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Congruence property in
conformal field theory

Chongying Dong, Xingjun Lin and Siu-Hung Ng

The congruence subgroup property is established for the modular representations
associated to any modular tensor category. This result is used to prove that the
kernel of the representation of the modular group on the conformal blocks of
any rational, C2-cofinite vertex operator algebra is a congruence subgroup. In
particular, the q-character of each irreducible module is a modular function on the
same congruence subgroup. The Galois symmetry of the modular representations
is obtained and the order of the anomaly for those modular categories satisfying
some integrality conditions is determined.

Introduction

Modular invariance of characters of a rational conformal field theory (RCFT) has
been known since the work of Cardy [1986], and it was proved by Zhu [1996] for
rational and C2-cofinite vertex operator algebras (VOA), which constitute a math-
ematical formalization of RCFT. The associated matrix representation of SL2(Z)

relative to the distinguished basis, formed by the trace functions of the irreducible
modules or primary fields, is a powerful tool in the study of vertex operator algebras
and conformal field theory. This matrix representation conceives many intriguing
arithmetic properties, and the Verlinde formula [1988] is certainly a notable example.
Moreover, it has been shown that these matrices representing the modular group
are defined over a certain cyclotomic field [de Boer and Goeree 1991].

An important characteristic of the modular representation ρ associated with
a RCFT is its kernel. It has been conjectured by many authors that the kernel
is a congruence subgroup of a certain level n (see [Moore 1987; Eholzer 1995;
Eholzer and Skoruppa 1995; Dong and Mason 1996; Bauer et al. 1997]). Eholzer
further conjectured that this representation is defined over the n-th cyclotomic
field Qn . In this case, the Galois group Gal(Qn/Q) acts on the representation ρ by
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its entrywise action. Coste and Gannon [1994] proved that ρ determines a signed
permutation matrix Gσ for each automorphism σ of Qn . They also conjectured
that the representation σ 2ρ is equivalent to ρ under the intertwining operator Gσ .
These conjectural properties were summarized as the congruence property of the
modular data associated with RCFT in [Coste and Gannon 1999; Gannon 2006].
These remarkable properties of RCFT were established by Bantay [2003] under
certain assumptions, and by Coste and Gannon [1994] under the condition that the
order of the Dehn twist is odd. In the formalization of RCFT through conformal
nets, the congruence property was proved by Xu [2006].

In this paper we give a positive answer to the conjecture on the congruence
property for a rational and C2-cofinite vertex operator algebra V . Such a V has
only finitely many irreducible modules [Dong et al. 1998a] M0, . . . ,M p up to
isomorphism and there exist λi ∈ C for i = 0, . . . , p such that

M i
=

∞⊕
n=0

M i
λi+n

where M i
λi
6= 0 and L(0)|M i

λi+n
= λi +n for any n ∈ Z. Moreover, λi and the central

charge c are rational numbers (see [Dong et al. 2000]).
The trace function for v ∈ Vk on M i is defined as

Zi (v, q)= qλi−c/24
∞∑

n=0

(trM i
λi+n

o(v))qn

where o(v)= vk−1 is the (k−1)-st component operator of Y (v, z)=
∑

n∈Z vnz−n−1

which maps each homogeneous subspace of M i to itself. If v = 1 is the vacuum
vector we get the q-character χi (q) of M i . It is proved in [Zhu 1996] that if V
is C2-cofinite then Zi (v, q) converges to a holomorphic function on the upper
half-plane in variable τ where q = e2π iτ . By abusing the notation we also denote
this holomorphic function by Zi (v, τ ). There is another vertex operator algebra
structure on V [Zhu 1996] with grading V =⊕n∈ZV[n]. We will write wt[v] = n
if v ∈ V[n]. Then there is a representation ρV of the modular group SL2(Z) on the
space spanned by {Zi (v, τ ) | i = 0, . . . , p}:

Zi (v, γ τ)= (cτ + d)wt[v]
p∑

j=0

γi j Z j (v, τ )

where γ =
[a

c
b
d

]
∈ SL2(Z) and ρV (γ )= [γi j ] [Zhu 1996].

Theorem I. Let V be a rational, C2-cofinite, self-dual simple vertex operator
algebra. Then each Zi (v, τ ) is a modular form of weight wt[v] on a congruence
subgroup of SL2(Z) of level n, which is the smallest positive integer such that
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n(λi − c/24) is an integer for all i . In particular, each q-character χi is a modular
function on the same congruence subgroup.

We should remark that the modularity of the q-characters of irreducible modules
for some known vertex operator algebras such as those associated to the highest
weight unitary representations for Kac–Moody algebras [Kac and Peterson 1984;
Kac 1990] and the Virasoro algebra [Rocha-Caridi 1985] were previously known.
The readers are referred to [Dong et al. 2001] for the modularity of Zi (v, τ ) when
V is a vertex operator algebra associated to a positive definite even lattice.

According to [Huang 2008a; 2008b], the category CV of modules of a rational and
C2-cofinite vertex operator algebra V under the tensor product defined in [Huang
and Lepowsky 1995a; 1995b; 1995c; Huang 1995] is a modular tensor category
over C. To establish this theorem we have to turn our attention to general modular
tensor categories.

Modular tensor categories, or simply called modular categories, play an integral
role in the Reshetikhin–Turaev TQFT invariant of 3-manifolds [Turaev 2010]
and topological quantum computation [Wang 2010]. They also constitute another
formalization of RCFT [Moore and Seiberg 1990; Bakalov and Kirillov 2001].

Parallel to a rational conformal field theory, associated to a modular category A
are the invertible matrices s̃ and t̃ indexed by the set 5 of isomorphism classes of
simple objects of A. These matrices define a projective representation ρA of SL2(Z)

by the assignment

s :=

[
0 −1
1 0

]
7→ s̃ and t :=

[
1 1
0 1

]
7→ t̃,

and the well-known presentation SL2(Z)= 〈s, t | s
4
= 1, (st)3= s2

〉 of the modular
group. It was proved by Ng and Schauenburg [2010] that the kernel of this projective
representation of SL2(Z) is a congruence subgroup of level N , where N is the order
of t̃ . Moreover, both s̃ and t̃ are matrices over QN . For factorizable semisimple
Hopf algebras, the corresponding result was proved previously by Sommerhäuser
and Zhu [2012].

The projective representation ρA can be lifted to an ordinary representation
of SL2(Z) which is called a modular representation of A in [Ng and Schauenburg
2010]. There are only finitely many modular representations of A but, in general,
none of them is a canonical choice. However, if A is the Drinfeld center of a
spherical fusion category, then A is modular (see [Müger 2003b]) and it admits a
canonical modular representation defined over QN whose kernel is a congruence
subgroup of level N (see [Ng and Schauenburg 2010]). The canonical modular
representation of the module category over the Drinfeld double of a semisimple
Hopf algebra was shown to have a congruence kernel as well as Galois symmetry
(see Theorem II (iii) and (iv)) in [Sommerhäuser and Zhu 2012].
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The second main theorem of this paper is to prove that the congruence property
and Galois symmetry holds for all modular representations of any modular category.

Theorem II. Let A be a modular category over any algebraically closed field k
of characteristic zero with the set of isomorphism classes of simple objects 5
and Frobenius–Schur exponent N. Suppose ρ : SL2(Z)→ GL5(k) is a modular
representation of A where GL5(k) denotes the group of invertible matrices over k
indexed by 5. Set s = ρ(s) and t = ρ(t). Then:

(i) ker ρ is a congruence subgroup of level n where n = ord(t) and, moreover,
N |n |12N.

(ii) ρ is Qn-rational, i.e., im ρ ≤GL5(Qn), where Qn =Q(ζn) for some primitive
n-th root of unity ζn ∈ k.

(iii) For σ ∈Gal(Qn/Q), the matrix Gσ = σ(s)s−1 is a signed permutation matrix,
and

σ 2(ρ(γ ))= Gσρ(γ )G−1
σ

for all γ ∈ SL2(Z). In particular, if (Gσ )i j = εσ (i)δσ̂ (i) j for some sign function
εσ and permutation σ̂ on 5, then σ 2(ti i )= tσ̂ (i)σ̂ (i) for all i ∈5.

(iv) Let a be an integer relatively prime to n with an inverse b modulo n. For the
automorphism σa of Qn given by ζn 7→ ζ a

n ,

Gσa = tastbstas−1.

We return to the modular tensor category CV associated to a rational, C2-cofinite
and self-dual vertex operator algebra V . This yields a projective representation
of SL2(Z) on space spanned by the equivalence classes of irreducible V-modules.
We show in Theorem 3.10 that the representation ρV of SL2(Z) is a modular
representation of CV . This implies that the kernel of ρV is a congruence subgroup
of SL2(Z).

Although the congruence property proved in Theorem II is motivated by solving
the congruence property conjecture on the trace functions of vertex operator algebras,
the result has its own importance. We will discuss this in the rest of the introduction.

It was also shown in [Sommerhäuser and Zhu 2012] that the (unnormalized)
T-matrix t̃ of the module category over a factorizable Hopf algebra also enjoys the
Galois symmetry σ 2(t̃)= Gσ t̃G−1

σ for any σ ∈ Gal(QN/Q). However, this extra
symmetry does not hold for a general modular category A (see Example 4.6). This
condition is, in fact, related to the order of the quotient of the Gauss sums, called
the anomaly, of A. It is proved in Proposition 4.7 that Galois symmetry of the
T-matrix is equivalent to the condition that the anomaly is a fourth root of unity.
We will prove in Proposition 6.7 that the anomaly of any integral modular category
is always a fourth root of unity. Therefore, the T-matrix of any integral modular
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category enjoys the Galois symmetry. For a weakly integral modular category, such
as the Ising model, the anomaly is always an eighth root of unity (Theorem 6.10).

Using Theorem II, we uncover some relations among the global dimension dimA,
the Frobenius–Schur exponent N and the order of the anomaly α of a modular
category A. We define

JA = (−1)1+ordα

to record the parity of the order of the anomaly. If N is not a multiple of 4, then
JA dimA has a square root in QN . If, in addition, dimA is an odd integer, then JA
coincides with the Jacobi symbol

(
−1

dimA
)
. The consequence of this observation is a

result closely related to the Cauchy theorem of integral fusion category.
The organization of this paper is as follows: Section 1 covers some basic def-

initions, conventions and preliminary results on spherical fusion categories and
modular categories. In Section 2, we prove the congruence property, Theorem II
(i) and (ii), by proving a lifting theorem of modular projective representations
with congruence kernels. In Section 3, we prove the associated representation of
modular invariance of trace functions of a rational, C2-cofinite vertex operator
algebra V is a modular representation of its module category. Using Theorem II
(i) and (ii), we prove Theorem I: the trace functions of V are modular forms. In
Section 4, we assume the technical Lemma 4.2 to prove the Galois symmetry
of modular categories as well as RCFTs, Theorem II (iii) and (iv). Section 5 is
devoted to the proof of Lemma 4.2 by using generalized Frobenius–Schur indicators.
In Section 6, we use the congruence property and Galois symmetry of modular
categories (Theorem II) to uncover some arithmetic relations among the global
dimension, the Frobenius–Schur exponent and the anomaly of a modular category.
In particular, we determine the order of the anomaly of a modular category satisfying
certain integrality conditions.

1. Basics of modular tensor categories

In this section, we will collect some conventions and preliminary results on spherical
fusion categories and modular categories. Most of these results are quite well-known,
and the readers are referred to [Turaev 2010; Bakalov and Kirillov 2001; Ng and
Schauenburg 2007a; 2007b; 2008; 2010] and the references therein.

Throughout this paper, k is always assumed to be an algebraically closed field
of characteristic zero. The group of invertible matrices over a commutative ring K
indexed by5 is denoted by GL5(K ), and we will write PGL5(K ) for its associated
projective linear group. If5={1, . . . , r} for some positive integer r , then GL5(K )
(resp. PGL5(K )) will be denoted by the standard notation GLr (K ) (resp. PGLr (K ))
instead.
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For any primitive n-th root of unity ζn ∈ k, we let Qn :=Q(ζn) be the smallest
subfield of k containing all the n-th roots of unity in k. Recall that Gal(Qn/Q) is
isomorphic to U (Zn), the group of units of Zn . Let a be an integer relatively prime
to n. The associated σa ∈ Gal(Qn/Q) is defined by

σa(ζn)= ζ
a
n .

Define Qab=
⋃

n∈N Qn , the abelian closure of Q in k. Since Qn is Galois over Q,
we have σ(Qn) = Qn for all automorphisms σ of Qab. Moreover, the restriction
map Aut(Qab)

res
−→Gal(Qn/Q) is surjective for all positive integers n. Thus, for

any integer a relatively prime to n, there exists a σ ∈Aut(Qab) such that σ |Qn = σa .

