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Let S denote the 3-dimensional Sklyanin algebra over an algebraically closed
field k and assume that S is not a finite module over its centre. (This algebra
corresponds to a generic noncommutative P2.) Let A=

⊕
i≥0 Ai be any connected

graded k-algebra that is contained in and has the same quotient ring as a Veronese
ring S(3n). Then we give a reasonably complete description of the structure
of A. This is most satisfactory when A is a maximal order, in which case we
prove, subject to a minor technical condition, that A is a noncommutative blowup
of S(3n) at a (possibly noneffective) divisor on the associated elliptic curve E . It
follows that A has surprisingly pleasant properties; for example, it is automatically
noetherian, indeed strongly noetherian, and has a dualising complex.
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1. Introduction

Noncommutative (projective) algebraic geometry has been very successful in using
techniques and intuition from algebraic geometry to study noncommutative graded
algebras, and many classes of algebras have been classified using these ideas. In
particular, noncommutative irreducible curves (or connected graded domains of
Gelfand–Kirillov dimension 2) have been classified [Artin and Stafford 1995] as
have large classes of noncommutative irreducible surfaces (or connected graded
noetherian domains of Gelfand–Kirillov dimension 3).

Indeed, the starting point of this subject was really the classification by Artin,
Tate, and Van den Bergh [Artin et al. 1990; 1991] of noncommutative projective
planes (noncommutative analogues of a polynomial ring k[x, y, z]). The generic
example here is the Sklyanin algebra

S = Skl(a, b, c)= k{x1, x2, x3}/(axi xi+1+ bxi+1xi + cx2
i+2 : i ∈ Z3),

where (a, b, c) ∈ P2 r S for a (known) finite set S. The geometric methods of
[Artin et al. 1990] were necessary to understand this algebra. See [Stafford and
Van den Bergh 2001] for a survey of many of these results.

In the other direction, one would like to classify all noncommutative surfaces,
and a programme for this has been suggested by Artin [1997]. This paper completes
a significant case of this programme by classifying the graded noetherian orders
contained in the Sklyanin algebra. In this introduction we will first describe our main
results and then discuss the historical background and give an idea of the proofs.

The main results. Fix a Sklyanin algebra S = Skl(a, b, c) defined over an al-
gebraically closed base field k. For technical reasons we mostly work inside the
3-Veronese ring T = S(3); thus T =

⊕
Tn with Tn= S3n for each n, under the natural

graded structure of S. The difference between these algebras is not particularly
significant; for example, the quotient category qgr-T of graded noetherian right
T -modules modulo those of finite length, is equivalent to qgr-S. Then T contains a
canonical central element g ∈ T1 = S3 such that the factor B = T/gT is a TCR or
twisted homogeneous coordinate ring B = B(E,M, τ ) of an elliptic curve E . Here
M is a line bundle of degree 9 and τ ∈ Autk(E) (see Section 2 for the definition).
We assume throughout the paper that |τ | =∞; equivalently, that T is not a finite
module over its centre.

Our main results are phrased in terms of certain blowups T (d)⊂ T , where d is a
divisor on E . These are discussed in more detail later in this introduction. Here we
will just note that, when p is a closed point of E , the blowup T ( p) is the subring
of T generated by those elements x ∈ T1 whose images in T/gT vanish at p. For
an effective divisor d (always of degree at most 8), T (d) has properties similar to
those of a (commutative) anticanonical homogeneous coordinate ring of the blowup
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of P2 along the divisor d. However, we also need algebras that should be considered
as blowups T (d ′) of T at noneffective divisors of the form d ′ = x − y+ τ−1( y),
where x and y are effective divisors on E , 0≤ deg d ′ ≤ 8 and certain combinatorial
conditions hold (see Definition 7.1 for the details). Such a divisor will be called
virtually effective.

Given domains U,U ′ with the same Goldie quotient ring Q(U )= Q(U ′)= Q,
we say that U and U ′ are equivalent orders if aUb ⊆U ′ and a′U ′b′ ⊆U for some
a, b, a′, b′ ∈ Qr {0}. If Q(U ) = Q(V ) for some ring V ⊇ U , then U is called a
maximal V -order if there exists no ring U ′ equivalent to U such that U (U ′ ⊆ V .
When V = Q(U ), U is simply termed a maximal order. These can be regarded
as the appropriate noncommutative analogues of integrally closed domains. The
algebra T is a maximal order. When Qgr(U )= Qgr(T ) the concepts of maximal
orders and maximal T -orders are essentially the only cases that will concern us
and, as the next result shows, they are closely connected.

In this result, an N-graded k-algebra A =
⊕

n≥0 An is called connected graded
(cg) if A0 = k and dimk An <∞ for all n. Also, for a cg algebra U ⊆ T , we write
U = (U + gT )/gT .

Proposition 1.1 (combine Theorem 8.11 with Proposition 6.4). Let U be a cg
maximal T -order, such that U 6= k. Then there exists a unique maximal order
F = F(U ) ⊇ U equivalent to U. Moreover, F is a finitely generated U-module
with GKdimU (F/U )≤ 1.

We remark that there do exist graded maximal T -orders U with U 6= F(U ) (see
Proposition 10.3).

Our results are most satisfactory for maximal T -orders, and our main result is
the following complete classification of such algebras.

Theorem 1.2 (Theorem 8.11). Let U be a cg maximal T -order with U 6= k. Then
there exists a virtually effective divisor d ′ = d− y+ τ−1( y) with deg(d ′)≤ 8 such
that the associated maximal order F(U ) is a blowup F(U )= T (d ′) of T at d ′.

Remarks 1.3. (1) Although in this introduction we are restricting our attention to
the Sklyanin algebra S = Skl, this theorem and indeed all the results of this paper
are proved simultaneously for certain related algebras; see Assumption 2.1 and
Examples 2.2 for the details.

(2) Theorem 1.2 is actually proved in the context of graded maximal T (n)-orders,
but as that result is a little more complicated to state, the reader is referred to
Theorem 8.11 for the details.

(3) The assumption that U 6= k in the theorem is annoying but necessary (see
Example 10.8). It can be bypassed at the expense of passing to a Veronese ring and
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then regrading the algebra. However, the resulting theorems are not as strong as
Theorem 1.2 (see Section 9 for the details).

One consequence of Theorem 1.2 is that maximal T -orders have very pleasant
properties. The undefined terms in the next result are standard concepts and are
defined in the body of the paper.

Corollary 1.4. Let U and F = F(U )= T (d ′) be as in Theorem 1.2.

(1) (Proposition 2.9 and Theorem 8.11(1)) Both U and F are finitely generated
k-algebras and are strongly noetherian: in other words, U ⊗k C and F ⊗k C
are noetherian for any commutative, noetherian k-algebra C.

(2) (Corollary 8.12) Both U and F satisfy the Artin–Zhang χ conditions, have
finite cohomological dimension and possess balanced dualising complexes.

(3) (Proposition 4.10 and Example 10.4) If F is the blowup at an effective divisor
then U = F. In this case F also satisfies the Auslander–Gorenstein and Cohen–
Macaulay conditions. These conditions do not necessarily hold when d ′ is
virtually effective.

In the other direction, we prove:

Theorem 1.5 (Theorem 7.4(3)). For any virtually effective divisor d ′ there exists a
blowup of T at d ′ in the sense described above.

The fact that U is automatically noetherian in Theorem 1.2 is one of the result’s
most striking features. In general, nonnoetherian graded subalgebras of T can be
rather unpleasant and so, in order to classify reasonable classes of nonmaximal
orders in T , we make a noetherian hypothesis. Given a connected graded noetherian
algebra U , one can easily obtain further noetherian rings by taking Veronese rings,
idealiser subrings I(J )= {θ ∈U : θ J ⊆ J } for a right ideal J of U , or equivalent
orders U ′ ⊆U containing an ideal K of U . We show that this suffices:

Corollary 1.6 (Corollary 9.5). Let U be a cg noetherian subalgebra of T with
Qgr(U )= Qgr(T (n)) for some n. Assume that U 6= k (as in Remarks 1.3, this can
be assumed at the expense of taking a Veronese ring and regrading).

Then U can be obtained from some virtual blowup R = T (d ′) by a combination
of Veronese rings, idealisers and equivalent orders K ⊆ U ⊆ V , where K is an
ideal of V with GKdim(V/K )≤ 1.

History. We briefly explain the history behind these results and their wider rel-
evance. As we mentioned earlier, noncommutative curves and noncommutative
analogues of the polynomial ring k[x, y, z] have been classified. Motivated by these
results, Artin suggested a program for classifying all noncommutative surfaces, but
in order to outline this program we need some notation.
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Given a cg domain A of finite Gelfand–Kirillov dimension, one can invert
the nonzero homogeneous elements to obtain the graded quotient ring Qgr(A)∼=
D[t, t−1

;α], for some automorphism α of the division ring D = Q(A)0 = Dgr(A).
This division ring will be called the function skewfield of A.

Let A be a noetherian, cg k-algebra. A useful intuition is to regard qgr-A as
the coherent sheaves over the (nonexistent) noncommutative projective scheme
Proj(A), although we will slightly abuse notation by regarding qgr-A itself as that
scheme. Under this intuition, a noncommutative surface is qgr-A for a noetherian
cg domain A with GKdim A = 3. (In fact, one should probably weaken this last
condition to the assumption that Dgr(A) has lower transcendence degree two in
the sense of [Zhang 1998], but that is not really relevant here.) There are strong
arguments for saying that noncommutative projective planes are the categories
qgr-A, as A ranges over the Artin–Schelter regular rings of dimension 3 with the
Hilbert series (1− t)−3 of a polynomial ring in three variables (see [Stafford and
Van den Bergh 2001, §11.2] for more details). These are the algebras classified in
[Artin et al. 1990] and for which the Sklyanin algebra S = S(a, b, c) is the generic
example. Van den Bergh [2011; 2012] has similarly classified noncommutative
analogues of quadrics and related surfaces.

Artin’s Conjectures 1.7. Artin conjectured that the only function skewfields of
noncommutative surfaces are the following:

(i) division rings D finite-dimensional over their centres F = Z(D), which are
then fields of transcendence degree two;

(ii) division rings of fractions D of Ore extensions k(X)[z; σ, δ] for some curve X ,
where D is not a finite module over its centre; and

(iii) the function skewfield D = Dgr(S) of a Sklyanin algebra S = S(a, b, c),
where S is not a finite module over its centre.

Artin then asked for a classification of the noncommutative surfaces qgr-A within
each birational class; that is, the cg noetherian algebras A with Dgr(A) being a
fixed division ring from this list.

The case of Artin’s programme when D = k(Y ) is the function field of a surface
and GKdim A= 3 has been completed in [Rogalski and Stafford 2009; Sierra 2011]
(if one strays from algebras of Gelfand–Kirillov dimension 3, then things become
more complicated, as [Rogalski and Sierra 2012] shows). As explained earlier, in
this paper we are interested in the other extreme, that of case (iii) from Artin’s list.

The first main results in this direction come from [Rogalski 2011], of which this
paper is a continuation. In particular, [ibid., Theorem 1.2] shows that the maximal
orders U ⊆ T = S(3) that have Qgr(U )= Qgr(T ) and are generated in degree one are
just the blowups T (d) for an effective divisor d on E with deg(d)≤ 7. We remark
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that in this case T (d) is simply the subalgebra of T generated by those elements
of T1 whose images in T/gT vanish on d. As such, T (d) is quite similar to a
commutative blowup and qgr-T (d) also coincides with the more categorical version
of a blowup in [Van den Bergh 2001]. In this paper we will also need T (d) when
deg(d)= 8, and this is harder to describe as it is not generated in degree one. Its
construction and basic properties are described in the companion paper [RSS 2015].

The proofs. For simplicity we assume here that U is a cg subalgebra of T with
Qgr(U )= Qgr(T ).

A key strategy in the description of the Sklyanin algebra S, and in the classifica-
tion of noncommutative projective planes in [Artin et al. 1990], was to understand
the factor ring S/gS, where g ∈ S3 = T1 is the central element mentioned earlier.
Indeed, one of the main steps in that paper was to show that S/gS ∼= B(E,L, σ )

for the appropriate L and σ . We apply a similar strategy. The nicest case is when
U ⊆ T is g-divisible in the sense that g ∈ U and U ∩ gT = gU . In particular,
U =U/gU is then a subalgebra of T with GKdim(U )= 2. As such U and hence U
are automatically noetherian (see Proposition 2.9). Much of this paper concerns the
classification of g-divisible algebras U , and the starting point is the following result.

Theorem 1.8 (Theorem 5.24). Let U be a g-divisible subalgebra of T such that
Qgr(U ) = Qgr(T ). Then U is an equivalent order to some blowup T (d) at an
effective divisor d on E with deg d ≤ 8.

It follows easily from this result that a g-divisible maximal T -order U equals
EndT (d)(M) for some finitely generated right T -module M (see Corollary 6.6).
When U is g-divisible, the rest of the proof of Theorem 1.2 amounts to showing
that, up to a finite-dimensional vector space, U = B(E,M(−d ′), τ ), for some
virtually effective divisor d ′ = d− y+ τ−1( y) (see Theorem 6.7). This is also the
key property in the definition of a blowup at such a divisor (see Definitions 6.9
and 7.1 for more details).

Now suppose that U is not necessarily g-divisible and set C = U 〈g〉 with g-
divisible hull

Ĉ = {θ ∈ T : gmθ ∈ C for some m ≥ 0}.

The remaining step in the proof of Theorem 1.2 is to show that U , C and Ĉ
are equivalent orders. This in turn follows from the following fact. Let V be a
graded subalgebra of T with g ∈ V and Qgr(V )= Qgr(T ). Then V has a minimal
sporadic ideal in the sense that V has a unique ideal I minimal with respect to
GKdim(V/I )≤ 1 and V/I being g-torsionfree (see Corollary 8.8).

Further results. The g-divisible subalgebras of T are closely related to subalgebras
of the (ungraded) localised ring T ◦ = T [g−1

]0. The algebra T ◦ is a hereditary
noetherian domain of GK-dimension 2 and can be thought of as a noncommutative
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coordinate ring of the affine space P2r E . By [RSS 2014], any subalgebra of T ◦

is noetherian and so the algebras U ◦ = U [g−1
]0 ⊆ T ◦ give a plentiful supply of

noetherian domains of GK-dimension 2. All the above results have parallel versions
for orders in T ◦. For example:

Corollary 1.9 (Corollary 7.10 and Corollary 8.5). Let A be a subalgebra of T ◦

with Q(A)= Q(T ◦).

(1) The algebra A has finitely many prime ideals and DCC on ideals.

(2) If A is a maximal T ◦-order then A = T (d ′)◦ for some virtually effective
divisor d ′.

Organisation of the paper. In Section 2 we prove basic technical results, including
the important, though easy, fact that any g-divisible subalgebra of T is strongly
noetherian (see Proposition 2.9). Section 3 is devoted to studying finitely generated
graded orders in k(E)[t; τ ]. The main result (Theorem 3.1) shows that any such
order is (up to finite dimension) an idealiser in a twisted homogeneous coordinate
ring. This improves on one of the main results from [Artin and Stafford 1995]
and has useful applications to the study of point modules over such an algebra.
Section 4 incorporates needed results from [RSS 2015] about right ideals of T and
the blowups T (d) at effective divisors.

Sections 5–7 are devoted to g-divisible algebras in T . The main result of
Section 5 is Theorem 1.8 from above. Section 6 is concerned with the structure of
V =EndT (d)(M), where M ⊂ T is a reflexive T (d)-module and d is effective. Most
importantly, Theorem 6.7 describes the factor V/gV . Section 7 pulls these results
together, proves Theorem 1.5 for g-divisible algebras and draws various conclusions.

In Section 8 we show that various algebras have minimal sporadic ideals. This
is then used to complete the proof of Theorem 1.2. Section 9 studies subalgebras
of the Veronese rings T (m) and algebras U with U = k. We apply this to prove
Corollary 1.6. Finally, Section 10 is devoted to examples. At the end of the paper
we also provide an index of notation.

2. Basic results

In this section we collect the basic definitions and results that will be used throughout
the paper.

Throughout the paper k is an algebraically closed field and all rings will be k-
algebras. If X is a projective k-scheme, L is an invertible sheaf on X , and σ : X→ X
is an automorphism, then there is a TCR or twisted homogeneous coordinate ring
B = B(X,L, σ ) associated to this data and defined as follows. Write Fσ

= σ ∗(F)
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for a pullback of a sheaf F on X and set Fn =F⊗Fσ
⊗· · ·⊗Fσ n−1

for n≥ 1. Then

B =
⊕
n≥0

H 0(X,Ln), with product x ∗ y = x ⊗ (σm)∗(y) for x ∈ Bm, y ∈ Bn.

In this paper X = E will usually be a smooth elliptic curve, and a review of some
of the important properties of B(E,L, σ ) in this case can be found in [Rogalski
2011]. It is well known, going back to [Artin et al. 1990], that much of the structure
of the Sklyanin algebra S is controlled by the factor ring S/gS ∼= B(E,L, σ ), and
this in turn can be analysed geometrically.

In fact, there are several different families of Sklyanin algebras, and we first
set up a framework which will allow our results to apply to subalgebras of any of
these (and, indeed, more generally). Recall that for an N-graded ring R=

⊕
n≥0 Rn

the d-th Veronese ring, for d ≥ 1, is R(d) =
⊕

n≥0 Rnd . Usually this is graded by
setting R(d)n = Rnd . However, we will sometimes want to regard R(d) as a graded
subring of R, in which case each Rnd maintains its degree nd; we will call this the
unregraded Veronese ring. In this paper it will be easier to work with the 3-Veronese
ring of the Sklyanin T = S(3) =

⊕
n∈Z Tn , largely because this ensures that the

canonical central element g lies in T1. Similar comments will apply to the other
families, and so in the body of the paper we will work with algebras satisfying the
following hypotheses.

Assumption 2.1. Let T be a cg k-algebra which is a domain with a central element
0 6= g ∈ T1, such that there is a graded isomorphism T/gT ∼= B = B(E,M, τ ) for a
smooth elliptic curve E , invertible sheaf M with µ= deg M≥ 2, and infinite-order
automorphism τ . Such a T is called an elliptic algebra of degree µ.

This assumption holds throughout the paper. In the language of [Van den Bergh
2001], the assumption can be interpreted geometrically to say that the surface qgr-T
contains the commutative elliptic curve qgr-B ' coh E as a divisor. We will need
stronger conditions on T in the main results of Section 8 (see Assumption 8.2).

Examples 2.2. The hypotheses of Assumption 2.1 are satisfied in a number of ex-
amples, in particular for Veronese rings of the following types of Sklyanin algebras.

(1) Let S be the quadratic Sklyanin algebra

S(a, b, c)= k{x0, x1, x2}/(axi xi+1+ bxi+1xi + cx2
i+2 : i ∈ Z3),

for appropriate [a, b, c] ∈ P2
k , and let T = S(d) for d = 3.

(2) Let S be the cubic Sklyanin algebra

S(a, b, c)= k{x0, x1}/(ax2
i+1xi + bxi+1xi xi+1+ axi x2

i+1+ cx3
i : i ∈ Z2),

for appropriate [a, b, c] ∈ P2
k and let T = S(d), for d = 4.
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(3) Let x have degree 1 and y degree 2, and set

S= S(a,b,c)=k{x, y}/(ay2x+cyxy+axy2
+bx5, ax2 y+cxyx+ayx2

+by2),

for appropriate [a, b, c] ∈ P2
k , and let T = S(d), for d = 6.

(4) There are other examples satisfying these hypotheses; for example, take
T = B(E,M, τ )[g], where M is an invertible sheaf on the elliptic curve E
with deg M≥ 2 and |τ | =∞.

The detailed properties of the examples above can be found in [Artin et al. 1990;
1991; Stephenson 1997]. In particular, the restrictions on the parameters {a, b, c}
in (1–3) are determined as follows. In each case, there exists a central element
g ∈ Sd such that S/gS ∼= B = B(E,L, σ ), for some L and σ . This factor ring
also determines the Sklyanin algebra, since g is the unique relation for B of
degree d [Artin et al. 1990, Theorem 6.8(1); Stephenson 1997, Theorem 4.1]. The
requirements on {a, b, c} are that E is an elliptic curve and that |σ | =∞. Explicit
criteria on the parameters are known for E to be an elliptic curve but not for
|σ | = ∞; nevertheless, this will be the case when the parameters are generic. In
these examples, deg L = 3, 2, 1, respectively, and hence T/gT ∼= B(E,M, σ d),
where M= Ld has degree µ= d · (deg L)= 9, 8, 6, respectively.

Notation 2.3. All algebras A considered in this paper are domains of finite Gelfand–
Kirillov dimension, written GKdim(A). If A is graded, then the set C of nonzero
homogeneous elements therefore forms an Ore set (see [McConnell and Robson
2001, Corollary 8.1.21] and [Năstăsescu and van Oystaeyen 1982, C.I.1.6]). By
[ibid., A.14.3], the localisation Qgr(A) = AC−1 is a graded division ring in the
sense that Qgr(A) is an Ore extension Qgr(A)= D[z, z−1

;α] of a division ring D
by an automorphism α; thus zd = dαz for all d ∈ D. The algebra D will be denoted
D = Dgr(A) and called the function skewfield of A, while Qgr(A) will be called the
graded quotient ring of A.

Notation 2.4. For the most part, the algebras A considered in this paper will be
connected graded, in which case we usually work in the category Gr-A of Z-graded
right A-modules, with homomorphisms HomGr-A(M, N ) being graded of degree
zero. In particular, an isomorphism of graded modules or rings will be assumed to
be graded of degree zero, unless otherwise stated. The category of noetherian graded
right A-modules will be written gr-A, while the category of ungraded modules
will be written Mod-A, and we reserve the term Hom(M, N )= HomA(M, N ) for
homomorphisms in the ungraded category. For M, N ∈ Gr-A, the shift M[n] is
defined by M[n]=

⊕
M[n]i for M[n]i =Mn+i . Similar comments apply to ExtGr-A

and ExtA as well as to EndA(M)= HomA(M,M). If fd-A denotes the category of
finite-dimensional (right) A-modules, then we write qgr-A for the quotient category
gr-A/ fd-A. Similarly, A-qgr= A-gr /A-fd is the quotient category of noetherian
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graded left modules modulo finite-dimensional modules. The basic properties of
this construction can be found in [Artin and Zhang 1994].

Notation 2.5. Write T(g) for the homogeneous localisation of T at the completely
prime ideal gT ; thus T(g) = T C−1 for C the set of homogeneous elements in
T rgT . Note that T(g)/gT(g)∼= Qgr(B)= k(E)[t, t−1

; τ ], a ring of twisted Laurent
polynomials over the function field of E . In particular, T(g)/gT(g) is a graded
division ring and by [Goodearl and Warfield 1989, Exercise 1Q] it is also simple as
an ungraded ring. Also, as will be used frequently in the body of the paper,

the only graded right or left ideals of T(g) are the gnT(g). (2.6)

For any graded vector subspace X ⊆ T(g), set

X̂ = {t ∈ T(g) : tgn
∈ X for some n ∈ N}.

