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A note on secondary K -theory
Gonçalo Tabuada

We prove that Toën’s secondary Grothendieck ring is isomorphic to the Grothen-
dieck ring of smooth proper pretriangulated dg categories previously introduced
by Bondal, Larsen, and Lunts. Along the way, we show that those short exact
sequences of dg categories in which the first term is smooth proper and the second
term is proper are necessarily split. As an application, we prove that the canonical
map from the derived Brauer group to the secondary Grothendieck ring has the
following injectivity properties: in the case of a commutative ring of characteristic
zero, it distinguishes between dg Azumaya algebras associated to nontorsion
cohomology classes and dg Azumaya algebras associated to torsion cohomology
classes (= ordinary Azumaya algebras); in the case of a field of characteristic
zero, it is injective; in the case of a field of positive characteristic p, it restricts to
an injective map on the p-primary component of the Brauer group.

1. Introduction and statement of results

A dg category A, over a base commutative ring k, is a category enriched over
complexes of k-modules; see Section 3. Every (dg) k-algebra A gives rise naturally
to a dg category with a single object. Another source of examples is provided by
schemes since the category of perfect complexes of every quasicompact quasisepa-
rated k-scheme admits a canonical dg enhancement; see [Lunts and Orlov 2010].
Following [Kontsevich 1998], a dg category A is called smooth if it is compact as a
bimodule over itself and proper if the complexes of k-modules A(x, y) are compact.
Examples include the finite dimensional k-algebras of finite global dimension (when
k is a perfect field) and the dg categories of perfect complexes associated to smooth
proper k-schemes. Following [Bondal and Kapranov 1990], a dg category A is called
pretriangulated if the Yoneda functor H0(A)→Dc(A), x 7→ x̂ , is an equivalence of
categories. As explained in Section 3, every dg category A admits a pretriangulated
“envelope” perfdg(A).
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Bondal, Larsen, and Lunts [Bondal et al. 2004, §5] introduced the Grothendieck
ring of smooth proper pretriangulated dg categories PT (k). This ring is defined by
generators and relations. The generators are the quasiequivalence classes of smooth
proper pretriangulated dg categories.1 The relations [B]=[A]+[C] arise from the dg
categories A, C⊆B for which the triangulated subcategories H0(A),H0(C)⊆H0(B)
are admissible and induce a semiorthogonal decomposition H0(B)=〈H0(A),H0(C)〉.
The multiplication law is given by A •B := perfdg(A⊗L B), where −⊗L

− stands
for the derived tensor product of dg categories. Among other applications, Bondal,
Larsen, and Lunts constructed an interesting motivic measure with values in PT (k).

Toën [2009; 2011, §5.4] introduced a “categorified” version of the classical
Grothendieck ring named the secondary Grothendieck ring K (2)

0 (k). By definition,
K (2)

0 (k) is the quotient of the free abelian group on the Morita equivalence classes
of smooth proper dg categories by the relations [B] = [A]+ [C] arising from short
exact sequences of dg categories 0→A→ B→ C→ 0. Thanks to [Drinfeld 2004,
Proposition 1.6.3], the derived tensor product of dg categories endows K (2)

0 (k)
with a commutative ring structure. Among other applications, the ring K (2)

0 (k) was
used in the study of derived loop spaces; see [Ben-Zvi and Nadler 2012; Toën and
Vezzosi 2015; 2009].

Theorem 1.1. The rings PT (k) and K (2)
0 (k) are isomorphic.

The proof of Theorem 1.1 is based on the fact that those short exact sequences
of dg categories 0→ A→ B→ C → 0 in which A is smooth proper and B is
proper are necessarily split; see Theorem 4.4. This result is of independent interest.
Intuitively speaking, it shows us that the smooth proper dg categories behave as
“injective” objects. In the setting of triangulated categories, this idea of “injectivity”
goes back to the pioneering work [Bondal and Kapranov 1989].

