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For 0 a group of order mp, where p is a prime with gcd(p,m)= 1, we consider
the regular subgroups N ≤ Perm(0) that are normalized by λ(0), the left regular
representation of 0. These subgroups are in one-to-one correspondence with the
Hopf–Galois structures on separable field extensions L/K with 0 = Gal(L/K ).
Elsewhere we showed that if p > m then all such N lie within the normalizer
of the Sylow p-subgroup of λ(0). Here we show that one only need assume
that all groups of a given order mp have a unique Sylow p-subgroup, and that
p not be a divisor of the order of the automorphism groups of any group of
order m. We thus extend the applicability of the program for computing these
regular subgroups N and concordantly the corresponding Hopf–Galois structures
on separable extensions of degree mp.

Introduction

The motivation and antecedents for this work lie in the subject of Hopf–Galois
theory for separable field extensions. Specifically, we extend the results of [Kohl
2013] on Hopf–Galois structures on Galois extensions of degree mp for p a prime
where p > m. We will not delve into all the particulars of Hopf–Galois theory,
since this discussion focuses on the group-theoretic underpinnings of this class of
examples. For the general theory, one may consult [Chase and Sweedler 1969]
for basic definitions and initial examples and [Greither and Pareigis 1987] for
the theory as applied to separable extensions, which is the category in which our
earlier paper and others fall. In brief, let L/K be a finite Galois extension with
0 = Gal(L/K ). Such an extension is canonically Hopf–Galois for the K-Hopf
algebra H = K [0], but also for potentially many other K-Hopf algebras. Their
enumeration is determined by the following paraphrased variant of the main theorem
in [Greither and Pareigis 1987]. (Recall that a regular subgroup of the group of
permutations of a set is one whose action on the set is transitive and free.)
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Theorem [Greither and Pareigis 1987]. If L/K is a finite Galois extension with
0=Gal(L/K ) then the Hopf algebras which act to make the extension Hopf–Galois
correspond in a one-to-one fashion with regular subgroups N ≤ B = Perm(0) such
that λ(0)≤ NormB(N ), where λ(0) is the image of the left regular representation
of 0 in B.

Each such N gives rise to the Hopf algebra H = L[N ]0, the fixed ring of the
group ring L[N ] under the action of 0 simultaneously on the coefficients, by virtue
of 0 = Gal(L/K ), and the group elements by virtue of λ(0) normalizing N . The
problem of enumerating such N for different classes of extensions has been the
subject of much recent work by Byott (e.g., [2004]), Childs (e.g., [2003]), the
author, and others. This discussion will be strictly focused on the enumeration of
these groups, for a particular set of cases, keyed to the order of 0 and consequently
of any such regular subgroup N which satisfies the conditions of the above theorem.
Again, no discussion of Hopf–Galois structures is required from here on since we
are looking at the purely group-theoretic translation arising from the above theorem.

1. Preliminaries

As it is so essential, let’s briefly review regularity in the context of finite groups.

Definition 1.1. Let X be a finite set and let N ≤Perm(X) be a group of permutations
of X . We say that N is semiregular if it acts freely, that is, if each element of N
apart from the identity acts without fixed points. If N acts transitively on X and
|N | = |X | then N is semiregular; and if N is semiregular its action is transitive if
and only if |N | = |X |. Thus any two of these conditions imply the third. A group
satisfying these conditions is called regular.

In view of the cardinality condition, in order to organize the enumeration of the
regular N ≤ Perm(0) that may arise for a given Galois group 0, we consider, for
[M] the isomorphism class of a given group of the same order as 0, the set

R(0, [M])= {N ≤ B | N regular, N ∼= M, λ(0)≤ NormB(N )}

and let R(0) be the union of the R(0, [M]) over all isomorphism classes of groups
of the same order as 0.

Since they are important in the enumeration of R(0, [M]), we recall some facts
from [Kohl 2013], henceforth referred to as [K].

Lemma 1.2 [K, Corollary 3.3 and Proposition 3.4]. Let N be a regular subgroup
of B and define the opposite of N as N opp

= CentB(N ). Then:

• N opp is also a regular subgroup of B.

• N ∩ N opp
= Z(N ) (so N = N opp if and only if N is abelian).
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• (N opp)opp
= N.

• N ∈ R(0, [M]) if and only if N opp
∈ R(0, [M]).

Again, in the cases considered in [K] it was assumed that |0| = mp for p prime
and p > m. Our goal is to extend those results to groups of order mp where
gcd(p,m)= 1, but where one need not assume that p > m.

We begin by briefly reviewing the setup in [K], where we considered groups
0 of order mp with a unique and therefore characteristic Sylow p-subgroup due
to the assumption that p > m. Since p > m obviously implies gcd(p,m)= 1, by
the Schur–Zassenhaus lemma 0 may be written as PQ for P and Q subgroups of
0 where |P| = p and |Q| = m. More specifically, there is a split exact sequence
P→ 0→ Q whereby 0 = P oτ Q, with τ : Q→Aut(P) induced by conjugation
within 0 by the complementary subgroup Q. Using Q for the quotient of 0 by P
and the image of the section in 0 is admittedly a slight abuse of notation. The
condition p >m is sufficient, of course, to make the Sylow p-subgroup unique and
have order p.

Going forward, we wish to drop the assumption that p > m and consider groups
of order mp for p prime, with gcd(p,m) = 1 and where congruence conditions
force any group of order mp, including 0 and any N ∈ R(0), to have a unique
Sylow p-subgroup.

With 0 as above, if λ : 0→ Perm(0)= B is the left regular representation then
we define P = P(λ(0)) to be the Sylow p-subgroup of λ(0) and Q to be the com-
plementary subgroup to P in λ(0). We wish to prove the following strengthening of
[K, Theorem 3.5] which will allow us to apply the program developed in Sections
1–3 of [K] (and applied in subsequent sections therein) to a much larger class of
groups.

Theorem 1.3. Let 0 have order mp where gcd(p,m) = 1 and p - |Aut(Q)| for
any group Q of order m, and assume any group of order mp has a unique Sylow
p-subgroup. If N ∈ R(0) then N is a subgroup of NormB(P).

To prove this, we need to modify certain key results from [K], starting with
Lemma 1.1 regarding the p-torsion of Aut(0).

Lemma 1.4. Let 0 have order mp, where gcd(p,m) = 1, and assume 0 has a
unique Sylow p-subgroup, so that 0 ∼= P oτ Q as above. Assume also that p does
not divide |Aut(Q)|.

(a) If τ is trivial (whence 0 ∼= P × Q) then p does not divide |Aut(0)|.

(b) If τ is nontrivial then Aut(0) has a unique Sylow p-subgroup, consisting of
the inner automorphisms induced by conjugation by elements of P.

Proof. In (a), if 0 is such a direct product then Aut(0)= Aut(P)×Aut(Q) and so
if p - |Aut(Q)| then p - |Aut(0)|. The proof is basically the same as in [K]. For (b),
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since 0/P ∼= Q, any ψ ∈ Aut(0) induces ψ̄ ∈ Aut(0/P)∼= Aut(Q) and if ψ has
p-power order then ψ̄ is trivial since p does not divide |Aut(Q)|. And, as also
observed in [K], when 0 is not a direct product, |P ∩ Z(0)| = 1 and conjugation in
0 by elements of P yields the order-p subgroup of Aut(0). �

The condition that p - |Aut(Q)| was automatic when p > m, but it often holds
true even when p < m. For example, if p = 5 and m = 8 then Sylow theory easily
shows that any group of order 40 will have a unique Sylow p-subgroup. One could
also consider the groups of order eight — C8, C4×C2, C2×C2×C2, D4 and Q2 —
whose automorphism groups have orders 4, 8, 168, 8, 24, respectively, none of
which is divisible by 5.

