

Volume 10 2016 No. 3

On twists of modules over noncommutative Iwasawa algebras

Somnath Jha, Tadashi Ochiai and Gergely Zábrádi

On twists of modules over noncommutative Iwasawa algebras

Somnath Jha, Tadashi Ochiai and Gergely Zábrádi

It is well known that, for any finitely generated torsion module M over the Iwasawa algebra $\mathbb{Z}_p[[\Gamma]]$, where Γ is isomorphic to \mathbb{Z}_p , there exists a continuous p-adic character ρ of Γ such that, for every open subgroup U of Γ , the group of U-coinvariants $M(\rho)_U$ is finite; here $M(\rho)$ denotes the twist of M by ρ . This twisting lemma was already used to study various arithmetic properties of Selmer groups and Galois cohomologies over a cyclotomic tower by Greenberg and Perrin-Riou. We prove a noncommutative generalization of this twisting lemma, replacing torsion modules over $\mathbb{Z}_p[[\Gamma]]$ by certain torsion modules over $\mathbb{Z}_p[[G]]$ with more general p-adic Lie group G. In a forthcoming article, this noncommutative twisting lemma will be used to prove the functional equation of Selmer groups of general p-adic representations over certain p-adic Lie extensions.

Introduction

Let us fix an odd prime p throughout the paper. We denote by Γ a p-Sylow subgroup of \mathbb{Z}_p^{\times} . For a compact p-adic Lie group G and the ring \mathcal{O} of integers of a finite extension of \mathbb{Q}_p , we denote the Iwasawa algebra $\mathcal{O}[\![G]\!]$ of G with coefficient in \mathcal{O} by $\Lambda_{\mathcal{O}}(G)$.

In this article, we study $\Lambda_{\mathcal{O}}(G)$ -modules, motivated by [Coates et al. 2005]. More precisely, we study specializations of certain $\Lambda_{\mathcal{O}}(G)$ -modules by two-sided ideals of $\Lambda_{\mathcal{O}}(G)$. Recall that the paper [Coates et al. 2005] establishes a reasonable setting of noncommutative Iwasawa theory in the following situation.

(G) G is a compact p-adic Lie group which has a closed normal subgroup H such that G/H is isomorphic to Γ .

MSC2010: primary 11R23; secondary 16S50.

Keywords: Selmer group, noncommutative Iwasawa theory.

S. Jha gratefully acknowledges the support of a JSPS postdoctoral fellowship and a DST INSPIRE faculty award grant. T. Ochiai is partially supported for this work by KAKENHI (Grant-in-Aid for Exploratory Research: Grant Number 24654004, Grant-in-Aid for Scientific Research (B): Grant Number 26287005). G. Zábrádi was supported by a Hungarian OTKA Research grant K-100291 and by the János Bolyai Scholarship of the Hungarian Academy of Sciences.

According to the philosophy of [Coates et al. 2005], for a reasonable ordinary p-adic representation T of a number field K and a pair of compact p-adic Lie groups $H \subset G$ satisfying the condition (G), the Pontryagin dual \mathcal{S}_A^\vee of the Selmer group \mathcal{S}_A of the Galois representation $A = T \otimes \mathbb{Q}_p/\mathbb{Z}_p$ over a Galois extension K_∞/K with $\mathrm{Gal}(K_\infty/K) \cong G$ seems to be a nice object. The $\Lambda_\mathcal{O}(G)$ -module \mathcal{S}_A^\vee divided by the largest p-primary torsion subgroup $\mathcal{S}_A^\vee(p)$ is conjectured to belong to the category $\mathfrak{n}_H(G)$ which consists of finitely generated $\Lambda_\mathcal{O}(G)$ -modules M such that M is also finitely generated over $\Lambda_\mathcal{O}(H)$. From such arithmetic background, we are led to study finitely generated $\Lambda_\mathcal{O}(G)$ -modules for a compact Lie group G with $H \subset G$ satisfying the condition (G).

On the other hand, for any open subgroup U of G and for any arithmetic module S_A^{\vee} as above, the largest U-coinvariant quotient $(S_A^{\vee})_U$ is expected to be related to the Selmer group of A over a finite extension L of K with $\operatorname{Gal}(L/K) \cong G/U$. As remarked above, we have the following fact (Tw) when $G = \Gamma$ (i.e., when H = 1) which was used quite effectively in the work of Greenberg [1989] and Perrin-Riou [2003].

(Tw) For any finitely generated torsion $\Lambda_{\mathcal{O}}(\Gamma)$ -module M, there exists a continuous character $\rho: \Gamma \to \mathbb{Z}_p^{\times}$ such that the largest U-coinvariant quotient $(M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(\rho))_U$ of $M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(\rho)$ is finite for every open subgroup U of Γ , where $\mathbb{Z}_p(\rho)$ is a free \mathbb{Z}_p -module of rank one on which Γ acts through the character $\Gamma \xrightarrow{\rho} \mathbb{Z}_p^{\times}$.