2. Applications

Following [Toën 2012], a dg k-algebra A is called a dg Azumaya algebra if the
underlying complex of k-modules is a compact generator of the derived cate-
gory D(k) and the canonical morphism Aop

⊗
L A → R Hom(A, A) in D(k) is

invertible. The ordinary Azumaya algebras (see [Grothendieck 1995a]) are the dg
Azumaya algebras whose underlying complex is k-flat and concentrated in degree
zero. For every nontorsion étale cohomology class α ∈ H 2

et(Spec(k),Gm) there
exists a dg Azumaya algebra Aα, representing α, which is not Morita equivalent
to an ordinary Azumaya algebra; see [Toën 2012, page 584]. Unfortunately, the

1Bondal, Larsen, and Lunts worked originally with pretriangulated dg categories. In this case
the classical Eilenberg’s swindle argument implies that the associated Grothendieck ring is trivial.
In order to obtain a nontrivial Grothendieck ring, we need to restrict ourselves to smooth proper dg
categories; consult [Tabuada 2005, §7] for further details.
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construction of Aα is highly inexplicit; consult [Tabuada and Van den Bergh 2014,
Appendix B] for some properties of these mysterious dg algebras. In the case where
k is a field, every dg Azumaya algebra is Morita equivalent to an ordinary Azumaya
algebra; see [Toën 2012, Proposition 2.12].

The derived Brauer group dBr(k) of k is the set of Morita equivalence classes
of dg Azumaya algebras. The (multiplicative) group structure is induced by the
derived tensor product of dg categories and the inverse of A is given by Aop. Since
every dg Azumaya algebra is smooth proper, we have a canonical map

dBr(k)→ K (2)
0 (k). (2.1)

By analogy with the canonical map from the Picard group to the Grothendieck ring

Pic(k)→ K0(k), (2.2)

it is natural to ask2 if (2.1) is injective. Note that, in contrast with (2.2), the canonical
map (2.1) does not seem to admit a “determinant” map in the converse direction. In
this note, making use of Theorem 1.1 and of the recent theory of noncommutative
motives (see Section 5), we establish several injectivity properties of (2.1).

Recall that k has characteristic zero (resp. positive prime characteristic p) if the
kernel of the unique ring homomorphism Z→ k is {0} (resp. pZ).

Theorem 2.3. Let k be a noetherian3 commutative ring of characteristic zero (resp.
positive prime characteristic p) and A a dg Azumaya algebra which is not Morita
equivalent to an ordinary Azumaya algebra. If K0(k)Q 'Q (resp. K0(k)Fp ' Fp),
then the image of [A] under the canonical map (2.1) is nontrivial. Moreover, when
k is of characteristic zero (resp. positive prime characteristic p), this nontrivial
image is different from the images of the ordinary Azumaya algebras (resp. of the
ordinary Azumaya algebras whose index is not a multiple of p).

As proved in [Gabber 1981, Theorem II.1], every torsion étale cohomology class
α ∈ H 2

et(Spec(k),Gm)tor can be represented by an ordinary Azumaya algebra Aα.
Therefore, Theorem 2.3 shows us that in some cases the canonical map (2.1)
distinguishes between torsion and nontorsion classes.

Example 2.4. Let k be the noetherian local ring of the singular point of the normal
complex algebraic surface constructed in [Mumford 1961, page 16]. As explained
in [Grothendieck 1995b, page 75], k is a local C-algebra of dimension 2 whose étale
cohomology group H 2

et(Spec(k),Gm) contains nontorsion classes α. Therefore,

2In the case where k is a field, Toën [2011, §5.4] asked if the canonical map (2.1) is nonzero. This
now follows automatically from Theorems 2.5 and 2.7.

3As pointed out by the anonymous referee, this assumption can be removed using absolute
noetherian approximation. We leave the details to the reader.
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since K0(k) ' Z, Theorem 2.3 can be applied to the associated dg Azumaya
algebras Aα.

Theorem 2.5. Let k be a field of characteristic zero. In this case, the canonical
map (2.1) is injective.

Example 2.6. (i) When k is the field of real numbers R, we have Br(R)' Z/2Z.

(ii) When k is the field of p-adic numbers Qp, we have Br(Qp)'Q/Z.

Theorem 2.7. Let k be a field of positive characteristic p and A, B two central
simple k-algebras. If p | ind(Aop

⊗ B), where ind stands for index, then the images
of [A] and [B] under the canonical map (2.1) are different. This holds in particular
when ind(A) and ind(B) are coprime4 and p divides ind(A) or ind(B).

Corollary 2.8. When k is a field of positive characteristic p, the restriction of
the canonical map (2.1) to the p-primary torsion subgroup Br(k){p} is injective.
Moreover, the image of Br(k){p}− 0 is disjoint from the image of

⊕
q 6=p Br(k){q}.

