors and 8′W =

d
ds

∣∣
s=08(W

s)

is a p-adic Hilbert modular form.
On the other hand, there is a modular form 9 with Fourier coefficients given

by 〈z, T (m)z〉W so that l fα (9)
.
= 〈z f , z f 〉W. It can be essentially written as a sum

of modular forms 9fin +9p, where 9fin encodes the local contributions to the
height from places not dividing p and 9p =

∑
9℘ , the contribution from the

places ℘ above p. Then we can show by explicit computation that the Fourier
coefficients of 8′ are equal to the Fourier coefficients of 9fin up to the action of
suitable Hecke operators at p. The desired formula then follows once we show that
l fα (9p) vanishes. To prove this, we examine the effect of the operator U℘ on 9℘
and find that, in a suitable quotient space, the ordinary projection of 9℘ is zero.
The study of 9℘ follows the methods of Perrin-Riou.

One difficulty in the approach just outlined is that compared to the case of
modular curves there are no cusps available so that in this case the divisors z and
T (m)z have intersecting supports and the decomposition of the height pairing into
a sum of local pairings is not available. Our solution to this problem, which is
inspired by [Zhang 2001a], is to make use of p-adic Arakelov theory as developed
by [Besser 2005] (see Section 5.3) and work consistently in a suitable quotiented
space of Fourier coefficients.

Perspective. The original Gross–Zagier formula has undergone an impressive trans-
formation since its first appearance in 1986, culminating in the recent book of Yuan,
Zhang and Zhang [Yuan et al. 2013]. Obviously, this work is only a first step in
catching up on the p-adic side.9 The latter has also seen important developments,
with generalisations to the nonordinary case, by [Kobayashi 2013] and, to the case

9For a more accomplished attempt, see [Disegni 2015].
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of higher weights, by [Nekovář 1995; Shnidman 2014]. It would certainly be of
interest to generalise those results to the setting of the present work.10

Results similar to those presented here were recently obtained in the thesis of
Li Ma (Paris 6).

Part I. p-adic L-function and measures

This part is dedicated to the construction of the measure giving the p-adic Rankin–
Selberg L-function L p( fE) and to the computation of its Fourier coefficients.

1. p-adic modular forms

1.1. Hilbert modular forms. Let us define compact subgroups of GL2(A∞):

• K0(N )=
{(a

c
b
d

)
∈ GL2(ÔF )

∣∣ c ≡ 0 mod N ÔF
}

if N is an ideal of OF ,

• K1(N )=
{(a

c
b
d

)
∈ K0(N )

∣∣ a ≡ 1 mod N ÔF
}
.

Let k be an element of Z
Hom(F,Q)
≥0 and ψ be a character of F×A /F× of conductor

dividing N satisfying ψv(−1) = (−1)kv for v | ∞. A Hilbert modular form of
weight k, level K1(N ) and character ψ is a smooth function

f : GL2(F) \ GL2(AF )→ C

of moderate growth11 satisfying12

f
((

z
z

)
g
(

a b
c d

)
r(θ)

)
= ψ(z)ψN (a)e∞(k · θ) f (g)

for each z ∈ F×A ,
(a

c
b
d

)
∈ K0(N ) and θ = (θv)v|∞ ∈ F∞, with r(θ)=

∏
v|∞ r(θv) and

r(θv)=
(

cos θv sin θv
− sin θv cos θv

)
∈ SO2(Fv).

If k is constant, we say that f has parallel weight; in this work, we will be almost
exclusively concerned with forms of parallel weight, and we will assume that we
are in this situation for the rest of this section.

10Results in the nonordinary case were presented in a preliminary version of this paper, assuming
a suitable construction of p-adic L-functions generalising [Urban 2014]; I hope to present them in
revised form in a future work.

11 That is, for every g, the function A× 3 y 7→ f
(( y

1
)
g
)

grows at most polynomially in |y| as
|y| →∞.

12Recall the notation ψN =
∏
v|N ψv .
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We call f holomorphic if, for each x∞ ∈ A∞ and y∞ ∈ F×A∞ , the function on
HHom(F,Q)

= {x∞+ iy∞ ∈ F ⊗C | y∞ > 0}

x∞+ iy∞ 7→ ψ−1(y)|y|−k/2 f
(

y x
1

)
is holomorphic; in this case, such function determines f .

Petersson inner product. We define a Haar measure dg on Z(AF ) \ GL2(AF )

(where Z ∼= Gm denotes the centre of GL2) as follows. Recall the Iwasawa
decomposition

GL2(AF )= B(AF )K0(1)K∞ (1.1.1)

where K∞ =
∏
v|∞ SO2(Fv). Let dk =

⊗
v dkv be the Haar measure on K =

K0(1)K∞ with volume 1 on each component. Let dx =
⊗

v dxv be the Haar
measure such that dxv is the usual Lebesgue measure on R if v | ∞ and OF,v

has volume 1 if v -∞. Finally let d×x =
⊗

v d×xv on F×A be the product of the
measures given by d×xv = |dxv/xv| if v | ∞ and by the condition that O×F,v has
volume 1 if v | ∞. Then we can use the Iwasawa decomposition g =

( z
z

)( y x
1

)
k to

define ∫
Z(A)\GL2(A)

f (g) dg =
∫

F×A

∫
A

∫
K

f
((

y x
1

)
k
)

dk dx
d×y
|y|

.

The Petersson inner product of two forms f1 and f2 on GL2(F)\GL2(A) such that
f1 f2 is invariant under Z(A) is defined by

〈 f1, f2〉Pet =

∫
Z(A)\GL2(A)

f1(g) f2(g) dg

whenever this converges (this is ensured if either f1 or f2 is a cuspform as defined
below). It will be convenient to introduce a level-specific inner product on forms f
and g of level N :

〈 f, g〉N =
〈 f, g〉Pet

µ(N )
(1.1.2)

where µ(N ) is the measure of K0(N ).

1.2. Fourier expansion. Let f be a (not necessarily holomorphic) Hilbert modular
form. We can expand it as

f (g)= C f (g)+
∑
α∈F×

W f

((
α

1

)
g
)
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where

C f (g)= D−1/2
F

∫
A/F

f
((

1 x
1

)
g
)

dx,

W f (g)= D−1/2
F

∫
A/F

f
((

1 x
1

)
g
)

e(−x) dx

are called the constant term and the Whittaker function of f , respectively. The
form f is called cuspidal if its constant term C f is identically zero. The functions
of y obtained by restricting the constant term and the Whittaker function to the
elements

( y
1

)
are called the Whittaker coefficients of f . When f is holomorphic,

they vanish unless y∞ > 0 and otherwise have the simple form

C f

(
y x

1

)
= ã0( f, y)= ψ(y)|y|k/2a( f, 0),

W f

(
y x

1

)
= ã( f, y)e∞(iy∞)e(x)= ψ(y)|y|k/2a( f, y∞dF )e∞(iy∞)e(x)

for functions ã0( f, y) and ã( f, y) of y ∈ F∞,×A , which we call the Whittaker–
Fourier coefficients of f , and a function a( f,m) of the fractional ideals m of F that
vanishes on nonintegral ideals whose values are called the Fourier coefficients of f .

For any Z-submodule A of C, we denote by Mk(K1(N ), ψ, A) the space of
holomorphic Hilbert modular forms with Fourier coefficients in A of weight k, level
K1(N ) and character ψ and by Sk(K1(N ), ψ, A) its subspace of cuspidal forms.
When the character ψ is trivial, we denote those spaces simply by Mk(K0(N ), A)
and Sk(K0(N ), A), whereas linear combinations of forms of level K1(N ) with
different characters form the space Mk(K1(N ), A). The notion of Whittaker–Fourier
coefficients extends by linearity to the spaces Mk(K1(N ),C).

We can allow more general coefficients: if A is a Z[1/N ]-algebra, we define
Sk(K0(N ), A) = Sk(K0(N ),Z[1/N ]) ⊗ A; this is well-defined thanks to the q-
expansion principle [Andreatta and Goren 2005].

1.3. p-adic modular forms. Let N and P be coprime ideals of OF and ψ a charac-
ter of conductor dividing N . If f is a holomorphic form of weight k, level K1(N P)
and prime-to-P character ψ (that is, f is a linear combination of forms of level N P
and character ψψ ′ with ψ ′ a character of conductor dividing P), we associate to it
the formal q-expansion coefficients

ap( f, y∞)= ψ−1(y)|y|−k/2ã( f, y).

If ψ ′ is trivial, we set ap( f,m)= ap( f, y∞) if m is the ideal m = y∞dF .
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Let N be an ideal prime to p and ψ a character of level dividing N . Consider the
space of classical modular forms Mk(K1(N p∞),Q) with character whose prime-
to-p part is equal to ψ , and endow it with the norm given by the maximum of
the p-adic absolute values (for the chosen embedding Q ↪→ Cp) of the Fourier
coefficients. Its completion

Mk(K1(N ), ψ,Cp)

of this space is a p-adic Banach space called the space of p-adic modular forms of
weight k, tame level K1(N ) and tame character ψ . We view Mk(K1(N pr , ψψ ′,A)

(for any character ψ ′ of conductor divisible only by primes above p) as a subset
of Mk(K1(N ), ψ,A) via the q-expansion map.

If A is a complete Zp-submodule of Cp, we also write Mk(K1(N ), ψ,A) with
obvious meaning and Sk(K1(N ), ψ,A) or Sk(K0(N ),A) (in the case of trivial
tame character) for cuspforms; when k = 2, we simply write

SN (A)= S2(K0(N ),A)

or just SN if A=Qp or A= Cp (as understood from context).

1.4. Operators acting on modular forms. There is a natural action of the group
algebra Q[GL2(A∞)] on modular forms induced by right translation. Here we
describe several interesting operators arising from this action.

Let m be an ideal of OF and πm ∈ F×A∞ a generator of mÔF that is trivial at places
not dividing m.

The operator [m] : Mk(K1(N ), ψ)→ Mk(K1(Nm), ψ) is defined by

[m] f (g)= N(m)−k/2 f
(

g
(

1
πm

))
. (1.4.1)

It acts on Fourier coefficients by

a([m] f, n)= a( f,m−1n).

If χ is a Hecke character of F , we denote by f |χ the form with coefficients

a( f |χ, n)= χ(n)a( f, n).

For any double coset decomposition

K1(N )
(
πm

1

)
K1(N )=

∐
i
γi K1(N ),

the Hecke operator T (m) is defined by the following level-preserving action on
forms f in Mk(K1(N )):

T (m) f (g)= N(m)k/2−1∑
i

f (gγi ).
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For m prime to N , its effect on Fourier coefficients of forms with trivial character
is described by

a(T (m) f, n)=
∑

d|(m,n)

N(d)k/2−1a( f,mn/d2).

When m divides N , we can pick as double coset representatives the matrices

γi =

(
πm ci

1

)
for {ci } ⊂ ÔF a set of representatives for OF/mOF . Then the operator T (m) is
more commonly denoted U (m), and we will usually follow this practice. It acts on
Fourier coefficients of forms with trivial character by

a(U (m) f, n)= N(m)k/2−1a( f,mn).

Let TN be the (commutative) subring of End S2(K0(N ),Z) generated by the T (m)
for m prime to N . A form f that is an eigenfunction of all the operators in TN is
called a Hecke eigenform. It is called a primitive form if moreover it is normalised
by a( f, 1) = 1 and it is a newform (see Section 1.5 below for the definition) of
some level dividing N .

As usual [Perrin-Riou 1987, Lemme 1.10], we will need the following well-
known lemma to ensure the modularity of certain generating functions:

Lemma 1.4.1. Let A be a Q-algebra. For each linear form

a : TN → A,

there is a unique modular form in
⊕

N ′|N Snew
k (K0(N ′), A) whose Fourier coeffi-

cients are given by a(T (m)) for all m prime to N.

Proof. In [Zhang 2001a, Corollary 3.18], the result is stated and proved when A=C

as a consequence of the existence of a pairing (T, f ) 7→ a1(T f ) between TN and
the space of modular forms of interest. But this pairing is defined over Q; hence,
the result is true for A =Q and by extending scalars for any Q-algebra A. �

Atkin–Lehner theory. For any nonzero ideal M of OF , let WM ∈ GL2(A∞) be a
matrix with components

WM,v =

(
1

−π
v(M)
v

)
if v | M, WM,v =

(
1

1

)
if v - M (1.4.2)

where πv is a uniformiser at v. We denote by the same name WM the operator
acting on modular forms of level N and trivial character by

WM f (g)= f (gWM);
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it is self-adjoint for the Petersson inner product, and when M is prime to N , it is
proportional to the operator [M] of (1.4.1). On the other hand when M equals N ,
or more generally M divides N and is coprime to N M−1, the operator WM is
an involution and its action is particularly interesting. In this case, extending the
definition to forms of level K1(N ) and character13 ψ = ψ(M)ψ(N M−1) with ψ(C) of
conductor dividing C , we have

WM f (g)= ψ−1
(M)(det g)ψ−1

(M)(πM) f (gWM) (1.4.3)

where πM is the idele with nontrivial components only at v | M and given there
by πv(M)v . It is easy to check that this definition is independent of the choice of
uniformisers. The effect of the WM -action on newforms is described by Atkin–
Lehner theory; we summarise it here (in the case M = N ), referring to [Casselman
1973] for the details.

Let π be an irreducible infinite-dimensional automorphic representation of
GL2(AF ) of central character ψ . Up to scaling, there is a unique newform f
in the space of π . It is characterised by either equivalent property: it is fixed by
a subgroup K1(N ) with N minimal among the N ′ for which πK1(N ′) 6= 0 or its
Mellin transform is (a multiple of) the L-function L(π, s) of π . In the case of a
holomorphic cuspform, this is equivalent to requiring that it belongs to the space
of newforms defined in Section 1.5 below. There is a functional equation relating
the L-function L(s, π) of π and the L-function L(1− s, π̃) of the contragredient
representation; as π̃ ∼= ψ−1

·π , it translates into the following description of the
action of WN on newforms. Suppose that the eigenform f ∈ Sk(K1(N ), ψ) is a
newform in the representation π it generates; then we have

WN f (g)= (−i)[F :Q]kτ( f ) f ρ(g) (1.4.4)

where f ρ is the form with coefficients

a( f ρ,m)= a( f,m) (1.4.5)

and τ( f )= τ(π) is an algebraic number of complex absolute value 1.

Trace of a modular form. The trace of a modular form f of level N D and trivial
character is the form of level N

TrN D/N ( f )(g)=
∑

γ∈K0(N )/K0(N D)

f (gγ ).

13Notice that a decomposition of ψ as described is only unique up to class group characters (that
is, Hecke characters of level 1). We will only be using the operator WM for M a proper divisor of N
in a case in which a decomposition is naturally given.
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It is the adjoint of inclusion of forms of level N for the rescaled Petersson product:

〈 f,TrN D/N g〉N = 〈 f, g〉N D

if f has level N and g has level D.
Suppose that D is squarefree and prime to N , in which case we can write

TrD = TrN D/N without risk of ambiguity. A set of coset representatives for
K0(N )/K0(N D) is given by elements γ j,δ for δ | D, j ∈ OF,v/δOF,v, having
components

γ j,δ,v =

(
1 j

1

)(
1

−1

)
=

1
πv

(
πv j

1

)(
1

−πv

)
at places v | δ and γ j,δ,v = 1 everywhere else. From the second decomposition
given just above, if f has weight 2, we obtain

a(TrD( f ),m)=
∑
δ|D

a(U (δ) f (δ),m)=
∑
δ|D

a( f δ),mδ) (1.4.6)

where f (δ)(g)= f (gWδ) with Wδ as in (1.4.2).

Remark 1.4.2. If D is prime to p, the various trace operators TrN Dpr/N pr extend
to a continuous operator TrN D/N on p-adic modular forms of tame level N D.
Similarly, the operators [m], T (m) and Wm for m prime to N p extend to continuous
operators on p-adic modular forms of tame level N .

Ordinary projector. Let L be a complete subfield of Cp. Following Hida (see, e.g.,
[Hida 1991, §3]), we can define for each ℘ | p an idempotent

e℘ = lim
n→∞

U n!
℘ : SN (L)→ SN℘(L)

that is surjective onto S℘-ord
N℘ (L), the subspace of SN℘(L) spanned by U℘-eigenforms

with unit eigenvalue.
Let P =

∏
℘|p ℘. Then we similarly have a surjective idempotent

e =
∏
℘|p

e℘ : SN (L)→ Sord
N P(L),

where Sord
N P(L) is the subspace of SN P(L) spanned by simultaneous U℘-eigenforms

with unit eigenvalue.

1.5. Fourier coefficients of old forms. As we will study modular forms through
their Fourier coefficients, we give here a criterion for recognising the coefficients of
certain old forms.14 Let N and P be coprime ideals of OF . The space SN -old

N P ⊂ SN P

is the space spanned by forms f = [d] f ′ for some 1 6= d | N and some cuspform f ′

14See [Zhang 2001a, §4.4.4].
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of level N ′P with N ′ | d−1 N . In the case P = 1, we define the space of newforms
of level dividing N to be orthogonal to the space of old forms for the Petersson
inner product. We denote by Sold

N ⊂ SN the closed subspace generated by the image
of SN -old

N p∞ in SN . (The coefficient ring will always be either a finite extension of Qp

or Cp as understood from context when not present explicitly in the notation.)
Let now S be the space of functions f : NF →A modulo those for which there

is an ideal M prime to p such that f (n) = 0 for all n prime to M . A function
f ∈S is called multiplicative if it satisfies15 f (mn)= f (m) f (n) for all (m, n)= 1.
For h a multiplicative function, a function f is called an h-derivative if it satisfies
f (mn)= h(m) f (n)+ h(n) f (m) for all (m, n)= 1.

Let σ1 and r be the multiplicative elements of S defined by

σ1(m)=
∑
d|m

N(d), r(m)=
∑
d|m

εE/F (d)

(where E is a totally imaginary quadratic extension of F of discriminant prime
to p).16 Let P =

∏
℘|p ℘ ⊂ OF . We define a subspace DN ⊂ S to be generated

by σ1, r , σ1-derivatives, r -derivatives and Fourier coefficients of forms in SN -old
N P .

Lemma 1.5.1. The q-expansion map Sord
N P/SN-old

N P → S/DN is injective.