We call such a statement (Tw) a twisting lemma. In this commutative situation of $G = \Gamma$, the twisting lemma is proved in a quite elementary way. For example, we consider the characteristic ideal $\operatorname{char}_{\mathcal{O}\llbracket\Gamma\rrbracket} M$. If we take a ρ such that the values $\rho(\gamma)^{-1}\zeta_{p^n}-1$ do not coincide with any roots of the distinguished polynomial associated to $\operatorname{char}_{\mathcal{O}\llbracket\Gamma\rrbracket} M$ when natural numbers n and p^n -th roots of unity ζ_{p^n} vary, the twisting lemma is known to hold.

If we have a twisting lemma in a noncommutative setting, it seems quite useful for some arithmetic applications for noncommutative Iwasawa theory. On the other hand, for a noncommutative G, it was not clear what to do to prove the twisting lemma because we cannot talk about "roots of characteristic polynomials" as we did in commutative setting. We finally succeeded in proving the twisting lemma which is stated as our Main Theorem below.

For a $\Lambda_{\mathcal{O}}(G)$ -module M and a continuous character $\rho : \Gamma \to \mathbb{Z}_p^{\times}$, we denote by $M(\rho)$ the $\Lambda_{\mathcal{O}}(G)$ -module $M \otimes_{\mathbb{Z}_p} \mathbb{Z}_p(\rho)$ with diagonal G-action.

Main Theorem. Let G be a compact p-adic Lie group and let H be a closed normal subgroup such that G/H is isomorphic to Γ . Let M be a $\Lambda_{\mathcal{O}}(G)$ -module which is finitely generated over $\Lambda_{\mathcal{O}}(H)$.

Then there exists a continuous character $\rho: \Gamma \to \mathbb{Z}_p^{\times}$ such that the largest *U*-coinvariant quotient $M(\rho)_U$ of $M(\rho)$ is finite for every open normal subgroup *U* of *G*.

We give some examples of a pair $H \subset G$ satisfying the condition (G) and a $\Lambda_{\mathcal{O}}(G)$ -module M which should appear in arithmetic applications.

Examples. (1) Let us choose a prime $p \ge 5$. Let E be a non-CM elliptic curve over $\mathbb Q$ with good ordinary reduction at p. Take $K = \mathbb Q(E[p])$ and set $K_\infty = \mathbb Q(\bigcup_{n\ge 1} E[p^n])$. Then by a well known result of Serre, $\operatorname{Gal}(K_\infty/K)$ is an open subgroup of $\operatorname{GL}_2(\mathbb Z_p)$. By Weil pairing, the cyclotomic $\mathbb Z_p$ extension K_{cyc} of K is contained in K_∞ . We denote $\operatorname{Gal}(K_\infty/K)$, $\operatorname{Gal}(K_\infty/K_{\operatorname{cyc}})$ and $\operatorname{Gal}(K_{\operatorname{cyc}}/K)$ by G, H and Γ respectively. The pair $H \subset G$ satisfies the condition (G).

Let us consider the Pontryagin dual S_A^{\vee} of the Selmer group S_A of the Galois representation $A = T_p E \otimes \mathbb{Q}_p/\mathbb{Z}_p$ over the Galois extension K_{∞}/K discussed above. We take M to be the module $S_A^{\vee}/S_A^{\vee}(p)$. It is conjectured that the module $M = S_A^{\vee}/S_A^{\vee}(p)$ is in the category $\mathfrak{n}_H(G)$ (see [Coates et al. 2005, Conjecture 5.1]) and there are examples where this conjecture is satisfied (see [loc. cit.]).

(2) Let us choose a p-th power free integer $m \ge 2$. Put $K = \mathbb{Q}(\mu_p)$, $K_{\text{cyc}} = \mathbb{Q}(\mu_{p^\infty})$ and $K_\infty = \bigcup_{n=1}^\infty K_{\text{cyc}}(m^{1/p^n})$. Such an extension K_∞/K is called a false-Tate curve extension. We denote $\operatorname{Gal}(K_\infty/K)$, $\operatorname{Gal}(K_\infty/K_{\text{cyc}})$ and $\operatorname{Gal}(K_{\text{cyc}}/K)$ by G, H and Γ respectively. Note that we have $G \cong \mathbb{Z}_p \rtimes \mathbb{Z}_p$, $H \cong \mathbb{Z}_p$ and $\Gamma \cong \mathbb{Z}_p$. Again the pair $H \subset G$ satisfies the condition (G).

Let us consider the Pontryagin dual \mathcal{S}_A^{\vee} of the Selmer group \mathcal{S}_A of the Galois representation $A = T \otimes \mathbb{Q}_p/\mathbb{Z}_p$ over a Galois extension K_{∞}/K discussed above. We take M to be the module $\mathcal{S}_A^{\vee}/\mathcal{S}_A^{\vee}(p)$. Under certain assumptions on A, it is expected that $\mathcal{S}_A^{\vee}/\mathcal{S}_A^{\vee}(p)$ will be in $\mathfrak{n}_H(G)$. We refer to [Hachimori and Venjakob 2003] for some examples of $\mathcal{S}_A^{\vee}/\mathcal{S}_A^{\vee}(p)$ which are in $\mathfrak{n}_H(G)$.