The cycle structure of a regular permutation group’s elements is greatly circum-
scribed by the condition that all nontrivial elements of the group act freely. Any such
element, because it and all its nontrivial powers lack fixed points, must be a product
of cycles of the same length, and the sum of the lengths must equal |X |. For exam-
ple, if X = {1, 2, 3, 4, 5, 6} then (1, 2)(3, 4)(5, 6) and (1, 2, 3)(4, 5, 6) satisfy this
property. In contrast, µ= (1, 2, 3, 4)(5, 6) cannot belong to a regular subgroup of
Perm(X) even though it does not have fixed points, because µ2

= (1, 3)(2, 4) does.
Since P is a nontrivial subgroup of the canonically regular permutation group

λ(0), we must have
P = 〈π〉 = 〈π1π2 · · ·πm〉,

where the πi are disjoint p-cycles. In a similar fashion, if N is any regular subgroup
of B then its Sylow p-subgroup P(N ) is also cyclic of order p and therefore of
the form

P(N )= 〈θ〉 = 〈θ1θ2 · · · θm〉,

where the θi are also disjoint p-cycles. For N ∈ R(0) we are looking at those
regular N which are normalized by λ(0). Now, P(N ) is characteristic in N , so
λ(0) normalizing N implies that λ(0) (and therefore P) normalizes P(N ). In [K]
the assumption p > m was used to show that P and P(N ) must, in fact, centralize
each other. In particular Proposition 1.2 there showed that if p > m then (after
renumbering the θi if necessary) one has θi = π

ai
i for ai ∈ F×p . The reason for this

was that for p > m the group Sm contains no elements of order p, and so θ is a
product of the same πi that comprise the generator of P .

As it turns out, this is not automatically true if we just assume that gcd(p,m)= 1.
For example, if p = 5 and m = 8 then in S40 let

πi = (1+ (i−1)5, 2+ (i−1)5, 3+ (i−1)5, 4+ (i−1)5, 5+ (i−1)5)

for i = 1, . . . , 8 and let θj = ( j, j +5, j +10, j +15, j +20) for j = 1, . . . , 5 and
θ6 = π6, θ7 = π7, θ8 = π8. One may verify that π = π1 · · ·π8 is centralized by
θ = θ1 · · · θ8 but θj , for j = 1, . . . , 5, is not a power of any πi .
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This example shows that the P(N )≤ N being normalized, and thus centralized,
by P is insufficient to guarantee that P(N ) ≤ 〈π1, π2, . . . , πm〉. This does not
nullify the possibility of the program in [K] being generalized. This example merely
shows that CentB(P) contains many semiregular subgroups of order p that are not
subgroups of 〈π1, π2, . . . , πm〉. However, it turns out that for those N normalized
by λ(0), since P(N ) is characteristic in N and therefore normalized by λ(0), the
possible P(N ) that can arise are still contained in 〈π1, π2, . . . , πm〉. To arrive at
this conclusion, we need to recall some facts about the structure of NormB(P) and
CentB(P).

With P = 〈π〉 = 〈π1 · · ·πm〉, where the πi are disjoint p-cycles, we can define
V = 〈π1, π2, . . . , πm〉, the elementary abelian subgroup of B generated by the πi .
Also, we can choose γi ∈0 for i=1, . . . ,m such that πi=(γi , π(γi ), . . . , π

p−1(γi ))

and if we let 5i be the support of πi , then the 5i are, of course, disjoint and their
union is 0 as a set. Define S ≤ B to be those permutations α such that for each
i ∈ {1, . . . ,m} there exists a single j ∈ {1, . . . ,m} satisfying α(π t(γi )) = π

t(γj )

for each t ∈ Zp. Equivalently, α operates on the blocks 5i as follows:

α({γi , π(γi ), . . . , π
p−1(γi )})= {γj , π(γj ), . . . , π

p−1(γj )}.

It is clear that S is isomorphic to Sm viewed as Perm({51, . . . ,5m}), where α ∈ S
corresponds to a permutation α ∈ Sm which permutes the m blocks 5i amongst
each other. In a similar fashion, we may define another subgroup U ≤ B keyed
to π and the πi . For a cyclic group C = 〈x〉 of order p, the automorphisms are
given by x 7→ xc for c ∈ Up = F×p = 〈u〉. Within B, therefore, since P is cyclic
of order p, there exists a product u1 · · · um of m disjoint (p−1)-cycles with the
property that uiπi u−1

i = π
u
i , and uiπj u−1

i = πj for j 6= i . (Note that the support of
each ui is 5i − {one point}.) Therefore, (u1 · · · um)π(u1 · · · um)

−1
= πu and we

define U = 〈u1 · · · um〉. With these three subgroups of B so defined, we can easily
describe CentB(P) and NormB(P) as in [K] by

CentB(P)= VS ∼= Cp o Sm ∼= Cm
p o Sm,

NormB(P)= VUS ∼= Cm
p o (Aut(Cp)× Sm),

where Cp denotes the cyclic group of order p and Sm is the m-th symmetric group.
The semidirect product formulation is useful and may be closely connected to the

intrinsic (as a subgroup of B) description. We may view V =〈π1, . . . , πm〉 naturally
as Cm

p but also, more fruitfully, as Fm
p , the dimension-m vector space over Fp, so

that we may equate πa1
1 · · ·π

am
m with [a1, . . . , am], a vector in Fm

p . As the group S
permutes the πi amongst themselves, we may identify it with permutations α ∈ Sm

acting by coordinate shifts on the vectors â = [a1, . . . , am] and where u ∈Up acts
by scalar multiplication. Thus we may represent a typical element of NormB(P)
by a triple (â, ur , α), with â ∈ Fm

p , u ∈ Up and α ∈ Sm , where (as permutations)
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(â, ur , α)(π k
i (γi )) = π

kur
+aα(i)

α(i) (γα(i)) and where the multiplication (and resulting
conjugation operations) are defined by

(â, ur, α)(b̂, us, β)= (â+ urα(b̂), ur+s, αβ), (1)

(b̂, us, β)(â, ur, α)(b̂, us, β)−1
= (b̂+ usβ(â)− ur (βαβ−1)(b̂), ur, βαβ−1), (2)

(â, ur, α)n =
(n−1∑

t=0
ur tαt(â), urn, αn

)
. (3)

In this setting the elements of V correspond to tuples of the form (v̂, 1, I ), where
I is the identity of Sm ; in particular π = π1π2 · · ·πm = ([1, 1, . . . , 1], 1, I ). The
elements of CentB(P) correspond to those tuples where r = 0 (i.e., the middle
coordinate is 1), which leads us back to the discussion of P(N ) for N a regular
subgroup of B normalized by λ(0). In this situation we have P(N )= 〈θ〉, where
θ = (â, 1, α) has order p and no fixed points. If P(N ) 6≤ V then α 6= I , implying
(since α ∈ Sm with m coprime to p) that α has fixed points in {1, . . . ,m}. If α(i)= i
then

θ(π k
i (γi ))= π

k+aα(i)
α(i) (γα(i))= π

k+ai
i (γi ),

which means that ai 6= 0 and more importantly that θ restricted to 5i equals πai
i .

And for those j not fixed by α, the restriction of θ to 5j is not a power of πj .
That is, θ = θ1θ2 · · · θm , where θi = π

ai
i for at least one i , and θj 6∈ V for at least

one j . The example given above for S40 is an instance of this; in particular, the
fixed-point-free element of order 5 is ([1,1,1,1,1,1,1,1], 1, (1,2,3,4,5)), which
is in CentS40(〈π1π2 · · ·π8)〉.

The above example motivates the following.

Definition 1.5. For θ ∈ B and πi as above, we say πi divides θ (denoted πi | θ ) if
the cycle structure of θ contains some nontrivial power of πi . Similarly we write
πi -θ if no power of πi is a factor in the cycle structure of θ .

Observe that πi | θ if and only if πi | θ
e for all e ∈Up.