We say that X is g-divisible if X ∩ gT(g) = gX . Note that if X is g-divisible and
1 ∈ X (as happens when X is a subring of T(g)), then g ∈ X . For any k-subspace Y
of T(g), write Y = (Y + gT(g))/gT(g) for the image of Y in T(g)/gT(g).

If R ⊆ T(g) is a subalgebra with g ∈ R, then the g-torsion submodule of a right
R-module M is torsg(M)= {m ∈ M : gnm = 0 for some n ≥ 1}. We say that M is
g-torsionfree if torsg(M)= 0 and g-torsion if torsg(M)= M .

We notice that the rings T automatically satisfy some useful additional prop-
erties. An algebra C is called just infinite if every nonzero ideal I of C satisfies
dimk C/I <∞.

Lemma 2.7. Let T satisfy Assumption 2.1. Then:

(1) T is generated as an algebra in degree 1.

(2) Any finitely generated, cg subalgebra of Qgr(T/gT ) = k(E)[z, z−1
; τ ], in

particular T/gT itself , is just infinite.

Proof. (1) Since µ≥ 2, the ring B = T/gT ∼= B(E,M, τ ) is generated in degree 1
[Rogalski 2011, Lemma 3.1]. Thus T2 = (T1)

2
+ gT1 = (T1)

2 and, by induction,
(T1)

n
= Tn for all n ≥ 1.

(2) This follows from [RSS 2014, Corollary 2.10 and §3]. �

As the next few results show, g-divisible algebras and modules have pleasant
properties. The first gives a useful, albeit easy, alternative characterisation of X̂
that will be used without particular reference.

Lemma 2.8. Let R ⊆ T(g) be a cg subalgebra with g ∈ R, and let X ⊆ T(g) be a
graded right R-module. Then X ⊆ X̂ , and X̂ is also a right R-module. Moreover:

X is g-divisible ⇐⇒ X = X̂ ⇐⇒ T(g)/X is a g-torsionfree R-module. �
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Proposition 2.9. (1) If R is any g-divisible cg subalgebra of T , then R is finitely
generated as a k-algebra.

(2) Let R be a finitely generated g-divisible cg subalgebra of T(g). Then R is
strongly noetherian.

Proof. (1) We have R ∼= (R + gT )/gT ⊆ T ∼= B(E,M, τ ) and so [RSS 2014,
Theorem 2.9] implies that R is noetherian. By [Artin et al. 1990, Lemma 8.2],
R is noetherian. Since the generators of R≥1 as an R-module also generate R as a
k-algebra, R is finitely generated as a k-algebra.

(2) In this case, R = R/gR ∼= (R+ gT(g))/gT(g) ⊆ Qgr(B)= k(E)[t, t−1
; τ ]. By

[RSS 2014, Corollary 2.10] R is noetherian. Also GKdim R ≤ 2, for instance by
[Artin and Stafford 1995, Theorem 0.1], and so R is strongly noetherian by [Artin
et al. 1999, Theorem 4.24]. Thus R is strongly noetherian by [Artin et al. 1990,
Lemma 8.2]. �

Lemma 2.10. Let R be a g-divisible cg subalgebra of T(g) with Dgr(R)= Dgr(T ).
Then

(1) Qgr(R)= Qgr(T ), and

(2) Qgr(R)= Qgr(T ).

Proof. (1) As g ∈ R1 we have

Qgr(T )= Dgr(T )[g, g−1
] = Dgr(R)[g, g−1

] = Qgr(R).

(2) Since Qgr(R)= Qgr(T ), there exists 0 6= x ∈ Rd such that xT1 ⊆ Rd+1. Then
xT 1 ⊆ R. As long as x 6= 0, this shows that the graded quotient ring of R contains
a generating set for T and we are done. On the other hand, if x = 0, then write
x = gi y with y ∈ T(g) r gT(g); equivalently y ∈ R r gR by g-divisibility. Then
gi yT1 ⊆ R ∩ gi T(g) = gi R, and so yT1 ⊆ R. Thus we are again done. �

If A is a cg domain with graded quotient ring Q = Qgr(A) and M ⊆ Q is a
finitely generated graded right A-submodule, we can and always will identify

EndA(M)= {q ∈ Q : q M ⊆ M} and

M∗ = HomA(M, A)= {q ∈ Q : q M ⊆ A}.
(2.11)

Clearly both EndA(M) and M∗ are graded subspaces of Q.

Lemma 2.12. Let R be any g-divisible subring of T(g) with Qgr(R) = Qgr(T(g)),
and let M,M ′ ⊆ T(g) be finitely generated nonzero right R-modules.

(1) If M * gT(g), then we can identify

HomR(M,M ′)= {x ∈ T(g) : x M ⊆ M ′} ⊆ T(g).
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(2) If M ′ is g-divisible, and M 6⊆ gT(g) (in particular if M is g-divisible) then
HomR(M,M ′)⊆ T(g) is also g-divisible.

(3) If M is g-divisible, then U =EndR(M)⊆ T(g) is g-divisible, and M is a finitely
generated left U-module. Moreover, U ⊆ EndR(M).

Proof. (1) Since M 6⊆ gT(g), it follows from (2.6) that MT(g) = T(g). In particular,

N = HomR(M,M ′)⊆ HomT(g)(MT(g),M ′T(g))⊆ T(g).

(2) Part (1) applies, and so N = HomR(M,M ′) ⊆ T(g). Next, let θ ∈ N ∩ gT(g);
say θ = gs for some s ∈ T(g). Then sgM = θM ∈ M ′ ∩ gT(g) = M ′g since M ′ is
g-divisible. Hence s M ⊆ M ′ and s ∈ N . Thus N ∩ gT(g) = gN .

(3) By part (2), U is g-divisible, and hence is noetherian by Proposition 2.9. As
Qgr(R) = Qgr(T(g)), there exists x ∈ T(g) r {0} so that x M ⊆ R. Then Mx M ⊆
M R = M . Hence (up to a shift) M ∼= Mx ⊆ U is finitely generated as a left
U -module.

Now
U = (U + gT(g))/gT(g) ⊆ T(g) = k(E)[t, t−1

; τ ].

Since Qgr(U )= Qgr(T(g)) by Lemma 2.10, as in (2.11) we identify EndR(M) with
{x ∈ T(g) : x M ⊆ M}. But since U M ⊆ M , clearly (U )(M)⊆ M . �

Lemma 2.13. Let R be a graded subalgebra of T(g) with Qgr(R)= Qgr(T(g)) and
let M ⊆ T(g) be a graded right R-submodule of T(g) such that M 6⊆ gT(g). Then:

(1) For any x ∈ T(g)r gT(g), we have x̂ M = x M̂.

(2) If R is g-divisible and M is a finitely generated R-module, then so is M̂.

(3) If R is g-divisible, then T(g)⊇M∗= M̂∗ and M∗ 6⊆ gT(g). Hence T(g)⊇M∗∗=
M̂∗∗. Moreover, we have (M̂)∗ = M∗ and (M̂)∗∗ = M∗∗.

Proof. (1) Let r ∈ M̂ . For some n we have rgn
∈ M , so xrgn

∈ x M . Since
xr ∈ T(g) it follows that xr ∈ x̂ M . Conversely, if r ∈ T(g) with rgn

∈ x M , then
rgn
= gnr ∈ gnT(g) ∩ xT(g). As gT(g) is a completely prime ideal and x 6∈ gT(g),

clearly gnT(g)∩xT(g)=gnxT(g). Thus r= xs for some s∈T(g) and x M 3rgn
= xsgn .

Therefore sgn
∈ M , whence s ∈ M̂ and r ∈ x M̂ . Thus x̂ M = x M̂ , as claimed.

(2) As in the proof of Lemma 2.12, there exists x ∈ T(g)r {0} so that x M ⊆ R. If
x = gy for some y ∈ T(g), then g(yM)⊆ R and so yM ⊆ R since R is g-divisible.
Thus we can assume that x ∈ T(g)r gT(g). Again by g-divisibility, x̂ M ⊆ R̂ = R.
By Proposition 2.9 x̂ M is a finitely generated right ideal of R. Up to a shift,
M̂ ∼= x M̂ = x̂ M by (1). This is finitely generated as an R-module.

(3) By Lemma 2.12(2), M∗ is equal to HomR(M, R)⊆ T(g) and is g-divisible, i.e.,
M∗ = M̂∗. Clearly then M∗ * gT(g), and so by the left-handed analogue of the
same argument, M∗∗ = M̂∗∗ ⊆ T(g) also.
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Now as M ⊆ M̂ , certainly (M̂)∗ ⊆ M∗. On the other hand, if θ ∈ M∗ and x ∈ M̂ ,
say with xgn

∈ M , then (θx)gn
= θ(xgn) ∈ R = R̂. Hence θx ∈ R. Thus θ ∈ (M̂)∗

and (M̂)∗ = M∗. Taking a second dual gives (M̂)∗∗ = M∗∗. �

We note next some special properties of modules of GK-dimension 1.

Lemma 2.14. Let R be a cg g-divisible subalgebra of T(g) and suppose that M is a
finitely generated, g-torsionfree R-module with GKdim(M)≤ 1. Then the Hilbert
series of M is eventually constant; that is, dimk Mn = dimk Mn+1 for all n � 0.
Moreover, M is a finitely generated k[g]-module.

Proof. By [Krause and Lenagan 1985, Proposition 5.1(e)], GKdim(M/Mg) ≤ 0
and so dimk M/Mg <∞. Thus Mr g = Mr+1 for all r � 0; say for r ≥ n0. In
particular, M = M≤n0k[g]. Moreover, since multiplication by g is an injective map
from Mr to Mr+1, it follows that dimk Mr = dimk Mr+1 for all r ≥ n0. �

A graded ideal I in a cg algebra R is called a sporadic ideal if GKdim(R/I )= 1
(these are called special ideals in [Rogalski 2011]). The name is justified since, as
will be shown in Section 8, orders in T have very few such ideals. The next lemma
will be useful in understanding them.

Lemma 2.15. Let R be a g-divisible finitely generated cg subring of T(g) with
Qgr(R)= Qgr(T ). Then:

(1) If J is a nonzero g-divisible graded ideal of R, then GKdim(R/J )≤ 1.

(2) Conversely, if J is a graded ideal of R such that GKdim(R/J )≤ 1, then Ĵ/J
is finite-dimensional.

(3) If K is any ideal of R, then K = gn I for some n ≥ 1 and ideal I satisfying
GKdim(R/I )≤ 1.

(4) Suppose that L ,M are graded subspaces of T(g) with L * gT(g) and M * gT(g)
and assume that I = L M is an ideal of R. Then GKdim(R/I )≤ 1.

Proof. (1) By Lemma 2.10, R ⊆ k(E)[t, t−1
; τ ] = Qgr(R) and, by Lemma 2.7(2),

R is just infinite. Since J is g-divisible, J * gR and so J 6= 0; thus dimk R/J <∞.
Equivalently, if R′ = R/J then dimk R′/gR′ <∞. It follows that R′m = gR′m−1 for
all m� 0, and hence that GKdim R′ ≤ 1.

(2) Once again, R is just infinite. Thus, since J ⊆ gR would lead to the contradiction
GKdim(R/J )≥ 2, we must have dimk R/(gR+ J )= dimk R/J <∞. Since Ĵ is
noetherian, gn Ĵ ⊆ J for some n. If J ′ is the largest right ideal inside Ĵ such that J ′/J
is finite-dimensional, then J ′ is an ideal and we can replace J by J ′ without loss. If
we still have J 6= Ĵ , then there exists x ∈ ĴrJ such that xg∈ J . Thus x(gR+J )⊆ J ,
and left multiplication by x defines a surjection R/(gR+ J )� (x R+ J )/J . We
have dimk(x R + J )/J = ∞ and dimk R/(gR + J ) <∞, a contradiction. Thus
Ĵ = J .
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(3) Write K = gn J with n as large as possible and J an ideal of R. Then J 6⊆ gR,
and so Lemma 2.7(2) again implies that dimk R/J <∞ and hence GKdim R/J ≤ 1.

(4) Since gT(g) is completely prime, I = L M * gT(g) and hence I * gR. Now
apply part (3). �

Next, we want to prove some general results about equivalent orders that will be
useful elsewhere. We recall that two cg domains A and B with a common (graded)
quotient ring Q= Qgr(A)= Qgr(B) are equivalent orders if a Ab⊆ B and cBd ⊆ A
for some a, b, c, d ∈ Qr {0}. Clearing denominators on the appropriate sides, one
can always assume that a, b, c, d ∈ B. One can also assume that a, b, c, d are
homogeneous; indeed, if a and b have leading terms an and bm , then an Abm ⊆ B.

Proposition 2.16. Suppose that U ⊆ R are g-divisible cg finitely generated sub-
algebras of T(g) such that Qgr(U ) = Qgr(R) = Qgr(T(g)). Then the following are
equivalent:

(1) U and R are equivalent orders in Qgr(U )= Qgr(T ).

(2) U/gU and R/gR are equivalent orders in Qgr(U/gU ).

Proof. (1) ⇒ (2) Choose nonzero homogeneous elements a, b ∈ U such that
a Rb⊆U . Write a= gna′ where a′ ∈UrgU . Then gna′Rb⊆U and so a′Rb⊆U
since U is g-divisible. Replacing a by a′, we can assume that a 6∈ gU and, similarly,
that b 6∈ gU . Then a Rb ⊆U , with a, b 6= 0, as required.

(2)⇒ (1) Set U =U/gU ⊆ R = R/gR. We first note that there is a subalgebra
U ⊆ S ⊆ R so that S is a noetherian right U -module and R is a noetherian left
S-module. Indeed, write a Rb⊆U for some nonzero a, b∈U and set S=U+RbU .
Clearly aS ⊆ U and Rb ⊆ S. As in the proof of Proposition 2.9, all subalgebras
of R are noetherian. In particular, S and U are noetherian and so these inclusions
ensure that SU and S R are finitely generated, as claimed.

Let F ⊆ R be a finite-dimensional vector space, containing 1, such that FU = S.
Set M = F̂U and V = EndU (M). Clearly Qgr(V ) = Qgr(U ) = Qgr(T ). Since
1 ∈ M and hence M * gT(g), we can and will use Lemma 2.12(1) to identify
V = {q ∈ Qgr(U ) : q M ⊆M} ⊆ T(g). By Lemma 2.12(3), V = V̂ and V M is finitely
generated, while, by Lemma 2.13, MU is finitely generated. As R is g-divisible
and FU ⊆ R, we have M ⊆ R. Since 1 ∈ M this implies that M R = R. Hence
V R = V M R = M R = R and V ⊆ R.

Let G, H ⊆ R be finite-dimensional vector spaces with V G = M and SH = R.
Then

R ⊇ V G H ⊇ FU H = SH = R.

Thus R = M H = V G H is finitely generated as a left V -module. Since g ∈ V+ =⊕
i>0 Vi ⊆ R+, this implies that R/(V+)R is a finitely generated left module over
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V/V+. By the graded analogue of Nakayama’s lemma, this implies that R is finitely
generated as a left V -module. Thus R and V are equivalent orders. As V and U are
equivalent orders (via the bimodule M), it follows that U and R are equivalent. �

3. Curves

The main result of [Artin and Stafford 1995] shows that any cg domain A of Gelfand–
Kirillov dimension two has a Veronese ring that is an idealiser inside a TCR. In this
section we strengthen this result for elliptic curves by proving that, for subalgebras
of a TCR over such a curve corresponding to an automorphism of infinite order,
the result holds without taking a Veronese ring, although at the cost of replacing
the idealiser by an algebra which is isomorphic to an idealiser in large degree.

Given graded modules M, N ⊆ P over a cg algebra A, we write M •

= N if
M and N agree up to a finite-dimensional vector space. If M, N ∈ gr-A, this is
equivalent to M≥n = N≥n for some n ≥ 0.

Theorem 3.1. Let A be a cg ring such that Qgr(A) = k(E)[z, z−1
; τ ] for some

infinite-order automorphism τ of a smooth elliptic curve E and z ∈ Qgr(A)1. Then
there are an ideal sheaf A and an ample invertible sheaf H on E so that

A •

=

⊕
n≥0

H 0(E,AHn).

Remarks 3.2. (1) The idealiser I(J )= IU (J ) of a right ideal J in a ring U is the
subring

I(J )= {u ∈U : u J ⊆ J }.

In the notation of the theorem, J =
⊕

n≥0 H 0(E,AHn) is a right ideal of the
TCR B(E,H, τ ); further, IU (J )

•

= k+ J . So, an equivalent way of phrasing the
theorem is to assert that (up to a finite-dimensional vector space) A is equal to the
idealiser I(J ) inside B(E,H, τ ).

(2) The assertion that z ∈ Qgr(A)1 can be avoided at the expense of regrading A,
although in the process one must replace τ by some τm in the definition of the Hn .

(3) The sheaf H is ample if and only if it has positive degree [Hartshorne 1977,
Corollary 3.3], if and only if H is τ -ample: that is, for any coherent F and for
n� 0, the sheaf F⊗Hn is globally generated with H 1(E,F⊗Hn)= 0 [Artin and
Van den Bergh 1990, Corollary 1.6].

Proof. The hypothesis on z ensures that Ap 6= 0 6= Ap+1 for all p� 0. Fix some
such p.

The conclusion of the theorem is, essentially, the same as that of [Artin and
Stafford 1995, Theorem 5.11], although that result has two hypotheses we need
to remove. The first, [ibid., Hypothesis 2.1] requires that the ring in question
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has a nonzero element in degree one, so does at least hold for the Veronese rings
A(p) and A(q), for q = p+ 1. The remaining hypothesis, [ibid., Hypothesis 2.15],
concerns τ -fixed points of E . In our situation, this automatically holds as E has no
such fixed points (see the discussion before [ibid., (2.9)]).

By the discussion above, [ibid., Theorem 5.11 and Remark 5.12(2)] can be
applied to the Veronese rings A(p) and A(q). This provides invertible sheaves
A,B,F,G with F,G ample such that

A(p) •=
⊕
n≥0

H 0(E,A⊗Fp,n) and A(q) •=
⊕
n≥0

H 0(E,B⊗Gq,n),

where in order to take account of the Veronese rings we have written Mr,n =

M⊗Mτ r
⊗· · ·⊗Mτ (n−1)r

for an invertible sheaf M. For n� 0 the sheaves A⊗Fp,nq

and B⊗Gq,np are generated by their sections Anpq and so A⊗Fp,nq =B⊗Gq,np

for such n. Replacing n by n+m, we obtain

A⊗Fp,nq ⊗Fτ npq

p,mq =A⊗Fp,(n+m)q =B⊗Gq,(n+m)p

=B⊗Gq,np⊗Gτ
npq

q,mp =A⊗Fp,nq ⊗Gτ
npq

q,mp

for all n +m > n � 0. Cancelling the first two terms and applying τ−npq gives
Fp,mq = Gq,mp for all m ≥ 1. In particular, it holds for m = n, and hence A=B.

Next, set H= G⊗ (Fτ )−1; thus the equation Fp,q = Gq,p gives

Hq,p = Fp,q ⊗ (F
τ )−1

q,p. (3.3)

We claim that F is the unique invertible sheaf F̃ satisfying Hq,p = F̃p,q ⊗ (F̃
τ )−1

q,p.
To see this, suppose that F̃ is a second sheaf satisfying this property and consider
associated divisors. Pick a closed point x ∈ E and write Ox ={x(i)= τ−i (x) : i ∈Z}

for the orbit of x under τ . Writing F= OE(F) and H= OE(H) for some divisors F
and H and restricting to O=Ox gives F |O =

∑
m(i)x(i) and H |O =

∑
r(i)x(i),

for some integers m(i), r(i) (the notation is chosen to avoid excessive subscripts).
Now, in terms of divisors, (3.3) gives∑

r(i)x(i)+ r(i)x(i + q)+ · · ·+ r(i)x(i + (p− 1)q)

=

∑
m(i)x(i)+m(i)x(i + p)+ · · ·+m(i)x(i + (q − 1)p)

−

∑
m(i)x(i + 1)+m(i)x(i + 1+ q)+ · · ·+m(i)x(i + 1+ (p− 1)q).

Equating coefficients of x(t) in the last displayed equation gives

m(t)+m(t − p)+ · · ·+m(t − (q − 1)p)

−m(t − 1)−m(t − 1− q)− · · ·−m(t − 1− (p− 1)q)

= r(t)+ r(t − q)+ · · ·+ r(t − (p− 1)q).
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Recall that m(i)= r(i)= 0 for |i | � 0. Therefore, solving this system from t � 0
through to t � 0 gives a unique solution for the m(i) in terms of the r( j). Finally,
doing this for every orbit involved in the divisors F and H shows that F is uniquely
determined by H , and so F is uniquely determined as claimed.

A direct calculation shows that if F̃=H1,p =Hp then Hq,p = F̃p,q ⊗ (F̃
τ )−1

q,p.
Thus F̃ = F and consequently H1,mp = Fp,m for all m ≥ 1. It follows from the
equation H= G⊗ (Fτ )−1 that G=H1,q , and thus H1,mq = Gq,m for all m ≥ 1 as
well. To summarise, we have found sheaves A and H such that

A(s) •=
⊕

n

H 0(E,AH1,ns)=
⊕

n

H 0(E,AHns) for s = p, p+ 1. (3.4)

It follows that (3.4) holds for all s� 0, but this is not quite enough to prove the
theorem since, as s increases, one has no control over the finitely many values of
n = n(s) for which A(s)n 6= H 0(E,AH1,ns). So we take a slightly different tack.

For 0≤ r ≤ p−1, write M(r)=
⊕

n≥0 Anp+r ; thus A=
⊕p−1

r=0 M(r). Fix some
such r . We can find 0 6= x ∈ A2p−r , since 2p− r > p. Thus x M(r) ⊆ A(p) and
so, by [ibid., Proposition 5.4] and (3.4), there exists an ideal sheaf I ⊆ OE such
that x M(r) •

=
⊕

n≥0 H 0(E,I⊗Hτ 2p

1,np) (in this formula, the twist by τ 2p is for
convenience only but it will simplify the computations). Since A is a domain, M(r)
is isomorphic to the shift x M(r)[2p− r ]. Hence, for some integer n0 independent
of r , [Keeler et al. 2005, Lemma 5.5] implies that

M(r)≥n0 =

⊕
n≥n0

H 0(E,I′⊗Hτ r

1,np)=
⊕
n≥n0

H 0(E,J(r)⊗Hr ⊗Hτ r

1,np) (3.5)

for some invertible sheaves I′ and J(r)=I′⊗(Hr )
−1. Possibly after increasing n0,

we may also assume that the sheaves in (3.4) and (3.5) are generated by their
sections for n ≥ n0. Now pick n ≥ n0 such that r + np = (p+ 1)m for some m.
Then comparing (3.4) and (3.5) shows that M(r)r+np generates the sheaves

J(r)⊗Hr+np = J(r)⊗Hr ⊗Hτ r

1,np =A⊗H1,(p+1)m =A⊗Hr+np.