Proof. The index and the period of a central simple algebra have the same prime
factors. Therefore, the proof of the first claim follows from the divisibility relation
ind(Aop

⊗ B) | ind(A) · ind(B). The proof of the second claim is now clear. �

Example 2.9. Let k be a field of characteristic p > 0. Given a character χ and
an invertible element b ∈ k×, the associated cyclic algebra (χ, b) belongs to the
p-primary torsion subgroup Br(k){p}. Moreover, thanks to the work of Albert (see
[Gille and Szamuely 2006, Theorem 9.1.8]), every element of Br(k){p} is of this
form. Making use of Corollary 2.8, we hence conclude that the canonical map (2.1)
distinguishes all these cyclic algebras. Furthermore, the image of Br(k){p}−0 in the
secondary Grothendieck ring K (2)

0 (k) is disjoint from the image of
⊕

q 6=p Br(k){q}.

Every ring homomorphism k→ k ′ gives rise to the following commutative square:

dBr(k)

−⊗
L
k k′

��

(2.1)
// K (2)

0 (k)

−⊗
L
k k′

��

dBr(k ′)
(2.1)
// K (2)

0 (k ′)

By combining it with Theorems 2.5 and 2.7, we hence obtain the following result:

Corollary 2.10. Let A and B be dg Azumaya k-algebras. If there exists a ring
homomorphism k→ k ′, with k ′ a field of characteristic zero (resp. positive charac-
teristic p) such that [A⊗L

k k ′] 6= [B⊗L
k k ′] in Br(k ′) (resp. p | ind((Aop

⊗
L B)⊗L

k k ′)),
then the images of [A] and [B] under the canonical map (2.1) are different.

4When ind(A) and ind(B) are coprime we have ind(Aop
⊗ B)= ind(A) · ind(B).
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Example 2.11 (local rings). Let k be a complete local ring with residue field k ′

of characteristic zero (resp. positive characteristic p). As proved in [Auslander
and Goldman 1961, Theorem 6.5], the assignment A 7→ A⊗L

k k ′ gives rise to a
group isomorphism Br(k)' Br(k ′). Therefore, by combining Corollary 2.10 with
Theorem 2.5 (resp. Corollary 2.8), we conclude that the restriction of the canonical
map (2.1) to the subgroup Br(k)⊂ dBr(k) (resp. Br(k){p} ⊂ dBr(k)) is injective.

Example 2.12 (domains). Let k be a regular noetherian domain of characteris-
tic zero (resp. positive prime characteristic p) with field of fractions k ′. Since
H 1

et(Spec(k),Z) = 0 and all étale cohomology classes of H 2
et(Spec(k),Gm) are

torsion (see [Grothendieck 1995b, Proposition 1.4]), Theorem II.1 of [Gabber 1981]
implies that the derived Brauer group dBr(k)'H 1

et(Spec(k),Z)×H 2
et(Spec(k),Gm)

agrees with Br(k). As proved in [Auslander and Goldman 1961, Theorem 7.2],
the assignment A 7→ A ⊗L

k k ′ gives rise to an injective group homomorphism
Br(k)→ Br(k ′). Therefore, by combining Corollary 2.10 with Theorem 2.5 (resp.
Corollary 2.8), we conclude that the canonical map (2.1) (resp. the restriction of
(2.1) to Br(k){p} ⊂ Br(k)) is injective.

Example 2.13 (Weyl algebras). Let F be a field of positive characteristic p.
Thanks to [Revoy 1973], the classical Weyl algebra Wn(F), n ≥ 1, defined as
the quotient of F〈x1, . . . , xn, ∂1, . . . , ∂n〉 by the relations [∂i , xj ] = δi j , can be
considered as an (ordinary) Azumaya algebra over the ring of polynomials k :=
F[x p

1 , . . . , x p
n , ∂

p
1 , . . . , ∂

p
n ], n ≥ 1. Consider the composition

k := F[x p
1 , . . . , x p

n , ∂
p
1 , . . . , ∂

p
n ] → F[x p

1 , ∂
p
1 ] → Frac(F[x p

1 , ∂
p
1 ])=: k

′,

where the first homomorphism sends x p
i , ∂ p

i , i > 1, to zero and Frac(F[x p
1 , ∂

p
1 ])

denotes the field of fractions of the integral domain F[x p
1 , ∂

p
1 ]. As explained

in [Wodzicki 2011, §4], we have ind(Wn(F)⊗L
k k ′) = p. Therefore, thanks to

Corollary 2.10, we conclude that the image of Wn(F) under (2.1) is nontrivial.