1.1. Spherical fusion categories. In a left rigid monoidal category C with tensor
product ⊗ and unit object 1, we denote a left dual V∨ of V ∈ C with morphisms
dbV : 1→ V ⊗ V∨ and evV : V∨⊗ V → 1 by the triple (V∨, dbV , evV ). The left
duality can be extended to a monoidal functor (−)∨ : C→ Cop, and so (−)∨∨ : C→ C
defines a monoidal equivalence. Moreover we can choose 1∨=1. A pivotal structure
of C is an isomorphism j : IdC→ (−)∨∨ of monoidal functors. One can respectively
define the left and the right pivotal traces of an endomorphism f : V → V in C as

ptr`( f )=
(

1
dbV∨
−−→ V∨⊗ V∨∨

id⊗ j−1
V

−−−−→ V∨⊗ V
id⊗ f
−−−→ V∨⊗ V

evV
−−→ 1

)
and

ptrr ( f )=
(

1 dbV
−−→ V ⊗ V∨

f⊗ id
−−−→ V ⊗ V∨

jV⊗ id
−−−→ V∨∨⊗ V∨

evV∨
−−→ 1

)
.

The pivotal structure is called spherical if the two pivotal traces coincide for all
endomorphisms f in C.

A pivotal (resp. spherical) category (C, j) is a left rigid monoidal category C
equipped with a pivotal (resp. spherical) structure j . We will simply denote the pair
(C, j) by C when there is no ambiguity. The left and the right pivotal dimensions
of V ∈ C are defined as d`(V )= ptr`(idV ) and dr (V )= ptrr (idV ) respectively. In a
spherical category, the pivotal traces and dimensions will be denoted by ptr( f ) and
d(V ) (or dim V ), respectively.

A fusion category C over the field k is an abelian k-linear semisimple (left) rigid
monoidal category with a simple unit object 1, finite-dimensional morphism spaces
and finitely many isomorphism classes of simple objects (see [Etingof et al. 2005]).
We will denote by 5C the set of isomorphism classes of simple objects of C, and
by 0 the isomorphism class of 1, unless stated otherwise. If i ∈5C , we write i∗ for
the (left) dual of the isomorphism class i . Moreover, i 7→ i∗ defines a permutation
of order at most 2 on 5C .

In a spherical fusion category C over k, d(V ) can be identified with a scalar in k
for V ∈ C. We use the abbreviation di ∈ k for the pivotal dimension of i ∈5C . By
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[Müger 2003a, Lemma 2.8], di = di∗ for all i ∈5C . The global dimension dim C
of C is defined by

dim C =
∑
i∈5C

d2
i .

A pivotal category (C, j) is said to be strict if C is a strict monoidal category and if
the pivotal structure j and the canonical isomorphism (V ⊗W )∨(1/2)→W∨⊗V∨

are identities. It has been proved in [Ng and Schauenburg 2007b, Theorem 2.2] that
every pivotal category is pivotally equivalent to a strict pivotal category.

1.2. Representations of the modular group. The modular group SL2(Z) is the
group of 2× 2 integral matrices with determinant 1. It is well-known that the
modular group is generated by

s=

[
0 −1
1 0

]
, t=

[
1 1
0 1

]
with defining relations (st)3 = s2, s4

= id . (1-1)

We denote by0(n) the kernel of the reduction modulo n epimorphism πn :SL2(Z)→

SL2(Zn). A subgroup L of SL2(Z) is called a congruence subgroup of level n if
n is the least positive integer for which 0(n)≤ L .

For any pair of matrices A, B ∈ GLr (k), with r ∈ N, satisfying the conditions

A4
= id and (AB)3 = A2,

one can define a representation ρ : SL2(Z)→ GLr (k) such that ρ(s) = A and
ρ(t)= B via the presentation (1-1) of SL2(Z).

Suppose ρ : SL2(Z)→ PGLr (k) is a projective representation of SL2(Z). A
lifting of ρ is an ordinary representation ρ : SL2(Z)→GLr (k) such that η ◦ρ = ρ,
where η : GLr (k)→ PGLr (k) is the natural surjection map. One can always lift ρ
to a representation ρ : SL2(Z)→ GLr (k) as follows: let Â, B̂ ∈ GLr (k) such that
ρ(s)= η( Â) and ρ(t)= η(B̂). Then

Â4
= µs id and ( Â B̂)3 = µt Â2

for some scalars µs, µt ∈ k×. Take λ, ζ ∈ k such that λ4
= µs and ζ 3

= µt/λ, and
set A = Â/λ and B = B̂/ζ . Then we have

A4
= id and (AB)3 = A2.

Therefore, the assignment ρ : s 7→ A, t 7→ B defines a lifting of ρ.
Let ρ be a lifting of ρ. Suppose x ∈k is a 12-th root of unity. Then the assignment

ρx : s 7→
1
x3ρ(s), t 7→ xρ(t) (1-2)
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also defines a lifting of ρ. If ρ ′ : SL2(Z)→ GLr (k) is another lifting of ρ, then

ρ ′(s)= aρ(s) and ρ ′(t)= bρ(t)

for some a, b ∈ k×. It follows immediately from (1-1) that a4
= 1 and (ab)3 = a2.

This implies b12
= 1 and b−3

= a. Therefore, we have ρ ′ = ρb and so ρ has at most
12 liftings.

For any 12-th root of unity x ∈ k, the assignment χx : s 7→ x−3, t 7→ x defines a
linear character of SL2(Z). It is straightforward to check that χx ⊗ ρ is isomorphic
to ρx as representations of SL2(Z). Therefore, the lifting of ρ is unique up to a
linear character of SL2(Z).

1.3. Modular categories. Following [Kassel 1995], a twist (or ribbon structure)
of a left rigid braided monoidal category C with a braiding c is an automorphism θ

of the identity functor IdC satisfying

θV⊗W = (θV ⊗ θW ) ◦ cW,V ◦ cV,W , θ∨V = θV∨

for V,W ∈ C. Associated to the braiding c is the Drinfeld isomorphism u : IdC→

(−)∨∨. When C is a braided fusion category over k, there is a one-to-one corre-
spondence between twists θ and spherical structures j of C given by θ = u−1 j (see
[Ng and Schauenburg 2007a, p. 38] for more details).

A modular tensor category over k (see [Turaev 2010; Bakalov and Kirillov
2001]), also called a modular category, is a braided spherical fusion category A
over k such that the S-matrix of A defined by

s̃i j = ptr(cVj ,Vi∗ ◦ cVi∗ ,Vj )

is nonsingular, where Vj denotes an object in the class j ∈ 5A. In this case, the
associated ribbon structure θ is of finite order N (see [Vafa 1988; Bakalov and
Kirillov 2001]). Let θVi = θi idVi for some θi ∈ k. Since θ1 = id1, we have θ0 = 1.
The T-matrix t̃ of A is defined by t̃i j = δi jθj for i, j ∈5A. It is immediate to see
that ord(t̃)= N , which is called the Frobenius–Schur exponent of A and denoted
by FSexp(A), is finite (see [Ng and Schauenburg 2007a, Theorem 7.7]).

The matrices s̃, t̃ of a modular category A satisfy the conditions

(s̃ t̃)3 = p+A s̃2, s̃2
= p+A p−A C, Ct̃ = t̃C, C2

= id, (1-3)

where p±A =
∑

i∈5A
d2

i θ
±1
i are called the Gauss sums, and C = [δi j∗]i, j∈5A is called

the charge conjugation matrix of A. The quotient p+A /p−A is a root of unity (see
[Bakalov and Kirillov 2001, Theorem 3.1.19] or [Vafa 1988]), and

p+A p−A = dimA 6= 0. (1-4)
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Moreover, s̃ satisfies
s̃i j = s̃j i and s̃i j∗ = s̃i∗j (1-5)

for all i, j ∈5A.
The relations (1-3) imply that

ρA : s 7→ η(s̃), t 7→ η(t̃) (1-6)

defines a projective representation of SL2(Z), where η : GL5A(k)→ PGL5A(k) is
the natural surjection. By [Ng and Schauenburg 2010, Theorem 6.8], ker ρA is a
congruence subgroup of level N .

It is well-known that ρA can be lifted to an ordinary representation (see [Bakalov
and Kirillov 2001, Remark 3.1.9] or Section 1.2). Following [Ng and Schauenburg
2010], a lifting ρ of ρA is called a modular representation of A. By (1-4), for any
6-th root ζ ∈ k of p+A /p−A , we have that (p+A /ζ

3)2 = dimA. It follows from (1-3)
that the assignment

ρζ : s 7→
ζ 3

p+A
s̃, t 7→

1
ζ

t̃ (1-7)

defines a modular representation of A.
Thus, if ρ is a modular representation of A, it follows from Section 1.2 that

ρ = ρ
ζ
x for some 12-th root of unity x ∈ k. Thus ρ(s)2 = ±C . More precisely,

ρ(s)2 = x6C .
A modular category A is called anomaly-free if the quotient p+A /p−A equals 1.

The terminology addresses the associated anomaly-free TQFT with such a modular
category [Turaev 2010]. In this spirit, we will simply call the quotient αA := p+A /p−A
the anomaly of A.

If A is an anomaly-free modular category, then p+A is a canonical choice of square
root of dimA, and hence a canonical modular representation of A is determined
by the assignment

ρA : s 7→
1

p+A
s̃, t 7→ t̃ . (1-8)

For any modular category A over C, we have that dimA > 0 (see [Etingof
et al. 2005]). The central charge c of A is a rational number modulo 8 defined
by exp(π i c/4) = p+A /

√
dimA where

√
dimA denotes the positive square root

of dimA, and so the anomaly α of A is given by

α = exp
(
π i c

2

)
. (1-9)

We will show in Theorem 3.10 that the central charge c of the modular category CV

is equal to central charge c of V modulo 4.



2130 Chongying Dong, Xingjun Lin and Siu-Hung Ng

Remark. The S- and T-matrices of a modular category are preserved by equivalence
of braided pivotal categories over k, and so are the dimensions of simple objects,
the global dimension, the Gauss sums and the anomaly. By the last paragraph of
Section 1.1, without loss of generality, we may assume that the underlying pivotal
category of a modular category over k is strict.

1.4. Quantum doubles of spherical fusion categories. Let C be a strict monoidal
category. The left Drinfeld center Z(C) of C is a category whose objects are
pairs of the form X = (X, σX ), where X is an object of C, and the half-braiding
σX (−) : X ⊗ (−) → (−)⊗ X is a natural isomorphism satisfying the properties
σX (1)= idX and

(idV ⊗ σX (W )) ◦ (σX (V )⊗ idW )= σX (V ⊗W )

for all V,W ∈ C. It is well-known that Z(C) is a braided strict monoidal category
(see [Kassel 1995]) with unit object (1, σ1) and tensor product (X, σX )⊗(Y, σY ) :=

(X ⊗ Y, σX⊗Y ), where

σX⊗Y (V )= (σX (V )⊗ idY ) ◦ (idX ⊗ σY (V )), σ1(V )= idV

for V ∈ C. The forgetful functor Z(C)→ C, X = (X, σX ) 7→ X , is a strict monoidal
functor.

When C is a (strict) spherical fusion category over k, by Müger’s result [2003b],
the center Z(C) is a modular category over k with the inherited spherical structure
from C. In addition,

p+Z(C) = dim C = p−Z(C).

Therefore, Z(C) is anomaly-free and it admits a canonical modular representation
ρZ(C) described in (1-8). In particular,

ρZ(C)(t)= t̃ and ρZ(C)(s)=
1

dim C s̃, (1-10)

which is called the canonical normalization of the S-matrix of Z(C). By [Ng and
Schauenburg 2010, Theorems 6.7 and 7.1], ker ρZ(C) is a congruence subgroup
of level N , and im ρZ(C) ≤ GL5Z(C)(QN ), where N = ord(t̃).

2. Rationality and kernels of modular representations

In this section, we prove the congruence property given in (i) and (ii) of Theorem II.
Recall that a projective representation ρ : G→ PGLr (k) of a group G determines
a cohomology class κρ ∈ H 2(G, k×). For any section ι : PGLr (k)→GLr (k) of the
natural surjection η : GLr (k)→ PGLr (k), the function γι : G×G→ k× given by

ρι(ab)= γι(a, b)ρι(a)ρι(b)
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determines a 2-cocycle in κρ , where ρι= ι◦ρ. The cohomology class κρ is trivial if
and only if ρ can be lifted to a linear representation ρ :G→GLr (k), i.e., η◦ρ = ρ
(see [Karpilovsky 1985, p. 72]).

Let π : L→ G be a group homomorphism. For any 2-cocycle γ ∈ Z2(G, k×),
we have γ ◦ (π ×π) ∈ Z2(L , k×). The assignment γ 7→ γ ◦ (π ×π) of 2-cocycles
induces the group homomorphism π∗ : H 2(G, k×)→ H 2(L , k×), which is called
the inflation map along π . In particular, π∗κρ ∈ H 2(L , k×) is associated with the
projective representation ρ ◦π : L→ PGLr (k).

The homology group H2(G,Z) is often called the Schur multiplier of G [Weibel
1994]. Since k× is a divisible abelian group, H 2(G, k×) is naturally isomorphic
to Hom(H2(G,Z), k×) for any group G. This natural isomorphism allows us
to summarize the result of Beyl [1986, Theorem 3.9 and Corollary 3.10] on the
Schur multiplier of SL2(Zm) as the following theorem. A proof of the statement is
provided for the sake of completeness. The case for odd integers m was originally
proved by Mennicke [1967].