Hence J(r) = A. Since this holds for all 0 ≤ r ≤ p − 1, it follows that An =

H 0(E,AHτ n
), for all n ≥ n0 p. �

Remark 3.6. We note that [Rogalski 2011, Lemma 3.2(2)] states a result similar to
Theorem 3.1, but the proof erroneously quotes the relevant theorems from [Artin and
Stafford 1995] without removing the hypothesis that rings should have a nonzero
element in degree one. Thus the above proof also corrects this oversight. In any
case, [Rogalski 2011, Lemma 3.2(2)] was only used in that paper for rings generated
in degree one.

If A is a cg algebra generated in degree one, then we define a point module
to be a cyclic module M =

⊕
i≥0 Mi , with dim Mi = 1 for all i ≥ 0. When A is
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not generated in degree one, a point module has this asymptotic structure, but the
precise definition can vary depending on circumstances, and so we will be careful
to explain which definition we mean should the distinction be important.

To end this section we give some applications of the previous theorem to the
structure of point modules, for which we need a definition. If M =

⊕
n Mn is a

graded module over a cg algebra A, we write sn(M) = (Mn A)[n]. The largest
artinian submodule of a noetherian module M is written S(M).

Corollary 3.7. Let A satisfy the hypotheses of Theorem 3.1. Let M and M ′ be
1-critical graded right A-modules generated in degree zero. Then:

(1) the isomorphism classes of such modules are in one-to-one correspondence
with the closed points of E ;

(2) dim Mn ≤ 1 for all n ≥ 0, with dim Mn = 1 for n� 0;

(3) for n ≥ 0, either Mn = 0 or sn M is cyclic and 1-critical;

(4) if sn M ∼= sn M ′ 6= 0 for some n ∈ N, then M ∼= M ′.

Proof. It is well known that there is an equivalence of categories qgr-A ∼ coh(E),
and much of the corollary follows from this; thus we first review the details of
the equivalence. By [Artin and Stafford 1995, Theorem 5.11] and the left-right
analogue of Theorem 3.1, we can write

A •

=

⊕
n≥0

H 0(E,HnAτ n−1
)⊆ B = B(E,H, τ )

for some ideal sheaf A and invertible sheaf H. For n0� 0, the ideal

J = A≥n0 =

⊕
n≥n0

H 0(E,HnAτ n−1
)

is a left ideal of B. By [Stafford and Zhang 1994, Proposition 2.7] and its proof,
qgr-A∼ qgr-B under the maps α : N 7→ N⊗A B and β : N ′ 7→ N ′⊗B J . Moreover,
by [Artin and Van den Bergh 1990, Theorem 1.3], qgr-B ∼ coh(E). Under that
equivalence, for a closed point p of E the skyscraper sheaf k(p) ∈ coh(E) maps to
the module

M ′p =
⊕
n≥0

H 0(E, k(p)⊗Hn) ∈ qgr-B;

thus if Mp = M ′p/S(M ′p) then Mp is a 1-critical B-module with dim(Mp)n = 1
for n � 0. By [Stafford and Zhang 1994, Lemma 2.6] the same is true of the
1-critical A-module Np = β(Mp)/S(β(Mp)). Furthermore, the image in qgr-A of
any 1-critical graded A-module is a simple object, and so every 1-critical A-module
is equal in qgr-A to some Np.
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(2) We will reduce to the case of a TCR generated in degree one, where the result is
standard. If the result fails, there exists a 1-critical A-module M such that (possibly
after shifting) dim Mn ≤ 1 for all n ≥ 0 but dim M0 > 1. By replacing M by any
submodule generated by a 2-dimensional subspace of M0 we may assume that
dim(M0)= 2. Write M = (A⊕ A)/F .

Now consider W = α(M)/S(α(M)). Since W is equal in qgr-B to some Mp,
certainly dim(Wn)≤ 1 for all n� 0. Moreover, the natural A-module map M→W
must be injective since M is 1-critical, and so dim W0 ≥ 2. As α(M) is a factor
of B⊕ B/F B it follows that dim W0 = 2. Unfortunately, B need not be generated
in degree 1. However, for `� 0 (indeed ` ≥ 2) the Veronese ring C = B(`) =
B(E,H`, τ

`) will be generated in degree one (see [Rogalski 2011, Lemma 3.1(2)]).
We claim that X =W (`) will still be a critical C-module. If not, then, picking an
element 0 6= x ∈ Xm in the socle of X , we will have xC≥1 = 0, and so x ∈ Wm`

satisfies x Bi` = 0 for all i ≥ 1. Since Bi B j = Bi+ j for all i, j � 0 [Rogalski 2011,
Lemma 3.1(1)], it follows that x Bm = 0 for all m� 0, contradicting the 1-criticality
of W . Thus X is indeed a critical C-module, with dim X0 = 2; say X0 = ak⊕ bk.

Finally, given X , or any 1-critical C-module, then [Artin and Van den Bergh
1990] again implies that dim Xn = 1 for all n ≥ n0 � 0. By [Keeler et al. 2005,
Proposition 9.2] the map N 7→N≥1[1] is an automorphism on the set of isomorphism
classes of C-point modules. Applying the inverse of this map to the shift of X≥n0

shows that the two point modules aC and bC must be equal to this image and
hence be isomorphic; say bC = φ(aC). Set n = n0+ 1. As dimk Xn = 1, we can
write Cn−1 = ck+ annC(a)n−1 for some c ∈ Cn−1. Since annC(a) = annC(b), it
follows that ac = λbc for some λ ∈ k. Hence (a− λb)c = 0, which implies that
(a − λb)Cn−1 = 0. As C is generated in degree one, this forces a − λb ∈ S(X).
This contradicts the criticality of X and proves the result.

(3) This is immediate from part (2).

(4) If not, pick 1-critical modules M � M ′ such that there is an isomorphism
γ : sn M ∼= sn M ′ 6= 0 for some n> 0. Let n be the smallest integer with this property
and then let W ⊂ M be as large as possible a submodule of M for which γ extends
to an isomorphism γ :W →W ′ ⊂ M ′. Set

N =
M ⊕M ′

Z
and Z = {(a, γ (a)) : a ∈W }.

We claim that N is 1-critical. If not, pick a homogeneous element (u, u′) ∈
M⊕M ′ such that [(u, u′)+Z ] is a nonzero element of the socle of N . If p∈ r-ann(u),
then (u, u′)p ∈ (u, u′)A≥1 ⊆ Z . As up = 0, this forces (0, u′) ∈ Z , and hence
u′ p = 0. Similarly, u′ p = 0 forces up = 0, and hence r-ann(u) = r-ann(u′).
Thus, there is an isomorphism γ ′ : u A ∼= u′A, which restricts to an isomorphism
γ ′′ : u A∩W → u′A∩W ′.
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We claim that any other isomorphism ψ : u A∩W → u′A∩W ′ must be a scalar
multiple of γ ′′. Put P = u A∩W , which is 1-critical. As we have already proved,
dimk Pn ≤ 1 for all n with equality for n� 0. Choose n such that Pn 6= 0 and fix
0 6= x ∈ Pn . Then x A is also 1-critical and so x A •

= P . Now ψ(x) = λγ ′′(x) for
some λ ∈ k×, and this forces ψ to equal λγ ′′ on all of x A. Given homogeneous
y ∈ P with y 6∈ x A, then 0 6= yz ⊆ x A for some z ∈ Am , m� 0, and so it is easy
to see that this forces ψ(y)= λγ (y) also. Thus ψ = λγ ′′ and the claim follows.

Therefore, possibly after multiplying by a scalar, we can assume that γ ′′ =
γ ′|u A∩W =γ |u A∩W . Thus, we can extend γ to W+u A, contradicting the maximality
of W . Hence N is indeed critical. Finally, as M � M ′ with dim M0 = 1= dim M ′0,
certainly W ⊆ M≥1, and so dim N0 = 2, contradicting part (2).

(1) Since the tails M≥n0 of 1-critical A-modules are in one-to-one correspondence
with the points of E , this follows from part (4). �

We end the section with a technical consequence of these results for subalgebras of T .

Lemma 3.8. Let U be a noetherian cg algebra and M a finitely generated, graded
1-critical right U-module. Then r-annU (M) is prime and r-annU (M)= r-annU (N )
for every nonzero submodule N ⊆ M.

Proof. This is a standard application of ideal invariance; use, for example, [Mc-
Connell and Robson 2001, Corollary 8.3.16 and the proof of (iii)⇒ (iv) of Theo-
rem 6.8.26]. �

Corollary 3.9. Assume that T satisfies Assumption 2.1 and let U be a g-divisible
subalgebra of T(g) with Qgr(U ) = Qgr(T ). Suppose that M and N are 1-critical
right U-modules which are cyclic, generated in degree 0, with g ∈ r-annU (M). For
some n≥ 0 with Mn 6= 0, suppose that there exists m≥ 0 such that (r-annU Mn)≥m =

(r-annU Nn)≥m . Then M ∼= N.

Proof. By hypothesis, gm
∈ (r-annU Mn)≥m = (r-annU Nn)≥m . Then N0gn+m

⊆

Nngm
=0. As g is central and N is generated by N0, it follows that gn+m

∈ r-annU N
and hence g ∈ r-annU N by Lemma 3.8. Thus, both M and N are modules over
A =U , and to prove the lemma it suffices to consider modules over that ring. By
Lemma 2.10, Qgr(A)= Qgr(T )= k(E)[t, t−1

; τ ], and so A satisfies the hypotheses
of Theorem 3.1.

Clearly, Nn 6= 0. By Corollary 3.7(2), dim Mn = 1= dim Nn , and so

Mn A[n] ∼= A/I and Nn A[n] ∼= A/J

for some graded right ideals I, J . By hypothesis, I≥m = J≥m . However, as
I/I≥m is finite-dimensional and A/I is 1-critical, I/I≥m is the unique largest
finite-dimensional submodule of A/I≥m = A/J≥m . Hence I = J and Mn A∼= Nn A.
By Corollary 3.7(4), M ∼= N . �
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4. Right ideals of T and the rings T (d)

Throughout this section, let T satisfy Assumption 2.1. Our first aim in this section
is to describe certain graded right ideals J of T such that T/J is filtered by shifted
point modules. In fact, the main method we use in the next section to understand a
general subalgebra U of T is to compare its graded pieces with the graded pieces
of these right ideals J and their left-sided analogues. The easiest way to construct
the required right ideals J is to use some machinery from [Van den Bergh 2001].
The details will appear in a companion paper to this one [RSS 2015].

Definitions 4.1. Given a right ideal I of a cg algebra R, the saturation I sat of I is
the sum of the right ideals L ⊇ I with dimk L/I <∞. If I = I sat, we say that I is
saturated.

Recall that T/gT ∼= B = B(E,M, τ ), where deg M= µ. For divisors b, c on E ,
we write b ≥ c if b− c is effective. A list of divisors (d0, d1, . . . , dk−1) on E
is an allowable divisor layering if τ−1(di−1) ≥ di for all 1 ≤ i ≤ k − 1. By
convention, we define di

= 0 for all i ≥ k. Given an allowable divisor layering
d• = (d0, d1, . . . , dk−1) on E , let J (d•) be the saturated right ideal of T defined
in [RSS 2015, Definition 3.4].

We omit the precise definition of J (d•) because it is technical, and not essential
in this paper. Instead, what matters are the following properties of this right ideal,
which help explain the name “divisor layering”. For any graded right T -module M ,
we think of the B-module Mg j/Mg j+1 as the j-th layer of M . Recall that we
write π(N ) for the image of a finitely generated graded B-module N in the quotient
category qgr-B. Recall also from the proof of Corollary 3.7(1) that there is an
equivalence of categories coh E ' qgr-B given by F 7→ π

(⊕
n≥0 H 0(E,F⊗Mn)

)
.

Lemma 4.2 [RSS 2015, Lemma 3.5]. Let d• be an allowable divisor layering and
let J = J (d•) and M = T/J .

(1) If M j
= Mg j/Mg j+1, then as objects in qgr-B we have

π(M j )∼= π

(⊕
n≥0

H 0(E, (OE/OE(−d j ))⊗Mn)

)
.

In particular, the divisor d j determines the point modules that occur in a
filtration of M j by (tails of ) point modules.

(2) (J )sat
=
⊕

n≥0 H 0(E,Mn(−d0)).

(3) If d• = (d) has length 1, then J (d)=
⊕

n≥0{x ∈ Tn : x ∈ H 0(E,Mn(−d))}.

Note that, as a special case of part (3) of the lemma, if p ∈ E and d = p then
J (p) is simply the right ideal of T such that P(p)= T/J (p) is the point module
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corresponding to the point p. (We note that this will coincide with the earlier
definition of a point module, should T be generated in degree one.)

We will require primarily the following two special cases of the construction
above. Starting now, it will be sometimes convenient to employ the notation

pi = τ
−i (p) for any p ∈ E . (4.3)

Definition 4.4. Given any p∈ E , i ≥1, and 0≤r ≤d≤µ, we define Q(i, d, r, p)=
J (d•), where

d0
= dp+ dp1+ · · ·+ dpi−1,

d1
= dp1+ · · ·+ dpi−1,

...

di−2
= dpi−2+ dpi−1,

di−1
= r pi−1.

Intuitively, the divisor layers for Q are in the form of a triangle, but the vanishing
in the last layer is allowed to be of lower multiplicity than in the others. The other
special case we need is a similar triangle shape which allows for the involvement
of points from different orbits.

Definition 4.5. For any divisor d and k ≥ 1, we define M(k, d)= J (c•), where

c0
= d+ τ−1(d)+ · · ·+ τ−k+1(d),

c1
= τ−1(d)+ · · ·+ τ−k+1(d),
...

ck−1
= τ−k+1(d).

It is useful to also define M(k, d)= T by convention, for any k ≤ 0.

Note that M(k, dp)= Q(k, d, d, p) for any k, d ≥ 0. The right ideals M(k, d)
are also useful for defining important subalgebras of T .

Definition 4.6. For any divisor d with deg d < µ we set

T (d) :=
⊕
n≥0

M(n, d)n,

which by [RSS 2015, Theorem 5.3(2)] is a g-divisible subalgebra of T . More
generally, for any `≥ 0 we define

T≤` ∗ T (d) :=
⊕
n≥0

M(n− `, dτ
`

)n,

which by [RSS 2015, Proposition 5.2(2)] is a right g-divisible T (d)-module.
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When deg d ≤ µ− 2, but not in general, the module T≤` ∗ T (d) is equal to the
right T (d)-module T≤`T (d)⊆ T [RSS 2015, Theorem 5.3(6)], so the notation is
chosen to suggest multiplication. As is discussed in [Rogalski 2011] and [RSS
2015, §5], the ring T (d) should be thought of as corresponding geometrically to a
blowup of T at the divisor d.

There are left-sided versions of all of the above definitions and results, because
Assumption 2.1 is left-right symmetric. We quickly state these analogues, because
there are some nonobvious differences in the statements, which result from the
fact that the equivalence of categories coh E ' B-qgr has the slightly different
form F → π

(⊕
n≥0 H 0(E,Mn ⊗ Fτ n−1

)
)
. Generally, τ−1 appears in the left-

sided results wherever τ appears in the right-sided version. A list of divisors
d• = (d0, d1, . . . , dk−1) on E is a left allowable divisor layering if τ(di−1) ≥ di

for all 1≤ i ≤ k− 1. We indicate left-sided versions by a prime in the notation. In
particular, given a left allowable divisor layering, there is a corresponding saturated
left ideal J ′(d•) of T , defined in [RSS 2015, §6], which satisfies the following
analogue of Lemma 4.2.

Lemma 4.7 [RSS 2015, Lemma 6.1]. Let d• be a left allowable divisor layering
and let J ′ = J ′(d•) and M = T/J ′.

(1) If M j
= Mg j/Mg j+1 is the j-th layer of M , then in B-qgr we have

π(M j )∼= π

(⊕
n≥0

H 0(E,Mn ⊗ (OE/OE(−τ
−n+1(d j ))))

)
.

(2) (J ′)sat
=
⊕

n≥0 H 0(E,Mn(−τ
−n+1(d0))).

(3) If d• = (d) has length 1, then

J ′(d)=
⊕
n≥0

{x ∈ Tn : x ∈ H 0(E,Mn(−τ
−n+1(d)))}. �

Similarly as on the right, as a special case of part (3) we have that P ′(p) =
T/J ′(p) is the left point module of T corresponding to p.

Of course, we also have left-sided analogues of Definitions 4.4 and 4.5, but we
only need the former. Namely, given any p ∈ E , i ≥ 1, and 0 ≤ r ≤ d ≤ µ, we
define Q′(i, d, r, p)= J ′(d•), where

d0
= dp+ dp−1+ · · ·+ dp−i+1,

d1
= dp−1+ · · ·+ dp−i+1,

...

di−2
= dp−i+2+ dp−i+1,

di−1
= r p−i+1.
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The right ideals Q and their left-sided analogues Q′ will be used below to define
filtrations in which every factor is a shifted point module; we will then study how
an arbitrary subalgebra U of T intersects such filtrations. The relevant result for
this is as follows.

Lemma 4.8 [RSS 2015, Lemma 6.5]. Let i, r, d, n∈N, with i<n and 1≤r≤d≤µ,
and p ∈ E. Then:

(1) Q(i, r, d, p)⊆ Q(i, r − 1, d, p), with factor

[Q(i, r − 1, d, p)/Q(i, r, d, p)]≥n ∼= P(pi−n−1)[−n].

(2) Q′(i, r, d, p)⊆ Q′(i, r − 1, d, p), with factor

[Q′(i, r − 1, d, p)/Q′(i, r, d, p)]≥n ∼= P ′(p−i+n+1)[−n]. �

The left and right ideals defined above are actually closely related. In fact, by
[RSS 2015, Proposition 6.8] one always has Q(i, r, d, p)n = Q′(i, r, d, pi−n)n , as
we will exploit in the next section.

We conclude this section with a review of some important homological concepts.

Definition 4.9. A ring A is called Auslander–Gorenstein if it has finite injective di-
mension and satisfies the Gorenstein condition: if p<q are nonnegative integers and
M is a finitely generated A-module, then Extp

A(N , A)= 0 for every submodule N of
ExtqA(M, A). Set j (M)=min{r :ExtrA(M, A) 6= 0} for the homological grade of M .
Then an Auslander–Gorenstein ring A of finite Gelfand–Kirillov dimension is called
Cohen–Macaulay (or CM) provided that j (M)+GKdim(M)= GKdim(A) holds
for every finitely generated A-module M . A cg k-algebra A is called Artin–Schelter
(AS) Gorenstein if A has injective dimension d and dimk Ext j

A(k, A)= δ j,d for all
j ≥ 0. An AS Gorenstein algebra is called AS regular if it is also has finite global
dimension d .

As the next two results show, many of the algebras appearing in this paper do
satisfy these conditions, and this automatically leads to some nice consequences.

Proposition 4.10. Let R=T (d)⊆T for some effective divisor d with deg d≤µ−1,
in the notation of Assumption 2.1. Then the following hold:

(1) R/gR = B(E,M(−d), τ ).

(2) If deg d < µ − 1 then R is generated as an algebra in degree 1, while if
deg d = µ− 1 then R is generated as an algebra in degrees 1 and 2.

(3) Both R and R/gR are Auslander–Gorenstein and CM.

(4) R is a maximal order in Qgr(R)= Qgr(T ).

Proof. Combine [RSS 2015, Theorem 5.3] and [Levasseur 1992, Theorem 6.6]. �
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Lemma 4.11. Fix a cg noetherian domain A that is Auslander–Gorenstein and CM.
Set GKdim(A)= α.

(1) If N is a finitely generated graded right (or left) A-submodule of Q = Qgr(A)
then N ∗∗ is the unique largest submodule M ⊆ Q with GKdim(M/N )≤ α−2.

(2) In particular, there is no graded A-module A $ N ⊂ Q with GKdim(N/A)≤
GKdim(A)− 2.

(3) If J = J ∗∗ 6= A is a proper reflexive right ideal of A then A/J is (α− 1)-pure
in the sense that GKdim(I/J ) = GKdim(A/J ) = α − 1 for every nonzero
A-module I/J ⊆ A/J .

(4) If N is a finitely generated A-module, then Ext j (N )
A (N , A) is a pure module

with Gelfand–Kirillov dimension equal to GKdim(N ).

Proof. Part (1) follows from [Björk and Ekström 1990, Theorem 3.6 and Exam-
ple 3.2]. Parts (2) and (3) are special cases of (1), while part (4) follows by [ibid.,
Lemma 2.8]. �

5. An equivalent T (d)

Throughout this section, T will be an algebra satisfying Assumption 2.1, and we
maintain all of the notation introduced in Section 4. In this section we prove that
if U is a g-divisible graded subalgebra of T with Qgr(U )= Qgr(T ) then U is an
equivalent order to some T (d). This should be compared with [Rogalski 2011,
Theorem 1.2]: the rings T (d) with d effective of degree < µ− 1 are precisely the
maximal orders U ⊆ T with Qgr(U )= Qgr(T ) that are generated in degree 1.

We begin by studying U and related subalgebras of k(E)[t, t−1
; τ ]. We say

that two divisors x and y are τ -equivalent if, for every orbit O of τ on E , one
has deg(x|O) = deg( y|O). Two invertible sheaves OE(x) and OE( y) are then τ -
equivalent if the divisors x and y are τ -equivalent.

Lemma 5.1. Let N,N′ be ample invertible sheaves on E of the same degree. Let
R := B(E,N, τ ) and R′ := B(E,N′, τ ), and let F be an (R′, R)-subbimodule of
k(E)[t, t−1

; τ ]. Then FR is finitely generated if and only if R′F is finitely generated.
In this case, N and N′ are τ -equivalent.

Proof. Suppose that F is a finitely generated right R-module. By [Artin and
Van den Bergh 1990, Theorem 1.3] there is an invertible sheaf F on E so that
F •

=
⊕

n H 0(E,FNn). For m, n� 0, ampleness ensures that the sheaves N′m and
FNn are generated by their sections and, by construction, those sections are R′m =
H 0(E,N′m) and Fn = H 0(E,FNn), respectively, again for m, n� 0. Since F is a
left R′-submodule, R′m Fn ⊆ Fn+m for all m, n, and so these observations imply that

N′mFτm
Nτm

n ⊆ FNn+m
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for all n,m � 0. By hypothesis, N′mFτm
Nτm

n and FNn+m have the same degree,
and therefore they are equal. In addition, for n,m� 0 the sheaves N′m and Fτm

Nτm

n
have degree ≥ 3. Thus, by [Rogalski 2011, Lemma 3.1], the map

H 0(E,N′m)⊗ H 0(E,Fτm
Nτm

n )→ H 0(E,N′mFτm
Nτm

n )

is surjective. Thus, R′m Fn = Fn+m for all n,m� 0 and R′F is finitely generated.
By symmetry, if R′F is finitely generated then so is FR .