Example 2.14 (algebras of p-symbols). Let F be a field of positive characteristic p,
k := F[x p

1 , ∂
p
1 ] the algebra of polynomials, and k ′ := Frac(F[x p

1 , ∂
p
1 ]) the field of

fractions. Following [Wodzicki 2011, §1], given elements a, b ∈ k, let us denote
by Sab(k) ∈ pBr(k) the associated (ordinary) Azumaya k-algebra of p-symbols.
For example, when a = x p

1 and b = ∂ p
1 , we have Sab(k) = W1(F). As proved in

[Wodzicki 2011, §6], we have ind(Sab(k)⊗L
k k ′)= p if and only if

b 6= cp
0 + cp

1 a+ · · ·+ cp
p−1a p−1

− cp−1

for every c0+ c1t + · · ·+ cp−1t p−1
∈ k ′[t]. (2.15)

Therefore, thanks to Corollary 2.10, we conclude that whenever a and b satisfy
condition (2.15) the image of Sab(k) under the canonical map (2.1) is nontrivial.
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Remark 2.16 (stronger results). As explained in Section 6, Theorems 2.3, 2.5
and 2.7, and Corollaries 2.8 and 2.10, follow from stronger analogous results where
instead of K (2)

0 (k) we consider the Grothendieck ring of the category of noncom-
mutative Chow motives; consult Theorems 6.5, 6.12 and 6.20, Corollary 6.22, and
Remark 6.23.

3. Background on dg categories

Let (C(k),⊗, k) be the symmetric monoidal category of cochain complexes of
k-modules. A dg category A is a category enriched over C(k) and a dg functor
F : A→ B is a functor enriched over C(k); consult Keller’s ICM survey [2006].
Let us denote by dgcat(k) the category of (small) dg categories and dg functors.

Let A be a dg category. The opposite dg category Aop has the same objects and
is defined as Aop(x, y) :=A(y, x). The category H0(A) has the same objects as A
and morphisms H0(A)(x, y) := H 0(A(x, y)), where H 0(−) stands for the zeroth
cohomology.

A right dg A-module is a dg functor M : Aop
→ Cdg(k) with values in the dg

category Cdg(k) of complexes of k-modules. Given x ∈ A, let us write x̂ for the
Yoneda right dg A-module defined by y 7→A(x, y). Let C(A) be the category of
right dg A-modules. As explained in [Keller 2006, §3.2], C(A) carries a Quillen
model structure whose weak equivalences (resp. fibrations) are the objectwise
quasi-isomorphisms (resp. surjections). The derived category D(A) of A is the
associated homotopy category. Let Dc(A) be the full triangulated subcategory
of compact objects. The dg structure of Cdg(k) makes C(A) naturally into a dg
category Cdg(A). Let us write perfdg(A) for the full dg subcategory of Cdg(A)
consisting of those cofibrant right dg A-modules which belong to Dc(A). Note
that we have the Yoneda dg functor A→ perfdg(A) ⊂ Cdg(A), x 7→ x̂ , and that
H0(perfdg(A))' Dc(A).

A dg functor F : A → B is called a quasiequivalence if the morphisms of
k-modules F(x, y) : A(x, y)→ B(F(x), F(y)) are quasi-isomorphisms and the
induced functor H0(F) : H0(A)→ H0(B) is an equivalence of categories. More
generally, F is called a Morita equivalence if it induces an equivalence of derived
categories D(A)→ D(B); see [Keller 2006, §4.6]. As proved in [Tabuada 2005,
Theorem 5.3], dgcat(k) carries a Quillen model structure whose weak equivalences
are the Morita equivalences. Let us denote by Hmo(k) the associated homotopy
category.

The tensor product A ⊗ B of two dg categories A and B is defined as fol-
lows: the set of objects is the cartesian product and (A⊗ B)((x, w), (y, z)) :=
A(x, y)⊗B(w, z). As explained in [Keller 2006, §4.3], this construction can be
derived — and denoted by ⊗L — thus giving rise to a symmetric monoidal structure
on Hmo(k) with ⊗-unit the dg category k.
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4. Proof of Theorem 1.1

The smooth proper dg categories can be characterized as the dualizable objects of
the symmetric monoidal category Hmo(k); see [Cisinski and Tabuada 2012, §5].
Consequently, Kontsevich’s notions of smoothness and properness are invariant
under Morita equivalence.

Recall from [Keller 2006, §4.6] that a short exact sequence of dg categories is a
sequence of morphisms A→ B→ C in the homotopy category Hmo(k) inducing
an exact sequence of triangulated categories 0→ Dc(A)→ Dc(B)→ Dc(C)→ 0
in the sense of Verdier. As proved in [Tabuada 2008, Lemma 10.3], the morphism
A→ B is isomorphic to an inclusion of dg categories A⊆ B and C identifies with
Drinfeld’s dg quotient B/A.