Proof. First notice that it is enough to show this when the coefficient ring is a
number field L over which Sord

N P is defined (it suffices for L to contain all the
eigenvalues of the operators T` (` - N p) and U℘ on SN P(L)). By [Zhang 2001a,
Proposition 4.5.1], the kernel of SN P(L)/SN -old

N P (L)→ S/DN is at most generated
by S p-old

N P (L)=
∑

℘|p S℘-old
N P (L), the space of forms that are old at some ℘ | p. To

conclude, it suffices to show that for each ℘ | p we have I := S℘-old
N P ∩ S℘-ord

N P = 0.
The intersection I is stable under the action of TN P , which decomposes it into
spaces I [ fi ] ⊂ SN P [ fi ] corresponding to eigenforms fi of level N ′ or N ′℘ for
some N ′ | N P℘−1. If fi has level N ′℘, then SN P [ fi ] does not contain any nonzero
℘-oldforms. If fi has level N ′ with ℘ - N ′, then Sord

N P [ fi ] is either zero or the line
spanned by the ordinary ℘-stabilisation of fi , whereas S℘-old

N P [ fi ] is the line spanned
by [℘] fi . We conclude that I [ fi ] = 0 in all cases. �

Remark 1.5.2. The operators U℘ for ℘ | p extend to operators on S via U℘ f (m)=
f (m℘). The Hecke algebra TN p acts on the image SN of SN in S/DN .

1.6. The functional l fα . Recall from the introduction that we have fixed an ordinary
primitive Hilbert modular newform f of level K0(N ). If α℘ is the unit root of

15This relation and the following are of course to be understood to hold in S.
16We will see below that σ1 and r are the Fourier coefficients of weight-1 Eisenstein series and

theta series.
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the ℘-th Hecke polynomial of f , β℘ is the other root and the operator [℘] is as
in (1.4.1), then the p-stabilisation of f is

fα =
∏
℘|p

(1−β℘[℘]) f,

a form of level K0(N
∏
℘|p ℘) satisfying U℘ fα = α℘ fα for all ℘ | p.

We define a functional, first introduced by Hida, that plays the role of projection
onto the f -component. Both sides of our main formula will be images of p-adic
modular forms under this operator.

Let P be an ideal of OF divisible exactly by the primes ℘ | p. For a form
g ∈ M2(K0(N P)) with r ≥ 1, let

l fα (g)=
〈WN P f ρα , g〉
〈WN P f ρα , fα〉

.

Let L ⊂Qp be the extension of Qp generated by a( f,m) for all ideals m and α℘
for ℘ | p.

Lemma 1.6.1 (Hida). The above formula defines a linear functional

l fα : M2(K0(N p∞), L)→ L

satisfying:

(1) On M2(K0(N ), L), we have

l fα =
∏
℘|p

(
1−

N℘
α2
℘

)−1

1 f

where 1 f (g)= 〈 f, g〉/〈 f, f 〉.

(2) On M2(K0(N℘r )), we have, for each nonnegative t ≤ r − 1,

l fα ◦U t
℘ = α℘( f )t l fα .

(3) If each ιp(α℘) is a p-adic unit, l fα admits a continuous extension to p-adic
modular forms still denoted

l fα : MN (L)→ L .

Proof. See [Hida 1991, Lemma 9.3], where the well-definedness of the functional
and its extension to p-adic modular forms are proved more generally for Hida
families. For part (1), the computation is the same as in the case of elliptic modular
forms: see [Perrin-Riou 1988] or [Hida 1985, §4]. �
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Some quotient spaces. Let S= S/DN . The ordinary projection operator e is not
defined on all arithmetic functions; however, its kernel Ker(e) is a well-defined
subspace of S. We define

Sord
:= S/DN +Ker(e).

The quotient map S→Sord is clearly injective when restricted to the image of Sord
N P ,

where P =
∏
℘|p ℘. Then we denote by Sord

N the image of Sord
N P in either S or Sord.

It is also identified with the common image of SN P and SN in Sord. We denote by
S

p-adic
N ⊂ S the image of SN .
We obtain a commutative diagram (where L is as usual any sufficiently large

finite extension of Qp):

SN (L) //

e
��

S
p-adic
N (L)

��

� � // Sord

Sord
N P(L)/SN -old

N P
∼
// Sord

N (L)
l fα

// L

(1.6.1)

where the right-hand vertical map is the restriction of the quotient S→ Sord and
the bottom horizontal map is an isomorphism by Lemma 1.5.1.

2. Theta measure

We construct a measure on the Galois group of the maximal abelian extension of
E unramified outside p with values in p-adic theta series and compute its Fourier
expansion.

2.1. Weil representation. We first define the Weil representation. See [Bump 1997,
§4.8] for an introduction and [Waldspurger 1985] or [Yuan et al. 2013] for our
conventions on the representation for similitude groups.

Local setting. Let V = (V, q) be a quadratic space over a local field F of character-
istic not 2 with a quadratic form q; we choose a nontrivial additive character e of F .
For simplicity, we assume V has even dimension. For u ∈ F×, we denote by Vu the
quadratic space (V, uq). We let GL2(F)× GO(V ) act on the space S(V × F×)
of Schwartz functions as follows (here ν : GO(V )→ Gm denotes the similitude
character):

• r(h)φ(t, u)= φ(h−1t, ν(h)u) for h ∈ GO(V ),
• r(n(x))φ(t, u)= e(xuq(t))φ(t, u) for n(x)=

( 1 x
1

)
∈ GL2,

• r
(a

d

)
φ(t, u)= χV (a)|a/d|(dim V )/4φ(at, d−1a−1u),

• r(w)φ(x, u)= γ (Vu)φ̂(x, u) for w =
(
−1

1).
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Here χV is the quadratic character associated with V , γ (Vu) is a certain square root
of χ(−1) and φ̂ denotes the Fourier transform in the first variable

φ̂(x, u)=
∫

V
φ(y, u)e(−u〈x, y〉) dy

where 〈 · , · 〉 is the bilinear form associated with q and dy is the self-dual Haar
measure.

Global setting. Given a quadratic space (V, q) over a global field F of characteristic
not 2 (and a nontrivial additive character e : F\AF→C×), the Weil representation is
the restricted tensor product r of the associated local Weil representations, with spher-
ical functions φv(t, u)= 1Vv×O×F,v

(x, u) for some choice of lattices Vv ⊂ V (Fv).
The case of interest to us is the following: F is a totally real number field,

V = (E,N) is given by a quadratic CM extension E/F with the norm form
N= NE/F and the lattices OE,v ⊂ Ev and the additive character e is the standard
one. We denote G = GL2 and H = GO(V ), two algebraic groups defined over F ;
we have H ∼= ResE/F Gm . In this case, we have

χV = εE/F = ε,

where εE/F is the quadratic character of F×A associated with the extension E/F .
The self-dual measure on Ev is the one giving OE,v volume |OE,v/Dv|

−1/2 where
Dv is the relative different. Moreover, the constant γ can be explicitly described
[Bushnell and Henniart 2006, §38.6, §30.4, §23.5]: in the case v |1E/F , which is the
only one we will be using, such description is in terms of a local Gauss sum κ(v):

γ (Ev, uN)= εv(u)κ(v)= εv(u)|πv|1/2
∑

x∈(OF,v/πvOF,v)×

ε(x/πv)ev(x/πv). (2.1.1)

Notice that our κ(v) is the inverse of the quantity denoted by the same name in
[Zhang 2001a, Proposition 3.5.2].

2.2. Theta series. We define the theta kernel to be

θφ(g, h)=
∑

(t,u)∈V×F×
r(g, h)φ(t, u),

an automorphic form for the group GL2(F) \ GL2(AF )× GO(V ) \ GO(VAF ).
If W is an automorphic function for H that is trivial at infinity (which is the same

thing as a linear combination of finite-order Hecke characters of E), we define the
theta series17

θφ(W)(g)=
∫

H(F)\H(AF )

W(h−1)θφ(g, h) dh,

17The reason for taking W(h−1) rather than W(h) is that we want θφ(W) to be the series classically
denoted 2(W) for a suitable choice of φ— this will be clear from the computations below.
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which is an automorphic form on G. Here the measure dh is the product of the
measure on H(A∞) that gives volume 1 to the compact U0 = Ô×E and any fixed
measure18 on H(A∞).

Let us explain how to explicitly compute the integral in our situation. For each
open compact subgroup U ⊂ H(A∞F )= E A∞ , we have exact sequences

1→ O×E,U \U E×
∞
→ E× \ E×A→ E×U \ E×A∞→ 1

and
1→ µ(U ) \U E1

∞
→ O×E,U \U E×

∞

N∞
−−→ N (O×E,U ) \ F+

∞
→ 1.

The notation used is the following: O×E,U = E×∩U ⊃µ(U )= the subset of roots of
unity, N∞ : E×

∞
→ F+

∞
is the norm map at the infinite places and E1

∞
is its kernel.

We can choose a splitting ι of the first sequence, for example

ι : E×U \ E×A∞ ∼= E×U \ (E×A)
1,‖ ↪→ E× \ E×A,

where (E×A)
1,‖ denotes the set of idèles of adelic norm 1 with infinity component

h∞ = (h, . . . , h) for some real number h > 0 and the isomorphism is the unique
one that gives the identity once composed with projection onto the finite part.

We begin to expand the series, evaluating the integral as explained above and ex-
ploiting the fact that the action of H(F∞)= E×

∞
on φ(t, u) factors through the norm.

We take U to be small enough so that W and φ are invariant under U and denote

φv(t, u)=
∫

H(Fv)
r(h)φv(t, u) dh if v | ∞

and φ =
∏
v-∞ φv

∏
v|∞ φv. A specific choice of φv will be made shortly; for

the moment, we just say, and use in the following computation, that we will take
u 7→ φv(t, u) to be supported on R+.

We have

θφ(W)(g)=
∫

E×\E×A

W(h−1)θφ(g, h) dh

= w−1
U

∫
U

∫
E1
∞

∫
N(O×E,U )\F

+
∞

∫
E×U\E×A∞

W(ι(a)−1)

·

∑
(t,u)∈E×F×

r(g, ι(a)h)φ(t, u) da dh.

Here wU = |µ(U )| and dh denotes the measure on U × E1
∞
× F+
∞
=U × H(F∞).

We partially collapse the integral over N(O×E,U )\ F+
∞

and the sum over u ∈ F× and

18There will be no ambiguity since later we will choose φ∞ to again be any fixed Schwartz
function whose integral over H(A∞) with respect to the chosen measure is a specified function φ∞.
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use our choice of φ∞ to get

= w−1
U vol(U )

∫
E×U\E×A∞

W(ι(a)−1)
∑

u∈N(O×E,U )\F
+

∑
t∈E

r(g, ι(a))φ(t, u) da

= w−1 h
hU

∫
E×U\E×A∞

W(ι(a)−1)νU

∑
u∈N(O×E,U )\F

+

∑
t∈E

r(g, ι(a))φ(t, u) da. (2.2.1)

Here in the last step, we have defined νU = [N(O
×

E ) :N(O
×

E,U )] and computed
vol(U )=vol(U0)(h/hU )(wU/w)ν

−1
U , where U0= Ô×E , hU =|E×U \E×A∞ |, h=hU0

and w=wU0 . Recall that our measure satisfies vol(U0)= 1. The remaining integral
is just a finite sum.

The sum over u is actually finite due to the integrality constraints imposed by φ
at finite places.19

2.3. Theta measure. We define a measure with values in p-adic modular forms
on the group

G′ = Gal(E ′
∞
/E)∼= lim

←−−
E×Upn \ E×A∞

where the overline denotes closure and E ′
∞

is the maximal abelian extension of E
unramified outside p, that is, the union of the ray class fields of E of p-power
ray Upn =

∏
v{units≡ 1 mod pnOE,v}, and the isomorphism is given by class field

theory. The topology is the profinite topology.
Recall that a measure on a topological space G with values in a p-adic Banach

space M is a Cp-linear functional

µ : C(G,Cp)→ M

on continuous Cp-valued functions, which is continuous (equivalently, bounded)
with respect to the supremum norm on C(G,Cp). The linearity property will be
called distributional property in what follows. The boundedness property will in
each case at hand be verified on the set of p-adic characters of G, which in our
cases generates the whole of C(G,Cp) (classically, the continuity of µ goes by the
name of abstract Kummer congruences for µ).

When M = M0⊗Qp Cp for a p-adic Banach space M0 over Qp, the measure µ
is said to be defined over Qp if µ(W) ∈ M0⊗Qp(W) whenever the function W

on G has values in Qp(W)⊂Qp ⊂ Cp.

19We will see this in more detail shortly. We are also using the definition of φ∞ in order to freely
replace the sum over u ∈ F× with a sum over u ∈ F+— in fact, a slight variation would be necessary
when det g∞ /∈ F+∞, but this is a situation we won’t encounter.
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Definition 2.3.1. The theta measure d2 on G′ is defined by

2(W)=

∫
G′

W(σ ) d2(σ) := θφ(W),

for any function W : G′→ Q factoring through a finite quotient of G′, where the
function φ is chosen as follows:

• For v - p∞, φv(t, u)= 1OE,v (t)1d−1,×
Fv

(u).

• For v | p,
φv(t, u)= [O×E,v :U

′

v]1U ′v (t)1d−1,×
Fv

(u),

where U ′v ⊂ O×E,v is any small-enough compact set — that is, U ′v ⊂Uv if W is
invariant under U =

∏
v Uv , and the definition does not depend on the choice

of Uv . (In practice, we will choose U ′v =Uv if Uv is maximal with respect to
the property just mentioned.)

• For v | ∞, φv(t, u) is a Schwartz function such that∫
H(Fv)

r(h)φv(t, u) dh = φv(t, u)= 1R+(u) exp(−2πuN (t)).

(See [Yuan et al. 2013, §4.1] for more details on this choice.)

In Corollary 2.4.2 below, we will show that this in fact defines a measure on G′

with values in p-adic Hilbert modular forms of weight 1, tame level 1E/F and
character ε.

2.4. Fourier expansion of the theta measure, I. We compute the Fourier expan-
sion of the theta measure on G′, carrying on the calculation started in Section 2.2.

In the case where g=
( y x

1

)
with y∞>0, the sum over (u, t) in (2.2.1) evaluates to

ε(y)|y|1/2
∑
u,t
φ∞(a−1 yt,N(a)y−1u)e∞(iy∞uN (t))e(xuN(t)). (2.4.1)

Then we compute the sum of this expression over the finite quotient G′U of G′, with
G′U
∼= E×U \ E×A∞ .

We assume W is a character so that W(a−1)=W(a) where W=W−1.
First we precompute the product of all the constants appearing in the theta series

of (2.2.1), including the one from φ— we take

φv(t, u)= [O×E,v :Uv]1Uv
(t)1O×F

(u),

so

w
h

hU
νU [O

×

E,v :Uv] = w[O
×

E \ Ô×E,v : O
×

E,U \U ]−1
[N(O×E ) :N(O

×

E,U )]
−1
[Ô×E :U ]

= w[µ(OE) : µ(U )] = w−1
U .
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This computation together with (2.2.1) and (2.4.1) gives

2(W)= ε(y)|y|1/2w−1
U

∑
a∈E×U\E×A∞

W(a)
∑

t∈E, u∈N(O×E,U )\F
+

φ p∞(a−1 yt,N(a)y−1u)

·1O×E,U,p
(a−1 yt)1d−1,×

Fp
(N(a)y−1u)e∞(iy∞uN(t))e(xuN(t))

= ε(y)W(y)|y|1/2w−1
U

∑
a∈E×U\E×A∞

W(a)
∑

t∈E, u∈N(O×E,U )\F
+

1
ÔE,U∩O×E,U,p

(a−1t)

·1[N(a)yuOF = d−1
F ]e∞(iy∞uN(t))e(xuN(t)),

where we have made the change of variable a→ ay∞.
Now we make the substitution uN(t)= ξ and observe that the contribution to

the ξ -th term is equal to 0 if (ξ ydF , p) 6= 1 and otherwise it equals W(a) times the
cardinality of the set

Ra−1(ξ, y)=
{
(t, u)∈OE×F+

∣∣ t ∈Up, uN(t)= ξ, N(t/a)OF = ξ ydF
}
/N(O×E,U ),

which admits a surjection π : (t, u) 7→a−1tOE to the set ra−1(ξ ydF ) of ideals b⊂OE

in the U -class a−1, whose norm is N(b)=ξ ydF . The fibres of π are in bijection with
O×E,U/N(O

×

E,U ), which has cardinality wU . We deduce the following description of
the Fourier coefficients of 2(W):

Proposition 2.4.1. The series 2(W) belongs to S1(K1(1(W)), εW|F×A
), where

1(W)=1N(f(W)). Its Fourier coefficients are given by

a(2(W),m)=
∑
b⊂OE

N(b)=m

W(b)= rW(m)

for (m, p)= 1 and vanish for (m, p) 6= 1.

Corollary 2.4.2. The functional2 of Definition 2.3.1 is a measure on G′ with values
in S1(K1(1), ε), defined over Qp.

Proof. The distributional property is obvious from the construction or can be seen
from the q-expansion given above, from which boundedness is also clear. See also
[Hida and Tilouine 1993, Theorem 6.2], where a slightly different theta measure is
constructed. �

Lemma 2.4.3. Assume that (DE , DF p)= 1. The theta series admits a functional
equation

W1(W)2(W)= (−i)[F :Q]W(d(p)F )W(DE)τ (W)2(W)
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where DE is the relative different, d(p)F is the prime-to-p factor of the different and
τ(W)=

∏
v|p τ(Wv) with

τ(Wv)= |πv|
−c/2

∫
E×v

Wv(hv)ev(−TrEv/Fv (hv)) dhv

if the relative norm of the conductor of Wv is π c
vOF,v.