(3) Let K be an imaginary quadratic field in which a rational prime $p \neq 2$ splits. Let K_{∞} be the unique $\mathbb{Z}_p^{\oplus 2}$ -extension of K. Let $G = \operatorname{Gal}(K_{\infty}/K)$ and $H = \operatorname{Gal}(K_{\infty}/K_{\operatorname{cyc}})$. Once again the pair $H \subset G$ satisfies the condition (G).

For the Pontryagin dual S_A^{\vee} of the Selmer group S_A of the Galois representation $A = T \otimes \mathbb{Q}_p/\mathbb{Z}_p$ over a Galois extension K_{∞}/\mathbb{Q} in this commutative two-variable situation, similar phenomena as above are expected and we take M to be the module $S_A^{\vee}/S_A^{\vee}(p)$.

In a forthcoming joint work of two of us [Jha and Ochiai \geq 2016], the Main Theorem above will be applied to establish the functional equation of Selmer groups for general p-adic representations over a general noncommutative p-adic Lie extension. This is a partial motivation for our present work for two of us. Note that the third author proved the functional equation of Selmer groups for elliptic curves over

false-Tate curve extension (see [Zábrádi 2008]) and for non-CM elliptic curves in GL_2 -extension (see [Zábrádi 2010]). But the main method of the papers [Zábrádi 2008; 2010] is not based on the twisting lemma.

Notation. Unless otherwise specified, all modules over $\Lambda_{\mathcal{O}}(G)$ are considered as left modules. Throughout the paper we fix a topological generator γ of Γ .

1. Preliminary Theorem

In this section, we formulate and prove the Preliminary Theorem below, which gives the same conclusion as the Main Theorem under stronger assumptions (i.e., the hypothesis (H) and nonexistence of nontrivial element of order p in G). In the next section, our Main Theorem is deduced from the Preliminary Theorem and the Key Lemma which is given in the next section.

Preliminary Theorem. Let G be a compact p-adic Lie group without any element of order p and let H be a closed normal subgroup such that G/H is isomorphic to Γ . Let M be a finitely generated torsion $\Lambda_{\mathcal{O}}(G)$ -module satisfying the following condition.

(H) There is a $\Lambda_{\mathcal{O}}(H)$ -linear homomorphism $M \to \mathbb{Z}_p[\![H]\!]^{\oplus d}$ that induces an isomorphism $M \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \xrightarrow{\sim} (\mathbb{Z}_p[\![H]\!] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\oplus d}$ after taking $\otimes_{\mathbb{Z}_p} \mathbb{Q}_p$.

Then there exists a continuous character $\rho: \Gamma \to \mathbb{Z}_p^{\times}$ such that the largest *U*-coinvariant quotient $M(\rho)_U$ of $M(\rho)$ is finite for every open normal subgroup *U* of *G*.

Before going into the proof of the Preliminary Theorem, we collect some basic results in noncommutative Iwasawa theory which are relevant for the article.

Lemma 1. Let $H \subset G$ be a pair satisfying the condition (G) and let M be a finitely generated $\Lambda_{\mathcal{O}}(G)$ -module which satisfies the condition (H). Then there exists a matrix $A \in M_d(\mathbb{Z}_p[\![H]\!] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$ such that $M \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ is isomorphic to

$$(\mathbb{Z}_p \llbracket G \rrbracket \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\oplus d} / (\mathbb{Z}_p \llbracket G \rrbracket \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\oplus d} (\tilde{\gamma} \mathbf{1}_d - A),$$
 (1)

where γ is a topological generator of Γ and $\tilde{\gamma} \in G$ is a fixed lift of γ and elements in $(\mathbb{Z}_p[\![G]\!] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\oplus d}$ are regarded as row vectors.

Proof. Let us take a basis $\mathbf{v}_1, \ldots, \mathbf{v}_d$ of the free $\mathbb{Z}_p[\![H]\!] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ -module $M \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$. Through the isomorphism $M \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \xrightarrow{\sim} (\mathbb{Z}_p[\![H]\!] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\oplus d}$ fixed by the condition (H), $\tilde{\gamma}$ acts on M. Thus we define a matrix $A = (a_{ij})_{1 \leq i,j \leq d} \in M_d(\mathbb{Z}_p[\![H]\!] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$ by

$$\tilde{\gamma} \cdot \mathbf{v}_i = \sum_{1 \le j \le d} a_{ji} \mathbf{v}_j.$$

We denote the module presented in (1) by N_A . By construction, we have a $\mathbb{Z}_p[\![H]\!] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ -linear isomorphism $(\mathbb{Z}_p[\![H]\!] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\oplus d} \xrightarrow{\sim} N_A$ on which $\tilde{\gamma}$ acts in the same manner as the action of $\tilde{\gamma}$ on $M \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$.

