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We classify Hopf actions of Taft algebras T(n) on path algebras of quivers, in the
setting where the quiver is loopless, finite, and Schurian. As a corollary, we see
that every quiver admitting a faithful Zn-action (by directed graph automorphisms)
also admits inner faithful actions of a Taft algebra. Several examples for actions
of the Sweedler algebra T(2) and for actions of T(3) are presented in detail. We
then extend the results on Taft algebra actions on path algebras to actions of the
Frobenius–Lusztig kernel uq(sl2), and to actions of the Drinfeld double of T(n).
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1. Introduction

Let n be an integer ≥ 2 and let k be a field containing a primitive n-th root of unity
ζ . Both k and n will be fixed but arbitrary subject to this condition throughout the
paper. Note that if char(k) = p > 0, this implies that p and n are coprime. All
algebras in this work are associative k-algebras and let an unadorned ⊗ denote ⊗k.

Generalizing the classical notion of a group acting on an algebra by automor-
phisms, one can consider actions of Hopf algebras (e.g., quantum groups). However,
one obstacle is that the intricate structure of a Hopf algebra often prevents nontrivial
actions on an algebra. When such actions exist, they can be difficult to construct and
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are not generally well understood. This paper presents a case where a classification
of these actions is achieved. Here, we consider actions of some finite dimensional,
pointed Hopf algebras, namely actions of Taft algebras (Definition 2.1) as a start.
Taft algebras can be thought of as Borel subalgebras of the Frobenius–Lusztig kernel
uq(sl2). The algebra being acted upon is the path algebra of a quiver, and actions
are subject to Hypothesis 1.2. All necessary background, including definitions, is
recalled in Section 2. In particular, we address the following question:

Question 1.1. When does the path algebra of a quiver admit a nontrivial action of
a (finite dimensional, pointed) Hopf algebra? Specifically, of a Taft algebra?

Actions by Taft algebras are referred to as Taft actions for short. We give a
complete answer to the question above for Taft actions, and extend Taft actions to
actions of the quantum group uq(sl2) and actions of the Drinfeld double of a Taft
algebra, under the following conditions.

Hypothesis 1.2. Unless stated otherwise, we impose the assumptions below:

(a) The quiver Q is finite, loopless, and Schurian.

(b) Hopf actions preserve the ascending filtration by path length of the path
algebra kQ.

It is easy to see that Q must at least admit a nontrivial action of the cyclic
group Zn (namely, the group of grouplike elements of T(n)) to admit a nontrivial
action of the n-th Taft algebra T(n); see Example 3.13. Since Hopf algebras and
quantum groups are generalizations of group algebras, we are interested in when a
path algebra of a quiver that admits classical cyclic symmetry admits additional
“quantum symmetry”, loosely speaking. Our strategy is to identify a class of quivers
which is small enough so that we can explicitly describe all Taft actions on their path
algebras, but large enough so that every quiver admitting a Taft action is a union of
quivers in this class. We call these quivers the Zn-minimal quivers (Definition 4.3).
The reader may wish to look over Section 5 early on for a complete account of the
case n = 2: actions of the Sweedler algebra T(2) on Z2-minimal quivers.

To begin, we first note that any action on a path algebra must restrict to an
action on the subalgebra generated by the vertices, by Hypothesis 1.2(b). So we
start by classifying Taft actions on products of fields in Proposition 3.5. Then, the
form of actions on vertices places significant restrictions on actions on the arrows.
The following theorem summarizes our results, with reference to more detailed
statements in the body of the paper. Here, we let g and x be the standard generators
of T(n), where g is grouplike, x is (1, g) skew-primitive, and xg = ζgx for ζ some
primitive n-th root of unity (see Section 2A). We identify the cyclic group generated
by g with Zn .
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Theorem 1.3. Let Q be a quiver, and suppose we have a Taft action on its path
algebra kQ.

(a) The Taft action determines an action of Zn on Q by quiver automorphisms
(Lemma 3.2).

(b) Each Zn-orbit of vertices is stable under T(n). If we let {e1, . . . , em} be the
collection of trivial paths corresponding to some orbit of vertices, numbered
so that g · ei = ei+1 with subscripts taken modulo m, then the action of x on
these is given by

x · ei = γ ζ
i ei − γ ζ

i+1ei+1,

for any scalar γ ∈ k (Proposition 3.5).

(c) For each arrow a of Q, the action of x on a is given by

x · a = αa+β(g · a)+ λσ(a),

for some scalars α, β, and λ. Here, σ(a) is an arrow or trivial path with the
same source as a and the same target as g · a (Notation 3.9, Proposition 3.10).
Furthermore, when Q is a Zn-minimal quiver, these scalars are determined
explicitly by the formulae (6.2) and (6.4) (Theorems 6.1, 6.3).

With an explicit parametrization of Taft actions on path algebras of Zn-minimal
quivers, it remains to show that this is sufficient to parametrize Taft actions on path
algebras of quivers subject to Hypothesis 1.2. To do this, we introduce the notion of
a Zn-component of a quiver with Zn-action (Definition 7.1). These are the smallest
subquivers of Q which have at least one arrow and are guaranteed to be stable under
the action of T(n) for any choice of parameters. Moreover, see Definition 7.4 for
the notion of a compatible collection of Taft actions.

Theorem 1.4 (Lemmas 7.2, 7.3, Theorem 7.5, Corollary 7.6). Fix an action of Zn

on a quiver Q. Then, Q decomposes uniquely into a union of its Zn components,
and any Taft action on kQ restricts to an action on each component. Moreover,
this decomposition gives a bijection between Taft actions on kQ and compatible
collections of Taft actions on the Zn-components of Q. In particular, any path
algebra of a quiver with a faithful action of Zn admits an inner faithful action of the
n-th Taft algebra T(n).

As mentioned above, we extend these results to get actions of other finite dimen-
sional, pointed Hopf actions on path algebras of quivers.

Theorem 1.5 (Theorems 8.10, 8.21, Section 8C). Fix an action of Zn on a quiver Q.
Let q ∈k be a 2n-th root of unity. Additional restraints on parameters are determined
so that the Taft actions on the path algebra of Q produced in Theorems 1.3 and 1.4
extend to an action of the Frobenius–Lusztig kernel uq(sl2) and to an action of the
Drinfeld double of T(n).
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As a consequence of the theorem above, we obtain that path algebras of quivers,
that admit Zn-symmetry, are algebras in the category of Yetter–Drinfeld modules
over T(n) by Majid [1991]; see also [Radford 2012, Exercise 13.1.6]. Hence,
motivated by the process of bosonization, or Radford’s biproduct construction to
produce (potentially new) Hopf algebras (see [Majid 1994; Radford 2012, Theo-
rems 11.6.7, 11.6.9]), we pose the following question.

Question 1.6. Let Q be a quiver that admits Zn-symmetry. When does the path
algebra kQ admit the structure of a Hopf algebra in the category of Yetter–Drinfeld
modules over T(n)?

1A. Comparisons to other work. A path algebra kQ is naturally a coalgebra,
where the comultiplication of a path is the sum of all splits of the path. There
are previous studies on extending the coalgebra structure on kQ to a graded Hopf
algebra, most notably Cibils and Rosso’s work [1997; 2002] on Hopf quivers. Here,
when kQ admits the structure of a Hopf algebra, the group of grouplike elements
of kQ consists of the vertex set Q0 of Q. Moreover, any arrow a ∈ Q1 is a skew-
primitive element as 1(a)= s(a)⊗ a+ a⊗ t (a). One example of their theory is a
construction of T(n) from a Hopf quiver, and in this case it has the regular action
on the path algebra of this quiver. Our study produces many more examples of Taft
actions on path algebras, as our construction allows for nontrivial actions on path
algebras of any quiver that admits Zn-symmetry.

Our work also has some intersection with [Gordienko 2015]. On the one hand,
Gordienko works in the setting of Taft actions on arbitrary finite dimensional
algebras, whereas path algebras of quivers are not always finite dimensional. For
example, Gordienko’s Theorem 1 classifies Taft algebra actions on products of
matrix algebras, while our Proposition 3.5 only classifies Taft algebra actions on
products of fields (equivalently, path algebras of arrowless quivers). On the other
hand, Gordienko’s classification [2015, Theorem 3] is restricted to actions giving
T(n)-simple module-algebras, whereas we have classified all Taft actions on path
algebras (subject to Hypothesis 1.2). With the exception of special parameter values,
the path algebras in this work are not simple with respect to the Taft algebra action:
one can easily see from our explicit formulas that the Jacobson radical (the ideal
generated by the arrows of Q) is typically a nontrivial two-sided T(n)-invariant ideal.

There is an abundance of literature on both the study of quantum symmetry
of graphs and group actions on directed graphs from the viewpoint of operator
algebras, including [Banica 2005; Banica et al. 2007; Bates et al. 2012; Bichon 2003;
Kumjian and Pask 1999]. Connections to our results merit further investigation.

Other works investigating relations between path algebras of quivers and Hopf
algebras can be found in [Chen et al. 2004; Huang and Liu 2010; Huang et al. 2010;
van Oystaeyen and Zhang 2004; Zhang 2006].
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Montgomery and Schneider [2001] provide similar results for actions of Taft
algebras, and extended actions of uq(sl2) and of D(T(n)), on the commutative
algebras: k(u), and k[u]/(un

−β) with β ∈ k.

2. Background

We begin by defining Taft algebras and Hopf algebra actions. We then discuss path
algebras of quivers, which will be acted on by Taft algebras throughout this work.

2A. Taft algebras and Hopf algebra actions. Let H be a Hopf algebra with co-
product 1, counit ε, and antipode S. A nonzero element g ∈ H is grouplike if
1(g)= g⊗ g, and the set of grouplike elements of H is denoted by G(H). This
forces ε(g)= 1 and S(g)= g−1. An element x ∈ H is (g, g′)-skew-primitive, for
grouplike elements g, g′ of H , when 1(x)= g⊗ x + x⊗ g′. In this case, ε(x)= 0
and S(x) = −g−1xg′−1. The following examples of Hopf algebras will be used
throughout this work.

Definition 2.1 (Taft algebra T(n), Sweedler algebra T(2)). The Taft algebra T(n)
is a n2-dimensional Hopf algebra generated by a grouplike element g and a (1, g)-
skew-primitive element x , subject to relations:

gn
= 1, xn

= 0, xg = ζgx

for ζ a primitive n-th root of unity. The 4-dimensional Taft algebra T(2) is known
as the Sweedler algebra.

Note that G(T(n)) is isomorphic to the cyclic group Zn , generated by g.
We now recall basic facts about Hopf algebra actions; refer to [Montgomery

1993] for further details. A left H -module M has left H -action structure map
denoted by · : H ⊗ M → M . We use Sweedler notation 1(h) =

∑
h1 ⊗ h2 for

coproducts.

Definition 2.2 (H -action). Given a Hopf algebra H and an algebra A, we say that
H acts on A (from the left) if, for all h ∈ H and p, q ∈ A,

(a) A is a left H -module;

(b) h · (pq)=
∑
(h1 · p)(h2 · q); and

(c) h · 1A = ε(h)1A.

In this case, we say that A is a left H-module algebra. Equivalently, the multiplica-
tion map µA : A⊗ A→ A and unit map ηA : k→ A are morphisms of H -modules,
so A is an algebra in the monoidal category of left H -modules.