Proof. Let

φW(g, t, u)=
∫

H(F)\H(A)
W(h−1)r(g, h)φ(t, u) dh,

φ′W(g, t, u)= εW(π1(W))

∫
H(F)\H(A)

W(h−1)r(gW1(W), h)φ(t, u) dh

for (t, u) ∈ E A× F×A . The behaviour in g is through the Weil representation.
Then we have

W1(W)2(W)(g)= εW(det g)
∑

(t,u)∈E×F×
φ′W(g, t, u),

2(W)(g)=
∑

(t,u)∈E×F×
φW(g, t, u)

so that the lemma follows if we show that for all (t, u) ∈ E A× F×A

εW(det g)φ′W(g, t, u)= (−i)[F :Q]W(DE)τ (W)εW(u)φW(g, t, u) (2.4.2)

where t is the conjugate of t under the nontrivial automorphism of E over F .
We write

τ̃ (W)= (−i)[F :Q]W(d(p)F )W(DE)τ (W)

for short.
We claim that it suffices to prove (2.4.2) for g = 1. Indeed it is clear that this

implies the same result for all g ∈ SL2(A) by acting via the Weil representation
on both sides (viewed as functions of (t, u)). Then it suffices to verify it for the
elements of the form d(y)=

( 1
y

)
:

ε(y)W(y)r(d(y))φ′W(1, t, u)= τ̃ (W)ε(y)W(y)r(d(y))[εW(u)φW(1, t, u)]

= τ̃ (W)εW(y)εW(y−1u)r(d(y))φW(1, t, u)

= τ̃ (W)ε(u)W(u)φW(d(y), t, u).
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We now prove (2.4.2) for g= 1, thus dropping g from the notation. We can write

φ′W(t, u)=
∫

H(F)\H(Ap1)

W(h−1
0 )r(1, h)φ p1(t, u) dh0

·

∏
v|p1

W(π cv
v )

∫
H(Fv)

W(h−1
v )r(Wπ

cv
v
, 1)φ(h−1

v t, ν(hv)u) dhv

where cv is the appropriate exponent. We can rewrite this as

φ′W(t, u)= φ′1p
W (t, u)

∏
v|1p

φ′W,p(t, u)

with obvious notation. A similar factorisation holds for φW(t, u).
For v -1p, we have, by the explicit description of φv (dropping the subscripts v),

r(h)φ(t, u)= φ(h−1t, ν(h)u)= φ(πdF uht, ν(h)u)

= φ(πdF uht, ν(h)−1u−1π−2
dF
)= r((πdF uh)−1)φ(t, u).

A change of variable and integration over H(F) \ H(A1p) then gives

φ
′1p
W (t, u)= ε1p(udF )W

1p(udF )φ
1p
W
(t, u). (2.4.3)

For v |1, we have by (2.5.1) below and the previous argument

ε(π)r(Wπ , h)(π)φ(t, u)= ε(u)κ(v)φ(h−1tπD, π−1ν(h)u)

= ε(u)κ(v)r(u−1πd−1
F

h−1πD)φ(t, u)

where πD ∈O×E,v is a generator of the local relative different of Ev/Fv . After change
of variable and integration, we obtain

φ′W,v(t, u)= κ(v)εv(u)Wv(udF )Wv(D)φW,v(t, u). (2.4.4)

For v | p, we have

W(π c)

∫
H(Fv)

W(h−1)r(h, wπ c)φ(t, u) d×h

= |π |−c/2
∫

E×

∫
E

W(π−ch)e(−π−cuν(h)Tr(h−1tξ))φ(ξ, π−cν(h)u) dξ d×h

Using the fact that φ(ξ, u) dξ=φ(ξ, u) d×ξ and a change of variables ζ =π−cuhξ t ,
this equals

W(u)τ (W)

∫
E×

W(ξ t)φ(ξ, ν(tξ)u) d×ξ

after integration, where the new second argument in φ gives the condition for the
integral in dζ to be nonzero. We observe that φ(ξ)= φ(ξ−1) so that with the new
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variable h′ = ξ t , and reintroducing v in the notation, this can be rewritten as

Wv(u)τ (Wv)

∫
E×v

Wv(h′v)
−1φ(h′−1t, ν(h′v)u) d×h′v

so that

φ′W,v(t, u)= εv(dF )εv(u)Wv(u)τ (Wv)φW,v(t, u). (2.4.5)

Putting together (2.4.3), (2.4.4) and (2.4.5) and using the formula
∏
v|1 κ(v)=

(−i)[F :Q]ε(dF ) from [Zhang 2001a, p. 127],20 we obtain (2.4.2) as desired. �

2.5. Fourier expansion of the theta measure, II. For later use in computing the
trace of the convolution of the theta measure with the Eisenstein measure (defined
below), we need to consider the expansion of 2(W)(δ)(g) = 2(W)(gWδ) for
g =

( y x
1

)
; for such a g, we have(

y x
1

)
Wδ =

(
1 x

1

)(
y
πδ

)
wδ

where πδ is an idèle with components πv at v | δ and 1 everywhere else. Here πv is
a uniformiser chosen to satisfy ε(πv)= 1.

The modular form 2(W)δ can be expanded in the same way as in Section 2.4
except that for v | δ we need to replace φv(t, u)= 1OE,v (t)1d−1,×

F
(u) by

Wδφv(t, u)= εv(πv)
(

1
πv

)
γ (u)1̂OE,v (t)1d−1,×

F,v
(u)

= εv(u)κ(v)1D−1
v
(t)1d−1,×

F
(π−1
δ u). (2.5.1)

Here recall that D is the relative different of E/F and that w acts as Fourier
transform in t with respect to the quadratic form associated with uN, with the
normalising constant γ (u)= γ (Ev, uN) as described in (2.1.1).

The computation of the expansion can then be performed exactly as in Section 2.4.
We omit the details but indicate that the relevant substitution is now a→ πday,
where d is an ideal of OE of norm δ and πd ∈ ÔE is a generator with components
equal to 1 away from d.

Proposition 2.5.1. The Whittaker–Fourier coefficients of the series 2(W)(δ) are
given by

ã(2(W)(δ), y)= εW(y)|y|1/2κ(δ)W(d)εδ(y)rW(ydF ),

where κ(δ)=
∏
v|δ κ(v).

20Recall that our κ(v) are the inverses of the κ(v) of [loc. cit.].
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3. Eisenstein measure

In this section, we construct a measure (see Section 2.3) valued in Eisenstein series
of weight 1 and compute its Fourier expansion.

3.1. Eisenstein series. Let k be a positive integer, M be an ideal of OF , and
ϕ : F×A /F×→ C× be a finite-order character of conductor dividing M satisfying
ϕv(−1)= (−1)k for v | ∞. Let

L M(s, ϕ)=
∑

(m,M)=1

ϕ(m)N(m)−s, (3.1.1)

where the sum runs over all nonzero ideals of OF .
Let B ⊂ GL2 be the Borel subgroup of upper-triangular matrices; recall the

notation from Section 1.1 and the Iwasawa decomposition (1.1.1); the decomposition
is not unique, but the ideal of ÔF generated by the lower-left entry of the K0(1)-
component is well-defined.

For s ∈ C, define a function Hk,s(g, ϕ) on GL2(AF ) by

Hk,s(g = qur(θ);ϕ)=
{
|y1/y2|

sϕ(y1a)e∞(kθ) if u =
(a

c
b
d

)
∈ K0(M),

0 if u ∈ K0(1) \ K0(M0),

where g = qur(θ) with q =
( y1 x

y2

)
∈ B(AF ), u ∈ K0(1) and r(θ) ∈ K∞.

We define two Eisenstein series

E M
k (g, s;ϕ)= L M(2s, ϕ)

∑
γ∈B(F)\GL2(F)

Hk,s(γ g;ϕ),

Ẽ M
k (g, s;ϕ)=WM E M

k (g, s;ϕ)= ϕ−1(det gπM)E M
k (gWM , s;ϕ),

which are absolutely convergent for Re s > 1 and continue analytically for all s to
(nonholomorphic) automorphic forms of level M , parallel weight k and character ϕ
(for E) and ϕ−1 (for Ẽ). Here WM is as in (1.4.3). The superscript M will be
omitted from the notation when its value is clear from context.

3.2. Fourier expansion of the Eisenstein measure. We specialise to the case
where k is odd, M = 1P with (1, P) = 1 and ϕ = εφ with ε = εE/F and φ
a character of conductor dividing P , trivial at infinity (in particular, we have
ϕv(−1)= εv(−1)φv(−1)=−1 as required). We assume that 1 is squarefree. For
δ |1, we compute21 the Whittaker coefficients (see Section 1.2; we suppress ϕ, M
and k from the notation) of Ẽ (δ):

cδs (α, y)= D−1/2
F

∫
AF/F

Ẽ
((

y x
1

)
Wδ, s

)
e(−αx) dx

21See [Zhang 2001a, §3.5, §6.2].
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for α ∈ F and δ dividing 1; since cs(α, y)= cs(1, αy) for α 6= 0, we can restrict
to α = 0 or 1. The choice of uniformisers πv at v | δ implicit in the above formula
is made so that ε(πv)= 1 to save some notation.

Proposition 3.2.1. In the case just described, the Whittaker coefficients cδs (α, y) of
the Eisenstein series Ẽ (δ)k (g, s;ϕ) are given by

cδs (0, y)=


1

D1/2
F N(1P)s

εφ(y)|y|1−s Vk,s(0)[F :Q]L(P)(2s− 1, εφ) if δ = 1,

0 if δ 6= 1,

cδs (1, y)=


N(δ)s−1/2

D1/2
F N(1P)s

εφ(y)|y|1−sκ(δ)φ(δ)εδ(y)

·φδ(y∞dF )|yπδdF |
2s−1
δ σk,s,εφ(y) if ydF is integral,

0 otherwise,

where κ(δ)=
∏
v|δ κ(v) with κ(v) as in (2.1.1) and

σk,s,ϕ(y)=
∏

v-1M∞

v(ydF )∑
n=0

ϕv(πv)
n
|πv|

n(2s−1)
∏
v|∞

Vk,s(yv)

with

Vk,s(y)=
∫

R

e−2π iyx

(x2+ 1)s−k/2(x + i)k
dx .

Proof. We use the Bruhat decomposition

GL2(F)= B(F)
∐

B(F)wN (F)

with w=
(

1
−1) and the unipotent subgroup N (F)∼= F via N (F) 3

( 1 x
1

)
7→x ∈ F

to get

εφ(y)φ(πM/δ)cδs (α, y)= L(2s, ϕ)D−1/2
F

∫
AF/F

Hs

((
y x

1

)
WM/δ

)
e(−αx) dx

+ L(2s, ϕ)D−1/2
F

∫
AF

Hs

(
w

(
y x

1

)
WM/δ

)
e(−αx) dx .

At any place v | M/δ, we have the decomposition(
yv xv

1

)
WM/δ,v =

(
yv πvxv

πv

)(
1

−1

)
so that the first summand is always zero.

For the second integral, we use the identity

w

(
y x

1

)
=

(
1

y

)(
−1

1 xy−1

)
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and the substitution x→ xy to get∫
AF

Hs

(
w

(
y x

1

)
WM/δ

)
e(−αx) dx = |y|1−s ∏

v

V M/δ
s (αv yv),

where for y ∈ Fv

V M
s (y)=

∫
Fv

Hs

((
−1

1 x

)
WM,v

)
e(−xy) dx . (3.2.1)

Archimedean places. See [Zhang 2001a, Proposition 3.5.2].

Nonarchimedean places v - M/δ. If v is a finite place, we have
(

1
−1
x

)
∈ GL2(OF,v)

if x ∈ OF,v, and otherwise we have the decomposition(
−1

1 x

)
=

(
x−1
−1
x

)(
1

x−1 1

)
.

Therefore,

Hs,v

(
−1

1 x

)
=


ϕv(x)|x |−2s if v(x)≤−1,

1 if v - M and v(x)≥ 0,
0 if v | δ and v(x)≥ 0.

(3.2.2)

The case v - M. We deduce that

V M/δ
s (y)=

∫
OF,v

e(−xy) dx +
∑
n≥1

∫
O×F,v

ϕv(xπ−n
v )|xπ−n

v |
−2s e(−xyπ−n

v ) d(π−n
v x)

= 1[y ∈ d−1
F ] +

∑
n≥1

ϕv(πv)
n
|πv|

n(2s−1)
∫

O×F,v

e(−xyπ−n
v ) dx .

The integral evaluates to 1− |πv| if v(ydF ) ≥ n, to −|πv| if v(ydF ) = n− 1 and
to 0 otherwise. Therefore, we have V M

s (y)= 0 unless v(ydF )≥ 0, in which case
if y 6= 0

V M/δ
s (y)= 1+ (1− |πv|)

v(ydF )∑
n=1

(ϕv(πv)|πv|
2s−1)n − |πv|(ϕv(πv)|πv|

2s−1)v(yd f )+1

= (1−ϕv(πv)|πv|2s)

v(ydF )∑
n=0

ϕv(πv)
n
|πv|

n(2s−1)

= Lv(2s, ϕ)−1
v(ydF )∑

n=0

ϕv(πv)
n
|πv|

n(2s−1),
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whereas for y = 0 we have

V M/δ
s (0)= 1+ (1− |πv|)

∞∑
n=1

(ϕv(πv)|πv|
2s−1)n

= 1+ (1− |πv|)(1−ϕv(πv)|πv|2s−1)−1(1−ϕv(πv)|πv|2s)

= Lv(2s, ϕ)−1Lv(2s− 1, ϕ).

The case v | δ. Again by (3.2.2), we find

V M/δ
s (y)=

∑
n≥1

∫
O×F,v

ϕv(xπ−n
v )|xπ−n

v |
−(2s−1)e(−xyπ−n

v ) dx .

All the integrals vanish except the one with n = v(ydF )+ 1, which gives

εv(yπn
v )φv(yπdF ,vπv)|yπdF ,vπv|

2s−1
|πv|

1/2κ(v);

therefore, we have22

V M/δ
s (y)= εv(y)φv(yπdF ,vπv)|yπdF ,vπv|

2s−1
|πv|

1/2κ(v)

if y 6= 0 and v(ydF )≥ 0 and Vs(y)= 0 otherwise. In particular, we see that if δ 6= 1
then Vs(0)= cs(0, y)= 0.

Places v | M/δ. For

w

(
1 x

1

)(
1

−π
v(M)
v

)
=

(
π
v(M)
v

−xπv(M)v 1

)
,

we have the decompositions(
π
v(M)
v

−xπv(M)v 1

)
=

(
−π

v(M)
v

1

)(
−1

−xπv(M)v 1

)

=

(
x−1
−π

v(M)
v

xπv(M)v

)(
1

−1 x−1π
−v(M)
v

)
;

for v(x)≥ 0, we use the first one to find

Hs

(
−π

v(M)
v

xπv(M)v −1

)
= ϕv(πv)

v(M)
|πv(M)v |

s
;

for v(x) < 0, the second decomposition shows that the integrand vanishes. We
conclude that

V M/δ
s (y)=

{
ϕv(πv)

v(M)
|π
v(M)
v |

s if v(ydF )≥ 0,
0 otherwise.

The final formula follows from these computations. �

22Recall that we always choose πv so that εv(πv)= 1.
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We specialise to the case s = 1
2 and consider the rescaled holomorphic Eisenstein

series:23

E1P
k,εφ(g)=

D1/2
F N(1P)1/2

(−2π i)[F :Q]
E1P

k (g, 1
2 ; εφ),

Ẽ1P
k,εφ(g)=

D1/2
F N(1P)1/2

(−2π i)[F :Q]
Ẽ1P

k (g, 1
2 ; εφ).

We further specialise to the case k = 1.

Corollary 3.2.2. The Eisenstein series Ẽ1P
1,εφ belongs to M1(K1(1P), εφ−1). The

Whittaker–Fourier coefficients of Ẽ(δ)
εφ = Ẽ1P,(δ)

1,εφ for δ |1 are given by

ã0(Ẽ(δ)
εφ , y)= εφ(y)|y|1/2

L(p)(0, εφ)
2g

if δ = 1 and ã0(Ẽ(δ)
εφ , y)= 0 otherwise, and

cδ(y)= ã(Ẽ(δ)
εφ , y)= εφ(y)|y|1/2κ(δ)φ(δ)εδφδ(y∞dF )σεφ(y∞dF ),

where for any integral ideal m of OF [1
−1 P−1

]

σεφ(m)=
∑
d|m

εφ(d),

the sum likewise running over integral ideals of OF [1
−1 P−1

].

(If m is an integral ideal of OF prime to P , then σε1(m)= r(m).)

Proof. This follows from Proposition 3.2.1 together with the evaluation

V1,1/2(t)=


0 if t < 0,
−π i if t = 0,

−2π ie−2π t if t > 0,

which can be found in [Gross and Zagier 1986, Proposition IV.3.3 (a) and (d)] (for the
case t = 0, this is deduced from (a) of [loc. cit.] using lims→0 0(2s)/0(s)= 1

2 ). �

Definition 3.2.3. Let F ′
∞

be the maximal abelian extension of F unramified out-
side p, and let G′F = Gal(F ′

∞
/F). We define the Eisenstein (pseudo)measure24 Ẽε

on G′F by

Ẽε(φ)= Ẽ1P
εφ =

D1/2
F N(1P)1/2

(−2π i)g
Ẽ1P
εφ

23Notice that these series do not depend on the ideal P but only on its support.
24We do not need to assume that 1 is squarefree when making the definition. See after the

definition for the meaning of the term pseudomeasure.



1604 Daniel Disegni

for any character φ of G′F of conductor dividing P (it does not depend on the choice
of P once we require P to satisfy v | P↔ v | p). We denote with the same name
the distribution induced on the group G′ of Section 2.3 by

Ẽε(W)= Ẽε(W|F×A ).

It has values in M1(K1(N1), ε) and is defined over Qp.

To prove the soundness of the definition, it is easy to see that the nonzero Fourier
coefficients interpolate to a measure on G′F , that is, an element of Zp[[G

′

F ]]. The L-
values giving the constant term interpolate to the Deligne–Ribet p-adic L-function
[1980]; it is a pseudomeasure in the sense of Serre [1978], that is, an element of
the total quotient ring of Zp[[G

′

F ]] with denominators of a particularly simple form.

4. The p-adic L-function

4.1. Rankin–Selberg convolution. Let f and g be modular forms of common
level M , weights k f and kg and characters ψ f and ψg, respectively. We define a
normalised Dirichlet series

DM( f, g, s)= L M(2s− 1, ψ fψg)
∑
m

a( f,m)a(g,m)Nm−s,

where the imprimitive L-function L M(s, ϕ) of a Hecke character ϕ of conductor
dividing M is as in (3.1.1).

When f and g are primitive forms of level N f and Ng (that is, normalised new
eigenforms at those levels), for a prime ℘ - N f , denote by γ (1)℘ ( f ) and γ (2)℘ ( f ) the
two roots of the ℘-th Hecke polynomial of f

P℘, f (X)= X2
− a( f, ℘)X +ψ f (℘)N℘k f−1

and by γ (1)℘ (g) and γ (2)℘ (g) the analogous quantities for g. Then the degree-4
Rankin–Selberg L-function L( f ×g, s) with unramified Euler factors at ℘ given by

2∏
i, j=1

(
1− γ (i)℘ ( f )γ ( j)

℘ (g)N℘−s)−1

equals the above Dirichlet series

L( f × g, s)= DN f Ng ( f, g, s)

if N f and Ng are coprime.
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Suppose now for simplicity that k f = 2, kg = 1 and f is a cusp form (not
necessarily primitive). The Rankin–Selberg convolution method25 gives

〈 f ρ, gE M
1 (s;ψ fψg)〉M = Ds+1

F

[
0(s+ 1

2)

(4π)s+1/2

][F :Q]
DM( f × g, s+ 1

2), (4.1.1)

where 〈 · , · 〉M is the Petersson inner product (1.1.2).