We denote by \mathcal{U} the set of all open normal subgroups U of G. We remark that the set \mathcal{U} is a countable set since G is profinite and has a countable base at the identity.

Lemma 2. For any $U \in \mathcal{U}$, $\mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \overline{\mathbb{Q}}_p$ is isomorphic to a finite number of products of matrix algebras $\prod_{i=1}^{k(U)} M_{r_i}(\overline{\mathbb{Q}}_p)$.

Proof. First of all, the algebra $\mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \cong \mathbb{Q}_p[G/U]$ is a semisimple algebra over \mathbb{Q}_p since G/U is a finite group and \mathbb{Q}_p is of characteristic 0. We have an isomorphism

$$\mathbb{Q}_p[G/U] \cong \prod_{i=1}^{l_n} M_{s_i}(D_i),$$

where D_i is a finite dimensional division algebra over \mathbb{Q}_p . For each i, the center K_i of D_i is a finite extension of \mathbb{Q}_p . It is well-known that $\dim_{K_i} D_i$ is a square of some natural number t_i and $D_i \otimes_{K_i} \overline{\mathbb{Q}}_p$ is isomorphic to $M_{t_i}(\overline{\mathbb{Q}}_p)$. Thus $M_{s_i}(D_i) \otimes \overline{\mathbb{Q}}_p$ is isomorphic to $[K_i : \mathbb{Q}_p]$ copies of $M_{s_i+t_i}(\overline{\mathbb{Q}}_p)$. The lemma follows immediately from this.

Proof of the Preliminary Theorem. First, we remark that for an open normal subgroup U of G, we have

$$M(\rho)_U$$
 is finite if and only if $M(\rho)_U \otimes_{\mathbb{Z}_p} \mathbb{Q}_p = 0$. (2)

Since the operation of taking the base extension $\otimes_{\mathbb{Z}_p} \mathbb{Q}_p$ commutes with the operation of taking the largest *U*-coinvariant quotient, by Lemma 1 we have

$$M(\rho)_U \otimes_{\mathbb{Z}_p} \mathbb{Q}_p$$

$$\cong (\mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\oplus d} / (\mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\oplus d} (\tilde{\gamma}_U^{\oplus d} - A_U(\rho)), \quad (3)$$

where we denote the projection of $\tilde{\gamma} \in G$ to G/U by $\tilde{\gamma}_U$. Here, the matrix $A_U(\rho) \in M_d(\mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$ is defined as the image of $\rho(\gamma)^{-1}A \in M_d(\mathbb{Z}_p[\![H]\!] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)$ via the composite map

$$M_d(\mathbb{Z}_p\llbracket H\rrbracket \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) \longrightarrow M_d(\mathbb{Z}_p\llbracket G\rrbracket \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) \longrightarrow M_d(\mathbb{Z}_p\llbracket G/U \rrbracket \otimes_{\mathbb{Z}_p} \mathbb{Q}_p).$$

Taking the base extension $\otimes_{\mathbb{Q}_p} \overline{\mathbb{Q}}_p$ of the isomorphism (3), we have a $\overline{\mathbb{Q}}_p$ -linear isomorphism by Lemma 2:

$$M(\rho)_{U} \otimes_{\mathbb{Z}_{p}} \overline{\mathbb{Q}}_{p} \cong \prod_{i=1}^{k(U)} M_{r_{i}}(\overline{\mathbb{Q}}_{p})^{\oplus d} / M_{r_{i}}(\overline{\mathbb{Q}}_{p})^{\oplus d} (\gamma_{U,i}^{\oplus d} - A_{U,i}(\rho))$$
(4)

where $\gamma_{U,i} \in \operatorname{Aut}_{\overline{\mathbb{Q}}_p}(M_{r_i}(\overline{\mathbb{Q}}_p))$ and $A_{U,i}(\rho) \in \operatorname{End}_{\overline{\mathbb{Q}}_p}(M_{r_i}(\overline{\mathbb{Q}}_p)^{\oplus d})$ are defined as follows. We consider the base extension to $\overline{\mathbb{Q}}_p$ of

$$\tilde{\gamma}_U \in \operatorname{Aut}_{\mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p}(\mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) \subset \operatorname{Aut}_{\mathbb{Q}_p}(\mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p).$$

This is an element of $\operatorname{Aut}_{\overline{\mathbb{Q}}_p}(\prod_{i=1}^{k(U)} M_{r_i}(\overline{\mathbb{Q}}_p))$. We denote the projection of this element to the *i*-th component by γ_{U_i} . The base extension to $\overline{\mathbb{Q}}_p$ of

$$A_U(\rho) \in M_d(\mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p) \subset \operatorname{End}_{\mathbb{Q}_p} \left((\mathbb{Z}_p[G/U] \otimes_{\mathbb{Z}_p} \mathbb{Q}_p)^{\oplus d} \right)$$

is an element of $\operatorname{End}_{\overline{\mathbb{Q}}_p} \left(\prod_{i=1}^{k(U)} M_{r_i}(\overline{\mathbb{Q}}_p)^{\oplus d} \right)$, and we denote the projection of this element to the *i*-th component by $A_{U,i}(\rho)$.