Definition 4.1. A short exact sequence of dg categories 0→A→ B→ C→ 0 is
called split if the triangulated subcategory Dc(A)⊆ Dc(B) is admissible.

Remark 4.2. In the case of a split short exact sequence of dg categories we have
an induced equivalence between Dc(C) and the right orthogonal Dc(A)⊥ ⊆ Dc(B).
Consequently, we obtain a semiorthogonal decomposition Dc(B)= 〈Dc(A),Dc(C)〉.

Let us write K (2)
0 (k)s for the ring defined similarly to K (2)

0 (k) but with split short
exact sequences of dg categories instead of short exact sequences of dg categories.

Proposition 4.3. The rings PT (k) and K (2)
0 (k)s are isomorphic.

Proof. The assignment A 7→A clearly sends quasiequivalence classes of smooth
proper pretriangulated dg categories to Morita equivalence classes of smooth proper
dg categories. Let A, C ⊆ B be smooth proper pretriangulated dg categories for
which the triangulated subcategories H0(A),H0(C) ⊆ H0(B) are admissible and
induce a semiorthogonal decomposition H0(B) = 〈H0(A),H0(C)〉. Consider the
full dg subcategory B′ of B consisting of those objects which belong to H0(A) or
to H0(C). Thanks to the preceding semiorthogonal decomposition, the inclusion dg
functor B′ ⊆ B is a Morita equivalence. Consider also the dg functor π : B′→ C
which is the identity on C and which sends all the remaining objects to a fixed
zero object 0 of C. Under this notation, we have the split short exact sequence of
dg categories 0→ A ↪→ B′ π

−→ C→ 0. We hence conclude that the assignment
A 7→A gives rise to a group homomorphism PT (k)→ K (2)

0 (k)s .
As explained in [Tabuada 2005, §5], the pretriangulated dg categories can be

(conceptually) characterized as the fibrant objects of the Quillen model structure on
dgcat(k); see Section 3. Moreover, given a dg category A, the Yoneda dg functor
A→ perfdg(A), x 7→ x̂ , is a fibrant resolution. This implies that PT (k)→ K (2)

0 (k)s

is moreover a surjective ring homomorphism. It remains then only to show its
injectivity. Given a split short exact sequence of smooth proper dg categories
0→A→B→C→0, which we can assume pretriangulated, recall from Remark 4.2
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that we have an associated semiorthogonal decomposition H0(B)= 〈H0(A),H0(C)〉.
Let us write C′ for the full dg subcategory of B consisting of those objects which
belong to H0(C). Note that C′ is pretriangulated and quasiequivalent to C. Note also
that since the triangulated subcategory H0(A)⊆H0(B) is admissible, the triangulated
subcategory H0(C′)'H0(A)⊥ ⊆H0(B) is also admissible. We hence conclude that
the relation [B] = [A] + [C] ⇔ [B] = [A] + [C′] holds in PT (k), and consequently
that the surjective ring homomorphism PT (k)→ K (2)

0 (k)s is moreover injective. �

Thanks to Proposition 4.3, the proof of Theorem 1.1 now follows automatically
from the following result of independent interest:

Theorem 4.4. Let 0→A→B→C→0 be a short exact sequence of dg categories.
If A is smooth proper and B is proper, then the sequence is split.

Proof. Without loss of generality, we can assume that the dg categories A and B are
pretriangulated. Let us prove first that the triangulated subcategory H0(A)⊆H0(B)
is right admissible, i.e., that the inclusion functor admits a right adjoint. Given an
object z ∈ B, consider the composition

H0(A)op H0(B(−,z))
−−−−−→H0(perfdg(k))' Dc(k)

H0(−)
−−−→mod(k) (4.5)

with values in the category of finitely generated k-modules. Thanks to Proposition 4.8
(with F = B(−, z)), the functor (4.5) is representable. Let us denote by x the repre-
senting object. Since the composition (4.5) is naturally isomorphic to the (contra-
variant) functor HomH0(B)(−, z) : H0(A)op

→mod(k), we have HomH0(A)(y, x)'
HomH0(B)(y, z) for every y ∈A. By taking y= x , we hence obtain a canonical mor-
phism η : x→ z and consequently a distinguished triangle x η

−→z→cone(η)→6(x)
in the triangulated category H0(B). The associated long exact sequences allow us
then to conclude that cone(η) belongs to the right orthogonal H0(A)⊥ ⊆ H0(B).
This implies that the triangulated subcategory H0(A)⊆ H0(B) is right admissible.
The proof of left admissibility is similar: simply replace B(−, z) by the covariant
dg functor B(z,−); see Remark 4.9. �

