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Local bounds for Lp norms of Maass forms
in the level aspect

Simon Marshall

We apply techniques from harmonic analysis to study the L p norms of Maass
forms of varying level on a quaternion division algebra. Our first result gives a
candidate for the local bound for the sup norm in terms of the level, which is new
when the level is not squarefree. The second result is a bound for L p norms in
the level aspect that is analogous to Sogge’s theorem on L p norms of Laplace
eigenfunctions.

1. Introduction

Let φ be a cuspidal newform of level 00(N ) on GL2/Q or a quaternion division
algebra over Q, which we shall assume is L2-normalised with respect to the measure
that gives 00(N )\H2 mass 1. There has recently been interest in bounding the
sup norm ‖φ‖∞ in terms of N and the infinite component of φ, see [Blomer and
Holowinsky 2010; Harcos and Templier 2013; 2012; Saha 2015b; Templier 2010;
2014; 2015]. The “trivial” bound in the level aspect (with the infinite component
remaining bounded) is generally considered to be ‖φ‖∞�ε N 1/2+ε , provided N is
squarefree; see [Abbes and Ullmo 1995] or any of the previously cited papers. Our
first result is a candidate for the generalisation of this to arbitrary N .

Theorem 1. Let D/Q be a quaternion division algebra that is split at infinity. Let
φ be an L2-normalised newform of level K0(N ) on PGL1(D), where N is odd and
coprime to the primes that ramify in D. Assume that φ is spherical at infinity with
spectral parameter t , which is related to the Laplace eigenvalue by the equation
(1+ 1/4+ t2)φ = 0. Let N0 ≥ 1 be the smallest number with N |N 2

0 . We have

‖φ‖∞� (1+ |t |)1/2 N 1/2
0

∏
p|N

(1+ 1/p)1/2. (1)
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Notation is standard, and specified below. When t is bounded, Theorem 1 gives
a bound of N 1/2+ε for N squarefree, but roughly N 1/4+ε for powerful N . While
the theorem is restricted to compact quotients, Section 3.1 gives a weaker result in
the case of PGL2 /Q. This has been strengthened by Saha [2015a], who proves a
bound on PGL2 /Q that combines (1) in the level aspect with the t5/12+ε bound of
Iwaniec and Sarnak [1995] in the eigenvalue aspect. He does this by combining
the methods of Iwaniec and Sarnak with bounds for Whittaker functions and an
amplification argument.

Our second result is the analogue in the level aspect of a classical theorem of
Sogge [1988], which we now recall. Let M be a compact Riemannian surface with
Laplacian 1, and let ψ be a function on M satisfying (1+λ2)ψ = 0 and ‖ψ‖2= 1.
Define δ : [2,∞]→ R by

δ(p)=

{
1
2 −

2
p , 0≤ 1

p ≤
1
6 ,

1
4 −

1
2p ,

1
6 ≤

1
p ≤

1
2 .

(2)

Sogge’s theorem states that

‖ψ‖p� λδ(p) for 2≤ p ≤∞. (3)

In particular, this is stronger than the bound obtained by interpolating between
bounds for the L2 and L∞ norms. Our next theorem demonstrates that something
similar is possible in the level aspect.

Theorem 2. Let D/Q be a quaternion division algebra that is split at infinity. Let
φ be an L2-normalised newform of level K0(q2) on PGL1(D), where q is an odd
prime that does not ramify in D. Assume that φ is principal series at q, that φ is
spherical at infinity with spectral parameter t , and that |t | ≤ A for some A > 0. We
have

‖φ‖p�A qδ(p).

It should be possible to give some extension of Theorem 2 to general φ, although
in some cases the method may not give any improvement over the bound given by
interpolating between L2 and L∞ norms. In particular, this seems to occur when
φ is special at q. We have chosen to work in the simplest case where the method
gives a nontrivial result.

Theorems 1 and 2 are an attempt to prove the correct local bounds for L p norms
of eigenfunctions in the level aspect, in the same way that (3) is the local bound
in the eigenvalue aspect. The term “local bound” means the best bound that may
be proved by only considering the behaviour of φ in one small open set at a time,
without taking the global structure of the space into account.