In either case, it follows that N′m = FNm(F
−1)τ

m
for all m � 0. The identity

N′(N′m)
τ
= N′m+1 gives

N′FτNτ
m(F

−1)τ
m+1
= N′(N′m)

τ
= N′m+1 = FNm+1(F

−1)τ
m+1
= FNNτ

m(F
−1)τ

m+1
.

Rearranging gives N′ = FN(F−1)τ , which is certainly τ -equivalent to N. �

We next need two technical results on subalgebras of B(E,M, τ ) that modify
the data given by Theorem 3.1.

Notation 5.2. Recall from (4.3) that given a closed point p ∈ E we write p0 = p
and pn = τ−n(p) for all n ∈ Z. We will also write xτ = τ−1(x) when x is
a divisor (or closed point) on E , to distinguish left and right actions, and set
xn = x+ xτ + · · ·+ xτ n−1

.

We start with a routine consequence of Theorem 3.1.

Corollary 5.3. Let A ⊆ B = B(E,M, τ ) be a cg algebra with Qgr(A) = Qgr(B).
Then there exist x, y ∈ Div(E) and k ∈ Z≥1 so that

An = H 0(E,Mn(− y− xn)) for all n ≥ k. (5.4)

Furthermore, µ > deg x ≥ 0, and

for any n ≥ k and divisor c> y+ xn we have An 6⊆ H 0(E,Mn(−c)). (5.5)

Proof. By Theorem 3.1, there exist an integer k ≥ 1, an ideal sheaf Y and an ample
invertible sheaf N on E so that

An = H 0(E,YNn) for all n ≥ k. (5.6)

Let Y = OE(− y) for some divisor y and write N = M(−x) for the appropriate
divisor x on E ; thus (5.4) is just a restatement of (5.6). Further, deg x =µ−deg N,
which, as N is ample, implies that deg x < µ. On the other hand, Riemann–Roch
implies that

µn = deg Mn = dim Bn ≥ dim An = n deg(N)− deg y = n(µ− deg x)− deg y

for n� 0. Therefore, deg x ≥ 0.
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Finally, since N is τ -ample, after possibly increasing k we can assume that
Mn(− y− xn) is generated by its sections An for all n ≥ k (see for example [Artin
and Stafford 1995, Lemma 4.2(1)]). Thus for any larger divisor c> y+ xn we will
have H 0(E,Mn(−c))$ H 0(E,Mn(− y− xn)). Thus (5.5) also holds. �

We next want to modify Corollary 5.3 so that x is replaced by an effective divisor,
although this will result in a weaker version of (5.4).

Proposition 5.7. Let A⊆ B = B(E,M, τ ) be a cg algebra with Qgr(A)= Qgr(B).
Then there is an effective divisor d on E , supported at points with distinct orbits
and with deg d < µ, so that A and C = B(E,M(−d), τ ) are equivalent orders.
Moreover, d and k ∈ Z≥1 can be chosen so that

An ⊆ H 0(E,Mn(−dτ
k
− · · ·− dτ

n−1
))

= H 0(E,OE(dk)⊗M(−d)n) for all n ≥ k. (5.8)

Proof. Let x and y be the divisors constructed in the proof of Corollary 5.3, and let k
be the integer from that result. Fix an orbit O of τ on E . By possibly enlarging k
we can pick p ∈O so that, using the notation of 5.2,

x|O is supported on {p = p0, . . . , pk}, and

y|O is supported on {p0, . . . , pk−1}.
(5.9)

Thus

y|O =
k−1∑
i=0

yi pi and x|O =
k∑

i=0

xi pi

for some integers yi and x j . For n ∈ N we have

(xn)|O =

k∑
i=0

xi (pi + pi+1+ · · ·+ pi+n−1).

Thus, for n ≥ k we calculate that

( y+xn)|O=(y0+x0)p0+· · ·+

(
y j+

∑
i≤ j

xi

)
p j+· · ·+

(
yk−1+

∑
i≤k−1

xi

)
pk−1

+

(∑
i≥0

xi

)
(pk + · · ·+ pn−1)+

(∑
i≥1

xi

)
pn + · · ·+

(∑
i≥ j

xi

)
pn+ j−1

+ · · ·+ xk pn+k−1. (5.10)

Let ep =
∑

xi . Since A ⊆ B(E,M, τ ), the divisor y+ xn is effective for n� 0,
and so

y j +
∑
i≤ j

xi ≥ 0 and
∑
i≥ j

xi ≥ 0 (5.11)
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for all 0≤ j ≤ k. In particular, ep ≥ 0. Let d =
∑

p ep p, where the sum is taken
over one closed point p in each orbit O of τ . Take the maximum of the values
of k occurring for the different orbits in the support of x and y, and call this also k.
From (5.10) and (5.11) we see that, on each orbit O and hence in general,

y+ xn ≥ dτ
k
+ · · ·+ dτ

n−1

for all n ≥ k. In other words, (5.8) holds for this d and k. By construction,
deg d = deg x < µ.

Finally, let N = M(−x) and let Y = OE(− y). Let C = B(E,M(−d), τ ) and
C ′ = B(E,N, τ ). Equation (5.8) can be rephrased as saying that

YNn ⊆Mn(−dτ
k
− · · ·− dτ

n−1
)= O(dk)⊗M(−d)n for all n ≥ k.

Thus, for n0� 0,

C ′
≥n0
⊆ N =

⊕
n≥n0

H 0(E, (Y−1
⊗O(dk))⊗M(−d)n).

Since M(−d) is τ -ample (because it has positive degree) and Y−1
⊗ O(dk) is

coherent, [Artin and Stafford 1995, Lemma 4.2(ii)] implies that N is a finitely
generated right C-module. Hence, so is C ′C . Since N=M(−x) with deg d= deg x,
we can apply Lemma 5.1 to conclude that C ′C is a finitely generated left C ′-module.
Thus C and C ′ are equivalent orders. By the proof of [ibid., Theorem 5.9(2)], C ′ is
a finitely generated right A-module. Thus C ′ and A are equivalent orders, and so C
and A are also equivalent. �

Definition 5.12. We say that ( y, x, k) as given by Corollary 5.3 is geometric data
for A. If (5.9) holds for p ∈O, we say p is a normalised orbit representative for
this data, and we say that d =

∑
ep p is a normalised divisor for ( y, x, k). To

avoid trivialities, the only orbits considered here are the (finite number of) orbits
containing the support of x and y. By construction, deg d = deg x < µ.

We now use these results to study subalgebras of T , and begin with a general idea
of the strategy. Let U be a g-divisible graded subalgebra of T so that Qgr(U ) =
Qgr(T ). By Proposition 2.9, U is automatically a finitely generated, noetherian
k-algebra, so the earlier results of the paper are available to us. Let ( y, x, k) be
geometric data for U and let d be a normalised divisor for ( y, x, k). We will show
that U and T (d) are equivalent orders.

Recall that the right T (d)-module T≤k ∗ T (d) =
⊕

n≥0 M(n − k, dτ k
)n from

Definition 4.6 is g-divisible, with

T≤k ∗ T (d)=
⊕
n≥0

H 0(E,Mn(−dτ
k
− · · ·− dτ

n−1
)),
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by Lemma 4.2. In other words, by (5.8),

U ⊆ T≤k ∗ T (d).

Our next goal is to show that this holds without working modulo g: that is, that

U ⊆ T≤k ∗ T (d). (5.13)

This will force Û T (d) to be finitely generated as a right T (d)-module, which is a
key step towards proving that U and T (d) are equivalent orders.

Suppose therefore that (5.13) fails, and so Un0 6⊆ (T≤k ∗ T (d))n0 for some n0.
Necessarily, n0 > k. We will find a right T -ideal Q(i, r, e, p) and a left T -ideal
Q′(i, r, e, q) such that if we set I = U ∩ Q(i, r, e, p) and J = U ∩ Q′(i, r, e, q)
then U/I and U/J are isomorphic to point modules in large degree. Further, we
can choose p and q so that In0 = Jn0 . However, Corollary 3.9 can be used to derive
precise formulæ for In0 and Jn0 , and we will see that these formulæ are inconsistent,
leading to a final contradiction.

In the next few results, we carry out this argument, using induction and a filtration
of T by the right ideals Q defined in Section 4. Recall the definition of I sat from
Definitions 4.1, and the definitions of J (d•), Q(i, r, d, p), and their left-sided
analogues from Section 4.

Lemma 5.14. Let U be a g-divisible graded subalgebra of T with Qgr(U ) =
Qgr(T ). Suppose that n > i ≥ 1, 1≤ r ≤ e ≤ µ, and j ∈ Z. Suppose further that

(A) U≥n ⊆ Q(i, r − 1, e, p j ), but Un * Q(i, r, e, p j ); and

(B) U m * J (pi+ j−n−1)m = H 0(E,Mm(−pi+ j−n−1)) for all m ≥ n.

Let I =U ∩ Q(i, r, e, p j ), and let M =U/I sat. Then:

(1) Mn 6= 0.

(2) M is 1-critical and Mg = 0.

(3) (r-annU (Mn))m = (U ∩ J (pi+ j−n−1))m for all m� 0.

Proof. (1) Let L=U/I , so that M= L/L ′, where L ′ is the largest finite-dimensional
submodule of L . Since n > i , it follows from hypothesis (A) and Lemma 4.8(1)
that dim Lm ≤ 1 for all m ≥ n and that

Un J (pi+ j−n−1)⊆ Q(i, r, e, p j ). (5.15)

If Mn = 0, then LnUm = 0 for all m� 0. Then UnUm ⊆ Q(i, r, e, p j ) for all m� 0.
By hypothesis (B), Um + J (pi+ j−n−1)m = Tm for m ≥ n, so UnTm ⊆ Q(i, r, e, p j )

for m� 0 also. Since Q(i, r, e, p j ) is a saturated right T -ideal, Un ⊆ Q(i, r, e, p j ),
contradicting the hypotheses.
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(2) By Lemma 4.2(3), g ∈ J (pi+ j−n−1), whence M≥n · g = 0 and r-annU (M) ⊇
U≥ng = gU≥n . By construction, M has no finite-dimensional submodules, and so
Mg = 0. Thus M is a U -module. Also, dimk Mm ≤ dimk Lm ≤ 1 for all m ≥ n
and M 6= 0 by part (1), so GKdim(M) = 1. Since M is noetherian, it has a U -
submodule M ′ maximal with respect to the property GKdim(M/M ′) = 1. Then
M/M ′ is 1-critical. However, by Corollary 3.7(2) any 1-critical U -module N has
dim Nm = 1 for all m� 0. Thus M ′ is finite-dimensional; hence M ′ = 0 and M is
1-critical.

(3) Since M is 1-critical, its cyclic submodule N = MnU must also be 1-critical.
Thus dimk Mn = 1= dimk Nn for n� 0, forcing M •

= N . In particular, we must
have r-annU (Mn)m $Um for all m� 0. By (5.15), r-annU (Mn)⊇U∩ J (pi+ j−n−1).
Now Lemma 4.2(3) implies that J (pi+ j−n−1)m has codimension 1 in Tm for all
m ∈ N. Thus r-annU (Mn)m = (U ∩ J (pi+ j−n−1))m for all m� 0. �

Corollary 5.16. Assume that we have the hypotheses of Lemma 5.14. Assume in
addition to (A), (B) that we have e < µ and

(C) U≥n ⊆ J (ep j+i−1)= H 0(E,Mn(−ep j+i−1)), but

U n * J ((e+ 1)p j+i−1)= H 0(E,Mn(−(e+ 1)p j+i−1)).

Then Un ∩ Q(i, r, e, p j )=Un ∩ J ((e+ 1)pi+ j−1).

Proof. Let
I = (U ∩ Q(i, r, e, p j ))

sat and M =U/I.

Similarly, let

H = (U ∩ J ((e+ 1)pi+ j−1))
sat with N =U/H.

Note that Q(1, d, d, p j+i−1)= J (dp j+i−1) for any d . Also, since g ∈ J (dp j+i−1),
hypothesis (C) is equivalent to U≥n ⊆ J (ep j+i−1) but Un * J ((e + 1)p j+i−1).
Thus, hypothesis (C) implies that the hypothesis (A) of Lemma 5.14 also holds
for (i ′, r ′, e′)= (1, e+ 1, e+ 1) and j ′ = i + j − 1. Also, hypothesis (B) for these
values is the same as hypothesis (B) for the old values. Since e<µ, the hypotheses
of Lemma 5.14 hold for (i ′, r ′, e′).

We may now apply Lemma 5.14 to M and N . Thus, Mn, Nn 6= 0, both M, N
are 1-critical and killed by g, and r-annU (Mn) and r-annU (Nn) are both equal to
U ∩ J (pi+ j−n−1) in large degree. By Corollary 3.9, we have M ∼= N and so I = H .
Thus, since Un ∩ Q(i, r, e, p j ) and Un ∩ J ((e+ 1)pi+ j−1) are already saturated in
degree n by Lemma 5.14(1), we have

Un ∩ Q(i, r, e, p j )= In = Hn =Un ∩ J ((e+ 1)pi+ j−1). �

We also need the left-sided versions of the two preceding results. Since the
statements and proofs of these are largely symmetric, we give a combined statement
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of the left-sided versions, with an abbreviated proof. We note that a consequence
of [RSS 2015, Lemmas 3.5 and 6.1] is that

J ′(dp j )n = J (dp j+n−1)n and

J ′(dp j )n = H 0(E,Mn(−dp j+n−1))= J (dp j+n−1)n.
(5.17)

Lemma 5.18. Let U be a g-divisible graded subalgebra of T with Qgr(U ) =
Qgr(T ). Suppose that n > i ≥ 1, 1≤ r ≤ e < µ, and h ∈ Z. Suppose further that

(A′) U≥n ⊆ Q′(i, r − 1, e, ph), but Un * Q′(i, r, e, ph);

(B′) U m * J ′(ph−i+n+1)m = H 0(E,Mn(−ph−i+n+m)) for m ≥ n; and

(C′) U≥n ⊆ J ′(eph−i+1), but

U n * J ′((e+ 1)ph−i+1)n = H 0(E,Mn(−(e+ 1)ph−i+n)).

Then Un ∩ Q′(i, r, e, ph)=Un ∩ J ′((e+ 1)ph−i+1).

Proof. The equalities in (B′), (C′) follow from (5.17). The rest of the proof is
symmetric to the proofs of Lemma 5.14 and Corollary 5.16. In particular, one uses
part (2) of Lemma 4.8 in place of part (1). �

The next result is the heart of the proof that U and T (d) are equivalent orders.

Proposition 5.19. Let U be a g-divisible cg subalgebra of T with Qgr(U )=Qgr(T ).
Let ( y, x, k) be geometric data for U and let d =

∑
ep p be a normalised divisor

for this data. Then
U ⊆ T≤k ∗ T (d).

Proof. If d = 0 the result is trivial, so we may assume that d > 0. Suppose that
U 6⊆ T≤k ∗ T (d).

By [RSS 2015, Lemma 6.6], T≤k ∗ T (d) =
⋂

p T≤k ∗ T (ep p), where the inter-
section is over the normalised orbit representatives p. Thus there is some such p
so that U 6⊆ T≤k ∗ T (ep p). Let e= ep <µ. By [RSS 2015, Lemma 6.6], again, for
n ∈ N we have

(T≤k ∗ T (ep))n =
⋂
{Q(i, r, e, p j )n : i ≥ 1, k ≤ j ≤ n− i, 1≤ r ≤ e}.

Thus, there are i ≥ 1, 1≤ r ≤ e, and n, j ∈ N with 1≤ k ≤ j ≤ n− i such that

Un 6⊆ Q(i, r, e, p j )n. (5.20)

Without loss of generality we can assume that i is minimal such that we can achieve
this for some such n, j, r . Note that i ≥ 2, since Q(1, r, e, p j )= H 0(E,M(−r p j ))

by Lemma 4.2(2), and the sections in Un vanish to multiplicity e at p j by (5.10).
Then choose r minimal (for this i) so that (5.20) holds for some such n, j . Intuitively,
we are finding a “divisor triangle” of minimal size i such that the corresponding
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right ideal does not contain Un , with deepest layer vanishing condition in this
triangle to be of multiplicity r as small as possible.

Claim 1. Un ∩ Q(i, r, e, p j )=Un ∩ J ((e+ 1)p j+i−1).

Proof. We check the hypotheses of Corollary 5.16. Hypothesis (A) follows by
minimality of r when r > 1. When r = 1, then we need U≥n ⊆ Q(i, 0, e, p j ). Now,
by [RSS 2015, (6.7)],

Q(i, 0, e, p j )= Q(i − 1, e, e, p j )∩ Q(i − 1, e, e, p j+1). (5.21)

Since U≥n is contained in both Q(i−1, e, e, p j ) and Q(i−1, e, e, p j+1) by the
minimality of i , hypothesis (A) holds in this case as well.

Note that, by (5.5), the equation (5.10) gives exactly the vanishing (with mul-
tiplicities) at points on the τ -orbit of p for the sections in U n ⊆ H 0(E,Mn). In
particular, (B) holds because i + j −n−1< 0. Similarly, (C) holds by (5.10) since
k ≤ j + i − 1≤ n− 1. Thus Corollary 5.16 gives the result. �

Claim 2. Un ∩ Q′(i, r, e, ph)=Un ∩ J ′((e+ 1)ph−i+1) for h = j + i − n.

Proof. This similarly follows from Lemma 5.18 once we verify the hypotheses
of that result. For (B′), note that h− i + n+m = j +m ≥ k +m and use (5.10).
Hypothesis (C′) follows again from (5.10) since h− i+n= j satisfies k ≤ j ≤ n−1.

It remains to verify (A′). We will use the equality

Q(k, r,m, p)n = Q′(k, r,m, pk−n)n, (5.22)

proven in [RSS 2015, Proposition 6.8(3)]. Thus, Un 6⊆ Q′(i, r, e, ph)n . Now let
n′ ≥ n. Suppose that r > 1. The minimality hypothesis on r means that, for
any j ′ with k ≤ j ′ ≤ n′− i , we have Un′ ⊆ Q(i, r − 1, e, p j ′)n′ . In particular, since
k ≤ j + n′− n ≤ n′− i , we have

Un′ ⊆ Q(i, r − 1, e, p j+n′−n)n′ = Q′(i, r − 1, e, ph)n′

by (5.22). Thus U≥n ⊆ Q′(i, r − 1, e, ph). If instead r = 1, then

Q′(i, 0, e, ph)n′ = Q(i, 0, e, p j−n+n′)

= Q(i − 1, e, e, p j−n+n′)∩ Q(i − 1, e, e, p j−n+n′+1)

by (5.21) and (5.22). But Un′ is contained in both Q(i − 1, e, e, p j−n+n′+1) and
Q(i − 1, e, e, p j−n+n′) by minimality of i . Thus U≥n ⊆ Q′(i, r − 1, e, ph) in this
case as well, and (A′) holds as needed. �

Claim 3. Un ∩ Q(i, r, e, p j )=Un ∩ J ((e+ 1)p j ).
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Proof. As in the proof of Claim 2, we have Q(i, r, e, p j )n = Q′(i, r, e, p j+i−n)n ,
and so that claim gives

Un ∩ Q(i, r, e, p j )=Un ∩ Q′(i, r, e, p j+i−n)

=Un ∩ J ′((e+ 1)p j−n+1)

=Un ∩ J ((e+ 1)p j ),

where we use (5.17) in the last step. �

We can now complete the proof of Proposition 5.19. Combining Claims 1 and 3,
we have

Un ∩ J ((e+ 1)p j )=Un ∩ Q(i, r, e, p j )=Un ∩ J ((e+ 1)pi+ j−1). (5.23)

Recall that U n = H 0(E,Mn(− y− xn)) and i ≥ 2. Thus, by (5.10) and (5.5) we see
that, after taking the image of (5.23) in B, the right-hand side vanishes to order e
at p j , while the left-hand side vanishes to order e+ 1 at p j . This contradiction
completes the proof of the proposition. �

We can now quickly prove our first main theorem.

Theorem 5.24. Let U be a g-divisible graded subalgebra of T with Qgr(U ) =
Qgr(T ). Then there is an effective divisor d on E , supported on points with distinct
orbits and with deg d < µ, so that U is an equivalent order to T (d).

In more detail, for some d the (U, T (d))-bimodule M = Û T (d) is a finitely
generated g-divisible right T (d)-module with MT = T . Set W = EndT (d)(M).
Then U ⊆W ⊆ T , the bimodule M is finitely generated as a left W -module, while
W , U , and T (d) are equivalent orders.

Remark 5.25. Recall from Lemma 2.10 that, if U be a g-divisible graded subal-
gebra of T with Dgr(U ) = Dgr(T ), then Qgr(U ) = Qgr(T ) also holds. However,
some condition on quotient rings is required for the theorem, since clearly U = k[g]
is not equivalent to any T (d).

Proof. By Lemma 2.10, Qgr(U )= Qgr(T ) and so we can apply Proposition 5.7 to
A=U . Let d, k be as defined there; thus if R = T (d) then U and R are equivalent
orders. By Proposition 5.19, U ⊆ T≤k ∗ R.

Let M = Û R and W = EndR(M). By [RSS 2015, Theorem 5.3(5)], T≤k ∗ R is a
noetherian right R-module and so M⊆T≤k∗R is a finitely generated right R-module.
Clearly MT = T since 1 ∈ M ⊆ T and so W ⊆ T . Thus, by Lemma 2.12(3), W M
is finitely generated, and so W and R are equivalent orders. A routine calculation
shows that M is a left U -module and so U ⊆W .

Consider the (W , R)-bimodule M . This is finitely generated on both sides, since
the same is true of W MR . Thus W and R are equivalent orders, which, as R and U
are equivalent orders, implies that W and U are likewise. Finally, as U ⊆W ⊆ T ,
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the hypotheses of the theorem ensure that Qgr(U )= Qgr(W )= Qgr(T ). Thus, by
Proposition 2.16, U and W are equivalent orders, and hence so are U and R. �

Corollary 5.26. Suppose that u and v are two effective, τ -equivalent divisors with
degree deg u ≤ µ− 1. Then T (u) and T (v) are equivalent orders.

Proof. Consider the construction of the divisor d in Theorem 5.24 starting from the
algebra U =T (u). Thus d=

∑
ep p is the divisor constructed in Proposition 5.7 and

there is considerable flexibility in its choice. To begin, in the proof of Equation (5.4),
one sees that y= 0 and x = u. For each orbit O of τ , a point p is then chosen such
that u|O is supported on XO = {p0 = p(O), p1, . . . , pk}. For each such orbit, we
can replace p0 by some p−r and increase k so that both u|O and v|O are supported
on XO. Then d=

∑
O ep p(O), for these choices of points p(O), and ep=deg(u|O).