Notation 4.6 (bimodules). Let A and B be two dg categories. A dg A-B-bimodule is
a dg functor B :A⊗L Bop

→ Cdg(k), i.e., a right dg (Aop
⊗

L B)-module. Associated
to a dg functor F :A→ B, we have the dg A-B-bimodule

FB :A⊗L Bop
→ Cdg(k), (x, z) 7→ B(z, F(x)). (4.7)

Let us write rep(A,B) for the full triangulated subcategory of D(Aop
⊗

L B) consist-
ing of those dg A-B-bimodules B such that for every object x ∈A the associated right
dg B-module B(x,−) belongs to Dc(B). Similarly, let repdg(A,B) be the full dg
subcategory of Cdg(Aop

⊗
L B) consisting of those cofibrant right dg A-B-bimodules

which belong to rep(A,B). By construction, H0(repdg(A,B))' rep(A,B).
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Proposition 4.8 (representability). Let A be a smooth proper pretriangulated dg
category and G : H0(A)op

→ mod(k) be a (contravariant) functor with values in
the category of finitely generated k-modules. Assume that there exists a dg functor
F :Aop

→ perfdg(k) and a natural isomorphism between G and the composition

H0(A)op H0(F)
−−−→H0(perfdg(k))' Dc(k)

H0(−)
−−−→mod(k).

Under these assumptions, the functor G is representable.

Remark 4.9. Given a smooth proper pretriangulated dg category A, the opposite dg
category Aop is also smooth, proper, and pretriangulated. Therefore, Proposition 4.8
(with A replaced by Aop) is also a corepresentability result.

Proof. Following Notation 4.6, let FB∈ rep(Aop, perfdg(k)) be the dg Aop-perfdg(k)-
bimodule associated to the dg functor F. Thanks to Lemma 4.11 below, there exists
an object x ∈A and an isomorphism in the triangulated category rep(Aop, perfdg(k))
between the dg Aop-perfdg(k)-bimodules FB and x̂B. Making use of the functor

rep(Aop, perfdg(k))→ Fun1(H0(A)op,Dc(k)), B 7→ −⊗L
Aop B, (4.10)

where Fun1(−,−) stands for the category of triangulated functors, we obtain an
isomorphism between the functors −⊗L

Aop FB ' H0(F) and −⊗L
Aop x̂B ' H0(x̂).

By composing them with H 0(−) : Dc(k)→mod(k), we hence conclude that G is
naturally isomorphic to the representable functor HomH0(A)(−, x). �

Lemma 4.11. Given a smooth proper pretriangulated dg category A, the dg functor

A→ repdg(A
op, perfdg(k)), x 7→ x̂B (4.12)

is a quasiequivalence.

Proof. As proved in [Cisinski and Tabuada 2012, Theorem 5.8], the dualizable
objects of the symmetric monoidal category Hmo(k) are the smooth proper dg
categories. Moreover, the dual of a smooth proper dg category A is the opposite dg
category Aop and the evaluation morphism is given by the dg functor

A⊗L Aop
→ perfdg(k), (x, y) 7→A(y, x). (4.13)

The symmetric monoidal category Hmo(k) is closed; see [Keller 2006, §4.3]. Given
dg categories A and B, their internal Hom is given by repdg(A,B). Therefore, by
adjunction, (4.13) corresponds to the dg functor (4.12). Thanks to the unicity of
dualizable objects, we hence conclude that (4.12) is a Morita equivalence. The
proof now follows from the fact that a Morita equivalence between pretriangulated
dg categories is necessarily a quasiequivalence; see [Tabuada 2005, §5]. �
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Alternative proof of Theorem 4.4 when k is a field. Without loss of generality, we
can assume that the dg categories A and B are pretriangulated. Note first that B is
proper if and only if we have

∑
n dim HomH0(B)(w, z[n]) <∞ for any two objects

w and z. Since the dg category A is smooth, the triangulated category H0(A) admits
a strong generator in the sense of [Bondal and van den Bergh 2003]; see [Lunts
2010, Lemmas 3.5 and 3.6]. Using the fact that the (contravariant) functor (4.5) is
cohomological and that the triangulated category H0(A) is idempotent complete,
we hence conclude from Bondal and Van den Bergh’s powerful (co)representability
result [2003, Theorem 1.3] that the functor HomH0(B)(−, z) : H0(A)op

→ vect(k)
is representable. The remainder of the proof is now similar.