4.2. Convoluted measure and the p-adic L-function in the ordinary case. Con-
sider the convolution pseudomeasure 2 ∗ Ẽε,N on G′ defined by 2 ∗ Ẽε,N (W) =

2(W)Ẽε,N (W) for any character W : G′→ Z×p , where Ẽε,N = [N ]Ẽε. We deduce
from it the (pseudo)measure

8(W)= Tr1[2 ∗ Ẽε,N (W)] = Tr1[2(W) · [N ]Ẽε(W)] (4.2.1)

on G′, which is a kind of p-adic kernel of the Rankin–Selberg L-function as will
be made precise below. It is valued in M2(K0(N ),Cp). Notice that, while 8(W),
like Ẽε,N , is not a measure, we can see that, for any ℘ | p,

U℘8(W)

is. Indeed its Fourier coefficients are the Fourier coefficients of 8(W) at ideals m
divisible by ℘ and hence sums of coefficients of the theta and Eisenstein series at
pairs of ideals (m1 = nm,m2 = (1− n)m) for some n ∈ F ; since the coefficients
of the theta series are zero at ideals m1 divisible by ℘, only those pairs (m1,m2)

with m1 and m2 both prime to ℘ contribute. In particular, the constant term of
the Eisenstein series does not contribute to the Fourier expansion of U℘8, which
therefore belongs to Zp[[G

′
]]⊗ S2(K0(N ),Cp).

Thanks to this discussion and the identity l fα = α
−1
℘ l fα ◦ U℘ , the following

definition makes sense:

Definition 4.2.1. The p-adic Rankin–Selberg L-function is an element of OL [[G]]⊗L
that is defined by

L p( fE ,W)= D−2
F Hp( f )l fα (8(W))

for any character W : G→ O×L , where

Hp( f )=
∏
℘|p

(
1−

1
α℘( f )2

)(
1−

N℘
α℘( f )2

)
. (4.2.2)

25See [Shimura 1978] or [Jacquet 1972, Chapter V] for general treatments; our setting and
normalisations are the same as in [Zhang 2001a, Lemma 6.1.3] (where g is a specific form, but the
same calculation works in general to prove (4.1.1)).
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Functional equation. The p-adic L-function admits a functional equation; we prove
it in the case of anticyclotomic characters, which is the only one we shall need.

Proposition 4.2.2. Suppose W is an anticyclotomic character of G, i.e., W|FA×
= 1.

Then there are functional equations for the p-adic L-function

L p( fE)(W)= (−1)gε(N )L p(W) (4.2.3)

and for the analytic kernel

8(W)= (−1)gε(N )8(W). (4.2.4)

In particular, if ε(N )= (−1)g−1, we have

8(W)= L p( fE)(W)= 0.

Proof. The functional equation for L p is implied by the functional equation for 8.
We prove the latter by comparing the coefficients on both sides. From (4.5.1)
below,26 the coefficients of 8(W) are given by

b(m)=
∑
δ|1

∑
n∈F

0<n<1

εδ((n− 1)n)rW−((1− n)mδ)σε1(nm/N ).

(We use the notation 1 for the character of ideals defined by 1(m)= 1 if (m, p)= 1
and 1(m) = 0 otherwise.) We rewrite this as b(m) =

∑
δ,n bδ,n(m) with, using

εδ(x)= εδ(x) for x ∈ F× and writing in columns to highlight the factors,

bδ,n(m)= εδ(−1) = (−1)gε1/δ(−1)

· ε1/δ((1− n)m)ε1/δ(nm) · ε1/δ((1− n)m)ε1/δ(nm)

· ε1((1− n)m)rW((1− n)mδ) · rW((1− n)m1/δ)

· ε(N ) · ε(N )

· ε1(nm/N )σε1(nm/N ) · σε1(nm/N ) = (−1)gε(N )b1/δ,n.

Here we have used the following facts. In the first line, ε1(−1) = ε∞(−1) =
(−1)g. In the third line, we have that rW(m)= 1 if m is divisible only by ramified
primes in E since in that case m = m2 is a square and W(m)2 = W(m) = 1 —
this implies W(m) = ±1 and hence W(m) = 1 since W, which is a character
of G∼= Z

1+g+δ
p , has values in 1+ pZp. Finally, in the third and fifth lines, one can

observe that, if q = σε1 or q = r , then ε1(m)q(m) = q(m); indeed this is trivial
if ε1(m)= 1 while both sides are zero if ε1(m)=−1. �

26Which does not use the present result. The formula (4.5.1) is stated in the case when the
anticyclotomic part W− = 1, but the very same calculation gives the result in general.
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4.3. Interpolation property. We manipulate the definition to show that the p-adic
L-function L p( fE)(W) of Definition 4.2.1 interpolates the special values of the
complex Rankin–Selberg L-function L( fE ,W, s) = L( f ×2(W), s) defined in
the introduction.

We will need a few technical lemmas.

Lemma 4.3.1. Let P be an ideal of OF such that v | P if and only if v | p. We have

〈WN P f ρα , fα〉N P = αP( f )(−1)gτ( f )Hp( f )〈 f, f 〉N

with Hp( f ) as in (4.2.2) and

αP( f )=
∏
℘|p

α℘( f )v℘(P).

Proof. When P = P0 :=
∏
℘|p ℘, this is the direct generalisation of [Perrin-Riou

1988, Lemme 27], and it is proved in the same way. In general, we can write
P = P0 P1, and then

WN P f ρα = N(P1)[P1]WN P0 f ρα .

Observing that [℘] is the adjoint of U℘ for the Petersson inner product and that
N(P1)= [K0(N P) : K0(N P0)], we deduce

〈WN P f ρα 〉N P = [K0(N P) : K0(N P0)]〈WN P0 f ρα ,U (P1) fα〉N P

= αP1〈WN P0 f ρα , fα〉N P0 .

The lemma then follows from this and the special case P = P0. �

For the next lemma, let M and N be coprime; then we define the space of weakly
N-old forms of level N M to be the subspace of Mk(K1(M N )) spanned by forms
f = [d] f ′ for some d | N and some modular form f ′ of level N ′M with N ′ | d−1 N .
(This is often simply called the space of N -old forms, but we have reserved that
name for the span of forms [d] f ′ as above with d 6= 1.)

Lemma 4.3.2. For a character ϕ of conductor dividing M and an ideal N prime
to M, let E M

ϕ = E M
1 (g,

1
2 ;ϕ) and Ẽ M

ϕ =WM E M
ϕ . We have

WM [N ]Ẽ M
ϕ = E M N

ϕ + Eold

where the form Eold is weakly old at N (in particular, Eold is orthogonal to newforms
of exact level N and so is its product with any other form of level prime to N).

Proof. It is easy to see that WM [N ]Ẽ M
ϕ = [N ]E

M
ϕ . Then we are reduced to showing

[N ]E M
ϕ = E M N

ϕ + Eold.
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In fact, we have more generally and more precisely that

N(N )s−E M
ϕ

(
g
(

1
πM

)
, s
)
=

∑
d|N

ϕ(d)
N(d)2s E M N/d

ϕ (g, s);

this is [Zhang 2001a, Lemma 6.1.4] with ε replaced by ϕ. The lemma then holds with

Eold
=

∑
d|N , d 6=1

ϕ(d)
N(d)

E M N/d
ϕ . �

Lemma 4.3.3. With notation as in Section 4.1, we have

D([1] f,2(W), 1)=W(D)D( f,2(W), 1).

The proof is as in [Nekovář 1995, §I.5.9].

Theorem 4.3.4. Let W : G′→Q× be a finite-order character of conductor f divisi-
ble only by primes above p. Then we have

L p( fE)(W)=
W(d(p)F )τ (W)N(1(W))1/2Vp( f,W)W(1)

αN(f(W))( f )� f
L( fE ,W, 1),

where � f = (8π2)g〈 f, f 〉N , τ(W) is as in Lemma 2.4.3 and

Vp( f,W)=
∏
℘|p

∏
p|℘

(
1−

W(p)

α℘( f )

)
. (4.3.1)

Proof. Denote P =N(f(W)), 1(W)=1P and φ =W|F×A
. We suppose that W is

ramified at all places v | p (in this case, we have Vp( f,W)= 1). Then the result
follows from the definition and the following calculation:

l fα (8(W))=
〈WN P f ρα ,Tr1[2(W)Ẽε,N (W)]〉N P

〈WN P f ρα , fα〉N P

Lemma 4.3.1 =

〈WN1 f ρα ,W1(W)2(W)W1(W) Ẽ
1(W)

εφ−1,N 〉N1(W)

αP( f )(−1)gτ( f )Hp( f )� f

Lemma 4.3.2

Lemma 2.4.3
=
(−i)gW(d(p)F )τ (W)W(D)DE

αP( f )(−1)gτ( f )Hp( f )� f
〈WN [1] f ρα ,2(W)EN1(W)

εφ−1 〉N1(W)

=
(−i)gW(d(p)F )τ (W)W(D)

αP( f )Hp( f )� f
〈[1] f ρα ,2(W)EN1(W)W(D)

εφ−1 〉N1(W)

(4.1.1) =
W(d(p)F )τ (W)D2

F N(1(W))1/2

αP( f )Hp( f )� f
DN1(W)([1] fα,2(W), 1)

Lemma 4.3.3 =
W(d(p)F )τ (W)D2

F N(1(W))1/2W(1)

αP( f )Hp( f )� f
L( fE ,W, 1),
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where we have used various results from Section 1.4 and the fact that in our case
f ρ = f as f has trivial character.

The previous calculation goes through in general with1(W) replaced by1(W)′=

lcm(1(W),
∏
℘|p ℘); then one further needs to compare the imprimitive Dirichlet

series D1(W)′( fα,2(W, 1)) with the L-value L( fE ,W, 1). This is done in the
same way as in the case of elliptic modular forms [Perrin-Riou 1988, Lemme 2.3 (i),
§4.4 (III)].27 We omit the details since no new phenomena appear in our context
and, strictly speaking, we do not need to use the precise form of the interpolation
result except in the ramified case (which already determines L p( fE) uniquely). �

4.4. Factorisation. The p-adic analogue of the standard L-function of f has
been studied by several authors (Manin, Dabrowski, Dimitrov, etc.). Let GF =

Gal(F∞/F) where F∞ is the maximal Zp-extension of F unramified outside p.

Theorem 4.4.1. There is a p-adic L-function L p( f ) ∈ OL [[G
′

F ]] ⊗OL L uniquely
determined by the following property: for each finite-order character χ : GF →Q×

of conductor f(χ) divisible by all the primes ℘ | p, we have

L p( f, χ)= χ(d(p)F )
τ (χ)N(f(χ))1/2

αf(χ)

L( f, χ, 1)
�+f

where �+f ∈ C× is a suitable period and τ(χ)=
∏
v|p τ(χv) with

τ(χv)= |πv|
−c/2

∫
F×v

Wv(xv)ev(−xv) dxv

if c = v(f(χ)).

Similarly, we have L p,εα( fε) and a period �+fε satisfying

L p,εα( fε, χ)= χ(d
(p)
F )

τ (χ)N(f(χ))1/2

ε(f(χ))αf(χ)

L( fε, χ, 1)
�+fε

for ramified finite-order characters χ . (In fact, ε(f(χ)= 1 under our assumptions).)
For the proof of the existence of L p( f ), we refer to [Dimitrov 2013]: notice

that our L p( f, χ) equals χ(d(p)F )L p(π f , χ
−1) in [op. cit.], where moreover the

notation τ(χv) refers to unnormalised Gauss sums. The definition and properties

27Notice that, as in [op. cit.], our 2(W) is not the primitive theta series when W is unramified at
some ℘ | p; in general, we have

2(W)=

( ∏
p|℘|p

(1− N(℘)1/2W(p)[℘])

)
2(W)prim

if 2(W)prim is the primitive theta series (i.e., the normalised newform in its representation). This
replaces the second-to-last equation of [Perrin-Riou 1988, p. 21], whose 2(W) and 2(W′′) are our
2(W)prim and 2(W), respectively. The factor Vp( f,W) comes from the analogue of [Perrin-Riou
1988, Lemme 23].
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of the period �+f and of a related period �−f (both of which are a priori defined
up to an M×f -ambiguity) are given in Section 9 below; here we need �+f �

−

f ∼� f

and �+fε ∼ D−1/2
E �−f , where ∼ denotes equality in C×/M×f . Then from the com-

plex factorisation L( fE , χ ◦N, s) = L( f, χ, s)L( fε, χ, s) and the interpolation
properties satisfied by each factor, we obtain

L p( fE , χ ◦N)= χ(1)
2
�+f �

+

fε

D−1/2
E � f

L p( f, χ)L p( fε, χ), (4.4.1)

where the period factor is in M×f (in particular, it is algebraic).

4.5. Fourier expansion of the analytic kernel. Consider the restriction of 8 to G,
the Galois group of the maximal Zp-extension of E unramified outside p. Any
character W of G decomposes uniquely as W = W+W− with (W+)c = W and
(W−)c=W−1 (we say that W+ is cyclotomic and W− is anticyclotomic or dihedral).
Since we are interested in the case ε(N ) = (−1)g−1 in which 8 is zero on the
anticyclotomic characters, we study the restriction of8 to the cyclotomic characters.
We can write W+ = χ ◦N for a Hecke character χ : F× \ F×A → 1+ pZp, and we
denote

2χ =2(χ ◦N), 8χ =8(χ ◦N).

From now on, we assume that (1, 2)= 1 and all primes ℘ | p are split in E .

Proposition 4.5.1. The Fourier coefficients b(m)= ap(8χ ,m) of the p-adic mod-
ular form 8χ are given by

b(m)=
∑
n∈F

0<n<1
n∈Nm−11−1

χ((1− n)m)
∏
v|1

[
1[v(nm)= 0] + εv((n− 1)n)χ−2

v (nm℘v/N )
]

· r((1− n)m1)σεχ−2(nm/N ).

Proof. By (1.4.6), the Fourier coefficient b(m) of 8χ = Tr1[2χ Ẽεχ2,N ] is given by

b(m)=
∑
δ|1

bδ(mδ)

with

bδ(m)= a(8(δ)χ ,m)= |y|−1ã(8(δ)χ , y)

= |y|−1
∑
n∈F

ã(2(δ)χ , (1− n)y)ã(Ẽ(δ)

εχ−2,N , ny)

= |y|−1
∑
n∈F

ã(2(δ)χ , (1− n)y)ã(Ẽ(δ)

εχ−2, ny/πN )

if y ∈ F×A satisfies y∞ > 0 and y∞dF = m.
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Then by Proposition 2.5.1 and Corollary 3.2.2, we have28

b(m)=
∑
δ|1

∑
n∈F

0<n<1

εδ((n− 1)n)χ−1(δ)χ((1− n)mδ)χ−2
δ (nmδ/N )

· r((1− n)mδ)σεχ−2(nm/N ). (4.5.1)

We interchange the two sums and notice that the term corresponding to δ and n is
nonzero only if n ∈ Nm−11−1 and δ0 | δ, where

δ0 = δ0(n)=
∏
v|1

v(nm)=−1

℘v

(℘v being the prime corresponding to v). Now for each n, we can rewrite the sum
over δ (omitting the factor χ((1− n)m) and those on the second line of (4.5.1),
which do not actually depend on δ) as

εδ0((n− 1)n)χ−2
δ0
(nmδ0/N )

∑
δ′|1/δ0

εδ′((n− 1)n)χ−2
δ′ (nmδ′/N )

=

∏
v|δ0

εδ′((n− 1)n)χ−2
v (nm℘v)

∏
v|1/δ0

[1+ εv((n− 1)n)χ−2
v (nm℘v)].

The asserted formula follows. �

Remark 4.5.2. If v(nm)=−1, then (n− 1)πmπv ≡ nπmπv in (OF,v/πvOF,v)
× so

that we actually have

εv((n− 1)n)= εv((n− 1)πmπv)εv(nπmπv)= 1.

We can now compute the Fourier coefficients of the analytic kernel giving the cen-
tral derivative of the p-adic L-function in the cyclotomic direction. To this end, let

ν : Gal(Q/F)→ 1+ pZp ⊂Q×p .

Since l fα is continuous, we have

d
ds

L p( fE , ν
s
◦N)=

d
ds

l fα (8(s))= l fα

(
d
ds
8(s)

)
.

In particular, L ′p;ν◦N( fE ,1)= l fα (8
′(0)).

Let `F =
d
ds

∣∣
s=0ν

s
: F× \ F×A∞→Qp be the p-adic logarithm associated with ν.

Proposition 4.5.3. Assume that ε(N )= (−1)g−1. Then 8(0)= 0 and the Fourier
coefficients b′(m) of

8′ν =8
′(0)=

d
ds

∣∣∣∣
s=0
8νs

28Recall that κ(v)2 = εv(−1).
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are nonzero only for m integral and nonzero, in which case

b′(m)=
∑
v

b′v(m)

with the sum running over all finite places v of F and b′v(m) given for
(∏

℘|p ℘
)
|m

by the following:

(1) If v = ℘ is inert in E , then

b′v(m)=
∑

n∈Nm−11−1

(p,nm)=1
εv((n−1)n)=1∀v|1

0<n<1

2ω1(n)r((1− n)m1)r(nm1/N℘)(v(nm/N )+ 1)`F,v(πv),

where
ω1(n)= #{v | (1, nm1)}.

(2) If v = ℘ |1 is ramified in E , then

b′v(m)=
∑

n∈Nm−11−1

(p,nm)=1
εv((n−1)n)=−1

εw((n−1)n)=1∀v 6=w|1
0<n<1

2ω1(n)r((1− n)m1)r(nm1/N )(v(nm)+ 1)`F,v(πv).

(3) If v is split in E , then
b′v(m)= 0.

Proof. The vanishing of 8(0)=81 follows from the functional equation (4.2.4)
and the sign assumption.