For the Taft actions in this work, consider the following terminology.
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Definition 2.3 (extending a G-action). Given an action of a group G on an algebra
A, we say that an action of a Hopf algebra H on A extends the G-action on A if the
restriction of the H -action to G(H) agrees with the G-action via some isomorphism
G(H)' G.

In this paper, we are interested in the case where G = Zn and H = T(n) in the
above definition. Moreover, it is useful to restrict to H -actions that do not factor
through proper quotient Hopf algebras.

Definition 2.4 (inner faithful). A module M over a Hopf algebra H is inner faithful
if the action of H on M does not factor through a quotient Hopf algebra of H ; that
is, I M 6= 0 for any nonzero Hopf ideal I ⊂ H . A Hopf action of H on an algebra
A is inner faithful if A is inner faithful as an H -module.

The following lemma is likely known to experts, but does not seem to be readily
accessible in the literature, so we provide a proof.

Lemma 2.5. Every nonzero bi-ideal of T(n) contains x. Therefore, a Taft action on
an algebra A is inner faithful if and only if x · A 6= 0.

Proof. Writing H := T(n), since H ∼= H∗ as Hopf algebras it suffices to prove the
dual statement. Namely, since x generates the radical of H , the dual approach is to
show that every proper sub-bialgebra of H is contained in the coradical of H .

Suppose that A⊆ H is a nonzero Hopf sub-bialgebra of H which is not contained
in the coradical of H . We will show that A = H . Since the coradical H0 of H is
the span of the grouplike elements {gi

| i = 0, . . . , n− 1}, we have that A contains
a nonzero element f = hx j

+ (terms of lower x-degree), where j ≥ 1 and h ∈ H0.
Say, h=

∑i
d=0 νd gd , for νd ∈ k with νi 6= 0. Since A inherits the coproduct from H ,

1(νi gi x j )=

j∑
`=0

[ j
`

]
ζ
νi gi x j−`

⊗ νi g j−`+i x`,

which is in A⊗ A. Here, the equality above holds by [Radford 2012, Lemma 7.3.1].
By the maximality of j and i and by taking `= 0 above, we have that f ∈ A implies
gi x j
∈ A. Now applying 1 to gi x j yields gi x j−`

∈ A for `= 0, . . . , j . So, we get
gi x ∈ A. Likewise, apply 1 to gi x to conclude that gi , gi+1

∈ A. Since g has finite
multiplicative order, g−i

∈ A as well. Thus, both g and x are in A, so A = H , as
desired. �

So the extension of a faithful cyclic group (Zn) action on an algebra A to a Taft
algebra (T(n)) action is inner faithful if and only if x · A 6= 0. To study module
algebras of T(n), the following standard fact will also be of use.
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Lemma 2.6. For each T(n)-action on an algebra A, there is a natural action of
T(n) on the opposite algebra (Aop, ∗), say denoted by �, as follows:

g � p = g−1
· p and x � p = g−1x · p. (2.7)

This gives a bijection between T(n)-actions on A and on Aop.

Proof. For any Hopf algebra H and algebra A, we get that A is an H -module
algebra if and only if (Aop, ∗) is an H cop-module algebra. Here, H cop is the co-
opposite algebra of H and 1cop

= τ ◦1 with τ
(∑

h1⊗ h2
)
=
∑

h2⊗ h1. Indeed,
h · (pq)= h · (q ∗ p)=

∑
(h2 ·q)∗ (h1 · p)=

∑
(h1 · p)(h2 ·q). The map sending g

to g−1 and x to g−1x gives an isomorphism T(n)∼= T(n)cop as Hopf algebras, and
the result follows. �

2B. Path algebras of quivers. A quiver is another name for a directed graph, in
the context where the directed graph is used to define an algebra. Here, we review
the basic notions and establish notation. More detailed treatments can be found in
the texts [Assem et al. 2006; Schiffler 2014]. Formally, a quiver Q = (Q0, Q1, s, t)
consists of a set of vertices Q0, a set of arrows Q1, and two functions s, t : Q1→Q0

giving the source and target of each arrow, visualized as

s(a)
a

−−−−→ t (a).

A path p in Q is a sequence of arrows p = a1a2 · · · a` for which t (ai )= s(ai+1)

for 1≤ i ≤ `− 1. (Note that we read paths in left-to-right order.) The length of p
is the number of arrows `. There is also a length 0 trivial path ei at each vertex
i ∈ Q0, with s(ei )= t (ei )= i .

A quiver Q has a path algebra kQ whose basis consists of all paths in Q, and
multiplication of basis elements is given by composition of paths whenever it is
defined, and 0 otherwise. More explicitly, we have the following definition.

Definition 2.8 (path algebra). The path algebra kQ of a quiver Q is the k-algebra
presented by generators from the set Q0 t Q1 with the relations

(a)
∑

i∈Q0
ei = 1;

(b) ei e j = δi j ei for all ei , e j ∈ Q0; and

(c) a = es(a)a = aet (a) for all a ∈ Q1.

Condition (a) is due to the assumption that |Q0|<∞. Further, ei is a primitive
orthogonal idempotent in kQ for all i . So, kQ is an associative algebra with unit,
which is finite dimensional if and only if Q has no path of positive length which
starts and ends at the same vertex. Notice that kQ has a natural ascending filtration
by path length. Namely, if we let Fi be the subspace of kQ spanned by paths of
length at most i , then Fi · F j ⊆ Fi+ j .
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Definition 2.9 (Schurian). A quiver Q is said to be Schurian if, given any two
vertices i and j , there is at most one arrow which starts at i and ends at j .

Note that the definition above does not exclude oriented 2-cycles.

Definition 2.10 (covering, gluing, ~). A quiver Q is covered by a collection of
subquivers Q1, . . . , Qr if Q=

⋃
i Qi . We say Q is obtained by gluing the collection

Q1, . . . , Qr if the collection covers Q, and in addition Qi
∩ Q j consists entirely

of vertices when i 6= j ; in this case, write

Q = Q1~ · · ·~ Qr .

Remark 2.11. If a quiver Q is obtained by gluing subquivers Q1, . . . , Qr , then we
get that kQ is the factor of the free product of path algebras kQ1

∗ · · · ∗kQr by the
ideal generated by {ei,v − e j,v}, where for each pair (i, j), the index v varies over
the vertices of Qi

∩ Q j . Here, e`,v indicates the trivial path at v, for v ∈ (Q`)0.

2C. Group actions on path algebras of quivers. Now we consider group actions
on quivers and on their path algebras.

Definition 2.12 (quiver automorphism). Let Q, Q′ be quivers, and consider two
maps of sets f0 : Q0→ Q′0 and f1 : Q1→ Q′1.

(1) We say that the pair f = ( f0, f1) is a quiver isomorphism if each of these
maps is bijective, and they form a commuting square with the source and target
operations. That is, for all a ∈ Q1 we have

( f0 ◦ s)(a)= (s ◦ f1)(a) and ( f0 ◦ t)(a)= (t ◦ f1)(a).

(2) We say that the pair f = ( f0, f1) is a quiver automorphism of Q if f satisfies
(1) and Q′ = Q.

(3) A group G is said to act on Q, or Q is G-stable, if G acts on the sets Q0 and
Q1 such that each element of G acts by a quiver automorphism.

Remark 2.13. A quiver automorphism induces an automorphism of its path algebra,
but not every automorphism of a path algebra is of this form. See Lemma 3.2.

Remark 2.14. Given a quiver Q, we can form the opposite quiver Qop by inter-
changing the source and target functions s and t . It is clear from the definition
of the path algebra that k(Qop) ∼= (kQ)op. Hence, Lemma 2.6 implies there is a
bijection between T(n)-actions on kQ and on kQop given by (2.7). See Remark 5.2
for an illustration.
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3. Preliminary results

In this section, we present preliminary results on Taft actions on path algebras of
loopless, Schurian quivers. We begin by studying actions on vertices, first giving a
simple lemma regarding group actions on kQ0 (Lemma 3.1). Then, we extend this
result to classifying Taft actions on kQ0 (Proposition 3.5). Preliminary results on
Taft actions on path algebras kQ are provided (Proposition 3.10), along with an
example in the case where Q0 is fixed by the group of grouplike elements of T(n)
(Example 3.13).

The following lemma is elementary, but we provide the details in any case.

Lemma 3.1 (G-action on kQ0). Let G be a group, let Q0 be a set of vertices, and
let {ei }i∈Q0 be the corresponding primitive orthogonal idempotents in kQ0. Then,
any G-action on the set Q0 induces an action on the ring kQ0, given by g · ei = eg·i

for each i ∈ Q0 and g ∈ G. Moreover, every G-action on kQ0 arises in this way.

Proof. The first statement is clear, so suppose for the converse that we have a
G-action on kQ0' k×k×· · ·×k. To act as a ring automorphism, each element of
G must send a complete collection of primitive orthogonal idempotents to another
such collection. But in this case, the set {ei }i∈Q0 is the unique such collection. So
this set must be permuted by G, defining an action of G on the set Q0. �

Now we turn our attention to group actions on arbitrary path algebras of quivers.

Lemma 3.2 (G-action on kQ). Let G be a group and Q a quiver which is loopless
and Schurian, and suppose that G acts by automorphisms of kQ, preserving the
ascending filtration by path length. Then, the action of each g ∈ G on Q is given by

(i) a quiver automorphism φ : Q→ Q, along with

(ii) a collection of nonzero scalars µa ∈ k×, indexed by the arrows a of Q,

such that g · a = µaφ(a) for each a ∈ Q1. (To be clear, both φ and the collection
µa depend on g.)

Proof. Since G preserves the path length filtration, it acts by permutations on the
vertex set, by Lemma 3.1. Then for each g ∈ G and a ∈ Q1, we have g · a =
g · (es(a)a)= (g · es(a))(g · a), showing that g · a lies in the span of arrows starting
at g · es(a). Similarly, we see that g · a lies in the k-span of arrows with target
g · et (a). Since Q is Schurian, this determines a unique arrow φ(a), with start
s(g ·a)= g · es(a) and target t (g ·a)= g · et (a), such that g ·a is a scalar times φ(a).
It is immediate from the definition of φ that φ is a quiver automorphism. �

Convention 3.3. We sometimes use g ·a to label an arrow in a diagram, or refer to
g · a as an arrow in exposition, in order to avoid introducing the extra notation φ.
In these cases, it is understood that one must actually multiply by a scalar to get an
arrow on the nose.
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Next, we study the action of skew-primitive elements on arrowless quivers Q0,
which then leads to Taft actions on the semisimple algebra kQ0. Since the generator
x of T(n) is (1, g)-skew-primitive, the relation e2

i = ei of kQ0 gives us that

x · ei = x · (e2
i )= ei (x · ei )+ (x · ei )(g · ei ) ∈ spank{ei , g · ei }. (3.4)

So, to study extensions of a G-action on kQ0 to a T(n)-action, we can restrict
ourselves to a single G-orbit of vertices. From here on, we apply the above results
to the case where G = G(T(n)) is the cyclic group generated by g ∈ T(n), which
we identify with Zn .