The requirement that N be normalized by λ(0), together with the fact that
P(N ) is characteristic, means that P(N ) is normalized by λ(0). The upshot of
this is the following recapitulation of [K, Proposition 1.2], which (together with
Lemma 1.4) will allow us to deduce our main result, namely that N ∈ R(0) implies
N ≤ NormB(P) under weaker hypotheses:

p and m are coprime, p does not divide |Aut(Q)| for any group Q of order m,
and any group of order mp has a unique Sylow p-subgroup. (4)

This is the core result, since it guarantees that P(N ) ≤ V ≤ NormB(P) for all
N ∈ R(0).
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Theorem 1.6. If N is a regular subgroup of B normalized by λ(0) and P(N ) is its
Sylow p-subgroup, then P(N ) is a semiregular subgroup of V = 〈π1,π2, . . . ,πm〉.
That is, P(N )= 〈πa1

1 · · ·π
am
m 〉, where ai ∈Up = F×p for i = 1, . . . ,m.

Proof. If P(N )= 〈θ〉 is not a subgroup of V then, as shown above, θ = θ1θ2 · · · θm ,
where πi | θ for some i and πj -θ for some j 6= i . In [K, Proposition 3.8] it is
shown that if (b̂, us, β) ∈ NormB(P) has order coprime to p then the permutation
coordinate β acts without fixed points. It is important to note that the proof of
this is not dependent on whether p < m or p > m. Applying this to λ(0), which
normalizes P = 〈π1 · · ·πm〉, has no fixed points, and contains elements (b̂, us, β)

of order coprime to p, we conclude that β ∈ Sm is fixed-point-free. In fact, if Q
is the complementary subgroup of P in λ(0) and if t maps (b̂, us, β) to β then
t (Q) must be a regular subgroup of Sm . The reason is that the elements of Q
have order relatively prime to p, so t (Q) is a semiregular subgroup of Sm ; but if
|t (Q)|< m there would exist (â, ur , α) and (â′, ur ′, α) in Q, which would imply
that (â′− ur ′−r â, ur ′−r , I ) ∈ Q, which, again by [K, Proposition 3.8], must have
order divisible by p. But since this element is in Q it must be the identity, whence
r = r ′ and so â = â′. This means that t (Q) is regular; by transitivity we pick an
element g = (b̂, us, β) in Q with β(i) = j , and then g([1, 1, . . . , 1], 1, I )g−1

=

(usβ([1, 1, . . . , 1]), 1, I )= (us
[1, 1, . . . , 1], 1, I ), where, in particular,

gπ1π2 · · ·πm g−1
= πus

β(1)π
us

β(2) · · ·π
us

β(m).

And since g(θ1θ2 · · · θm)g−1
= (gθ1g−1)(gθ2g−1) · · · (gθm g−1), we have gθi g−1

=

gπai
i g−1

=π
usai
β(i) =π

usai
j ; therefore πj | gθg−1. The problem now is that gθg−1

= θ e

for some e ∈ Up implies that πj | θ , contrary to the assumption that πj -θ . We
conclude that any such θ must, in fact, be a fixed-point-free subgroup of V and
therefore of the form asserted in the statement of the theorem. �

With this in place, we can review the remaining foundational elements in [K],
which, without serious modifications, imply, under the weaker hypotheses (4),
that N ≤ NormB(P) for all N ∈ R(0). We do this also in order to provide some
applications for classes of groups where these weaker hypotheses hold.

We have just shown that N ∈ R(0) implies P(N )≤NormB(P) and that P(N )=
〈π

a1
1 · · ·π

am
m 〉. Define Q(N ) to be the complementary subgroup to P(N ) inside

N . Then, since Q(N ) normalizes P(N ), we have qπai
i q−1

= π
b j
j for q ∈ Q(N ),

where the mapping of i 7→ j = q(i) for i, j ∈ {1, . . . ,m} makes Q(N ) (abstractly)
a regular subgroup of Sm . Let Q= Q(λ(0)) be the complementary subgroup to P
inside λ(0). If N ∈ R(0), then the elements of λ(0) that act nontrivially on P(N )
are those in Q. If we define v̂i = [0, . . . , 1, . . . , 0] = πi then we have the following
result (whose proof does not require that p < m) about the possibilities for P(N )
for any N ∈ R(0).
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Theorem 1.7 [K, Theorem 2.1]. Any semiregular subgroup of V of order p that is
normalized by Q is generated by

p̂χ =
∑
γ∈Q

χ(γ )v̂γ (1),

where χ :Q→Up = F∗p is a linear character of Q.

This theorem allows one to compute “potential” P(N ), one for each such linear
character. For example, P is generated by [1, 1, . . . , 1] = p̂ι where ι : Q→ F∗p
is the trivial character. All of these order-p elements have the form ( p̂χ , 1, I ) in
the semidirect product formulation of NormB(P). The remaining component is to
show that not only does N ∈ R(0) imply P(N )≤NormB(P) but also that N itself
is contained in NormB(P). The assumption p > m in [K] was not actually used in
the proof of this main result, but rather in the following lemma:

Lemma 1.8 [K, Lemma 2.2]. Let χ1, χ2 be distinct linear characters of Q in F∗p .
Then 〈 p̂χ1, p̂χ2〉 cannot contain p̂ι.

A careful reading of the proof of this in [K] shows it is not necessary to assume
that p > m, but merely gcd(p,m)= 1. With this completed, Theorem 1.3, saying
that N ∈ R(0) implies N ≤NormB(P), follows in the exact same fashion as in [K],
since the proof does not hinge on the relationship between p and m beyond the fact
that they are relatively prime. It does require that p not divide the order of Aut(Q),
as in Lemma 1.4. This assumption on |Aut(Q)| is needed to control the size and
structure of the Sylow p-subgroup of NormB(N ). Specifically, it is either cyclic
of order p if P(N ) is central in N , or elementary abelian of order p2 if P(N ) is
noncentral. Again, in [K] this was automatic from assuming that p > m.

The application of this theorem, which is the actual program in [K] (demonstrated
in Sections 4 and 5 therein), is based on the observation (in [K, Proposition 3.11])
that any two regular subgroups of B that are isomorphic as abstract groups are, in
fact, conjugate subgroups of B. That being said, to enumerate R(0), one can avoid
the complications of working with left regular representations and instead:

(1) replace B = Perm(0) by Smp = Perm({1, . . . ,mp}),

(2) choose P = 〈π1 · · ·πm〉 where πi = (1+ (i − 1)p, . . . , pi),

(3) determine Q corresponding to each such 0 where 0 = PQ,

(4) embed the0 as subgroups of the semidirect product formulation of NormSmp(P),

(5) enumerate the characters χ :Q→ F∗p and concordantly the potential P(N ) as
〈 p̂χ 〉 also embedded in NormSmp(P),

(6) compute the possible N∈R(0) that may arise, also as subgroups of NormSmp(P).
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If one is more interested in the sizes of the different R(0, [M]) one may use the fact
(in [K, Theorem 3.5]) that, for each N ∈ R(0, [M]), if P(N ) is central in N then
P(N )= P(N opp), and otherwise either P(N )= P or P(N opp)= P . The point is
that one can enumerate those N ∈ R(0, [M]) for which P(N )= P and, depending
on whether P(N ) is central, use the above fact to infer the count of those for N
for which P(N ) 6= P (if any). The virtue of this is that one need not calculate the
characters of Q in F∗p , nor the resulting potential P(N ).

We shall demonstrate applications of this program, where we now have a wider
class of examples to choose from, based upon the conditions on p, m and |Aut(Q)|
as discussed above.

2. Groups of order p1 p2 p3

To be slightly formal, if np denotes the number of Sylow p-subgroups of a group,
we define the following subsets of N×N:

FQ ={(p,m) | p prime, gcd(p,m)= 1, p - |Aut(Q)| for all groups Q of order m},

FS ={(p,m) | p prime, gcd(p,m)= 1, np = 1 for all groups of order mp}.