Now, we denote by $A_{U,i}$ the element $A_{U,i}(1)$. We remark that $A_{U,i}(\rho)$ is equal to $\rho(\gamma)^{-1}A_{U,i}$ for any continuous character $\rho:\Gamma\to\mathbb{Z}_p^\times$. We define $\mathrm{EV}_{U,i}$ to be the set of roots of the characteristic polynomial

$$P_{U,i}(T) := \det(\gamma_{U,i}^{\oplus d} - A_{U,i}T).$$

Since $\gamma_{U,i}^{\oplus d}$ is an automorphism, the polynomial $P_{U,i}(T)$ is not zero. Hence $\mathrm{EV}_{U,i}$ is a finite set. We denote the union of $\mathrm{EV}_{U,i}$ for $1 \leq i \leq k(U)$ by EV_U , which is again a finite set. If $\rho(\gamma)^{-1}$ is not contained in $\mathrm{EV}_U \cap \mathbb{Z}_p^{\times}$, the module in (4) is zero and hence the module in (3) is zero. Now, we denote by EV_M the union of $\mathrm{EV}_U \cap \mathbb{Z}_p^{\times}$ over all $U \in \mathcal{U}$. Since \mathcal{U} is a countable set, EV_M is a countable set. Thus $\mathbb{Z}_p^{\times} \setminus \mathrm{EV}_M$ is nonempty since \mathbb{Z}_p^{\times} is uncountable. By choosing $\rho(\gamma)^{-1} \in \mathbb{Z}_p^{\times} \setminus \mathrm{EV}_M$, we complete the proof.

2. Proof of the Main Theorem

In this section, we prove the Main Theorem, which relies on the following result.

Key Lemma. Let G be a compact p-adic Lie group without any element of order p and let H be a closed subgroup such that G/H is isomorphic to Γ . Let M be $\Lambda_{\mathcal{O}}(G)$ -module which is finitely generated over $\Lambda_{\mathcal{O}}(H)$. Then, there exists an open subgroup $G_0 \subset G$ containing H, a $\Lambda_{\mathcal{O}}(G_0)$ -module N which is a free $\Lambda_{\mathcal{O}}(H)$ -module of finite rank, and a surjective $\Lambda_{\mathcal{O}}(G_0)$ -linear homomorphism $N \twoheadrightarrow M$.

Proof. We denote by I the Jacobson radical of $\Lambda_{\mathcal{O}}(H)$. Note that I is a two sided ideal of $\Lambda_{\mathcal{O}}(H)$ such that we have $\Lambda_{\mathcal{O}}(H)/I \cong \mathbb{F}_q$, where \mathbb{F}_q is the residue field of \mathcal{O} . We also have $\Lambda_{\mathcal{O}}(G)/I \cong \mathbb{F}_q[\![\Gamma]\!]$ by definition.

Let us take a system of generators m_1, \ldots, m_d of M as a $\Lambda_{\mathcal{O}}(H)$ -module. Note that M is equipped with a topology obtained by a natural $\Lambda_{\mathcal{O}}(H)$ -module structure. The set $\{I^n M\}_{n \in \mathbb{N}}$ forms a system of open neighborhoods of M.

Choose a topological generator γ of Γ and take a lift $\tilde{\gamma} \in G$ of γ . By continuity of the action of G on M, the following two conditions hold true simultaneously for a sufficiently large integer n:

- (i) We have $(\tilde{\gamma}^{p^n} 1)m_i \in IM$ for any i with $1 \le i \le d$.
- (ii) The conjugate action of $\tilde{\gamma}^{p^n}$ on I/I^2 is trivial.

We will choose and fix a natural number n satisfying the conditions (i) and (ii). Then we define G_0 to be the preimage of Γ^{p^n} by the surjection $G \to \Gamma$. By definition, G_0 is an open subgroup of G which contain H.

Let us consider the set $\{a_{ij} \in I\}_{1 \le i,j \le d}$ such that we have $(\tilde{\gamma}^{p^n} - 1)m_j = \sum_{i=1}^d a_{ij}m_i$. We consider F (resp. F') which is a free $\Lambda_{\mathcal{O}}(G_0)$ -module of rank d equipped with a system of generators f_1, \ldots, f_d (resp. f'_1, \ldots, f'_d). We consider a $\Lambda_{\mathcal{O}}(G_0)$ -linear homomorphism

$$\varphi: F' \longrightarrow F, \quad f'_j \mapsto (\tilde{\gamma}^{p^n} - 1) f_j - \sum_{i=1}^d a_{ij} f_i.$$

We define a $\Lambda_{\mathcal{O}}(G_0)$ -module N to be the cokernel of the map φ above.

