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Discriminant formulas and applications
Kenneth Chan, Alexander A. Young and James J. Zhang

The discriminant is a classical invariant associated to algebras which are finite over
their centers. It was shown recently by several authors that if the discriminant
of A is “sufficiently nontrivial” then it can be used to answer some difficult
questions about A. Two such questions are: What is the automorphism group
of A? Is A Zariski cancellative?

We use the discriminant to study these questions for a class of (generalized)
quantum Weyl algebras. Along the way, we give criteria for when such an algebra
is finite over its center and prove two conjectures of Ceken, Wang, Palmieri
and Zhang.

Introduction

In algebraic number theory, the discriminant takes on a familiar form: let L be a
Galois extension of the field Q and write OL = Z[α] ∼= Z[x]/( f ), where f is the
minimal polynomial (or the characteristic polynomial) of α. Then we have

1L/Q =
∏
i 6= j

(ri − rj ),

where r1, . . . , rn are the roots of f . In noncommutative algebra, the discriminant
has long been used to study orders and lattices in a central simple algebra [Reiner
1975]. Recently, it has been shown that the discriminant plays a remarkable role in
solving some classical and notoriously difficult questions:

(1) Automorphism problem: determining the full automorphism groups of non-
commutative Artin–Schelter regular algebras [CPWZ 2015a; 2016].

(2) Zariski cancellation problem: concerning the cancellative property of noncom-
mutative algebras such as skew polynomial rings [Bell and Zhang 2016].

(3) Isomorphism problem: finding a criterion for when two algebras are isomorphic,
within certain classes of noncommutative algebras [CPWZ 2015b].
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Despite the usefulness of the discriminant in algebraic number theory, algebraic
geometry and noncommutative algebra, it is extremely hard to compute, especially
in high dimensional and high rank cases. In [CPWZ 2015a; 2016], the authors made
two conjectures on discriminant formulas for some classes of noncommutative
algebras. Our main aim is to prove these two conjectures.

Let k be a base commutative domain and let k× be the set of invertible elements
in k. The discriminant of a noncommutative algebra A over a central subalgebra
Z ⊆ A, denoted by d(A/Z), will be reviewed in Section 1. Let q ∈ k× be an
invertible element in k and let Aq be the q-quantum Weyl algebra generated by
x and y and subject to the relation yx = qxy+ 1. Our first result is:

Theorem 0.1. Let q be a primitive n-th root of unity for some n ≥ 2. Then the
discriminant of Aq over its center Z(Aq) is

d(Aq/Z(Aq))= c(nm)n
2
((1− q)nxn yn

− 1)n(n−1),

where c is some element in k× and m =
∏n−1

i=2 (1+ q + · · ·+ q i−1). By convention,
m = 1 when n = 2.

Theorem 0.1 answers [CPWZ 2016, Conjecture 5.3] affirmatively.
For n ≥ 2, let Wn be the k-algebra generated by x1, . . . , xn and subject to the

relations xi xj + xj xi = 1 for all i 6= j [CPWZ 2015a, Introduction]. This algebra is
called a (−1)-quantum Weyl algebra [CPWZ 2015b, Introduction]. Let

M :=


2x2

1 1 · · · 1
1 2x2

2 · · · 1
...

...
. . .

...

1 1 · · · 2x2
n

 .
Let Z denote the central subalgebra k

[
x2

1 , . . . , x2
n
]
⊆Wn . Our second result is:

Theorem 0.2. Suppose 2 is invertible in k. Then the discriminant of Wn over the
subalgebra Z is

d(Wn/Z)= c(det M)2
n−1
,

where c is an element in k×.

Theorem 0.2 answers [CPWZ 2015a, Question 4.12(2)] affirmatively.
These results suggest that the discriminant has elegant expressions in some situa-

tions. Because of its usefulness, more discriminant formulas should be established;
see Lemma 6.4.

This paper contains other related results which we now describe. Let T be
a commutative algebra over k and let q := {qi j ∈ T× | 1 ≤ i < j ≤ n} and
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A := {ai j ∈ T | 1≤ i < j ≤ n} be sets of elements in T. The skew polynomial ring
Tq[x1, . . . , xn] is a T-algebra generated by x1, . . . , xn and subject to the relations

xj xi = qi j xi xj for all 1≤ i < j ≤ n. (E0.2.1)

A generalized quantum Weyl algebra associated to (q,A) is a T-central filtered
algebra of the form

Vn(q,A)=
T 〈x1, . . . , xn〉

(xj xi − qi j xi xj − ai j | i < j)
(E0.2.2)

such that the associated graded ring gr Vn(q,A) is naturally isomorphic to the skew
polynomial ring Tq[x1, . . . , xn]. Another way of constructing Vn(q,A) is to use an
iterated Ore extension starting with T. To calculate the discriminant of Vn(q,A)
over its center, one needs to determine the center of Vn(q,A). The discriminant
is defined whenever Vn(q,A) is a finite module over a central subring Z [CPWZ
2016], and it is most useful when Vn(q,A) is a free module over Z [CPWZ 2015a].
Since gr Vn(q,A) is isomorphic to Tq[x1, . . . , xn], it is a finite module over its
center if and only if each qi j is a root of unity. Using this, we can show that the
algebra Vn(q,A) is a finite module over its center if and only if the parameters qi j

are all nontrivial roots of unity. Also, when the center of Vn(q,A) is a polynomial
ring, Vn(q,A) is a finitely generated free module over its center. The following
useful result concerns the centers of Vn(q,A) and Tq[x1, . . . , xn].

To state it, we need some notation. When qi j is a root of unity, there are two
integers ki j and di j such that

qi j = exp
(
2π
√
−1ki j/di j

)
,

where di j := o(qi j ) <∞, |ki j |< di j and (ki j , di j )= 1. Further, we can choose ki j

so that ki j =−kj i , since qj i = q−1
i j . Let L i = lcm{di j | j = 1, . . . , n}. Let Y be the

n× n matrix (ki j L i/di j )n×n . For each prime p, define Yp = Y ⊗ Fp. Let m be any
natural number. Let Ip,m be the set containing i such that L i ∈ pmZ− pm+1Z.
Finally, let Yp,m be the submatrix of Yp taken from the rows and columns with
indices i ∈ Ip,m .

Theorem 0.3. Suppose qi j is a root of unity and not 1 for all i < j .

(1) The center of Tq[x1, . . . , xn] is a polynomial ring if and only if it is of the form
T
[
x L1

1 , . . . , x Ln
n
]
, if and only if det(Yp,m) 6= 0 in Fp for all primes p and all

integers m > 0 such that Ip,m 6=∅.

(2) If the center of Tq[x1, . . . , xn] is the subalgebra T
[
x L1

1 , . . . , x Ln
n
]
, then the

center of Vn(q,A) is the same subalgebra and Vn(q,A) is finitely generated
and free over it.
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The above criterion can be simplified when n = 3 or 4 [Corollaries 5.4 and 5.5].
The point of Theorem 0.3 is that it provides an explicit linear algebra criterion for
when the center of Tq[x1, . . . , xn] is isomorphic to a polynomial ring.

Question 0.4. Suppose that A := Vn(q,A) is finitely generated and free over its
center Z . What is the discriminant d(A/Z)?

Theorems 0.1 and 0.2 answer this question for two special cases.
A secondary goal of this paper is to provide some quick applications. These

discriminant formulas have potential applications in algebraic geometry, number
theory and the study of Clifford algebras. In Section 8 (the final section), we give
some immediate applications of discriminants to the cancellation problem and the
automorphism problem for several classes of noncommutative algebras.

Let us briefly review some definitions. An algebra A is called cancellative if
A[t] ∼= B[t] for some algebra B implies A ∼= B. Let Aut(A) be the group of all
algebra automorphisms of A. Let A be connected graded. An algebra automorphism
g of A is called unipotent if

g(v)= v+ (higher degree terms)

for all homogeneous elements v ∈ A. Let Autuni(A) denote the subgroup of Aut(A)
consisting of all unipotent automorphisms [CPWZ 2016, after Theorem 3.1]. When
Autuni(A) is trivial, Aut(A) is usually small and easy to handle. We will give a
criterion on when Autuni(A) is trivial.

Let A be a domain and let F be a subset of A. Let Sw(F) be the set of g ∈ A such
that f = agb for some a, b ∈ A and 0 6= f ∈ F. Let D1(F) be the k-subalgebra of A
generated by Sw(F). For n > 2, we define Dn(F) = D1(Dn−1(F)) inductively,
and define D(F)=

⋃
n≥1 Dn(F). This algebra is called the F-divisor subalgebra

of A. When F = {d(A/Z)}, D(F) is called the discriminant-divisor subalgebra
of A and is denoted by D(A). The main result in Section 8 is the following.

Theorem 0.5. Suppose k is a field of characteristic zero. Let A be a connected
graded domain of finite Gelfand–Kirillov dimension. Assume that A is finitely
generated and free over its center. If D(A) = A, then A is cancellative and
Autuni(A)= {1}.

The above theorem can be applied to some Artin–Schelter regular algebras of
global dimension 4 in Examples 6.3 and 8.4. Further applications are certainly
expected.

This paper is organized as follows. Background material about discriminants
is provided in Section 1. We prove Theorem 0.1 in Section 2 and Theorem 0.2 in
Section 3. Sections 4–6 concern the question of when Tq[x1, . . . , xn] and Vn(q,A)
are finitely generated and free over their centers and contain the proof of Theorem 0.3.
In Section 7, we review and introduce some invariants related to discriminants,
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locally nilpotent derivations, and automorphisms, which will be used in Section 8.
In Section 8, some applications are provided and Theorem 0.5 is proven.

1. Preliminaries

In this section we recall some definitions and basic properties of the discriminant.
A basic reference is [CPWZ 2015a, Section 1].

Throughout, let k be a base commutative domain and let everything be over k.
Let A be an algebra and let Z be a central subalgebra of A such that A is finitely
generated and free over Z . A modified version of the discriminant was introduced in
[CPWZ 2016] when A is not free over Z ; however, in this paper, we only consider
the case when A is finitely generated and free over Z . Let r be the rank of A over Z .

We embed A in the endomorphism ring End(AZ ) by sending a ∈ A to the left
multiplication la : A→ A. Since A is free over Z of rank r , End(AZ )∼= Mr×r (Z).
Define the trace function

tr : A −→ End(AZ )∼= Mr×r (Z)
trm
−→ Z , (E1.0.1)

where trm is the usual matrix trace. The trace function tr is independent of the
choice of basis of A over Z .

Definition 1.1. [CPWZ 2015a, Definition 1.3(3)] Retain the above notation. Sup-
pose that A is a free module over a central subalgebra Z with a Z-basis {z1, . . . , zr }.
The discriminant of A over Z is

d(A/Z)= det(tr(zi zj ))r×r ∈ Z .

By [CPWZ 2015a, Proposition 1.4(2)], d(A/Z) is unique up to a scalar in Z×.
For x, y ∈ Z , we use the notation x=Z× y to indicate that x= cy for some c∈ Z×. So
d(A/Z)=Z× det(tr(zi zj ))r×r as in [CPWZ 2015a, Definition 1.3(3)]. The following
lemma is easy.

Lemma 1.2. Retain the notation of Definition 1.1. Let (A′, Z ′) be another pair of
algebras such that Z ′ is a central subalgebra of A′ and A′ is a free Z ′-module of
rank r . Let g : A→ A′ be an algebra homomorphism such that:

(a) g(Z)⊆ Z ′.

(b) {g(z1), . . . , g(zr )} is a Z ′-basis of A′.

Then g(d(A/Z))=(Z ′)× d(A′/Z ′).

Proof. For any a ∈ A, we define a′ = g(a). Write azi =
∑r

j=1ai j zj for all i . By
applying g to the last equation, we have a′z′i =

∑r
j=1a′i j z

′

j . By definition (E1.0.1),
tr(a)=

∑
i ai i and

tr(g(a))= tr(a′)=
∑

i

a′i i = g
(∑

i

ai i

)
= g(tr(a))
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for all a ∈ A. By Definition 1.1 and the above equation,

g(d(A/Z))= g(det(tr(zi zj ))r×r )= det(tr(z′i z
′

j ))r×r =(Z ′)× d(A′/Z ′). �

Let Z be a central subalgebra of A and consider an Ore set C ⊂ Z . Then the
localization ZC−1 is central in AC−1.

Lemma 1.3. Let Z be a central subalgebra of A. Suppose A is free over Z of
rank r. Then AC−1 is free over ZC−1 of rank r. As a consequence,

d
(
AC−1/ZC−1)

=(ZC−1)× d(A/Z).