As u and v are τ -equivalent, deg(u|O)=deg(v|O) for each orbit O, and hence the di-
visor d is the same whether we started with T (u) or T (v). Hence, by Theorem 5.24,
T (u) and T (v) are both equivalent to T (d) and hence to each other. �

Remark 5.27. One disadvantage of Theorem 5.24 is that the (U, T (d))-bimodule
M constructed there need not be finitely generated as a left U -module. Using
[McConnell and Robson 2001, Proposition 3.1.14] and the fact that our rings are
noetherian, one can easily produce such a bimodule. However, this typically lacks
the extra structure inherent in M (notably that MT = T ) and so is less useful for
our purposes. As will be seen in the next section, this problem disappears when
one works with maximal orders (see Corollary 6.6, for example) and this will in
turn give extra information about the structure of such an algebra.

6. On endomorphism rings of T (d)-modules

Given a g-divisible algebra U ⊆ T , Theorem 5.24 provides a module M over some
blowup T (d) with U ⊆ EndT (d)(M). In this section, we reverse this procedure by
obtaining detailed properties of such endomorphism rings (see Proposition 6.4 and
Theorem 6.7). These results provide important information about the structure of
maximal T -orders that will in turn be refined over the next two sections to prove
the main result Theorem 1.2 from the introduction.

We begin with an expanded version of a definition from the introduction.

Definition 6.1. Let U ⊆ V be Ore domains with the same quotient ring Q(U ).
We say that U is a maximal V -order if there exists no order U $ U ′ ⊆ V that
is equivalent to U . We note that if U and V are graded (in which case requiring
that Qgr(U )= Qgr(V ) is sufficient) then this is the same as being maximal among
graded orders equivalent to U and contained in V . Indeed, suppose that U has the
latter property, but that U ( A ⊆ V for some equivalent order A. If A is given the
filtration induced from the graded structure of V , then the associated graded ring
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gr A will still satisfy U ( gr A ⊆ V and be equivalent to U , giving the required
contradiction.

When V = Q(U ), or V = Qgr(U ) if U is graded, a maximal V -order is simply
called a maximal order.

We are mostly interested in maximal T -orders. We introduce this concept because
maximal T -orders need not be maximal orders (see Proposition 10.3), although the
difference is not large (see Corollary 6.6). We first want to study the endomorphism
ring EndT (d)(M) arising from Theorem 5.24, and we begin with two useful lemmas.

Lemma 6.2. Let A be a noetherian domain with quotient division ring D. If N is a
finitely generated right A-submodule of D then EndA(N ∗∗) is the unique maximal
order among orders containing and equivalent to EndA(N ).

Proof. This is what is proved in [Cozzens 1976, Theorem 2.7], since EndA(N ∗)=
EndA(N ∗∗). �

Lemma 6.3. Let A and B be rings such that A is left noetherian and suppose that
M is an (A, B)-bimodule that is finitely generated on both sides, and that N is a
finitely generated right B-module. Then HomB(N ,M) is a finitely generated left
A-module. In particular, EndB(M) is a finitely generated left A-module, and if B
is left noetherian then N ∗ = HomB(N , B) is a finitely generated left B-module.

Proof. A surjective B-module homomorphism B⊕n
→ N induces an injective left

A-module homomorphism HomB(N ,M) ↪→ HomB(B⊕n,M)∼= M⊕n . Since M is
a noetherian left A-module, HomB(N ,M) is a finitely generated left A-module. �

We are now ready to prove the first significant result of the section. Until further
notice, all duals N ∗ will be taken as R-modules, for R = T (d).

Proposition 6.4. Let d be an effective divisor on E with deg d<µ and let R=T (d).
Let M⊆T(g) be a g-divisible finitely generated graded right R-module with MT =T
and set W = EndR(M) and F = EndR(M∗∗). Then:

(1) F , V = F ∩ T and W are g-divisible algebras with Qgr(W ) = Qgr(V ) =
Qgr(F)= Qgr(T ).

(2) F is the unique maximal order containing and equivalent to W , while V is the
unique maximal T -order containing and equivalent to W .

(3) There is an ideal K of F with K ⊆W and GKdim F/K ≤ 1.

(4) R = EndW (M)= EndF (M∗∗).

Proof. Since Qgr(R) = Qgr(T ) by Proposition 4.10, clearly the same is true for
W , V and F . As in (2.11), given a right R-module N ⊂ Qgr(R) we identify

N ∗ = HomR(N , R)= {θ ∈ Qgr(R) : θN ⊆ R},
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and similarly for left modules. By Lemma 2.12(3), W is g-divisible and W M is
finitely generated. Thus the left-sided version of Lemma 6.3 shows that EndW (M)
is a finitely generated right R-module. Moreover, by Proposition 4.10, R is a
maximal order and so R = EndW (M).

By Lemma 2.13(3), M∗∗ is g-divisible with M∗∗ ⊂ T(g). Since M∗∗ is clearly
a finitely generated right R-module, the same logic ensures that F is g-divisible,
F M∗∗ is finitely generated and EndF (M∗∗) = R. By Lemma 6.2, F ⊇ W and F
is the unique maximal order containing and equivalent to W . This automatically
ensures that V = F ∩ T is maximal among T -orders containing and equivalent
to W . Clearly V is also g-divisible.

It remains to find the ideal K . By Proposition 2.9, both W and F are noetherian.
By Proposition 4.10 and Lemma 4.11(1), GKdimR(M∗∗/M)≤GKdim(R)−2= 1.
Since M is g-divisible, X = M∗∗/M is g-torsionfree and so, by Lemma 2.14, X is
a finitely generated right k[g]-module. Since M ⊆ M∗∗ ⊂ T(g) the action of g is
central on X and so X is also a finitely generated left k[g]-module. Now, it is
routine to check that M∗∗ and hence X are left W -modules, while k[g] ⊆W since
W is g-divisible. Thus, X and hence M∗∗ are finitely generated left W -modules.
Moreover, GKdimW (X) ≤ GKdimk[g](X) ≤ 1 and so, by [Krause and Lenagan
1985, Lemma 5.3], I = `-annW (X) satisfies GKdim(W/I )≤ 1.

Now consider F . First,

(I F)M ⊆ I F M∗∗ ⊆ I M∗∗ ⊆ M

and hence I F = I ⊆W . Thus F is a finitely generated right W -module and (on the
left) GKdimW (F/W )≤GKdim(W/I )≤ 1. On the other hand, as W M∗∗ is finitely
generated, Lemma 6.3 implies that F = EndR(M∗∗) is a finitely generated left W -
module. Thus, by [ibid., Lemma 5.3], again, the right annihilator I ′= r-annW (F/W )

satisfies GKdim W/I ′ ≤ 1. Thus K = I ′ I is an ideal of both F and W . By the
symmetry of the GK-dimension of bimodules finitely generated on both sides
[ibid., Corollary 5.4] and the exactness of the GK-dimension [ibid., Theorem 6.14],
GKdim(F/K )≤ 1. �

Pairs of algebras (V, F) satisfying the conclusions of the proposition will appear
multiple times in this paper and so we turn those properties into a definition. For a
case when F 6= V , see Proposition 10.3.

Definition 6.5. A pair (V, F) is called a maximal order pair if

(1) F and V are g-divisible, cg algebras with V ⊆ F ⊆ T(g) and V ⊆ T ;

(2) F is a maximal order in Qgr(F) = Qgr(T ) and V = F ∩ T is a maximal
T -order;

(3) there is an ideal K of F with K ⊆ V and GKdim F/K ≤ 1.
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The next result illustrates the significance of Proposition 6.4 to the structure of
maximal T -orders.

Corollary 6.6. Let U ⊆ T be a g-divisible cg maximal T -order.

(1) There exists an effective divisor d on E , with deg d < µ, and a g-divisible
(U, T (d))-module M ⊆ T with MT = T that is finitely generated as both
a left U-module and a right T (d)-module. Moreover, U = EndT (d)(M) and
T (d)= EndU (M).

(2) (U, F = EndR(M∗∗)) is a maximal order pair; in particular, if U is a maximal
order then U = F.

(3) Suppose that every ideal I of T (d) satisfying GKdim(T (d)/I ) = 1 satisfies
GKdim T/I T ≤ 1 (in particular, this holds if T (d) has no such ideals I ). Then
U = F is a maximal order.

Proof. (1) By Theorem 5.24, there is an effective divisor d with deg d < µ so that

U ⊆ V = EndT (d)(M)⊆ T,

where M = Û T (d) is a finitely generated g-divisible graded right T (d)-module
with MT = T . By Theorem 5.24 again, V and U are equivalent orders. Since U is a
maximal T -order, this forces U = V . Finally, T (d)= EndU (M) by Proposition 6.4.

(2) As U = V , this is a restatement of Proposition 6.4(2).

(3) Just as in the proof of Proposition 6.4, J = r-annR M∗∗/M is an ideal of R with
GKdim(R/J )≤ 1. Note that since M is g-divisible, either M = M∗∗ and J = R,
or else GKdim(R/J )= 1.

In either case, the hypotheses imply that GKdim T/J T ≤ 1. Now M∗∗ J T ⊆
MT = T . Thus

GKdim(αT + T )/T ≤ GKdim T/J T ≤ 1

for any α∈M∗∗. By Proposition 4.10 and Lemma 4.11(1), this implies that M∗∗⊆T .
This in turn implies that M∗∗T = T and hence that F ⊆ T . Since U is a maximal
T -order, U = F is a maximal order. �

We now turn to the second main aim of this section, which is to describe the
structure of U for suitable endomorphism rings U = EndT (d)(M). The importance
of this result is that the pleasant properties of U can be pulled back to U .

Theorem 6.7. Let d be an effective divisor on E with deg d <µ, and let R = T (d).
Let M be a finitely generated g-divisible graded right R-module with R ⊆ M ⊆ T .
Let U = EndR(M) and F = EndR(M∗∗). Then there is an effective divisor y on E
so that

F •

=U •

= EndR(M)
•

= B(E,M(−x), τ ) for x = d− y+ τ−1( y). (6.8)

Moreover, if V = F ∩ T then U ⊆ V ⊆ F and (V, F) is a maximal order pair.
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The proof of Theorem 6.7 depends on a series of lemmas that will take the rest
of this section. Before getting to those results we make some comments and a
definition. We first want to regard the ring F from the theorem as a blowup of T at
the divisor x on E , even if x is not effective. We formalise this as follows.

Definition 6.9. Let x be a (possibly noneffective) divisor on E with 0≤ deg x <
µ= deg M. We say that a cg algebra F ⊆ T(g) is a blowup of T at x if

(i) F is part of a maximal order pair (V, F) with Qgr(F)= Qgr(T ); and

(ii) F •

= B(E,M(−x), τ ).

Remarks 6.10. (i) The reader should regard this definition of a blowup as temporary
in the sense that it will be refined in Definition 7.1 and justified in Remark 7.5.
One caveat about the concept is that there may not be a unique blowup of T at
the divisor x; in the context of Theorem 6.7 there may be different R-modules M
leading to distinct blowups F , which nonetheless have factors F which are equal
in large degree. See Example 10.4 and Remark 10.7(2).

(ii) It follows easily from Theorem 6.7 that a maximal order pair (V, F) does give
a blowup of T at an appropriate (possibly noneffective) divisor x. The details are
given in Theorem 7.4 which also gives a converse to Theorem 6.7.

(iii) We conjecture that, generically, the blowup T (d) will have no sporadic ideals
in Theorem 6.7 and so, by Corollary 6.6(3), U = F will then be a maximal order.
For an example where this happens see Example 10.4, and, conversely, for an
example when U 6= F and F 6⊆ T see Proposition 10.3.

Notation 6.11. For the rest of the section, we write N ∗ = HomU (N ,U ) provided
that the ring U is clear from the context. In particular, given a g-divisible left
ideal I of R, we have I ∗ = HomR(I/gI, R) while I ∗ = HomR(I, R). Recall from
Lemma 4.11 that a R-module M is α-pure provided GKdim(M)=GKdim(N )= α
for all nonzero submodules N ⊆ M .

The main technical result we will need is the following, showing that “bar and
star commute” (up to a finite-dimensional vector space).

Proposition 6.12. Let R = T (d) for an effective divisor d with deg d < µ.

(1) Let I be a proper, g-divisible left ideal of R for which R/I is 2-pure. Then
I ∗/R is a g-torsionfree, 2-pure right module; further, I ∗ ⊆ T(g) and I ∗ •= I ∗.

(2) If M is a finitely generated g-divisible graded right R-module with R⊆M ⊆ T ,
then M∗ •= M∗.

Proof. (1) By Lemma 4.11(2), I ∗/R is 2-pure. By Lemma 2.12, I ∗ ⊆ T(g) and
since R is g-divisible, T(g)/R and hence I ∗/R are g-torsionfree.
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From the exact sequence 0→ Rg → R → R → 0 we obtain the long exact
sequence of right R-modules

0→HomR(R/I, R)→Ext1R(R/I, Rg)→Ext1R(R/I, R)→Ext1R(R/I, R)
φ
−→ Ext2R(R/I, Rg)

ψ
−→ Ext2R(R/I, R)→ Ext2R(R/I, R)→ · · · . (6.13)

By Proposition 4.10, R is Auslander–Gorenstein and CM. Thus N = Ext2
R
(R/I , R)

has grade j (N )≥ 2 and hence GKdim(N )≤ 2− 2= 0. Therefore, by [RSS 2015,
Lemma 7.9], Ext2R(R/I, R)= N is finite-dimensional and the map ψ in (6.13) is
surjective in large degree. If E = Ext2R(R/I, R), this says that ψ : E[−1] → E is
surjective in large degree. Since dimk En <∞ for each n, this forces dimk En ≥

dimk En+1 for all n� 0 and so dimk En is eventually constant. In turn, this forces φ
to be zero in large degree.

Next, observe that Hom(R/I, R)= 0 since R/I is g-torsionfree. Since φ is zero
in high degree, the complex

0−→ Ext1R(R/I, Rg)−→ Ext1R(R/I, R)−→ Ext1R(R/I, R)−→ 0

is exact in high degree. Using [RSS 2015, Lemma 7.9] this can be identified with
the complex

0−→ (I ∗/R)[−1]
α
−→ I ∗/R −→ Ext1R(R/I , R)−→ 0,

where α is multiplication by g. As I ∗ is g-divisible by Lemma 2.12(2), it follows that

I ∗/R ∼= I ∗/(R+ I ∗g)= coker(α) •= Ext1R(R/I , R)= I ∗/R.

In particular, dimk I ∗ = dimk I ∗ for all n� 0, and as there is an obvious inclusion
I ∗ ⊆ I ∗ we conclude that I ∗ •= I ∗.

(2) Note that M∗∗/M is a g-torsionfree module of GK-dimension 1, as in the proof
of Proposition 6.4. By Lemma 2.14, dimk((M∗∗/M)⊗R R) <∞. Thus M∗∗ •= M .

Let J = M∗. Since J is a reflexive left ideal of R, the module R/J is 2-pure by
Lemmas 4.10(3) and 4.11(3). Thus part (1) applies and shows that J ∗ •= J ∗. Next,
J •

= J ∗∗ by another use of Lemmas 4.10(3) and 4.11(3). Finally, it is easy to see
that for any finitely generated graded R-modules N and Q contained in Qgr(R),
if N •

= Q then N ∗ •= Q∗. Putting the pieces above together, we conclude that

M∗ = J •

= J ∗∗ •= (J ∗)∗ •= M∗. �

The last ingredient we need for the proof of Theorem 6.7 is the following
description of the endomorphism ring of a torsion-free rank-one module over a
twisted homogeneous coordinate ring.
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Lemma 6.14. Let B = B(E,L, τ ), where E is a smooth elliptic curve, deg L≥ 1,
and τ is of infinite order. Let N be a finitely generated, graded right B-submodule
of k(E)[t, t−1

; τ ]; by [Artin and Van den Bergh 1990, Theorem 1.3],

N •

=

⊕
r≥0

H 0(E,O(q)⊗Lr )

for some divisor q. Let N ∗ = HomB(N , B)⊆ k(E)[t, t−1
; τ ]. Then:

(1) EndB(N )
•

= B(E,L(q− τ−1(q)), τ ).
(2) N N ∗ •= EndB(N ).

(3) N ∗ •=
⊕

n≥0 H 0(E,Ln ⊗O(−τ−n(q))).

Proof. (1) Write G = EndB(N ) ⊆ k(E)[t, t−1
; τ ] and, for each n, let Gn be the

subsheaf of the constant sheaf k(E) generated by Gn ⊆ k(E). Let Nn = O(q)⊗Ln;
thus Nn = H 0(E,Nn), and Nn generates the sheaf Nn , for n� 0, say n ≥ n0.

For n ≥ n0 and r ≥ 0, the equation Gr Nn ⊆ Nn+r forces Gr Nτ r

n ⊆Nn+r and thus

Gr ⊗ (O(q)⊗Ln)
τ r
⊆ O(q)⊗Ln+r .

Equivalently,
Gr ⊆ Lr (q− τ−r (q))= (L(q− τ−1(q)))r .

This shows that
G ⊆ B(E,L(q− τ−1(q)), τ ).

Reversing this calculation shows that

(L(q− τ−1(q)))r Nτ r

n ⊆ Nn+r

for r, n ≥ 0 and taking sections for n ≥ n0 shows that

B(E,L(q− τ−1(q)), τ )⊆ EndB(N≥n0).

To complete the proof we need to prove that G •

= EndB(N≥n0). This follows by
[Rogalski 2011, Lemma 2.2(2)] and [Artin and Zhang 1994, Proposition 3.5] or by
a routine computation.

(2) Clearly N N ∗ is an ideal of EndB(N ). However, by Lemma 2.7(2), EndB(N ) is
just infinite, and so N N ∗ •= EndB(N ).

(3) The proof is similar to that of (1) and, as it will not be used in the paper, is left
to the reader. �

Proof of Theorem 6.7. We first check that F •

=U . By Proposition 6.4 there exists
an ideal K of F contained in U and satisfying GKdim(F/K ) ≤ 1. In particular,
GKdim(F/U ) ≤ 1. By Lemma 2.12(3), U is g-divisible, and so N = F/U is
g-torsionfree. It follows from Lemma 2.14 that GKdim(F/U )= 0, and so U •

= F .
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Now it is obvious that U ⊇ M M∗. Thus, using Proposition 6.12(2),

U ⊇ (M)(M∗) •= (M)(M∗).

Conversely, by Lemma 2.12(3), U = EndR(M) ⊆ EndR(M). We also have
R = B(E,M(−d), τ ). Applying Lemma 6.14 to L=M(−d) and N = M gives

(M)(M∗) •= EndR(M)
•

= B(E,M(−x), τ ),

where, in the notation of that lemma, y= q and x= d− y+τ−1( y). That y is effec-
tive follows from R ⊆ M . Combining the last two displayed equations gives (6.8).

Since R ⊆ M , necessarily MT = T . Thus the second paragraph of the theorem
is just a restatement of Proposition 6.4. �

7. The structure of g-divisible orders

In this section we first refine the results from the last two sections to give strong struc-
tural results for a g-divisible maximal T -order U (see Theorem 7.4). Then we use
these results to analyse both arbitrary g-divisible orders and ungraded subalgebras of
D= Dgr(T ) (see Corollaries 7.6 and 7.10, respectively). In particular, we show that
U is part of a maximal order pair (U, F) for which F is a blowup of T at a (possibly
noneffective) divisor x = d− y+ τ−1( y) in the sense of Definition 6.9. Here, the
divisor y can have arbitrarily high degree but is not arbitrary, as we first explain.

Definition 7.1. Let x be a divisor on E . For each τ -orbit O in E pick p = p0 ∈O

such that x|O=
∑k

i=0 xi pi , where pi = τ
−i (p). Then x is called a virtually effective

divisor if for each orbit O and all j ∈ Z the divisor x satisfies∑
i≤ j

xi ≥ 0 and
∑
i≥ j

xi ≥ 0. (7.2)

If F is a blowup of T at a virtually effective divisor x then F is called a virtual
blowup of T .

The relevance of this condition is shown by the next result, in which the nota-
tion uk for a divisor u comes from Notation 5.2.

Proposition 7.3. (1) The divisor x in Theorem 6.7 is virtually effective.

(2) A divisor x is virtually effective if and only if x can be written as

x = u− v+ τ−1(v),

where u is an effective divisor supported on distinct τ -orbits and v is an
effective divisor such that 0≤ v ≤ uk for some k.



2096 Daniel Rogalski, Susan J. Sierra and J. Toby Stafford

Proof. (1) By Theorem 6.7, F •

= B(E,N, τ ), where N=M(−x). Since F •

=U ⊆
T = B(E,M, τ ), we must have Nn ⊆Mn for n� 0. Now compare this with the
computations in the proof of Corollary 5.3. In the notation of that proof, Y= OE

and hence y = 0. Therefore, as is explained in the proof of (5.11), this forces (7.2)
to hold.

(2) It is enough to prove this in the case that x is supported on a single τ -orbit O

in E .

(⇒) As in Definition 7.1, write x =
∑k

i=0 xi pi for a suitable point p0 ∈ O. Set
e =

∑
i∈Z xi and u = ep. For j ∈ N, let v j =

∑
i≥ j+1 xi and put v =

∑
j≥0 v j p j .

By (7.2), v is effective. Also, since
∑

i≤ j xi ≥ 0 for all j , we have

v j = e−
∑
i≤ j

xi ≤ e for 0≤ j ≤ k− 1,

while v j = 0 for j ≥ k. Therefore, 0≤ v ≤ uk =
∑k−1

i=0 epi . Finally,

u− v+ τ−1(v)= ep0−
∑
j≥0

( ∑
i≥ j+1

xi

)
p j +

∑
j≥0

( ∑
i≥ j+1

xi

)
p j+1

= ep0−

((∑
i≥1

xi

)
p0+

∑
j≥1

( ∑
i≥ j+1

xi

)
p j

)
+

∑
j≥1

(∑
i≥ j

xi

)
p j

=

∑
xi pi = x.

(⇐) Although this is similar to part (1), it seems easiest to give a direct proof.
Write u = ep = ep0 and v =

∑
vi pi for some point p and some v j ≥ 0. By

definition, uk =
∑k−1

i=0 epi , and so, by our assumptions, 0≤ vi ≤ e for 0≤ i ≤ k−1,
and vi = 0 for all other i . Therefore,

x = u− v+ τ−1(v)= (e− v0)p0+
∑
i≥1

(vi−1− vi )pi .