By Proposition 4.5.1, the Fourier coefficient bs(m) of 8(s) = 8νs can be ex-
pressed as bs(m)=

∑
n∈F bn,s(m) with

bn,s(m)= νs((1− n)m)r((1− n)m1)
∏
v-p∞

σ n
s,v(m/N )

where, using Remark 4.5.2,

σ n
s,v(m)=


1− ε(nm℘)ν(nm℘)−2s

1− ε(℘)ν(℘)−2s if v = ℘ -1,

1+ εv(n(n− 1))ν(nm℘)−2s if v = ℘ |1 and v(nm)= 0,
ν(nm℘)−2s if v = ℘ |1 and v(nm)=−1.

Then b′(m) =
∑

n b′n(m) =
∑

n
∑

v b′n,v(m) with
∑

n b′n,v(m) = bv(m), and
b′n(m) can be nonzero only if exactly one of the factors σ n

s,v vanishes at s= 0. If this
happens for the place v0, then the set over which n ranges accounts for the positivity
and integrality conditions and the nonvanishing conditions at other places, whereas
the condition (p, nm)= 1 results from observing that lims→0 ν

s(a)= 1[(p, a)= 1].
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The values of b′n,v can then be determined in each case from the above expressions.
For v ramified, this is straightforward. For v = ℘ inert, notice that if v(nm/N ) is
odd then r(nm1/N℘) = r((nm1/N )(℘)), where the superscript denotes prime-
to-℘ part, whereas if v(nm/N ) is even then σ n

0,v(m/N ) does not vanish so (n, v)
does not contribute to b′(m) and indeed r(nm/N℘)= 0. �

Part II. Heights

5. p-adic heights and Arakelov theory

By the work of many authors (Schneider, Perrin-Riou, Mazur and Tate, Coleman and
Gross, Zarhin, Nekovář, etc.), there are p-adic height pairings on the Mordell–Weil
group of an abelian variety defined over a number field. In this section, we first recall
(Sections 5.1–5.2) a definition of the height pairing as a sum of local symbols follow-
ing [Zarhin 1990; Nekovář 1993] and explain how it induces a pairing on degree-0
divisors on curves. In Sections 5.3–5.4, we explain how p-adic Arakelov theory al-
lows us to extend the height pairing for curves to a pairing on divisors of any degree.

5.1. Local symbols. Let A be an abelian variety of dimension g over a local field Ev
and A∨ its dual abelian variety, and let V = Vp A = Tp A⊗Zp Qp be the rational
Tate module of A, a continuous Gal(E/E)-representation.29 Let `v : E×v →Qp be
a homomorphism; we call ` a local p-adic logarithm and assume that it is ramified,
that is, `v : E×v → Qp does not vanish identically on O×E,v. Let DdR(Vv) be the
filtered Qp-vector spaces attached to Vv by the theory of Fontaine. The comparison
theorem identifies DdR(Vv) with H 1

dR(A
∨/Ev), equipped with the Hodge filtration;

it is also identified with the filtered Dieudonné module of the special fibre of the
p-divisible group of A (after an extension of scalars if Ev is ramified over Qp

[Fontaine 1982]). Let L be a finite extension of the coefficient field Qp, and
if v | p, let Wv ⊂ DdR(Vv)⊗ L be a splitting of the Hodge filtration, that is, a
complementary subspace to �1(A∨/Ev)⊗ L ⊂ DdR(Vv)⊗ L , which is isotropic30

for the cup product. When Vv is ordinary, there is a canonical choice for Wv, the
“unit root” subspace (see, e.g., [Iovita 2000] for a nice discussion).

We proceed to define pairings, called local Néron symbols,31

〈 · , · 〉v,W : (D0(A)(Ev)× Z0(A)0(Ev))e→ L

29 Nekovář [1993] defines height pairings for Galois representations in much greater generality
than described here.

30The isotropy condition ensures that the resulting height pairing is symmetric [Nekovář 1993,
Theorem 4.1.1 (4)]

31The notation is a bit abusive: the subscript W is meant to recall that the local pairing depends on
the choice of Wv when v | p; when v - p, it has no meaning. Although the symbol also depends on `,
we will usually omit it from the notation.
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on the subset of pairs with disjoint supports in the product of the group D0(A)(Ev)
of divisors algebraically equivalent to 0 defined over Ev and the group Z0(A)0(Ev)
of 0-cycles of degree 0 defined over Ev.

Let A/OE,v and A∨/OE,v be the Néron models of A and A∨, and let A0 be the
identity component of A. The rational equivalence class [D] of D ∈ D0(A)(Ev)
defines a point in A∨(Ev)=A∨(OE,v)= Ext1fppf(A

0, Gm) and hence an extension

1→ Gm→ Y[D]→A0
→ 1

of abelian fppf sheaves on OE,v , and Y[D] is represented by a smooth commutative
group scheme. On the generic fibre, Y[D]⊗Ev can be identified with the complement
YD of the zero section in the total space of the line bundle O(D) on A, and thus,
the extension admits a section

sD : A \ |D| → YD,

which is canonical up to scaling.
Suppose we are given a morphism `v,D,W that makes the following diagram

commute:

0 // O×E,v ⊗̂ L //

��

Y[D](OE,v) ⊗̂ L //

��

A0(OE,v) ⊗̂ L // 0

0 // E×v ⊗̂ L //

`v
��

YD(Ev) ⊗̂ L //

`v,D,W
��

A(Ev) ⊗̂ L // 0

L L

Then we can define the local pairing by

〈D, z〉v,W = `v,D,W (sD(z)), (5.1.1)

where sD is extended to the divisor z in the obvious way. Notice that, since z has
degree 0, this is well-defined independently of the scaling ambiguity in sD .

When v - p, the logarithm `v vanishes on O×E,v for topological reasons and we
can uniquely extend it to an `v,D as in the above diagram by requiring its restriction
to Y[D](OE,v) to be trivial. When v | p, given the splitting Wv , one can construct a
section

sv,D,W : A(Ev) ⊗̂ L→ YD(Ev) ⊗̂ L

and define the extension `v,D,W by requiring it to be trivial on the image of sv,D,W .
The standard construction is explained, e.g., in [Kobayashi 2014, §3.2]. In the
ordinary case, when Wv is chosen to be the unit root subspace, the crucial properties
of the (canonical) local symbol are the last two in Proposition 5.1.2 below; in
this case, the construction rests on the following result (see [Schneider 1985] or
[Nekovář 1993, §6.9]):
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Lemma 5.1.1. Let Ev,∞ be a totally ramified Zp-extension of Ev, and denote by
Ev,n its n-th layer. Let e ∈ End(A)⊗Q be an idempotent. Assume that eV is
ordinary as a Galois representation. Then the module of universal norms

U (eA(Ev))=
⋂
n

Im[TrEv,n/Ev : eA(Ev,n)→ eA(Ev)]

has finite index in eA(Ev).

Proposition 5.1.2. The p-adic local symbol

〈 · , · 〉v = 〈 · , · 〉v,W : (D0(A)(Ev)× Z0(A)0(Ev))e→ L

defined by (5.1.1) has the following properties (valid whenever they make sense):

(1) It is bilinear.

(2) If h ∈ Ev(A) is a rational function, we have

〈(h), z〉v = `v(h(z))

where, if z =
∑

n P P , h(z)=
∏

h(P)n P .

(3) If φ : A→ A is a finite endomorphism, we have

〈φ∗D, z〉v = 〈D, φ∗z〉v.

(4) For any D ∈D0(A)(Ev) and x0 ∈ A(Ev)\ |D| the map from A(Ev)\ |D|→ L
defined by

x 7→ 〈D, x − x0〉v

is continuous.

(5) (compatibility) Let E ′w/Ev be a finite extension. If D ∈ D0(A)(E ′w) and
z ∈ Z0(A)0(Ev), we have

〈TrE ′w/Ev (D
′), z〉v = 〈D′, z〉w

where 〈 · , · 〉w is the local pairing associated with `w=`v◦NEw/Ev and (if v | p)
the splitting Ww is induced from Wv.

(6) (boundedness) If v | p, let E`v,∞ =
⋃

n E`v,n be the ramified32 Zp-extension
of Ev determined by the isomorphism

E×v ⊃ Ker(`v)∼= Gal(E`v,∞/E)⊂ Gal(Eab
v /E)

induced from class field theory. In the ordinary situation of Lemma 5.1.1, if
eWv is the unit root subspace of eV , there is a nonzero constant c∈Zp such that

〈D, z〉v,n ∈ c−1`w(E`,×v,n )

if D ∈ eD0(A)(Ev,n), z ∈ eZ0(A)0(Ev,n) and 〈 · , · 〉v,n is the local pairing
associated with the extension E`v,n/Ev as in (5).

If v - p, the local symbol is characterised by properties (1)–(4).

32Recall that we choose `w to be ramified.
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We refer to [Nekovář 1995, §II.1; Kobayashi 2013, §4.2] and references therein
for the proof and more details on the construction. See also Proposition 5.4.1 below.

5.2. The p-adic height pairing. Let A be an abelian variety over a number field E .
Let ` : E× \ E×A → Qp be a homomorphism (which we call a global p-adic
logarithm) whose restrictions `v = `|E×v are ramified for all v | p. Let Wv be Hodge
splittings at the places v | p as in Section 5.1. Then we can define a height pairing

〈 · , · 〉 : A∨(E)× A(E)→ L

as the sum of local height pairings

〈x, y〉 =
∑
v

〈x̃, ỹ〉v,

where x̃ is a divisor on A whose class in A∨(E)∼= Pic0(A) is x and ỹ =
∑

n P [P]
is a 0-cycle of degree 0 on A with support disjoint from the support of x̃ , which
satisfies

∑
n P P = y. The result is independent of the choices of x̃ and ỹ.

Let X be a (proper, smooth) curve over E of genus g≥1, together with a degree-1
divisor class defined over E inducing an embedding

ι : X ↪→ J (X)

into its Albanese variety J (X).33 Let Div(X) be the group of divisors on X ,
Div0(X) the subgroup of degree-0 divisors and similarly CH(X)=Div(X)/∼ and
CH(X)0 = Div0(X)/∼, the Chow group of 0-cycles modulo rational equivalence
and its subgroup of degree-0 elements. Then, given a p-adic logarithm and Hodge
splittings for Vp J (X), we can define local and global pairings on degree-0 divisors
on X (denoted with a subscript X ) from the above pairings on J (X) (here denoted
with a subscript J (X)). Let D1 and D2 be divisors of degree 0 on X defined over E
and with disjoint support. The morphism ι induces an isomorphism ι∗ : Pic0 J (X)∼=
Pic0(X); hence, we can pick an algebraically trivial divisor D′1 on J (X) satisfying
D1 = ι

∗D′1+ (h) for some rational function h ∈ E(X). If D′1 is chosen so that its
support is disjoint from the support of ι∗D2 and the support of (h) is disjoint from
the support of D2, we can define

〈D1, D2〉v,X =−〈D′1, ι∗D2〉v,J (X)− `v(h(D2))

and
〈D1, D2〉X =

∑
v

〈D1, D2〉v,X .

33In our applications, we only have a rational divisor class, inducing a compatible system of
maps ιE ′ : X (E ′)⊗Q→ J (X)(E ′)⊗Q for E ′ a finite extension of E such that, for some integer n,
(nιE ′)E ′ is induced from an E-morphism. This causes no extra difficulties.
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The latter pairing descends to a height pairing on divisor classes

〈 · , · 〉 : CH(X)0×CH(X)0→ L .

There are various conventions in the literature for the normalisation of the signs
of height pairings. Our choices are the same as those of [Kobayashi 2013, §4.3],
whose discussion we have followed and to which we refer for a comparison with
other authors’ choices.

5.3. p-adic Arakelov theory: local aspects. Here and in Section 5.4, we sum-
marise the main results of Besser [2005], who develops the p-adic analogue of
classical Arakelov theory.

Metrised line bundles. Let Xv be a proper smooth variety over the finite extension
Ev of Qp, and fix a ramified local p-adic logarithm `v : E×v → Qp, which we
extend to Q×p by `v|E ′×v = `v ◦ NE ′v/Ev for any finite extension E ′v/Ev.

A metrised line bundle L̂ = (L, logL) on Xv is a line bundle on Xv together
with a choice of a log function logL on the total space of L minus the zero section
(which will also be viewed as a function on the nonzero sections of L). A log
function is the analogue in the p-adic theory of the logarithm of a metric on the
sections of a line bundle on a Riemann surface. It is a Coleman function having
a certain analytic property34 and the following algebraic property. If the p-adic
logarithm `v factors as

`v = tv ◦ logv (5.3.1)

for some logv : E×v → Ev and some Qp-linear tv : Ev→Qp, then for any nonzero
section s of Lv and rational function f ∈ E(Xv), we have

logL,v( f s)= logv( f )+ logL,v(s). (5.3.2)

Adding a constant to a log function produces a new log function; this operation is
called scaling.

One can define a notion of ∂∂-operator on Coleman functions and attach to any
log function logL on L its curvature ∂∂ logL ∈ H 1

dR(Xv)⊗�
1(Xv); its cup product

is the first Chern class of L.
Log functions on a pair of line bundles induce in the obvious way a log function

on their tensor product and similarly for the dual of a line bundle. If π : Xv→ Yv is
a morphism, then a log function on a line bundle on Yv induces in the obvious way
a log function on the pullback line bundle on Xv. If moreover π is a finite Galois
cover with Galois group G and L is a line bundle on Xv with log function logL

34For which we refer to [Besser 2005, Definition 4.1].
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and associated curvature β, then the norm line bundle NπL on Yv with stalks

(NπL)y =
⊗
x 7→y

L⊗e(x |y)
x

has an obvious candidate log function Nπ logL obtained by tensor product. A
delicate point is that it is not automatic that the latter is a genuine log function (i.e.,
it satisfies the analytic property alluded to above); see [Besser 2005, Proposition 4.8]
for a sufficient condition.

The canonical Green function. Now let Xv/Ev be a curve of genus g≥ 1 with good
reduction above p. Choose a splitting Wv ⊂ H 1

dR(Xv)⊗ L of the Hodge filtration as
in Section 5.1, which we use to identify Wv

∼=�1(Xv)∨; we then define a canonical
element

µXv =
1
g

id ∈ End�1(Xv)∼=Wv ⊗�
1(Xv)

and similarly for the self-product Xv × Xv (denoting by π1 and π2 the projections)

8=

(
1/g −1
−1 1/g

)
∈End(π∗1�

1(Xv)⊕π∗2�
1(Xv)) ↪→H 1

dR(Xv×Xv)⊗�1(Xv⊗Xv).

The first Chern class of 8 is the class of the diagonal 1⊂ Xv × Xv.
Let s1 denote the canonical section of the line bundle O(1) on Xv × Xv . Given

any log function logO(1) on O(1) with curvature 8, we can consider the function G
on Xv × Xv given by

G(P, Q)= logO(1)(s1)(P, Q).

It is a Coleman function with singularities along 1; we call G a Green func-
tion for Xv.

A Green function G induces a log function on any line bundle O(D) on Xv by

logO(D)(sD)(Q)=
∑

ni G(Pi , Q)

if D =
∑

ni Pi and sD is the canonical section of O(D). A log function logL on the
line bundle L and the resulting metrised line bundle (L, logL) are called admissible
with respect to G if, for one (equivalently, any) nonzero rational section s of L, the
difference logL(s)− logdiv(s) is a constant. Such a constant is denoted by ιlogL

(s)
or ιlogv (s) in the case of the trivial line bundle with the log function logv. It is the
analogue of the integral of the norm of s. It follows easily from the definitions that
any isomorphism of admissible metrised line bundles is an isometry up to scaling.

Let ωXv be the canonical sheaf on Xv. The canonical isomorphism ωXv
∼=

1∗O(−1) gives another way to induce from G a log function logG
ωXv

on ωXv , namely
by pullback (and the resulting metrised line bundle has curvature (2g − 2)µXv ).
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The requirement that this log function be admissible, together with a symmetry
condition, leads to an almost unique choice of G.

Proposition 5.3.1 [Besser 2005, Theorem 5.10]. There exists a unique-up-to-
constant symmetric Green function G with associated curvature 8 such that
(ωXv , logG

ωXv
) is an admissible metrised line bundle with respect to G.

In the following, we will arbitrarily fix the constant implied by the proposition.
In our context, the canonical Green function thus determined is, in a suitable sense,
defined over Ev [Besser 2005, Proposition 8.1].

5.4. p-adic Arakelov theory: global aspects. Let E be a number field with ring
of integers OE . Let X/OE be an arithmetic surface with generic fibre X ; that is,
X→ OE is a proper regular relative curve and X⊗OE E = X . We assume that X

has good reduction at all places v | p, and denote Xv = X⊗ Ev. Fix choices of a
ramified p-adic logarithm ` and Hodge splittings Wv as in Section 5.3.

Arakelov line bundles and divisors. An Arakelov line bundle on X is a pair

L̂= (L, (logLv
)v|p)

consisting of a line bundle L on X together with admissible (with respect to the
Green functions of Proposition 5.3.1) log functions logLv

on Lv =L|Xv . We denote
by PicAr(X) the group of isometry classes of Arakelov line bundles on X.

The group DivAr(X) of Arakelov divisors on X is the group of formal combina-
tions

D = Dfin+ D∞

where Dfin is a divisor on X and D∞=
∑

v|p λvXv is a sum with coefficients λv ∈ Ev
of formal symbols Xv for each place v | p of E . To an Arakelov line bundle L̂ and
a nonzero rational section s of L, we associate the Arakelov divisor

d̂iv(s)= (s)fin+ (s)∞

where (s)fin is the usual divisor of s and (s)∞ =
∑

v|p ιlogLv
(sv)Xv. The group

PrinAr(X) of principal Arakelov divisors on X is the group generated by the d̂iv(h)
for h ∈ E(X)×. The Arakelov Chow group of X is

CHAr(X)= DivAr(X)/PrinAr(X),

and we have an isomorphism

PicAr(X)∼= CHAr(X)

given by L̂→ [d̂iv(s)] for any rational section s of L.
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The p-adic Arakelov pairing. Most important for us is the existence of a pairing on
CHAr(X), extending the p-adic height pairing of divisors of Section 5.2. Let ( · , · )v
denote the (Z-valued) intersection pairing of cycles on Xv with disjoint support.