Theorem 2.1. Let k be an algebraically closed field of characteristic zero and
let m be an integer greater than 1. Then H 2(SL2(Zm), k×) is isomorphic to Z2

when 4 | m and is trivial otherwise. Moreover, the image of the inflation map
π∗ : H 2(SL2(Zm), k×) → H 2(SL2(Z2m), k×) along the natural reduction map
π : SL2(Z2m)→ SL2(Zm) is always trivial.

Proof. The first statement is a direct consequence of [Beyl 1986, Theorem 3.9].
For the second statement, it suffices to consider the case m = 2aq with a ≥ 2
and q odd. Then, by the Chinese Remainder Theorem, there are split surjections
p : SL2(Zm)→ SL2(Z2a ) and p′ : SL2(Z2m)→ SL2(Z2a+1) such that the following
diagram of group homomorphisms commutes, where π ′ is the reduction map:

SL2(Z2m)
p′ //

π

��

SL2(Z2a+1)

π ′

��
SL2(Zm)

p // SL2(Z2a )

Applying the functor H 2(−, k×) to this commutative diagram, we obtain the fol-
lowing commutative diagram of abelian groups:

H 2(SL2(Z2m), k×) H 2(SL2(Z2a+1), k×)
(p′)∗oo

H 2(SL2(Zm), k×)

π∗

OO

H 2(SL2(Z2a ), k×)
p∗

oo

(π ′)∗

OO
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Since p and p′ are split surjections, both p∗ and (p′)∗ are injective. Hence, by the
first statement, they are isomorphisms. By [Beyl 1986, Corollary 3.10], (π ′)∗ is
trivial, and so is π∗. �

Theorem 2.1 is essential to the proof of the following lifting lemma for projective
representations of SL2(Z).

Lemma 2.2. Suppose ρ : SL2(Z)→ PGLr (k) is a projective representation for
some positive integer r such that ker ρ is a congruence subgroup of level n. Let
ρn :SL2(Zn)→PGLr (k) be the projective representation which satisfies ρ=ρn◦πn ,
where πn : SL2(Z)→ SL2(Zn) is the reduction modulo n map and κ denotes the
associated second cohomology class in H 2(SL2(Zn), k×). Then:

(i) The class κ is trivial if and only if ρ admits a lifting whose kernel is a congru-
ence subgroup of level n.

(ii) If κ is not trivial, then 4 |n and ρ admits a lifting whose kernel is a congruence
subgroup of level 2n.

In particular, there exists a lifting ρ of ρ such that ker ρ is a congruence subgroup
containing 0(2n).

Proof. (i) If κ is trivial, there exists a linear representation ρn : SL2(Zn)→ GLr (k)
such that η ◦ ρn = ρn . Then ρ := ρn ◦πn is a lifting of ρ since

η ◦ ρ = η ◦ ρn ◦πn = ρn ◦πn = ρ.

In particular, ker ρ is a congruence subgroup of level at most n. Obviously, ker ρ ≤
ker ρ. Since ker ρ is of level n, the level of ker ρ is at least n. Therefore, ker ρ is
of level n.

Conversely, assume ρ : SL2(Z)→ GLr (k) is a representation whose kernel is
a congruence subgroup of level n and assume ρ = η ◦ ρ. Then ρ factors through
SL2(Zn) and so there exists a linear representation ρn : SL2(Zn)→ GLr (k) such
that ρ = ρn ◦πn . Since

η ◦ ρn ◦πn = η ◦ ρ = ρ = ρn ◦πn,

we have η ◦ ρn = ρn . Therefore, ρn is a lifting of ρn and hence κ is trivial.

(ii) Now we consider the case when κ is not trivial. By Theorem 2.1, 4 divides n and
π∗(κ) ∈ H 2(SL2(Z2n), k×) is trivial, where π : SL2(Z2n)→ SL2(Zn) is the natural
surjection (reduction) map. The composition ρn◦π :SL2(Z2n)→PGLr (k) defines a
projective representation of SL2(Z2n), and its associated class in H 2(SL2(Z2n), k×)
is π∗(κ). Since π∗(κ) is trivial, ρn ◦ π can be lifted to a linear representation
f : SL2(Z2n) → GLr (k), i.e., η ◦ f = ρn ◦ π . Thus, we have the following
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commutative diagram:

SL2(Z2n) f

&&

π

''

SL2(Z)

ρ &&
πn

��

π2n

ff

GLr (k)

η

��
SL2(Zn)

ρn

// PGLr (k)

The commutativity of the upper quadrangle is given by

η ◦ f ◦π2n = ρn ◦π ◦π2n = ρn ◦πn = ρ.

Set ρ = f ◦ π2n . Then η ◦ ρ = ρ and so 0(2n) ≤ ker ρ. Suppose 0(m) ≤ ker ρ
for some positive integer m < 2n and suppose m |2n. Then 0(m)≤ ker ρ ≤ ker ρ.
Since ker ρ is of level n, we have that n |m. Thus, m = n, and hence ker ρ is a
congruence subgroup of level n. It follows from (i) that κ is trivial, a contradiction.
Therefore, ker ρ is of level 2n. �

Now we can prove the following lifting theorem for projective representations
of SL2(Z) with congruence kernels.

Theorem 2.3. Suppose ρ : SL2(Z)→ PGLr (k) is a projective representation for
some positive integer r such that ker ρ is a congruence subgroup of level n. Then
the kernel of any lifting of ρ is a congruence subgroup of level m where n |m |12n.

Proof. By Lemma 2.2, ρ admits a lifting ξ such that ker ξ is congruence subgroup
containing 0(2n). Let ρ be a lifting of ρ. By Section 1.2, ρ= ξx ∼=χx⊗ ξ for some
12-th root of unity x ∈ k. Note that SL2(Z)/SL2(Z)

′ ∼= Z12 and 0(12)≤ SL2(Z)
′;

see for example [Beyl 1986, Lemma 1.13]. Therefore, 0(12)≤ kerχx and hence

ker(χx ⊗ ξ)⊇ SL2(Z)
′
∩0(2n)⊇ 0(12)∩0(2n)⊇ 0(12n).

Therefore, ρ has a congruence kernel containing 0(12n) and so m | 12n. Since
0(m)≤ ker ρ ≤ ker ρ and ker ρ is of level n, we have n | m. �

A consequence of Theorem 2.3 is a proof for the statements (i) and (ii) of
Theorem II.

Proof of Theorem II (i) and (ii). By [Ng and Schauenburg 2010, Theorem 6.8],
the projective modular representation ρA of a modular category A over k has
a congruence kernel of level N where N is the order of the T-matrix of A. It
follows immediately from Theorem 2.3 that every modular representation ρ has
a congruence kernel of level n where N |n |12N . By Lemma A.1, ord(ρ(t))= n.
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Now the statement Theorem II (ii) follows directly from [Ng and Schauenburg
2010, Theorem 7.1]. �

The congruence property, Theorem II (i) and (ii), is essential to the proof of
Theorem I and to the Galois symmetry of modular categories in Sections 4 and 5.

Definition 2.4. Let A be a modular category over k with FSexp(A)= N .

(i) By virtue of Theorem II (i), a modular representation ρ of A is said to be of
level n if ord(ρ(t))= n.

(ii) The projective modular representation ρA of A factors through a projective
representation ρA,N of SL2(ZN ). We denote by κA the cohomology class in
H 2(SL2(ZN ), k×) associated with ρA,N .

By Theorem 2.1, the order of κA is at most 2. If 4 -FSexp(A), then κA is trivial.
However, if 4 |FSexp(A), Lemma 2.2 provides the following criterion to decide the
order of κA.

Corollary 2.5. Let A be a modular category over k. Suppose N = FSexp(A) and
suppose ζ ∈ k is a 6-th root of the anomaly of A. Then κA is trivial if and only if
(x/ζ )N

= 1 for some 12-th root of unity x ∈ k. In this case, x3 p+A /ζ
3
∈ QN . In

particular, if 4 -N , then there exists a 12-th root of unity x ∈ k such that

(x/ζ )N
= 1 and x3 p+A /ζ

3
∈QN .

Proof. By (1-7), ζ determines the modular representation ρζ of A given by

ρζ : s 7→
ζ 3

p+A
s̃, t 7→

1
ζ

t̃ .

By Lemma 2.2 (i) and the last two paragraphs of Section 1.2, κA is trivial if and
only if there exists a 12-th root of unity x ∈ k such that ρζx is a level N modular
representation of A. By Theorem II (i), this is equivalent to id = (x t̃/ζ )N or
(x/ζ )N

= 1. In this case, Theorem II (ii) implies ζ 3/(x3 p+A )s̃ ∈ GL5A(QN ) and
hence ζ 3/(x3 p+A )∈QN . The last statement follows immediately from Theorem 2.1.

�

The corollary implies some arithmetic relations among the Frobenius–Schur
exponent, the global dimension and the anomaly of a modular category. These
arithmetic consequences will be discussed in Section 6.

3. Modularity of trace functions for rational vertex operator algebras

In this section we prove that the trace functions of a rational, C2-cofinite vertex
operator algebra V are modular forms on some congruence subgroup by showing
that the representation ρV of SL2(Z), defined by modular transformation of the
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trace functions of V , is a modular representation of CV . The congruence subgroup
property obtained in Section 2 is then applied to ρV to conclude the modularity of
the trace functions of V .

Preliminaries. In this subsection we briefly review some basics of vertex operator
algebras following [Frenkel et al. 1988; Frenkel et al. 1993; Dong et al. 1997;
1998a; Lepowsky and Li 2004; Zhu 1996].

Let V = (V, Y,1, ω) be a vertex operator algebra. Then V is C2-cofinite if
the subspace C2(V ) of V spanned by all elements of type a−2b for a, b ∈ V has
finite codimension in V . Recall from [Dong et al. 1998a] that V is rational if
any admissible module is completely reducible. The component operator L(n)
of Y (ω, z)=

∑
n∈Z L(n)z−n−2 will be used frequently. It is proved in [Dong et al.

1998a] that if V is rational then V has only finitely many irreducible admissible
modules M0, . . . ,M p up to isomorphism and there exist λi ∈ C for i = 0, . . . , p
such that

M i
=

∞⊕
n=0

M i
λi+n

where M i
λi
6=0 and L(0)|M i

λi+n
=λi+n for any n∈Z. Moreover, if V is also assumed

to be C2-cofinite, then λi and the central charge c of V are rational numbers (see
[Dong et al. 2000]). In this paper we always assume that V is simple and we take
M0 to be V .

Another important concept is the contragredient module. Let M =
⊕

λ∈C Mλ

be a V-module. Let M ′ =
⊕

λ∈C M∗λ be the restricted dual of M . It is proved in
[Frenkel et al. 1993] that M ′ = (M ′, Y ′) is naturally a V-module such that

〈Y ′(a, z)u′, v〉 = 〈u′, Y (ezL(1)(−z−2)L(0)a, z−1)v〉,

for a ∈ V , u′ ∈ M ′ and v ∈ M , and that (M ′)′ ' M . Moreover, if M is irreducible,
so is M ′. A V-module M is said to be self-dual if M and M ′ are isomorphic. In
this paper, we’ll always assume that the vertex operator algebra V satisfies the
following assumptions:

(V1) V =
⊕

n≥0 Vn with dim V0 = 1 is simple and self-dual.

(V2) V is C2-cofinite and rational.

The assumption (V2) is equivalent to the regularity [Dong et al. 1997]. That is,
any weak module is completely reducible.

We now recall the notion of intertwining operators and fusion rules from [Frenkel
et al. 1993]. Let W i

= (W i , YW i ) for i = 1, 2, 3 be weak V-modules. Then an
intertwining operator Y( · , z) of type

( W 3

W 1 W 2

)
is a linear map

Y( · , z) :W 1
→ Hom(W 2,W 3){z}, v1

7→ Y(v1, z)=
∑
n∈C

v1
nz−n−1
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satisfying the following conditions:

(i) For any v1
∈W 1, v2

∈W 2 and λ∈C, we have v1
n+λv

2
= 0 for n ∈Z sufficiently

large.

(ii) For any a ∈ V , v1
∈W 1, we have

z−1
0 δ

(
z1− z2

z0

)
YW 3(a, z1)Y(v1, z2)− z−1

0 δ

(
z1− z2

−z0

)
Y(v1, z2)YW 2(a, z1)

= z−1
2 δ

(
z1− z0

z2

)
Y(YW 1(a, z0)v

1, z2).

(iii) For v1
∈W 1, we have d

dzY(v
1, z)= Y(L(−1)v1, z).

The sum in the definition of intertwining operator in [Frenkel et al. 1993] is over
rational numbers. For a rational vertex operator algebra, this is true. In general, the
sum should be over complex numbers. All of the intertwining operators of type( W 3

W 1 W 2

)
form a vector space denoted by IV

( W 3

W 1 W 2

)
. The dimension of IV

( W 3

W 1 W 2

)
is

called the fusion rule of type
( W 3

W 1 W 2

)
for V , which is denoted by N W 3

W 1,W 2 .
The following properties of the fusion rule are well-known (see [Frenkel et al.