Proof. Let {z1, . . . , zr } be a Z-basis of A. Then it is also a ZC−1-basis of AC−1.
The consequence follows from Lemma 1.2. �

We will need the following result from [CPWZ 2016]. We use T in place of k to
denote a commutative domain.

Proposition 1.4. Let T be a commutative domain and let A = Tq[x1, . . . , xn].
Suppose Z := T

[
xα1

1 , . . . , xαn
n
]

is a central subalgebra of A, where the αi are
positive integers.

(1) [CPWZ 2016, Proposition 2.8] Let r =
∏n

i=1αi . Then

d(A/Z)=T× r r
( n∏

i=1

xαi−1
i

)r

.

(2) If n = 2, Z = T
[
xm

1 , xm
2

]
, and q12 is a primitive m-th root of unity, then

d(A/Z)=T× m2m2(
xm

1 xm
2
)m(m−1)

.

(3) If qi j =−1 for all i < j and αi = 2 for all i , then

d(A/Z)=T× 2n2n
( n∏

i=1

x2
i

)2n−1

.

Proof. Parts (2) and (3) are special cases of part (1). �

The next lemma is a special case of [CPWZ 2016, Proposition 4.10]. Suppose Z
is a central subalgebra of A and A is free over Z of rank r <∞. We fix a Z-basis
of A, say b := {b1 = 1, b2, . . . , br }. Suppose A is an N-filtered algebra such that
the associated graded ring gr A is a domain. For any element f ∈ A, let gr f denote
the associated element in gr A. Let gr b denote the set {gr b1, . . . , gr br }, which is a
subset of gr A.

Lemma 1.5. Retain the above notation. Suppose that gr A is finitely generated and
free over gr Z with basis gr b. Then

gr(d(A/Z))=(gr Z)× d(gr A/ gr Z).
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2. Discriminant of Aq over its center

Let T be a commutative domain and let q ∈ T× be a primitive n-th root of unity for
some n ≥ 2. Let Aq be the q-quantum Weyl algebra over T generated by x and y
and subject to the relation yx = qxy + a for some a ∈ T. This agrees with the
definition of Aq given in the Introduction when T = k and a = 1. It is easy to
check that the center of Aq , denoted by Z(Aq), is T [xn, yn

], and that Aq is free
over Z(Aq) of rank n2. A Z(Aq)-basis of Aq is B := {x i y j

| 0≤ i, j ≤ n−1}. The
aim of this section is to compute the discriminant d(Aq/Z(Aq)).

Let A′ be the T-subalgebra of Aq generated by x ′ := (1− q)x and y. Since
yx ′= qx ′y+(1−q)a and (1−q) may not be invertible, there is no obvious algebra
homomorphism from Aq to A′. Let Z ′ be the subalgebra T [(x ′)n, yn

] which is the
center of A′.

Lemma 2.1. Retain the above notation. Then

d(A′/Z ′)= (1− q)n
2(n−1)d(Aq/Z(Aq)).

Proof. Let tr′ : A′→ Z ′ be the trace function defined in (E1.0.1). We use this trace
function to compute the discriminant d(A′/Z ′).

Let B′ := {(x ′)i y j
}0≤i, j≤n−1. Then B′ is a Z ′-basis of A′. Note that A′ and Aq

have the same ring of fractions and Z(Aq) and Z ′ have the same fraction field.
Since the trace function is independent of the choice of basis, we have tr′(a)= tr(a)
for all a ∈ A′.

Picking any two elements bs = x is y js and bt = x it y jt in B, we have corresponding
elements b′s = (x

′)is y js and b′t = (x
′)it y jt in B. Hence

tr′(b′sb′t)= tr
(
(1− q)is+it bsbt

)
= (1− q)is+it tr(bsbt).

By definition, d(A′/Z ′)= det
[
tr′(b′sb′t)b′s ,b′t∈B′

]
. Hence we have

d(A′/Z ′)= det
[
(tr′(b′sb′t))b′s ,b′t∈B′

]
= det

[(
(1− q)is+it tr(bsbt)

)
bs ,bt∈B

]
= (1− q)N det

[
(tr(bsbt))bs ,bt∈B

]
= (1− q)N d(Aq/Z(Aq)),

where

N =
∑

all is ,it

(is + it)= 2
∑
all is

is = 2n(0+ 1+ 2+ · · ·+ (n− 1))= n2(n− 1).

The assertion follows. �

Following the above lemma, we first compute d(A′/Z ′). We can rewrite A′

as T 〈x ′, y〉/(yx ′ − qx ′y − (1− q)a) so that the positions of x ′ and y are more
symmetrical.
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Let C ={(yn)i | i ≥ 1}. Consider the localizations Z ′′ := Z ′C−1 and A′′ := A′C−1.
Let

x ′′ := x ′− ay−1
= (1− q)x − (ay−n)yn−1

∈ A′′.

Lemma 2.2. Retain the above notation. The following hold:

(1) yx ′′− qx ′′y = 0.

(2) A′′ := A′C−1 is generated by T, (yn)−1, x ′′ and y.

(3) (x ′′)n is central and d(A′′/Z ′′)=(Z ′′)× n2n2
((x ′′)n yn)n(n−1).

(4) d(A′′/Z ′′)=(Z ′′)× n2n2
((1− q)nxn yn

− an)n(n−1).

Proof. (1) We have yx ′′−qx ′′y = y((1−q)x−ay−1)−q((1−q)x−ay−1)y = 0.

(2) This is clear.

(3) Since qn
= 1, (x ′′)n commutes with y by part (1). By part (2), (x ′′)n commutes

with every element in A′′.
Consider an algebra homomorphism g :Tq [x1, x2]→A′′ determined by g(x1)= x ′′

and g(x2) = y. Then the center of B := Tq [x1, x2] is R := T
[
xn

1 , xn
2

]
and

{
x i

1x j
2 |

0 ≤ i, j ≤ n − 1
}

is an R-basis of B. It is clear that A′′ is free of rank n2 and
that A′′ =

∑
0≤i, j≤n−1(x

′)i y j Z ′′. Hence {(x ′′)i y j
| 0≤ i, j ≤ n− 1} is a Z ′′-basis

of A′′. Then the hypotheses of Lemma 1.2 hold. Applying Lemma 1.2 to g, we have
g(d(B/R)) =(Z ′)× d(A′′/Z ′′). By Proposition 1.4(2), d(B/R) = n2n2(

xn
1 xn

2

)n(n−1).
Therefore, d(A′′/Z ′′)=(Z ′)× n2n2

((x ′′)n yn)n(n−1).

(4) In the following, we will let ψ = y−1, z = x ′′ and p = q−1. The commutation
relation between x ′ and ψ is

ψx ′ = (1− q)ψx = (1− q)(pxψ − paψ2)= px ′ψ − (p− 1)aψ2. (E2.2.1)

Recall that z = x ′′ = x ′− aψ . Write zn
=
∑n

i=0 ci (x ′)iψn−i. Since zn is central
(see part (3)), we have ci = 0 unless i = 0, n. It is clear that cn = 1. Next we deter-
mine c0. Since A′′ is a free module over Z ′′ with basis {(x ′)iψ j

| 0≤ i, j ≤ n−1},
we can work modulo the right Z ′′-submodule W generated by (x ′)iψ j , where
0< i < n and 0≤ j < n. Let ≡ denote equivalence mod W.

By induction, for i = 1, . . . , n− 1, we have

ψ i x ′ = pi x ′ψ i
− (pi

− 1)(aψ i+1). (E2.2.2)

Then ψ i x ′ ≡−(pi
− 1)(aψ i+1). For each 1≤ j ≤ n− 1, write

z j
=

j∑
i=0

c j
i (x
′)iψ j−i .
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Then x ′z j
∈W for all j <n−1 and x ′zn−1

≡ (x ′)n. For each j , we haveψ j−1zn− j
=∑n− j

i=0 d j
i (x
′)iψn−1−i for some d j

i ∈ Z ′, so

x ′ψ j−1zn− j
∈W (E2.2.3)

for all j ≥ 2. By the above computation and (E2.2.1)–(E2.2.3), we have

zn
− (x ′)n = (x ′− aψ)zn−1

− (x ′)n

= x ′zn−1
− (x ′)n − aψzn−1

≡−aψ(x ′− aψ)zn−2

≡−a(px ′ψ − (p− 1)aψ2
− aψ2)zn−2

≡−a(−pa)ψ2zn−2
− apx ′ψzn−2

≡−a(−pa)ψ2zn−2

≡−a(−pa)(ψ2x − aψ3)zn−3

≡−a(−pa)(−p2a)ψ3zn−3

...

≡−a(−pa)(−p2a) · · · (−pn−1a)ψn

= (−a)n p(n−1)n/2ψn
=−anψn.

Therefore,
zn
≡−anψn

+ (x ′)n.

Hence c0 =−an and zn
= (x ′)n − anψn. Combining all of the above, we have

(x ′′)n yn
= ((x ′)n − anψn)yn

= (x ′)n yn
− an
= (1− q)nxn yn

− an.

Part (4) follows from part (3) and the above formula. �

Lemma 2.3. The discriminant of A′ over its center Z ′ is

d(A′/Z ′)=T× n2n2
((1− q)nxn yn

− an)n(n−1).

Proof. Let g be the embedding of A′ into A′′ = A′C−1, viewed as an inclu-
sion. By Lemma 1.2, g sends d(A′/Z ′) to d(A′′/Z ′′). Combining this fact with
Lemma 2.2(4), we have

d(A′/Z ′)=(Z ′′)× g(d(A′/Z(A′)))=(Z ′′)× d(A′′/Z ′′)

=(Z ′′)× n2n2
((1− q)nxn yn

− an)n(n−1).

Let 8 be the element d(A′/Z ′)
{
n2n2

((1− q)nxn yn
− an)n(n−1)

}−1, which can be
viewed as an element in the quotient ring of A′. By the above equation, 8 is
in (Z ′′)×. Since Z ′′ = T [(x ′)n, y±n

], 8 is of the form αysn for some α ∈ T×
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and some s. By symmetry, 8 is also of the form β(x ′)tn for some β ∈ T× and
some t . Hence s = t = 0, α = β ∈ T× and 8 = α ∈ T×. Therefore, d(A′/Z ′) =
αn2n2

((1− q)nxn yn
− an)n(n−1) and the assertion follows. �

Now let

m :=
n−1∏
i=2

(1+ q + · · ·+ q i−1). (E2.3.1)

We can show that n = (1−q)n−1m by first factoring the polynomial xn
− 1 ∈ T [x]

and dividing by (x − 1):

xn
− 1=

n−1∏
i=0

(x − q i ) H⇒

n−1∑
i=0

x i
=

xn
− 1

x − 1
=

n−1∏
i=1

(x − q i ).

We then substitute 1 for x as follows:

n =
n−1∏
i=1

(1− q i )= (1− q)n−1
n−1∏
i=2

(1+ q + · · ·+ q i−1)= (1− q)n−1m. (E2.3.2)

Now we are ready to prove the main result of this section, which also recovers
Theorem 0.1.

Theorem 2.4. Retain the above notation. The discriminant of Aq over its center
Z(Aq) is

d(Aq/Z(Aq))=T× (nm)n
2
((1− q)nxn yn

− an)n(n−1).

Proof. Using Lemmas 2.1 and 2.3 and equation (E2.3.2), we have

(1− q)n
2(n−1)d(Aq/Z(Aq))=T× (nm(1− q)n−1)n

2
((1− q)nxn yn

− an)n(n−1).

Since Aq is a domain, we obtain

d(Aq/Z(Aq))=T× (nm)n
2
((1− q)nxn yn

− an)n(n−1). �

Remark 2.5. (1) By [CPWZ 2016, Lemma 2.7(7)], the integer n in Theorem 2.4
is nonzero in T. However, n and m may not be invertible in general.

(2) Theorem 0.1 is clearly a consequence of Theorem 2.4.

A slight generalization of Theorem 2.4 is the following.

Theorem 2.6. Let T be a commutative domain and q ∈ T× be a primitive n-th root
of unity. Let B be the T-algebra of the form

T 〈x, y〉
(yx − qxy = a, xn = b, yn = c)

,
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where a, b, c ∈ T. Suppose that B is a free module over T with basis {x i y j
|

0≤ i, j ≤ n−1}. Then d(B/T )=T× (nm)n
2
((1−q)nxn yn

−an)n(n−1), where m is
given in (E2.3.1).