Proposition 5.4.1 [Besser 2005]. Let X/OE be an arithmetic surface with good
reduction above p. For any choice of ramified p-adic logarithm ` : E×A/E×→Qp

and Hodge splittings (Wv)v|p as above, there is a symmetric bilinear paring35

〈 · , · 〉Ar
: CHAr(X)×CHAr(X)→ L

satisfying:

(1) If D1 and D2 are finite and of degree 0 on the generic fibre and one of them
has degree 0 on each special fibre of X, then

〈D1, D2〉
Ar
= 〈D1,E , D2,E 〉,

where Di,E ∈ Div0(X) is the generic fibre of Di and 〈 · , · 〉 denotes the height
pairing of Proposition 5.1.2 associated with the same choices of ` and Wv.

(2) If D1,fin and D2,fin have disjoint supports on the generic fibre, then

〈D1, D2〉
Ar
=
∑
v

〈D1, D2〉
Ar
v ,

where the sum runs over all finite places of E , and the local Arakelov pairings
are defined by

〈D1, D2〉
Ar
v = (D1, D2)v`v(πv)

for v - p and below for v | p.
If moreover we are in the situation of (1), then for each place v, we have

〈D1, D2〉
Ar
v = 〈D1,E , D2,E 〉v.

(3) In the situation of (2), if moreover D1 = d̂iv(h) is the Arakelov divisor of a
rational function h, then

〈D1, D2〉
Ar
v = `v(h(D2,fin))

for all places v.

For completeness, we give the description of the local pairing at v | p of divisors
with disjoint supports. If `v = tv ◦ logv as in (5.3.1) and Gv is the Green function
on Xv × Xv, we have 〈D, Xw〉Ar

v = 0 if v 6= w, 〈Xv, Xv〉Ar
v = 0, 〈D, λvXv〉Ar

v =

(deg DE)tv(λv) and, if D1 and D2 are finite divisors with images D1,v =
∑

ni Pi

and D2,v =
∑

m j Q j in Xv,

〈D1, D2〉
Ar
v =

∑
i, j

ni m j tv(Gv(Pi , Q j )).

35The notation of [Besser 2005] is D1 · D2 for 〈D1, D2〉
Ar.
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In fact, in [Besser 2005], it is proved directly that the global Arakelov pairing
and its local components at p coincide with the global and local height pairings of
[Coleman and Gross 1989]. The latter coincide with the Zarhin–Nekovář pairings
by [Besser 2004].

6. Heegner points on Shimura curves

In this section, we describe our Shimura curve and construct Heegner points on it,
following [Zhang 2001a, §1–§2], to which we refer for the details (see also [Zhang
2001b, §5] and [Carayol 1986] for the original source of many results on Shimura
curves). We go back to our usual notation, so F is a totally real number field of
degree g, N is an ideal of OF , E is a CM extension of F of discriminant 1 coprime
to 2N p and ε is its associated Hecke character.

6.1. Shimura curves. Let B be a quaternion algebra over F that is ramified at all
but one infinite place. Then we can choose an isomorphism B⊗R∼=M2(R)⊕Hg−1,
where H is the division algebra of Hamilton quaternions. There is an action of B×

on H± = C \R by Möbius transformations via the map B×→ GL2(R) induced
from the above isomorphism. For each open subgroup K of B̂× = (B⊗F F̂)× that
is compact modulo F̂×, we then have a Shimura curve

MK (C)= B× \H±× B̂×/K ,

where H± = C \R. Unlike modular curves, the curves MK do not have a natural
moduli interpretation. However, by [Carayol 1986], MK (C) has a finite map36

to another (unitary) Shimura curve M ′K ′(C) that, if the level K ′ is small enough,
has an interpretation as the moduli space of certain quaternionic abelian varieties.
Namely, M ′K ′ parametrises isomorphism classes of abelian varieties of dimension
4[F :Q] with multiplication by the ring of integers OB ′ of B⊗F F ′ and some extra
structure (a polarisation and a K ′-level structure, compatible with the quaternionic
multiplication) [Zhang 2001a, Proposition 1.1.5].

We will usually denote a point of M ′K ′ simply by [A], where A is the underlying
abelian variety. If K ′ has maximal components at places dividing m, one can
define a notion of an admissible submodule D of level m [Zhang 2001a, §1.4.3]: it
is an OB ′-submodules of A[m] satisfying a certain condition, which ensures that
the quotient A/D can be naturally endowed with the extra structure required by
the functor M ′K ′ . We denote by [AD] the object whose underlying abelian variety
is A/D, with the induced extra structure.

As a consequence of the moduli interpretation, the curve MK (C) has a canonical
model MK defined over F (it is connected but not, in general, geometrically

36That is an embedding if K ⊃ F̂×.
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connected) and a proper regular integral model37 MK over OF ; if v is a finite place
where B is split, then MK is smooth over OF,v if Kv is a maximal compact subgroup
of Bv and K v is sufficiently small. We denote MK ,v =MK ⊗OF,v.

Universal formal group and ordinary points. Assume that the level structure K
is maximal at ℘. The curve MK ,℘ carries a universal ℘-divisible OB,℘-module G

obtained from the ℘-divisible group A[℘∞] of the universal abelian scheme A

over M′K ′,℘ . More precisely, choosing an auxiliary quadratic field F ′ that is split
at ℘ and an isomorphism j : OF ′,℘ ∼= OF,℘ ⊕OF,℘ , we have

G=A[℘∞](2) = e2A[℘∞],

where e2 is the idempotent in OF ′,℘ corresponding to (0, 1) under j .
Assume that B is split at ℘. Then we denote by G1 and G2 the images under the

projectors corresponding to
( 1

0

)
and

( 0
1

)
under a fixed isomorphism B∼=M2(F℘);

they are isomorphic via the element
(
−1

1).
Let x be a geometric point of the special fibre MK ,℘ . Then the Gi

x are divisible
O℘-modules of dimension 1 and height 2 and hence isomorphic to either

• the direct sum 61⊕ F℘/OF,℘ , where 61 is the unique formal OF,℘-module of
height 1 — in this case, x is called ordinary — or

• the unique formal O℘-module of dimension 1 and height 2 — in this case, x is
called supersingular.

Let MK (Q℘)
ord
⊂ MK (Q℘) be the set of points with ordinary reduction. Then

the Frobenius map Frob℘ admits a lift

ϕ : MK (F℘)ord
→ MK (F℘)ord (6.1.1)

given in the moduli interpretation by [A] 7→[Acan(A)], where can(A) is the canonical
submodule of A, that is, the sub-OF,℘-module of A[℘] in the kernel of multiplication
by ℘ in the formal group of A.

The order R and the curve X. Assume that ε(N )= (−1)g−1. Then the quaternion
algebra B over AF ramified exactly at all the infinite places and the finite places v |N
such that ε(v)=−1 is incoherent; that is, it does not arise via extension of scalars
from a quaternion algebra over F . On the other hand, for any embedding τ : F ↪→R,
there is a nearby quaternion algebra B(τ ) defined over F and ramified at τ and
the places where B is ramified. Fix any embedding ρ : E→ B(τ ), and let R be an
order of B̂ = B̂(τ ) that contains ρ(OE) and has discriminant N (this is constructed
in [Zhang 2001a, §1.5.1]). Then the curve X over F of interest to us is the

37In the modular curve case F =Q, ε(v)= 1 for all v | N , MK and MK are proper only after the
addition of finitely many cusps. (We caution the reader that [Carayol 1986] uses the notation MK to
denote instead the set of geometrically connected components of MK .)
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(compactification of) the curve MK defined above for the subgroup K = F̂× R̂×⊂ B̂;
that is, for each embedding τ : F→ C, we have

X (C)= B(τ )× \H±× B̂×/F̂× R̂× ∪ {cusps}. (6.1.2)

The finite set of cusps is nonempty only in the classical case where F = Q and
ε(v)= 1 for all v | N so that X = X0(N ). In what follows, we will not burden the
notation with the details of this particular case, which poses no additional difficulties
and is already treated in the original work of Perrin-Riou [1987].

We denote by X the canonical model of X over OF and by Xv its base change
to OF,v. We also denote by J (X) the Albanese variety of X and by Jv its Néron
model over OF,v.

Hecke correspondences. Let m be an ideal of OF that is coprime to the ramification
set of B. Let γm ∈ ÔB be an element with components 1 away from m and such
that det γm generates m at the places dividing m. Then the Hecke operator T (m)
on X is defined by

T (m)[(z, g)] =
∑

γ∈Kγm K/K

[(z, gγ )]

under the complex description (6.1.2). When m divides N , we often denote the
operator T (m) by U (m) or Um .

Let T ′N be the algebra generated by the T (m) for m prime to N . Then by [Zhang
2001a, Theorem 3.2.1], the algebra T ′N is a quotient of the Hecke algebra on Hilbert
modular forms TN (hence, the names T (m) are justified). It acts by correspondences
on X × X , and taking Zariski closures of cycles on X×X extends the action to X.

As in the classical case, the Hecke operators T (m) admit a moduli interpretation,
after base change to a suitable quadratic extension F ′ and passing to the curve X ′.
Namely we have

T (m)[A] =
∑
D
[AD],

where the sum runs over the admissible submodules of A of level m.

6.2. Heegner points. The curve X defined above has a distinguished collection of
points defined over abelian extensions of E : we briefly describe it, referring the
reader to [Zhang 2001a, §2] for more details.

A point y of X is called a CM point with multiplication by E if it can be
represented by (x0, g) ∈ H+× B̂× via (6.1.2), where x0 ∈ H

+ is the unique point
fixed by E×. The order

End(y)= gR̂g−1
∩ ρ(E)
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in E = ρ(E) is defined independently of the choice of g, and

End(y)= OE [c] = OF + cOE

for a unique ideal c of OF called the conductor of y. We say that the point
y = [(x0, g)] has the positive orientation if for every finite place v the morphism
t 7→ g−1ρ(t)g is R×v -conjugate to ρ in Hom(OE,v, Rv)/R×v .38 Let Yc be the set
of positively oriented CM points of conductor c. By the work of Shimura and
Taniyama, it is a finite subscheme of X defined over E , and the action of Gal(Q/E)
is given by

σ [(x0, g)] = [(x0, recE(σ )g)],

where recE : Gal(E/E)→ Gal(E/E)ab
−→∼ E× \ Ê× is the reciprocity map of

class field theory. If y = [(x0, g)] has conductor c, then the action factors through

Gal(H [c]/E)∼= E× \ Ê×/F̂×ÔE [c]×,

where H [c] is the ring class field of E of conductor c; the action of this group on Yc

is simply transitive.
For each nonzero ideal c of OF , let u(c)= [OE [c]× : O×F ] and define the divisor

ηc = u(c)−1
∑
y∈Yc

y. (6.2.1)

Let η = η1. By the above description of the Galois action on CM points, each
divisor ηc is defined over E .

A Heegner point y ∈ X (H) is a positively oriented CM point with conductor 1.
We can use the embedding ι : X→ J (X)⊗Q to define the point

[z] = ι(η)= [η] − h[ξ ] ∈ J (X)(E)⊗Q,

where h is a number such that [z] has degree 0 in each geometrically connected
component of X and [ξ ] is the Hodge class of the introduction (see below for more
on the Hodge class).

Arakelov Heegner divisors. The Heegner divisor on X can be refined to an Arakelov
divisor ẑ having degree 0 on each irreducible component of each special fibre. On
a suitable Shimura curve X̃

π
−→ X of deeper level away from N1E/F , we can give

an explicit description of the pullback ˆ̃z of ẑ and of the Hodge class as follows.
As outlined in Section 6.1, after base change to a suitable quadratic extension F ′

of F , we have an embedding X̃ ↪→ X̃ ′ of X̃ = MK̃ into the unitary Shimura curve
X̃ ′ = M ′

K̃ ′
parametrising abelian varieties of dimension 4g with multiplication

38This set has two elements only if v | N (the other element is called the negative orientation
at v); otherwise, it has one element and the condition at v is empty. There is a group of Atkin–Lehner
involutions acting transitively on orientation classes.
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by OB ′ and some extra structure. Then by the Kodaira–Spencer map, we have an
isomorphism ωX̃ ′

∼= det Lie A∨|X̃ ′ , where A→ X̃ ′ is the universal abelian scheme
and the determinant is that of an OF ′-module of rank 4 (the structure of OF ′-module
coming from the multiplication by OB ′ on A). This gives a way39 of extending the
line bundle ωX̃ ′ to the integral model X̃′ and to a line bundle L on X̃. For each
finite place v | p, we endow L|X̃v with the canonical log functions logL,v coming
from the description L|X̃v = ωX̃v and a fixed choice of Hodge splittings on X̃ . We
define [ ˆ̃ξ ] ∈ CHAr(X̃)⊗Q to be the class of (L, (logL)v|p) divided by its degree,
[ξ̃ ] to be its finite part and ˆ̃ξ to be any Arakelov divisor in its class.

Then the Arakelov Heegner divisor ˆ̃z ∈ DivAr(X⊗OE) is described by

ˆ̃z = ˆ̃η− h ˆ̃ξ + Z , (6.2.2)

where ˆ̃η is the Zariski closure in X⊗OE of the pullback of η to X̃ and Z is a finite
vertical divisor uniquely determined by the requirement that ˆ̃z should have degree 0
on each irreducible component of each special fibre.

6.3. Hecke action on Heegner points. Recall from Section 1.5 the spaces of
Fourier coefficients DN ⊂ S, the arithmetic functions σ1, r ∈ DN and the space
S = S/DN . The action of Hecke operators on the Arakelov Heegner divisor is
described as follows.

Proposition 6.3.1. Let m be an ideal of OF coprime to N. We have:

(1) T (m)η =
∑

c|m r(m/c)ηc.

(2) Let η0
c =

∑
OF 6=d|c ηd , and let T 0(m)η =

∑
c|m ε(c)η

0
m/c. Then η and T 0(m)η

have disjoint support, and if m is prime to N1, then T (m)η=T 0(m)η+r(m)η.

(3) T (m)[ξ ] = σ1(m)[ξ ], and m 7→ T (m) ˆ̃ξ is zero in S⊗DivAr(X̃).

(4) The arithmetic function m 7→ T (m)Z is zero in S⊗DivAr(X).

Proof. Parts (1), (2) and (4) are proved in [Zhang 2001a, §4]. For part (3), we
switch to the curve X̃ . By definition, [ ˆ̃ξ ] is a multiple of the class of the Arekelov
line bundle L = det Lie A∨ on X̃ with the canonical log functions on Lv

∼= ωX̃v ,
where A→ X is the universal abelian scheme. We view T (m) as a finite algebraic
correspondence of degree σ1(m) induced by the subscheme X̃m ⊂ X̃× X̃ of pairs
(A, A/D) where D is an admissible submodule of A of level m. If p1, p2 : X̃m→ X̃

are the two projections, then we have

T (m)L= Np1 p∗2L,

39See [Zhang 2001a, §4.1.3, §1] for more details on this construction.
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and the log functions logT (m)Lv
on T (m)L|X̃v are the ones induced by this descrip-

tion. (That these are genuine log functions — see the caveat in Section 5.3 — will
be shown in the course of proving Proposition 6.3.1(3) below.)

Let π : A1→A2 be the universal isogeny over X̃m . As p∗i L= det Lie A∨i , we
have an induced map

ψm = Np1π
∗
: T (m)L→ Np1 p∗1L= Lσ1(m),

and [Zhang 2001a, §4.3] shows that ψm(T (m)L) = cmLσ1(m) where cm ⊂ OF

is an ideal with divisor [cm] on Spec OF such that m → [cm] is a σ1-derivative
(Section 1.5) and hence zero in S⊗Div(Spec OF )⊂ S⊗DivAr(X). In fact if the
finite divisor ˆ̃ξfin = div(s) for a rational section s of L, the same argument shows
that T (m) ˆ̃ξfin = div(T (m)s) = σ1(m) div(s)+ div(cm); hence, m 7→ ˆ̃ξfin is zero
in S⊗DivAr(X).

We complete the proof by showing that, for each v | p, the difference of log
functions

ψ∗m log
L
σ1(m)
v
− logT (m)Lv

(6.3.1)

on the line bundle T (m)Lv on X̃v is a constant on the total space of Lv, and it
is a σ1-derivative when viewed as a function of m. (In particular, this shows that
logT (m)Lv

= σ1(m)ψ∗m logLv
+ constant is a genuine log function.)

It is enough to show this after pullback via p1 on X̃m , where (denoting pulled-
back objects with a prime) the map ψ ′m decomposes as

ψ ′m =
⊗
D
π∗D :

⊗
D

det Lie(A′/D)∨→ (det Lie A′∨)⊗σ1(m),

where the tensor product runs over admissible submodule schemes of level m of A′

(since base change via p1 splits the cover p1, there are exactly σ1(m) of those).
Now the difference (6.3.1) is the sum of the σ1(m) differences

(π∗D)
∗ logL− logL,

which are all the same since they are permuted by the Galois group of p1. As π∗D
acts by multiplication by (degπD)

1/2
= N(m)2, by (5.3.2), each of these differences

is 2 logv N(m) so that (6.3.1) equals

2σ1(m) logv N(m),

which is indeed a σ1-derivative. �

7. Heights of Heegner points

Let 9 be the modular form of level N with Fourier coefficients given by the p-adic
height pairing 〈z, T (m)z〉 (it is a modular form because of Lemma 1.4.1 and the
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fact that the quaternionic Hecke algebra T ′N is a quotient of TN , as explained at the
end of Section 6.1). We will compute the heights of Heegner points, with the goal
of showing (in Section 8) that l fα (8

′) and l fα (9) are equal up to the action of some
Hecke operators. The main theorem will follow.

The strategy is close to that of Perrin-Riou. Namely, we separate the local contri-
butions to 9 from primes above p, writing 9 ∼9fin+9p; using the computations
of [Zhang 2001a; 2001b], we find an explicit expression for 9fin, which in Section 8
we will show to be “almost” equal to the expression for 8′, while the contribution
of 9p is shown to vanish. We circumvent the difficulties posed by the absence of
cusps through the use of p-adic Arakelov theory.

It will be crucial to work in the quotient spaces S and Sord introduced in
Section 1.6; for the convenience of the reader, we copy here the diagram (1.6.1)
that summarises the relations among them.