1993]).

Proposition 3.1. Let V be a vertex operator algebra, and let M i , M j , Mk be three
irreducible V-modules. Then:

(i) N i
j,k = N k∗

j,i∗ , where we use W i∗ to denote (W i )′ and where N i
j,k = N M i

M j ,Mk .

(ii) N i
j,k = N i

k, j .

Let M1 and M2 be two V-modules. A tensor product for the ordered pair
(M1,M2) is a pair (M, F( · , z)), which consists of a V-module M and an in-
tertwining operator F( · , z) of type

( M
M1 M2

)
, such that the following universal

property holds: for any V-module X and any intertwining operator I ( · , z) of
type

( X
M1 M2

)
, there exists a unique V-homomorphism φ from M to X such that

I ( · , z)= φ ◦ F( · , z). Note that if there is a tensor product, then it is unique by the
universal mapping property. In this case we will denote it by M1 � M2.

In a series of papers [Huang and Lepowsky 1995a; 1995b; 1995c; Huang 1995;
2008a; 2008b], the tensor product � of the modules for a vertex operator algebra V
has been defined and studied extensively. We have the following result (see [Abe
et al. 2004, Corollary 10] and [Huang and Lepowsky 1995a, Proposition 4.13]).

Theorem 3.2. Let V be a rational and C2-cofinite vertex operator algebra, and let
M i , M j , Mk be any three irreducible modules of V . Then:

(i) The fusion rules N k
i, j are finite.

(ii) The tensor product M i � M j of M i and M j exists and is equal to
∑

k N k
i, j Mk .
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We finally review some facts about the modular transformation of trace functions
of irreducible modules of a vertex operator algebra from [Zhu 1996]. Let V be
a rational and C2-cofinite vertex operator algebra, and let M0, . . . ,M p be the
irreducible V-modules as before. There is another VOA structure on V , given by
(V, Y [ · , z],1, ω− c/24) and introduced in [Zhu 1996]. In particular,

V =
⊕
n≥0

V[n].

We will write wt[v] = n if v ∈ V[n]. For each v ∈ Vn , we denote vn−1 by o(v) and
extend to V linearly. Recall that M i

=
⊕
∞

n=0 M i
λi+n . For v ∈ V we set

Zi (v, q)= trM i o(v)q L(0)−c/24
=

∑
n≥0

(trM i
λi+n

o(v))qλi+n−c/24,

which is a formal power series in variable q. The constant c here is the central
charge of V , and Zi (1, q) is sometimes called the q-character of M i . Then Zi (v, q)
converges to a holomorphic function in 0< |q|< 1 [Zhu 1996]. As usual we let
h= {τ ∈ C | im τ > 0} and q = e2π iτ with τ ∈ h. We also denote the holomorphic
function Zi (v, q) by Zi (v, τ ) when we discuss modular transformations of these
functions.

The full modular group SL2 (Z) acts on h by

γ : τ 7→
aτ + b
cτ + d

, γ =

[
a b
c d

]
∈ SL2(Z).

The following theorem was established in [Zhu 1996].

Theorem 3.3. Let V be a rational and C2-cofinite vertex operator algebra, and let
M0, . . . ,M p be the irreducible V-modules. Then for any γ ∈ SL2(Z) there exists a
ρV (γ )= [γi j ]i, j=0,...,p ∈ GLp+1(C) such that, for any 0≤ i ≤ p and v ∈ V[n],

Zi (v, γ τ)= (cτ + d)n
p∑

j=0

γi j Z j (v, τ ).

Theorem 3.3, in fact, gives a group homomorphism ρV : SL2(Z)→ GLp+1(C).
We call ρV (γ ) the genus one modular matrices. In particular,

S = ρV

([
0 −1
1 0

])
and T = ρV

([
1 1
0 1

])
.

are respectively called the genus one S- and T-matrices of V . It is immediate to see
that Tjk = δjke2π i(λj−c/24).

One of our main goals is to show that the kernel of ρV is a congruence subgroup.
We need the following results on the Verlinde formula [1988] from [Huang

2008a; 2008b] (also see [Moore and Seiberg 1990]).
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Theorem 3.4. Let V be a vertex operator algebra satisfying (V1) and (V2). Then
the genus one S-matrix of V defined above has the following properties:

(i) S is symmetric and S2
= C , where Ci j = δi j∗ . In particular, C has order at

most 2 and is also symmetric.

(ii) S−1
i j = Si∗j = Si j∗ .

(iii) (Verlinde formula) For any i, j, k ∈ {0, . . . , p},

N k
i, j =

p∑
q=0

Siq Sjq Sk∗q

S0q
.

Unitarity of S. In this subsection, we will prove that the genus one S-matrix of V
defined on page 2137 is unitary and consequences of this fact. Our approach is
slightly different from that given in [Etingof et al. 2005] for the unitarity of a
normalized S-matrix of a modular category. Recall that S2

= C . In fact, this
equality holds for any symmetric matrix satisfying the Verlinde formula as follows:

Lemma 3.5. Let C be a fusion category over C with commutative Grothendieck
ring. Suppose A is a complex symmetric matrix indexed by 5C such that A0r 6= 0
for all r ∈5C and suppose A satisfies the Verlinde formula in the sense that

N k
ij =

∑
r∈5C

Air Ajr Ak∗r

A0r
(3-1)

for all i, j, k ∈5C , where N k
ij is the fusion rule of C. Then we have A0r ∈ R and

A2
= C , and we have that A is unitary, where Ci j = δi j∗ for i, j ∈5C .

Proof. By the Verlinde formula (3-1),
∑

r∈5C
Air Ajr = N 0

i j = δi j∗ for any i, j ∈5C .
This implies A is invertible and (A−1)i j = Ai j∗ = Ai∗j for i, j ∈5C . Hence, we have
Ai∗j∗ = Ai j and A0 j = A0 j∗ for all i, j ∈5C . Let K0(C) be the Grothendieck ring
of C and let KC(C) = K0(C)⊗Z C. Note that KC(C) is commutative C-algebra.
For b ∈5C , let

eb = A0b

∑
a∈5C

Aab a ∈ KC(C),

and E = {eb | b ∈5C}. Then

eaeb = A0a A0b

∑
c,d

Aac Abdcd = A0a A0b

∑
c,d,r

Aac Abd N r
cdr

= A0a A0b

∑
c,d,r,z

Aac Abd
Acz Adz Ar∗z

A0z
r = A0a A0b

∑
r,z

δaz∗δbz∗ Ar∗z

A0z
r

= δab A2
0a

∑
r

Ar∗a∗

A0a∗
r = δab A0a

∑
r

Arar = δabea.
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Hence, E is the set of all primitive idempotents of KC(C).
The duality permutation defined on 5C can be extended to a sesquilinear linear

map † on KC(C), i.e., (∑
x∈5C

αx x
)†

=

∑
x∈5C

αx x∗

for αx ∈ C. Moreover, † is an R-algebra automorphism of KC(C), but † is not
C-linear. In particular, e†

b is in E and hence † defines a permutation on E .
For x ∈ KC(C), denote by ε(x) the coefficient of the unit object 0 in x . Then

ε(ab)= N 0
ab = δab∗ for a, b ∈5C .

We now define the sesquilinear form ( · , · ) on KC(C) by

(x, y)= ε(xy†).

Note that (x, x) > 0 for x 6= 0. Thus

0< (eb, eb)= ε(ebe†
b).

Therefore, e†
b=eb and so (eb, eb)= A2

0b>0 and A0b Aab= A0b Aa∗b for all a, b∈5C .
The former implies A0b ∈ R and hence Aab = Aa∗b for all a, b ∈5C . Therefore,
A is unitary. �

The following corollary is an immediate consequence of Lemma 3.5 and the
modularity of CV presented in Theorem 3.9.

Corollary 3.6. Let V be a vertex operator algebra satisfying (V1) and (V2). Then
the genus one S-matrix of V defined on page 2137 is unitary and satisfies S = SC.

The following result can be proved easily by using Corollary 3.6.

Corollary 3.7. Let V be a vertex operator algebra satisfying (V1) and (V2). For
any u ∈ V[m], v ∈ V[n], γ =

[a
c

b
d

]
∈ SL2(Z) and τ1, τ2 ∈ h we have∑

i

Zi (u, γ τ1)Zi (v, γ τ2)= (cτ1+ d)m(cτ2+ d)n
∑

i

Zi (u, τ1)Zi (v, τ2).

In particular,
∑

0≤i≤p |χi (τ )|
2 is invariant under the action of SL2(Z).

Proof. Note that T is a diagonal matrix with diagonal entries e2π i(λj−c/24) for
j = 0, . . . , p which is clearly a unitary matrix, as λj and c are rational numbers. It
follows from Corollary 3.6 that the representation ρ is unitary. Set

f (τ1, τ2)=
∑

i

Zi (u, τ1)Zi (v, τ2).
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Then

f (γ τ1, γ τ2)=
∑

i

Zi (u, γ τ1)Zi (v, γ τ2)

= (cτ1+ d)m(cτ2+ d)n
∑
i, j,k

γi j Z j (u, τ1)γik Zk(v, τ2)

= (cτ1+ d)m(cτ2+ d)n
∑

i

Zi (u, τ1)Zi (v, τ2). �

Here we use Corollary 3.7 to study the extensions of vertex operator algebras.
As before we assume that V is a vertex operator algebra satisfying (V1) and (V2).
We also assume that U is an extension of V satisfying (V1) and (V2). Then
U =

∑
i ni M i as a V-module, where ni is nonnegative and n0 = 1, as the vacuum

vector is unique. The main goal is to determine the possible values of ni . There have
been a lot of discussions on this in the literature using the modular invariance of the
characters (see, for example, [Cappelli et al. 1987a; 1987b; Gannon 2005]). It seems
that using the characters of irreducible modules is not good enough, as the characters
of irreducible modules are not linearly independent in general. In this section we
use the conformal blocks instead of the characters to approach the problem.

For u, v ∈ V , we set

fV (u, v, τ1, τ2)=

p∑
i=0

Zi (u, τ1)Zi (v, τ2)

(see Corollary 3.7). Similarly we can define

fU (u, v, τ1, τ2)=
∑

M

Z M(u, τ1)Z M(v, τ2)

for u, v∈U where M ranges through the equivalent classes of irreducible U-modules.
Since each irreducible U-module M is a direct sum of irreducible V-modules, we
see that, for u, v ∈ V ,

fU (u, v, τ1, τ2)=

p∑
i, j=0

X i j Zi (u, τ1)Z j (v, τ2)

for some X i j ∈ Z+ and all i , j . If u = v = 1 and τ1 = τ2 = τ , then fU (1,1, τ, τ ),
which is the sum of square norms of the irreducible characters of U , is SL2(Z)-
invariant. We now determine the matrix X = [X i j ]. It will be clear from our proof
below that the SL2(Z)-invariance of fU (1,1, τ, τ ) is not good enough to determine
the matrix X .

Proposition 3.8. The matrix X satisfies X00= 1 and Xγ = γ X , where γ ∈ SL2(Z),
and is identified with the modular transformation matrix ρV (γ ).
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Proof. For any u ∈ V[m], let

Z(u, τ )=

Z0(u, τ )
...

Zp(u, τ )

 .
Then

Z(u, γ τ )= (cτ + d)mγ Z(u, τ ) and fU (u, v, τ1, τ2)= Z(u, τ1)
T X Z(v, τ2).

By Corollary 3.7,

(cτ1+ d)m(cτ2+ d)n Z(u, τ1)
T X Z(v, τ2)

= fU (u, v, γ τ1, γ τ2)= Z(u, γ τ1)
T X Z(v, γ τ2)

= (cτ1+ d)m(cτ2+ d)n Z(u, τ1)
T γ T X γ̄ Z(v, τ2).

This implies that

Z(u, τ1)
T X Z(v, τ2)= Z(u, τ1)

T γ T X γ̄ Z(v, τ2)

for all u, v. Since γ is unitary, it is enough to show that if Z(u, τ1)
T AZ(v, τ2)= 0

for all u, v ∈ V where A = [ai j ] is a fixed matrix, then A = 0.
Next note the equality Z(u, τ1)

T AZ(v, τ2) =
∑

i j ai j Zi (u, τ1)Z j (v, τ2). For
simplicity, set qj = e2π iτj for j = 1, 2. Then

0= Z(u, τ1)
T AZ(v, τ2)

=

∑
i, j

∑
mi ,nj≥0

ai j (trM i
λi+mi

o(u)trM j
λj+nj

o(v))qλi+mi−c/24
1 qλj+nj−c/24

2 .