Proof. First note that it is well-known and easy to check that T is the center of B.
Recall that Aq is the algebra of the form T 〈x, y〉/(yx − qxy = a). There is

a natural algebra homomorphism g from Aq to B sending x to x and y to y
and t ∈ T to t ∈ T. Then the hypotheses in Lemma 1.2 hold. By Lemma 1.2,
g(d(Aq/Z(Aq)))= d(B/T ). Now the assertion follows from Theorem 2.4. �

3. Discriminant of Clifford algebras

In this section we assume that 2−1
∈ k. We fix an integer n ≥ 2.

Let T be a commutative domain and let A := {ai j | 1 ≤ i < j ≤ n} be a set of
scalars in T. We write aj i = ai j if i < j . Let Vn(A) be the T-algebra generated by
x1, . . . , xn and subject to the relations

xi xj + xj xi = ai j for all i 6= j.

This algebra was studied in [CPWZ 2015a; 2015b]. Some basic properties of Vn(A)
are given in [CPWZ 2015a, Section 4]. Let M1 be the matrix

M1 :=


2x2

1 a12 · · · a1n

a21 2x2
2 · · · a2n

...
...

. . .
...

an1 an2 · · · 2x2
n

 . (E3.0.1)

This is a symmetric matrix with entries in Z := T
[
x2

1 , . . . , x2
n
]
. We will define a

sequence of matrices Mi later. Note that Z is a central subalgebra of Vn(A). If we
write M1 = (mi j,1)n×n , then mi j,1 = xj xi + xi xj for all i , j .

The algebra Vn(A) is a Clifford algebra over Z . We will recall the definition
of the Clifford algebra associated to a quadratic form in the second half of this
section. In the next few lemmas, we are basically diagonalizing the quadratic form,
which is elementary and well-known in the classical case; see [Lam 2005, Chapter I,
Corollary 2.4] for some related material. Since we need an explicit construction to
complete the proof of our main result, details will be provided below.

We will introduce a sequence of new variables starting with

xi,1 = xi for all i = 1, . . . , n,

and

ai j,1 = ai j for all i 6= j, and ai i,1 = 2x2
i for all i.
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So we have xj,1xi,1+ xi,1xj,1 = ai j,1 for all i , j . Let

x1,2 := x1,1 and xi,2 := xi,1−
1
2a1i,1x−2

1,1x1,1 for all i ≥ 2. (E3.0.2)

Lemma 3.1. Retain the above notation.

(1) xi,2x1,2+ x1,2xi,2 = 0 for all i ≥ 2.

(2) x2
i,2 = x2

i,1−
1
4a2

1i,1x−2
1,1 for all i ≥ 2.

(3) xi,2xj,2+ xj,2xi,2 = ai j,1−
1
2a1i,1a1 j,1x−2

1,1 for all 2≤ i < j ≤ n.

(4) Let M2 be the matrix (xi,2xj,2+ xj,2xi,2)1≤i, j≤n . Then det M2 = det M1.

(5) Let
C1 =

{
x2i

1,1
}

i≥1.

Then the localization Vn(A)
[
C−1

1

]
is free over Z

[
C−1

1

]
with basis

{
xd1

1,2 · · · x
dn
n,2|

ds = 0, 1
}
.

Proof. (1)–(3) These follow by direct computation.

(4) Let N be the matrix

1 0 0 · · · 0

−
1
2a12,1x−2

1,1 1 0 · · · 0

−
1
2a13,1x−2

1,1 0 1 · · · 0
...

...
...

. . .
...

−
1
2a1n,1x−2

1,1 0 0 · · · 1


.

By linear algebra and part (3), one can check that NM1 N T
= M2. Since det N = 1,

we have det M2 = det M1.

(5) First of all, Vn(A) is free over Z with basis
{

xd1
1,1 · · · x

dn
n,1 | ds = 0, 1

}
. In the

localization Vn(A)
[
C−1

1

]
, this basis can be transformed to a basis

{
xd1

1,2 · · · x
dn
n,2|

ds = 0, 1
}

by using (E3.0.2). �

After we have xi,2, define ai j,2 to be xi,2xj,2+ xj,2xi,2 for all i , j . Now we define
xi,s and ai j,s inductively.

Definition 3.2. Let s ≥ 3 and suppose that xi,s−1 and ai j,s−1 are defined inductively.
Define

xi,s := xi,s−1 for all i < s,

xi,s := xi,s−1−
1
2as−1i,s−1x−1

s−1,s−1 for all i ≥ s.
(E3.2.1)

Define ai j,s := xi,s xj,s + xj,s xi,s for all i , j .
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Similar to Lemma 3.1, we have the following lemma. Its proof is also similar to
the proof of Lemma 3.1, so it is omitted.

Lemma 3.3. Retain the above notation. Let 2≤ s ≤ n.

(1) xi,s xj,s + xj,s xi,s = 0 for all i < j and i < s.

(2) xi,s = xi,s−1 if i < s and x2
i,s = x2

i,s−1−
1
4a2

s−1i,s−1x−2
s−1,s−1 for all i ≥ s.

(3) xi,s xj,s+ xj,s xi,s = ai j,s−1−
1
2as−1i,s−1as−1 j,s−1x−2

s−1,s−1 for all s ≤ i < j ≤ n.

(4) Let Ms be the matrix (xi,s xj,s + xj,s xi,s)1≤i, j≤n . Then det Ms = det M1.

(5) Let Cs−1 be the Ore set{
x2i1

1,1x2i1
2,2 · · · x

2is−1
s−1,s−1

}
i1,...,is−1≥1.

Then the localization Vn(A)
[
C−1

s−1

]
is free over Z

[
C−1

s−1

]
with basis

{
xd1

1,s· · · x
dn
n,s|

ds = 0, 1
}
.

We need two more lemmas before we prove the main result.

Lemma 3.4. Let T be a commutative domain. Let A be a T-algebra containing T
as a subalgebra, generated by x1, . . . , xn and satisfying the relations xj xi+xi xj = 0
for all i < j and x2

i = ai ∈ T. Suppose that A is a free module over T with basis{
xd1

1 · · · x
dn
n | ds = 0, 1

}
. Then

d(A/T )=T×

( n∏
i=1

2x2
i

)2n−1

=T×

( n∏
i=1

x2
i

)2n−1

.

Proof. Let B = T−1[x1, . . . , xn] and Z = T
[
x2

1 , . . . , x2
n
]
. Then B is a free module

over Z with basis
{

xd1
1 · · · x

dn
n | ds = 0, 1

}
. Let g be the algebra map from B to A

sending T to T, xi to xi . Then the hypotheses in Lemma 1.2 holds. By Lemma 1.2,
g(d(B/Z))=T× d(A/T ). Note that d(B/Z) was computed in Proposition 1.4(3) to
be
(∏n

i=12x2
i

)2n−1

, as we assume that 2 is invertible. Now the assertion follows. �

Let A be an Ore domain and let Q(A) denote the skew field of fractions of A.
Let Z be the commutative subalgebra T

[
x2

1 , . . . , x2
n
]
⊂ Vn(A). For each 1≤ 1≤ n,

let Zi be the subring of Q(Z) of the form

Q
(
T
[
x2

1 , . . . , x̂2
i , . . . , x2

n
])[

x2
i
]
.

Lemma 3.5. Retain the above notation.

(1)
⋂n

i=1 Zi = Q(T )
[
x2

1 , . . . , x2
n
]
.

(2) Z
[
C−1

n−1

]
⊆ Zn , where Z

[
C−1

n−1

]
is defined in Lemma 3.3(5).

Proof. (1) This is an easy commutative algebra fact.

(2) By Lemma 3.3(2) and induction, each x2
i,s, for all 1≤ i < n and all 1≤ s ≤ n,

is in Q
(
T
[
x2

1 , . . . , x2
n−1

])
. So Z

[
C−1

n−1

]
⊆ Zn . �
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Theorem 3.6. Suppose 2 is invertible. Let Z = T
[
x2

1 , . . . , x2
n
]
. Then

d(Vn(A)/Z)=T× (det M1)
2n−1

,

where M1 is given in (E3.0.1).

Proof. Consider the variables {xi,n}
n
i=1 defined in Lemma 3.3. By Lemma 3.3(5),

Vn(A)
[
C−1

n−1

]
is free over Z

[
C−1

n−1

]
with basis

{
xd1

1,s · · · x
dn
n,s | ds = 0, 1

}
. By Lemma

3.4, the discriminant

d
(
Vn(A)

[
C−1

n−1

]
/Z
[
C−1

n−1

])
is of the form

(∏n
i=1 x2

i

)2n−1

up to a unit in Z
[
C−1

n−1

]
. By Lemma 3.3(4), we have

d
(
Vn(A)

[
C−1

n−1

]
/Z
[
C−1

n−1

])
=

( n∏
i=1

x2
i

)2n−1

= (det Mn)
2n−1
= (det M1)

2n−1
.

By Lemma 1.3,

d(Vn(A)/Z)=(Z[C−1
n−1])

× d
(
Vn(A)

[
C−1

n−1

]
/Z
[
C−1

n−1

])
=(Z[C−1

n−1])
× (det M1)

2n−1
.

Let 8 be the element d(Vn(A)/Z)−1(det M1)
2n−1

. Then 8 ∈
(
Z
[
C−1

n−1

])×. This
means that both 8 and 8−1 are in Z

[
C−1

n−1

]
⊆ Zn . By symmetry, 8 is Zi for all i .

Thus 8 is in
⋂n

i=1 Zi = Q(T )
[
x2

1 , . . . , x2
n
]
. Similarly, 8−1 is in Q(T )

[
x2

1 , . . . , x2
n
]
.

Therefore, 8,8−1
∈ Q(T ).

Write d(Vn(A)/Z)= c(det M1)
2n−1

, where c=8−1
∈ Q(T ). It remains to show

c ∈ Z×. Note that Vn(A) is a filtered algebra such that gr Vn(A)∼= T−1[x1, . . . , xn].
By Lemma 1.5,

gr d(Vn(A)/Z)=Z× d(gr Vn(A)/ gr Z).

The left-hand side of the above is c
(∏

i=1 x2
i

)2n−1

and the right-hand side of the
above is

(∏
i=1 x2

i

)2n−1

by Proposition 1.4(3) (assuming 2 is invertible). Thus
c ∈ Z×, as required. �

Theorem 0.2 is a special case of Theorem 3.6 by taking ai j = 1 for all i < j .
The algebras Vn(A) and Wn are special Clifford algebras. Now we consider a

Clifford algebra in a more general setting. Let T be a commutative domain and
let V be a free T-module of rank n. Given a quadratic form q : V → T, we can
associate to this data the Clifford algebra

C(V, q)=
T 〈V 〉

(x2− q(x) | x ∈ V )
.
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Note that this q is different from the parameter q in the definition of the q-quantum
Weyl algebra Aq and the parameter set q in the Vn(q,A) and Tq[x1, . . . , xn]. Con-
sider the bilinear form associated to q ,

b(x, y)= 1
2(q(x + y)− q(x)− q(y)) (E3.6.1)

for all x, y ∈ V. If we choose a T-basis x1, . . . , xn for V and let

B := (bi j )= (b(xi , xj ))n×n ∈ T n×n (E3.6.2)

be the symmetric matrix which represents b with respect to this basis, then the
relations of C(V, q) are

xi xj + xj xi = 2bi j for all i, j. (E3.6.3)

Define det(q) to be det(B).
The following main result is a consequence of Theorem 3.6 and Lemma 1.2.

Theorem 3.7. Let A :=C(V, q) be a Clifford algebra over a commutative domain T
defined by a quadratic form q : V → T. Pick a T-basis of V, say {xi }

n
i=1. Then

d(A/T )=T× (det(xi xj + xj xi )n×n)
2n−1
=T× det(q)2

n−1
. (E3.7.1)

Proof. Let b : V⊗2
→ T be the symmetric bilinear form associated to the quadratic

form q. Let ai j = 2b(xi , xj ) for all i < j and A = {ai j }1≤i< j≤n . Then there
is a canonical algebra surjection π : Vn(A)→ C(V, q) sending xi → xi for all
i = 1, . . . , n and t → t for all t ∈ T, and the kernel of π is the ideal generated
by
{

x2
i − bi i

}n
i=1. Clearly, π

(
T
[
x2

1 , . . . , x2
n
])
= T and the matrix (xi xj + xj xi )n×n

equals M1. It is easy to check that
{

xd1
1 · · · x

dn
n | di = 0, 1

}
is a basis of Vn(A) over

T
[
x2

1 , . . . , x2
n
]

and a basis of C(V, q) over T. The first equation of (E3.7.1) follows
from Theorem 3.6 and Lemma 1.2 and the second equation follows from the fact
that 2B= (xi xj + xj xi )n×n and 2 is invertible. �

In the rest of this section we briefly discuss “generic Clifford algebras”, which
will appear again in Section 8. (This generic Clifford algebra should be called a
“universal Clifford algebra”, but the term “universal Clifford algebra” has already
been used).