Proposition 3.5 (T(n)-actions on kQ0). Let Q0={1, 2, . . . ,m} be the vertex set of
a quiver, where m divides n, and Zn acts on kQ0 by g · ei = ei+1. Here, subscripts
are always interpreted modulo m.

(i) If m < n (so the Zn-action on Q0 is not faithful), then x acts on kQ0 by 0.

(ii) If m = n (so Zn acts faithfully on Q0), then the action of x on kQ0 is exactly
of the form

x · ei = γ ζ
i (ei − ζei+1) for all i, (3.6)

where γ ∈ k can be any scalar.

In particular, we can extend the action of Zn on kQ0 to an inner faithful action of
T(n) on kQ0 if and only if m = n.

Proof. Assume that we have a T(n)-action on kQ0 extended from the Zn-action on
Q0 in Lemma 3.1. By (3.4), we know that x · ei = αi ei +βi ei+1 for some scalars
αi , βi ∈ k. Then, we have

0= x · 1= x ·
m∑

i=1

ei =

m∑
i=1

αi ei +βi ei+1 =

m∑
i=1

(αi +βi−1)ei , (3.7)

which gives βi−1 =−αi . (Here,
∑m

i=1 βi ei+1 =
∑m

i=1 βi−1ei by reindexing.) Now
the relation xg = ζgx applied to ei gives

αi+1ei+1−αi+2ei+2 = ζ(αi ei+1−αi+1ei+2), (3.8)

so that αi+1 = ζαi for all i . Setting γ := α1ζ
−1 gives αi = ζ

iγ , so that (3.6) holds
whenever a T(n)-action exists. We have assumed that m divides n, but on the other
hand, x ·ei = x ·ei+m implies that γ ζ i

= γ ζ i+m . Thus, γ = γ ζm . Hence, whenever
m < n = ord(ζ ), we have γ = 0, and x acts by 0. This establishes (i).

On the other hand, suppose that m = n. We will show that Equation (3.6)
defines a T(n)-action on kQ0 for any γ ∈ k. A simple substitution verifies that
xg · ei = ζgx · ei . The fact that the x-action preserves the relations ei e j = δi j ei

and
∑n

i=1 ei = 1 is also easy to check by substitution. The only tedious part is to
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show that xn acts on kQ0 by 0, which is verified by Lemma 9.10 in the appendix
of computations, using symmetric functions. Now, the T(n)-action on kQ0 is inner
faithful when γ is nonzero, by Lemma 2.5. Therefore, (ii) holds. �

Now to study Taft actions on path algebras of Schurian quivers in general, we
set the following notation.

Notation 3.9 (σ(a)). Suppose we have a quiver Q and an action of Zn'〈g〉⊂ T(n)
on kQ. Given an arrow a ∈ Q1, we know that there exists at most one path of
length less than or equal to 1 from s(a) to t (g ·a) since Q is Schurian and loopless.
Denote this path by σ(a) if it exists, and set σ(a)= 0 otherwise.

To be more explicit, consider the following case: when g fixes neither s(a) nor
t (a), and g · t (a) 6= s(a), then σ(a) is either an arrow or 0, and can be visualized
in the following diagram.

s(a)

t (g · a)

a g · a

σ(a)

If g ·t (a)= s(a), then σ(a) is the trivial path at s(a). Moreover, we have σ(a)= g ·a
whenever g · s(a)= s(a), and σ(a)= a whenever g · t (a)= t (a).

We remind the reader of the standing assumptions made in Hypothesis 1.2. The
following result determines the action of x on any arrow of Q.

Proposition 3.10. Suppose we have an action of T(n) on kQ, and let a ∈ Q1 with
i+ := s(a) and j− := t (a). Then, there exist scalars α, β, λ ∈ k such that

x · a = αa+β(g · a)+ λσ(a). (3.11)

Moreover, α, β, λ can be determined in special cases depending on the relative
configuration of a and g ·a, as described in Figures 1 and 2 below. Here, the dotted
red arrows indicate the action of g on Q0.

Proof. Let γ+, γ− ∈ k be the scalars from Proposition 3.5 such that

x · ei+ = (γ+)ζ
i (ei+ − ζg · ei+) and x · e j− = (γ−)ζ

j (e j− − ζg · e j−), (3.12)

where g · e`± = e(`+1)± as usual.
From the relation a = ei+a, we can compute

x · a = x · (ei+a)= ei+(x · a)+ (γ+)ζ
i (ei+ − ζg · ei+)(g · a)

=

{
ei+(x · a)+ (γ+)ζ

i (1− ζ )(g · a) if ei+(g · a)= g · a,
ei+(x · a)− (γ+)ζ

i+1(g · a) if ei+(g · a)= 0.
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Relation
between
a and g·a

i+
= g·i+

j− g· j−

a g·a
= σ(a)

i+ g·i+

j−
= g· j−

a
= σ(a)

g·a

i+ g·i+

j− g· j−

a g·a
σ(a)

x ·ei+ = 0 (γ+)ζ
i (ei+−ζg·ei+) (γ+)ζ

i (ei+−ζg·ei+)

x ·e j− = (γ−)ζ
j (e j−−ζg·e j−) 0 (γ−)ζ

j (e j−−ζg·e j−)

x ·a = (γ−)ζ
j a+β(g·a) αa−(γ+)ζ i+1(g·a) (γ−)ζ

j a−(γ+)ζ i+1(g·a)
+λσ(a)

Figure 1. a(g·a)= (g·a)a = 0.

Thus, x ·a ∈ spank{paths starting at ei+, g ·a}. Similarly, the relation a= ae j− gives

x · a = x · (ae j−)= (γ−)ζ
j a(e j− − ζg · e j−)+ (x · a)(g · e j−)

=

{
(γ−)ζ

j (1− ζ )a+ (x · a)(g · e j−) if a(g · e j−)= a,
(γ−)ζ

j a+ (x · a)(g · e j−) if a(g · e j−)= 0.

Thus, x · a ∈ spank{a, paths ending at g · e j−}. Intersecting these two conditions
on x · a gives Equation (3.11). The coefficients α, β, λ can be determined more
explicitly, but depend on the relative configuration of a and g · a. We consider the
various cases below.

Suppose that ei+(g·a)= g·a, then g·s(a)= s(a). So, as remarked in Notation 3.9,
we have σ(a)= g · a. We can omit this term in (3.11) by absorbing λ into β in this
case. Similarly, if a(g · e j−)= a, then g · t (a)= t (a) and we have σ(a)= a. We
can omit this term in (3.11) by absorbing λ into α in this case. On the other hand,

Relation
between
a and g · a

i

j = g · i

g · j

a

g · aσ(a)

g · i

i = g · j = σ(a)

j

g · a

a

x · ei = γ ζ i (ei − ζg · ei ) γ ζ i (ei − ζg · ei )

x · e j = γ ζ j (e j − ζg · e j ) γ ζ j (e j − ζg · e j )

x · a = γ ζ j a− γ ζ i+1(g · a)+ λσ(a) γ ζ j a− γ ζ i+1(g · a)+ λei

Figure 2. a(g · a) 6= 0 or (g · a)a 6= 0.
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if ei+(g · a)= 0, then x · a = x · ei+a implies that

αa+β(g · a)+ λσ(a)= ei+[αa+β(g · a)+ λσ(a)] − (γ+)ζ i+1(g · a)

= αa− (γ+)ζ i+1(g · a)+ λσ(a).

Thus in this case, β =−(γ+)ζ i+1. Similarly, if a(g · e j−)= 0, then x · a = x · ae j−
implies that

αa+β(g · a)+ λσ(a)= (γ−)ζ j a+ [αa+β(g · a)+ λσ(a)](g · e j−)

= (γ−)ζ
j a+β(g · a)+ λσ(a).

So, α = (γ−)ζ j . These results are collected in Figure 1. In each case, the x-action
on the vertices follow from Proposition 3.5. In Figure 2, the results are further
specialized to the cases where g · s(a) = t (a) or g · t (a) = s(a). Since the ±
notation serves to distinguish the orbits of s(a) and t (a), the ± notation is dropped
in Figure 2. �

As an illustration of the results above, we study Taft actions on a path algebra
kQ, where Zn fixes Q0.

Example 3.13 (T(n)-action on kQ, Zn fixes Q0). If Zn fixes the vertices of a quiver
Q, then we claim that any extended action of T(n) on kQ is not inner faithful.
First, by Proposition 3.5(i) with m = 1, we get that x · ei = 0 for all i ∈ Q0. For
the arrows, we get that s(g · a)= es(a) and t (g · a)= et (a) by the assumption. So,
σ(a)= g · a. Moreover, g · a = µaa by Lemma 3.2. Now, Proposition 3.10 implies
that x · a = αa for some α ∈ k. Finally, using the relation xn

= 0, we conclude that
x · a = 0, and the claim holds.

4. Minimal quivers

Given any Hopf algebra action on an algebra A, it is natural to study the restricted
Hopf action on a subalgebra of A, if one exists. We introduce Zn-minimal quivers
in this section, which will be the building blocks of Taft actions on path algebras of
quivers in subsequent sections. The following definition serves to fix notation for
specific quivers that will be used throughout the rest of the paper.

Definition 4.1 (Km , Km,m′ , ai
j , bi

j ). Let m and m′ be positive integers.

(1) The complete quiver Km (or complete digraph) has vertex set {1, 2, . . . ,m},
with an arrow ai

j from i to j for every ordered pair of distinct vertices (i, j).
For uniformity in the formulas, we also take the symbol ai

i to mean the trivial
path ei at vertex i (rather than a loop, which we have excluded).

(2) The complete bipartite quiver Km,m′ has a top row of m vertices and a bottom
row of m′ vertices, labeled by {1+, . . . ,m+} and {1−, . . . ,m′

−
}, respectively.



130 Ryan Kinser and Chelsea Walton

There is an arrow bi
j from each vertex i+ in the top row to each vertex j− in

the bottom row; that is, s(bi
j )= i+ and t (bi

j )= j−.

An example of each type is given below, without vertex or arrow labels.

K4 = K2,3 =

To illustrate the arrow labels, the first diagram below shows some arrows in K4

and the second diagram shows all arrows starting at 1+ in K2,3.

1 2

34

a1
2

a2
3

a1
3a4

1

a4
3

1+

1− 2− 3−

b1
1 b1

2 b1
3

See Figure 5 for further illustrations.
Suppose we have an action of Zn on the path algebra of a subquiver of Km or

Km,m′ . Let g be a generator of Zn . After possibly relabeling, we can assume g acts
on the trivial paths by g ·ei = ei+1 (for Km) and g ·ei+ = e(i+1)+, g ·ei−=(i+1)− (for
Km,m′), where the indices are taken modulo m or m′ as appropriate. By Lemma 3.2,
there is a collection of nonzero scalars µi, j such that g · ai

j = µi, j a
i+1
j+1 (for Km),

or g · bi
j = µi, j b

i+1
j+1 (for Km,m′). Again, subscripts and superscripts are interpreted

modulo m or m′ as appropriate. Since gn is the identity and g · ei = ei+1 (for Km),
these scalars µi, j satisfy

µi,i = 1 in the Km case,∏n−1
`=0 µi+`, j+` = 1 in both cases.

(4.2)

Since an arrow (or, more specifically, the source and target of an arrow) of a
quiver Q can only be part of one or two Zn-orbits of Q0, we make the following
definition.