The bound (3) is sharp on the round sphere. In the same way, one may obtain
limited evidence that Theorem 1, and Theorem 2 for p ≥ 6, are the sharp local
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bounds by comparing them with what may be proved on the “compact form” of
the arithmetic quotient being considered. In the case of Theorem 2, this means
taking an L2-normalised function ψ on PGL(2,Zq) of the same type as φ′ defined
below — in other words, invariant under the group K (q, q) defined in Section 2.1,
and generating an irreducible representation of the same type as φ′ under right
translation — and proving bounds for ‖ψ‖p. We may prove that ‖ψ‖p� qδ(p) in
the same way as Theorem 2, after which Equation (4) and Lemma 11 imply that
this is sharp for p ≥ 6. An analogous statement may be proved for Theorem 1
when N is a growing power of a fixed prime. However, we do not yet know if
Theorem 2 is sharp in this sense for 2≤ p ≤ 6. We expect the bound of Theorem 1
to have a natural expression as the square root of the Plancherel density around the
representation of φ.

Because the proofs do not make use of the global structure of the arithmetic
quotient, it should be possible to improve the exponents by using arithmetic ampli-
fication.

2. Notation

2.1. Adelic groups. Let A and A f be the adeles and finite adeles of Q. Let D/Q
be a quaternion division algebra that is split at infinity. Let S be the set containing
2 and all primes that ramify in D, and let S∞ = S ∪ {∞}. Let G = PGL1(D). If v
is a place of Q, let Gv = G(Qv). Let X = G(Q)\G(A). Let O ⊂ D be a maximal
order. Let K =

⊗
p K p ⊂ G(A f ) be a compact subgroup with the properties that

K p is open in G p for p ∈ S, and K p is isomorphic to the image of O×p in G p when
p /∈ S. This allows us to choose isomorphisms K p ' PGL(2,Zp) when p /∈ S.
When M, N ≥ 1 are prime to S, we shall use these isomorphisms to define the upper
triangular congruence subgroup K0(N ), principal congruence subgroup K (N ), and

K (M, N )=
{

k ∈ K : k ≡
(
∗ ∗

0 ∗

)
(M), k ≡

(
∗ 0
∗ ∗

)
(N )

}
in the natural way. We choose a maximal compact subgroup K∞ ⊂ G∞.

We fix a Haar measure on G(A) by taking the product of the measures on G p

assigning mass 1 to K p, and any Haar measure on G∞. We use this measure to define
convolution of functions on G(A), which we denote by ∗, and if f ∈ C∞0 (G(A))
we use it to define the operator R( f ) by which f acts on L2(X). If H is a group
and f is a function on H , we define the function f ∨ by f ∨(h) = f (h−1). If
f ∈ C∞0 (G(A)), the operators R( f ) and R( f ∨) are adjoints.

2.2. Newforms. Let N ≥1 be prime to S. We shall say that φ∈ L2(X) is a newform
of level K0(N ) if φ lies in an automorphic representation π =

⊗
v πv of G, φ is

invariant under K0(N ), and we have a factorisation φ =
⊗

v φv where φv is a local
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newvector of level N for v /∈ S∞. We shall say that φ is spherical with spectral
parameter t ∈C if π∞ satisfies these conditions, and φ is invariant under K∞. Note
that our normalisation of t is such that the tempered principal series corresponds
to t ∈ R.

2.3. The Harish-Chandra transform. Given k ∈ C∞0 (G∞), we define its Harish-
Chandra transform by

k̂(t)=
∫

G∞
k(g)ϕt(g) dg

for t ∈ C, where ϕt is the standard spherical function with spectral parameter t . We
will use the following standard result on the existence of a K∞-biinvariant function
with concentrated spectral support.

Lemma 3. There is a compact set B ⊂ G∞ such that for any t ∈ R∪[0, i/2], there
is a K∞-biinvariant function k ∈ C∞0 (G∞) with the following properties:

(a) The function k is supported in B, and ‖k‖∞� 1+ |t |.

(b) The Harish-Chandra transform k̂ is nonnegative on R∪ [0, i/2], and satisfies
k̂(t)≥ 1.