Fix an integer n. Let I be the set {(i, j) | 1 ≤ i ≤ j ≤ n} that can be thought
of as the quotient set {(i, j) | 1 ≤ i, j ≤ n}/((i, j) ∼ ( j, i)). Let w denote the
integer 1

2 n(n+ 1). There is a bijection between I and the set of the first w integers
{1, 2, . . . , w}. Let Tg be the commutative domain k[t(i, j) | (i, j) ∈ I ], which is
isomorphic to k[t1, . . . , tw]. Define a Tg-algebra Ag generated by x1, . . . , xn and
subject to the relations

xi xj + xj xi = 2t(i, j) for all 1≤ i ≤ j ≤ n. (E3.7.2)
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Let Vg =
⊕n

i=1 Tgxi . Define a bilinear form bg : Vg⊗Vg→ Tg by bg(xi , xj )= t(i, j)

and the associated quadratic form by qg(x)= bg(x, x) for all x ∈ Vg. The “generic
Clifford algebra” Ag is defined to be the Clifford algebra associated to (Vg, qg). For
any Clifford algebra C(V, q) over a commutative ring T, by comparing (E3.6.3)
with (E3.7.2), one sees that there is an algebra map Ag→C(V, q) sending xi→ xi

and t(i, j)→ bi j . Define deg xi = 1 for all i and deg t(i, j) = 2 for all (i, j) ∈ I . Then
Ag is a connected graded algebra over k.

We also define some factor algebras of Ag. Let J be a subset of {(i, j) |
1≤ i < j ≤ n} and let wJ denote the integer w− |J |. Let Tg,J be the commutative
polynomial ring k[ti, j | (i, j) ∈ I \ J ], which is isomorphic to k[t1, . . . , twJ ]. Define
a Tg,J -algebra Ag,J generated by x1, . . . , xn and subject to the relations

xi xj + xj xi =

{
2t(i, j), (i, j) ∈ I \ J,
0, (i, j) ∈ J.

(E3.7.3)

Let Vg,J =
⊕n

i=1 Tg,J xi . Define a bilinear form bg,J : Vg,J ⊗ Vg,J → Tg,J by

bg,J (xi , xj )=

{
t(i, j), (i, j) ∈ I \ J,
0, (i, j) ∈ J,

and the associated quadratic form by qg,J (x)= bg(x, x) for all x ∈ Vg,J . Then Ag,J

is the Clifford algebra associated to (Vg,J , qg,J ). If J ⊆ J ′⊆ {(i, j) | 1≤ i < j ≤ n},
there is an algebra map Ag,J → Ag,J ′ sending xi → xi and

t(i, j)→

{
t(i, j), (i, j) /∈ J ′,
0, (i, j) ∈ J ′ \ J.

In particular, Ag,J is a connected graded factor ring of Ag.
In part (4) of the next lemma, we will use a few undefined concepts that are

related to the homological properties of an algebra. We refer to [Levasseur 1992;
Lu et al. 2007; Rogalski and Zhang 2012] for definitions.

Lemma 3.8. Retain the above notation. Assume that k is a field of characteristic
not 2. Let J ′ be subset of {(i, j) | 1≤ i < j ≤ n} and let J = J ′ \{(i0, j0)} for some
(i0, j0) ∈ J ′.

(1) The Hilbert series of Ag is

HAg (t)=
(1+ t)n

(1− t2)w
, where w = 1

2 n(n+ 1).

(2) The Hilbert series of Ag,J is

HAg,J (t)=
(1+ t)n

(1− t2)wJ
, where wJ = w− |J |.

(3) t(i0, j0) is a central regular element in Ag,J ′ , and Ag,J = Ag,J ′/(t(i0, j0)).
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(4) Ag and Ag,J are connected graded Artin–Schelter regular, Auslander regular,
Cohen–Macaulay noetherian domains.

Proof. (1) Note that Ag is a free module over Tg with basis
{

xd1
1 · · · x

dn
n | ds = 0, 1

}
.

Recall that deg xi = 1 and deg t(i, j) = 2. We have

HAg (t)= (1+ t)n HTg (t)=
(1+ t)n

(1− t2)w
.

(2) The proof is similar. Use the fact that HTg,J (t)= 1/(1− t2)wJ.

(3) It is clear that t(i0, j0) is central in Ag,J ′ and that Ag,J = Ag,J ′/(t(i0, j0)). So the
ideal (t(i0, j0)) is the left ideal t(i0, j0)Ag,J ′ and the right ideal Ag,J ′ t(i0, j0). By parts (1)
and (2), the Hilbert series of (t(i0, j0)) is t2 HAg,J ′

(t). So t(i0, j0) is regular.

(4) We only provide a proof for Ag. The proof for Ag,J is similar.
From part (3), JM :={t(i, j) |1≤ i< j≤n} is a sequence of regular central elements

in Ag of positive degree. It is easy to see that Ag,JM (= Ag/(JM)) is isomorphic
to the skew polynomial ring k−1[x1, . . . , xn], which is an Artin–Schelter regular,
Auslander regular, Cohen–Macaulay noetherian domain. Applying [Lu et al. 2007,
Lemma 7.6] repeatedly, Ag has finite global dimension. Applying [Levasseur 1992,
Proposition 3.5, Theorem 5.10] repeatedly, Ag is a noetherian Auslander Gorenstein
and Cohen–Macaulay domain. By [Levasseur 1992, Theorem 6.3], Ag is Artin–
Schelter Gorenstein. Since Ag has finite global dimension, it is Auslander regular
and Artin–Schelter regular. �

Remark 3.9. Retain the above notation. (1) Some homological properties of the
algebra Ag are given in Lemma 3.8. It would be interesting to work out combinatorial
and geometric invariants (and properties) of Ag. For example, what are the point-
module and line-module schemes of Ag? Definitions of these schemes can be found
in [Vancliff and Van Rompay 2000; Vancliff et al. 1998].

(2) Another way of presenting Ag is the following. Let S be a k-vector space of
dimension n. Define Ag to be k〈S〉/([x2, y] = 0 | for all x, y,∈ S). By using this
new expression, one can easily see that the group of graded algebra automorphisms
of Ag, denoted by Autgr(Ag), is isomorphic to GLn(k).

(3) Suppose n ≥ 2. The full automorphism group Aut(Ag) has not been determined.
It is known that Aut(Ag) is not affine. For example, if f (t) is a polynomial in t , then

xi →

{
xi , i > 1,
x1+ f ([x1, x2]

2)x2, i = 1,

extends to an algebra automorphism of Ag.

(4) It seems interesting to study the “cubic algebra” k〈S〉/([x3,y]=0 | for all x,y∈ S)
and higher-degree analogues.
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(5) The quotient division ring of Ag, denoted by Dg, is called the “generic Clifford
division algebra of rank n”. It would be interesting to study algebraic properties
or invariants of Dg.

4. Center of skew polynomial rings

To use the discriminant most effectively, one needs to first understand the center of
an algebra. In this section we give a criterion for when Tq[x1, . . . , xn] is free over
its center and when the center of Tq[x1, . . . , xn] is a polynomial ring.

Recall that T is a commutative domain and q := {qi j ∈ T× | 1≤ i < j ≤ n} is a set
of invertible scalars. Let P := Tq[x1, . . . , xn] be the skew polynomial ring over T
and subject to the relations (E0.2.1). We assume that di j := o(qi j ) <∞ and write

qi j = exp
(
2π
√
−1ki j/di j

)
, (E4.0.1)

where |ki j |<di j and (ki j , di j )=1. Note that, by our convention, qi j =q−1
j i for all i , j .

Hence, we choose ki j = −kj i and di j = dj i . We also adopt the convention that if
qi j = 1 then ki j = 0 and di j = 1. In particular, ki i = 0 and di i = 1. We can extend
P to P

[
x−1

1 , . . . , x−1
n
]
, with an inverse for each xi , with the expected relations

xi x−1
i = x−1

i xi = 1, xj x−1
i = q−1

i j x−1
i xj , and x−1

j x−1
i = qi j x−1

i x−1
j .

We need to do some analysis to understand the center of P. Let ηi denote conjugation
by xi , sending f 7→ x−1

i f xi , and let ξ = x s1
1 · · · x

sn
n . Then

ηi (ξ)= exp
(
2π
√
−1eT

i Y s
)
ξ,

where Y ∈ son(Q) has (i, j)-th entry ki j/di j , s is the column vector whose i-th entry
is si appearing in the powers of ξ , and ei is the i-th standard basis vector in Qn.

Lemma 4.1. Retain the above notation. Then ξ is in the center Z(P) of P if and
only if Y s ∈ Zn.

Proof. Since P is generated by {xi }, we have ξ ∈ Z(P) if and only if ηi (ξ)= ξ for
all i , if and only if exp

(
2π
√
−1eT

i Y s
)
= 1, if and only if eT

i Y s ∈ Z for all i , and
finally, if and only if Y s ∈ Zn. �

By choosing the standard basis for Qn, we can consider Y as a linear transfor-
mation Qn

→ Qn by sending s 7→ Y s. Here we view Qn as column vectors and
Y as a left multiplication. We can restrict this map to Zn

⊂Qn (embedded via the
standard basis) and compose with the quotient Qn

→Qn/Zn to obtain a Z-module
homomorphism Y ′ : Zn

→Qn/Zn.

Lemma 4.2. Retain the above notation. Then ξ ∈ Z(P) if and only if s ∈ ker(Y ′).

Proof. By Lemma 4.1, ξ ∈ Z(P) if and only if Y s ∈ Zn, which is equivalent to
Y ′(s)= 0 by the definition of Y ′. �
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Let D be the matrix (di j )n×n and let L i be the lcm of the entries in the i-th row
of D, namely, L i = lcm{di j | j = 1, . . . , n}. Since D is a symmetric matrix, L i is
also the lcm of the entries in i-th column. Observe that Z(P) contains the central
subring P ′ := k

[
x L1

1 , . . . , x Ln
n
]
. In other words, ker(Y ′) contains the Z-lattice 3

spanned by L i ei for i = 1, . . . , n. Therefore, Y ′ factors through

Zn
→ M := Zn/3=

n⊕
i=1

Z/L i Z.

For each s ∈ Zn, the i-th entry of Y ′(s) is
∑

j ki j sj/di j ∈Q/Z, which is L i -torsion,
or equivalently, in L−1

i Z/Z. Therefore, Y ′ induces a map

M→ M ′ :=
n⊕

i=1

L−1
i Z/Z.

Since M ′ is naturally isomorphic to M, we can define an endomorphism

Y : M→ M
by setting

Y s =
( n∑

j=1

L i (ki j sj/di j )

)n

i=1
.

In particular, Y ej =
∑n

i=1(ki j L i/di j )ei . Sometimes we think of Y as a matrix:

Y = (ki j L i/di j )n×n = diag(L1, . . . , Ln)Y.

The following lemma is a reinterpretation of [CPWZ 2016, Lemma 2.3].

Lemma 4.3. Retain the above notation. The following are equivalent.

(1) The center Z(P) of P is a polynomial ring.

(2) Z(P)= P ′.

(3) ker(Y )= 0.

(4) Y is an isomorphism.

Proof. (1)⇔ (2): One implication is clear. For the other implication, we assume
that the center Z(P) is a polynomial ring. By [CPWZ 2016, Lemma 2.3], Z(P) is of
the form T

[
xai

1 , . . . , xai
n
]
. It is easy to check that L i | ai for all i . Since Z(P)⊇ P ′,

ai = L i for all i . The assertion follows.

(3)⇒ (2): Let ξ := x s1
1 · · · x

sn
n ∈ Z(P) and s= (si )

n
i=1. By Lemma 4.2, s ∈ ker(Y ′).

Since Y is induced by Y ′, we have Y (s)= 0. By part (3), s = 0 in M = Zn/3. So
s ∈3, which is equivalent to ξ ∈ P ′. Therefore, Z(P)= P ′, as desired.