The program in [K] for enumerating Hopf–Galois structures on Galois extensions of
order mp may be used for those (p,m)∈ FQ∩FS . As in [K], (p,m)∈ FQ∩FS for p
prime when p>m, but we want to now consider other p and m. The case of p= 5
and m = 8 as indicated already is one such example. In lieu of working out the
enumeration of all the 142 possible pairings R(0, [M]) for order 40, we shall instead
conclude with an overview of some (classes of) choices for |0| = |N | = n = pm
which force (p,m) ∈ FQ ∩ FS . Such forcing conditions have appeared in group
theory literature including recent examples such as [Pakianathan and Shankar 2000].
Our example will be somewhat more narrow, but is in this same spirit.

If p1< p2< p3 are primes, then by Sylow theory np3≡1 (mod p3) and np3 | p1 p2.
However, np3 6= p1 and np3 6= p2 since p3 is larger than p1 and p2. If np3 = p1 p2

then one must have p1 p2(p3−1) elements of order p3 and so, by necessity, np2 = 1.
Thus 0 has a normal subgroup P2 of order p2 and so 0/P2 (having order p1 p3)
has a normal subgroup of order p3, which gives rise to a normal abelian subgroup
1≤ 0 of order p2 p3. We have that P2 ≤1 but also that 1 must contain a normal
(in particular characteristic) subgroup P3 of order p3, which means that P3 G0, so
that, in fact, np3 = 1. Hence (p3, p1 p2) is guaranteed to be in FS . Moreover, the
complementary subgroup Q is either a cyclic or metacyclic group of order p1 p2.
The question then is whether (p3, p1 p2) ∈ FQ as well. However, this is easy since

|Aut(Q)| =
{
(p1− 1)(p2− 1) if Q is abelian,
p2(p2− 1) if Q is nonabelian,

and so, if p1 < p2 < p3 one has (p3, p1 p2) ∈ FS ∩ FQ .
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If |0| = p1 p2 p3 then 0 = PQ where P is cyclic of order p3, of course, and
normalized by Q which has order p1 p2, which is itself either a direct or semidirect
product of cyclic groups. That is, 0∼=Cp3og (Cp2of Cp1)where f :Cp1→Aut(Cp2)

and g : Cp2 of Cp1 → Aut(Cp3). There are at most two groups Q of order p1 p2

depending on whether f is nontrivial. The group 0 being an iterated (semi)direct
product, the role of g must also be factored into the enumeration of the distinct
groups of order p1 p2 p3. In particular, we must consider whether the Cp2 and/or the
Cp1 components of Q act nontrivially on Cp3 . These possibilities for f and g are
keyed to congruence conditions on the pi , in particular, whether p1 | (p2−1) and/or
p1 | (p3−1) and/or p2 | (p3−1). Alonso [1976] (while exploring an explicit formula
due to Hölder [1895] for the number of groups of square-free order) works through
the enumeration of groups having order equal to the product of three distinct primes.
In particular we give Table 1 therein of the number of groups of order p1 p2 p3 (with
our notation for the three primes):

p2 | (p3− 1) p1 | (p3− 1) p1 | (p2− 1) # groups

no no no 1
no no yes 2
no yes no 2
no yes yes p1+ 2
yes no no 2
yes no yes 3
yes yes no 4
yes yes yes p1+ 4

For two of the eight cases, the number of groups varies linearly with p1 (specifically
when Cp1 acts nontrivially on both Cp2 and Cp3) but for the others the size is
constant. For the case of p2 | (p3− 1), p1 | (p3− 1), and p1 | (p2− 1), it follows
that p3 > p1 p2 =m which falls into the category of cases dealt with in [K]. Indeed,
therein we enumerated R(0, [M]) for all groups of order mp where p= 2q+1 for q
a prime (making p a safe-prime) and m = φ(p)= 2q so that mp= 2×q×(2q+1),
the product of three distinct primes! Therefore we will instead consider the case
where p3 6≡ 1 (mod p2) but where p1 divides both p2 − 1 and p3 − 1, for this
includes cases where p3 < m = p1 p2, for example, (p1, p2, p3)= (3, 7, 13). The
p1+ 2 cases can be presented explicitly and again we refer to [Alonso 1976] for
the particulars with a slight modification of his notation.

Given (p1, p2, p3), the groups of order p1 p2 p3 are iterated semidirect products,
the number of which, as mentioned above, are keyed to elements of order p1 in Up2

and Up3 . Specifically, if Up3 = 〈u3〉 and Up2 = 〈u2〉, then the conditions

p3 ≡ 1 (mod p1), p2 ≡ 1 (mod p1)), v3 = u(p3−1)/p1
3 , v2 = u(p2−1)/p1

2
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together imply that then |v3|= p1 and |v2|= p1. We have the following presentations
for groups of order p1 p2 p3 which are the cases listed as (10)–(13) in [Alonso 1976,
p. 634]. (Note that Alonso adopts the ordering p3 < p2 < p1, the reverse of our
convention.)

Proposition 2.1. If p1, p2 and p3 are distinct odd primes, where p1 < p2 < p3 and
where p3 ≡ 1 (mod p1), p2 ≡ 1 (mod p1), but p3 6≡ 1 (mod p2), then the groups
of order p1 p2 p3 are

Cp3 p2 p1 =〈x, y, z | x p3, y p2, z p1, yxy−1
= x, zxz−1

= x, zyz−1
= y〉,

Cp2×(Cp3oCp1)=〈x, y, z | x p3, y p2, z p1, yxy−1
= x, zxz−1

= xv3, zyz−1
= y〉,

Cp3×(Cp2oCp1)=〈x, y, z | x p3, y p2, z p1, yxy−1
= x, zxz−1

= x, zyz−1
= yv2〉,

Cp3 p2oi Cp1 =〈x, y, z | x p3, y p2, z p1, yxy−1
= x, zxz−1

= xv3, zyz−1
= yv

i
2〉,

where i = 1, . . . , p1− 1.

Our goal is to examine R(0, [M]) for all groups of this order, as presented above.
Following the program as laid out at the end of Section 1, we shall work within the
ambient symmetric group B = Smp where, in this case, p= p3 and m = p1 p2. Also,
we will choose representative regular subgroups of NormB(P) where P is generated
by the product of m disjoint p-cycles. The elements of NormB(P) shall be tuples
(x̂, u, ξ) where x̂ is a vector in Fm

p , and where u ∈Up, ξ ∈ Sm . We note that P is
embedded in NormB(P) as 〈([1, 1, . . . , 1], 1, I )〉. The representation of each 0 (as
a regular subgroup of NormB(P)) from among the p1+ 2 different isomorphism
classes is somewhat arbitrary but will be selected for computational convenience.
Also, all will be chosen to have their Sylow p-subgroup be P . The differences will
lie in the representation of the complementary subgroups of order m, of which there
are two possibilities, up to isomorphism, given that p2 ≡ 1 (mod p1).

Lemma 2.2. If we define v2 = v
−1
2 in Up2 and

σ =

p1∏
k=1

(k, k+ p1, k+ 2p1, . . . , k+ (p2− 1)p1),

σ̃ =

p1∏
k=1

(k, k+ p1, k+ 2p1, . . . , k+ (p2− 1)p1)
v2

k
,

τ =

p2−1∏
i=0

(1+ i p1, 2+ i p1, . . . , p1+ i p1),

δ =

(p2−1∏
i=0

(1+ i p1, 2+ v2i p1, . . . , p1+ v2
p1−1i p1)

)−1

,
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then 〈σ, τ 〉 ∼= Cp2 p1 and 〈σ, δ〉 ∼= Cp2 oCp1 , and both are regular subgroups of Sm

where m = p1 p2. Moreover, 〈σ̃ , τ 〉 = (〈σ, δ〉)opp
= CentSm (〈σ, δ〉).