Claim. For each i with $1 \le i \le d$, we denote the image of f_i by $\bar{f_i}$. Then the $\Lambda_{\mathcal{O}}(G_0)$ -module N is a free $\Lambda_{\mathcal{O}}(H)$ -module of finite rank d with a system of generators $\bar{f_1}, \ldots, \bar{f_d}$.

If the claim holds true, a $\Lambda_{\mathcal{O}}(G_0)$ -linear homomorphism $N \twoheadrightarrow M$ sending $\bar{f_i}$ to m_i for each i is surjective. Since N is free over $\Lambda_{\mathcal{O}}(H)$, this is what we want. Thus it remains only to prove the claim.

By applying the functor $\Lambda_{\mathcal{O}}(G_0)/I\Lambda_{\mathcal{O}}(G_0)\otimes_{\Lambda_{\mathcal{O}}(G_0)}\cdot$ to the map φ , and noting that

$$\Lambda_{\mathcal{O}}(G_0)/I \cong \mathbb{F}_q \llbracket \Gamma \rrbracket,$$

we obtain

$$\varphi_I: \bigoplus_{j=1}^d \mathbb{F}_q \llbracket \Gamma^{p^n} \rrbracket f_j' \xrightarrow{\times (\tilde{\gamma}^{p^n} - 1)} \bigoplus_{j=1}^d \mathbb{F}_q \llbracket \Gamma^{p^n} \rrbracket f_j.$$

Since N/IN is isomorphic to the cokernel of the above map φ_I , N/IN is a free \mathbb{F}_q -module of rank d. By applying the topological Nakayama lemma (see [Balister and Howson 1997, Corollary in §3]) to the compact $\Lambda_{\mathcal{O}}(H)$ -module N, N is generated by $\bar{f}_1,\ldots,\bar{f}_d$ over $\Lambda_{\mathcal{O}}(H)$. We will prove that N is free of rank d over $\Lambda_{\mathcal{O}}(H)$ with this system of generators. Let r be an arbitrary natural number. Since we have a natural surjection from the r-fold tensor product of I/I^2 to I^r/I^{r+1} , the conjugate action of $\tilde{\gamma}^{p^n}$ on I^r/I^{r+1} is also trivial. Thus, by applying the functor $I^r/I^{r+1}\Lambda_{\mathcal{O}}(G_0)\otimes_{\Lambda_{\mathcal{O}}(G_0)}$ to the map φ , we obtain a $\Lambda_{\mathcal{O}}(G_0)$ -linear map

$$\varphi \otimes I^r/I^{r+1}: I^rF'/I^{r+1}F' \longrightarrow I^rF/I^{r+1}F$$

which is again defined as a multiplication of $(\tilde{\gamma}^{p^n} - 1)$. This proves

$$\dim_{\mathbb{F}_q} N/I^s N = \sum_{r=0}^{s-1} \dim_{\mathbb{F}_q} I^r N/I^{r+1} N = \sum_{r=0}^{s-1} \dim_{\mathbb{F}_q} (I^r/I^{r+1})^{\oplus d}.$$

Thus the cardinality of N/I^sN is equal to the cardinality of $(\Lambda_{\mathcal{O}}(H)/I)^{\oplus d}$ for any natural number s, which implies that N is free of rank d over $\Lambda_{\mathcal{O}}(H)$. This completes the proof of the claim.

Proof of Main Theorem. We will use the Key Lemma and the Preliminary Theorem to prove the Main Theorem in two steps.

First, we consider the situation where G is a compact p-adic Lie group without any element of order p and H is a closed subgroup such that G/H is isomorphic to Γ . Thus we dropped the assumption (H) of the Preliminary Theorem but we still keep the assumption of nonexistence of a nontrivial element of order p in G.

Let M be $\Lambda_{\mathcal{O}}(G)$ -module which is finitely generated over $\Lambda_{\mathcal{O}}(H)$. By the Key Lemma, for a sufficiently large natural number n, we have a surjective $\Lambda_{\mathcal{O}}(G_0)$ linear homomorphism N woheadrightarrow M from a free $\Lambda_{\mathcal{O}}(H)$ -module N of finite rank. Here G_0 is a unique open subgroup $G_0 \subset G$ of index p^n containing H. Note that the module N satisfies condition (H) of the Preliminary Theorem. We thus find a continuous character $\rho_0: \Gamma^{p^n} \to \mathbb{Z}_p^{\times}$ such that $N(\rho_0)_{U_0}$ is finite for any open normal subgroup U_0 of G_0 . By the proof of the Preliminary Theorem, we can choose uncountably many such ρ_0 . Thus, we see that we can take ρ_0 as above so that the value of ρ_0 is contained in a open subgroup $1 + p^n \mathbb{Z}_p$ of \mathbb{Z}_p^{\times} . Then, we take a continuous character $\rho: \Gamma \to \mathbb{Z}_p^{\times}$ whose restriction to Γ^{p^n} coincides with ρ_0 . The twist $M(\rho)$ with this character is what we want in our Main Theorem. In fact, for any open normal subgroup U of G, we have a surjection $N(\rho_0)_{U_0} \to M(\rho)_U$ taking an open normal subgroup U_0 of G_0 contained in U. Since $N(\rho_0)_{U_0}$ is finite by the Preliminary Theorem, $M(\rho)_U$ must be finite. Thus we finished the proof of our Main Theorem under the assumption of nonexistence of a nontrivial element of order p in G.