This implies that each coefficient of qm
1 qn

2 for any rational numbers m, n must
be zero. We now prove that ai j = 0 for all i , j . Fix i and j . Then the coefficient of
qλi−c/24

1 q̄λj−c/24
2 in Z(u, τ1)

T AZ(v, τ2) is∑
k,l

akl trMk
λk+mk

o(u)trM l
λl+nl

o(v)

where k, l ∈{0, . . . , p} satisfy mk+λk=λi , nl+λl =λj . Fix n≥0 such that n≥mk

and n ≥ nl for all k, l occurring in the summation above. Recall from [Dong et al.
1998b] that there is a finite dimensional semisimple associative algebra An(V ) such
that Mk

mk+λk
, M l

nl+λl
are the inequivalent simple modules of An(V ). As a result we

can choose u, v ∈ V such that o(u)= 1 on M i
λi

and o(u)= 0 on all other Mk
λk+mk

,
and such that o(v)= 1 on M j

λj
and o(v)= 0 on all other M l

λl+nl
. Therefore, for this

u and v, we have that the coefficient of qλi−c/24
1 q̄λj−c/24

2 in Z(u, τ1)
T AZ(v, τ2) is

a nonzero multiple of ai j . This forces ai j = 0, completing the proof. �
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The congruence property theorem. Now we come back to the theories of vertex
operator algebras. Let V be a rational and C2-cofinite vertex operator algebra. For
any V-module M , set θM = e2π i L(0). The following result from [Huang 2008a,
Theorem 4.1] is important in this paper.

Theorem 3.9. Let V be a vertex operator algebra satisfying (V1) and (V2). Then
the V-module category CV with the dual M ′ (M a V-module), braiding σ which is
denoted by C in [Huang 2008a, p. 877] and twist θ is a modular tensor category
over C.

Note that EndV (M i ) = C, 0 ≤ i ≤ p. Recall from discussions in Sections 1.1
and 1.3 that the pivotal dimension di of the simple V-module is a nonzero real
number and the global dimension dim CV =

∑p
i=0 d2

i is at least 1. Let s̃ and t̃ be
the S- and T-matrices of CV , and D =

√
dim CV the positive square root of dim CV ,

and c the central charge of CV . We fix the normalization s = s̃/D, and simply call s
the normalized S-matrix of CV . We will prove in Theorem 3.10 that s is identical to
the genus one S-matrix of V up to a sign.

Theorem 3.10. Let V be a vertex operator algebra satisfying (V1) and (V2). Then:

(i) The normalized S-matrix s of CV and the genus one S-matrix of V are identical
up to a sign.

(ii) The representation ρV defined by modular transformation of trace functions
is a modular representation of CV . In particular, ker ρV is a congruence
subgroup of level n where n is the order of the genus one T-matrix of V , and
ρV is Qn-rational.

(iii) The central charge c of CV is equal to the central charge c of V modulo 4.

Proof. Let
σM i M j : M i � M j

→ M j � M i

be the braiding of CV . It is proved in [Huang 2008a] that the pivotal trace of
σM i∗M jσM j M i∗ on M j � M i∗ equals Si j/S00. This implies that S = λs where
λ = S00/s00. Using the unitarity of s and S, we conclude that λ is a complex
number of norm 1. This forces λ=±1, which proves the first statement.

It follows from Theorem 3.9 that the T-matrix of CV is given by t̃=[δi jθi ]i, j=0,...,p

and θj = e2π iλj . Therefore, that genus one T-matrix of V is given by T = t̃ e−2π ic/24,
where c is the central charge of V . In particular, ρV is a modular representation
of CV . The second part of the second statement is an immediate consequence of
Theorem II (i) and (ii).

By (i), (1-3) and Theorem 3.4 we see that

C = (ST )3 =±(st̃e−2π ic/24)3 =±
p+

D
e−6π ic/24C,
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where p+ is the Gauss sum of CV . This implies that ±1 = (p+/D)e−π ic/4 or
p+/D =±eπ ic/4. In particular, c= c mod 4. �

Theorem I now follows from Theorem 3.10 immediately.
We next discuss two different definitions of dimension of modules of rational

and C2-cofinite vertex operator algebras given in [Dong et al. 2013; Bakalov and
Kirillov 2001]. As before we assume that V is a vertex operator algebra satisfying
(V1) and (V2). Recall the following definition of quantum dimension from [Dong
et al. 2013]. Let M be a V-module. Set Z M(τ )= chq M = Z M(1, τ ). The quantum
dimension of M over V is defined as

qdimV M = lim
y→0

Z M(iy)
ZV (iy)

where y is real and positive. It is shown in [Dong et al. 2013] that if V is a vertex
operator algebra satisfying (V1) and (V2) with the irreducibles M i for i = 0, . . . , p
such that λi > 0 for i 6= 0, then

qdimV M i
=

Si0

S00
. (3-2)

On the other hand, because V is a vertex operator algebra satisfying (V1) and (V2),
the tensor category CV of V-modules is modular by Theorem 3.9. The pivotal
dimension di = dim M i of M i is also defined in the modular tensor category CV .
We now prove that these two dimensions coincide.

Proposition 3.11. Let V be a vertex operator algebra satisfying (V1) and (V2),
and suppose λi > 0 for i 6= 0. Then for any irreducible V-module M i , we have
dim M i

= qdimV M i .

Proof. Since dim M i
= di = s0i/s00, the result follows from Theorem 3.10 and (3-2)

immediately. �

The modular transformation property on the conformal blocks has been used
extensively in the study of rational vertex operator algebras. The modular transfor-
mation property gives an estimation of the growth conditions on the dimensions of
homogeneous subspaces as the q-character of an irreducible module is a component
of a vector-valued modular function [Knopp and Mason 2003]. The growth condi-
tion helps us to show that a rational and C2-cofinite vertex operator algebra with
central charge less than one is an extension of the Virasoro vertex operator algebra
associated to the discrete series [Dong and Zhang 2008], and to characterize vertex
operator algebra L(1/2, 0)⊗ L(1/2, 0) [Zhang and Dong 2009; Dong and Jiang
2010]. The congruence subgroup property of the action of the modular group on
the conformal block is expected to play an important role in the classification of
rational vertex operator algebras. Since the q-character of an irreducible module is
a modular function on a congruence subgroup and the sum of the square norms of
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the q-characters of the irreducible modules is invariant under SL2(Z), this gives a lot
of information on the dimensions of homogeneous subspaces of vertex operator
algebras. For example, one can use these properties to determine the possible
characters of the rational vertex operator algebras of central charge 1 [Kiritsis 1989].
This will avoid some difficult work in [Dong and Jiang 2011; 2013] of determining
the dimensions of homogenous subspaces of small weights when characterizing
certain classes of rational vertex operator algebras of central charge one.

4. Galois symmetry of modular representations

It was conjectured by Coste and Gannon that the representation of SL2(Z) associated
with a RCFT admits a Galois symmetry (see [Coste and Gannon 1999, Conjecture 3;
Gannon 2006, Conjecture 6.1.7]). Under certain assumptions, the Galois symmetry
of these representations of SL2(Z) was established by Coste and Gannon [1999]
and by Bantay [2003].

In this section, we will prove that such Galois symmetry holds for all modular
representations of a modular category as stated in Theorem II (iii) and (iv). It will
follow from Theorem 3.10 that this Galois symmetry holds for the representation ρV

defined by modular transformation of the trace functions of any VOA V satisfying
(V1) and (V2).

The Galois symmetry for the canonical modular representation of the Drinfeld
center of a spherical fusion category (Lemma 4.2) plays a crucial for the general
case, and we will provide its proof in the next section.

Galois action on a normalized S-matrix. Let A be a modular category over k with
Frobenius–Schur exponent N , and let ρ be a level n modular representation of A.
By virtue of Theorem II (i) and (ii), N |n |12N and ρ(SL2(Z))≤GL5(Qn), where
5A is simply abbreviated as 5.

A fixed 6-th root ζ of the anomaly of A determines the modular representation ρζ

of A (see (1-7)). It follows from Section 1.2 that ρ = ρζx for some 12-th root of
unity x ∈ k. Let

s = ρ(s) and t = ρ(t).

Then

s =
ζ 3

x3 p+A
s̃, t =

x
ζ

t̃ ∈ GL5(Qn). (4-1)

Thus s2
= x6C = ±C , where C is the charge conjugation matrix [δi j∗]i, j∈5. Set

sgn(s)= x6.
Following [de Boer and Goeree 1991, Appendix B], [Coste and Gannon 1994]

or [Etingof et al. 2005, Appendix], for each σ ∈ Aut(Qab), there exists a unique
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permutation, denoted by σ̂ , on 5 such that

σ

(
si j

s0 j

)
=

si σ̂ ( j)

s0σ̂ ( j)
for all i, j ∈5. (4-2)

Moreover, there exists a function εσ :5→ {±1} such that

σ(si j )= εσ (i)sσ̂ (i) j = εσ ( j)si σ̂ ( j) for all i, j ∈5. (4-3)

Define Gσ ∈ GL5(Z) by (Gσ )i j = εσ (i)δσ̂ (i) j . Then (4-3) can be rewritten as

σ(s)= Gσ s = sG−1
σ (4-4)

where (σ (y))i j = σ(yi j ) for y ∈ GL5(Qn). Since Gσ ∈ GL5(Z), this equation
implies that the assignment,

Aut(Qab)→ GL5(Z), σ 7→ Gσ

defines a representation of the group Aut(Qab) (see [Coste and Gannon 1994]).
Moreover,

σ 2(s)= Gσ sG−1
σ , (4-5)

Gσ = σ(s)s−1
= σ(s−1)s. (4-6)

Note that the permutation σ̂ on 5 depends only on the modular category A, as
si j/s0 j = s̃i j/s̃0 j in (4-2). However, the matrix Gσ does depend on s, and hence the
representation ρ.

Suppose t̃ = [δi jθj ]i, j∈5. Then t = x t̃/ζ is a diagonal matrix of order n. If
σ |Qn = σa for some integer a relatively prime to n, then

σ(t)= σa(t)= ta.

By virtue of (4-5), to prove Theorem II (iii), it suffices to show that

σ 2(t)= Gσ tG−1
σ . (4-7)

We first establish the following simple observation.

Lemma 4.1. For any integers a, b such that ab ≡ 1 (mod n), we have

s2
= (tastbsta)2.

Proof. It follows from direct computation that

s2
≡

[
0 −a
b 0

]2

≡ (tastbsta)2 (mod n).

By Theorem II (i), ρ factors through SL2(Zn) and so we obtain the equality. �
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Galois symmetry of Drinfeld doubles. Before we return to prove the Galois sym-
metry for general modular categories, we need to settle the special case, stated in
the following lemma, when A is the Drinfeld center of a spherical fusion category
over k, and ρ is the canonical modular representation of A.

Lemma 4.2. Let C be a spherical fusion category over k, and take σ ∈ Aut(Qab).
Suppose Gσ is the signed permutation matrix determined by the canonical normal-
ization s = s̃/dim C of the S-matrix of the center Z(C), i.e., Gσ = σ(s)s−1. Then
the T-matrix t̃ of Z(C) satisfies

σ 2(t̃)= Gσ t̃G−1
σ . (4-8)

In particular, if (Gσ )i j = εσ (i)δσ̂ (i) j for some sign function εσ and permutation σ̂
on 5Z(C), then σ 2(t̃i i )= t̃σ̂ (i)σ̂ (i) for all i ∈5Z(C). Moreover, for any integers a, b
relatively prime to N = ord(t̃) such that σ |QN = σa and ab ≡ 1 (mod N ),

Gσ = t̃ast̃bst̃as−1.

The proof of this lemma, which requires the machinery of generalized Frobenius–
Schur indicators, will be developed independently in Section 5.

Galois symmetry of general modular categories. Let c be the braiding of the mod-
ular category A. Without loss of generality, we further assume the underlying
pivotal category of A is strict. We set

σX⊗Y (V )= (cX,V ⊗ Y ) ◦ (X ⊗ c−1
V,Y )

for any X, Y, V ∈A. Then (X ⊗ Y, σX⊗Y ) is a simple object of Z(A) if X , Y are
simple objects of A. Moreover, if Vi denotes a representative of i ∈5, then

{(Vi ⊗ Vj , σVi⊗Vj ) | i, j ∈5}

forms a complete set of representatives of simple objects in Z(A) (see [Müger 2003b,
Section 7]). Let (i, j) ∈5×5 denote the isomorphism class of (Vi ⊗ Vj , σVi⊗Vj )

in Z(A). Then we have 5Z(A) = 5×5 and the isomorphism class of the unit
object of Z(A) is (0, 0) ∈5Z(A).

Let s̃ and t̃ = [δi jθi ]i, j∈5 be the S- and T-matrices of A respectively. Then the
S- and T-matrices of the center Z(A), denoted by s̃ and t̃ respectively, are indexed
by 5×5. By [Ng and Schauenburg 2010, Section 6],

s̃i j,kl = s̃ik s̃jl∗, t̃i j,kl = δikδjl
θi

θj
.

Thus FSexp(A)= ord( t̃)= ord(t̃)= N .
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Proof of Theorem II (iii) and (iv). The canonical normalization s of s̃ is

si j,kl =
1

dimA
s̃ik s̃jl∗ = sgn(s)siksjl∗,

where sgn(s)=±1 is given by s2
=sgn(s)C (see (4-1)). Moreover, s∈GL5×5(QN ).