Proof. For the metacyclic group Cp2 o Cp1 , there exist generators of orders p2

and p1 where conjugating the order-p2 generator by the order-p1 generator raises
the order-p2 generator to the power v2, where v2 has order p1 in Up2 . This is
possible given that p2 ≡ 1 (mod p1). For Cp2 p1 , the two generators must, of course,
centralize each other. If one writes σ above as σ1 · · · σp1 then one may verify that
τσiτ

−1
= σi+1 and that δσiδ

−1
= σ

v2
i−1. As to regularity, one recalls that if N is a

semiregular subgroup of Sn of order n then N is regular, which is certainly the case
for the groups 〈σ, τ 〉 and 〈σ, δ〉. The last assertion is a matter of verifying that the
respective generators centralize each other, for example, that σ σ̃σ−1

= σ̃ . �

For the groups of order p1 p2 p3, the generators of order p2 centralize the order-p3

generator, but the order-p1 generator may or may not centralize the generators of
orders p2 and p3 as presented in Proposition 2.1. Using these presentations, we
define the following 0 of each isomorphism class embedded in NormB(P), just as
in [K, p. 2230].

Proposition 2.3. The regular subgroups of NormB(P) from each of the isomor-
phism classes of groups of order mp = (p1 p2)p3 given in Proposition 2.1 are

0 = Cp3 p2 p1 = 〈(1̂, 1, I ), (0̂, 1, σ ), (0̂, 1, τ )〉,

0 = Cp2 × (Cp3 oCp1)= 〈(1̂, 1, I ), (0̂, 1, σ ), (0̂, v3, τ )〉,

0 = Cp3 × (Cp2 oCp1)= 〈(1̂, 1, I ), (0̂, 1, σ̃ ), (0̂, 1, τ )〉,

0 = Cp3 p2 oj Cp1 = 〈(1̂, 1, I ), (0̂, 1, σ̃ ), (0̂, v3, τ
j )〉,

where j = 1, . . . , p1− 1.

Proof. We note that P ≤ NormB(P) is generated by (1̂, 1, I ). We can prove that
these groups have the asserted structure by using (2) above. First, we note that
(0̂, 1, β) centralizes (1̂, 1, I ) for any β ∈ Sm , and that (0̂, 1, σ ) is centralized by
(0̂, 1, τ ). Next we have

(0̂, v3, τ )(1̂, 1, I )(0̂, v3, τ )
−1
= (0̂+ v3τ(1̂)− 0̂, v3 · 1 · v−1

3 , τ I τ−1)

= (v3τ(1̂), 1, I )= (v31̂, 1, I )= (1̂, 1, I )v3

and similarly (0̂, v3, τ
j )(1̂, 1, I )(0̂, v3, τ

j )−1
= (1̂, 1, I )v3 . We also have

(0̂, 1, τ )(0̂, 1, σ̃ )(0̂, 1, τ )−1
= (0̂, 1, τ σ̃ τ−1)= (0̂, 1, σ̃ v2)= (0̂, 1, σ̃ )v2

and (0̂, v3, τ
j )(0̂, 1, σ̃ )(0̂, v3, τ

j )−1
= (0̂, 1, σ̃ )v

j
2 . The proof is finished by recalling

[K, Proposition 3.8], which states that if (â, u, α) in NormB(P) has order coprime
to p then it is fixed-point-free if and only if α ∈ Sm is fixed-point-free. In each of
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the groups listed here, the order-p subgroup P is unique and acts freely, and the
elements outside of P have fixed-point-free permutation coordinates. Thus each
group 0 given in the statement of the proposition is semiregular of order mp and
therefore regular. �

Theorem 2.4. The cardinality of R(0, [M]) for the p1 + 2 classes of groups of
order p1 p2 p3 given in Proposition 2.1 is as follows, where the rows correspond to
different 0 and the columns are the classes [M]:

0↓ M→Cp3 p2 p1 Cp3×(Cp2oCp1) Cp2×(Cp3oCp1) Cp3 p2oi Cp1

Cp3 p2 p1 1 2(p1−1) 2(p1−1) 4(p1−1)
Cp3×(Cp2oCp1) p2 2(1+p2(p1−2)) 2p2(p1−1) 4(1+p2(p1−2))
Cp2×(Cp3oCp1) p3 2p3(p1−1) 2(1+p3(p1−2)) 4(1+p3(p1−2)

Cp3 p2o j Cp1 p3 p2 2p3(1+p2(p1−2)) 2p2(1+p3(p1−2)) —

The cardinality of R(0, [Cp3 p2 oi Cp1]) is independent of i ∈Up1 for the 0 listed on
the first three rows, and for the last it depends on the relationship between i and j
in Up1 thus:

i, j
∣∣R(Cp3 p2 oj Cp1, [Cp3 p2 oi Cp1])

∣∣
j = i,−i 2(1+ p3+ p2+ (2p1− 5)p2 p3)

j 6= i,−i 2(2p3+ 2p2+ (2p1− 6)p2 p3)

As there are p1+ 2 classes of groups of order (p1 p2)p3 and therefore (p1+ 2)2

different possible R(0, [M]), segmented into different classes depending on the
different possibilities for P(N ), fully detailing the enumeration of all these would tax
the patience of the reader. Moreover, given that many pairings give rise to very simi-
lar calculations, we shall instead give a sampling of the computations of R(0, [M]).
In particular, we shall focus on the enumeration of R(Cp3 p2 oj Cp1, [Cp3 p2 oi Cp1])

since these can effectively be captured in one single computational framework. We
will enumerate those N where P(N )=P and double the resulting figure to account
for the corresponding N opp which arise, and therefore have the full count.

Proof. We have 0 ∼= Cp3 p2 oj Cp1 which is embedded in NormB(P) as

〈(1̂, 1, I ), (0̂, 1, σ̃ ), (0̂, v3, τ
j )〉

and we are looking at those regular N ≤ NormB(P) isomorphic to Cp3 p2 oi Cp1

and normalized by this 0, where i, j ∈Up1 . Moreover, as we will be focusing on
those N such that P(N )= P , we have

N = 〈(1̂, 1, I ), (â, ur
3, α), (b̂, us

3, β)〉,
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where (â, ur
3, α) has order p2 and centralizes (1̂, 1, I ), and (b̂, us

3, β) has order p1

and conjugates (1̂, 1, I ) to (1̂, 1, I )v3 = (v31̂, 1, I ) and (â, ur
3, α) to (â, ur

3, α)
vi

2 , in
accordance with the presentations of the abstract groups as in Proposition 2.1. We
will consider those conditions on the components of these 3-tuples which govern
order and (semi)regularity and guarantee that 0 normalizes N . The computations
themselves will require the basic operational facts about NormB(P) as given in
(1), (2), and (3) together with the fact, mentioned earlier, that if (v̂, v, ζ ) has order
coprime to p = p3 = |P| and acts without fixed points, then ζ ∈ Sm (m = p2 p3)
must act without fixed points on the m coordinates of v̂. We shall proceed ad hoc,
playing off the different requirements against each other in order to limit the choices
for the components.

To begin with, we have (by virtue of the isomorphism class of N )

(â, ur
3, α)(1̂, 1, I )(â, ur

3, α)
−1
= (ur

3α(1̂), 1, α Iα−1)= (ur
31̂, 1, I )= (1̂, 1, I )u

r
3,

which means that ur
3 = 1 since the order-p2 generator of N must centralize P , so

that (â, ur
3, α)= (â, 1, α). And since |(â, 1, α)| = p2, we have(p2−1∑

t=0

αt(â), 1, α p2

)
= (0̂, 1, I ),

which, since (â, 1, α) is fixed-point-free of order coprime to p3, means that α equals
α1α2 · · ·αp1 , a product of p1 disjoint p2-cycles.

Also, in N we have

(b̂, us
3, β)(1̂, 1, I )(b̂, us

3, β)
−1
= (us

3β(1̂), 1, I )= (us
31̂, 1, I )= (1̂, 1, I )u

s
3,

which means that us
3 = v3, so that (b̂, us

3, β)= (b̂, v3, β). And since this must have
order p1, we have (p1−1∑

t=0

vt
3β

t(b̂), v p1
3 , β

p1

)
= (0̂, 1, I ),

which, again by the fixed-point-freeness condition on this element of order coprime
to p3, means that β is a fixed-point-free element of order p1 in Sm .