Now we deduce our Main Theorem assuming that it is true under the assumption of nonexistence of a nontrivial element of order p in G. We consider the situation where G is a compact p-adic Lie group with elements of order p and H is a closed subgroup such that G/H is isomorphic to Γ . Let M be a $\Lambda_{\mathcal{O}}(G)$ -module which is finitely generated over $\Lambda_{\mathcal{O}}(H)$. Let G' be a uniform open normal subgroup of G (see [Lazard 1965, Chapter III, §(3.1)]), which is automatically without any elements of order p. Let H' be the intersection of H and G'. Since M is finitely generated over $\Lambda_{\mathcal{O}}(H)$ and since H' is of finite index in H, M is finitely generated over $\Lambda_{\mathcal{O}}(H')$. According to the result in our first step, there exist a continuous character $\rho': G'/H' \to \mathbb{Z}_p^{\times}$ such that $M(\rho')_{U'}$ is finite for every open subgroup U'

of G'. Note that G'/H' is naturally regarded as an open subgroup of G/H. Thus by choosing ρ' so that the image of ρ' is small enough in \mathbb{Z}_p^{\times} compared to the index of G'/H' in G/H, there exists a continuous character $\rho: G/H \to \mathbb{Z}_p^{\times}$ whose restriction to G'/H' coincides with ρ' . Now for any open normal subgroup U of G, we take an open normal subgroup U' of G' which is contained in U. We have a natural map $M(\rho')_{U'} \to M(\rho)_U$, where $M(\rho')_{U'}$ is finite by the choice of ρ' and by our discussion above. Unlike in the first step, $M(\rho')_{U'} \to M(\rho)_U$ is not necessarily surjective. However, the cokernel of this map is still finite by construction. We thus deduce that $M(\rho)_U$ is finite, which completes the proof of the Main Theorem. \square

Remark (p-torsion modules). For a compact p-adic Lie group G without any element of order p, it is well-known that $\Lambda_O(G)$ is left and right noetherian. Let N be a finitely generated p-primary torsion left $\Lambda_O(G)$ module. Then, we have $N = N[p^r]$ for some $r \in \mathbb{N}$. For any open normal subgroup U of G, N_U is a finitely generated $\mathbb{Z}/p^r\mathbb{Z}[G/U]$ module. In other words, N_U is always finite when N is of p-primary torsion.

For a finitely generated torsion $\Lambda_{\mathcal{O}}(G)$ module M, we consider the exact sequence

$$0 \longrightarrow M(p) \longrightarrow M \longrightarrow M/M(p) \longrightarrow 0$$
,

where M(p) is the largest p-primary torsion submodule of M. Then, from the preceding discussion, it is clear that in the situation of the Main Theorem, for any continuous $\rho: \Gamma \to \mathbb{Z}_p^{\times}$ and for any open normal subgroup U of G, $M(\rho)_U$ is finite if and only if $((M/M(p))(\rho))_U$ is finite.

In particular, when we want to apply the Main Theorem to arithmetic situations coming from Selmer groups of certain Galois modules A, we remark that $\mathcal{S}_A^{\vee}(\rho)_U$ is finite if and only if $\left((\mathcal{S}_A^{\vee}/\mathcal{S}_A^{\vee}(p))(\rho)\right)_U$ is finite.

Acknowledgements

A part of the paper was done when S. Jha visited Osaka University. He thanks Osaka University for their hospitality. The paper was finalized when T. Ochiai stayed at the Indian Institute of Technology Kanpur (IITK) on September 2015. He thanks IITK for their hospitality. We are grateful to Prof. John Coates for encouragement and invaluable suggestions leading to improvements on an earlier draft of the paper.

References

[Balister and Howson 1997] P. N. Balister and S. Howson, "Note on Nakayama's lemma for compact Λ-modules", *Asian J. Math.* 1:2 (1997), 224–229. MR 1491983 Zbl 0904.16019

[Coates et al. 2005] J. Coates, T. Fukaya, K. Kato, R. Sujatha, and O. Venjakob, "The GL_2 main conjecture for elliptic curves without complex multiplication", *Inst. Hautes Études Sci. Publ. Math.* **101** (2005), 163–208. MR 2217048 Zbl 1108.11081

[Greenberg 1989] R. Greenberg, "Iwasawa theory for *p*-adic representations", pp. 97–137 in *Algebraic number theory*, edited by J. Coates et al., Adv. Stud. Pure Math. **17**, Academic Press, Boston, 1989. MR 1097613 Zbl 0739.11045

[Hachimori and Venjakob 2003] Y. Hachimori and O. Venjakob, "Completely faithful Selmer groups over Kummer extensions", *Doc. Math.* Extra Vol. (2003), 443–478. MR 2046605 Zbl 1117.14046

[Jha and Ochiai \geq 2016] S. Jha and T. Ochiai, "Functional equation of Selmer groups over p-adic Lie extension", in preparation.