Definition 4.3 (Zn-minimal, Type A, Type B). Let Zn act on a quiver Q. Say that
Q is Zn-minimal of

• Type A if Q is a Zn-stable subquiver of Km , where m > 1 is a positive integer
dividing n; or
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Figure 3. Z3-minimal quivers of Type A.

• Type B if Q is a Zn-stable subquiver of Km,m′ , where m,m′ ≥ 1 and m,m′

divide n.

Example 4.4. The following quiver Q admits both a Z4-action and a Z2-action
illustrated by the dotted red arrows below. Observe that Q is Z4-minimal of Type B.
Further, we see it is Z4d-minimal of Type B for any integer d ≥ 1. However, it is
not Z2-minimal of Type B.

Z4d -minimal not Z2-minimal

Now we list the Zn-minimal quivers for small n. For Type A, note that there is
only one Z2-minimal quiver that admits a transitive action of Z2 on vertices; see (I)
of Figure 5. See Figure 3 for the three Z3-minimal quivers of Type A. The dotted,
red arrow indicates the action of Z3 on Q0 (clockwise rotation in each case). For
Type B, there are five Type B Z2-minimal quivers; see Figure 5 (II)–(VI) for an
illustration. Moreover, see Figure 4 for the six Z3-minimal quivers of Type B.

5. Sweedler algebra actions on path algebras of minimal quivers

In this section, we study the action of the Sweedler algebra T(2) on path algebras
of quivers. This is achieved by first computing the action of the Sweedler algebra
on Z2-minimal quivers (Theorem 5.1). Later, in Section 7, we present results on
gluing such actions to yield Sweedler actions on more general quivers.

Recall from Definition 2.1 that the Sweedler algebra is the 4-dimensional Taft
algebra T(2) generated by a grouplike element g and a (1, g)-skew-primitive element
x , subject to relations:

g2
= 1, x2

= 0, xg+ gx = 0.

Note that G(T(2))' Z2.
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Figure 4. Z3-minimal quivers of Type B.

Theorem 5.1. Recall Hypothesis 1.2. For each quiver Q in Figure 5 (where the
dotted red arrow illustrates the g-action on vertices), the Z2-action on Q extends
to an action of the Sweedler algebra T(2) on kQ precisely as follows. We take γ

1 2

a1
2

a2
1

1+

1−

b1
1

1+ = 2+

1− 2−

b1
1 b2

2

(I) (II) (III)

1+ 2+

1− = 2−

b1
1 b2

2

1+ 2+

1− 2−

b1
1 b2

2

1+ 2+

1− 2−

b1
1 b2

2

b1
2 b2

1

(IV) (V) (VI)

Figure 5. The Z2-minimal quivers.
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(resp. γ+ and γ−) to be the scalar from the x-action on ei (resp. on ei+ and on e j−)
in (3.6) (resp. in (3.12)).

Q x-action on Q0 Q x-action on Q0

(I)
x · e1 =−γ (e1+ e2)

x · e2 = γ (e1+ e2)
(IV)

x · e1+ =−(γ+)(e1+ + e2+)

x · e2+ = (γ+)(e1+ + e2+)

x · e1− = 0

(II) x · e1+ = x · e1− = 0 (V)

x · e1+ =−(γ+)(e1+ + e2+)

x · e2+ = (γ+)(e1+ + e2+)

x · e1− =−(γ−)(e1− + e2−)

x · e2− = (γ−)(e1− + e2−)

(III)
x · e1+ = 0
x · e1− =−(γ−)(e1− + e2−)

x · e2− = (γ−)(e1− + e2−)

(VI)

x · e1+ =−(γ+)(e1+ + e2+)

x · e2+ = (γ+)(e1+ + e2+)

x · e1− =−(γ−)(e1− + e2−)

x · e2− = (γ−)(e1− + e2−)

Q x-action on Q1

(I) x · a1
2 = γ a1

2 − γµa2
1 + λe1

x · a2
1 = γµ

−1a1
2 − γ a2

1 − λµ
−1e2

for λ ∈ k, µ ∈ k×

(II) x · b1
1 = 0

(III) x · b1
1 =−(γ−)b

1
1 +βµb2

2

x · b2
2 =−βµ

−1b1
1 + (γ−)b

2
2

for β2
= (γ−)

2, µ ∈ k×

(IV) x · b1
1 = αb1

1 − (γ+)µb2
2

x · b2
2 = (γ+)µ

−1b1
1 −αb2

2

for α2
= (γ+)

2, µ ∈ k×

(V) x · b1
1 =−(γ−)b

1
1 − (γ+)µb2

2

x · b2
2 = (γ+)µ

−1b1
1 + (γ−)b

2
2

for (γ+)2 = (γ−)2, µ ∈ k×

(VI)

x · b1
1 =−(γ−)b

1
1 − (γ+)µb2

2 + λb1
2

x · b2
2 = (γ+)µ

−1b1
1 + (γ−)b

2
2 − λµ

−1µ′b2
1

x · b1
2 = (γ−)b

1
2 − (γ+)µ

′b2
1 + λ

′b1
1

x · b2
1 = (γ+)µ

′−1b1
2 − (γ−)b

2
1 − λ

′µµ′−1b2
2

for (γ+)2 = (γ−)2+ λλ′

with λ, λ′ ∈ k
and µ,µ′ ∈ k×

Proof. The x-action on vertices follows from (3.6) and (3.12).

(I) We are in the situation illustrated in the second column of Figure 2, where
additionally g · i = j . So, we have

x · a1
2 = γ a1

2 − γµ1,2a2
1 + λe1
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from Proposition 3.10 and Lemma 3.2. Then using the relation xg =−gx in T(2),
we find that

µ1,2x · a2
1 = x · (g · a1

2)=−g · (x · a1
2)=−γµ1,2a2

1 + γµ1,2µ2,1a1
2 − λµ1,1e2.

Using that µ−1
1,2 = µ2,1 and µ1,1 = 1 from Equation (4.2), we obtain

x · a2
1 = γµ2,1a1

2 − γ a2
1 − λµ2,1e2.

The x-action on all other relations in kQ yields tautologies, and the relations
x2
= xg + gx = 0 are satisfied when applied to the arrows a1

2 and a2
1 . Taking

µ= µ1,2 and µ−1
= µ2,1, we see the action is of the claimed form.

(II) We apply Example 3.13.

(III) Examining Figure 1, we see that x · b1
1 =−(γ−)b

1
1+βµ1,1b2

2 for some β ∈ k.
The relation xg =−gx in T(2) then gives

µ1,1x · b2
2 = x · (g · b1

1)=−g · (x · b1
1)=−βµ1,1µ2,2b1

1+ (γ−)µ1,1b2
2.

Now applying the relation x2
= 0 of T(2) to the arrow b1

1 implies that (γ−)2 = β2,
and we take µ= µ1,1.

(IV) We get from Figure 1 that x · b1
1 = αb1

1 − (γ+)µ1,1b2
2 for some α ∈ k. The

relation xg =−gx in T(2) then gives

µ1,1x · b2
2 = x · (g · b1

1)=−g · (x · b1
1)=−αµ1,1b2

2+ (γ+)µ1,1µ2,2b1
1.

Now applying the relation x2
= 0 to the arrow b1

1 implies that (γ+)2 = α2, and
again we take µ= µ1,1.

(V) Examining Figure 1 we find that x · b1
1 = −(γ−)b

1
1 − (γ+)µ1,1b2

2. Then the
relation xg = −gx in T(2) gives that µ1,1x · b2

2 = (γ+)µ1,1µ2,2b1
1 + (γ−)µ1,1b2

2.
The relation x2

= 0 applied to the arrows b1
1 and b2

2 implies that (γ+)2 = (γ−)2, and
again we take µ= µ1,1.

(VI) We can see from Figure 1 that x ·b1
1 =−(γ−)b

1
1− (γ+)µ1,1b2

2+λb1
2 for some

λ∈k. Similarly, we can see from this figure that x ·b1
2= (γ−)b

1
2−(γ+)µ1,2b2

1+λ
′b1

1
for some λ′ ∈ k. The relation xg =−gx gives the formulas for x · b2

2 and x · b2
1 as

claimed. Finally, the relation x2
= 0 implies that (γ+)2 = (γ−)2+ λλ′. We have

taken µ= µ1,1 and µ′ = µ1,2. �

Remark 5.2. Since Q(III)op
= Q(IV), we can get the Sweedler action on the path

algebra of Q(IV) from its action on the path algebra of Q(III) using (2.7); see
Remark 2.14. For instance, take b1

1 ∈ Q(IV):

x � b1
1 = g−1x · b1

1 = g−1
· (−(γ−)b1

1+βµb2
2)=−(γ−)µb2

2+βb1
1.

Now by identifying γ− with γ+, and β with α, we get the desired action.
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6. Taft algebra actions on path algebras of minimal quivers

In this section, we give a complete description of T(n)-actions on path algebras of
Zn-minimal quivers. Since the action of the grouplike elements of T(n) has already
been determined in Lemma 3.2, and the T(n)-action on the vertices has already
been determined in Proposition 3.5, all that remains is to describe possible actions
of x on the arrows.

6A. Taft actions on Type A Zn-minimal quivers. Let Q be a Zn-minimal quiver
of Type A, so that Q is a subquiver of Km for some m|n by Definition 4.3. Recall
that the path algebra kKm has basis ai

j for 1 ≤ i, j ≤ m, with ai
i = ei being the

trivial path at vertex i .

Theorem 6.1. Recall Hypothesis 1.2 and retain the notation above. Any T(n)-
action on the path algebra of Type A Zn-minimal quiver Q is given by

x · ai
j = γ (ζ

j ai
j − ζ

i+1µi, j a
i+1
j+1)+ λi, j ai

j+1, (6.2)

where γ ∈ k from (3.6), µi, j ∈ k× from (4.2), and λi, j ∈ k are all scalars satisfying

• µi,i = 1 for all i , and
∏n−1
`=0 µi+`, j+` = 1;

• λi, j = 0 if either i = j or the arrow ai
j+1 does not exist in Q; and

• λi+1, j+1µi, j = ζλi, jµi, j+1.

The superindices and subindices of arrows and scalars are taken modulo m.

Proof. We have already used the relations of the path algebra to find that

x · ai
j = γ (ζ

j ai
j − ζ

i+1µi, j a
i+1
j+1)+ λi, j ai

j+1,

for some scalars µi, j ∈ k× and λi, j ∈ k; see Lemma 3.2 and Propositions 3.5 and
3.10. Namely, the case of i = j is Proposition 3.5, which gives λi,i = 0 and µi,i = 1
for all i . Moreover, the case of i 6= j is Proposition 3.10, which gives that λi, j = 0
if the arrow ai

j+1 does not exist in Q. The condition on the {µi, j } is from (4.2).
The relation xg = ζgx of T(n) applied to ai

j gives on the one hand that

xg · ai
j = x ·µi, j a

i+1
j+1

= γµi, j (ζ
j+1ai+1

j+1− ζ
i+2µi+1, j+1ai+2

j+2)+ λi+1, j+1µi, j a
i+1
j+2,

while on the other hand that

ζgx · ai
j = ζγ (ζ

jµi, j a
i+1
j+1− ζ

i+1µi, jµi+1, j+1ai+2
j+2)+ ζλi, jµi, j+1ai+1

j+2.