(2)⇒ (3): Let ξ := x s1
1 · · · x

sn
n ∈ P , where s := (si )

n
i=1 ∈ ker(Y ), viewed as a vector

in M. By the definition of M, we might assume that each si is nonnegative and less
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than L i . Since Y is induced by Y ′, we have s ∈ ker(Y ′). By Lemma 4.2, ξ ∈ Z(P).
By part (2) and our choice of 0≤ si < L i , we have ξ = 1 or s = 0, as desired.

(3)⇔ (4): This is clear since M is finite. �

The advantage of working with Y is that ker(Y )= 0 is equivalent to Y being an
isomorphism. Next we need to understand when Y is an isomorphism. For the rest
of this section we use ⊗ for ⊗Z and Fp for Z/pZ.

Lemma 4.4. The morphism Y is an isomorphism if and only if Y ⊗ Fp is an
isomorphism for all primes p.

Proof. As a Z-module, M is finite, and it suffices to show that Y is surjective if and
only if Y ⊗ Fp is surjective for each prime p. This is clear since −⊗ Fp is right
exact, so surjectivity of a map can be checked on closed fibers. �

Fix any prime p. Let Mp = M ⊗ Fp and Yp = Y ⊗ Fp. For any ei , if L i /∈ pZ,
then the image of ei is zero in Mp. We can therefore use {ei | L i ∈ pZ} as a basis
of Mp. Consequently, Mp is a vector space over Fp of dimension at most n, and
we can write Yp as a matrix over Fp. Next we will decompose the vector space Mp

and the matrix Yp.
For each positive integer m, let Mp,m denote the subspace of Mp generated by
{ei | L i ∈ pmZ− pm+1Z}. Let Yp,m be the endomorphism

Mp,m −→ Mp
Yp
−→Mp −→ Mp,m,

where the first map is the inclusion and the last map is the natural projection using
the given basis {ei | L i ∈ pZ}. Then Yp,m can be expressed as the submatrix of Y
taken from the rows and columns with indices i such that ei ∈ Mp,m . For all but
finitely many values of m, we have Mp,m = 0, and in this case, Yp,m is a 0×0 matrix.
We adopt the convention that the determinant of a 0× 0 matrix is 1. In general,
det(Yp,m) is in Fp.

Lemma 4.5. The following are equivalent.

(1) The map Yp is an isomorphism.

(2) For all positive integers m, Yp,m is an isomorphism.

(3) det(Yp,m) 6= 0 for all positive integers m.

Proof. It is clear that (2) and (3) are equivalent, so we need only show that (1) and (2)
are equivalent.

Let m > 0, and let i , j be such that L i ∈ pmZ− pm+1Z and L j /∈ pmZ. Since
L j = lcm{dk j | k= 1, . . . , n}, we have di j /∈ pmZ and ki j L i/di j ∈ pZ. Therefore, the
ei -component of Ypej is zero. We can extend this to show that, for any m >m′ > 0,
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the Mp,m′-component of Yp(Mp,m) is zero, or equivalently,

Yp(Mp,m)⊆
⊕
n≥m

Mp,n =: Nm .

This implies that, for any m > 0, Yp acts as an endomorphism on Nm . Since
each Mp is finite dimensional, Yp is an isomorphism if and only if it acts as an
isomorphism on each subquotient Nm/Nm+1 ∼= Mp,m . This action is already given
by Yp,m , so the assertion follows. �

Combining all the lemmas in this section we have:

Theorem 4.6. The center of the skew polynomial ring Tq[x1, . . . , xn] is a polyno-
mial ring if and only if det(Yp,m) 6= 0 for all primes p and all integers m > 0.

Theorem 4.6 is a slight generalization of Theorem 0.3(a) without the hypothesis
that qi j 6= 1 for all i 6= j . The definition of the matrices Yp,m is not straightforward,
so we give an example below. Hopefully, the example will show that this matrix is
not hard to understand.

Example 4.7. We start with the following skew-symmetric matrix with entries in Q:

Y :=



0 4
27

2
9 0 2

3
3
5

−
4

27 0 1
3

7
9

1
3

1
5

−
2
9 −

1
3 0 1

6
1
2

1
2

0 −7
9 −

1
6 0 2

3 0

−
2
3 −

1
3 −

1
2 −

2
3 0 5

8

−
3
5 −

1
5 −

1
2 0 − 5

8 0


.

One can easily construct qi j by (E4.0.1) and the skew polynomial ring Tq[x1, . . . , x6]

by (E0.2.1), but the point of this example is to work out the matrices Yp,m for all
primes p and all m > 0. By considering the denominators of the entries of Y, one
sees that

(L1, L2, L3, L4, L5, L6)= (33
· 5, 33

· 5, 2 · 32, 2 · 32, 23
· 3, 23

· 5).

This implies that Yp,m is a trivial matrix (or a 0× 0 matrix) except for p = 2, 3, 5.
Next we consider

Y = diag(L1, . . . , L6)Y =



0 20 30 0 90 81
−20 0 45 105 45 27
−4 −6 0 3 9 9

0 −14 −3 0 12 0
−16 −8 −12 −16 0 15
−24 −8 −20 0 −25 0


.
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Recall that Mp,m has a basis {ei | L i ∈ pmZ− pm+1Z} and Yp,m is the square sub-
matrix of Y with indices {i | L i ∈ pmZ− pm+1Z} and with entries evaluated in Fp.

For p = 2, Y2,m are the following:

• Y2,1 is the principle (3, 4)-submatrix of Y, and is
( 0

1
1
0

)
.

• Y2,3 uses indices 5, 6, and is
( 0

1
1
0

)
.

• For all m = 2 or m > 3, Y2,m is trivial.

Therefore, Y2 is an isomorphism by Lemma 4.5.
For p = 3, Y3,m are the following:

• Y3,1 uses only index 5, and is the 1× 1 zero matrix.

• Y3,2 uses indices 3, 4, and is the 2× 2 zero matrix.

• Y3,3 uses indices 1, 2, and is
( 0
−1

1
0

)
.

• For all m > 3, Y3,m is trivial.

Since det(Y3,1) = det(Y3,2) = 0, Y3 is not an isomorphism by Lemma 4.5. Con-
sequently, the center of Tq[x1, . . . , x6] is not a polynomial ring by Theorem 4.6.

For p = 5, Y5,m are the following:

• Y5,1 uses indices 1, 2, 6, and

Y5,1 =

 0 0 1
0 0 2
−1 −2 0

 .
• For all m > 1, Y5,m is trivial.

It is easy to check that det(Y5,1)= 0. Therefore, Y5 is not an isomorphism.
For p > 5, Yp,m is trivial for all m > 0.

5. Low dimensional cases

We start with some easy consequences of Theorem 4.6 and then discuss the case
when n is 3 or 4.

Corollary 5.1. Suppose there are a prime p and an m > 0 such that Mp,m is odd
dimensional. Then Yp is not an isomorphism. As a consequence, the center of
Tq[x1, . . . , xn] is not a polynomial ring.

Proof. If Yp,m is a skew-symmetric matrix of odd size, its determinant is zero (this
is true even when p = 2). The rest follows from Lemma 4.5 and Theorem 4.6. �

Corollary 5.2. Suppose there is a prime p such that Mp is odd dimensional. Then
Yp is not an isomorphism. As a consequence, the center of Tq[x1, . . . , xn] is not a
polynomial ring.
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Proof. Since Mp =
⊕
∞

m=1 Mp,m , if it is odd dimensional, at least one Mp,m must be
odd dimensional. The assertion follows from Corollary 5.1. �

Corollary 5.3. Suppose, for each prime p, that p | di j for at most one pair (i, j),
1≤ i < j ≤ n. Then Yp is an isomorphism for each p. As a consequence, the center
of Tq[x1, . . . , xn] is a polynomial ring.

Proof. If di j /∈ pZ for all i , j , then L i /∈ pZ for all i , Mp = 0 and Yp is trivially an
isomorphism.

If di j ∈ pmZ− pm+1Z for some i , j and some positive integer m, and each of
every other term dk` is not in pZ, then L i , L j ∈ pmZ− pm+1Z, and each of every
other Lk is not in pZ. This shows that Yp,m is a nonzero 2× 2 skew-symmetric
matrix (i.e., det(Yp,m) 6= 0) and Mp,m′ = 0 for each m′ 6= m. The rest follows from
Lemma 4.5 and Theorem 4.6. �

Next we give simple criteria for Y to be an isomorphism in the cases n = 3, 4.

Corollary 5.4. The center of Tq[x1, x2, x3] is a polynomial ring if and only if
(di j , dik)= 1 for all different i , j , k.

Proof. There are only three d terms — d12, d13, and d23. If each (di j , dik) equals 1,
then no prime is a factor of more than one term in {di j }. By Corollary 5.3, the
center of Tq[x1, x2, x3] is a polynomial ring.

Conversely, suppose that p is a prime such that di j , dik ∈ pZ for some i , j , k. Then
L1, L2, L3 ∈ pZ. This implies that Mp has dimension 3. Hence, by Corollary 5.2,
Yp is not an isomorphism. So Y is not an isomorphism. Therefore, the center of
Tq[x1, x2, x3] is not a polynomial ring by Lemma 4.3. �

Corollary 5.5. The center of Tq[x1, x2, x3, x4] is a polynomial ring if and only if ,
for each prime p, one of the following holds:

(a) L i /∈ pZ for all i .

(b) For some positive integer m, Yp,m is 4× 4 with nonzero determinant.

(c) There are distinct indices i, j, k, ` ∈ {1, 2, 3, 4} and a nonnegative integer m
such that di j ∈ pm+1Z, dk` ∈ pmZ− pm+1Z, and every other d term is not in
pm+1Z.

Proof. Let P = Tq[x1, x2, x3, x4]. By Lemmas 4.3 and 4.4, Z(P) is a polynomial
ring if and only if Yp is an isomorphism for all p. It remains to show that, for
each p, Yp is an isomorphism if and only if one of (a), (b), or (c) holds. Now we
fix p and prove the assertion in three cases according to the shape of Mp.

First we prove the “if” part.

(a) If L i /∈ pZ for all i , then Mp = 0 and Yp is trivially an isomorphism. This
handles the case when Mp = 0.
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(b) If for some m > 0, Yp,m is 4× 4 with nonzero determinant, then every other
Yp,r (for all r 6=m) is a 0×0 matrix and, consequently, Yp is an isomorphism. This
is the case when Mp = Mp,m is 4-dimensional for one m.

(c) Assume the hypotheses in part (c). Let m′ > m be the integer such that
di j ∈ pm′Z− pm′+1Z. If m = 0, then di j is the only d term divisible by p. Hence
Yp,m′ is a skew-symmetric 2× 2 nonzero matrix and Yp,r is trivial for all r 6= m′.
Therefore, Yp is an isomorphism. If m > 0, then Yp,m and Yp,m′ are both skew-
symmetric and 2× 2, and (because kk`Lk/dk` /∈ pZ) nonzero. Furthermore, every
other Yp,r is 0× 0 for all r 6= m,m′. Therefore, Yp is an isomorphism.

For the rest we prove the “only if” part.
Suppose that Yp is an isomorphism. By Corollary 5.2, Mp is even dimensional,

that is, dim Mp = 0, 2 or 4.
The dim Mp = 0 case coincides with the case when L i /∈ pZ for all i , so we

obtain case (a).
For the dim Mp = 2 case, at least one di j lies in pZ and L i , L j lie in pZ, and no

other d term is a multiple of p, so Yp is necessarily an isomorphism. We can set
m = 0, so that di j ∈ pm+1Z, and all other dab are not in pm+1Z. So we obtain (c).

All that remains is the dim Mp = 4 case. Each Mp,m is even dimensional by
Corollary 5.1. If dim Mp,m = 4 for some m, then Yp,m is 4× 4 and Yp is an isomor-
phism if and only if det(Yp,m) 6= 0. So we obtain case (b).

Finally, suppose there exist m′>m> 0 such that dim Mp,m = dim Mp,m′ = 2. Let
i , j , k, ` be distinct such that L i , L j ∈ pm′Z− pm′+1Z and Lk, L` ∈ pmZ− pm+1Z.
We must have that di j ∈ pm′Z⊆ pm+1Z and every other d term is not in pm+1Z. If
dk` /∈ pmZ, then kk`Lk/dk`, k`k L`/d`k ∈ pZ and Yp,m is the 2×2 zero matrix, yield-
ing a contradiction. Therefore, dk` must be in pmZ. So we obtain case (c) again. �

6. Center of generalized Weyl algebras

Let T be a commutative k-domain. In this section we assume that q := {qi j } is a
set of roots of unity in T and let A := {ai j | 1≤ i < j ≤ j} be a subset of T. Define
the generalized Weyl algebra associated to (q,A) to be the central T-algebra

V (q,A) :=
T 〈x1, . . . , xn〉

(xj xi − qi j xi xj − ai j | i 6= j)
.