Remark 4.14 (Orlov’s regularity). Following [Orlov 2015, Definition 3.13], a dg
category A is called regular if the triangulated category Dc(A) admits a strong
generator in the sense of [Bondal and van den Bergh 2003]. Examples include
the dg categories of perfect complexes associated to regular separated noetherian
k-schemes. Smoothness implies regularity but the converse does not hold. The
preceding proof shows us that Theorem 4.4 holds more generally when A is a
regular proper dg category.

5. Noncommutative motives

For a survey or book on noncommutative motives, we invite the reader to consult
[Tabuada 2012] or [Tabuada 2015], respectively. Let A and B be two dg categories.
As proved in [Tabuada 2005, Corollary 5.10], we have an identification between
HomHmo(k)(A,B) and the isomorphism classes of the category rep(A,B), under
which the composition law of Hmo(k) corresponds to the derived tensor product
of bimodules. Since the dg A-B-bimodules (4.7) belong to rep(A,B), we hence
obtain a symmetric monoidal functor

dgcat(k)→ Hmo(k), A 7→A, F 7→ FB. (5.1)

The additivization of Hmo(k) is the additive category Hmo0(k) with the same ob-
jects as Hmo(k) and with morphisms given by HomHmo0(k)(A,B) := K0 rep(A,B),
where K0 rep(A,B) stands for the Grothendieck group of the triangulated category
rep(A,B). The composition law is induced by the derived tensor product of bimod-
ules and the symmetric monoidal structure extends by bilinearity from Hmo(k) to
Hmo0(k). Note that we have a symmetric monoidal functor

Hmo(k)→ Hmo0(k), A 7→A, B 7→ [B]. (5.2)

Given a commutative ring of coefficients R, the R-linearization of Hmo0(k) is
the R-linear category Hmo0(k)R obtained by tensoring the morphisms of Hmo0(k)
with R. Note that Hmo0(k)R inherits an R-linear symmetric monoidal structure
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and that we have the symmetric monoidal functor

Hmo0(k)→ Hmo0(k)R, A 7→A, [B] 7→ [B]R. (5.3)

Let us denote by U(−)R : dgcat(k)→Hmo0(k)R the composition (5.3)◦(5.2)◦(5.1).

Noncommutative Chow motives. The category of noncommutative Chow motives
NChow(k)R is defined as the idempotent completion of the full subcategory of
Hmo0(k)R consisting of the objects U(A)R with A a smooth proper dg category.
This category is not only R-linear and idempotent complete, but also additive and
rigid5 symmetric monoidal; see [Tabuada 2012, §4]. Given dg categories A and B,
with A smooth proper, we have rep(A,B) ' Dc(Aop

⊗
L B). Hence, we obtain

isomorphisms

HomNChow(k)R (U(A)R,U(B)R) := K0(rep(A,B))R ' K0(Aop
⊗

L B)R.

When R = Z, we write NChow(k) instead of NChow(k)Z and U instead of U(−)Z.

Noncommutative numerical motives. Given an R-linear, additive, rigid symmetric
monoidal category C, its N-ideal is defined as

N (a, b) := { f ∈ HomC(a, b) | for all g ∈ HomC(b, a) we have tr(g ◦ f )= 0},

where tr(g◦ f ) stands for the categorical trace of the endomorphism g◦ f . The cate-
gory of noncommutative numerical motives NNum(k)R is defined as the idempotent
completion of the quotient of NChow(k)R by the ⊗-ideal N. By construction, this
category is R-linear, additive, rigid symmetric monoidal, and idempotent complete.

Notation 5.4. In the case where k is a field, we write CSA(k)R for the full sub-
category of NNum(k)R consisting of the objects U(A)R with A a central simple
k-algebra, and CSA(k)⊕R for the closure of CSA(k)R under finite direct sums.

The next result is a slight variant of [Marcolli and Tabuada 2014b, Theorem 1.10].

Theorem 5.5 (semisimplicity). Let k be a commutative ring of characteristic zero
(resp. positive prime characteristic p) and R a field with the same characteristic. If
K0(k)Q 'Q (resp. K0(k)Fp ' Fp), then NNum(k)R is abelian semisimple.