Thus we see that λi+1, j+1µi, j = ζλi, jµi, j+1, which is the third condition on the
scalars. We also obtain that the relation xn

= 0 applied to ai
j imposes no further

restrictions on the x-action on ai
j ; this is verified in Lemma 9.11 of the appendix.

�
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6B. Taft actions on Type B Zn-minimal quivers. In this subsection, let Q be a
Zn-minimal quiver of Type B. By Definition 4.3, we know that Q is a subquiver of
Km,m′ for some positive integers m,m′ both dividing n. Recall that the path algebra
Km,m′ has basis ei+ , e j− , bi

j where 1≤ i ≤ m and 1≤ j ≤ m′.

Theorem 6.3. Recall Hypothesis 1.2 and retain the notation above. Any T(n)-
action on the path algebra of Type B Zn-minimal quiver Q is given by

x · bi
j = (γ−)ζ

j bi
j − (γ+)µi, jζ

i+1bi+1
j+1+ λi, j bi

j+1, (6.4)

where γ+, γ− ∈ k from (3.12), µi, j ∈ k× from (4.2), and λi, j ∈ k are all scalars
satisfying

•
∏n−1
`=0 µi+`, j+` = 1;

• λi, j = 0 if the arrow bi
j+1 does not exist in Q;

• λi+1, j+1µi, j = ζλi, jµi, j+1;

• (γ+)
n
= (γ−)

n
+
∏n−1
`=0 λi, j+`.

The superindices of arrows are taken modulo m and the subindices of arrows are
taken modulo m′.

Proof. The formula (6.4) and first three conditions on the scalars are derived exactly
as in the proof of Theorem 6.1, replacing a?? with b?? and γ with γ±, appropriately.
It just remains to check that xn acts by 0; this is equivalent to the last condition on
the scalars, as shown in Lemma 9.12. �

7. Gluing Taft algebra actions on minimal quivers

7A. Gluing actions from components. In this section, we provide a recipe for
gluing actions of Taft algebras on minimal quivers. We also show that, given any
quiver with Zn-symmetry, one can construct an inner faithful extended action of
T(n) on the path algebra of this quiver.

Definition 7.1 (Zn-component). Let Q be a quiver with an action of Zn , and con-
sider the set of Zn-minimal subquivers of Q, partially ordered by inclusion. We say
that a Zn-minimal subquiver of Q is a Zn-component of Q if it is maximal in the
given ordering.

Lemma 7.2. Fix an action of Zn on a quiver Q. Then, there exists a collection of
Zn-components of Q, unique up to relabeling, such that Q is obtained by gluing
this collection.

Proof. The Zn-components of Q exist and are uniquely determined by the definition
because they are the maximal elements of a finite poset. Each arrow of Q lies in
some Zn-minimal subquiver, so the Zn-components cover Q. So, it suffices to show
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that the intersection of two distinct Zn-components consists entirely of vertices. If
Q1 and Q2 are two Zn-minimal subquivers such that Q1

∩ Q2 contains an arrow,
then we can see from the definition of minimality that Q1 and Q2 have the same
set of vertices. Thus, Q1

∪Q2 is a Zn-minimal subquiver of Q. Repeat this process
to conclude that, by maximality, any two distinct Zn-components can only have
vertices in their intersection. �

A visualization of the result above can be found in Step 1 of Examples 7.8
and 7.9 below.

Lemma 7.3. Any T(n)-action on a path algebra kQ restricts to an action on the
path algebra of each Zn-component of Q.

Proof. Let Qi be a Zn-component of Q. Since Qi is Zn-minimal, by definition kQi

is stable under the action of g, so it suffices to show that kQi is stable under the
action of x . From Proposition 3.10, it is enough to see that σ(a) ∈ Qi when a ∈ Qi .
Suppose not, that is, σ(a) ∈ Q j for some j 6= i . Then, Qi

∪ Q j is a Zn-minimal
quiver, which contradicts the maximality of the Zn-component Qi . �

Definition 7.4 (compatibility). Let Q be a quiver and Q1, . . . , Qr
⊆ Q a collection

of subquivers of Q. Suppose that we have a T(n)-action on each path algebra kQi .
We say that this collection of T(n)-actions is compatible if, for each pair (i, j), the
restriction of the actions on kQi and on kQ j to k[Qi

∩ Q j
] are the same.

Now we have our main result of the section.

Theorem 7.5. Let Q be a quiver with Zn-action. The T(n)-actions on the path alge-
bra of Q extending the given Zn-action are in bijection with compatible collections
of T(n)-actions on path algebras of the Zn-components of Q.

Proof. Given a T(n)-action on kQ, it restricts to a T(n)-action on each path algebra
of a Zn-component of Q by Lemma 7.3. On the other hand, suppose we have a
collection of compatible T(n)-actions on the path algebras of the Zn-components
of Q. This uniquely determines an action of T(n) on kQ as follows:

• The action on each arrow of kQ is uniquely determined since each arrow lies
in a unique Zn-component of Q.

• The action on any vertex is determined because every vertex lies in at least
one Zn-component.

• Suppose that a vertex lies in multiple Zn-components. Then, the action on this
vertex is uniquely determined because the actions on different Zn-components
restrict to the same action on vertices in their intersection, due to compatibility.

�

Corollary 7.6. If a quiver Q admits a faithful Zn-action, then kQ admits an inner
faithful action of the Taft algebra T(n), extending the given Zn-action on Q.
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Proof. This follows immediately from Theorem 7.5 and Proposition 3.5 since Q
admits an orbit of vertices of size n in this case. �

Example 7.7. This example shows that a faithful Zn-action on Q is not necessary
for kQ to admit an inner faithful action of T(n). Fix ζ , a primitive fourth root of
unity. Consider the action of T(4) on kK2 (see (I) of Figure 5) given by

g · ei = ei+1, g · ai
j = ζai+1

j+1, x · ei = 0, x · ai
j = λei ,

for i 6= j , where subscripts and superscripts are taken modulo 2, and λ ∈ k× is an
arbitrary nonzero scalar. By Theorem 6.1, this defines an action of T(4) on the path
algebra kK2, which is inner faithful even though the induced action of Z4 on the
quiver K2 is not faithful.

7B. Algorithm to explicitly parametrize T(n)-actions on k Q. Let Q be a quiver
that admits an action of Zn . We construct all actions of T(n) on kQ which extend
the given Zn-action via the following steps. Those for which x does not act by 0 are
inner faithful by Lemma 2.5. The reader may wish to refer to one of the examples
in the next subsection for an illustration of the algorithm below.

First, we know that Q decomposes uniquely into the union of certain Zn-minimal
quivers {Q`

}
r
`=1 (namely, Zn-components) so that Q = Q1 ~ · · · ~ Qr , due to

Lemma 7.2.

STEP 1

Decompose Q into this unique union of Zn-components {Q`
}.

Next, we define the extended action of T(n) on the path algebra of each com-
ponent Q`. Let m,m′ be positive divisors of n. Recall that Type A and Type B
Zn-minimal quivers are subquivers of Km with m > 1 and of Km,m′ , respectively.

STEP 2

For each Zn-component Q` of Type A, label its vertices by {1(`), . . . ,m(`)
}.

For each Zn-component Q` of Type B, label its sources and sinks by
{1(`)+ , . . . ,m(`)

+ } and {1(`)− , . . . (m
′)
(`)
− }, respectively.

Recall that ζ is the primitive n-th root of unity from the definition of T(n). Now
invoke Proposition 3.5 in the following step.

STEP 3

Take scalars γ (`), γ (`)+ , γ
(`)
− ∈ k and define

x · ei (`) = γ
(`)ζ i (ei (`) − ζe(i+1)(`)) for Type A,

x · ei (`)+
= γ

(`)
+ ζ i (ei (`)+

− ζe
(i+1)(`)+

) for Type B,

x · ei (`)−
= γ

(`)
− ζ i (ei (`)−

− ζe
(i+1)(`)−

) for Type B,
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where the indices are taken modulo m for Type A, and are taken modulo
m or m′ for Type B. Here, γ (`) = 0 if m < n for Type A and γ (`)+ = 0 or
γ
(`)
− = 0 if m<n or m′<n respectively, for Type B. To obtain compatibility,

impose relations amongst the scalars by identifying vertices.

Finally, we invoke Theorems 6.1 and 6.3 to get all actions of T(n) on the arrows
of Q.

STEP 4

Label the arrows of each Type A and Type B component of Q by arrows
(ai

j )
(`) and (bi

j )
(`) respectively.

STEP 5

Given the scalars γ (`), γ (`)+ , γ
(`)
− ∈ k of Step 3, we have, for all arrows ai

j

of a component of Type A and bi
j of a component of Type B, that

x · (ai
j )
(`)
= γ (`)

(
ζ j (ai

j )
(`)
− ζ i+1µ

(`)
i, j (a

i+1
j+1)

(`)
)
+ λ

(`)
i, j (a

i
j+1)

(`),

x · (bi
j )
(`)
= γ

(`)
− ζ j (bi

j )
(`)
− γ

(`)
+ ζ i+1µ

(`)
i, j (b

i+1
j+1)

(`)
+ λ

(`)
i, j (b

i
j+1)

(`),

where µ(`)i, j , λ
(`)
i, j ∈ k are scalars satisfying the conditions of Theorems 6.1

and 6.3.

Thus, the desired extended action of the n-th Taft algebra on kQ is complete by
the five steps above.

7C. Examples. In this section, we illustrate the algorithm of the previous section
to get actions of T(n) on kQ for various quivers Q having Zn symmetry.

For ease of exposition, we take all parameters µi, j equal to 1 in this section.

Example 7.8. Consider the following quiver Q:

v1 v2

v3

v5 v6

v4

f3

f5

f4

f6

f1

f2

f7 f8

f9f10

which has Z2-symmetry by reflection over the central vertical axis and exchanging
arrows f1 and f2. So, we decompose Q into the four Z2-components as follows.
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Here, the dotted red arrows indicate the action of Z2 on Q0.

STEP 1

(1)

(1)(2)

(3)

(2)

(3)

(4) (4)

(4)(4)

Now choose scalars γ (1), γ (2)+ , γ (2)− , γ (3)+ , γ (3)− , γ
(4)
+ , γ (4)− ∈ k to execute Steps 2

and 3.

STEPS 2 AND 3

1(1), 1+(2), 1+(4) 2(1), 2+(2), 2+(4)

1−(2), 1−(3)

1+(3), 1−(4) 2+(3), 2−(4)

2−(2), 2−(3)

We have

x · e(1)1 =−γ
(1)(e(1)1 + e(1)2 ), x · e(1)2 = γ

(1)(e(1)2 + e(1)1 ),

while, for `= 2, 3, 4,

x · e(`)1+ =−γ
(`)
+ (e(`)1+ + e(`)2+ ), x · e(`)2+ = γ

(`)
+ (e(`)2+ + e(`)1+ ),

x · e(`)1− =−γ
(`)
− (e(`)1− + e(`)2− ), x · e(`)2− = γ

(`)
− (e(`)2− + e(`)1− ).