Consider a filtration on V (q,A) with deg xi = 1 and det t = 0 for all t ∈ T. Suppose

gr V (q,A) is naturally isomorphic to Tq[x1, . . . , xn]. (E6.0.1)

Consider the hypothesis that,

for any pair (i, j), ai j = 0 whenever qi j = 1. (E6.0.2)
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Proposition 6.1. Suppose (E6.0.1) and (E6.0.2) and let A = V (q,A). If the center
Z(gr A) is a polynomial ring, then so is Z(A), and Z(A)∼= Z(gr A).

Proof. If Z(gr A) is a polynomial ring, then Z(gr A) = T
[
x L1

1 , . . . , x Ln
n
]
, where

L i = lcm{di j | j = 1, . . . , n} (Lemma 4.3). Recall that di j is the order of qi j .
First we claim that x L i

i is in the center of A. For each j , we have the equation
xj xi= qi j xi xj +ai j . If qi j = 1, then xj commutes with xi by hypothesis (E6.0.2), so
xj commutes with x L i

i . If qi j 6= 1, then the order of qi j is di j . The equation
xj xi = qi j xi xj + ai j implies that xj commutes with xdi j

i , as each xj xk
i is equal to

qk
ij x

k
i xj +

(
1+qi j +· · ·+qk−1

i j

)
ai j . Since di j divides L i , xj commutes with x L i

i for
all j 6= i . This shows that x L i

i is central.
Since gr A is the skew polynomial ring Tq[x1, . . . , xn], it is easy to check that

gr Z(A) ⊂ Z(gr A). Since Z(gr A) is generated by
{

x L i
i

}n
i=1, induction on the

degree of element f ∈ Z(A) shows that f is generated by x L i
i . Therefore, the

assertion follows. �

Proposition 6.2. Retain the above notation and suppose (E6.0.1). If ai j 6= 0 for
some i 6= j , then qikqjk = 1 for all k 6= i or j .

Proof. We resolve xk xj xi in two different ways:

(xk xj )xi = (qjk xj xk + ajk)xi

= qjk xj (xk xi )+ ajk xi

= qjk xj (qik xi xk + aik)+ ajk xi

= qjkqik(xj xi )xk + qjkaik xj + ajk xi

= qjkqik(qi j xi xj + ai j )xk + qjkaik xj + ajk xi

= qjkqikqi j xi xj xk + qjkqikai j xk + qjkaik xj + ajk xi ,

and similarly

xk(xj xi )= xk(qi j xi xj + ai j )

= qi j (xk xi )xj + ai j xk

= qi j (qik xi xk + aik)xj + ai j xk

= qi j qik xi (xk xj )+ qi j aik xj + ai j xk

= qi j qikqjk xi xj xk + qi j qikajk xi + qi j aik xj + ai j xk .

Comparing the coefficients of xk gives the result. �

When an algebra A is finitely generated and free over its center (as in the situation
of Proposition 6.1), one should be able to compute the discriminant of A over its
center. We give an example here.



582 Kenneth Chan, Alexander A. Young and James J. Zhang

Example 6.3. Let A be generated by x1, x2, x3, x4 and subject to the relations

x3x1− x1x2 = 0, x4x2+ x2x4 = 0,

x3x2− x2x3 = 0, x3x4+ x4x3 = 0,

x4x1+ x1x4 = 0, x1x2+ x2x1 = x2
3 + x2

4 .

(E6.3.1)

This is the example in [Vancliff and Van Rompay 2000, Lemma 1.1] (with λ= 0).
It is an iterated Ore extension, and therefore Artin–Schelter regular of global
dimension 4.

It is not hard to check that the center of A is generated by x2
i . This algebra is a

factor ring of the algebra B over T := k[t] generated by x1, x2, x3, x4 and subject
to the relations

x3x1− x1x2 = 0, x4x2+ x2x4 = 0,

x3x2− x2x3 = 0, x3x4+ x4x3 = 0,

x4x1+ x1x4 = 0, x1x2+ x2x1 = t.

(E6.3.2)

Note that gr B is a skew polynomial ring over T with the above relations by
setting t = 0. The Y-matrix is 

0 1
2 0 1

2

−
1
2 0 0 1

2

0 0 0 1
2

−
1
2 −

1
2 −

1
2 0

 .
By Corollary 5.5(b), B has center T

[
x2

1 , x2
2 , x2

3 , x2
4

]
. The discriminant of B over

its center is 248
(
4x2

1 x2
2 − t2

)8x16
3 x16

4 , by the next lemma. By Lemma 1.2, the
discriminant of A over its center is 248

(
4x2

1 x2
2 −

(
x2

3 + x2
4

)2)8x16
3 x16

4 . We will see in
the next sections that D(A)= A. As a consequence of Theorem 0.5, A is cancellative
and the automorphism group of A is affine.

Lemma 6.4. Suppose the k[t]-algebra B is generated by x1, x2, x3, x4 and subject
to the six relations given (E6.3.2). Then the discriminant of B over its center is
248
(
4x2

1 x2
2 − t2

)8x16
3 x16

4 .

Sketch of the proof. It is routine to check that the center of B is

Z(B)= k[t]
[
x2

1 , x2
2 , x2

3 , x2
4
]
.

The algebra B is a free module over Z(B) of rank 16 with a Z(B)-basis
{

xa
1 xb

2 xc
3xd

4 |

a, b, c, d = 0, 1
}
. Let {z1, . . . z16} be the above Z(B)-basis. Then we can compute
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the matrix (tr(zi zj ))16×16:

16 0 0 0 0 8t 0 0 0 0 0 0 0 0 0 0
0 16a 8t 0 0 0 0 0 0 0 0 0 0 0 0 0
0 8t 16b 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 16c 0 0 0 0 0 0 0 8ct 0 0 0 0
0 0 0 0 16d 0 0 0 0 0 0 0 8dt 0 0 0
8t 0 0 0 0 α 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 16ac 0 8ct 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −16ad 0 −8dt 0 0 0 0 0 0
0 0 0 0 0 0 8ct 0 16bc 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −8dt 0 −16bd 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 −16cd 0 0 0 0 −8cdt
0 0 0 8ct 0 0 0 0 0 0 0 β 0 0 0 0
0 0 0 0 8dt 0 0 0 0 0 0 0 γ 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 16acd 8cdt 0
0 0 0 0 0 0 0 0 0 0 0 0 0 8cdt 16bcd 0
0 0 0 0 0 0 0 0 0 0 −8cdt 0 0 0 0 δ


Here α=−16ab+8t2, β=−16abc+8ct2, γ =−16abd+8dt2, δ=16abcd−8cdt2,
and a = x2

1, b = x2
2, c = x2

3, d = x2
4. We skip the details in computing the above

traces. By using Maple, its determinant is 248
(
4x2

1 x2
2 − t2

)8x16
3 x16

4 . �

7. Three subalgebras

In this section we discuss three (possibly different) subalgebras of A, all of which
are helpful for the applications in the next section.

Makar-Limanov invariants. The first subalgebra is the Makar-Limanov invariant
of A [Makar-Limanov 1996]. This invariant has been very useful in commutative
algebra. For any k-algebra A, let Der(A) denote the set of all k-derivations of A
and let LND(A) denote the set of locally nilpotent k-derivations of A.

Definition 7.1. Let A be an algebra over k.

(1) The Makar-Limanov invariant of A is

ML(A)=
⋂

δ∈LND(A)

ker(δ). (E7.1.1)

(2) We say that A is LND-rigid if ML(A)= A, or LND(A)= {0}.

(3) We say that A is strongly LND-rigid if ML(A[t1, . . . , td ])= A for all d ≥ 0.

The following lemma is clear. Part (2) follows from the fact that ∂ ∈ LND(A) if
and only if g−1∂g ∈ LND(A).
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Lemma 7.2. Let A be an algebra.

(1) ML(A) is a subalgebra of A.

(2) For any g ∈ Aut(A), we have g(ML(A))=ML(A).

Divisor subalgebras. Throughout this subsection let A be a domain containing Z.
Let F be a subset of A. Let Sw(F) be the set of g ∈ A such that f = agb for some
a, b ∈ A and 0 6= f ∈ F. Here Sw stands for “subword”, which can be viewed as
a divisor.

Definition 7.3. Let F be a subset of A.

(1) Let D0(F)= F. Inductively define Dn(F) as the k-subalgebra of A generated
by Sw(Dn−1(F)). The subalgebra D(F)=

⋃
n≥0 Dn(F) is called the F-divisor

subalgebra of A. If F is the singleton { f }, we simply write D({ f }) as D( f ).

(2) If f = d(A/Z) (if it exists), we call D( f ) the discriminant-divisor subalgebra
of A, or DDS of A, and write it as D(A).

The following lemma is well-known [Makar-Limanov 2008, p. 4].

Lemma 7.4. Let x , y be nonzero elements in A and let ∂ ∈ LND(A). If ∂(xy)= 0,
then ∂(x)= ∂(y)= 0.

Proof. Let m and n be the largest integers such that ∂m(x) 6= 0 and ∂n(y) 6= 0. Then
the product rule and the choice of m, n imply that

∂m+n(xy)=
m+n∑
i=0

(n+m
i

)
∂ i (x)∂m+n−i (y)=

(n+m
m

)
∂m(x)∂n(y) 6= 0.

So m+ n = 0. The assertion follows. �

Lemma 7.5. Let F be a subset of ML(A). Then D(F)⊆ML(A).

Proof. Let ∂ be any element in LND(A). By hypothesis, ∂( f )= 0 for all f ∈ F. By
Lemma 7.4, ∂(x)= 0 for all x ∈ Sw(F). So ∂ = 0 when restricted to D1(F). By
induction, ∂ = 0 when restricted to D(F). The assertion follows by taking arbitrary
∂ ∈ LND(A). �

Lemma 7.6. Suppose d(A/Z) is defined. Then the DDS D(A) is preserved by all
g ∈ Aut(A).

Proof. By [CPWZ 2015a, Lemma 1.8(6)] or [CPWZ 2016, Lemma 1.4(4)], d(A/Z)
is g-invariant up to a unit. So, if g ∈ Aut(A), then g maps Sw(d(A/Z)) to
Sw(d(A/Z)) and D1(d(A/Z)) to D1(d(A/Z)). By induction, one sees that g maps
Dn(d(A/Z)) to Dn(d(A/Z)). So the assertion follows. �

We need to find some elements f ∈ A so that ∂( f )= 0 for all ∂ ∈ LND(A). The
next lemma was proven in [CPWZ 2016, Proposition 1.5].
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Lemma 7.7. Let Z be the center of A and let d ≥ 0. Suppose A× = k×. Assume
that A is finitely generated and free over Z. Then we have ∂(d(A/Z))= 0 for all
∂ ∈ LND(A[t1, . . . , td ]).

Proof. Let f denote the element d(A[t1, . . . , td ]/Z [t1, . . . , td ]) in Z [t1, . . . , td ].
By [CPWZ 2016, Proposition 1.5], ∂( f )= 0. By [CPWZ 2015a, Lemma 5.4],

f =k× d(A/Z).

The assertion follows. �

Here is the first relationship between the two subalgebras.

Proposition 7.8. Retain the hypothesis of Lemma 7.7. Let d ≥ 0. Then

D(A)⊆ML(A[t1, . . . , td ])⊆ A.

Proof. It is clear that ML(A[t1, . . . , td ])⊆ A by [Bell and Zhang 2016]. Let f equal
d(A/Z), which is in A⊆ A[t1, . . . , td ]. By Lemma 7.7, f ∈ML(A[t1, . . . , td ]). Let
D′( f ) be the discriminant-divisor subalgebra of f in A[t1, . . . , td ]. By Lemma 7.5,
D′( f ) ⊆ ML(A[t1, . . . , td ]). It is clear from the definition that D( f ) ⊆ D′( f ).
Therefore, the assertion follows. �

In particular, by taking d = 0, we have D(A)⊆ML(A).

Aut-bounded subalgebra. In this subsection we assume that A is filtered such that
the associated graded ring gr A is a connected graded domain. Later we further
assume that A is connected graded. Since gr A is a connected graded domain, we
can define deg f to be the degree of gr f , and the degree satisfies the equation

deg(xy)= deg x + deg y

for all x, y ∈ A.