Again in N , we must have, by virtue of how the order-p1 generator must act on
the order-p2 generator, that

(b̂, v3, β)(â, 1, α)(b̂, v3, β)
−1
= (b̂+ v3β(â)− (βαβ−1)(b̂), 1, βαβ−1),

where the right-hand side must equal

(â, 1, α)v
i
2 =

(vi
2−1∑
t=0

αt(â), 1, αv
i
2

)
.
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In particular, we have βαβ−1
=αv

i
2 and, more broadly, β ∈NormSm (〈α〉) where α is

a product of p1 disjoint p2-cycles in Sm where m = p1 p2. The implications of this
are that NormSm (〈α〉) is itself another twisted wreath product just like NormB(P)
and so we shall use the same sort of 3-tuple representation for understanding the
relationship between α and β within this smaller normalizer. We shall return to the
analysis of this relationship shortly.

Looking outward, we now start imposing restrictions on the generators of N
imposed by N being normalized by 0. To start with, we observe that in Cp2 p3 oi Cp1

the order-p2 and order-p3 subgroups are characteristic since they are unique of
those orders. Thus

(0̂, v3, τ
j )(â, 1, α)(0̂, v3, τ

j )−1
= (v3τ

j (â), 1, τ jατ− j ),

where the right-hand side must be an element of 〈(â, 1, α)〉; hence τ j lies in
NormSm (〈α〉), and thus τ ∈ NormSm (〈α〉). We also have

(0̂, 1, σ̃ )(â, 1, α)(0̂, 1, σ̃ )−1
= (σ̃ (â), 1, σ̃ασ̃−1),

where the right-hand side must equal (â, 1, α), since Aut(Cp2) has no p2-torsion.
This implies that σ̃ (â)= â and σ̃ ∈CentSm (α)which means that α∈CentSm (σ̃ ). The
latter observation implies that α ∈ 〈σ1, σ2, . . . , σp1〉, where σ̃ = σ1σ

v2
2 · · · σ

v2
p1−1

p1
.

The reason for this is that CentSm (σ̃ ) is isomorphic to the wreath product Cp2 o Sp1
∼=

C p1
p2 o Sp1 , where the base group of the wreath product, C p1

p2 , corresponds to
〈σ1, σ

v2
2 , . . . , σ

v2
p1−1

p1
〉 = 〈σ1, . . . , σp1〉. Therefore, in C p1

p2 o Sp1 the only p2-torsion
is in this base group since Sp1 cannot have any p2-torsion. As to â = [a1, . . . , am],
the condition σ̃ (â)= â means that, for any k ∈ {1, . . . ,m},

ak = aσ̃ (k) = aσ̃ 2(k) = · · · = aσ̃ p2−1(k).

But now, since |(â, 1, α)| = p2, we have
∑p2−1

t=0 α
t(â) = 0̂, and since α is in

〈σ1, σ2, . . . , σp1〉, the orbit of k ∈ {1, . . . ,m} under α is the same as under σ̃ . Thus
p2ak vansishes for any ak in â. Since â ∈ F m

p3
, this means ak = 0 since p2 6= 0 in

Fp3 . The end result is that (â, 1, α)= (0̂, 1, α).
As we saw above, α belongs to 〈σ1, σ2, . . . , σp1〉, and since α acts freely, we must

have α=σ q1
1 σ

q2
2 · · · σ

qp1
p1 , where qk ∈Up2 for k= 1, . . . , p1. Since τσiτ

−1
=σi+1, if

τατ−1
=αw for some w ∈Up2 then, given that |τ | = p1, we have w p1 ≡ 1 (mod p2)

and so w = v f
2 for some f ∈ Zp1 . And since

τ(σ
q1
1 σ

q2
2 · · · σ

qp1
p1 )τ

−1
= σ

qp1
1 σ

q1
2 · · · σ

qp1−1
p1 ,

we have wq1 = qp1, wq2 = q1, . . . , wqp1 = qp1−1, which means that

q̂ = [q1, q2, . . . , qp1] = q1[1, w p1−1, w p1−2, . . . , w2, w],
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where now q1w=q1w
′ if and only ifw=w′, and if q1 6=q ′1 then q̂ 6= q̂ ′, which gives,

ostensibly, φ(p2)p1 choices for α. However, recalling that (0̂, 1, α)k = (0̂, 1, αk),
we may divide this count by φ(p2) (i.e., assume q1 = 1) to get p1 unique choices
for 〈α〉 and thus p1 unique 〈(0̂, 1, α)〉, one of each w = v f

2 for f ∈ Zp1 .
Now that we have the enumeration of (0̂, 1, α) given above, how many (b̂, v3, β)

are there? What first must be observed is that Cp2 p3 oi Cp1 has p3 p2φ(p1) elements
of order p1. In the presentation

〈x, y, z | x p3, y p2, z p1, yxy−1
= x, zxz−1

= xv3, zyz−1
= yv

i
2〉

the elements of order p1 are of the form xr yszt for r ∈ Zp3 , s ∈ Zp2 , t ∈Up1 , so the
Sylow p1-subgroups are far from characteristic. Thus, when a generator of 0 acts
on (b̂, v3, β) by conjugation, the result is one of these p3 p2φ(p1) other elements
of order p1. Consider the action of conjugation by (0̂, 1, σ̃ )

(0̂, 1, σ̃ )(b̂, v3, β)(0̂, 1, σ̃ )−1
=(σ̃ (b̂), v3, σ̃ βσ̃

−1)=(1̂, 1, I )r (0̂, 1, α)s(b̂, v3, β)
t ,

which implies that t must equal 1 and so

(0̂, 1, σ̃ )(b̂, v3, β)(0̂, 1, σ̃ )−1
= (r 1̂+αs(b̂), v3, α

sβ).

For the action of (0̂, v3, τ
j ) we get

(0̂, v3, τ
j )(b̂, v3, β)(0̂, v3, τ

j )−1
= (v3τ

j (b̂), v3, τ
jβτ− j )

= (1̂, 1, I )r
′

(0̂, 1, α)s
′

(b̂, v3, β)
t ′,

which implies that t ′ must equal 1 and so

(1̂, 1, I )r
′

(0̂, 1, α)s
′

(b̂, v3, β)
t ′
= (r ′1̂+αs′(b̂), v3, α

s′β).

This leads to four “normalization conditions” which must be satisfied:

σ̃ (b̂)−αs(b̂) ∈ 〈1̂〉, (n1)

σ̃ βσ̃−1
= αsβ, (n2)

v3τ
j (b̂)−αs′(b̂) ∈ 〈1̂〉, (n3)

τ jβτ− j
= αs′β. (n4)

We can deal with (n1) immediately by looking once more at how the generators
of N interact. We have

(b̂, v3, β)(0̂, 1, α)(b̂, v3, β)
−1
= (b̂− (βαβ−1)(b̂), 1, βαβ−1),

which must equal (0̂, 1, α)v
i
2 = (0̂, 1, αv

i
2), implying that b̂= (βαβ−1)(b̂)= αv

i
2(b̂).

By a similar argument to that above, the components of b̂ ∈ Fm
p3

are also constant
along the supports of σ1, . . . , σp1 , so in fact we may simply observe that α(b̂)= b̂.
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Thus σ̃ (b̂)− αs(b̂) = b̂− b̂ = 0̂, which lies in 〈1̂〉 automatically. This allows us,
by the way, to rewrite (n3) as v3τ

j (b̂)− b̂ ∈ 〈1̂〉. For (n2) and (n4) we must use
that β ∈ NormSm (〈α〉) and represent β as an element of this normalizer. Since α =
σ1σ

w p1−1

2 · · · σwp1
(a product of p1 disjoint p2-cycles), given that m = p1 p2 we have

NormSm (〈α〉)
∼= 〈σ1, σ

w p1−1

2 , . . . , σwp1
〉o (Up2 × Sp1)

∼= Fp1
p2

o (Up2 × Sp1).