If j ≤ −1 then x j = 0 and
∑

i≤ j xi = 0. If j ≥ 0, then
∑

i≤ j xi = e − v j ≥ 0.
Similarly, if j ≤ 0 then

∑
i≥ j xi = e ≥ 0, while if j ≥ 1 then

∑
i≥ j

xi =

k∑
i= j

(vi−1− vi )= v j−1− vk = v j−1 ≥ 0.

Thus (7.2) is satisfied. �

We are now ready to state our main result on the structure of g-divisible maximal
T -orders.
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Theorem 7.4. (1) Let V ⊆ T be a g-divisible cg maximal T -order. Then the
following hold:

(a) There is a maximal order F ⊇ V such that (V, F) is a maximal order pair.
(b) F is a virtual blowup of T at a virtually effective divisor x=u−v+τ−1(v)

satisfying 0≤ deg x < µ.
(c) V •

= F •

= B(E,M(−x), τ ).

(2) If U ⊆ T is any g-divisible cg subalgebra with Qgr(U )= Qgr(T ), there exists a
maximal order pair (V, F) as in (1) such that U is contained in and equivalent
to V .

(3) Conversely, let x be a virtually effective divisor with deg x < µ. Then there
exists a blowup F of T at x.

Proof. (1) By definition, Qgr(V ) = Qgr(T ). Now combine Corollary 6.6(1–2),
Theorem 6.7 and Proposition 7.3.

(2) By Theorem 5.24, U is contained in and equivalent to some EndT (d)(M) which,
in turn, is contained in and equivalent to a maximal T -order by Proposition 6.4.

(3) Write x= u−v+τ−1(v), where u, v, k are defined by applying Proposition 7.3
to x. By [RSS 2015, Lemma 5.10], there is a g-divisible finitely generated right
T (u)-module M with T (u)⊆ M ⊆ MT = T so that

M •

=

⊕
n

H 0(E,Mn(−un + v)).

Let F = EndR(M∗∗) ⊇ U = EndR(M). By Theorem 6.7 and Lemma 6.14(1–2),
we have

F •

=U •

= M(M)∗ •= B(E,M(−x), τ ),

and (F ∩ T, F) is a maximal order pair. �

Remark 7.5. We should explain why F is called a virtual blowup of T at x both in
this theorem and in Definition 7.1. When x is effective this is amply justified in [Ro-
galski 2011] and, in that case, T (x) satisfies many of the basic properties of a commu-
tative blowup; in particular, it agrees with Van den Bergh’s more categorical blowup
[2001]. For noneffective x there are several reasons why the notation is reasonable.

(1) As we have shown repeatedly in this paper, the factor U of a g-divisible
algebra U controls much of U ’s behaviour and so Theorem 7.4(1c) shows that
F will have many of the basic properties of a blowup at an effective divisor.

(2) This is also supported by the fact that, by Theorem 5.24, F and T (u) are
equivalent maximal orders and, again, many properties pass through such a
Morita context.
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(3) Finally, in the commutative case virtual blowups are blowups, both because
virtually effective divisors are then effective and because equivalent maximal
orders are then equal.

Theorem 7.4 can be easily used to describe arbitrary g-divisible subalgebras
of T . We recall that the idealiser of a left ideal L in a ring A is the subring
I(L)= {θ ∈ A : Lθ ⊆ L}.

Corollary 7.6. Let U ⊆ T be a g-divisible subalgebra with Qgr(U ) = Qgr(T ).
Then U is an iterated subidealiser inside a virtual blowup of T . More precisely, we
have the following chain of rings:

(1) There is a virtually effective divisor x = u− v+ τ−1(v) with deg(x) < µ and
a blowup F of T at x such that V = F ∩ T contains and is equivalent to U ,
while (V, F) is a maximal order pair.

(2) There exist a g-divisible algebra W with U ⊆ W ⊆ V such that U is a right
subidealiser inside W and W is a left subidealiser inside V . In more detail,
(a) There exists a graded g-divisible left ideal L of V such either L = V

or else V/L is 2-pure, and a g-divisible ideal K of X = I(L) such that
K ⊆W ⊆ X and GKdimX (X/K )≤ 1;

(b) V is a finitely generated left W -module, while X/K is a finitely generated
k[g]-module and so X is finitely generated over W on both sides;

(c) the properties given for W ⊆ V also hold for the pair U ⊆W , but with left
and right interchanged.

Proof. (1) Use Theorem 7.4(1–2).

(2) By (1), aV b⊆U for some a, b ∈U r {0}. Set W ′ =U +V b and W = Ŵ ′. By
Lemma 2.13(1), aW = âW ′ ⊆ Û =U . By Proposition 2.9, W is noetherian and so
(modulo a shift) V ∼= V b is a finitely generated left W -module. Similarly, W is a
finitely generated right U -module. We will now just prove parts (2a) and (2b), leav-
ing the reader to check that the same argument does indeed work for the pair (U,W ).

Write V =
∑v

i=1 W ei for some ei . Then the right annihilator

K = r-annW (V/W )=
⋂

r-ann(ei )

is nonzero. Let L/K be the largest left V -submodule of V/K with GKdim(L/K )≤1.
Then either L = V , or else V/L is 2-pure. For a ∈W , the module (La+K )/K is a
homomorphic image of La/K a and hence of L/K . Thus GKdim((La+K )/K )≤ 1
and La ⊆ L; in other words, L is still a (V,W )-bimodule.

As W = Ŵ , it is routine to see that K is g-divisible, but since we use the
argument several times we give the details. So, suppose that θg ∈ K for some
θ ∈ V . Then (V θ)g ⊆ Ŵ = W , whence V θ ⊆ W and θ ∈ K , as required. It
follows that L/K is g-torsionfree and so, by Lemma 2.14, L/K is a finitely
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generated right k[g]-module. Thus, by [Krause and Lenagan 1985, Lemma 5.3],
I = `-annV (L/K ) satisfies GKdimV (V/I ) = GKdim(L/K ) ≤ 1. Again, I is g-
divisible. Also, if θ ∈ V has θg ∈ L then (Iθ)g ⊆ K and so Iθ ⊆ K . Hence
GKdim(V θ + K )/K ≤ GKdim(V/I )≤ 1 and θ ∈ L . So L is also g-divisible.

Finally, let X = IV (L)= {x ∈ V : Lx ⊆ L}. As usual, X is g-divisible. Clearly
I L is an ideal of X , and since I and L are g-divisible, GKdim(X/I L) ≤ 1, by
Lemma 2.15(4). Since X ⊃ K ⊇ I L , it follows that GKdim X/K ≤ 1. Finally,
since X/K is g-torsionfree of GK-dimension 1, it must be a finitely generated k[g]-
module by Lemma 2.14; in particular, X/W and hence X are finitely generated as
right W -modules. �

There is a close correspondence between subalgebras A of the function skewfield
D = Dgr(T ) and g-divisible subalgebras of T(g), and so we end the section by
studying the consequences of our earlier results for such an algebra A.

For a cg subalgebra R ⊆ T(g) with g ∈ R, define

R◦ = R[g−1
]0 =

⋃
n≥0

Rng−n
⊆ D = Dgr(T ).

Conversely, given an algebra A ⊆ T ◦, define

�A =
⊕
m≥0

(�A)m for (�A)m = {a ∈ Tm : ag−m
∈ A}.

Clearly �A is g-divisible with (�A)◦ = A and, if R ⊆ T , then �(R◦)= R̂; thus
we obtain a one-to-one correspondence between cg g-divisible subalgebras of T
and subalgebras of T ◦.

Given a left ideal I of R or a left ideal J of A we define I ◦ and �J by the same
formulæ. If R is g-divisible, the map I 7→ I ◦ gives a one-to-one correspondence
between g-divisible left ideals of R and left ideals of R◦, with analogous results
for two-sided ideals (see [Artin et al. 1991, Proposition 7.5]).

An algebra A ⊆ T ◦ is filtered by A =
⋃
0n A for 0n A = (�A)ng−n . By [RSS

2014, Lemmas 2.1 and 2.2],

gr0 A =
⊕

0n A/0n−1 A ∼=�A/g�A, (7.7)

where the isomorphism is induced by the map

0n Ar0n−1 A→�A, x = rg−n
7→ r.

Lemma 7.8. Let A, A′ be orders in T ◦. Then A and A′ are equivalent orders if and
only if �A and �A′ are equivalent orders in Qgr(T ).

Proof. Let 0 6= a ∈ 0m A′ and 0 6= b ∈ 0n A′. To prove the lemma, it suffices to show
that a Ab ⊆ A′ if and only if agm(�A)bgn

⊆�A′. However, if 0 6= α ∈�A, write
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α = xgk for some k and x ∈ A. Then

axb ∈ A′ ⇐⇒ axb ∈ 0m+n+k A′ ⇐⇒ agm(xgk)bgn
∈�A′,

as desired. �

Corollary 7.9. A subalgebra A ⊆ T is a maximal T ◦-order if and only if �(A) is
a maximal T -order. �

By [RSS 2014, Theorem 1.1], every subalgebra of T ◦ is finitely generated and
noetherian; these subalgebras thus give a rich supply of noetherian domains of
GK-dimension 2. Our earlier results about cg maximal T -orders translate easily to
results about maximal T ◦-orders. An ideal I of a k-algebra A is called cofinite if
dimk(A/I ) <∞.

Corollary 7.10. Let A be a subalgebra of T ◦ with Q(A)= Q(T ◦).

(1) There exists a maximal order pair (V, F), where F is a blowup of T at some
virtually effective divisor x, such that A is contained in and equivalent to the
maximal T -order V ◦.

(2) In part (1), F◦ is a maximal order in Q(T ◦)= Dgr(T ).

(3) The algebras V ◦ and F◦ have a cofinite ideal K ◦ in common. Also, we have
gr0 V •

= B(E,M(−x), τ ).

(4) Suppose that all nonzero ideals I of T (d)◦ generate cofinite right ideals of
T ◦ (in particular, this happens if T (d)◦ is simple) and that A is a maximal
T ◦-order. Then A is a maximal order.

Proof. (1) By Theorem 7.4(2), �A is contained in and equivalent to some such V .
Now use Lemma 7.8 and Corollary 7.9.

(2) Since F need not be contained in T , this does not follow directly from the
above discussion. However, it does follow from Lemma 6.2 combined with the fact
that, in the notation of Corollary 6.6,

F◦ = EndT (d)◦((M∗∗)◦)= EndT (d)◦((M◦)∗∗).

(3) By definition and Lemma 2.14, V and F have an ideal K in common such that
F/K is finitely generated as a k[g]-module. Consequently F◦/K ◦ and V ◦/K ◦ are
finite-dimensional. The final assertion follows from Theorem 7.4(1c).

(4) Use Corollary 6.6(3). �

We also have a converse to Corollary 7.10(3).

Corollary 7.11. Let x be a virtually effective divisor on E with deg x < µ. Then
there exists a maximal T ◦-order A with gr0 A •

= B(E,M(−x), τ ).
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Proof. Let U be the g-divisible maximal T -order given by Theorem 7.4(3); thus
U •

= B(E,M(−x), τ ) by part (1c) of that result. By (7.7), A = U ◦ satisfies the
conclusion of this corollary. �

Del Pezzo surfaces. The blowup of T at ≤ 8 points on E can be thought of as
a noncommutative del Pezzo surface. More carefully, it should be thought of as
the anticanonical ring of a noncommutative del Pezzo surface; this corresponds
to the fact that the central element g is in degree 1. Let U be a blowup of T at a
virtually effective divisor d ′ of degree ≤ 8. By analogy, we should think of U as
a (new type of) noncommutative del Pezzo surface, and the localisation U ◦ as a
particular kind of noncommutative affine surface. Corollary 7.10(3) can then be
reinterpreted as saying that any maximal order A ⊆ T ◦ is the coordinate ring of
just such a noncommutative affine surface.

In [Etingof and Ginzburg 2010], the authors study noncommutative affine surfaces
which are deformations of the commutative symplectic affine surfaces obtained
from removing an anticanonical divisor from P2. These surfaces are related to ours
but not the same; for example, we consider A = T ◦ ∼= T/(g− 1), but the algebra
A′ = S/(g− 1) is considered in [ibid.]. The algebra A′ is a rank 3 A-module, so
“Spec A′” is a triple cover of “Spec A” (inasmuch as these terms make sense in a
noncommutative context).

8. Sporadic ideals and g-divisible hulls

One of the main results in [Rogalski 2011] showed that the algebras considered
there have minimal sporadic ideals, in a sense we define momentarily. In this section
we show that, under minor assumptions, this generalises to cg subalgebras U ⊆ T
with g ∈U (see Corollary 8.8 for the precise statement). The significance of this
result is that it provides a tight connection between the algebra U and its g-divisible
hull Û and provides the final step in the proof of Theorem 1.2, that maximal orders
are noetherian blowups of T (see Theorem 8.11).

Recall that a graded ideal I of a cg graded algebra R is called sporadic if
GKdim(R/I )= 1.

Definition 8.1. An ideal I of a cg algebra R is called a minimal sporadic ideal if
GKdim(R/I )≤ 1 and, for all sporadic ideals J , we have dimk I/(J ∩ I ) <∞.

Note that one can make the minimal sporadic ideal I unique by demanding that
it be saturated, but we will not do so since this causes extra complications.

Beginning in this section, we need to strengthen our hypothesis on the ring T .

Assumption 8.2. In addition to Assumption 2.1, we assume that T has a minimal
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sporadic ideal and that there exists an uncountable algebraically closed field exten-
sion K ⊇ k such that, in the notation of [RSS 2015, Definition 7.2], Div(T ⊗k K )
is countable.

We emphasise that, by [RSS 2015, Theorem 8.8 and Proposition 8.7], these extra
assumptions do hold both for the algebras T from Examples 2.2(1–2) and for their
blowups T (d) at effective divisors d with deg d < µ.

For the rest of this section we assume that our algebras T satisfy Assumptions 2.1
and 8.2. We do not know if Assumption 8.2 holds for Stephenson’s algebras from
Examples 2.2(3). By a routine exercise, Examples 2.2(4) does not have a minimal
sporadic ideal, so Assumption 8.2 is strictly stronger than Assumption 2.1.

As noted above, the blowups T (d) with deg d < µ have a minimal sporadic
ideal, and the first goal of this section is to extend this to more general subalgebras
of T(g). We start with the case of g-divisible algebras.

Lemma 8.3. Let (V, F) be a maximal order pair, in the sense of Definition 6.5.
Then both F and V have a minimal sporadic ideal.

Proof. By Corollary 6.6, there exists an effective divisor d with deg d < µ and a
right R-module M ⊇ R, where R = T (d), such that

F = EndR(M∗∗)⊇ F ∩ T = V = EndR(M).

We will use a minimal sporadic ideal of R to construct such an ideal for F and
for V .

Set J = M∗ = M∗∗∗ ⊆ R; thus F = EndR(J ) as well. Also, write X = J J ∗,
a nonzero ideal of R, and W = J ∗ J , a nonzero ideal of F . By Lemma 2.13(3),
J and J ∗ = M∗∗ are g-divisible; in particular, J * gT(g) and J ∗ * gT(g). Thus, by
Lemma 2.15(4), GKdim(R/X) ≤ 1 and GKdim(F/W ) ≤ 1. By Assumption 8.2
and [RSS 2015, Proposition 8.7] we can choose a minimal sporadic ideal X ′

of R such that X ′ ⊆ X . Let I = J ∗X ′ J . Since GKdim(X ′) ≤ 1 and R is g-
divisible, GKdim R/gR = 2 and so X ′ * gT(g) also. Thus I is an ideal of F with
GKdim(F/I )≤ 1 by Lemma 2.15(4).

Now consider an arbitrary sporadic ideal L of F , if such an ideal exists. Since
F is g-divisible, L * gT(g) and so, just as in the previous paragraph, J L J ∗ is an
ideal of R satisfying GKdimR(R/J L J ∗)≤ 1. Hence J L J ∗ ⊇ X ′H for an ideal H
of R with dimk(R/H) <∞. Now, L ⊇ (J ∗ J )L(J ∗ J ) ⊇ J ∗X ′H J , and [Krause
and Lenagan 1985, Proposition 5.6] implies that dimk(J ∗X ′ J )/(J ∗X ′H J ) <∞.
Thus I is a minimal sporadic ideal of F .

In conclusion, F and V have a common ideal K with GKdim(F/K ) ≤ 1 (see
Proposition 6.4). Thus K I K is a minimal sporadic ideal for F that lies in V and
so it is also a minimal sporadic ideal for V . �
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Proposition 8.4. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U ⊆ T be a
g-divisible graded algebra with Qgr(U )= Qgr(T ). Then U has a minimal sporadic
ideal.

Proof. By Theorem 7.4(2), U is contained in and equivalent to some g-divisible
maximal T -order V , say with aV b ⊆U for some nonzero homogeneous a, b ∈U .
Set U ′ = U +UaV ⊆ V , and W = Û ′. Thus aV ⊆ U ′ ⊆ W and U ′b ⊆ U . By
Lemma 2.13(1), W b = Û ′b ⊆ Û =U . Set J = `-annW V/W , noticing that J is a
nonzero ideal of W (since a ∈ J ) and a right ideal of V . Also, as W is g-divisible,
it follows that J is g-divisible. Thus, by Lemma 2.15(3), GKdim W/J ≤ 1.

If K is a minimal sporadic ideal in V given by Lemma 8.3, we claim that
J K is a minimal sporadic ideal in W . To see this, let L be any ideal of W with
GKdim W/L ≤ 1. Then I = V L J is an ideal of V . Since none of V , L , or J is
contained in gT(g), GKdim V/I ≤ 1 by Lemma 2.15(4). Hence I ⊇ K M for some
ideal M of V with dimk(V/M) <∞ and so L ⊇ J V L J ⊇ J K M . This implies
that J K is a minimal sporadic ideal for W . Finally, a symmetric argument, using
the fact that W is g-divisible with a minimal sporadic ideal, proves that U has such
an ideal. �

As in Section 7, results on g-divisible rings have close analogues for subalgebras
of T ◦.

Corollary 8.5. Suppose that T satisfies Assumptions 2.1 and 8.2. Let A be a
subalgebra of T ◦ with Q(A) = Q(T ◦). Then A has a unique minimal nonzero
ideal I , and dimk A/I < ∞. Further, A has DCC on ideals and finitely many
primes.

Proof. Recall from Section 7 that there is a one-to-one correspondence between
g-divisible ideals of �A and ideals of A. Since every nonzero g-divisible ideal of
�A is sporadic, when combined with Proposition 8.4 this gives the existence of I
as described. Since A/I is artinian it has finitely many prime ideals and DCC on
ideals. Thus the same holds for A. �

We now turn to a more general subalgebra U of T , with the aim of controlling
its sporadic ideals also. We achieve this by relating U to its g-divisible hull Û and
we begin with a straightforward lemma on subalgebras of TCRs. Recall that, for
any subalgebra U ⊆ T(g), we write U =U + gT(g)/T(g).

Lemma 8.6. Let B = B(E,M, τ ) for some smooth elliptic curve E , invertible
sheaf M of degree d > 0 and τ of infinite order. Then for any 0 6= x ∈ Bk we have
Bnx + x Bn = Bn+k for n� 0.

In particular, if A is a graded subalgebra of B such that A 6= k, then B is a
noetherian (A, A)-bimodule.
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Proof. By [Artin and Van den Bergh 1990, Theorem 1.3] and its left-right analogue,
there exist effective divisors x and x′ such that

x B≥n0 =

⊕
n≥n0

H 0(E,Mn+k(−x)) and (B≥n0)x =
⊕
n≥n0

H 0(E,Mn+k(−τ
−n x′))

(With a little thought one can see that this holds with n0 = 0 and x = x′, but that is
not relevant here.) Since |τ | =∞, we may choose n0 so that x ∩ τ−n x′ =∅ for all
n ≥ n0. For such n there is an exact sequence

0→ OE(−x− τ−n x′)→ OE(−x)⊕OE(−τ
−n x′)→ OE → 0.

Tensoring with Mn+k and taking global sections gives a long exact sequence that
reads, in part,

H 0(E,Mn+k(−x))⊕ H 0(E,Mn+k(−τ
−n x′)) // H 0(E,Mn+k) // H

x Bn ⊕ Bnx θ // Bn+k

for H = H 1(E,Mn+k(−x− τ−n x′)) and θ the natural map. Since

deg(Mn+k(−x− τ−n x)) > 0 for n� 0,

Riemann–Roch ensures that H = 0 and hence that θ is surjective for such n.
This implies that B is a noetherian (k〈x〉, k〈x〉)-bimodule, which certainly suf-

fices to prove the final assertion of the lemma. �

We now show that, under mild hypotheses, Û is equivalent to U . In this result
the hypothesis that U 6= k is annoying but necessary (see Example 10.8) but, as
will be shown in Section 9, there are ways of circumventing it.

Proposition 8.7. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U be a cg
subalgebra of T with Qgr(U )= Qgr(T ), g ∈U and U 6= k.

(1) There exists n ≥ 0 such that U ∩ T gm
= Û ∩ T gm

= gmÛ for all m ≥ n. Thus
U and Û are equivalent orders.

(2) If U is right noetherian then Û is a finitely generated right U-module.

Proof. (1) Let V =Û . Since T is g-divisible, V ⊆T . Working inside Qgr(T ), we get

{x ∈ T : xgk
∈U } = g−kU ∩ T,

and hence V =
⋃

k≥0 g−kU ∩ T . Now define Q(k)
= (g−kU ∩ T + gT )/gT ⊆ T .

Then, since g ∈U ,

U = Q(0)
⊆ Q(1)

⊆ · · · ⊆

⋃
k

Q(k)
= V .



Classifying orders in the Sklyanin algebra 2105

Each Q(i) is an U -subbimodule of T and so, by Lemma 8.6, Q(n)
= V for some n.

We claim that U ∩T gm
= V ∩T gm for all m ≥ n. If not, there exists y = xgm

∈

V ∩ T gm rU for some such m. Choose x of minimal degree with this property.
This ensures that y 6∈ gm+1T , since otherwise one could write y = gm+1x ′ with
deg(x ′)=deg(x)−1. Since x=[x+gT ]∈V =Q(n), we have x=w, wherewgn

∈U .
Thus wgn

−xgn
∈ V ∩T gn+1 and so w−x = vg, where vgn+1

∈ V ∩T gn+1. Since
deg v < deg x , the minimality of deg x ensures that vgn+1

∈U . Then xgn
=wgn

−

vgn+1
∈U , and so y = xgn(gm−n)∈U , a contradiction. Thus U ∩T gm

= V ∩T gm

as claimed. Finally, as gV = V ∩gT , an easy induction shows that V ∩T gm
= gm V .

(2) This is immediate from part (1). �

In the next result, we construct an ideal with a property that is slightly weaker
than being a minimal sporadic ideal. However, it will have the same consequences.