SN (L) //

e
��

S
p-adic
N (L)

��

� � // Sord

Sord
N P(L)/SN -old

N P
∼
// Sord

N (L)
l fα

// L

We will abuse notation by using the same name for a modular form and its image
in Sord

N .
The height pairings 〈 · , · 〉 (and the accompanying Arakelov pairings) on the base

change of X to E that will be considered are the ones associated with a “cyclotomic”
p-adic logarithm given by `= `F ◦N : E× \ E×A∞→Qp for some40

`F : F× \ F×A∞→Qp

and with choices of Hodge splittings on Vv,L = H 1
dR(Xv/Ev)⊗ L (v | p) such that,

on e f Vv,L ∼= e f MJ,L , the induced Hodge splitting is the unit root splitting.
As mentioned before, the Shimura curve X and its integral model X may not

be fine enough for the needs of Arakelov and intersection theory, so we may need
to pass to a Shimura curve X̃

π
−→ X of deeper level away from p and consider the

pullbacks η̃ of the divisors η, etc. Then notation such as 〈η̂, T 0(m)η̂〉Ar is to be
properly understood as 〈 ˆ̃η, T 0(m) ˆ̃η〉Ar/ degπ .

7.1. Local heights at places not dividing p. The next two results will be used to
show the main identity.

Lemma 7.1.1. In the space S we have

〈z, T (m)z〉 = 〈ẑ, T (m)ẑ〉Ar
∼ 〈η̂, T 0(m)η̂〉Ar.

40In our application, we will take `F =
d
ds
∣∣
s=0ν

s for a character ν : GF → 1+ pZp .
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Proof. First observe that, by Lemma 1.4.1, the first member is a modular form
of level N , so it does indeed belong to SN . The first equality is a consequence
of Proposition 5.4.1(1) and the construction of ẑ. The second part follows from
expanding the second term for m prime to N1 according to (6.2.2) and observing
that the omitted terms are zero in S by Proposition 6.3.1. �

We can therefore write

9 ∼
∑
w

9w =
∑
v

9v =9fin+9p (7.1.1)

in S, with the first sum running over the finite places w of E , the second sum
running over the finite places v of F and

9w(m)=〈η̂, T 0(m)η̂〉Ar
w , 9v=

∑
w|v

9w, 9fin=
∑
v-p

9v, 9p=
∑
v|p

9v.

(We are exploiting the fact that for m prime to N1 the divisors η̂ and T 0(m)η̂ have
disjoint supports so that we can apply Proposition 5.4.1(2).)

For each prime ℘ of F above p, we define an operator41 on S

R℘ =U℘ − 1, Rp =
∏
℘|p

R℘ .

We also define, for integers µ℘ ≥ 1, operators

R
(µ℘)
℘ =Uµ℘

℘ − 1, R(µ)
p =

∏
℘|p

R
(µ℘)
℘ .

Proposition 7.1.2. In the space S, we have

9fin ∼
∑
v-p

9v + h,

where h is a modular form that is killed by l fα ; the sum runs over the finite places
of F , and the summands are given by:

(1) If v = ℘ is inert in E , then

9v(m)=
∑

n∈Nm−11−1

εv((n−1)n)=1∀v|1
0<n<1

2ω1(n)r((1−n)m1)r(nm1/N℘)(v(nm/N )+1)`F,v(πv).

41This is different from the operator bearing the same name in [Perrin-Riou 1987].
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(2) If v = ℘ |1 is ramified in E , then

9v(m)=
∑

n∈Nm−11−1

εv((n−1)n)=−1
εw((n−1)n)=1∀v 6=w|1

0<n<1

2ω1(n)r((1− n)m1)r(nm1/N )(v(nm)+ 1)`v(πv).

(3) If v is split in E , then

9v(m)= 0.

Proof. For m prime to N1, we have 9fin(m)=
∑

w-p〈η̂, T 0(m)η̂〉Ar
w (the sum run-

ning over all finite placesw of E). By Proposition 5.4.1(2), up to the factor `F,v(πv)

(which equals `w(πw) or its half for each place w of E above v), each term is given
by an intersection multiplicity (η̂, T (m)η̂)w, which is computed by Zhang.

When v(N )≤1 for all v that are not split in E , the result is summarised in [Zhang
2001a, Proposition 5.4.8]; in this case, the values obtained there are equivalent to
the asserted ones by [Zhang 2001a, Propositions 7.1.1 and 6.4.5], and there is no
extra term h. In fact (and with no restriction on N ), these values also appear as
the local components C8′v at finite places of a form C8′ of level N , which is a
kernel of the Rankin–Selberg convolution for the central derivative L ′( fE , 1) of the
complex L-function.

In general, [Zhang 2001b, Lemma 6.4.3] proves that42

9v

`F,v(πv)
∼

C8
′]
v

log N(℘v)
+ vh, (7.1.2)

where vh is a modular form with zero projection onto the f -eigenspace (see the
discussion at the very end of [Zhang 2001b]; the forms vh come from intersections at
bad places) and C8′] is a form of level N1 that is a kernel for the complex Rankin–
Selberg convolution in level N1 (in particular, it is modular and Tr1(C8′]) =
C8′+ h′, where h′ is a modular form of level N that is orthogonal to f ). Applying
the operator Tr1 in (7.1.2), we recover the asserted formula. �

7.2. Local heights at p, I. The following is the key result concerning the local
heights at places dividing p. We assume that all primes ℘ of F dividing p are split
in E .

Proposition 7.2.1. The arithmetic function R4
p9p belongs to Sord

N ⊂ Sord, and

l fα (R
4
p9p)= 0.

42We are adapting the notation to our case. In [Zhang 2001b], the form f is denoted by φ and the
functions vh are denoted by v f .
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The modularity assertion follows, as in [Nekovář 1995], by difference from
the modularity of 9 (hence of R4

p9) and the modularity of R4
p9fin proved in

Proposition 8.1.1 below.
The proof of the vanishing of the fα-component will be completed in Section 7.3

using the results of the rest of this subsection.
We start by fixing for the rest of this section a prime ℘ of F dividing p. Fix an iso-

morphism B℘ = B⊗F F℘ ∼= M2(F℘) identifying the local order R℘ with M2(OF,℘)

and the field E ⊂ B with the diagonal matrices in M2(F℘). Let the divisors ηc be
as in (6.2.1), and denote

Hs = H [℘s
], us = u(℘s).

Let ys ∈ X (Hs) be the CM point of conductor ℘s defined by

ys =

[(
x0, ι℘

(
π s 1

1

))]
,

where ι℘ : GL2(F℘)→ B̂× is the natural inclusion and π is a uniformiser at ℘.
Fix a place w of H above ℘; we still denote by w the induced place on each Hs

and by p the prime of E lying below w. Since ℘ splits in E , by [Zhang 2001a,
§2.2], the CM points ys = [As] are ordinary, and their canonical submodules with
respect to the reduction modulo w are given by As[p].

Proposition 7.2.2 (norm relations). Let ys be the system of CM points defined
above.

(1) Let m = m0℘
n be an ideal of F with m0 prime to ℘N. We have

[T (m℘r+2)− 2T (m℘r+1)+ T (m℘r )](η)= u−1
n+r+2T (m0)TrHn+r+2/E(yn+r+2)

as divisors on X.

(2) For all s ≥ 1, we have

T (℘)ys = TrHs+1,w/Hs,w(ys+1)+ ys−1.

(3) For all s ≥ 1, we have

ϕ(ys)= ys−1,

where ϕ is the lift (6.1.1) of Frobenius with respect to the reduction modulo w.

Proof. By the multiplicativity of Hecke operators, it is enough to prove the statement
of part (1) for m0 = 1. A simple computation based on Proposition 6.3.1 shows that
the left-hand side is equal to η℘n+r+2 . Since the Galois action of Gal(Hn+r+2/E) is
simply transitive on Y℘n+r+2 , the right-hand side is also equal to η℘n+r+2 .
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For part (2), use the notation [g] to denote [(x0, ι℘(g))]. Then we have

T (℘)ys =
∑

j∈OF,℘/℘

[(
π s 1

1

)(
π j

1

)]
+

[(
π s 1

1

)(
1
π

)]
.

The last term is identified as ys−1 after acting by the diagonal matrix π−1id (whose
action is trivial on X ). On the other hand, by local class field theory and the
description of the Galois action on CM points of Section 6.2, we have

TrHs+1,w/Hs,w(ys+1)=
∑

j∈OF,℘/℘

[(
1+ jπ s

1

)(
π s+1 1

1

)]
,

which is the same as the above sum in j .
For part (3), which in fact is not needed in what follows, we switch to the moduli

description,43 so ys = [As] = [ADs ] for an increasing sequence of admissible
submodules Ds of level ℘s (this follows from part (2), together with a variant
for s = 0 that we omit, and the moduli description of Hecke correspondences).
Now D1 is different from can(A)= A[p] since [AA[p]] has conductor 1, and in fact
each Ds does not contain A[p] since if it did then [As] would be in the support
of T (℘)s−1

[AA[p]], which is easily seen44 to consist of CM points of conductor
dividing ℘s−1. It follows that the point ϕ([As])= [ADs+can(As)] = [ADs+A[p]] is in
the support of T (℘)[As], but it is not one of the Galois conjugates of ys+1 since as
just seen it has lower conductor; by part (2), it must then be ys−1. �

Lemma 7.2.3. Let w a place of E dividing ℘, and let h ∈ Ew(X) be a rational
function whose reduction at w is defined and nonzero. Let µ= µ℘ be the order of
the ideal pw in the relative class group of E/F. Then the arithmetic functions

R2
℘R(µ)

℘ 〈d̂iv(h), T 0(m)η̂〉Ar
w , R3

℘〈div(h), T (m)z〉w

belong to the kernel of the ℘-partial ordinary projection e℘ .

Proof. We show more precisely that

v(U s
℘R3

℘〈d̂iv(h), T 0(m)η̂〉Ar
w )≥ v(N℘

s)−C (7.2.1)

for a uniform constant C , where v is the p-adic valuation. We may assume m prime
to ℘N1.

For the second expression, under our assumptions, T (m℘s)η = T 0(m℘s)η+

r(m℘s)η−hσ1(m℘s)ξ , so the analogue of (7.2.1) holds with the same proof together

43As usual, after base change to a suitable quadratic extension F ′.
44By the following observation: if y is a CM point of conductor c, then the support of T (m)y

consists of CM points of conductors dividing cm.
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with the observation that R2
℘r(m) = 0 and v(σ1(m℘s)) = v(N℘s) [Perrin-Riou

1987, Lemme 5.4].
As R2

℘r(m)= 0, Proposition 7.2.2(1) gives

U s
℘R2

℘η = u−1
s+2 TrHs+2/E ys+2

where ys+2 ∈ Y℘s+2 ; we make a compatible choice of ys such as the one described
above Proposition 7.2.2.

For s large enough, the divisor of h is supported away from ys and its conjugates.
Then by Proposition 5.4.1(3), we have

U s
℘R2

℘〈d̂iv(h), T 0(m)η̂〉Ar
w = u−1

s+2`w(h(T
0(m)ys+2))

= u−1
s+2

∑
w′|w

`w(NHs+2,w′/Ewh(ys+2)),

where w′ runs over the places of H above w (which are identified with the places
of Hs+2 above w since Hs+2/H is totally ramified above ℘).

For any w′ | w, we have

R(µ)
℘ `w(NHs+2,w′/Ewh(ys+2))

= `w ◦ NHw′/Ew(NHs+2+µ,w′/Hw′h(ys+2+µ)/NHs+2,w′/Hw′h(ys+2)).

Suppose that (for s large enough)

the w′-adic valuation of NHs,w′/Hw′ (h(ys)) only
depends on the residue class of s (mod µ).

(7.2.2)

Then each w′-summand in the expression of interest is the product of u−1
s+2 (which

is eventually constant in s) and the p-adic logarithm of a unit that is a norm from an
extension of Ew whose ramification degree is a constant multiple of N℘s ; hence,
its p-adic valuation is also at least a constant multiple of the valuation of N℘s ,
which proves the lemma.

It remains to prove (7.2.2). We have

w′(NHs,w′/Hw′ (h(ys)))= [Hs,w′ : Hw′]((h), ys), (7.2.3)

where the pairing in the right-hand side denotes the intersection multiplicity of the
Zariski closures in the integral model. Now as in [Perrin-Riou 1987, Lemme 5.5],
if πs denotes a uniformiser of Hs,w′ , we can show that we have

ys ≡ ys−µ mod πs, ys 6≡ ys−µ mod π2
s . (7.2.4)

In fact, we first check that the two points have the same reduction. By [Zhang
2001b, Lemma 5.4.2], the set of points in the special fibre X×OF,℘ F℘ having CM
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by E (and thus being ordinary as ℘ splits in E) is identified with

E× \ (N (Fv) \ GL2(F℘))× B℘∞×/F̂× R̂× (7.2.5)

(where N is the group of upper-triangular unipotent matrices) in such a way that
the reduction map sends the CM point [(x0, g)] ∈ X (C) to the class of g. Then
if ∼ denotes the equivalence relation in (7.2.5) and t ∈ E× is a generator of the
ideal pµwa for some ideal a of OF with adelic generator πa , the reduction of ys is
the class of

ι℘

(
π s 1

1

)
∼ ι℘

(
π s

1

)
∼ ι℘

((
πµ

1

)(
π s−µ

1

))
∼ tι℘

(
π s−µ

1

)
(t℘∞)−1π−1

a ∼ ι℘

(
π s−µ

1

)
∼ ι℘

(
π s−µ

1

)
,

which is the same as the reduction of ys−µ.
We can then verify the congruence relation (7.2.4) on the completed local ring

ÔX/W (Fv),y of the common reduction y; here W is the ring of integers in the
completion of the maximal unramified extension of Fv. By [Carayol 1986, §5.5,
Proposition], this is the universal deformation ring of the p-divisible module G1

y
(with the notation of Section 6.1). As the point y is ordinary, such module is
isomorphic to the product F℘/OF,℘×61, where 61 is the Lubin–Tate formal OF,℘-
module of height 1. Now its lifting G1

s = G1
ys

is defined precisely over the ring of
integers of Hs,w′ , and so it is a quasicanonical lifting of level s of its reduction Gy , in
the sense of [Gross 1986]. Then by [Gross 1986, §6] (see also [Meusers 2007] for a
detailed account), G1

s is congruent to the canonical lifting modulo πs but not modulo
π2

s , whereas G1
s−µ is congruent to the canonical lifting modulo πs−µ = π

N℘µ
s ; this

implies (7.2.4). Then for each irreducible component a in the support of (h), the
sequence [Hs,w′ : Hw′](a, ys) stabilises to either 0 or 1 so that the expression (7.2.3)
is indeed eventually constant along the arithmetic progression. �

Lemma 7.2.4. For each divisor D ∈ Div0(X)(Ev) or D̂ ∈ DivAr(X), the element
of Sord given by

m 7→R2
℘R(µ)

℘ 〈D, T (m)z〉w, m 7→R2
℘R(µ)

℘ 〈D̂, T 0(m)η̂〉Ar
w

is well-defined independently of the choice of D in its class [D] or D̂ in its class [D̂],
respectively; it will be denoted by

R2
℘R(µ)

℘ 〈[D], T (m)z〉w, R2
℘R(µ)

℘ 〈[D̂], T 0(m)η̂〉Ar
w .

If D̂ = D, then the two elements coincide as elements of Sord; moreover, for the
arithmetic function 9w ∈ S with 9w(m)= 〈η̂, T 0(m)η̂〉Ar

w , we have

R2
℘R(µ)

℘ 9w ∼R2
℘R(µ)

℘ 〈[z], T (m)z〉w (7.2.6)

in Sord.
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Proof. The first part follows from Lemma 7.2.3. For the second part, we may argue
as in the proof of Lemma 7.1.1: for example, in S, we have

R2
℘R(µ)

℘ 〈η̂, T 0(m)η̂〉Ar
w ∼R2

℘R(µ)
℘ 〈η̂+ d̂iv(h), T 0(m)η̂〉Ar

w

∼R2
℘R(µ)

℘ 〈ẑ+ d̂iv(h), T (m)ẑ〉Ar
w

=R2
℘R(µ)

℘ 〈z+ div(h), T (m)z〉w. �

7.3. Local heights at p, II. Here we prove the vanishing statement for p-adic local
symbols asserted in Proposition 7.2.1. In fact, we will show the equivalent statement

l fα (R
4
pR(µ)

p 9p)=
∏
℘|p

(α
µ℘
℘ − 1)l fα (R

4
p9p)= 0,

where the integers µ= (µ℘)℘|p are as in Lemma 7.2.3.
Let e f ∈ TN p⊗M f be the maximal idempotent satisfying T (m)◦e f = a( f,m)e f

for all m prime to N p;45 viewed as an endomorphism of SN
∏
℘|p ℘

, it is the projector
onto the subspace generated by f and [℘] f for all the primes ℘ of F dividing p.
With z f = e f [z], we have by (7.2.6)

e f eR4
pR(µ)

p 9p =R4
pR(µ)

p 〈z f , T (m)z〉p

in Sord
N , where the left-hand side makes sense by the modularity part of Proposition

7.2.1 and the right-hand side makes sense by Lemma 7.2.4. We also denote, for w
a place of E above the F-prime ℘ | p, and i ≥ 2,

e f eRi
℘R

(µ℘)
℘ 9w :=Ri

℘R
(µ℘)
℘ 〈z f , T (m)z〉w, (7.3.1)

where the right-hand side makes sense as an element of Sord by Lemma 7.2.4.
(As we have not shown that R3

℘9w is modular, the left-hand side is not otherwise
defined.) Then by definition, we have

e f eR4
pR(µ)

p 9p =
∑
w|p

e f eR4
pR(µ)

p 9w. (7.3.2)

Now since l fα = l fα ◦ e f = l fα ◦ e f ◦ e, by (7.3.2), the desired result is implied by
the following lemma for all ℘ | p:

Lemma 7.3.1. Suppose that f is ordinary at ℘. For each place w of E above ℘ | p,
the element e f R2

℘R
(µ℘)
℘ 9w is zero in Sord.

Proof. The ordinarity assumption and Lemma 5.1.1 [Perrin-Riou 1987, Exem-
ple 4.12] imply that z f is “almost” a universal norm in the totally ramified Zp-
extension E`w,∞ of Ew: that is, after perhaps replacing z f by an integer multiple,

45Recall that M f is the number field generated by the Fourier coefficients a(m, f ).
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for each layer E`w,n , we have
z f = Trn(zn)

for some zn ∈ e f J (X)(E`v,n), where Trn = TrE`w,n/Ew . Then we have

e f R2
℘R

(µ℘)
℘ 9w(m)=R2

℘R
(µ℘)
℘ 〈Trn(zn), T (m)z〉w =R2

℘R
(µ℘)
℘ 〈zn, T (m)z〉w,n,

where 〈 · , · 〉w,n is the local height pairing on Div0(X)(E`w,n) associated with the
logarithm `n,v = `w ◦ NE`w,n/Ew . By Proposition 5.1.2(5)–(6), the right-hand side
above has image in c−1 Im(`n)⊂ Zp for a uniform nonzero constant c ∈ Zp. As the
extension E`w,n/Ew has ramification degree pn , we have for some nonzero c′ ∈ Zp

e f R2
℘R

(µ℘)
p 9v(m) ∈ c−1 Im(`n)⊂ c′−1 pnZp

for all n; therefore, e f R2
℘R

(µ℘)
p 9w = 0. �

Part III. Main theorem and consequences

8. Proof of the main theorem

In this section, we prove Theorem B.