Proof. When t ∈ R and |t | ≥ 1, this is, e.g., Lemma 2.1 of [Templier 2015]. When
|t | ≤ 1, one may fix a K∞-biinvariant real bump function k0 supported near the
identity and define k = k0 ∗ k0. �

Note that condition (b) implies that k = k∨.

2.4. Inner products of matrix coefficients. The following lemma is known as
Schur orthogonality, see Theorem 2.4 and Proposition 2.11 of [Bump 2013] for the
proof.

Lemma 4. Let H be a finite group, and let dh be the Haar measure of mass 1 on H.
Let (ρ, V ) be an irreducible representation of H , and let 〈·, ·〉 be a positive definite
H-invariant Hermitian form on V . If vi ∈ V for 1≤ i ≤ 4, we have∫

H
〈ρ(h)v1, v2〉〈ρ(h)v3, v4〉 dh =

〈v1, v3〉〈v2, v4〉

dim V
. (4)

3. Proof of Theorem 1

Choose h ∈ G(A) by setting hv = 1 for v ∈ S∞, and

hv =
(

N
N0

)
when v /∈ S∞. We define φ′ = R(h)φ, so that φ′ is invariant under K (N0, N/N0).
Let V =

⊗
Vv ⊂ π be the space generated by φ′ under the action of K .
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Lemma 5. V is an irreducible representation of K , and

dim V ≤ N0
∏
p|N

(1+ 1/p).

Proof. It suffices to prove the analogous statement for the tensor factors Vp, and
we may assume that p /∈ S. If we could write Vp = V 1

+ V 2, where V i are
nontrivial K p-invariant subspaces, then the projection of φ′p to each subspace would
be invariant under K p(N0, N/N0). However, this contradicts the uniqueness of the
newvector.

As Vp is irreducible and factors through K p/K p(N0), the lemma now follows
from the results of Silberger [1970, §3.4], in particular the remarks on pages 96–97.
Note that we use our assumption that 2 ∈ S at this point. �

We define k f ∈ C∞0 (G(A f )) to be 〈R(g)φ′, φ′〉 for g ∈ K and 0 otherwise.
Choose a function k∞ ∈ C∞0 (G∞) as in Lemma 3, and define k = k∞k f . It may be
seen that k= k∨, which implies that R(k) is self-adjoint. Lemma 5 and Equation (4)
imply that k f = dim V k f ∗ k f , and combining this with Lemma 3(b) gives that
R(k) is nonnegative. Lemmas 3 and 5 and Equation (4) imply that R(k)φ′ = λφ′,
where λ > 0 and

λ−1
≤ dim V ≤ N0

∏
p|N

(1+ 1/p). (5)

Extend φ′ to an orthonormal basis {φi } of eigenfunctions for R(k) with eigenvalues
λi ≥ 0. The pretrace formula associated to k is∑

i

λi |φi (x)|2 =
∑

γ∈G(Q)

k(x−1γ x)

and dropping all terms from the left hand side but φ′ gives

λ|φ′(x)|2 ≤
∑

γ∈G(Q)

k(x−1γ x). (6)

The compactness of X and uniformly bounded support of k implies that the num-
ber of nonzero terms on the right hand side is bounded independently of x , and
combining (5) and Lemma 3(a) completes the proof.

3.1. A result in the noncompact case. If we set G = PGL2 /Q, it may be seen that
we have the following analogue of Theorem 1.

Proposition 6. Let � ⊂ G(Q)\G(A) be compact. Let φ be an L2-normalised
newform of level K0(N ) on G, where N is odd. Assume that φ is spherical at
infinity with spectral parameter t . Let N0 ≥ 1 be the smallest number with N |N 2

0 . If
φ′ is related to φ as above, we have ‖φ′|�‖∞� (1+|t |)1/2 N 1/2

0
∏

p|N (1+1/p)1/2.

See [Saha 2015a] for a strengthening of this result.
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4. Proof of Theorem 2

We maintain the notation φ′, V , and k f from Section 3. Our assumption 2 ∈ S
implies that q ≥ 3.

Lemma 7. We have dim V = q or q + 1.