Thus we may write α as the 3-tuple (1̂, 1, I ); moreover β = (ĉ, vi
2, µ) for some

ĉ and µ, since β normalizes 〈α〉 and in view of the following calculation, which
uses (2) and the fact that µ(1̂)= 1̂ for all µ:

(ĉ, vi
2, µ)(1̂, 1, I )(ĉ, vi

2, µ)
−1
= (vi

21̂, 1, I )= αv
i
2 .

At first glance, this permits a fairly large number of possible β for a given α, but
the requirement that 0 normalizes N imposes quite a number of restrictions. We
begin by observing that

α = (1̂, 1, I ),

σ̃ = ([1, wv2, w
2v2

2, . . . , w p1−1v2
p1−1
], 1, I )= (d̂, 1, I ),

τ = (0̂, w, (1, 2, . . . , p1)),

and, with this in mind, we see that (n4) translates into conditions on the components
of these 3-tuples in NormSm (〈α〉). In particular, with respect to β = (ĉ, vi

2, µ),

τ jβτ− j
= (0̂, w, (1, . . . , p1))

j (ĉ, vi
2, µ)(0̂, w, (1, . . . , p1))

− j

=
(
w j (1, . . . , p1)

j (ĉ), vi
2, (1, . . . , p1)

jµ(1, . . . , p1)
− j),

αs′β = (s ′1̂, 1, I )(ĉ, vi
2, µ)= (s

′1̂+ ĉ, vi
2, µ).

Since β = (ĉ, vi
2, µ) has order p1 (and is therefore coprime to |α| in NormSm (〈α〉)),

µ must be fixed-point-free of order p1 in Sp1 and thus a p1-cycle. But now (n4)
implies that (1, . . . , p1)

jµ(1, . . . , p1)
− j
= µ, which means that µ= (1, . . . , p1)

e

for some e ∈Up1 . Furthermore, (n4) also implies that w j (1, . . . , p1)
j (ĉ)− ĉ ∈ 〈1̂〉,

a condition which we shall get back to shortly. Since

σ̃ βσ̃ = (d̂, 1, I )(ĉ, vi
2, µ)(d̂, 1, I )−1

= (d̂ + ĉ− vi
2µ(d̂), v

i
2, µ),

αsβ = (s1̂+ ĉ, vi
2, µ),

condition (n2) implies that d̂ − vi
2µ(d̂) ∈ 〈1̂〉. (All instances of 1̂ here refer to the

vector [1, . . . , 1] ∈ F
p1
p2 which is the base group for the twisted wreath product

NormSm (〈α〉).)
Recalling that d̂ = [1, wv2, w

2v2
2, . . . , w p1−1v2

p1−1
] and that µ= (1, . . . , p1)

e,
the condition d̂ − vi

2µ(d̂) ∈ 〈1̂〉 can be analyzed by looking at the components
and observing that, in 〈1̂〉, all the components of a given vector are equal. That is,
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d̂ = [1, wv2, w
2v2

2, . . . , w p1−1v2
p1−1
],

vi
2µ(d̂)= [(wv2)

p1−evi
2, (wv2)

p1−e+1vi
2, . . . , (wv2)

p1−e+(p1−1)vi
2].

In particular, the difference of the first components of d̂ and vi
2µ(d̂) equals the

difference of their second components, and so

[1−w p1−ev2
p1−e−i

] = wv2[1−w p1−ev2
p1−e−i

]

in Fp2 . If we let x = 1−w p1−ev2
p1−e−i then the above implies that x = wv2x , so

either x = 0, or wv2 = 1 regardless of x . If wv2 = 1, then, since (as determined
above) w = v f

2 for some f ∈ Zp1 , it must be that f = 1. Otherwise, if x = 0
then w p1−e

= v
p1−e−i
2 and, since (as determined above) w = v f

2 , this means that
fe ≡ e+ i (mod p1), which, by the way, is impossible if f = 1 since i 6= 0.

Thus, if f = 1 then there are no restrictions on e ∈ Up1 , and if f 6= 1 then
fe = e+ i which implies that e = i( f − 1)−1 (mod p1).

Now if we go back to (n4), we have the condition w j (1, . . . , p1)
j (ĉ)− ĉ ∈ 〈1̂〉

which means that

[c1, . . . , cp1] = [l, l, . . . , l] +w
j
[c− j+1, c− j+2, . . . , c− j+p1]

for some l ∈ Fp2 . Looking at the coordinates of ĉ we get

c1+ j = l +w j c1,

c1+2 j = l +w j c1+ j = l(1+w j )+w2 j c1,
...

c1+k j = l(1+w j
+ (w j )2+ · · ·+ (w j )k−1)+wk j c1,

=

{
lk+ c1 if w = 1 (i.e., f = 0),

l
(1−(w j )k

1−w j

)
+wk j c1 if w 6= 1 (i.e., f 6= 0).

This gives a partial parametrization of the possible ĉ, but we must also include the
conditions imposed by the fact that |β| = |(ĉ, vi

2, µ)| = p1, that is,

p1−1∑
t=0

vi t
2 µ

t(ĉ)= 0̂, (∗)

which, since µt
= (1, . . . , p1)

et , means that
∑p1−1

t=0 v
i t
2 (1, . . . , p1)

et(ĉ) = 0̂. So
if we let ĉ = [c1, . . . , cp1] then (1, . . . , p1)

et(ĉ) = [c−et+1, c−et+2, . . . , c−et+p1],
which translates into the (single) condition

p1−1∑
t=0

vi t
2 c−et+1 = 0 (∗∗)

since the vector equation (∗) consists of a system of equations, all of which are
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equivalent to (∗∗). To utilize this information, together with the above parametriza-
tion of ĉ (in terms of c1 and ‘l’ above), we first observe that 1+ k j = −et + 1
implies k = j−1(−et) and so

c−et+1 =

{
l( j−1(−et))+ c1 if w = 1 i.e., f = 0,

l
( 1−w−et

1−w j

)
+w−et c1 if w 6= 1 i.e., f 6= 0.

For the case w = 1 ( f = 0), we have e = i(−1)−1
=−i and so

p1−1∑
t=0

vi t
2 c−et+1 =

p1−1∑
t=0

vi t
2 (l( j−1(−et))+ c1)=

p1−1∑
t=0

vi t
2 (l( j−1(i t))+ c1)

=

p1−1∑
t=0

vi t
2 (l j−1i t + c1)= c1

p1−1∑
t=0

vi t
2 + l

p1−1∑
t=0

j−1i tvi t
2

= l j−1i
p1−1∑
t=0

tvi t
2 = l j−1i

p1

vi t
2 − 1

.

The last two lines of the above calculation are justified as follows. Since v p1
2 = 1

in Fp2 , we have

p1−1∑
t=0

vi t
2 = 0,

p1−1∑
t=0

t x t
= x

(
p1x p1−1

x − 1
−

x p1 − 1
(x − 1)2

)
,

and substituting in x = vi
2 we get

p1−1∑
t=0

tvi t
2 =

p1v
i p1
2

vi
2− 1

=
p1

vi
2− 1

.

This being the case,
∑p1−1

t=0 v
i t
2 c−et+1 = 0 if and only if l = 0, which means that

c1+k j = c1 for all k, and therefore ĉ ∈ 〈1̂〉.
For the case where w 6= 1 (i.e., f 6= 0), we have

p1−1∑
t=0

vi t
2 c−et+1 =

p1−1∑
t=0

vi t
2

(
l
(

1− (w j ) j−1(−et)

1−w j

)
+w−et c1

)

=
l

1−w j

p1−1∑
t=0

vi t
2 (1−w

−et)+

p1−1∑
t=0

vi t
2 w
−et c1

=
l

1−w j

p1−1∑
t=0

vi t
2 −

l
1−w j

p1−1∑
t=0

vi t
2 w
−et
+ c1

p1−1∑
t=0

vi t
2 w
−et
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=
−l

1−w j

p1−1∑
t=0

v
i t+ f (−et)
2 + c1

p1−1∑
t=0

v
i t+ f (−et)
2

=
−l

1−w j

p1−1∑
t=0

v
i t− fet
2 + c1

p1−1∑
t=0

v
i t− fet
2

=

(
c1−

l
1−w j

)p1−1∑
t=0

v
(i− fe)t
2 .