For σ ∈ Aut(Qab), we have

σ(si j,kl)= sgn(s)εσ (i)εσ ( j)sσ̂ (i)ksσ̂ ( j)l∗ = εσ (i)εσ ( j)sσ̂ (i)σ̂ ( j),kl = εσ (i, j)sσ̂ (i, j),kl,

where εσ and σ̂ are respectively the associated sign function and permutation on
5×5. Thus,

εσ (i, j)= εσ (i)εσ ( j), σ̂ (i, j)= (σ̂ (i), σ̂ ( j))

and so
(Gσ )i j,kl = εσ (i)εσ ( j)δσ̂ (i)kδσ̂ ( j)l

where Gσ is the associated signed permutation matrix of σ on s. By Lemma 4.2,
we find

σ 2
(
θi

θj

)
= σ 2( t̃i j,i j )= t̃σ̂ (i, j),σ̂ (i, j) = t̃σ̂ (i)σ̂ ( j),σ̂ (i)σ̂ ( j) =

θσ̂ (i)

θσ̂ ( j)

for all i, j ∈5. Since θ0 = 1,

θσ̂ (i)

σ 2(θi )
=

θσ̂ (0)

σ 2(θ0)
= θσ̂ (0)

for all i ∈5. By (4-1), t = ζ̃−1 t̃ where ζ̃ = ζ/x . Then

tσ̂ (i)σ̂ (i) =
θσ̂ (i)

ζ̃
=
σ 2(θi )θσ̂ (0)

ζ̃
= σ 2(ti i )β (4-9)

for all i ∈5, where β= tσ̂ (0)σ̂ (0) ·σ 2(ζ̃ )∈k×. Suppose σ |Qn =σa for some integer a
relatively prime to n. Then (4-9) is equivalent to the equalities

Gσ tG−1
σ = βta2

or G−1
σ ta2

Gσ = β
−1t. (4-10)

Now it suffices to show that β = 1.
Apply σ 2 to the equation (s−1t)3 = id. It follows from (4-10) that

id= Gσ s−1G−1
σ ta2

Gσ s−1G−1
σ ta2

Gσ s−1G−1
σ ta2

= β−2(Gσ s−1ts−1ts−1G−1
σ ta2

).

This implies

id= β−2(s−1ts−1ts−1G−1
σ ta2

Gσ )= β
−3(s−1ts−1ts−1t)= β−3 id .

Therefore, β3
= 1.
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Apply σ−1 to the equality sts = t−1st−1. Since σ−1
|Qn = σb where b is an

inverse of a modulo n, we have

G−1
σ stbsGσ = t−bsGσ t−b or stbs = Gσ t−bsGσ t−bG−1

σ .

This implies

G−1
σ tastbstaGσ = G−1

σ taGσ t−bsGσ t−bG−1
σ taGσ

= σ−1(G−1
σ ta2

Gσ )t−bsGσ t−bσ−1(G−1
σ ta2

Gσ )

= σ−1(β−1)tbt−bsGσ t−bσ−1(β−1)tb

= σ−1(β−2)sGσ .

Therefore,
tastbsta

= σ−1(β−2)Gσ s. (4-11)

Note that
(Gσ s)2 = Gσ sGσ s = sG−1

σ Gσ s = s2.

Square both sides of (4-11) and apply Lemma 4.1. We obtain

s2
= σ−1(β−4)s2.

Consequently, σ−1(β−4)= 1 and this is equivalent to β4
= 1. Now we can conclude

that β = 1 and so
Gσ tG−1

σ = ta2
.

By (4-11), we also have Gσ = tastbstas−1. �

Remark 4.3. For the case A=Rep(D(H)), where H is a semisimple Hopf algebra,
the T-matrix t̃ of A was proven to satisfy σ 2(t̃i i )= t̃σ̂ (i)σ̂ (i) in [Sommerhäuser and
Zhu 2012, Proposition 12.1]. The underlying modular representation of A, in the
context of Theorem II (iii) and (iv), is the canonical modular representation of A
described in Section 1.4.

We can now establish the Galois symmetry of RCFT as a corollary.

Corollary 4.4. Let V be a vertex operator algebra satisfying (V1) and (V2) with
simple V-modules M0, . . . ,M p. Then the genus one S- and T-matrices of V admit
the Galois symmetry: for σ ∈ Aut(Qab), there exists a signed permutation matrix
Gσ ∈ GLp+1(C) such that

σ(S)= Gσ S = SGσ and σ 2(T )= GσT G−1
σ

where the associated permutation σ̂ ∈ Sp+1 of Gσ is determined by

σ

(
Si j

S0 j

)
=

Si σ̂ ( j)

S0σ̂ ( j)
for all i, j = 0, . . . , p.
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In particular, σ 2(Ti i )= Tσ̂ (i)σ̂ (i). If n = ord(T ) and σ |Qn = σa for some integer a
relatively prime to n, then

Gσ = T a ST b ST a S−1

where b is an inverse of a modulo n.

Proof. The result is an immediate consequence of Theorem 3.10 and Theorem II
(iii) and (iv). �

Remark 4.5. The modular representation ρ factors through a representation given
by ρn : SL2(Zn)→ GL5(k). For any integers a, b such that ab ≡ 1 (mod n), the
matrix

da =

[
a 0
0 b

]
≡ tastbstas−1 (mod n)

is uniquely determined in SL2(Zn) by the coset a + nZ of Z. Moreover, the
assignment u : Gal(Qn/Q)→ SL2(Zn), σa 7→ da , defines a group monomorphism.
Theorem II (iv) implies that the representation φρ :Gal(Qn/Q)→GL5(Z), σ 7→Gσ ,
associated with ρ, also factors through ρn , satisfying the following commutative
diagram:

Gal(Qn/Q)
φρ //

u
��

GL5(k)

SL2(Zn)

ρn
88

SL2(Z)πn
oo

ρ

OO

The Galois symmetry enjoyed by the T-matrix of the Drinfeld center of a spherical
fusion category (Lemma 4.2) does not hold for a general modular category, as
demonstrated in the following example.

Example 4.6. Consider the Fibonacci modular category A over C which has only
one isomorphism class of non-unit simple objects. We abbreviate this non-unit
class by 1 (see [Rowell et al. 2009, Section 5.3.2]). Thus, 5A = {0, 1}. The S- and
T-matrices are given by

s̃ =
[

1 ϕ

ϕ −1

]
, t̃ =

[
1 0
0 e

4π i
5

]
.

where ϕ = (1+
√

5)/2. The central charge is c= 14/5 and the global dimension
is dimA= 2+ϕ. Therefore, α = e7π i/5 is the anomaly of A and ζ = e7π i/30 is a
6-th root of α (see (1-9)). Thus

s = ρζ (s)=
1

√
2+ϕ

s̃, t = ρζ (t)=

[
e
−7π i

30 0
0 e

17π i
30

]



2150 Chongying Dong, Xingjun Lin and Siu-Hung Ng

and ρζ is a level 60 modular representation of A by Theorem II. In Gal(Q60/Q), the
unique nontrivial square is σ49. Since σ7(

√
5)=−

√
5, we have σ7(s̃i0/s̃00)= s̃i1/s̃01.

Therefore, σ̂7 is the transposition (0, 1) on 5A, and

σ 2
7 (t)= σ49(t)=

[
e

17π i
30 0
0 e

−7π i
30

]
=

[
t11 0
0 t00

]
.

However, the Galois symmetry does not hold for t̃ , as

σ 2
7 (t̃)=

[
1 0
0 e

6π i
5

]
6=

[
t̃11 0
0 t̃00

]
.

We close this section with the following proposition which provides a necessary
and sufficient condition for such Galois symmetry of the T-matrix t̃ of a modular
category.

Proposition 4.7. Suppose A is a modular category over k with Frobenius–Schur
exponent N and T-matrix t̃ = [δi jθi ]i, j∈5A . Let ζ ∈ k be a 6-th root of the anomaly
α = p+A /p−A of A. Then, for any σ ∈ Aut(Qab) and i ∈5A,

θσ̂ (i)

σ 2(θi )
= θσ̂ (0) =

ζ

σ 2(ζ )
. (4-12)

Moreover, the following statements are equivalent:

(i) θσ̂ (0) = 1 for all σ ∈ Aut(Qab).

(ii) σ 2(θi )= θσ̂ (i) for all σ ∈ Aut(Qab).

(iii) (p+A /p−A )
4
= 1.

Proof. By (1-7), the assignment

ρζ (s)= s = λ−1s̃, ρζ (t)= t = ζ−1 t̃

defines a modular representation of A where λ = p+A /ζ
3. For σ ∈ Aut(Qab) and

i ∈5A, Theorem II (iii) implies that

σ 2
(
θi

ζ

)
= σ 2(ti i )= tσ̂ (i)σ̂ (i) =

θσ̂ (i)

ζ
.

Thus (4-12) follows, as θ0 = 1.
By (4-12), the equivalence of (i) and (ii) is obvious. Statement (i) is equivalent to

σ 2(ζ )= ζ for all σ ∈ Aut(Qab). (4-13)

Since the anomaly α is a root of unity, so is ζ . By Lemma A.2, (4-13) holds if and
only if ζ 24

= 1 or α4
= 1. �
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Remark 4.8. For a modular category A over C, it follows from (1-9) that the
anomaly of A is a fourth root of unity if and only if its central charge c is an integer
modulo 8.

5. Galois symmetry of quantum doubles

In this section, we provide a proof for Lemma 4.2 which is a special case of
Theorem II (iii) and (iv), but which is also crucial to the proof of the theorem. We
will invoke the machinery of generalized Frobenius–Schur indicators for spherical
fusion categories introduced in [Ng and Schauenburg 2010].

Generalized Frobenius–Schur indicators. Frobenius–Schur indicators for group
representations have been recently generalized to the representations of Hopf
algebras [Linchenko and Montgomery 2000] and quasi-Hopf algebras [Mason
and Ng 2005; Schauenburg 2004; Ng and Schauenburg 2008]. A version of the
second Frobenius–Schur indicator was introduced in conformal field theory [Bantay
1997], and some categorical versions were studied in [Fuchs et al. 1999; Fuchs
and Schweigert 2003]. All these different contexts of indicators are specializations
of the Frobenius–Schur indicators for pivotal categories introduced in [Ng and
Schauenburg 2007b].

The most recent introduction of the equivariant Frobenius–Schur indicators
for semisimple Hopf algebras by [Sommerhäuser and Zhu 2012] has motivated
the discovery of generalized Frobenius–Schur indicators for pivotal categories
[Ng and Schauenburg 2010]. The specialization of these generalized Frobenius–
Schur indicators to spherical fusion categories carries a natural action of SL2(Z).
This modular group action has played a crucial role for the congruence subgroup
theorem [Ng and Schauenburg 2010, Theorem 6.8] of the projective representation
of SL2(Z) associated with a modular category. These indicators also admit a
natural action of Aut(Qab) which will be employed to prove the Galois symmetry
of quantum doubles in this section. For the purpose of this paper, we will only
provide relevant details of generalized Frobenius–Schur indicators for our proof
to be presented here. The readers are referred to [Ng and Schauenburg 2010] for
more details.

Suppose C is a strict spherical fusion category over k with Frobenius–Schur
exponent N . For any pair (m, l) of integers, V ∈ C and X = (X, σX ) ∈ Z(C),
there is a naturally defined k-linear operator E (m,l)X,V on the finite-dimensional
k-space C(X, V m) (see [Ng and Schauenburg 2010, Section 2]). Here, V 0

= 1;
V m
= (V∨)−m if m < 0; and V m is the m-fold tensor product of V if m > 0. The

(m, l)-th generalized Frobenius–Schur indicator for X ∈ Z(C) and V ∈ C is

νX
m,l(V ) := tr

(
E (m,l)X,V

)
(5-1)
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where tr denotes the ordinary trace map. In particular, for m > 0 and f ∈ C(X, V m),
the operator E (m,1)X,V ( f ) is the following composition:

X
X⊗ dbV∨
−−−−−→ X⊗V∨⊗V

σX (V∨)⊗V
−−−−−−→V∨⊗X⊗V

V∨⊗ f⊗V
−−−−−→V∨⊗V m

⊗V
evV⊗V m

−−−−−→V m .

It can be shown by graphical calculus that, for m, l ∈ Z with m 6= 0,

E (m,l)X,V =
(
E (m,1)X,V

)l and
(
E (m,1)X,V

)m N
= id (5-2)

(see [Ng and Schauenburg 2010, Lemmas 2.5 and 2.7]). Hence, for m 6= 0, we have

νX
m,l(V )= tr

((
E (m,1)X,V

)l)
. (5-3)

Note that ν1
m,1(V ) coincides with the Frobenius–Schur indicator νm(V ) of V ∈ C

introduced in [Ng and Schauenburg 2007b].

Galois group action on generalized Frobenius–Schur indicators. Let K(Z(C))
denote the Grothendieck ring of Z(C) and let Kk(Z(C))= K(Z(C))⊗Z k. For any
matrix y ∈ GL5(k), we define the linear operator F(y) on Kk(Z(C)) by

F(y)( j)=
∑
i∈5

yi j i for all j ∈5,

where 5=5Z(C). Then F : GL5(k)→ Autk(Kk(Z(C)) is a group isomorphism.
In particular, every representation ρ :G→GL5(k) of a group G can be considered
as a G-action on Kk(Z(C)) through F . More precisely, for g ∈ G, we define

g j = F(ρ(g))( j) for all j ∈5.