Proof. We have assumed that πq is isomorphic to an irreducible principal series
representation I(χ, χ−1), for some character χ of Q×q with conductor q. By
considering the compact model of I(χ, χ−1), and applying the fact that V factors
through K/K (q) ' PGL(2, Fq), we see that V must be a subrepresentation of a
principal series representation of PGL(2, Fq). (Here Fq denotes the field with q
elements.) It follows that dim V must be either 1, q, or q + 1. The possibility
dim V = 1 is ruled out because any one-dimensional representation of K that is
trivial on K (q, q) must be trivial, and this contradicts our assumption that φ is new
at K0(q2). �

Let k0
∞
∈ C∞0 (G∞) be a real-valued K∞-biinvariant function, so that k0

∞
=

(k0
∞
)∨. If we choose k0

∞
to be a nonnegative bump function with sufficiently small

support, we may assume that its Harish-Chandra transform satisfies k̂0
∞
(t)≥ 1 for

t ∈ [0, A]∪ [0, i/2]. We define k∞ = k0
∞
∗ k0
∞

. Let k0 = k0
∞

k f , and k = k∞k f . Let
T0 = R(k0) and T = R(k). We see that T0 is self-adjoint, and Equation (4) implies
that T = dim V T 2

0 . Let W ⊂ Kq be the subgroup {1, w}, where

w =

(
0 1
−1 0

)
.

Let k1, f ∈ C∞0 (G(A f )) be k f times the characteristic function of WK (q, q), and
let k2, f = k f − k1, f . Let ki = k∞ki, f , and Ti = R(ki ). The proof of Theorem 2
works by combining the decomposition T = T1+ T2 with interpolation between
the following bounds.

Lemma 8. We have

‖T1 f ‖∞�‖ f ‖1, ‖T2 f ‖∞� q−1/2
‖ f ‖1,

for any f ∈ C∞(X).

Proof. The integral kernels of Ti are given by∑
γ∈G(Q)

ki (x−1γ y).

The result now follows from the compactness of G(Q)\G(A), the bound ‖k1‖∞�1,
and the bound ‖k2‖∞� q−1/2 which follows from Lemma 11 below. �
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Lemma 9. We have

‖T1 f ‖2� q−2
‖ f ‖2, ‖T2 f ‖2� q−1

‖ f ‖2,

for any f ∈ C∞(X).

Proof. The choice of k∞ and the identity k f = dim V k f ∗k f imply that the L2
→ L2

norm of T is� (dim V )−1
≤ q−1. Lemma 11 implies that k1, f = k∨1, f and

k1, f = [K :W K (q, q)]k1, f ∗ k1, f = (q(q + 1)/2)k1, f ∗ k1, f ,

and this implies that the L2
→ L2 norm of T1 is� q−2. The bound for T2 follows

from the triangle inequality. �

Interpolating between these bounds gives the following.

Lemma 10. We have ‖T f ‖p� q2δ(p)−1
‖ f ‖p′ for any 2≤ p ≤∞, where p′ is the

dual exponent to p.

Proof. Applying the Riesz–Thorin interpolation theorem [Folland 1999, Theo-
rem 6.27] to the bounds

‖T1 f ‖∞�‖ f ‖1, ‖T1 f ‖2� q−2
‖ f ‖2

gives ‖T1 f ‖p� q−4/p
‖ f ‖p′ for 2≤ p ≤∞, and applying it to

‖T2 f ‖∞� q−1/2
‖ f ‖1, ‖T2 f ‖2� q−1

‖ f ‖2

gives ‖T2 f ‖p� q−1/2−1/p
‖ f ‖p′ for 2≤ p≤∞. Applying Minkowski’s inequality

then gives

‖T f ‖p ≤ ‖T1 f ‖p +‖T2 f ‖p� (q−4/p
+ q−1/2−1/p)‖ f ‖p′,

and the observation 2δ(p)−1=max(−4/p,−1/2−1/p) completes the proof. �

We now combine Lemma 10 with the usual adjoint-square argument: we have

〈dim V T 2
0 f, f 〉 = 〈T f, f 〉

� q2δ(p)−1
‖ f ‖2p′

〈T0 f, T0 f 〉 � q2δ(p)−2
‖ f ‖2p′

‖T0 f ‖2� qδ(p)−1
‖ f ‖p′ .