If i 6= fe then the last sum above equals 0 for all c1, l ∈ Fp2 , yielding p2
2 choices. If

i= fe then the last sum is 0 only when c1= l/(1−w j ), which means only p2 choices.
The requirements of condition (n3), that v3τ

j (b̂)− b̂ ∈ 〈1̂〉, demand that one
use the fact seen earlier, namely that σ̃ (b̂) = b̂ and equivalently α(b̂) = b̂. We
also must factor in order considerations, just as in the above enumeration of ĉ,
namely that

∑p1−1
t=0 v

t
3β

t(b̂) = 0̂. Since the components of b̂ (a vector in F
p1 p2
p3 )

are equal on the supports of the cycles that make up σ̃ (a product of p1 dis-
joint p2-cycles) and since τσiτ

−1
= σi+1, by identifying together these identi-

cal components, we can proceed, for the moment, as if b̂ were a vector in F
p1
p3 .

With this identification, τ acts on this b̂ as (1, . . . , p1) and therefore τ j acts like
(1, . . . , p1)

j . Similarly, since β = (ĉ, vi
2, (1, . . . , p1)

e), it acts on b̂ as (1, . . . , p1)
e.

Consequently, if we set b̂ = [b1, b2, . . . , bp1] then (n3) implies that [b1, . . . , bp1] =

[l, l, . . . , l]+v3[b−e+1, b−e+2, . . . , b−e] for some l ∈Fp3 so that, in a similar fashion
to the computation of ĉ a few pages back, we have

b1+k j = l(1+ v3+ v
2
3 + · · ·+ v

k−1
3 )+ vk

3b1 = l
(

1− vk
3

1− v3

)
+ vk

3b1.

Since 1+ k j = 1− et implies k =− j−1et , we get

b1−et = l
(

1− v− j−1et
3

1− v3

)
+ v
− j−1et
3 b1

for the parametrization of b̂. The question is: how many ‘degrees of freedom’ do we
have since, ostensibly, we can choose l, b1 ∈ Fp3? The order requirement becomes∑p1−1

t=0 v
t
3(1, . . . , p1)

et(b̂) = 0̂ which reduces to
∑p1−1

t=0 v
t
3b1−et = 0. In a similar

fashion to the calculations above, we get that |(b̂, v3, β)| = p1 if and only if(
b1−

l
1− v3

)p1−1∑
t=0

v
t (1− j−1e)
3 = 0,

which comes down to two possibilities given that v p1
3 ≡ 1 (mod p3). If e 6= j then

we may choose b1 and l in Fp3 arbitrarily (i.e., p2
3 choices); otherwise, one must

choose b1 and l such that b1 = l/(1− v3), which yields p3 choices.
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The enumeration of the possible (b̂, v3, β) comes down to the interaction between
the parameters f , e, i , and j as determined by order conditions on (b̂, v3, β),
where β = (ĉ, v2, (1, . . . , p1)

e), and the normalization conditions (n1)–(n4). The
parameters i and j are chosen at the outset, but the core parameter is f ∈Zp1 which
determines the possible α. Subsequently, e is determined by β since (b̂, v3, β)

normalizes 〈(0̂, 1, α)〉. The different possibilities are summarized as follows:

f = 0 implies e = i( f − 1)−1
=−i,

f = 1 allows e = 1, . . . , p1− 1,

f = 2, . . . , p1− 1 implies e = i( f − 1)−1,

f = 0 implies p2 choices for ĉ,

f > 0 implies
{

p2 choices for ĉ when i = fe,
p2

2 choices for ĉ when i 6= fe,

j = e implies p3 choices of b̂,

j 6= e implies p2
3 choices of b̂.

If we denote by s0, s1, s>1 the number of (b̂, v3, β) for the different choices of f ,
then we want to know s0+ s1+ s>1.

For f = 0 we have e=−i and so there are p2 different β = (ĉ, v3, (1, . . . , p1)
e).

If j =−i = e there are p3 choices for b̂, and if j 6= −i there are p2
3 . Hence

s0 =

{
p2 p3 j =−i,
p2 p2

3 j 6= −i.

For f = 1 we have e = 1, . . . , p1− 1 and fe = f , so fe = i for exactly one e and
j = e also exactly once. Depending on whether i = j or not, for potentially the
same e, this results in different possibilities for the number of ĉ and b̂. We have

s1 =

{
p2 p3+ (p1− 2)p2

2 p2
3 j = i,

p2 p2
3 + p2

2 p3+ (p1− 3)p2
2 p2

3 j 6= i.

For f > 1 we have e = i( f − 1)−1 and so fe equals i f ( f − 1)−1 which is never
equal to i ; thus there are p2

2 choices for ĉ. If j = i( f −1)−1
= e then f −1= i j−1

which is impossible if f − 1 = −1, that is, j = −i ; thus there are p2
3 different b̂

for each f > 1. We have then the count for f > 1:

s>1 =

{
(p1− 2)p2

2 p2
3 j =−i,

(p1− 3)p2
2 p2

3 + p2
2 p3 j 6= −i.

Now, for i, j ∈Up1 , we have that j = i implies j 6= −i since p1 > 2 and, similarly,
if j =−i then j 6= i . So we have

s0+ s1+ s>1 =

{
p2 p3+ p2 p2

3 + p2
2 p3+ (2p1− 5)p2

2 p2
3 j = i,−i,

2p2 p2
3 + 2p2

2 p3+ (2p1− 6)p2
2 p2

3 j 6= i,−i.
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What s0+ s1+ s>1 represents is the number of those

{(0̂, 1, α), (b̂, v2, β)}

which generate Q(N ), where P(N ) = P and where, for distinct f , the resulting
〈α〉 and thus 〈(0̂, 1, α)〉 are distinct. Thus, to remove duplicate Q(N )s (arising
from (b̂, v3, β) which generate the same Q(N ) with (0̂, 1, α)) we must divide
by p2 p3. The reason for this is that, as we mentioned above, in the abstract groups
Cp2 p3 oi Cp1 , if one multiplies a given element of order p1 by an element of order p2

or p3 (or both) one gets another element of order p1.
We have now completely enumerated those N ∈ R(Cp2 p3 oj Cp1, [Cp2 p3 oi Cp1])

where P(N )=P . Since the order-p3 subgroup is not a direct factor, we now double
this figure since the groups in R(Cp2 p3 oj Cp1, [Cp2 p3 oi Cp1]) are evenly distributed
between those classes where P(N ) = P versus those for which P(N ) 6= P . The
count given in the statement of the theorem for |R(Cp2 p3 oj Cp1, [Cp2 p3 oi Cp1])|

is now verified. �

3. Square-free groups where p < m

There are many prime triples (p1, p2, p3), where p3≡1 (mod p1), p2≡1 (mod p1),
and p3 6≡ 1 (mod p2) (which give rise to groups of the type studied in Theorem 2.4)
but where p= p3 < p1 p2=m. Indeed, if one takes prime triples from {2, . . . , 113}
then, of these, 474 have the property implying that groups of order p1 p2 p3 are in
the category studied in Theorem 2.4, and, of these, 246 have the property p<m. If
we look beyond to groups of order p1 p2 p3 p4, where p1 < p2 < p3 < p4, which are
also explored in [Alonso 1976], then the analog of Theorem 2.4 is the case where
{p4, p3, p2} are all equivalent to 1 (mod p1) but none of {p4, p3, p2} are equivalent
to 1 mod each other. In this case, the number of groups of order p1 p2 p3 p4 is
p2

1+p1+2. If one looks at the 4-tuples of distinct primes chosen in {2, . . . , 113} then,
of these, 3173 satisfy the congruence conditions of this class, and if m = p1 p2 p3

and p = p4 then, of these, 3151 have the property that p < m.
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