[Lazard 1965] M. Lazard, "Groupes analytiques *p*-adiques", *Inst. Hautes Études Sci. Publ. Math.* **26** (1965), 5–219. MR 0209286 Zbl 0139.02302

[Perrin-Riou 2003] B. Perrin-Riou, "Groupes de Selmer et accouplements: cas particulier des courbes elliptiques", *Doc. Math.* Extra Vol. (2003), 725–760. MR 2046613 Zbl 1142.11337

[Zábrádi 2008] G. Zábrádi, "Characteristic elements, pairings and functional equations over the false Tate curve extension", *Math. Proc. Cambridge Philos. Soc.* **144**:3 (2008), 535–574. MR 2418704 Zbl 1243.11106

[Zábrádi 2010] G. Zábrádi, "Pairings and functional equations over the GL₂-extension", *Proc. Lond. Math. Soc.* (3) **101**:3 (2010), 893–930. MR 2734964 Zbl 1272.11119

Communicated by John Henry Coates

Received 2015-10-21 Revised 2015-12-22 Accepted 2016-02-01

Indian Institute of Technology Kanpur, Kanpur 208016, India

ochiai@math.sci.osaka-u.ac.jp Department of Mathematics, Graduate School of Science,

Osaka University, Machikaneyama 1-1, Toyonaka,

Osaka 5600043, Japan

zger@cs.elte.hu Department of Algebra and Number Theory,

Mathematical Institute, Eötvös Loránd University, Bertalan Lajos utca 11, 1111 Budapest, Hungary

Algebra & Number Theory

msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen

Massachusetts Institute of Technology
Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud

University of California

Berkeley, USA

BOARD OF EDITORS

Georgia Benkart	University of Wisconsin, Madison, USA	Susan Montgomery	University of Southern California, USA
Dave Benson	University of Aberdeen, Scotland	Shigefumi Mori	RIMS, Kyoto University, Japan
Richard E. Borcherds	University of California, Berkeley, USA	Raman Parimala	Emory University, USA
John H. Coates	University of Cambridge, UK	Jonathan Pila	University of Oxford, UK
J-L. Colliot-Thélène	CNRS, Université Paris-Sud, France	Anand Pillay	University of Notre Dame, USA
Brian D. Conrad	Stanford University, USA	Victor Reiner	University of Minnesota, USA
Hélène Esnault	Freie Universität Berlin, Germany	Peter Sarnak	Princeton University, USA
Hubert Flenner	Ruhr-Universität, Germany	Joseph H. Silverman	Brown University, USA
Sergey Fomin	University of Michigan, USA	Michael Singer	North Carolina State University, USA
Edward Frenkel	University of California, Berkeley, USA	Vasudevan Srinivas	Tata Inst. of Fund. Research, India
Andrew Granville	Université de Montréal, Canada	J. Toby Stafford	University of Michigan, USA
Joseph Gubeladze	San Francisco State University, USA	Ravi Vakil	Stanford University, USA
Roger Heath-Brown	Oxford University, UK	Michel van den Bergh	Hasselt University, Belgium
Craig Huneke	University of Virginia, USA	Marie-France Vignéras	Université Paris VII, France
Kiran S. Kedlaya	Univ. of California, San Diego, USA	Kei-Ichi Watanabe	Nihon University, Japan
János Kollár	Princeton University, USA	Efim Zelmanov	University of California, San Diego, USA
Yuri Manin	Northwestern University, USA	Shou-Wu Zhang	Princeton University, USA
Philippe Michel	École Polytechnique Fédérale de Lausan	ne	

PRODUCTION

production@msp.org Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2016 is US \$/year for the electronic version, and \$/year (+\$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLow® from MSP.

PUBLISHED BY

mathematical sciences publishers nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

Algebra & Number Theory

Volume 10 No. 3 2016

Group schemes and local densities of ramified hermitian lattices in residue characteristic 2: Part I SUNGMUN CHO	451
Presentation of affine Kac–Moody groups over rings DANIEL ALLCOCK	533
Discriminant formulas and applications KENNETH CHAN, ALEXANDER A. YOUNG and JAMES J. ZHANG	557
Regularized theta lifts and (1,1)-currents on GSpin Shimura varieties Luis E. Garcia	597
Multiple period integrals and cohomology ROELOF W. BRUGGEMAN and YOUNGJU CHOIE	645
The existential theory of equicharacteristic henselian valued fields SYLVY ANSCOMBE and ARNO FEHM	665
On twists of modules over noncommutative Iwasawa algebras SOMNATH JHA, TADASHI OCHIAI and GERGELY ZÁBRÁDI	685