Definition 7.9. Retain the above hypotheses. Let G be a subgroup of Aut(A) and
let V be a subset of A.

(1) Let x be an element in A. The G-bound of x is

degG(x) := sup{deg(g(x)) | g ∈ G}.

(2) Let g be in Aut(A). The V-bound of g is

degg(V ) := sup{deg(g(x)) | x ∈ V }.

(3) The G-bounded subalgebra of A, denoted by βG(A), is the set of elements
x in A with finite G-bound. It is clear that βG(A) is a subalgebra of A
(Lemma 7.10(1)). In particular, the Aut-bounded subalgebra of A, denoted by
β(A), is the set of elements x in A with finite Aut(A)-bound.
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The following lemma is easy, so we omit the proof.

Lemma 7.10. Retain the above notation. Let G be a subgroup of Aut(A).

(1) The set βG(A) is a subalgebra of A.

(2) g(βG(A))= βG(A) for all g ∈ G.

Here is the relation between the two subalgebras D(A) and β(A). Let V be a
subset of A. We say V is of bounded degree if there is an N such that deg(v) < N
for all v ∈ V.

Proposition 7.11. Let A be a filtered algebra such that gr A is a connected graded
domain. Suppose that G ⊆ Aut(A) and F ⊆ A.

(1) If G(F) has bounded degree, then D(F)⊆ βG(A).

(2) If f ∈ A is such that g( f )=Z(A)× f for all g ∈ G, then D( f )⊆ βG(A).

(3) Assume that A is finitely generated and free over its center Z. Let f = d(A/Z).
Then D(A)= D( f )⊆ β(A).

Proof. (1) We have D0(F)= F ⊆ βG(A) by assumption and use induction on n.
Suppose that Dn−1(F) ⊆ βG(A). Assume that Dn(F) is not contained in βG(A).
Then there exists an x ∈ Dn(A) such that G(x) does not have bounded degree. Since
Dn(A) is generated by Sw(Dn−1(A)) as an algebra, there is an f ∈ Sw(Dn−1(A))
such that G( f ) does not have bounded degree. By definition of Sw(Dn−1(A)),
there exists a nonzero f ′ ∈ Dn−1(A) and a, b ∈ A such that f ′ = a f b. Since
gr A is a domain, we have deg(g( f ′)) = deg(g(a))+ deg(g( f ))+ deg(g(b)) for
all g ∈ G. Hence G( f ′) does not have bounded degree, which is a contradiction.
Hence Dn(F)⊆ βG(A) for all n ≥ 1. Therefore, D(F)⊆ βG(A).

(2) Since Z(A)× ⊆ A0, we see that G( f ) has bounded degree, hence part (2)
follows from part (1).

(3) The third assertion is a special case of part (2) by Lemma 1.2. �

Under the hypotheses of Propositions 7.8 and 7.11 (and assuming that A is
finitely generated and free over its center Z ), we have:

ML(A)

D(A)

β(A)

A

⊇
⊆

⊇
⊆

For the rest of this section, we assume that A is a connected graded domain and
that k contains the field Q. An automorphism g of A is called unipotent if

g(v)= v+ (higher degree terms) (E7.11.1)
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for all homogeneous elements v ∈ A. Let Autuni(A) denote the subgroup of
Aut(A) consisting of unipotent automorphisms [CPWZ 2016, after Theorem 3.1].
If g ∈ Autuni(A), we can define

log g := −
∞∑

i=1

1
i
(1− g)i . (E7.11.2)

Let C be the completion of A with respect to the graded maximal ideal m := A≥1.
Then C is a local ring containing A as a subalgebra. We can define degl :C→Z by
setting degl(v) to be the lowest degree of the nonzero homogeneous components of
v ∈ C . We define a unipotent automorphism of C in a similar way to (E7.11.1) by
using degl . It is clear that if g∈Autuni(A), then it induces a unipotent automorphism
of C , which is still denoted by g.

Lemma 7.12. Let A be a connected graded domain. Let g ∈ Autuni(A) and let G
be any subgroup of Aut(A) containing g. Let B denote βG(A). Then (log g)|B is a
locally nilpotent derivation of B. Further, g|B is the identity if and only if (log g)|B
is zero.

Proof. Let C be the completion of A with respect to the graded maximal ideal
m := A≥1. Let g also denote the algebra automorphism of C induced by g. Then g
is also a unipotent automorphism of C .

Since g is unipotent, degl(1−g)(v)>degl v for any 0 6=v∈C . By induction, one
has deg(1−g)n(v)≥n+deg v for all n≥1. Thus (log g)(v) converges and therefore
is well-defined. It follows from a standard argument that log g is a derivation of C
(this is also a consequence of [Freudenburg 2006, Proposition 2.17(b)]).

Let v be an element in B :=βG(A). Note that gn(v)∈ B for all n by Lemma 7.10.
Since v∈ B, there is an N0 such that deg gn(v)<N0 for all n. If (1−g)n(v) 6=0, then

deg(1− g)n(v)= deg
( n∑

i=0

(n
i

)
gi (v)

)
< N0 for all n. (E7.12.1)

When n ≥ N0, the inequalities from the previous paragraph imply that

degl(1− g)n(v)≥ n+ deg v ≥ N0, (E7.12.2)

which contradicts (E7.12.1) unless (1− g)n(v)= 0. Therefore,

(1− g)n(v)= 0 for all n > N0. (E7.12.3)

By (E7.12.3), the infinite sum of log g in (E7.11.2) terminates when applied
to v ∈ B, and (log g)(v) ∈ A. By Lemma 7.10, (log g)(v) ∈ B. Since log g is a
derivation of C , it is a derivation when restricted to B.
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Next we need to show that it is a locally nilpotent derivation when restricted
to B. It suffices to verify that, for any v ∈ B, (log g)N (v)= 0 for N � 0, which
follows from (E7.11.2) and (E7.12.3).

The final assertion follows from the fact that g is the exponential function of
log g and log g is locally nilpotent. �

Now we are ready to prove the second part of Theorem 0.5 without the finite
GK-dimension hypothesis.

Theorem 7.13. Let k be a field of characteristic zero and let A be a connected
graded domain over k. Assume that A is finitely generated and free over its center Z
in part (2).

(1) If ML(A)= β(A)= A, then Autuni(A)= {1}.

(2) If D(A)= A, then Autuni(A)= {1}.

Proof. (1) By hypothesis, B := β(A) equals A. Let g ∈ Autuni(A). Then (log g)|B
is a locally nilpotent derivation of B by Lemma 7.12. Hence log g ∈ LND(A).
Since ML(A) = A, we have LND(A) = {0}. So log g = 0. By Lemma 7.12, g is
the identity.

(2) Combining the hypothesis D(A)= A with Propositions 7.8 and 7.11, we have
ML(A)= β(A)= A. The assertion follows from part (1). �

8. Applications

In this section we assume that k is a field of characteristic zero.

Zariski cancellation problem. The Zariski cancellation problem for noncommu-
tative algebras was studied in [Bell and Zhang 2016]. We recall some definitions
and results.

Definition 8.1. [Bell and Zhang 2016, Definition 1.1] Let A be an algebra.

(1) We call A cancellative if A[t] ∼= B[t] for some algebra B implies that A ∼= B.

(2) We call A strongly cancellative if, for any d ≥ 1, A[t1, . . . , td ] ∼= B[t1, . . . , td ]
for some algebra B implies that A ∼= B.

The original Zariski cancellation problem, or ZCP, asks if the polynomial ring
k[t1, . . . , tn], where k is a field, is cancellative. A recent result of Gupta [2014a;
2014b] settled the question negatively in positive characteristic for n ≥ 3. The
ZCP in characteristic zero remains open for n ≥ 3. Some history and partial results
can be found in [Bell and Zhang 2016], where the authors used discriminants and
locally nilpotent derivations to study the ZCP for noncommutative rings.

One of their main results is the following.
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Theorem 8.2 [Bell and Zhang 2016, Theorems 0.4 and 3.3]. Let A be a finitely gen-
erated domain of finite Gelfand–Kirillov dimension. If A is strongly LND-rigid (re-
spectively, LND-rigid), then A is strongly cancellative (respectively, cancellative).

Now we have an immediate consequence, which is the first part of Theorem 0.5.
Combining it with Theorem 7.13, we have finished the proof of Theorem 0.5.

Theorem 8.3. Let A be a finitely generated domain of finite GK-dimension. Let Z
be the center of A and suppose A× = k×. Assume that A is finitely generated and
free over Z. If A = D(A), then A is strongly cancellative.

Proof. Combining the hypothesis A = D(A) with Proposition 7.8, we have

A = D(A)⊆ML(A[t1, . . . , td ])⊆ A.

So ML(A[t1, . . . , td ])= A, or A is strongly LND-rigid. The assertion follows from
Theorem 8.2. �

Next we give two examples.

Example 8.4. Let A be generated by x1, x2, x3, x4 and subject to the relations

x1x2+ x2x1 = 0, x2x3+ x3x2 = 0,

x1x3+ x3x1 = 0, x3x4+ x4x3 = 0,

x1x4+ x4x1 = x2
3 , x2x4+ x4x2 = 0.

This is an iterated Ore extension, so it is Artin–Schelter regular of global dimen-
sion 4. This is a special case of the algebra in [Vancliff et al. 1998, Definition 3.1].
Set x2

i = yi for i = 1, . . . , 4. Then Z(A) = k[y1, y2, y3, y4]. The M1-matrix of
(E3.0.1) is

(ai j )4×4 =


2y1 0 0 y3

0 2y2 0 0
0 0 2y3 0
y3 0 0 2y4

 .
The determinant det(ai j ) is f0 := 4y2 y3

(
4y1 y4− y2

3

)
. By Theorem 3.7, the discrim-

inant f := d(A/Z) is f 23

0 . It is clear that y2, y3 ∈ Sw( f ) and y1, y4 ∈ Sw(D1( f )).
Thus xi ∈ Sw(D2( f )) for all i . Consequently, A = D(A). By Theorem 8.3, A is
strongly cancellative.

The next example is somewhat generic.

Example 8.5. Let T be a commutative domain and let A=C(V, q) be the Clifford
algebra associated to a quadratic form q : V → T where V is a free T-module of
rank n. Suppose that n is even. Then the center of A is T [Lam 2005, Chapter 5,
Theorem 2.5(a)]. We assume that A is a domain with A× = k×. Let t1, . . . , tw be a
set of generators of T, and suppose that q(V )⊆ (t1 · · · tw)T or det(q) ∈ (t1 · · · tw)T.
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Then by Theorem 3.7 we have f := d(A/T ) ∈ (t1 · · · tw)2
n−1

. So ts ∈ Sw( f ) for
all s. This shows that T ⊆D(A) and then A =D(A) (as x2

i ∈ T ). By Theorem 8.3,
A is strongly cancellative.

Remark 8.6. Let A be the algebra in Example 6.3. Using the formula for d(A/Z)
given in Lemma 6.4, it is easy to see that A = D(A). So A is cancellative by
Theorem 8.3.

Automorphism problem. By [CPWZ 2015a; 2016], the discriminant controls the
automorphism group of some noncommutative algebras. In this section we com-
pute some automorphism groups by using the discriminants computed in previous
sections. We first recall some definitions and results.

We modify the definitions in [CPWZ 2015a; 2016] slightly. Let A be an N-filtered
algebra such that gr A is a connected graded domain. Let X := {x1, . . . , xn} be a
set of elements in A such that it generates A and gr X generates gr A. We do not
require deg xi = 1 for all i .

Definition 8.7. Let f be an element in A and let X ′={x1, . . . , xm} be a subset of X .
We say f is dominating over X ′ if, for any subset {y1, . . . , yn} ⊆ A that is linearly
independent in the quotient k-space A/k, there is a lift of f , say F(X1, . . . , Xn),
in the free algebra k〈X1, . . . , Xn〉, such that deg F(y1, . . . , yn) > deg f whenever
deg yi > deg xi for some xi ∈ X ′.

The following lemma is easy.

Lemma 8.8. Retain the above notation. Suppose f := d(A/Z) is dominating
over X ′. Then for every automorphism g ∈ Aut(A), we have deg g(xi )≤ deg xi for
all xi ∈ X ′.

Proof. Let yi = g(xi ). Then {y1, . . . , yn} is linearly independent in A/k (as
{x1, . . . , xn} is linearly independent in A/k). If deg yi > deg xi for some i , by the
dominating property, there is a lift of f in the free algebra, say F(X1, . . . , Xn),
such that deg F(y1, . . . , yn) > deg f . Since g is an algebra automorphism,

F(y1, . . . , yn)= F(g(x1), . . . , g(xn))= g(F(x1, . . . , xn))= g( f ).