Let s̃ and t̃ be the S- and T-matrices of Z(C). The SL2(Z)-action on Kk(Z(C))
associated with the canonical modular representation ρZ(C) of Z(C) is then given by

s j =
∑
i∈5

si j i and t j = θj j, (5-4)

where t̃ = [δi jθj ]i, j∈5 and s = s̃/dim C (see (1-10)). Note that s ∈ GL5(QN ) by
Theorem II (ii), since N = ord(t̃).

Now we extend the generalized indicator νX
m,l(V ) linearly via the basis 5 to

a functional IV ((m, l),−) on Kk(Z(C)). Let V ∈ C and (m, l) ∈ Z2, and let
z =

∑
i∈5 αi i ∈ Kk(Z(C)) for some αi ∈ k. Then we define

IV ((m, l), z)=
∑
i∈5

αiν
Xi
m,l(V )

where Xi denotes an arbitrary object in the isomorphism class i . The SL2(Z)-
actions on Z2 and on Kk(Z(C)) are related by these functionals on Kk(Z(C)). In
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the following theorem, we summarize some results on these generalized indicators
relevant to the proof of Lemma 4.2 (see Section 5 of [Ng and Schauenburg 2010]).

Theorem 5.1. Let C be a spherical fusion category C over k with Frobenius–Schur
exponent N . Suppose z ∈Kk(Z(C)), X = (X, σX ) ∈ Z(C), V ∈ C, (m, l) ∈ Z2 and
J =

[ 1
0

0
−1

]
. Then:

(i) νX
m,l(V ) ∈QN .

(ii) νX
1,0(V )= dimk C(X, V ).

(iii) IV ((m, l)γ, z)= IV ((m, l), γ J z) for γ ∈ SL2(Z), where γ J
= Jγ J .

In particular, Aut(Qab) acts on the generalized Frobenius–Schur indicators νX
m,l(V ).

�

For σ ∈ Aut(Qab), the matrix Gσ = σ(s)s−1 is also given by

(Gσ )i j = εσ (i)δσ̂ (i) j

for some sign function εσ and permutation σ̂ on 5 (see (4-2), (4-3) and (4-4)).
Define fσ = F(Gσ ). Then

fσ j = εσ (σ̂−1( j))σ̂−1( j) for j ∈5. (5-5)

Since the assignment Aut(Qab)→GL5(Z), σ 7→Gσ is a representation of Aut(Qab),

fσ fτ = fστ for all σ, τ ∈ Gal(QN/Q).

Therefore, by direct computation,

fσ−1 j = f−1
σ j = εσ ( j)σ̂ ( j) for j ∈5.

Remark 5.2. Since s ∈GL5(QN ), if σ, σ ′∈Aut(Qab) such that σ |QN =σ
′
|QN , then

Gσ = Gσ ′ and so fσ = fσ ′ .

Now we can establish the following lemma which describes a relation between
the Aut(Qab)-action on Kk(Z(C)) and the SL2(Z)-action in terms of the functionals
IV ((m, l),−).

Lemma 5.3. Take V ∈ C and let a, l be nonzero integers such that a is relatively
prime to lN . Suppose σ ∈Aut(Qab) satisfies σ |QN = σa . Then, for all z ∈Kk(Z(C)),

IV ((a, l), z)= IV ((1, 0), t−alfσ z).

Proof. Let Xj be a representative of j ∈5. By (5-2), (5-3) and Theorem 5.1 (i), for
any nonzero integer m, there is a linear operator Em = E (m,1)Xj ,V on a finite-dimensional
space such that (Em)

mN
= id and

ν
Xj
m,k(V )= tr(Ek

m) ∈QN
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for all integers k. In particular, the eigenvalues of Em are |mN|-th roots of unity.
Suppose τ ∈Aut(Qab) such that τ |Q|lN| = σa . Then τ |QN = σa = σ |QN . Therefore,

σ(ν
Xj
l,−1(V ))= τ(tr(E

−1
l ))= tr(E−a

l )= ν
Xj
l,−a(V )= IV ((l,−a), j) (5-6)

and

σ(ν
Xj
1,l(V ))= σa(tr(E l

1))= tr(E la
1 )= ν

Xj
1,la(V )

= IV ((1, la), j)= IV ((1, 0)tla, j)= IV ((1, 0), t−la j). (5-7)

Here, the last equality follows from Theorem 5.1 (iii).
On the other hand, by Theorem 5.1 (iii), we have

ν
Xj
1,l(V )= IV ((1, l), j)= IV ((l,−1)s−1, j)= IV ((l,−1), s j)=

∑
i∈5

si jν
Xi
l,−1(V ).

Therefore, (5-6) and Theorem 5.1 (iii) imply

σ(ν
Xj
1,l(V ))= σ

(∑
i∈5

si jν
Xi
l,−1(V )

)
=

∑
i∈5

εσ ( j)si σ̂ ( j)σ(ν
Xi
l,−1(V ))

=

∑
i∈5

εσ ( j)si σ̂ ( j) IV ((l,−a), i)= IV ((l,−a), εσ ( j)s σ̂ ( j))

= IV ((l,−a), s(fσ−1 j))= IV ((l,−a)s−1, fσ−1 j)= IV ((a, l), fσ−1 j).

It follows from (5-7) that, for all j ∈5,

IV ((a, l), fσ−1 j)= IV ((1, 0), t−la j)

and so

IV ((a, l), fσ−1 z)= IV ((1, 0), t−laz)

for all z ∈ Kk(Z(C)). The assertion follows by replacing z with fσ z. �

Remark 5.4. Some related equalities for the representation categories of semi-
simple Hopf algebras were obtained in [Sommerhäuser and Zhu 2012, Corol-
lary 12.4] with a similar strategy. Because of the conceptual differences of the
definitions of generalized Frobenius–Schur indicators for spherical fusion categories
and the counterpart for semisimple Hopf algebras introduced in that paper, their
approach generally cannot be adapted in fusion categories.

Proof of Lemma 4.2. Let σ ∈ Aut(Qab) and let σ |QN = σa for some integer a
relatively prime to N . Then σ−1

|QN = σb where b is an inverse of a modulo N .
By Dirichlet’s theorem on primes in arithmetic progressions, there exists a prime q
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such that q ≡ b (mod N ) and q -a. By Lemma 5.3 and Theorem 5.1 (iii), for j ∈5,

IV ((1, 0), t−1fσ t
q fσ−1 j)

= IV ((1, 0), t−aq fσ t
q fσ−1 j)= IV ((a, q), tq fσ−1 j)

= IV ((a, q)t−q , fσ−1 j)= IV ((a, q − aq), fσ−1 j)

= IV ((1, 0), t−aq+a2q fσ fσ−1 j)= IV ((1, 0), t−1+a j). (5-8)

Using (5-4) and (5-5), we can compute directly the two sides of (5-8). This implies

θ−1
j θ

q
σ̂ ( j)ν

Xj
1,0(V )= θ

a−1
j ν

Xj
1,0(V )

for all V ∈ C. Take V = Xj to be the underlying C-object of Xj . We then have
ν

Xj
1,0(Xj )= dimk C(Xj , Xj )≥ 1. Therefore, we have θ−1

j θ
q
σ̂ ( j) = θ

a−1
j , and hence

θ
q
σ̂ ( j) = θ

a
j or θσ̂ ( j) = θ

a2

j .

This is equivalent to the equality

σ 2(t̃)= Gσ t̃G−1
σ .

Since t̃ st̃ st̃ = s, we find that

Gσ s = σ(s)= σ(t̃ st̃ st̃)= t̃asG−1
σ t̃aGσ st̃a

= t̃asG−1
σ t̃a2bGσ st̃a

= t̃as(G−1
σ t̃a2

Gσ )
bst̃a
= t̃ast̃bst̃a. (5-9)

Therefore,
Gσ = t̃ast̃bst̃as−1. �

6. Anomaly of modular categories

In this section, we apply the congruence property and Galois symmetry of a modu-
lar category (Theorem II) to deduce some arithmetic relations among the global
dimension, the Frobenius–Schur exponent and the order of the anomaly.

Let A be a modular category over k with Frobenius–Schur exponent N . Since
d(V ) ∈ QN for V ∈ A (see [Ng and Schauenburg 2010, Proposition 5.7]), the
anomaly α = p+A /p−A of A is a root of unity in QN . Therefore, αN

= 1 if N is even,
and α2N

= 1 if N is odd.
Let us define JA = (−1)1+ordα to record the parity of the order of the anomaly α

of A. Note that JA is intrinsically defined by A. It will become clear that JA is closely
related to the Jacobi symbol

(
∗

∗

)
in number theory. When 4 - N , the quantity JA

determines whether dimA has a square root in QN .

Theorem 6.1. Let A be a modular category over k with Frobenius–Schur exponent
N such that 4 -N. Then JA dimA has a square root in QN and −JA dimA does not
have any square root in QN .
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Proof. Let ζ ∈ k be a 6-th root of the anomaly α = p+A /p−A of A. By Corollary 2.5,
there exists a 12-th root of unity x ∈ k such that(

x
ζ

)N

= 1 and
x3 p+A
ζ 3 ∈QN .

Note that (p+A /ζ
3)2 = dimA.

Set N ′ = N if N is odd and N ′ = N/2 if N is even. In particular, N ′ is odd.
Then (x/ζ )N ′

=±1 and so

αN ′
= ζ 6N ′

= x6N ′
= x6.

By straightforward verification, one can show that x6
= JA. Therefore,(

x3 p+A
ζ 3

)2

= x6 dimA= JA dimA.

Suppose −JA dimA also has a square root in QN . Since JA dimA has a square
root in QN , so does −1. Therefore, 4 |N , a contradiction. �

When dimA is an odd integer, we will show that JA =
(
−1

dimA
)
. Let us fix our

convention in the following definition for the remainder of this paper.

Definition 6.2. Let A be a modular category over k.

(i) A is called mock integral if its global dimension dimA is an integer.

(ii) A is called integral if d(V ) ∈ Z for all V ∈A.

Remark 6.3. The standard definition of integral fusion categories is defined in
terms of Frobenius–Perron dimensions. Following [Etingof et al. 2005], a fusion
category C is called integral (resp. weakly integral) if FPdim V ∈Z for all V ∈C (resp.
FPdim C ∈ Z). Moreover, any weakly integral spherical fusion category C satisfies
the pseudounitary condition: FPdim C = dim C. Therefore, weakly integral modular
categories are obviously mock integral. The Deligne product of the Fibonacci
modular category (see [Rowell et al. 2009, Section 5.3.2]) with its Galois conjugate
is a mock integral modular category but not weakly integral.

It follows from [Hong and Rowell 2010, Lemma A.1] and [Etingof et al. 2005,
Proposition 8.24] that d(V ) ∈ Z for all objects V in a modular category A if and
only if FPdim V ∈ Z for all V ∈ A. Therefore, these two definitions of integral
modular categories are equivalent. A weakly integral modular category can also be
characterized by the integrality of d(V )2 as in the following lemma.

Lemma 6.4. A modular category A over k is weakly integral if and only if d(V )2

is an integer for any simple object V ∈A.
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Proof. By the modularity of A, we have that FPdimA = dimA/d(U )2 for some
simple object U . If d(V )2 ∈ Z for all simple objects V ∈ A, then dimA ∈ Z and
hence FPdimA ∈ Z. Conversely, if FPdimA ∈ Z, then FPdimA = dimA and
(FPdim V )2 ∈ Z for all simple objects V ∈ A by [Etingof et al. 2005, Proposi-
tions 8.24 and 8.27]. Since d(V )2 ≤ (FPdim V )2, the pseudounitarity of A implies
d(V )2 = (FPdim V )2 ∈ Z. �

Proposition 6.5. Let A be a mock integral modular category over k with Frobenius–
Schur exponent N and odd global dimension dimA. Then JA =

(
−1

dimA
)
. In

particular,

JA =
{

1 if dimA≡ 1 (mod 4),
−1 if dimA≡ 3 (mod 4).

Moreover, the square-free part of dimA is a divisor of N .

Proof. We may simply assume A contains a non-unit simple object. By [Etingof
2002, Theorem 5.1], N divides (dimA)3. In particular, N is odd. Let ϕ :QN → C

be any embedding. It follows from the proof of [Etingof et al. 2005, Proposition 2.9]
that ϕ(di ) is real for i ∈5A, and so ϕ(dimA)> 1. We can identify QN with ϕ(QN ).

If dimA is the square of an integer, then JA = 1 by Theorem 6.1, and we have(
−1

dimA
)
= 1. In this case, the last statement is trivial. Suppose dimA is not the

square of any integer. It follows from Theorem 6.1 that Q(
√

JA dimA) is a quadratic
subfield of QN . Note that Q(

√
p∗) is the unique quadratic subfield of Qp` for any

odd prime p and positive integer ` (see [Washington 1997]), where p∗ =
(
−1
p

)
p,

and that Q(
√

m) 6= Q(
√

m′) for any two distinct square-free integers m, m′. Let
p1, . . . , pk be the distinct prime factors of N . By counting the order 2 elements
of Gal(QN/Q), the quadratic subfields of QN are of the form Q(

√
d∗) where d is

a positive divisor of p1 · · · pk and where d∗ =
(
−1
d

)
d .