By using the identification of vertices

v1 := 1(1) = 1+(2) = 1+(4), v2 := 2(1) = 2+(2) = 2+(4),

v3 := 1−(2) = 1−(3), v4 := 2−(2) = 2−(3),

v5 := 1+(3) = 1−(4), v6 := 2+(3) = 2−(4),

we have

γ := γ (1) = γ
(2)
+ = γ

(4)
+ , γ ′ := γ

(2)
− = γ

(3)
− , γ ′′ := γ

(3)
+ = γ

(4)
− .



Pointed Hopf actions on path algebras of quivers 141

Now, we need to label the arrows of Q appropriately, and invoke Theorems 6.1
and 6.3 to get the desired action of T(2) on kQ1.

STEPS 4 AND 5

(b1
1)
(2)

(b1
1)
(3)

(b2
2)
(2)

(b2
2)
(3)

(a1
2)
(1)

(a2
1)
(1)

(b1
1)
(4) (b2

2)
(4)

(b1
2)
(4)(b2

1)
(4)

x · (ai
j )
(1)
= γ (1)(ζ j (ai

j )
(1)
− ζ i+1(ai+1

j+1)
(1))+ λ

(1)
i, j (a

i
j+1)

(1),

x · (bi
j )
(`)
= γ

(`)
− ζ j (bi

j )
(`)
− γ

(`)
+ ζ i+1(bi+1

j+1)
(`)
+ λ

(`)
i, j (b

i
j+1)

(`), ` = 2,3,4.

Using the conditions on the scalars from Theorems 6.1 and 6.3, we find that the
x-action on the arrows is controlled by additional parameters λ := λ(1)1,2 as σ(a)
exists for component (1), and λ′ := λ(4)1,1, λ′′ := λ(4)1,2 as σ(a) exists for component
(4). Putting this all together, the action of Z2 on Q (where by abuse of notation, vi

denotes the trivial path at vi ) given by

g · v1 = v2, g · v2 = v1, g · f1 = f2, g · f2 = f1,

g · v3 = v4, g · v4 = v3, g · f3 = f4, g · f4 = f3,

g · v5 = v6, g · v6 = v5, g · f5 = f6, g · f6 = f5,

g · f7 = f8, g · f8 = f7,

g · f9 = f10, g · f10 = f9,

extends to an action of the Sweedler algebra on kQ, as follows:

x · v1 =−γ (v1+ v2), x · v2 = γ (v2+ v1),

x · v3 =−γ
′(v3+ v4), x · v4 = γ

′(v4+ v3),

x · v5 =−γ
′′(v5+ v6), x · v6 = γ

′′(v6+ v5),

x · f1 = γ f1− γ f2+ λe1, x · f2 = γ f1− γ f2− λe2,

x · f3 =−γ
′ f3− γ f4, x · f4 = γ

′ f4+ γ f3,

x · f5 =−γ
′ f5− γ

′′ f6, x · f6 = γ
′ f6+ γ

′′ f5,

x · f7 =−γ
′′ f7− γ f8+ λ

′ f9, x · f8 = γ
′′ f8+ γ f7− λ

′ f10,

x · f9 = γ
′′ f9− γ f10+ λ

′′ f7, x · f10 =−γ
′′ f10+ γ f9− λ

′′ f8,

for any scalars γ, γ ′, γ ′′, λ, λ′, λ′′ ∈ k which satisfy (γ )2 = (γ ′′)2+ λ′λ′′.

Note that the Sweedler algebra action restricted to the path algebras of respective
components (1), (2), (3), (4) is the same as the Sweedler algebra action on the path
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algebra of respective quivers (I), (V), (V), (VI) from Theorem 5.1, as expected;
namely, Q = Q(I)~ Q(V)~ Q(V)~ Q(VI).

Example 7.9. Consider the following quiver Q:

v0

v1

v2

v3

v4

f1

f2

f3

f7f12

f8f11

f10f9

f4

f5

f6

which has Z3-symmetry. We decompose Q into three Z3-components as follows.
Here, the dotted red arrows indicate the action of Z3 on Q0.

STEP 1

(1)

(1)

(1)

(3)(3)

(3)(3)

(3)(3)

(2)

(2)

(2)

Now choose scalars γ (1)+ , γ (1)− , γ
(2)
+ , γ

(2)
− , γ (3) ∈ k to execute Steps 2 and 3. Further,

let ω be a primitive third root of unity.

STEPS 2 AND 3

1(1)+

1(1)− , 1(2)+ , 1(3)

3(1)− , 3(2)+ , 3(3)

1(2)−

(the middle vertex is labeled by 2(1)− , 2(2)+ , 2(3))
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We have x · e(1)1+ = x · e(2)1− = 0 since these vertices are fixed by g, and furthermore

x · e(1)1− = γ
(1)
− ω(e(1)1− −ωe(1)2− ),

x · e(1)2− = γ
(1)
− ω2(e(1)2− −ωe(1)3− ),

x · e(1)3− = γ
(1)
− (e(1)3− −ωe(1)1− ),

x · e(2)1+ = γ
(2)
+ ω(e(2)1+ −ωe(2)2+ ),

x · e(2)2+ = γ
(2)
+ ω2(e(2)2+ −ωe(2)3+ ),

x · e(2)3+ = γ
(2)
+ (e(2)3+ −ωe(2)1+ ),

x · e(3)1 = γ
(3)ω(e(3)1 −ωe(3)2 ),

x · e(3)2 = γ
(3)ω2(e(3)2 −ωe(3)3 ),

x · e(3)3 = γ
(3)(e(3)3 −ωe(3)1 ).

By using the identification of vertices,

v1 = 1(1)− = 1(2)+ = 1(3), v2 = 2(1)− = 2(2)+ = 2(3), v3 = 3(1)− = 3(2)+ = 3(3),

we have

γ := γ
(1)
− = γ

(2)
+ = γ

(3), γ
(1)
+ = 0, γ

(2)
− = 0.

Now, we need to label the arrows of Q appropriately, and invoke Theorems 6.1 and
6.3 to get the desired action of T(3) on kQ1.

STEPS 4 AND 5

(b1
1)
(1)

(b1
2)
(1)

(b1
3)
(1)

a1
2a2

1

a2
3a3

2

a1
3a3

1

(b1
1)
(2)

(b2
1)
(2)

(b3
1)
(2)

x · (b1
j )
(1)
= γω j (b1

j )
(1)
+ λω j−1(b1

j+1)
(1),

x · (bi
1)
(2)
=−γωi+1(bi+1

1 )(2)+ λ′ωi−1(bi
1)
(2),

x · (ai
j )
(3)
= γ

(
ω j (ai

j )
(3)
−ωi+1(ai+1

j+1)
(3))
+ λ

(3)
i, j (a

i
j+1)

(3),

where λ := λ(1)1,1 and λ′ := λ(2)1,1.

Moreover, let λ′′ := λ(3)1,2 and λ′′′ := λ(3)1,3 for component (3). Putting this all together,
the action of Z3 on Q given by Step 1 extends to an action of T(3) on kQ, as
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follows:

x · v1 = γω(v1−ωv2), x · v2 = γω
2(v2−ωv3), x · v3 = γ (v3−ωv1),

x · v0 = 0, x · v4 = 0,

x · f1 = γω f1+λ f2, x · f4 = λ
′ f4− γω

2 f5,

x · f2 = γω
2 f2+λω f3, x · f5 = λ

′ω f5− γ f6,

x · f3 = γ f3+λω
2 f1, x · f6 = λ

′ω2 f6− γω f4,

x · f7 = γ (ω
2 f7−ω

2 f8)+ λ
′′ f10, x · f10 = γ ( f10−ω

2 f12)+ λ
′′′ f7,

x · f8 = γ ( f8− f9)+ λ
′′ω f12, x · f11 = γ (ω

2 f11−ω f10)+ λ
′′′ω f9,

x · f9 = γ (ω f9−ω f7)+ λ
′′ω2 f11, x · f12 = γ (ω f12− f11)+ λ

′′′ω2 f8,

for any scalars γ, λ, λ′, λ′′, λ′′′ ∈ k.

8. Extended actions of other pointed Hopf algebras on path algebras

In this section, we extend the results in the previous sections to actions of the
Frobenius–Lusztig kernel (Section 8A) and to actions of the Drinfeld double of a
Taft algebra (Section 8B). We remind the reader of the standing assumptions made
in Hypothesis 1.2.

Notation 8.1 (q , T(n, ξ)). Let q ∈ k be a primitive 2n-th root of unity, and let ξ ∈ k
be a primitive n-th root of unity. Moreover, let T(n, ξ) be the Taft algebra generated
by a grouplike element g and a (1, g)-skew primitive element x , subject to the
relations gn

= 1, xn
= 0, xg = ξgx . Note that T(n, ζ )= T(n) as in Definition 2.1,

for ζ the fixed primitive n-th root of unity of this work.

8A. Actions of uq(sl2).

Definition 8.2 (uq(sl2), Borel subalgebras u≥0
q (sl2) and u≤0

q (sl2)). The Frobenius–
Lusztig kernel uq(sl2) is the Hopf algebra generated by a grouplike element K ,
a (1, K )-skew-primitive element E , and a (K−1, 1)-skew-primitive element F ,
subject to the relations

K E = q2 E K , K F = q−2 F K , K n
= 1, En

= Fn
= 0,

E F − F E =
K − K−1

q − q−1 . (8.3)

Note that uq(sl2) is pointed, of dimension n3. Let u≥0
q (sl2) be the Hopf subalgebra

of uq(sl2) generated by K , E , and let u≤0
q (sl2) be the Hopf subalgebra of uq(sl2)

generated by K , F ; we refer to these as Borel subalgebras.

Lemma 8.4. There are isomorphisms of Hopf algebras

u≥0
q (sl2)' T(n, q−2) and u≤0

q (sl2)' T(n, q2). (8.5)
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Proof. This is easy to check: identify K with g for both u≥0
q (sl2) and u≤0

q (sl2), and
E with x for u≥0

q (sl2), and F with g−1x for u≤0
q (sl2). �

Since uq(sl2) is generated by the Hopf subalgebras u≥0
q (sl2) and u≤0

q (sl2), an
action of uq(sl2) on a path algebra kQ is determined by its restriction to these Hopf
subalgebras. Since these actions are given by the results on Taft actions on kQ
in the previous sections, we can classify actions of uq(sl2) by determining some
additional compatibility conditions on the scalar parameters from these Taft actions.
We begin with the result below.

Proposition 8.6. Let uq(sl2) act on the path algebra of a set of vertices {1, . . . ,m},
labeled so that K · ei = ei+1 with subscripts taken modulo m.

(i) If m < n, then m = 1 or m = 2 and the action factors through the quotient
uq(sl2)/〈E, F〉.

(ii) If m = n, then

E · ei = γ
Eq−2i (ei − q−2ei+1), F · ei = γ

Fq2i (ei−1− q2ei ), (8.7)

for some γ E , γ F
∈ k. If furthermore n ≥ 3, then the action is subject to the

restriction
−γ Eγ Fq−1(q2

− 1)2 = 1. (8.8)

Proof. Part (i) is a result of Proposition 3.5, translated through the isomorphisms of
Lemma 8.4. The condition m = 1 or m = 2 comes from the relation (8.3), which
implies that K − K−1 acts by zero in this case. For (ii), Proposition 3.5 also gives
the formulas (8.7), and the first row of relations in the definition of uq(sl2) then
hold. On the other hand, substituting (8.7) into the relation (8.3) of uq(sl2) yields

(E F−F E)·ei =γ
Eγ F (q2

−1)(ei−1−ei+1) while (K−K−1)·ei = ei+1−ei−1.