Corollary 8.8. Suppose that T satisfies Assumptions 2.1 and 8.2. Let C be a cg
subalgebra of T with Qgr(C) = Qgr(T ). Assume that g ∈ C and C 6= k. Then C
has a sporadic ideal K (possibly K = C) that is minimal among sporadic ideals I
for which C/I is g-torsionfree.

Proof. Note that Ĉ is noetherian by Proposition 2.9 and has a minimal sporadic
ideal, say J , by Proposition 8.4. By Lemma 2.15(2), Ĵ is also a minimal sporadic
ideal of Ĉ . Thus, replacing J by Ĵ , we can assume that Ĉ/J is g-torsionfree.

We will show that K = J ∩C satisfies the conclusion of the corollary. So, let I
be a sporadic ideal of C such that C/I is g-torsionfree (if such an ideal exists).
We first show that J ∩C ⊆ I . By Proposition 8.7, H = gnĈ ⊆ C for some n ≥ 1
and so I ⊇ H I H = g2nĈ I Ĉ . By Lemma 2.15(3), H I H = gr L for some r and
ideal L of Ĉ with GKdim(Ĉ/L)≤ 1. As J is sporadic, dimk J/(J ∩ L) <∞ and
so L∩ J ⊇ J≥s ⊇ gs J for some integer s. Combining these observations shows that
I ⊇ gt J for some integer t . Pick u minimal such that I ⊇ gu(J ∩C). If u 6= 0, then

I + gu−1(J ∩C)
I

=
I + gu−1(J ∩C)
I + gu(J ∩C)

is g-torsion, and hence zero since C/I is g-torsionfree by assumption. Hence u = 0
and I ⊇ J ∩C .

It remains to show that GKdim C/(C ∩ J ) ≤ 1. Since Ĉ/J is g-torsionfree,
Lemma 2.14 implies that M = Ĉ/J is a finitely generated k[g]-module. Then the
C-submodule (C+ J )/J ∼= C/(J ∩C) is also. Therefore, by [Krause and Lenagan
1985, Corollary 5.4],

GKdimC(C/(C ∩ J ))= GKdimk[g](C/(C ∩ J ))≤ 1.

Thus K = J ∩C satisfies the conclusions of the corollary. �
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Lemma 8.9. The set of orders {C ⊆ T with C 6= k and g ∈ C} satisfies ACC.

Proof. By Zorn’s lemma, it suffices to prove that any such ring C is finitely generated
as an algebra; equivalently, that C≥1 is finitely generated as a right ideal.

We first show that, for any m ≥ 1, C/(gm T ∩ C) is finitely generated as an
algebra. The result holds for m = 1 by [RSS 2014, Theorem 1.1(1)]. By induction,
choose a1, . . . , ak ∈ C≥1 whose images generate C/(gm−1T ∩ C) as an algebra.
Set X = (gm−1T ∩C)/(gm T ∩C). Then, up to shifts,

X ∼=
T ∩ g1−mC

gT ∩ g1−mC
∼=
(T ∩ g1−mC)+ gT

gT
⊆ T/gT

as C-bimodules. Thus, by Lemma 8.6, X is a finitely generated C-bimodule, say
by the images of b1, . . . , bn ∈ gm−1T ∩C . Then {a1, . . . , ak, b1, . . . , bn} generate
C/(gm T ∩C), completing the induction.

By Proposition 8.7, there exists ` ∈ N such that gmĈ = C ∩ gm T ⊆ C for all
m ≥ `. By the above, choose c1, . . . , cN ∈C≥1 whose images generate C/g`+1Ĉ as
an algebra. Then for any f ∈C≥1, there exists x ∈

∑
ci C so that f − x ∈ g`+1Ĉ =

g(g`Ĉ); thus f ∈ gC +
∑

ci C . Therefore, C≥1 is generated as a right ideal by
g, c1, . . . , cN . �

Proposition 8.10. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U be a cg
subalgebra of T with U 6= k and Dgr(U ) = Dgr(T ). Then there exists a nonzero
ideal of C =U 〈g〉 that is finitely generated as both a left and a right U-module.

Proof. By Lemma 8.9, there is a finitely generated cg subalgebra W of U with
C =U 〈g〉 =W 〈g〉. Note that Qgr(C)= Qgr(T ) as g ∈ C .

Fix n∈N. Observe that CW≥n=
∑

m W≥ngm
=W≥nC is an ideal of C . Moreover,

C/CW≥n is a homomorphic image of the polynomial ring (W/W≥n)[g]. Since
dimk(W/W≥n) <∞, it follows that C/CW≥n is a finitely generated k[g]-module.
In particular, by [Krause and Lenagan 1985, Corollary 5.4],

GKdimC(C/CW≥n)= GKdimk[g](C/CW≥n)≤ 1.

Moreover, Kn = torsg(C/CW≥n) is finite-dimensional.
Let Zn=C∩ĈW≥n; thus Zn/CW≥n=Kn . Note that C/Zn is a finitely generated

torsion-free, hence free, k[g]-module. Therefore, if dn denotes the rank of that free
module, then

dn = dimk(C/Zn)m for m� 0

= dimk(C/CW≥n)m for m� 0.

Also, CW≥n ⊇ CW≥n+1, whence Zn ⊇ Zn+1 and dn ≤ dn+1.
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Let J be a minimal sporadic ideal of Ĉ such that Ĉ/J is g-torsionfree; thus, by
Corollary 8.8 and its proof, C ∩ J is minimal among sporadic ideals of C such that
the factor is g-torsionfree. By construction, each Zn is either sporadic or equal to C ;
in either case Zn ⊇ C ∩ J . Now C/(C ∩ J ) ↪→ Ĉ/J , which, by Lemma 2.14, has
an eventually constant Hilbert series; say dimk(Ĉ/J )m = N for all m� 0. Hence
dim(C/Zn)m ≤ N for all such m and, in particular, dn ≤ N . Since dn ≤ dn+1, it
follows that dn = dn+1 for all n� 0; say for all n ≥ n0. Thus, by the last display,
CW≥n

•

= CW≥n0 for all n ≥ n0.
Finally, if W is generated as an algebra by elements of degree at most e, then

CW≥n0 W≥1 ⊇ CW≥n0+e. By the last paragraph, dimk(CW≥n0/CW≥n0+e) <∞,
and so dimk(CW≥n0/CW≥n0 W≥1) <∞. Thus, by the graded Nakayama’s lemma,
CW≥n0 =W≥n0C =W≥n0U 〈g〉 is finitely generated as a right W -module, and hence
as a right U -module. �

Finally, we can reap the benefits of the last few results.

Theorem 8.11. Suppose that T satisfies Assumptions 2.1 and 8.2. For some n ≥ 1,
let U be a cg maximal T (n)-order with U 6= k. Then U is strongly noetherian; in
particular, noetherian and finitely generated as an algebra. Moreover:

(1) If n = 1, so Qgr(U )= Qgr(T ), then U is g-divisible and U = F ∩ T , where F
is a blowup of T at a virtually effective divisor x = u− v+ τ−1(v) of degree
< µ.

(2) If Qgr(U ) 6= Qgr(T ), then there is a virtually effective divisor x of degree < µ
and a blowup F of T at x so that U = (F ∩ T )(n).

Proof. (1) Let C =U 〈g〉; thus Qgr(U )= Qgr(Ĉ)= Qgr(T ). By Proposition 8.10,
there exists an ideal X of C that is finitely generated as a right U -module. In
particular, as U is a right Ore domain and X ⊆ Qgr(U ), we can clear denominators
from the left to find q ∈ Qgr(U ) such that X ⊆ qU . As X is an ideal of C , we have
pC ⊆ X for any 0 6= p ∈ X and hence C ⊆ p−1qU . Thus C and U are equivalent
orders. By Proposition 8.7 it follows that U and Ĉ are equivalent orders and hence
U = Ĉ . Now apply Proposition 2.9 and Theorem 7.4.

(2) Keep C and X as above. In this case, as Qgr(U )= k(E)[gn, g−n, τ n
], clearly

U and C ′ =U 〈gn
〉 have the same graded quotient ring and, moreover, C ′ = C (n).

Therefore X (n) is an ideal of C (n) which, since it is a U -module summand of X , is
also finitely generated as a right (and left) U -module. The argument used in (1)
therefore implies that U and C (n) are equivalent orders and hence that U = C (n).
In particular, C =

∑n−1
i=0 gi C (n) is a finitely generated right U -module.

Consider Ĉ . As g ∈ C , we have Qgr(Ĉ)= Qgr(T ) and so, by Corollary 7.6(1),
there exists a cg maximal T -order V = V̂ ⊆ T containing and equivalent to Ĉ . By
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Proposition 8.7, V is equivalent to C . Further, V = F ∩ T where F is a blowup
of T at some virtually effective divisor x on E with deg x < µ.

Now, aV b ⊆ C for some a, b ∈ C r {0}. By multiplying by further elements
of C we may suppose that a, b ∈ C (n)

=U and hence that aV (n)b ⊆U . As U is a
maximal T (n)-order, and certainly V (n)

⊆ T (n), it follows that U = V (n). �

One consequence of the theorem is that maximal T (n)-orders have a number of
pleasant properties, as we next illustrate. The undefined terms in the following
corollary can be found in [Rogalski 2011, §2] and [Van den Bergh 1997].

Corollary 8.12. Suppose that T satisfies Assumptions 2.1 and 8.2. For some n ≥ 1,
let U be a cg maximal T (n)-order with U 6= k. Then qgr-U has cohomological
dimension ≤ 2, while U has a balanced dualising complex and satisfies the Artin–
Zhang χ conditions.

Proof. By Theorem 8.11, U = V (n) for a g-divisible maximal T -order V . Hence
V •

= B(E,N, τ ), by Theorem 6.7. Thus [Rogalski 2011, Lemma 2.2] and [Artin and
Zhang 1994, Lemma 8.2(5)] imply that qgr-V has cohomological dimension one,
and that V satisfies χ . The fact that V satisfies χ and that qgr-V has cohomological
dimension ≤ 2 then follow from [ibid., Theorem 8.8]. By [Artin and Stafford 1995,
Lemma 4.10(3)], V is a noetherian U -module and so, by [Artin and Zhang 1994,
Proposition 8.7(2)], these properties then descend to U . (With a little more work
one can show that qgr-V and qgr-U have cohomological dimension exactly 2.)
Finally, by [Van den Bergh 1997, Theorem 6.3], this implies the existence of a
balanced dualising complex. �

Let U be a maximal order in T with U 6= k. Theorem 8.11 also allows us to
determine the simple objects in qgr-U , although we do not formalise their geometric
structure.

Corollary 8.13. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U be a
cg maximal T -order with U 6= k. Then the simple objects in qgr-U are in one-to-
one correspondence with the closed points of the elliptic curve E together with a
(possibly empty) finite set.

Proof. A simple object in qgr-U equals π(M) for a cyclic critical right U -module M
with the property that every proper factor of M is finite-dimensional. Suppose first
that M is g-torsion; thus Mg= 0 by Lemma 3.8. Hence, by Theorems 8.11 and 7.4,
π(M) ∈ qgr-B for some TCR B = B(E,N, τ ). Thus, under the equivalence of
categories qgr-B ' coh(E), π(M) corresponds to a closed point of E .

On the other hand, if M is not annihilated by g, then Lemma 3.8 implies that M
is g-torsionfree. By comparing Hilbert series, it follows that GKdim(M/Mg) =
GKdim(M)− 1 and so, as dimk M/Mg <∞ by construction, GKdim(M)= 1. In
particular, M ′= M[g−1

]0 is then a finite-dimensional simple U ◦-module and hence
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is annihilated by the minimal nonzero ideal of U ◦ (see Corollary 8.5). Pulling back
to U , this says that M is killed by the minimal sporadic ideal K of U . Thus, by
Lemma 3.8, P = r-ann(M) is one of the finitely many prime ideals P minimal
over K .

In order to complete the proof we need to show that π(M) is uniquely determined
by P . Note that, as dimk(M/Mg) <∞, we have π(M) ∼= π(Mg) = π(M[−1])
in qgr-U , and so we do not need to worry about shifts. Next, as GKdim(M) =
GKdim(U/P), M is a (Goldie) torsion-free U/P-module and hence is isomorphic
to (a shift of) a uniform right ideal J of U/P . However, given a second uniform
right ideal J ′ ⊆ U/P , then J ′ is isomorphic to (a shift of) a submodule L ⊆ J
(use the proof of [McConnell and Robson 2001, Corollary 3.3.3]). Once again,
dimk(J/L) <∞ and so π(J )∼= π(J ′), as required. �

Corollary 8.14. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U ⊆ T be a
noetherian cg algebra with Dgr(U )= Dgr(T ) and U 6= k. Then C =U 〈g〉 and Ĉ
are both finitely generated right (and left) U-modules.

Proof. Again, let X = CU≥n0 be the ideal of C that is finitely generated as a right
U -module given by Proposition 8.10. In this case, X is a noetherian right U -module
and hence so is C ∼= xC[n] for any 0 6= x ∈ Xn . The rest of the result follows from
Proposition 8.7. �

9. Arbitrary orders

The assumption U 6= k that appeared in most of the results from Section 8 is
annoying but, as Example 10.8 shows, necessary. Fortunately one can bypass the
problem, although at the cost of passing to a Veronese ring. In this section we
explain the trick and apply it to describe arbitrary cg orders in T .

Up to now graded homomorphisms of algebras have been degree-preserving, but
this will not be the case for the next few results, and so we make the following
definition. A homomorphism A→ B between N-graded algebras is called graded
of degree t if φ(An)⊆ Bnt for all n. The map φ is called semigraded if it is graded
of degree t for some t .

Proposition 9.1. Suppose that T satisfies Assumption 2.1 and that U is a cg noe-
therian subalgebra of T with U 6⊆ k[g]. Then there exist N ,M ∈N and an injective
graded homomorphism φ :U (N )

→T of degree M such that U ′=φ(U (N )) 6⊆k+gT .
In addition, Dgr(U )= Dgr(U ′)⊆ Dgr(T ).

Proof. For n ≥ 0, define f : N→ N∪ {−∞} by

f (n)=min{i :Un ⊆ gn−i T }, with f (n)=−∞ if Un = 0.
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Trivially, f (n) ∈ {0, 1, . . . , n} ∪ {−∞} for all n ≥ 0, and f (n) = 0 if and only if
Un = kgn .

We first claim that f (n)+ f (m)≤ f (n+m) for all m, n ≥ 0. As A is a domain,
this is clear if one of the terms equals −∞, and so we may assume that f (r)≥ 0
for r = n,m, n+m. Write Ur = Xr gr− f (r) for such r ; thus Xr ⊆ T but Xr 6⊆ gT .
Since gT is a completely prime ideal, Xn Xm ⊆ T but Xn Xm 6⊆ gT . In other words,
UnUm 6⊆ Y = g(n− f (n)+m− f (m)+1)T . Since UnUm ⊆Un+m it follows that Un+m 6⊆ Y
and hence that f (n+m)≥ f (n)+ f (m), as claimed.

A noetherian cg algebra is finitely generated by the graded Nakayama’s lemma,
so suppose that U is generated in degrees ≤ r . Then Un =

∑r
i=1 UiUn−i for all

n > r . Arguing as in the previous paragraph shows that

f (n)=max{ f (n− i)+ f (i) : 1≤ i ≤ r} for n > r, (9.2)

with the obvious conventions if any of these numbers equals −∞.
We claim that there exists N with f (N ) > 0 such that f (nN )= n f (N ) for all

n ≥ 1. This follows by exactly the same proof as in [Artin and Stafford 1995,
Lemma 2.7]. Namely, choose 1 ≤ N ≤ r such that λ = f (N )/N is as large as
possible; by induction using (9.2) it follows that f (n)≤ λn for all n ≥ 0, and this
forces f (nN )= n f (N ) for all n ≥ 0, as claimed.

Let M = f (N ) and note that M > 0 since U 6⊆ k[g]. Thus, for each n ≥ 0 we
have UnN ⊆ gnN−nM T but UnN 6⊆ gnN−nM+1T . Therefore the function UnN→ TnM

given by x 7→ xgn(M−N ) is well-defined, and it defines an injective vector space
homomorphism θ :U (N )

→ T with θ(U (N )) 6⊆ k+ gT . It is routine to see that θ is
an algebra homomorphism which is graded of degree M . The final claim of the
proposition is clear because Dgr(U )= Dgr(U (N ))= Dgr(U ′). �

Corollary 9.3. (1) Suppose T satisfies Assumption 2.1 and that U is a noetherian
subring of T generated in a single degree N , with U 6= k[gN

]. Then up to a
semigraded isomorphism we may assume that U 6⊆ k+ gT .

(2) Suppose also that T satisfies Assumption 8.2. If U is a noetherian maximal
T (N )-order generated in degree N then, again up to a semigraded isomorphism,
U ∼= V (M), where (V, F) is a maximal order pair and M ≤ N.

Proof. In this proof, Veronese rings are unregraded; that is, they are given the
grading induced from T .

(1) Pick M ∈ N minimal such that UN ⊆ gN−M T . Necessarily, M ≤ N . Then,
either directly or by Proposition 9.1, there is a semigraded monomorphism

φ :U =U (N )
→ T given by u 7→ gM−N u for u ∈UN .

Hence U ∼= φ(U ), and φ(U ) 6⊆ k+ gT by the choice of M .
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(2) As U is an order in T (N ), certainly φ(U ) is an order in T (M). So, suppose
that φ(U )⊆W ⊆ T (M) for some equivalent order W ; say with aW b ⊆ φ(U ), for
a, b ∈ φ(U ). Since M ≤ N , the map φ−1 extends to give a well-defined semigraded
homomorphismψ :T (M)

→T (N ) defined by γ 7→ gN−Mγ for all γ ∈TM . Therefore,
ψ(a)Uψ(b) ⊆ U ⊆ ψ(W ) ⊆ T (N ) and hence U = ψ(W ). Thus, φ(U ) = W is a
maximal order in T (M) with φ(U ) 6∈ k+ gT . Now apply Theorem 8.11(2). �

One question we have been unable to answer is the following.

Question 9.4. Suppose that U ⊆ T is a cg maximal T -order or, indeed, a maximal
order. Then is each Veronese ring U (n) also a maximal T (n)-order? The question is
open even when U is noetherian.

If this question has a positive answer, one can mimic the proof of Corollary 9.3
for any noetherian maximal order U to get a precise description of some Veronese
ring U (N ). However, the best we can do at the moment is to use the much less
precise result given by the next corollary, which also describes arbitrary noetherian
cg subalgebras of T .

Corollary 9.5. Suppose that T satisfies Assumptions 2.1 and 8.2. Let U ⊆ T be a
noetherian algebra with Dgr(U )= Dgr(T ). Then, up to taking Veronese subrings,
U is an iterated subidealiser inside a virtual blowup of T . More precisely, the
following hold.

(1) There is a semigraded isomorphism of Veronese rings U (N )∼=U ′, where U ′⊆T
is a noetherian algebra such that Dgr(U ′)= Dgr(T ) and U ′ 6⊆ k+ gT .

(2) If C = U ′〈g〉 and Z = Ĉ , then Z is a finitely generated (left and right) U ′-
module and Z is a noetherian algebra with Qgr(Z)= Qgr(T ). The g-divisible
algebra Z is described by Corollary 7.6.

Proof. By [Artin and Zhang 1994, Proposition 5.10], the Veronese ring U (N ) is
noetherian and so part (1) follows from Proposition 9.1. Part (2) then follows from
Corollary 8.14 (and Corollary 7.6). �

10. Examples

We end the paper with several examples that illustrate some of the subtleties involved
here. For simplicity, these examples will all be constructed from T = S(3) for the
standard Sklyanin algebra S of Examples 2.2(1); thus µ= deg M= 9.

We first construct a g-divisible, maximal T -order U that is not a maximal order
in Qgr(U ), as promised in Section 6. This shows, in particular, that the concept of
maximal order pairs is indeed necessary in that section. In order to construct the
example, we need the following notation.
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Notation 10.1. Fix 0 6= x ∈ S1 and let c = p+ q + r be the hyperplane section
of E where x vanishes. We can and will assume that no two of p, q, r lie on
the same σ -orbit on E , where S/gS ∼= B(E,L, σ ). Set R = T (c). By [Rogalski
2011, Example 11.3], R has a sporadic ideal I = x S2 R. Write N = xT1x−1 R and
M = x S5 R+ R. Finally, set d = σ−2(c)= σ−2(p)+ σ−2(q)+ σ−2(r) and hence
dτ = σ−5(c).

As we will see, U =EndR(M) will (essentially) be the required maximal T -order
with equivalent maximal order being F = EndR(N ). The proof will require some
detailed computations, which form the content of the next lemma. We note that for
subspaces of homogeneous pieces of S we use the grading on S, but for subspaces
that live naturally in T we use the T -grading. For example, we write T1S2 = S5.

Lemma 10.2. Keep the data from Notation 10.1.

(1) N I = x S5 R ⊆ M and M≥1 ⊆ N. Hence N ∗∗ = M∗∗ = (M̂)∗∗ = M̂∗∗.

(2) U ′ = EndR(M̂)⊆ T , but

(3) F = EndR(M∗∗)= EndR(N I )= xT (dτ )x−1. Moreover, F 6⊆ T .

Proof. (1) Clearly

N I = xT1S2 R = x S5 R ⊆ M = x S5 R+ R.

By [Rogalski 2011, Example 11.3], R1 = x S2+kg and so R1x ⊆ xT . Equivalently,
R1 ⊆ xT1x−1

⊆ N . As R = T (c) is generated in degree one by Proposition 4.10(2),
R ⊆ xT x−1. In particular, M≥1 = x S5 R+ R≥1 ⊆ N . As I is a sporadic ideal, it
follows from Proposition 4.10 and Lemma 4.11(1) that N ∗∗ = (N I )∗∗ and hence
that M∗∗ = N ∗∗.

Now consider M̂ . Since 1 ∈ M , certainly MT = T and so M∗∗ = (M̂)∗∗ = M̂∗∗

by Lemma 2.13(3).

(2) Since MT = T we have M̂T = T , from which the result follows.

(3) We will first prove that EndR(N ) = xT (dτ )x−1. As in (1), R1 = x S2 + kg.
Equivalently, (x−1 Rx)1= S2x+kg is a 7-dimensional subspace of T1 that vanishes
at the points σ−2(p), σ−2(q) and σ−2(r). Now, T (d)1 is also 7-dimensional
by [Rogalski 2011, Theorem 1.1(1)]. Consequently, (x−1 Rx)1 = T (d)1 and so
x−1 Rx = T (d), since both algebras are generated in degree 1 by Proposition 4.10(2).
Therefore,

x−1 N x = T1(x−1 Rx)= T1T (d)= T (dτ )T1,

where the final equality follows from [RSS 2015, Corollary 4.14]. Thus

xT (dτ )T1x−1
= N
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and so EndR(N ) ⊇ G = xT (dτ )x−1. Since N = GxT1x−1, Lemma 6.3 implies
that EndR(N ) is a finitely generated left G-module. But G is a maximal order
by [Rogalski 2011, Theorem 1.1(2)], and so EndR(N ) = G. Thus, by part (1)
and Lemma 6.2, EndR(N ) = EndR(N ∗∗) = End(M∗∗). Moreover, EndR(N ) ⊆
EndR(N I ) and we again have equality by Lemma 6.3.