Let a be the square-free part of dimA. Then we have that
(
−1

dimA
)
=
(
−1
a

)
and Q(

√
JAa) = Q(

√
JA dimA). By the preceding paragraph, a | p1 · · · pk and

JA =
(
−1
a

)
. �

Remark 6.6. In [Sommerhäuser and Zhu 2009], integral modular categories with
the special Galois property

σ(s̃i j )= s̃σ̂ (i) j (6-1)

were discussed. These conditions are not satisfied by some common modular cate-
gories such as the Ising and Fibonacci modular categories. However, for semisimple
quasi-Hopf algebras with modular module categories, the first statement of the
preceding proposition was proved in [Sommerhäuser and Zhu 2009, Theorem 5.3].

A number of new results appear in the serious revision [Sommerhäuser and Zhu
2013] of [Sommerhäuser and Zhu 2009]. In Theorem 2.6 and Proposition 3.5 of
these papers, the same statement was established for integral modular categories
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satisfying (6-1) by considering the quadratic subfields of QN but using a different
approach.

The following proposition on modular categories is a slight variation of [Coste
and Gannon 1999, Proposition 3], and it was essentially proved [loc. cit.] under the
assumption of Galois symmetry which has been proved in the previous sections.

Proposition 6.7. Let A be a modular category over k, and let ρ be a modular
representation of A. Set s = ρ(s), t = [δi j ti ]i, j∈5A = ρ(t), n = ord(t) and

Kb =Q(sib/s0b | i ∈5A) for b ∈5A.

(i) Then σ 2(tb)= tb for σ ∈ Gal(Qn/Kb).

(ii) If A is integral, then the anomaly α = p+A /p−A of A is a 4-th root of unity.

(iii) Let K=Q(sib/s0b | i, b∈5A), and let k be the conductor of K, i.e., the smallest
positive integer k such that K⊆Qk . Then Gal(Qn/K) is an elementary 2-group,
and |Gal(Qn/Qk)| is a divisor of 8. Moreover, n/k is a divisor of 24, and
gcd(n/k, k) divides 2.

Proof. (i) For σ ∈ Gal(Qn/Kb), let εσ be the sign function determined by s (see
(4-3)). Suppose s2

= sgn(s)C where sgn(s)=±1. Then, by (4-2),

sgn(s)
s2

0b

=

∑
i∈5A

sibsib∗

s2
0b

=

∑
i∈5A

(
sib

s0b

)(
sib∗

s0b

)
=

∑
i∈5A

(
sib

s0b

)(
si∗b

s0b

)
∈ Kb.

Therefore, s2
0b ∈ Kb and so σ(s2

0b) = s2
0b. Since σ(s0b) = εσ (b)s0σ̂ (b), we have

s0σ̂ (b) = εs0b for some sign ε. Now, for i ∈5A,

sib

s0b
= σ

(
sib

s0b

)
=

si σ̂ (b)

s0σ̂ (b)
=
εsi σ̂ (b)

s0b
.

Thus, sib= εsi σ̂ (b) for all i ∈5A. If σ̂ (b) 6= b, then the b-th and the σ̂ (b)-th columns
of s are linearly dependent but this contradicts the invertibility of s. Therefore,
σ̂ (b)= b and hence, by Theorem II (iii), σ 2(tb)= tσ̂ (b) = tb.

(ii) If A is integral, then K0 = Q and hence σ 2(t0) = t0 for all σ ∈ Gal(Qn/Q).
Recall from Section 1.3 that t0 = x/ζ for some 6-th root ζ of α and some 12-th
root of unity x ∈ k. By Lemma A.2, x/ζ is a 24-th root of unity. Therefore,

α4
= ζ 24

= (ζ/x)24
= 1.

(iii) By (i), for σ ∈ Gal(Qn/K), we have σ 2(tb)= tb for all b ∈5A. Since Qn is
generated by tb (b ∈5A), we have σ 2

= id. Therefore, Gal(Qn/K) is an elementary
2-group, and so is Gal(Qn/Qk). Thus, for any integer a relatively prime to n such
that a ≡ 1 (mod k), we have a2

≡ 1 (mod n). By Lemma A.3, we have that n/k is
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a divisor of 24 and that gcd(n/k, k) |2. Moreover, |Gal(Qn/Qk)| = φ(n)/φ(k) is a
divisor of 8. �

Remark 6.8. The proof of the preceding proposition is a mere adaptation of [Coste
and Gannon 1999, Proposition 3]. For integral modular categories satisfying (6-1)
(see Remark 6.6), Proposition 6.7 (ii) and (iii) also appear in the final version of
[Sommerhäuser and Zhu 2013, Theorems 2.3.2 and 3.4] with similar ideas. The
following corollary was also established for factorizable quasi-Hopf algebras in
Theorem 4.3 of [Sommerhäuser and Zhu 2009; 2013] with a different approach.

Corollary 6.9. Let A be an integral modular category with anomaly α = p+A /p−A .
If dimA is odd, then α =

(
−1

dimA
)
.

Proof. If dimA is odd, then so is the Frobenius–Schur exponent N of A, as
N | (dimA)3. Since α ∈ QN and α4

= 1, we have α2
= 1. It follows from

Proposition 6.5 that

α = (−1)1+ordα
= JA =

(
−1

dimA

)
. �

The Ising modular category is an example of a weakly integral modular category
(see [Rowell et al. 2009, Section 5.3.4]) and its central charge is c= 1/2. Therefore,
its anomaly is eπ i/4, an eighth root of unity, and this holds for every weakly integral
modular category.

Theorem 6.10. The anomaly α = p+A /p−A of any weakly integral modular category
A is an eighth root of unity.

Proof. Suppose ζ ∈ k is a 6-th root of the anomaly α of a weakly integral modular
category A. Then λ = p+A /ζ

3 is a square root of dimA. Consider the modular
representation ρζ of A given by

ρζ : s 7→ s := 1
λ

s̃, t 7→ t := 1
ζ

t̃ .

Let t̃ = [δi jθi ]i, j∈5A be the T-matrix of A. Since s2
0i = d2

i /dimA ∈Q, we have, for
σ ∈ Aut(Qab),

s2
0i = σ(s

2
0i )= s2

0σ̂ (i)

or d2
i = d2

σ̂ (i) for all i ∈5A. By Theorem II (iii),

σ 2
(∑

i∈5A

d2
i
θi

ζ

)
=

∑
i∈5A

d2
i
θσ̂ (i)

ζ
=

∑
i∈5A

d2
σ̂ (i)

θσ̂ (i)

ζ
=

∑
i∈5A

d2
i
θi

ζ
.

Thus, we have
σ 2(p+A )

p+A
=
σ 2(ζ )

ζ
.
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Since dimA is a positive integer, σ 2(λ)= λ and so

σ 2(ζ 3)

ζ 3 =
σ 2(p+A /λ)

p+A /λ
=
σ 2(p+A )

p+A
=
σ 2(ζ )

ζ
.

Therefore, we find σ 2(ζ 2)/ζ 2
= 1 for all σ ∈Aut(Qab). It follows from Lemma A.2

that ζ 48
= 1 and so α8

= 1. �

Corollary 6.9 and the Cauchy theorem for Hopf algebras [Kashina et al. 2006] as
well as quasi-Hopf algebras [Ng and Schauenburg 2007a] suggest a more general
version of the Cauchy theorem may hold for spherical fusion categories or modular
categories over k. We finish this paper with two equivalent questions.

Question 6.11. Let C be a spherical fusion category over k with Frobenius–Schur
exponent N . Let O denote the ring of integers of QN . Must the principal ideals
O(dim C) and ON of O have the same prime ideal factors?

Since Z(C) is a modular category over k and (dim C)2= dim Z(C), the preceding
question is equivalent to the following:

Question 6.12. Let A be a modular category over k with Frobenius–Schur exponent
N . Let O denote the ring of integers of QN . Must the principal ideals O(dimA)
and ON of O have the same prime ideal factors?

By [Etingof 2002], (dimA)3/N ∈O. Therefore, the prime ideal factors of ON
are a subset of O dimA. The converse is only known to be true for the representation
categories of semisimple quasi-Hopf algebras, by [Ng and Schauenburg 2007a,
Theorem 8.4]. Question 6.11 was originally raised for semisimple Hopf algebras in
[Etingof and Gelaki 1999, Question 5.1], which had been solved in [Kashina et al.
2006, Theorem 3.4].

Appendix

The first lemma in this appendix could be known to some experts. An analogous
result for PSL2(Z) was proved by Wohlfahrt [1964, Theorem 2] (see also Newman’s
proof [1972, Theorem VIII.8]). However, we do not see the lemma as an immediate
consequence of Wohlfahrt’s theorem for PSL2(Z).

Lemma A.1. Let H be a congruence normal subgroup of SL2(Z). Then the level
of H is equal to the order of tH in SL2(Z)/H.

Proof. Let m be the level of H and let n = ord tH . Since tm ∈ 0(m)≤ H , we have
tm ∈ H and hence n |m.
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Suppose γ =
[a

c
b
d

]
∈ 0(n). Since ad − bc = 1, by Dirichlet’s theorem, there

exists a prime p -m such that p = d + kc for some integer k. Then

t−kγ tk =

[
a′ b′

c p

]
∈ 0(n)

for some integers a′, b′. In particular,

a′ p− b′c = 1, p ≡ a′ ≡ 1 (mod n) and c ≡ b′ ≡ 0 (mod n).

Since p -m, there exists an integer q such that pq ≡ 1 (mod m). Thus we have
pq ≡ 1 (mod n) and so q ≡ 1 (mod n). One can verify directly that[

a′ b′

c p

]
≡ tb

′qs−1t(−c+1)pstqstp (mod m).

Therefore,

t−kγ tk H = tb
′qs−1t(−c+1)pstqstp H = s−1tststH = s−1sH = H.

This implies t−kγ tk ∈ H , and hence γ ∈ H . Therefore, 0(n)≤ H and so m |n. �

The following fact should be well-known. We include the proof here for the
convenience of the reader.

Lemma A.2. Let ζ be a root of unity in k. Then σ 2(ζ )= ζ for all σ ∈ Aut(Qab) if
and only if ζ 24

= 1.

Proof. Let m be the order of ζ . Then Gal(Q(ζ )/Q) ∼= U (Zm). Note that the
group U (Zm) has exponent at most 2 if and only if m |24. Since Q(ζ ) is a Galois
extension over Q, the restriction map Aut(Qab)

res
−→ Gal(Q(ζ )/Q) is surjective.

Thus, if σ 2(ζ )= ζ for all σ ∈ Aut(Qab), then the exponent of Gal(Q(ζ )/Q) is at
most 2, and hence m |24. Conversely, if m |24, then the exponent of Gal(Q(ζ )/Q)
is at most 2, and so σ 2(ζ )= ζ for all σ ∈ Aut(Qab). �

The next lemma is a variation of the argument used in the proof of [Coste and
Gannon 1999, Proposition 3].

Lemma A.3. Let k be a positive divisor of a positive integer n. Suppose that, for
any integer a relatively prime to n such that a≡ 1 (mod k), we have a2

≡ 1 (mod n).
Then gcd(n/k, k) divides 2 and n/k is a divisor of 24. Moreover, φ(n)/φ(k) is a
divisor of 8.

Proof. Let π :U (Zn)→U (Zk) be the reduction map. The assumption implies that
kerπ is an elementary 2-group. It follows from the exact sequence

0→ kerπ→U (Zn)
π
→U (Zk)→ 0

that φ(n)/φ(k) is a power of 2, and so is gcd(n/k, k). Thus, if 2-gcd(n/k, k), then
gcd(n/k, k)= 1. By the Chinese remainder theorem, for any integer y relatively
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prime to n/k, there exists an integer a such that a≡ y (mod n)/k and a≡1 (mod k).
Thus, a2

≡ 1 (mod n), and hence y2
≡ 1 (mod n)/k. This implies the exponent

of U (Zn/k) is at most 2, and therefore n/k |24. Moreover, φ(n)/φ(k)= φ(n/k) is
a factor of 8.

Suppose 2 | gcd(n/k, k). Then k = 2uk ′ for some positive integer u and odd
integer k ′. The aforementioned conclusion implies n = 2vn′k ′ where v > u and
gcd(n′, 2vk ′)= 1. By the Chinese remainder theorem, the given condition implies
the kernel of the reduction map U (Z2v )→U (Z2u ) is an elementary 2-group. There-
fore, 2≤ v ≤ 3 if u = 1, and v = u+1 if u > 1. In both cases, gcd(n/k, k)= 2 and
φ(2v)/φ(2u) is a divisor of 4. By the aforementioned argument, for any integer y
relatively prime to n′, we have y2

≡ 1 (mod n)′. Therefore, n′ |24 and hence n′ |3.
Thus, n/k = n′2v−u

|12, and

φ(n)
φ(k)

= φ(n′)
φ(2v)
φ(2u)

is also a divisor of 8. �
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