If n = m = 2, then ei−1 = ei+1 and the relation (8.3) imposes no restriction on
the action (8.7). If n = m ≥ 3, then ei+1 6= ei−1 and the relation (8.3) imposes the
restriction (8.8) on the action (8.7). �

We get the following immediate consequence.

Corollary 8.9. If n ≥ 3, then either one of γ E or γ F determines the other. So, an
action of uq(sl2) on a Zn-orbit of vertices is completely determined by the action of
a Borel subalgebra, u≥0

q (sl2) or u≤0
q (sl2). �

We now consider uq(sl2)-actions on Type A and Type B Zn-minimal quivers.
Note that uq(sl2) can only act on subquivers of Km and Km,m′ for m,m′ ∈ {1, 2, n},
by Proposition 8.6. We only give theorems describing the case m = m′ = n ≥ 3
here, but the other cases can be worked out similarly.
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Theorem 8.10. Retain the notation of Section 4 with K in place of g, so the action
of K is fixed. Namely, K · ai

j = µi, j a
i+1
j+1 for Type A and K · bi

j = µi, j b
i+1
j+1 for

Type B. Assume n≥ 3. Then any uq(sl2)-action on the path algebra of a Zn-minimal
subquiver Q of Kn is given by

E · ai
j = γ

E(q−2 j ai
j − q−2i−2ai+1

j+1)+ λ
E
i, j a

i
j+1,

F · ai
j = γ

F (q2 j ai−1
j−1− q2i+2ai

j )+ λ
F
i, j a

i−1
j ,

(8.11)

subject to the restriction (8.8) along with
• λE

i, j = 0, if i = j or the arrow ai
j+1 does not exist in Q;

• λF
i, j = 0, if i = j or the arrow ai−1

j does not exist in Q;

• λE
i+1, j+1 = q−2λE

i, j , λF
i+1, j+1 = q2λF

i, j , and λF
i, jλ

E
i−1, j = λ

E
i, jλ

F
i, j+1.

Any uq(sl2)-action on the path algebra of a Zn-minimal subquiver Q of Kn,n is
given by

E · bi
j = (γ

E
−
)q−2 j bi

j − (γ
E
+
)q−2i−2bi+1

j+1+ λ
E
i, j b

i
j+1,

F · ai
j = (γ

F
−
)q2 j bi−1

j−1− (γ
F
+
)q2i+2bi

j + λ
F
i, j b

i−1
j ,

(8.12)

subject to restrictions of the form (8.8) on γ E
±

and γ F
±

, along with

• λE
i, j = 0, if i = j or the arrow bi

j+1 does not exist in Q;

• λF
i, j = 0, if i = j or the arrow bi−1

j does not exist in Q;

• λE
i+1, j+1 = q−2λE

i, j , λF
i+1, j+1 = q2λF

i, j , and λF
i, jλ

E
i−1, j = λ

E
i, jλ

F
i, j+1;

• (γ E
+
)n = (γ E

−
)n +

∏n−1
`=0 λ

E
i, j+` and (γ F

+
)n = (γ F

−
)n +

∏n−1
`=0 λ

F
i, j+`.

Proof. First consider the Type A case. Proposition 8.6 gives the uq(sl2)-action on
the vertices, imposing the restriction (8.8). Theorem 6.1, translated through the
isomorphisms of Lemma 8.4, initially gives expressions for E ·ai

j and F ·ai
j which

involve parameters µi, j . However, we examine the coefficients of various arrows in
the relation (8.3) applied to ai

j , and find that the coefficient of ai−1
j−1 gives

γ Eγ F (q2
− 1)+µi, j (q − q−1)−1

= 0. (8.13)

By applying (8.8), this simplifies to (µi, j − 1)(q − q−1)−1
= 0. So, µi, j = 1 for

all i , j , which gives our formulas (8.11). Similarly, the coefficient of ai−1
j+1 in the

relation (8.3) applied to ai
j implies that

λF
i, jλ

E
i−1, j − λ

E
i, jλ

F
i, j+1 = 0. (8.14)

Theorem 6.1 gives the remaining restrictions on the scalars, and the coefficients of
other arrows yield restrictions that are already implied by those above.

For Type B, the action is derived exactly as in the Type A case, by replacing a??
with b??, and γ with γ±, appropriately. �
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8B. Actions of the double D(T(n)). We take the presentation of the Drinfeld
double of the n-th Taft algebra in [Chen 1999, Definition-Theorem 3.1]. Namely, by
[Chen 1999, Theorem 3.3], the double is isomorphic to the Hopf algebra Hn(p, q)
generated by a, b, c, d . We take p= 1, q = ζ−1, a = x , b= g, c= G, and d = X
to get that:

Definition 8.15 (D(T(n))). The Drinfeld double D(T(n)) of the n-th Taft algebra
is generated by g, x,G, X , subject to relations

xg = ζgx, gX = ζ Xg, gn
= Gn

= 1,

G X = ζ XG, xG = ζGx, xn
= Xn

= 0, gG = Gg,

and
x X − ζ X x = ζ(gG− 1). (8.16)

Here, g and G are grouplike elements, x is (1, g)-a skew primitive element, and
X is a (1,G)-skew primitive element. Here, g, x generate the Hopf subalgebra
T(n), and G = g∗, X = x∗ generate (T(n)op)∗ = (T(n)∗)cop.

The following lemma is easy to check.

Lemma 8.17. The Hopf subalgebra of D(T(n)) generated by g, x is isomorphic
to T(n)= T(n, ζ ), as Hopf algebras. Moreover, the Hopf subalgebra of D(T(n))
generated by G, X is isomorphic to T(n, ζ−1), as Hopf algebras. �

To give the complete classification of D(T(n))-actions on path algebras of
quivers, one would need to define Zn × Zn-minimal quivers and consider the
D(T(n))-action on these, since Zn ×Zn is isomorphic to the group of grouplike
elements of D(T(n)). This is the subject of future work. Our aim for now is to
exhibit an action of D(T(n)) on kQ, where Q admits an action of Zn . We begin by
providing an action of D(T(n)) on a Zn-orbit of vertices.

Proposition 8.18. An action of D(T(n)) on kQ0 where Q0 = {1, . . . , n} is given
by

g · ei = ei+1, x · ei = γ
xζ i (ei − ζei+1),

G · ei = ei+1, X · ei = γ
Xζ−i (ei − ζ

−1ei+1).
(8.19)

for some γ x , γ X
∈ k. If n ≥ 3, then these scalars are subject to the restriction

γ xγ X (1− ζ−1)= 1. (8.20)

Proof. The formulas (8.19) satisfy the first two rows of relations of D(T(n)). On
the other hand, the restriction (8.20) comes from substituting (8.19) into the relation
(8.16) of D(T(n)) when n ≥ 3. If n = 2, the restriction from (8.16) is vacuous. �
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We proceed by extending the D(T(n))-action on vertices in Proposition 8.18
to yield an action of D(T(n)) on Type A and Type B Zn-minimal quivers. As in
the uq(sl2) case, we only give theorems describing the cases when each orbit of
vertices has n elements here.

Theorem 8.21. Retain the notation of Section 4. An action of D(T(n)) on the path
algebra of a Type A Zn-minimal subquiver Q of Kn is given by

g · ai
j = µ

g
i, j a

i+1
j+1, x · ai

j = γ
x(ζ j ai

j − ζ
i+1µ

g
i, j a

i+1
j+1)+ λ

x
i, j a

i
j+1,

G · ai
j = µ

G
i, j a

i+1
j+1, X · ai

j = γ
X (ζ− j ai

j − ζ
−i−1µG

i, j a
i+1
j+1)+ λ

X
i, j a

i
j+1,

(8.22)

subject to the restrictions

µ
g
i,i = µ

G
i,i = 1 for all i,∏n−1

`=0 µ
g
i+`, j+` =

∏n−1
`=0 µ

G
i+`, j+` = 1, µG

i, jµ
g
i+1, j+1 = µ

g
i, jµ

G
i+1, j+1,

ζµ
g
i, j+1λ

x
i, j = µ

g
i, jλ

x
i+1, j+1, ζµG

i, j+1λ
X
i, j = µ

G
i, jλ

X
i+1, j+1,

(∗)
ζµ

g
i, jλ

X
i+1, j+1 = µ

g
i, j+1λ

X
i, j , ζµG

i, j+1λ
x
i, j = µ

G
i, jλ

x
i+1, j+1,

λX
i, jλ

x
i, j+1− ζλ

x
i, jλ

X
i, j+1 = 0,

λx
i, j = λ

X
i, j = 0 if either i = j, or the arrow ai

j+1 does not exist in Q.

If n ≥ 3, then we also impose the condition γ xγ X (1− ζ−1)= 1.
An action of D(T(n)) on the path algebra of a Type B minimal subquiver Q of

Kn,n is given by

g · bi
j = µ

g
i, j b

i+1
j+1, G · bi

j = µ
G
i, j b

i+1
j+1,

x · bi
j = (γ

x
−
)ζ j bi

j − (γ
x
+
)ζ i+1µ

g
i, j b

i+1
j+1+ λ

x
i, j b

i
j+1,

X · bi
j = (γ

X
−
)ζ− j bi

j − (γ
X
+
)ζ−i−1µG

i, j b
i+1
j+1+ λ

X
i, j b

i
j+1,

(8.23)

subject to the restrictions (∗). If n ≥ 3, then we also impose the condition
(γ x
±
)(γ X
±
)(1− ζ−1)= 1.

Proof. First, Proposition 8.18 gives an D(T(n))-action on a Zn-orbit of vertices;
this imposes the restriction (8.20) when n ≥ 3. Now, consider the Type A case.
Theorem 6.1 gives the expressions in (8.22), along with some restrictions on
parameters, which are listed in the first two rows of restrictions in the statement of
the theorem. Now we need to check that the expressions, g ·ai

j , G ·ai
j , x ·ai

j , X ·ai
j ,

satisfy the relations of D(T(n)). The relations gG = Gg, gX = ζ Xg, xG = ζGx ,
imply, respectively, that

µG
i, jµ

g
i+1, j+1= µ

g
i, jµ

G
i+1, j+1, ζµ

g
i, jλ

X
i+1, j+1= µ

g
i, j+1λ

X
i, j , ζµ

G
i, j+1λ

x
i, j= µ

G
i, jλ

x
i+1, j+1.
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With these restrictions, it is easy to check that the relation x X−ζ X x−ζ(gG−1)=0
yields

λX
i, jλ

x
i, j+1− ζλ

x
i, jλ

X
i, j+1 = 0,

and we are done with the Type A case. For Type B, the action is derived exactly as
in the Type A case, by replacing a?? with b??, and γ with γ±, appropriately. �

8C. Gluing. Gluing is achieved in the following manner. Let Q be a quiver that
admits an action of Zn . Since the actions of uq(sl2) and D(T(n)) on kQ in Theorems
8.10 and 8.21 are determined by Taft actions, Theorem 7.5 and the algorithm in
Section 7B applies. In other words, we can glue the actions of uq(sl2) or of D(T(n))
on path algebras of Zn-minimal quivers. Hence, we obtain an action of uq(sl2) (resp.
D(T(n))) extending a Taft action on any path algebra kQ, where each path algebra
of a Zn-minimal component of Q admits an action of uq(sl2) (resp. D(T(n))).