By [CPWZ 2015a, Lemma 1.8(6)], g( f )= f (up to a unit in Z ). Hence

deg F(y1, . . . , yn)= deg g( f )= deg f,

yielding a contradiction. Therefore, deg g(xi )= deg yi ≤ deg xi for all i . �

We will study the automorphism group of a class of Clifford algebras; see
Example 8.5.

Example 8.9. Let A be the Clifford algebra over a commutative k-domain T as in
Example 8.5 and assume that n is even. Let {z1, . . . , zn} denote a set of generators
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for A. We will use {x1, . . . , xn} for the generators of the generic Clifford algebra Ag

defined in Section 3. Then there is an algebra homomorphism from Ag to A sending
xi to zi for all i . Since n is even, T is the center of A. Assume that A is a filtered
algebra such that gr A is a connected graded domain, so we can define the degree of
any nonzero element in A. Further assume that deg ti = 2 (not 1) for all i = 1, . . . , w
and deg zi > 2 for all i = 1, 2, . . . , n. In particular, there is no element of degree 1.
Some explicit examples are given later in this example.

Recall that we assumed q(V )⊆ (t1 · · · tw)T. Let 2bi j = zj zi + zi zj . Then we can
write bi j = (t1 · · · tw)N b′i j for some N > 0. By Theorem 3.7, the discriminant is
f := d(A/T ) =

[(∏w
s=1 ts

)Nd ′
]2n−1

, where d ′ = det(2b′i j )n×n . We need another
hypothesis, which is that

deg d ′ < N . (E8.9.1)

Let X ′ = {ti }wi=1 and X = {zi }
n
i=1 ∪ X ′. Then f is a noncommutative polynomial

over X ′. We first claim that f is dominating over X ′. Let {yi }
w
i=1 be a set of

elements in A\k. If deg yi > 2 for some i , then deg
[(∏w

s=1 ys
)Nd ′(y1, . . . , yw)

]2n−1

is strictly larger than the degree of f , as we assume that deg d ′ < N. This shows
the claim.

Now let g be any algebra automorphism of A and let yi be g(ti ) for all i . Then,
by Lemma 8.8, deg yi = 2. It follows from the relations zi zi = bi i that deg zi > 3.
Hence (gr A)2 is generated by the ti . This implies that yi is in the span of X ′ and k.
In some sense, every automorphism of A is affine (with respect to X ′). It is a big
step in understanding the automorphism group of A.

Below we study the automorphism group of a family of subalgebras of the generic
Clifford algebra Ag of rank n that is defined in Section 3. As before, we assume
n is even. We have two different sets of variables t , one for Ag and the other for
general A. It would be convenient to unify these in the following discussion. So we
identify {t(i, j) | 1≤ i ≤ j ≤ n} with {ti }wi=1 via a bijection φ. Here w = 1

2 n(n+ 1)
as in the definition of Ag (Section 3).

Let r be any positive integer and let Bg,r be the graded subalgebra of Ag gen-
erated by {t(i, j)} for all 1 ≤ i ≤ j ≤ n (or {ti }wi=1) and zi := xi

(∏w
k=1 tk

)r for all
i = 1, 2, . . . , n. Since Bg,r is a graded subalgebra of Ag, it is a connected graded
domain. This is also a Clifford algebra over Tg := k[t(i, j)] generated by z1, . . . , zn

and subject to the relations

zj zi + zi zj = 2
( w∏

k=1

tk

)2r

t(i, j) =: 2bi j

from which the bilinear form b and associated quadratic form q can easily be
recovered. In particular, q(V ) ⊆

(∏w
k=1 tk

)2r Tg, where V =
⊕n

i=1Tgzi . By the
definition of Ag, we have deg ti = 2. Then deg zi = 1+ 4rw > 3. Now we assume
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that N := 2r is bigger than 2n, which is the degree of d ′ := det(t(i, j)). So we have

n < r, or equivalently deg d ′ < N ,

as required by (E8.9.1). See also Remark 8.10.
Let g be an algebra automorphism of Bg,d . By the above discussion, g(ti ), for

each i , is a linear combination of {tj }wj=1 and 1. Using the relations z2
i = bi i , we see

that deg g(zi )= deg(zi ) for all i . Thus g must be a filtered automorphism of Bg,d .
Since g preserves the discriminant f and f is homogeneous in ti , we have

deg g(ti ) = 2. Further, by using the expression of f and the fact that Tg is a
UFD, g(ti ) can not be a linear combination of the tj of more than one term. Thus
g(ti )= ci tj for some j and some ci ∈ k×. This implies that there is a permutation
σ ∈ Sw and a collection of units {ci }

w
i=1 such that g(ti ) = ci tσ(i) for all i . Since

g is filtered (by the last paragraph), g(zi ) =
∑n

h=1dihzh + ei , where dih, ei ∈ k.
Applying g to the relation

z2
i = bi i =

( w∏
i=1

ti

)N

tφ(i,i), where N := 2r,

we obtain that(∑
h

dihzh

)2

+ 2ei

(∑
h

dihzh

)
+ e2

i =

( w∏
i=1

ci ti

)N

g(tφ(i,i)).

Since
(∑

h dihzh
)2
∈ T, we have ei

(∑
h dihzh

)
= 0. Consequently, ei = 0 and

g(zi )=
∑n

h=1dihzh . Applying g to the relations

zi zj + zj zi = 2bi j = 2
( w∏

i=1

ti

)N

tφ(i, j)

and expanding the left-hand side, we obtain∑
h,l

dihdjl(zhzl + zl zh)= 2
( w∏

i=1

ci ti

)N

g(tφ(i, j)).

Hence dihdjl is nonzero for only one pair (h, l). Thus there is a set of units {di }
n
i=1

and a permutation ψ ∈ Sn such that g(zi )= di zψ(i) for all i = 1, . . . , n. Then the
above equation implies that

di dj

( w∏
i=1

ti

)N

tφ(ψ(i),ψ( j)) =

( w∏
i=1

ci

)N( w∏
i=1

ti

)N

cφ(i, j)tσ(φ(i, j))

for all i , j . Therefore,

φ(ψ(i), ψ( j))= σ(φ(i, j)) (E8.9.2)
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and

di dj =

( w∏
i=1

ci

)N

cφ(i, j) (E8.9.3)

for all i , j .
By (E8.9.2), σ is completely determined by ψ ∈ Sn . Let d̄i = di

(∏w
i=1ci

)−r.
Then (E8.9.3) says that d̄i d̄j = cφ(i, j). So

∏w
i=1ci =

∏
1≤i≤ j≤n d̄i d̄j . This means

the cφ(i, j) and di are completely determined by the d̄i . In conclusion,

Aut(Bg,r )∼= {ψ ∈ Sn}n
{
d̄i ∈ k× | i = 1, . . . , n

}
∼= Sn n (k×)n.

In particular, every algebra automorphism of Bg,r is a graded algebra automorphism.

Remark 8.10. As a consequence of the computation in Example 8.9, Aut(Bg,r )

is independent of the parameter r when r > n. In fact, this assertion holds for all
r > 0, but its proof requires a different and longer analysis, so it is omitted. On the
other hand, Aut(Bg,0)= Aut(Ag) is very different; see Remark 3.9(3).

We will work out one more automorphism group below.

Example 8.11. We continue to study Example 8.4 and prove that every algebra
automorphism of A in Example 8.4 is graded. Some unimportant details are omitted
due to the length.

Claim 1: m := A≥1 is the only ideal of codimension 1 satisfying dimm/m2
= 4.

Suppose I = (x1− a1, x2− a2, x3− a3, x4− a4) is an ideal of A of codimension 1
such that dimk I/I 2

= 4. Then the map π : xi → ai for all i extends to an algebra
homomorphism A→ k. Applying π to the relations of A in (E8.4.1), we obtain

a1a2 = 0, a1a3 = 0, 2a1a4 = a2
3, a2a3 = 0, a3a4 = 0, a2a4 = 0.

Therefore, (ai ) is either (a1, 0, 0, 0), or (0, a2, 0, 0), or (0, 0, 0, a4). By symmetry,
we consider the first case and the details of the other cases are omitted. Let
zi = xi − ai for all i . Then the first relation of (E8.4.1) becomes

z1z2+ z2z1 = (x1− a1)x2+ x2(x1− a1)=−2a1x2 =−2a1z2.

So 2a1z2 ∈ I 2. Since dim I/I 2
= 4, we have a1 = 0. Thus we have proved Claim 1.

One of the consequences of Claim 1 is that any algebra automorphism of A
preserves m. So we have a short exact sequence

1→ Autuni(A)→ Aut(A)→ Autgr(A)→ 1,

where Autgr(A) is the group of graded algebra automorphisms of A and Autuni(A)
is the group of unipotent algebra automorphisms of A.

Claim 2: If f is a nonzero normal element in degree 1, then B := A/( f ) is an
Artin–Schelter regular domain of global dimension 3. By [Rogalski and Zhang 2012,



594 Kenneth Chan, Alexander A. Young and James J. Zhang

Lemma 1.1], B has global dimension 3. Since A satisfies the χ -condition [Artin and
Zhang 1994], so does B. As a consequence, B is AS regular of global dimension 3
[Artin and Schelter 1987]. It is well-known that every Artin–Schelter regular
algebra of global dimension 3 is a domain (following by the Artin–Schelter–Tate–
Van den Bergh classification [Artin and Schelter 1987; Artin et al. 1991; 1990]).

Claim 3: If f ∈ A1 is a normal element, then f ∈ kx2 or f ∈ kx3. First of all, both
x2 and x3 are normal elements by the relations (E8.4.1). Note that xi g = η−1(g)xi

for i = 2, 3, where η−1 is the algebra automorphism of A sending xi to −xi for all i .
Suppose that f is nonzero normal and f /∈ kx3 ∪ kx4. Then the image f̄ of f

is normal in A/(x3). Since A/(x3) is a skew polynomial ring, by [Kirkman et al.
2010, Lemma 3.5(d)], f̄ is a scalar multiple of xi for some i = 1, 2, or 4. This
implies that f is either ax1 + bx3, or ax2 + bx3, or ax4 + bx3 for some a, b ∈ k.
If b = 0, then f = x1 or x4. The relation x1x4+ x4x1 = x2

3 implies that A/( f ) is
not a domain (as x2

3 = 0 in A/( f )). This contradicts Claim 2. So the only possible
case is f = x2 (again yielding a contradiction). Now assume that b 6= 0 (and a 6= 0
because f /∈ kx3∪ kx4). We consider the first case and the details of the other cases
are similar and omitted. Since f = ax1+ bx3, the relation x1x3+ x3x1 = 0 implies
that x2

1 = 0 in A/( f ), which contradicts Claim 2. In all these cases, we obtain a
contradiction, and therefore f ∈ kx2 or f ∈ kx3.

Since A/(x2) is not isomorphic to A/(x3), there is no algebra automorphism
sending x2 to x3. As a consequence, any graded automorphism ψ of A maps
x2 → c2x2 and x3 → c3x3. Let g be any graded algebra automorphism of A.
Let ḡ be the induced algebra automorphism of A/(x3). By [Kirkman et al. 2010,
Lemma 3.5(e)], ḡ sends x1→ c1x1 and x4→ c4x4, or x1→ c1x4 and x4→ c4x1.
Then, by using the original relations in (E8.4.1), one can check that g is of the form

x1→ c1x1, x2→ c2x2, x3→ c3x3, x4→ c4x4,

where c1c2 = c2
3 = c2

4, or

x1→ c1x4, x2→ c2x2, x3→ c3x3, x4→ c4x1,

where c1c2 = c2
3 = c2

4. So

Autgr(A)∼=
{
(c1, c2, c3, c4) ∈ (k×)4 | c1c2 = c2

3 = c2
4
}
,

which is completely determined.

Claim 4: Autuni(A) is trivial. Recall that the discriminant of A over its center is

d :=
(
x2

2 x2
3
(
4x2

1 x2
4 − x4

3
))8
.

By Example 8.4, the DDS subalgebra D(A) is the whole algebra A. The assertion
follows from Theorem 0.5.
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Combining all these claims, one sees that Aut(A)=Autgr(A), which is described
in Claim 3.

Remark 8.12. Ideas as in Remark 8.10 also apply to Example 6.3 and a similar
conclusion holds. The interested reader can fill out the details.
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