Taking adjoints gives ‖T0 f ‖p � qδ(p)−1
‖ f ‖2. Applying this with f = φ′ and

estimating the eigenvalue of T0 on φ′ as in Section 3 completes the proof.
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Lemma 11. Let πq be isomorphic to an irreducible principal series representation
I(χ, χ−1), for some character χ of Q×q with conductor q. When g ∈ Kq , the matrix
coefficient 〈πq(g)φ′q , φ

′
q〉 satisfies

〈πq(g)φ′q , φ
′

q〉 = 1, g ∈ Kq(q, q), (7)

〈πq(g)φ′q , φ
′

q〉 = χ(−1), g ∈ wKq(q, q), (8)

〈πq(g)φ′q , φ
′

q〉 � q−1/2, g /∈W Kq(q, q), (9)

where the implied constant is absolute.

Proof. We may reduce the problem to one for the group PGL(2, Fq) as in Lemma 7.
We let T and B be the usual diagonal and upper triangular subgroups of PGL(2, Fq).
We now think of χ as a nontrivial character of F×q , and let (ρ, H) denote the
corresponding induced representation of PGL(2, Fq). We realise H as the space of
functions f : PGL(2, Fq)→ C satisfying

f
((

a b
0 d

)
g
)
= χ(a/d) f (g)

with the invariant Hermitian form

〈 f1, f2〉 =
∑

g∈B\PGL(2,Fq )

f1(g) f2(g). (10)

It may be seen that there is a unique function f0 ∈ H that is invariant under T ,
up to scaling, and we may choose it to be

f0 :

(
a b
c d

)
7→

{
χ(det /cd)/

√
q − 1, cd 6= 0,

0, cd = 0.
(11)

It follows that ‖ f0‖ = 1, and so 〈πq(g)φ′q , φ
′
q〉 = 〈ρ(g) f0, f0〉. Equation (7) is

immediate, and (8) follows from ρ(w) f0 = χ(−1) f0. To prove (9), we assume that

g =
(

a b
c d

)
/∈W T .

We may write 〈ρ(g) f0, f0〉 as a sum over Fq as follows.

Lemma 12. We have

〈ρ(g) f0, f0〉 = (q − 1)−1χ(det(g))
∑

n

χ−1((c+ an)(d + bn))χ(n). (12)

Proof. We choose a set of coset representatives for B\PGL(2, Fq) consisting of(
0 1
1 0

)
and

(
1 0
n 1

)
, n ∈ Fq .



Local bounds for Lp norms of Maass forms in the level aspect 811

Applying (11) for these representatives gives

f0

((
0 1
1 0

))
= 0 and f0

((
1 0
n 1

))
= χ−1(n)/

√
q − 1.

The first coset representative therefore makes no contribution to 〈ρ(g) f0, f0〉. For
the others, we calculate

[ρ(g) f0]

((
1 0
n 1

))
= f0

((
1 0
n 1

)(
a b
c d

))
= f0

((
a b

c+ an d + bn

))
= χ(det(g))χ−1((c+ an)(d + bn))/

√
q − 1.

Substituting these into (10) completes the proof. �

We bound the sum (12) by rewriting it as∑
n

χ−1((c+ an)(d + bn)nq−2)
and applying [Schmidt 2004, Chapter 2, Theorem 2.4] (see also [Iwaniec and
Kowalski 2004, Theorem 11.23]). We must first check that (c+an)(d+bn)nq−2 is
not a proper power. The assumption g /∈W T implies that one or both of a+cn and
b+ dn have a root distinct from 0. If they both have the same root distinct from 0,
this contradicts the invertability of g. Therefore (c+an)(d+bn)nq−2 must have at
least one root of multiplicity 1, so it cannot be a power. As (c+an)(d+bn)nq−2 has
at most 3 distinct roots, [Schmidt 2004] or [Iwaniec and Kowalski 2004] therefore
give ∣∣∣∣∑

n

χ
(
(c+ an)(d + bn)nq−2)∣∣∣∣≤ 2

√
q,

which completes the proof of (9). �
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