9. Appendix

In this appendix, we show that the relation xn
= 0 imposes no restrictions on the

x-action on the vertex ei and on the arrows ai
j , bi

j of kQ, which is used in the
proofs of Proposition 3.5 and Theorems 6.1 and 6.3. Recall that ζ is a primitive
n-th root of unity, with n ≥ 2. An easy computation shows that

n∏
`=1

ζ ` = ζ
n(n+1)

2 =

{
1, n odd,
−1, n even,

(9.1)

a fact we will use several times here.
This appendix uses some basic properties of symmetric polynomials and q-

binomial coefficients, which we recall here. For integers a, b, the complete sym-
metric polynomial of degree a, denoted ha(x0, . . . , xb), is defined as the sum of all
monomials of total degree a in the variables x0, . . . , xb. We interpret the variable set
as being empty when b< 0. When a= 0, we have h0(x0, . . . , xb)= 1 for any integer
b. When a 6= 0, we have ha(x0, . . . , xb)= 0 if a< 0 or b< 0. Also, a product

∏b
i=a

is taken to be 1 whenever b < a. These polynomials are homogeneous, meaning
that ha(cx0, . . . , cxb) = caha(x0, . . . , xb) for any scalar c. We have immediately
from the definition that

ha(x0, . . . , xb−1)+ xbha−1(x0, . . . , xb)= ha(x0, . . . , xb) (9.2)

for any integers a, b.

Lemma 9.3. For nonnegative integers a, b, we have ha(1, ζ, ζ 2, . . . , ζ b)= 0 when
n divides a+ b and a, b 6= 0.
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Proof. Recall that for a nonnegative integer k, the corresponding q-integer is defined
as [k]q = 1+ q + q2

+ · · · + qk−1, and that its evaluation [k]q=ζ is 0 if and only
if n divides k. The q-binomial coefficient

[ i
j

]
q is defined by a factorial formula

analogous to that of binomial coefficients, so the evaluation
[ i

j

]
q=ζ vanishes when

n divides i and j 6= 0, i .
The principal specialization from [Stanley 1999, Proposition 7.8.3], with q = ζ ,

gives us that

ha(1, ζ, ζ 2, . . . , ζ b)=
[a+b

a

]
q=ζ

,

so by the paragraph above this quantity vanishes when n divides a+b and a, b 6= 0.
�

We prove a general lemma about a linear operator X acting as the element x does.

Lemma 9.4. Let V be a vector space, and consider a collection of vectors {vi
j } in

V , where 1≤ i ≤m and 1≤ j ≤m′. Interpret i and j modulo m and m′ respectively,
so that they lie inside their ranges. Let X be a linear operator acting on V such that

Xvi
j = η jv

i
j + θi, jv

i+1
j+1+ τi, jv

i
j+1

for some scalars η j , θi, j , τi, j ∈ k. Furthermore, assume that the scalars satisfy the
relation

τi+1, j+1θi, j = ζθi, j+1τi, j (9.5)

for all pairs (i, j). Then, for all positive integers k, we have

X k(vi
j )=

∑
0≤s≤t≤k

ψk,s,tv
i+s
j+t ,

where

ψk,s,t =

( s−1∏
`=0

θi+`, j+`+t−s

)( t−s−1∏
`=0

τi, j+`

)
× hk−t(η j , η j+1, · · · , η j+t)hs(1, ζ, . . . , ζ t−s). (9.6)

Proof. We proceed by induction on k. The base case of k = 1 follows from simple
substitution. So assume that the statement is true when k is replaced by k− 1; that
is, we have a formula for X k−1(vi

j ) for all pairs (i, j). Now, when applying X to
X k−1(vi

j ), the coefficient ψk,s,t is the sum of contributions from three terms:

• X (ψk−1,s,tv
i+s
j+t) contributes η j+tψk−1,s,t ;

• X (ψk−1,s−1,t−1v
i+s−1
j+t−1) contributes θi+s−1, j+t−1ψk−1,s−1,t−1;

• X (ψk−1,s,t−1v
i+s
j+t−1) contributes τi+s, j+t−1ψk−1,s,t−1.

So we obtain
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ψk,s,t =

( s−1∏
`=0

θi+`, j+`+t−s

)( t−s−1∏
`=0

τi, j+`

)
×
[
η j+t hk−1−t(η j , . . . , η j+t)hs(1, ζ, . . . , ζ t−s)

+ hk−t(η j , . . . , η j+t−1)hs−1(1, ζ, . . . , ζ t−s)
]

+ τi+s, j+t−1

(s−1∏
`=0

θi+`, j+`+t−s−1

)(t−s−2∏
`=0

τi, j+`

)
× hk−t(η j , . . . , η j+t−1)hs(1, ζ, . . . , ζ t−1−s). (9.7)

To simplify the last summand, we use (9.5) to compute

τi+s, j+t−1

s−1∏
`=0

θi+`, j+`+t−1−s

= (τi+s, j+t−1)θi+s−1, j+t−2θi+s−2, j+t−3 · · · θi, j+t−1−s

= ζθi+s−1, j+t−1(τi+s−1, j+t−2)θi+s−2, j+t−3 · · · θi, j+t−1−s

= ζ 2θi+s−1, j+t−1θi+s−2, j+t−2(τi+s−2, j+t−3) · · · θi, j+t−1−s

· · ·

= ζ s(τi, j+t−s−1)

s−1∏
`=0

θi+`, j+`+t−s . (9.8)

By (9.7) and (9.8), we now have

ψk,s,t =

( s−1∏
`=0

θi+`, j+`+t−s

)( t−s−1∏
`=0

τi, j+`

)
×
[
η j+t hk−1−t(η j , . . . , η j+t)hs(1, ζ, . . . , ζ t−s)

+ hk−t(η j , . . . , η j+t−1)hs−1(1, ζ, . . . , ζ t−s)

+ hk−t(η j , . . . , η j+t−1) ζ
s hs(1, ζ, . . . , ζ t−s−1)

]
. (9.9)

The factor of ζ s in the last term can be absorbed into the (homogeneous) polynomial
hs to make the sum of the last two terms equal to

hk−t(η j , . . . , η j+t−1)
(
hs−1(1, ζ, . . . , ζ t−s)+ hs(ζ, ζ

2, . . . , ζ t−s)
)
.

Now, taking xt−s−i = ζ
i , (9.2) implies that the two terms in the parenthesis simplify

to hs(1, ζ, . . . , ζ t−s). Thus, (9.9) yields

ψk,s,t =

( s−1∏
`=0

θi+`, j+`+t−s

)( t−s−1∏
`=0

τi, j+`

)
hs(1, ζ, . . . , ζ t−s)

×
[
η j+t hk−1−t(η j , . . . , η j+t)+ hk−t(η j , . . . , η j+t−1)

]
.
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Again applying (9.2), we find that (9.6) holds, and the induction is complete. �

We can apply this result to show that xn acts by 0 in the following cases.

Lemma 9.10. In the notation of Proposition 3.5, we have xn
· ei = 0.

Proof. Fix i . We will apply Lemma 9.4 in the case k = n, m =m′, with X = x and
vi

i = ei for 1 ≤ i ≤ m. The vi
j do not play a role in the proof for i 6= j , so we set

θi, j = τi, j = 0 when i 6= j and assume i = j for the remainder of the proof. From
the proof of Proposition 3.5, we have ηi = γ ζ

i , θi,i =−γ ζ
i+1, and τi,i = 0 for all

i . So, (9.5) holds and we can apply Lemma 9.4. Making these substitutions into
(9.6), we immediately see that ψn,s,t = 0 unless s = t , by considering the τ factor.
In case s = t , the τ factor and the last factor are equal to 1. This gives

ψn,s,s =

( s−1∏
`=0

θi+`,i+`

)
hn−s(ηi , ηi+1, · · · , ηi+s).

Since hn−s(ηi , ηi+1, · · · , ηi+s) is a scalar multiple of hn−s(1, ζ, . . . , ζ s), this van-
ishes by Lemma 9.3 unless s = 0 or s = n.

So we have xn
·ei = (ψn,0,0+ψn,n,n)ei . These are easily computed by substitution

to be

ψn,0,0 = hn(ηi )= (ηi )
n
= γ n

ψn,n,n =

n−1∏
`=0

θi+`,i+` = (−1)nγ n
n−1∏
`=0

ζ i+`+1
= (−1)nγ n

n−1∏
`=0

ζ ` =−γ n,

where the last equality invokes Equation (9.1). Thus we have shown that xn
·ei = 0.

�

Lemma 9.11. In the notation of Theorem 6.1, we have xn
· ai

j = 0 for all (i, j).

Proof. We will apply Lemma 9.4 in the case k = n with X = x and vi
j = ai

j . From
the proof of Theorem 6.1, we have η j = γ ζ

j , θi, j =−γµi, jζ
i+1, and τi, j = λi, j ,

and that these satisfy (9.5). Now making these substitutions into (9.6), we see that
ψn,s,t is a scalar times

hs(1, ζ, . . . , ζ t−s)hn−t(1, ζ, . . . , ζ t).

By Lemma 9.3, the second factor vanishes except when t = 0 or t = n. Then,
again by Lemma 9.3, the first factor vanishes except when s = 0 or s = t = n.
Therefore, we need only consider the cases when (s, t) equals (0, 0), (0, n), and
(n, n), in which these factors both equal 1. Notice that we have in all of these cases,
ai+s

j+t = ai
j , because the indices for arrows are taken modulo n. So it suffices to show
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that ψn,0,0+ψn,0,n +ψn,n,n = 0. Substitute and compute, omitting factors equal
to 1. We get

ψn,0,0 = hn(η j )= (η j )
n
= γ n and ψn,0,n =

n−1∏
`=0

τi, j+` = 0.

The latter follows by the second condition of Theorem 6.1, because there will be a
factor with i = j + ` modulo n. Further,

ψn,n,n =

n−1∏
`=0

θi+`, j+` = (−1)nγ n
n−1∏
`=0

µi+`, j+`ζ
i+`+1

= (−1)nγ n
n∏
`=1

ζ ` =−γ n,

where the penultimate equality uses (4.2) and the last equality invokes Equation (9.1).
Thus we have shown that xn

· ai
j = 0. �

Lemma 9.12. In the notation of Theorem 6.3, we have xn
· bi

j = 0 for all (i, j).

Proof. Again, we apply Lemma 9.4 with k = n, X = x , and vi
j = bi

j . The proof is
the same as for Lemma 9.11, except in this case we find that

ψn,0,0 = γ
n
−
, ψn,n,n =−γ

n
+
, and ψn,0,n =

n−1∏
`=0

τi, j+` =

n−1∏
`=0

λi, j+`.

Thus, we see that xn acts by 0 if and only if (γ+)n = (γ−)n +
∏n−1
`=0 λi, j+`, which

is the condition assumed on the scalars in Theorem 6.3. �
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