It remains to prove that xT (dτ )x−1
6⊆ T . This will follow if we show that

x̄ X x̄−1
6⊆ T , where X = T (dτ ) and X = (X + gT(g))/T(g). So, assume that

x̄ X x̄−1
⊆ T . Then x X1 ⊆ T 1x = S3x . However, inside S4,

x X1 ⊆ H 0(E,L4(−p− q − r − σ−6(p)− σ−6(q)− σ−6(r))
)
,

and, since both are 6-dimensional, they are equal. On the other hand,

S3x = H 0(E,L4(−σ
−3(p)− σ−3(q)− σ−3(r))

)
.

Inside S4, vanishing conditions at ≤ 12 distinct points give independent conditions.
So there exists z that vanishes at the first 6 points p, . . . , σ−6(r) but not at the
points σ−3(p), σ−3(q), σ−3(r). This implies that x X1 6⊆ T 1x , and completes the
proof of the lemma. �

We are now able to give the desired example.

Proposition 10.3. There exists a maximal order pair (V, F) with V 6= F. In
particular, V is a maximal T -order that is not a maximal order.

In more detail, and using the data from Notation 10.1, F = EndR((M̂)∗∗) =
xT (dτ )x−1 is a blowup of T at x = c− τ−1(c)+ τ−2(c). The algebra F is also
Auslander–Gorenstein and CM.

Proof. As 1 ∈ M , Theorem 6.7 and Lemma 10.2 imply that F = EndR((M̂)∗∗)=
xT (dτ )x−1 is a maximal order with F 6⊆ T . By Theorem 6.7, again, V = T ∩ F is
a g-divisible maximal T -order, but V is not a maximal order as V 6= F . That F is
Auslander–Gorenstein and CM follows from Proposition 4.10.

Theorem 6.7 also implies that F is a blowup of T at some virtual divisor y, so it
remains to check that y= x. By Lemma 10.2, F = EndR(N I )= EndR(x S5 R) and
hence F ⊆ EndR(x S5 R). Now, for any n ≥ 2, one has

Rn−2 = H 0(E,M(−c− cτ − · · ·− cτ
n−3
)
)
,

and so

(x S5 R)n = H 0(E,M(−c− cτ
2
− cτ

3
− · · ·− cτ

n−1
)= H 0(E,O(cτ )M(−c)n).

Hence

F ⊆ EndR(x S5 R)= EndR

(⊕
n≥2

H 0(E,O(cτ )M(−c)n)
)
.
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Therefore, by Lemma 6.14(1), F •

= B(E,M(−x), τ ). By [Rogalski 2011, Theo-
rem 1.1(2)] and Riemann–Roch, dim Fn = 6n = dim B(E,M(−x), τ ), for n ≥ 1,
and hence F = B(E,M(−x), τ ), as required. �

When y is effective, the blowup T ( y) is both Auslander–Gorenstein and CM
(see Proposition 4.10), as is the blowup of T at x from Proposition 10.3. Despite
this example, neither the Auslander–Gorenstein nor the CM condition is automatic
for a blowup of T at virtually effective divisors.

Example 10.4. Let x = p− τ(p)+ τ 2(p) for a closed point p ∈ E and let U be
a blowup of T at x. Then U is a maximal order contained in T that is neither
Auslander–Gorenstein nor AS Gorenstein nor CM.

Proof. By Definition 6.9 and Corollary 6.6(2), U = EndT (q)(M), where M = M∗∗

satisfies MT = T and q is a closed point that is τ -equivalent to x and hence to p. By
[RSS 2015, Example 9.5], T (q) has no sporadic ideals and so, by Corollary 6.6(3),
U is a g-divisible maximal order contained in T .

Now consider U = U/gU . By Theorem 6.7, U •

= B = B(E,M(−x), τ ). We
emphasise that we always identify M(−x) and M with the appropriate subsheaves
of the field k(E) and B with the corresponding subring of the Ore extension
T(g)/gT(g) ∼= k(E)[z, z−1

; τ ]. We first want to show that U 6= B. Since

deg(M(−x))= deg M− deg x = 8,

[Hartshorne 1977, Corollary IV.3.2] implies that M(−x) is very ample and generated
by its sections B1= H 0(E,M(−x)). On the other hand, the inclusion U ⊆ T forces
U ⊆ T = B(E,M, τ ) and again T 1 generates M. Therefore, if U = B or even
if U 1 = B1 then M(−x) ⊆M. Since x is not effective, this is impossible and so
U 6= B, as claimed.

We now turn to the homological questions. By [Levasseur 1992, Theorem 5.10],
U is Auslander–Gorenstein, AS Gorenstein or CM if and only if the same holds
for U . Thus we can concentrate on U . Since B/U is a nonzero, finite-dimensional
vector space, and B is a domain, certainly Ext1

U
(k,U ) 6= 0 (on either side). Since

GKdim U =GKdim B = 2 this certainly implies that U is not CM. Moreover, if we
can prove that Ext2

U
(k,U ) 6= 0 on either side, then U will be neither AS Gorenstein

nor Auslander–Gorenstein.
By [Levasseur 1992, Proposition 6.5], ExtiB(k, B)= δi,2k, up to a shift in degree.

Therefore [Rotman 2009, Corollary 10.65], with A=k, B= S and R=C=U , gives

Ext2U (k,U )= Ext2U (B⊗B k,U )= Ext2B(k, J ) for J = HomU (B,U ). (10.5)

Since U •

= B, clearly L = B/J is also a nonzero finite-dimensional k-vector space.
We claim that the same is true of Ext2B(k, J ). As Ext1B(k, B)= 0, we have an exact
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sequence

0−→ Ext1B(k, L)−→ Ext2B(k, J )−→ Ext2B(k, B)−→ · · · . (10.6)

Since dimk Ext1B(k, L)<∞, the claim will follow once we show that Ext1B(k, L) 6=0.
As in [Artin and Zhang 1994, (7.1.2)], let I (L) denote the largest essential exten-

sion of L by locally finite-dimensional modules. If soc(L) denotes the socle of L ,
then L and soc(L) have the same injective hulls and hence the same torsion-injective
hulls I (L)= I (soc(L)). By [Rogalski 2011, Lemma 2.2(2)], B satisfies χ in the
sense of [Artin and Zhang 1994, Definition 3.2] and so, by [ibid., Proposition 7.7],
I (L) is a direct sum of copies of shifts of the vector space dual B∗. Since this is
strictly larger than L , Ext1B(k, L) 6= 0 and the claim follows.

In conclusion, by (10.6) we know that 0< dimk Ext2B(k, J ) <∞ and hence by
(10.5) it follows that (up to a shift) k ↪→ Ext2

U
(k,U ) as left U -modules. As noted

earlier, this shows that both Gorenstein conditions fail. �

Remark 10.7. (1) By expanding upon the above proof one can in fact show that U
from Example 10.4 will have infinite injective dimension.

(2) Explicit computation shows that U is not uniquely determined by x as a
subalgebra of T , although the factor U is determined in large degree. We do
not know whether U is unique up to isomorphism.

Let U be a noetherian subring of T with Qgr(U )= Qgr(T ). In Proposition 8.7,
we had to assume that U 6⊆ k+ gT in order to find a g-divisible, equivalent order
and this meant that the same assumption was needed for the rest of Section 8. In our
next example we show that the conclusions of Proposition 8.7 can fail without this
assumption, as does Theorem 8.11. Thus Proposition 9.1 is necessary for Section 9.

In order to define the ring, pick algebra generators of T in degree 1; say T =
k〈a1, . . . , ar 〉, set T g

= k〈ga1, . . . , gar 〉 and write U = T g
〈g〉 ⊂ T for the subring

of T generated by T g and g.

Example 10.8. Keep T g and U = T g
〈g〉 as above. Then:

(1) There is a semigraded isomorphism T g ∼= T . Thus U is noetherian and there
is a semigraded isomorphism T [x]/(x2

− g)∼=U mapping x to g. Moreover,
U (2)
= T g and so U ◦ = (T g)◦ ∼= T ◦.

(2) U ⊆ k+ gT and so U = k.

(3) gU is a prime ideal of U such that there is a semigraded isomorphism U/gU ∼=
B = T/gT .

(4) Û = T but T is not finitely generated as a right (or left) U -module.

(5) U is a maximal order with Qgr(U )= Qgr(T ).

Proof. (1–2) These are routine computations.



2116 Daniel Rogalski, Susan J. Sierra and J. Toby Stafford

(3) Under the identification U = T [x]/(x2
− g), clearly U/xU = T/gT .

(4) For any θ ∈ Tn one has gnθ ∈ T g
⊆ U and hence Û = T̂ g = T . If T were

finitely generated as a (right) U -module then the factor B = T/gT would be
finitely generated as a module over the image (U + gT )/gT =U of U in B. This
contradicts (2).

(5) Write U = T [x]/(x2
−g); thus x ∈U1 but the grading of T is shifted. If U is not

a maximal order then there exists a cg ring U ( V ⊂ Q(U ) such that either aV ⊆U
or V a⊆U for some 0 6= a ∈U . By symmetry we may assume the former, in which
case I V = I for the nonzero ideal I =UaV of U . Thus I (2)V (2)

= I (2), and I (2) 6= 0
since U is a domain. Since U (2)

= T is a maximal order by Proposition 4.10(4), it
follows that V (2)

=U (2)
= T . Let f ∈ V rU be homogeneous. Then f appears in

odd degree and so f x ∈ V (2)
=U (2)

= T and f = t x−1 for some t ∈ T . However,
T = V (2)

3 f 2
= (t x−1)2 = t2g−1. Hence t2

∈ gT which, since T/gT is a domain,
forces t = gt1 ∈ gT . But this implies that f = t x−1

= xt1 ∈U , a contradiction. Thus
U is indeed a maximal order. Moreover, as g ∈U , clearly each ai lies in Qgr(U )
and hence Qgr(T )= Qgr(U ). �

In this paper we have only been concerned with two-sided noetherian rings,
since we believe that this is the appropriate context for noncommutative geometry.
For one-sided noetherian rings there are further examples that can appear, as is
illustrated by the following example.

Example 10.9. Let J be a right ideal of T such that g ∈ J and GKdim(T/J )= 1.
Then the idealiser A = I(J ) is right but not left noetherian.

Proof. Let J = J/g J . Since B = T/gT is just infinite [Rogalski 2011, Lemma 3.2],
dimk T/T J < ∞. Since T J =

∑m
i=1 ti J for some t j , it follows that T J and

hence T are finitely generated right A-modules. Thus, by the proof of [Stafford
and Zhang 1994, Theorem 3.2], A is right noetherian. On the other hand, B is not
a finitely generated left A/gT -module, and so gT is an ideal of A that cannot be
finitely generated as a left A-module. �
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Index of notation

α-pure 2079
Allowable divisor layering d• 2075
Blowup at an arbitrary divisor 2092
CM and Gorenstein conditions 2078
dτ = τ−1(d) for a divisor d 2080
dn = d + dτ + · · · + dτn−1

for a divisor d
2080

Dgr(A), function skewfield 2063
Fn = F⊗Fτ

⊗· · ·⊗Fτn−1
for a sheaf F

2061
g-divisible 2064
Geometric data ( y, x, k) for A 2082
Hom(I, J )= HomMod-A(I, J ) 2063
HomGr-A(I, J ) 2063
Idealiser I(J ) 2069
Just infinite 2064
Left allowable divisor layering d• 2077
µ= deg M 2062
M(k, d) 2076
Maximal order pair (V, F) 2090
Maximal T -order 2088
Minimal sporadic ideal 2101
Normalised orbit representative, divisor

2082

pi = τ
−i (p) for a point p 2076, 2080

Point modules 2071
P(p), P ′(p) 2076, 2077
qgr-A, quotient category of gr-A 2064
Qgr(A), graded quotient ring 2063
Q(i, d, r, p) 2076
R◦, localisation of R 2099
Saturation I sat, saturated right ideal 2075
semigraded morphism 2109
Sporadic ideal 2067, 2101
τ , automorphism defining T 2062
τ -equivalent divisors and invertible sheaves

2079
T (d), effective blowup 2076
T(g), graded localisation 2064
T≤` ∗ T (d) 2076
TCR, twisted coordinate ring B(X,L, θ)

2061
Unregraded ring 2062
Virtual blowup 2095
Virtually effective divisor x=u−v+τ−1(v)

2095
X̂ , X 2064
•

=, equal in high degree 2069
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[Năstăsescu and van Oystaeyen 1982] C. Năstăsescu and F. van Oystaeyen, Graded ring theory, North-
Holland Mathematical Library 28, North-Holland Publishing Co., Amsterdam, 1982. MR 84i:16002
Zbl 0494.16001

[Rogalski 2011] D. Rogalski, “Blowup subalgebras of the Sklyanin algebra”, Adv. Math. 226:2
(2011), 1433–1473. MR 2012d:16083 Zbl 1207.14004

[Rogalski and Sierra 2012] D. Rogalski and S. J. Sierra, “Some projective surfaces of GK-dimension
4”, Compos. Math. 148:4 (2012), 1195–1237. MR 2956041 Zbl 1262.16024

[Rogalski and Stafford 2009] D. Rogalski and J. T. Stafford, “A class of noncommutative projective
surfaces”, Proc. Lond. Math. Soc. (3) 99:1 (2009), 100–144. MR 2010j:14007 Zbl 1173.14005

[Rotman 2009] J. J. Rotman, An introduction to homological algebra, 2nd ed., Springer, New York,
2009. MR 2009i:18011 Zbl 1157.18001

[RSS 2014] D. Rogalski, S. J. Sierra, and J. T. Stafford, “Algebras in which every subalgebra is
Noetherian”, Proc. Amer. Math. Soc. 142:9 (2014), 2983–2990. MR 3223353 Zbl 1311.16015

[RSS 2015] D. Rogalski, S. J. Sierra, and J. T. Stafford, “Noncommutative blowups of elliptic
algebras”, Algebr. Represent. Theory 18:2 (2015), 491–529. MR 3336351 Zbl 06445654

[Sierra 2011] S. J. Sierra, “Classifying birationally commutative projective surfaces”, Proc. Lond.
Math. Soc. (3) 103:1 (2011), 139–196. MR 2012i:16054 Zbl 1226.14004

http://dx.doi.org/10.1007/BF01243916
http://dx.doi.org/10.1007/BF01243916
http://msp.org/idx/mr/93e:16055
http://msp.org/idx/zbl/0763.14001
http://dx.doi.org/10.1006/jabr.1999.7997
http://dx.doi.org/10.1006/jabr.1999.7997
http://msp.org/idx/mr/2001a:16006
http://msp.org/idx/zbl/0958.16024
http://dx.doi.org/10.1007/s101070100284
http://msp.org/idx/mr/92d:16017
http://msp.org/idx/zbl/0733.16016
http://dx.doi.org/10.2307/1997597
http://msp.org/idx/mr/54:7524
http://msp.org/idx/zbl/0334.16009
http://dx.doi.org/10.4171/JEMS/235
http://dx.doi.org/10.4171/JEMS/235
http://msp.org/idx/mr/2012d:16082
http://msp.org/idx/zbl/1204.14004
http://msp.org/idx/mr/91c:16001
http://msp.org/idx/zbl/0679.16001
http://msp.org/idx/mr/57:3116
http://msp.org/idx/zbl/0367.14001
http://dx.doi.org/10.1215/S0012-7094-04-12633-8
http://dx.doi.org/10.1215/S0012-7094-04-12633-8
http://msp.org/idx/mr/2006g:14005
http://msp.org/idx/zbl/1082.14003
http://msp.org/idx/mr/86g:16001
http://msp.org/idx/zbl/0564.16001
http://dx.doi.org/10.1017/S0017089500008843
http://msp.org/idx/mr/93k:16045
http://msp.org/idx/zbl/0824.16032
http://dx.doi.org/10.1090/gsm/030
http://msp.org/idx/mr/2001i:16039
http://msp.org/idx/zbl/0980.16019
http://msp.org/idx/mr/84i:16002
http://msp.org/idx/zbl/0494.16001
http://dx.doi.org/10.1016/j.aim.2010.08.009
http://msp.org/idx/mr/2012d:16083
http://msp.org/idx/zbl/1207.14004
http://dx.doi.org/10.1112/S0010437X12000188
http://dx.doi.org/10.1112/S0010437X12000188
http://msp.org/idx/mr/2956041
http://msp.org/idx/zbl/1262.16024
http://dx.doi.org/10.1112/plms/pdn054
http://dx.doi.org/10.1112/plms/pdn054
http://msp.org/idx/mr/2010j:14007
http://msp.org/idx/zbl/1173.14005
http://dx.doi.org/10.1007/b98977
http://msp.org/idx/mr/2009i:18011
http://msp.org/idx/zbl/1157.18001
http://dx.doi.org/10.1090/S0002-9939-2014-12052-1
http://dx.doi.org/10.1090/S0002-9939-2014-12052-1
http://msp.org/idx/mr/3223353
http://msp.org/idx/zbl/1311.16015
http://dx.doi.org/10.1007/s10468-014-9506-7
http://dx.doi.org/10.1007/s10468-014-9506-7
http://msp.org/idx/mr/3336351
http://msp.org/idx/zbl/06445654
http://dx.doi.org/10.1112/plms/pdq054
http://msp.org/idx/mr/2012i:16054
http://msp.org/idx/zbl/1226.14004


Classifying orders in the Sklyanin algebra 2119

[Stafford and Van den Bergh 2001] J. T. Stafford and M. Van den Bergh, “Noncommutative curves and
noncommutative surfaces”, Bull. Amer. Math. Soc. (N.S.) 38:2 (2001), 171–216. MR 2002d:16036
Zbl 1042.16016

[Stafford and Zhang 1994] J. T. Stafford and J. J. Zhang, “Examples in non-commutative pro-
jective geometry”, Math. Proc. Cambridge Philos. Soc. 116:3 (1994), 415–433. MR 95h:14001
Zbl 0821.16026

[Stephenson 1997] D. R. Stephenson, “Algebras associated to elliptic curves”, Trans. Amer. Math.
Soc. 349:6 (1997), 2317–2340. MR 97m:16080 Zbl 0868.16028

[Van den Bergh 1997] M. Van den Bergh, “Existence theorems for dualizing complexes over
non-commutative graded and filtered rings”, J. Algebra 195:2 (1997), 662–679. MR 99b:16010
Zbl 0894.16020

[Van den Bergh 2001] M. Van den Bergh, Blowing up of non-commutative smooth surfaces, Mem.
Amer. Math. Soc. 734, Amer. Math. Soc., Providence, 2001. MR 2002k:16057 Zbl 0998.14002

[Van den Bergh 2011] M. Van den Bergh, “Noncommutative quadrics”, Int. Math. Res. Not. 2011:17
(2011), 3983–4026. MR 2012m:14004 Zbl 1311.14003

[Van den Bergh 2012] M. Van den Bergh, “Non-commutative P1-bundles over commutative schemes”,
Trans. Amer. Math. Soc. 364:12 (2012), 6279–6313. MR 2958936 Zbl 06199600

[Zhang 1998] J. J. Zhang, “On lower transcendence degree”, Adv. Math. 139:2 (1998), 157–193.
MR 2000a:16046 Zbl 0924.16015

Communicated by Efim Zelmanov
Received 2014-04-08 Revised 2015-03-10 Accepted 2015-09-03

drogalsk@math.ucsd.edu Department of Mathematics, University of California, San
Diego, 9500 Gilman Drive #0112, La Jolla, CA 92093-0112,
United States

s.sierra@ed.ac.uk School of Mathematics, University of Edinburgh,
James Clerk Maxwell Building, Peter Guthrie Tait Road,
Edinburgh, EH9 3FD, United Kingdom

toby.stafford@manchester.ac.uk School of Mathematics, University of Manchester,
Alan Turing Building, Oxford Road, Manchester, M13 9PL,
United Kingdom

mathematical sciences publishers msp

http://dx.doi.org/10.1090/S0273-0979-01-00894-1
http://dx.doi.org/10.1090/S0273-0979-01-00894-1
http://msp.org/idx/mr/2002d:16036
http://msp.org/idx/zbl/1042.16016
http://dx.doi.org/10.1017/S0305004100072716
http://dx.doi.org/10.1017/S0305004100072716
http://msp.org/idx/mr/95h:14001
http://msp.org/idx/zbl/0821.16026
http://dx.doi.org/10.1090/S0002-9947-97-01769-8
http://msp.org/idx/mr/97m:16080
http://msp.org/idx/zbl/0868.16028
http://dx.doi.org/10.1006/jabr.1997.7052
http://dx.doi.org/10.1006/jabr.1997.7052
http://msp.org/idx/mr/99b:16010
http://msp.org/idx/zbl/0894.16020
http://dx.doi.org/10.1090/memo/0734
http://msp.org/idx/mr/2002k:16057
http://msp.org/idx/zbl/0998.14002
http://dx.doi.org/10.1093/imrn/rnq234
http://msp.org/idx/mr/2012m:14004
http://msp.org/idx/zbl/1311.14003
http://dx.doi.org/10.1090/S0002-9947-2012-05469-9
http://msp.org/idx/mr/2958936
http://msp.org/idx/zbl/06199600
http://dx.doi.org/10.1006/aima.1998.1749
http://msp.org/idx/mr/2000a:16046
http://msp.org/idx/zbl/0924.16015
mailto:drogalsk@math.ucsd.edu
mailto:s.sierra@ed.ac.uk
mailto:toby.stafford@manchester.ac.uk
http://msp.org




Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart University of Wisconsin, Madison, USA

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2015 is US $255/year for the electronic version, and $440/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2015 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 9 No. 9 2015

1955Families of nearly ordinary Eisenstein series on unitary groups
XIN WAN

2055Classifying orders in the Sklyanin algebra
DANIEL ROGALSKI, SUSAN J. SIERRA and J. TOBY STAFFORD

2121Congruence property in conformal field theory
CHONGYING DONG, XINGJUN LIN and SIU-HUNG NG

2167An averaged form of Chowla’s conjecture
KAISA MATOMÄKI, MAKSYM RADZIWIŁŁ and TERENCE TAO

1937-0652(2015)9:9;1-0

A
lgebra

&
N

um
ber

Theory
2015

Vol.9,
N

o.9


	1. Introduction
	2. Basic results
	3. Curves
	4. Right ideals of LG and the rings LG
	5. An equivalent LG 
	6. On endomorphism rings of LG
	7. The structure of LG-divisible orders
	8.  Sporadic ideals and LG-divisible hulls
	9. Arbitrary orders
	10. Examples
	Acknowledgements
	Index of notation
	References
	
	