8.1. Basic case. First we prove the formula when 1E/F is totally odd and each
prime ℘ of F dividing p splits in E .

Let 9W ∈SN denote the modular form with coefficients 〈[z], T (m)[z]〉W, where
W= ν ◦N and 〈 · , · 〉W is the height pairing on J (X)(E) associated with the p-adic
logarithm `F ◦N, with

`F =
d
ds

∣∣∣∣
s=0
νs
: F× \ F×A∞→Qp.

Recall that l fα is a continuous functional so that it commutes with limits and

L ′p,W( fE)(1)= l fα

(
d
ds

∣∣∣∣
s=0
8(Ws)

)
= l fα (8

′

W).

We compare the Fourier coefficients of 8′W and 9W =9W,fin+9W,p.

Proposition 8.1.1. Suppose that all of the prime ideals ℘ of F dividing p are
principal. Then we have(∏

℘|p

U 4
℘ −U 2

℘

)
8′W ∼

(∏
℘|p

(U℘ − 1)4
)
9W,fin

in the quotient space Sord
N /Ker(l fα ).
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Proof. We prove that the identity holds in S/(DN + Ker(l fα )), where Ker(l fα )

denotes the image in S of classical modular form killed by l fα . Then since the
left-hand side belongs to S

p-adic
N , so does the right-hand side (and after further

quotienting by Ker(e), we descend to Sord
N /Ker(l fα )).

The coefficients of 9fin =9W,fin are computed in Proposition 7.1.2. To lighten
the notation, we write the explicit expression for 9(m)=

∑
v nonsplit9v(m) as

9v(m)=
∑

n∈Sv([m])
v℘(nm)≥0∀℘|p

cv([nm])r((1− n)m1)r(nm1/N℘ε(v)v ),

where the value cv([nm]) only depends on the prime-to-p part of the fractional
ideal nm and the set Sv([m]) only depends on v and the prime-to-p part of m; here
ε(v)= 1 if v is inert and ε(v)= 0 if v is ramified.

The coefficients of 8′ are computed in Proposition 4.5.3. They look “almost” the
same in that, up to the modular form h of Proposition 7.1.2, which is in Ker(l fα ),
we have, when m is divisible by every ℘ | p,

8′W(m)=
∑

v nonsplit

9[p]v (m),

where for a product P of some of the primes ℘ | p we denote

9[P]v (m)=
∑

n∈Sv([m])
v℘(nm)≥0∀℘|p
v℘(nm)=0∀℘|P

cv([nm])r((1− n)m1)r(nm1/N ).

Then it is enough to show that, for each v - p, each ℘ | p and each ℘ - P with P
as above, we have

(U 4
℘ −U 2

℘)9
[P℘]
v = (U℘ − 1)49[P]v .

For the sake of notation, we write the computation when v is ramified in E and
P =

∏
℘′ 6=℘ ℘

′ (for more general P , one just needs more notation to keep track
of v℘′(nm) for the primes ℘ ′ 6= ℘).

The right-hand side equals
4∑

i=0

(−1)i
(4

i

) ∑
ni∈Sv([m])

v℘′ (ni m)=0∀℘′ 6=℘,℘′|p
v℘(ni m℘i )≥0

cv([ni m])r((1− ni )m℘i1)r(ni m℘i1/N ).
(8.1.1)

From the relation r(m0℘
t)= (t+1)r(m0), valid for ℘ -m0, we deduce the relations

2r(m)= r(m℘)+ r(m℘−1),

2r(m)= r(m℘2)+ r(m℘−2) if ℘ | m,

2r(m)= r(m℘2)− r(m) if ℘ - m,
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where we recall that r(m)= 0 if m is not an integral ideal. Then we can pick a totally
positive generator in F for the ideal ℘, which abusing notation we will still denote
by ℘, and make the substitution ni = ℘

t−i n0 with ℘t
‖ ni m℘i to write (8.1.1) as∑

t≥0

∑
n0∈Sv(m)

v℘′ (n0m)=0∀℘|p

cv([n0m])r((n0m)(℘))(t + 1)At ,

where we recall that for an ideal m we denote m(℘)
= m℘−v℘(m) and

At = r(m1℘4(1− n0℘
t−4))[t + 1− 2t + 2(t − 1)]

+ r(m1℘2(1− n0℘
t−2))

[
−2(t + 2)+

{
4(t + 1)− 2t if t ≥ 1,

3 if t = 0

]
+ r(m1(1− n0℘

t))[t + 3− 2(t + 2)+ t + 1].

The three expressions in square brackets vanish when t > 0 and yield, respectively, 1,
1 and 0 when t = 0. Substituting back n4=℘

t−4n0 in the first line and n2=℘
t−2n0

in the second line, we deduce that (8.1.1) equals

(U 4
℘ −U 2

℘)9
[P℘]
v

as desired.46 �

Combining this proposition with Proposition 7.2.1, which says

l fα

(∏
℘|p

(U℘ − 1)49W,p

)
= 0,

we find for W= ν ◦N

D2
F
∏
℘

(α4
℘ −α

2
℘)L

′

p,W( fE ,1)=
∏
℘

(α4
℘ −α

2
℘)

(
1−

1
α2
℘

)(
1−

N℘
α2
℘

)
l fα (8

′

W)

=
∏
℘

(α℘ − 1)4
(

1−
1
α2
℘

)(
1−

N℘
α2
℘

)
l fα (9W)

=
∏
℘

(α℘ − 1)4
(

1−
1
α2
℘

)
〈z f , z f 〉W.

Here, besides the definition of L p( fE) (Definition 4.2.1), we have used various
properties of the functional l fα from Lemma 1.6.1 and the observation that the
projection onto the f -component of the modular form 9W ∈ S2(K0(N ),Qp) is
1 f (9W)= 〈z f , z f 〉W.

This completes the proof of Theorem B when (1E/F , 2)= 1 and all primes ℘ | p
split in E .

46See [Perrin-Riou 1987, proof of Proposition 3.20].
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8.2. Reduction to the basic case. The general case, where E is only assumed to
satisfy (1E/F , N p)= 1, can be reduced to the previous one under the assumption

L ′p,W( fE ,1) 6= 0

by the following argument due to [Kobayashi 2013, proof of Theorem 5.9] using
the complex Gross–Zagier formula (which is known with no restrictions on 1) and
the factorisation L p( fE , χ ◦N)∼ L p( f, χ)L p( fε, χ).

By the factorisation, the orders of vanishing at the central point of the factors
of L p( fE , ν

s
◦N) will be 1 (say for L p( f )) and 0 (say for L p( fε)). Then, by the

first part of Theorem C,47 the orders of vanishing of L( f, s) and L( fε, s) at s = 1
will also be 1 and 0. Moreover, the Heegner point z f,E ′ attached to f and any E ′ also
satisfying L( fεE ′/F

, 1) 6= 0 is nontorsion, and in fact, its trace z f,F =TrE ′/F (z f,E ′) is
nontorsion and z f,E ′ is up to torsion a multiple of z f,F in J (X)(E ′)⊗Q. Therefore,
by the complex and p-adic Gross–Zagier formulas for a suitable E ′ satisfying the
assumptions of Section 8.1 and L( fεE ′/F

, 1) 6= 0, we have

L ′p,ν( f,1)=
∏
℘|p

(
1−

1
α℘

)2 L ′( f, 1)
�+f 〈z f,F , z f,F 〉

〈z f,F , z f,F 〉ν,

where 〈 · , · 〉ν is the p-adic height pairing on J (X)(F) attached to ν and 〈 · , · 〉 is the
Néron–Tate height (the ratio appearing above belongs to M×f by the Gross–Zagier
formula). This allows us to conclude

L ′p,W( fE ,1)=
�+f �

+

fε

D−1/2
E � f

L ′p,ν( f,1)L p( fε,1)

= D1/2
E

∏
℘|p

(
1−

1
α℘

)2(
1−

ε(℘)

α℘

)2 L ′( f, 1)L( fε, 1)
� f 〈z f,F , z f,F 〉

〈z f,F , z f,F 〉ν

= D−2
F

∏
℘|p

(
1−

1
α℘

)2(
1−

ε(℘)

α℘

)2
〈z f,E , z f,E 〉

〈z f,F , z f,F 〉
〈z f,F , z f,F 〉ν

= D−2
F

∏
℘|p

(
1−

1
α℘

)2(
1−

ε(℘)

α℘

)2

〈z f,E , z f,E 〉W.

Remark 8.2.1. It is natural to conjecture that when L ′p,W( fE ,1) = 0 we should
have 〈z f , z f 〉W = 0. However, in this case, the above argument fails because,
without knowledge of the nontriviality of the p-adic height pairing, the vanishing of
L p( fE ,Ws) to order≥ 2 does not imply a similar high-order vanishing for L( fE , s).

47Which can be proved by using the p-adic Gross–Zagier formula attached to a field E ′ satisfying
the assumptions of Section 8.1.
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9. Periods and the Birch and Swinnerton-Dyer conjecture

As seen in the introduction, the application of our result to the Birch and Swinnerton-
Dyer formula rests on a conjectural relation among the periods of f and the
associated abelian variety A. Here we would like to briefly elaborate on this
conjecture and its arithmetic consequences. (This section contains no new results or
conjectures and is a very brief survey of work of Shimura and [Yoshida 1994].) We
retain the notation of the introduction and set M = M f and dim A = [M :Q] = d .

9.1. Real periods. The conjecture on periods stated in the introduction can be
refined to a conjecture on rationality rather than algebraicity. First we need to define
the automorphic periods �+f σ for σ ∈ Hom(M,C); they are naturally defined as
elements of C×/M× (see [Raghuram and Tanabe 2011] for a modern exposition):
one can choose them “covariantly” in the sense of [Yoshida 1994] in order to
have

∏
σ �
+

f σ defined up to Q× or define directly the product as follows. Let
HN = Z(A) \ GL2(A)/K0(N )K∞ be the open Hilbert modular variety of level N .
Then the perfect pairing of Q-vector spaces

Hg(HN ,Q)+× S2(K0(N ),Q)→ C (9.1.1)

(where + denotes the intersection of the +1-eigenspaces for the complex con-
jugations) decomposes under the diagonal action of TN into Q-rational blocks
parametrised by the Galois-conjugacy classes of eigenforms. Then∏

σ

�+f σ ∈ C×/Q×

is (2π i)dg times the discriminant of the pairing on the rational block corresponding
to { f σ }σ . (The individual �+f σ ∈C×/M× are defined as the discriminants of (9.1.1)
on Q-rational TN -eigenblocks. One can similarly define periods �−f σ by paring
with Hg(HN ,Q)−, the −1-eigenspace for the complex conjugations.)

Conjecture 9.1.1. We have

�A ∼
∏
σ

�+f σ

in C×/Q×.

The conjecture is originally due [Shimura 1988, especially §11] and was refined
by [Yoshida 1994]. When A has complex multiplication, it has been proved by
[Blasius 1986]. It is also known when F =Q; before discussing that, let us translate
it into a language closer to conjectures of Shimura.
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For each τ : F → R, let fB(τ ) be the Jacquet–Langlands transfer of f to a
rational48 form on the quaternion algebra B(τ )/F defined in the introduction (recall
that B(τ ) is ramified at all infinite places except τ ), and let X be our Shimura curve.
Then A is (up to isogeny) a quotient φ of J (X), and for each embedding τ , we
can write

φ∗ωA = cτ
∧
σ

2π i f σB(τ )(z) dz

as forms in H 0(J (X)(Cτ ),�d) for some cτ ∈ F× (since both are generators of
a rank-1 F-vector space); here z denotes the coordinate on the upper half-plane
uniformising X . Then we have∫

A(Rτ )
|ωA|τ ∼

∏
σ

�+f σB(τ )
in C×/F×,

where �+f σB(τ ) is 2π i times the discriminant of the f σB(τ )-part of the analogue of the
pairing (9.1.1) on X (Cτ ). When choices are made covariantly in τ , we then get
�A ∼

∏
σ,τ �

+

f σB(τ )
in C×/Q×.

Our conjecture, decomposed into its σ -constituents, can then be rewritten as

�+f ∼
∏
τ

�+fB(τ )
in C×/(M F)×. (9.1.2)

In this form, this is a stronger version of Shimura’s conjecture [1983] on the
factorisation of periods of Hilbert modular forms up to algebraic factors in terms of
P-invariants. The reader is referred to [Yoshida 1994] for a discussion of this point.

Notice that (9.1.2) is nontrivial even when F =Q: it asserts that the periods of
the transfers of f to any indefinite quaternion algebra have the same transcendental
(or irrational) parts. However, in this case, the conjecture is known by [Shimura
1981] (for the algebraicity) and [Prasanna 2009] (for the rationality).

For general F , Shimura’s conjecture on P-invariants is largely proved by [Yoshida
1995] under an assumption of nonvanishing of certain L-values.

Remark 9.1.2. It is clear that our conjecture implies that the Birch and Swinnerton-
Dyer conjectural formula is true up to a nonzero rational factor when A has analytic
M-rank 0. By the complex and p-adic Gross–Zagier formulas, the conjecture
for f also implies the complex and p-adic Birch and Swinnerton-Dyer formulas,
respectively, up to a rational factor when A has (p-adic) analytic M-rank 1.

9.2. Quadratic periods. We can formulate a conjecture analogous to Conjecture
9.1.1 for the periods of the base-changed abelian variety AE = A×Spec F Spec E .

48 For consistency with the case in which B(τ ) = GL2(Q) and “rational” means “rational q-
expansion coefficients”, here fB(τ ) is considered F-rational for the structure H0(X/F, �X/F )⊗
(2π i)−1Q⊂ H0(X/F, �X/F )⊗F,τ C (where X is the Shimura curve defined in the introduction).
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Conjecture 9.2.1. We have
�AE ∼

∏
σ

� f σ

in C×/Q×.

Here the period of AE is

�AE =

∏
τ :E→C

∫
A(Cτ )
|ωAE |τ ,

where for a differential form ω= h(z) dz1∧· · ·∧dzk we have |ω|τ = |h(z)|2τ dz1∧

dz1 ∧ · · · ∧ dzk ∧ dzk .
As above, this conjecture can be “decomposed” into

� f ∼
∏
τ

� fB(τ ) in C×/(M F)×, (9.2.1)

where � fB(τ ) is π2 times the Pertersson inner product of fB(τ ). This is essentially
Shimura’s conjecture on Q-invariants [1983]. Up to algebraicity, it has been
proved by [Harris 1993] under a local condition (a new proof of the same result
should appear in forthcoming work of Ichino and Prasanna, yielding rationality
and removing the local assumption). As � f =�

+

f �
−

f ,49 the factorisation (9.2.1)
is implied by (9.1.2) and its analogue for �−f ; thus, Harris’s result can be seen as
evidence for the conjecture on real periods.

We take the opportunity to record an immediate consequence of the conjecture
on quadratic periods and the Gross–Zagier formulas.

Theorem 9.2.2. If AE has complex or p-adic analytic M-rank ≤ 1, then the com-
plex or p-adic Birch and Swinnerton-Dyer formula, respectively, for AE is true up
to a nonzero algebraic factor.

List of symbols

Throughout this text, we use the following notation and assumptions, unless other-
wise noted:

• F is a totally real field of degree g.

• NF is the monoid of nonzero ideals of OF .

• | · |v is the standard absolute value on Fv.

• A = AF is the adele ring of F ; if ∗ is a place or a set of places or an ideal
of F , the component at ∗ or away from ∗ of an adelic object x is denoted x∗
or x∗, respectively. For example if φ =

∏
v φv is a Hecke character and δ is an

49See, e.g., [Shimura 1978, Theorem 4.3 (II)], where the assumption on the weight can now be
removed thanks to the work of Rohrlich.
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ideal of OF , we write φδ(y)=
∏
v|δ φv(yv) and |y|δ =

∏
v|δ|y|v. We also use

the notation

|m|v = |πm |v, |m|δ = |πm |δ, φv(m)= φv(πm), φδ(m)= φδ(πm)

if m is an ideal of OF and φ is unramified at δ (here πm satisfies πmOF = m).

• > denotes the partial order on AF given by x > 0 if and only if x∞ is totally
positive.

• RA = R⊗F A if R is an F-algebra.

• Nm is the absolute norm of an ideal m in a number field (the index of m in
the ring of integers: it is a positive natural number).

• dF is the different of F .

• πN , for N an ideal of OF , is the idele with components πv(N )v for v -∞ and 1
for v | ∞.

• DF = NdF is the discriminant of F .

• m× = {a ∈ F×A | aOF = m} if m is any nonzero fractional ideal of F (this
notation will be used with m = d−1

F ).

• E is a quadratic CM (that is, totally imaginary) extension of F .

• D=DE/F is the different of E/F .

• N= NE/F is the relative norm on E or any E-algebra.

• 1=1E/F =N(D) is the relative discriminant of E/F , and we assume

(1E/F , DF N p)= 1;

in Sections 2.5, 4.5 and part of 3.2, we further assume that

(1, 2)= 1

and in Sections 7.2, 7.3 and 8.1 that

(1, 2)= 1 and all primes ℘ dividing p are split in E .

• DE = N(1) is the absolute discriminant of E .

• UF (N ) is the subgroup of Ô×F =
∏
v O×F,v ⊂ F×A∞ consisting of elements x ≡

1 mod N ÔF , if N is any ideal of OF .

• ev(x)= exp(−2π i{TrFv/Qp(x)}p) for v | p<∞ and {y}p the p-fractional part
of y ∈ Qp is the standard additive character of Fv, with conductor d−1

F,v; for
v | ∞, ev(x)= exp(2π i TrFv/R(x)).

• e(x)=
∏
v ev(xv) is the standard additive character of AF .

• 1Y is the characteristic function of the set Y .

• If ϕ is any logical proposition, we define 1[ϕ] to be 1 when ϕ is true and 0
when ϕ is false — e.g., 1[x ∈ Y ] = 1Y (x).
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