Proof. As explained in [Cisinski and Tabuada 2012, Example 8.9], Hochschild ho-
mology gives rise to an additive symmetric monoidal functor HH :Hmo0(k)→D(k).
The dualizable objects of the derived category D(k) are the compact ones. Therefore,
since the symmetric monoidal subcategory NChow(k) of Hmo0(k) is rigid and every
symmetric monoidal functor preserves dualizable objects, the preceding functor
restricts to an additive symmetric monoidal functor

NChow(k)→ Dc(k), U(A) 7→ HH(A). (5.6)

5Recall that a symmetric monoidal category is called rigid if all its objects are dualizable.
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Assume first that k is of characteristic zero. Let us write kQ for the localization
of k at the multiplicative set Z \ {0}. Choose a maximal ideal m of kQ and consider
the associated residue field F := kQ/m. By composing (5.6) with the base-change
(derived) symmetric monoidal functors Dc(k)→Dc(kQ)→Dc(F), we hence obtain
an induced Q-linear symmetric monoidal functor

NChow(k)Q→ Dc(F), U(A)Q 7→ HH(A)⊗L
k F. (5.7)

Since by assumption we have EndNChow(k)Q(U(k)Q)= K0(k)Q 'Q, we conclude
from André and Kahn’s general results [2005, Theorem 1a; 2002, Theorem A.2.10],
applied to the functor (5.7), that the category NNum(k)Q is abelian semisimple.
The proof now follows from the fact that the ⊗-ideal N is compatible with change
of coefficients along the field extension R/Q; consult [Bruguières 2000, Proposition
1.4.1] for further details.

Assume now that k is of positive prime characteristic p. Choose a maximal
ideal m of k and consider the associated residue field F := k/m. As in the charac-
teristic zero case, we obtain an induced Fp-linear symmetric monoidal functor

NChow(k)Fp → Dc(F), U(A)Fp 7→ HH(A)⊗L
k F,

which allows us to conclude that the category NNum(k)R is abelian semisimple. �

6. Proof of Theorems 2.3, 2.5, and 2.7

We start by studying the noncommutative Chow motives of dg Azumaya algebras.
These results are of independent interest.

Proposition 6.1. Let k be a commutative ring and A a dg Azumaya k-algebra which
is not Morita equivalent to an ordinary Azumaya algebra. If k is noetherian, then
we have U(A)Q 6'U(k)Q in NChow(k)Q and U(A)Fq 6'U(k)Fq in NChow(k)Fq for
every prime number q.

Proof. As proved in [Tabuada and Van den Bergh 2014, Theorem B.15], we have
U(A)Q 6'U(k)Q in NChow(k)Q. The proof that U(A)Fq 6'U(k)Fq in NChow(k)Fq

is similar: simply further assume that q does not divides the positive integers m, n
used in [loc. cit.]. �

Proposition 6.2. Let k be a field, A and B two central simple k-algebras, and R a
commutative ring of positive prime characteristic p.

(i) If p | ind(Aop
⊗ B), then U(A)R 6'U(B)R in NChow(k)R . Moreover, we have

HomNNum(k)R (U(A)R,U(B)R)= HomNNum(k)R (U(B)R,U(A)R)= 0.

(ii) If p - ind(Aop
⊗ B) and R is a field, then U(A)R 'U(B)R in NChow(k)R .
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Proof. As explained in the proof of [Tabuada and Van den Bergh 2014, Proposition
2.25], we have natural identifications HomNChow(k)(U(A),U(B))'Z, under which
the composition law (in NChow(k))

Hom(U(A),U(B))×Hom(U(B),U(C))→ Hom(U(A),U(C))

corresponds to the bilinear pairing

Z×Z→ Z, (n,m) 7→ n · ind(Aop
⊗ B) · ind(Bop

⊗C) ·m.

Hence, we obtain natural identifications HomNChow(k)R (U(A)R,U(B)R)' R. More-
over, since ind(Aop

⊗ B)= ind(Bop
⊗ A), the composition law (in NChow(k)R)

Hom(U(A)R,U(B)R)×Hom(U(B)R,U(A)R)→ Hom(U(A)R,U(A)R)

corresponds to the bilinear pairing

R× R→ R, (n,m) 7→ n · ind(Aop
⊗ B)2 ·m; (6.3)

similarly with A and B replaced by B and A, respectively.
If p | ind(Aop

⊗ B), then the bilinear pairing (6.3) is zero. This implies that
U(A)R 6' U(B)R in NChow(k)R . Moreover, since the categorical trace of the
zero endomorphism is zero, we conclude that all the elements of the R-modules
HomNChow(k)R (U(A)R,U(B)R) and HomNChow(k)R (U(B)R,U(A)R) belong to the
N-ideal. In other words, we have HomNNum(k)R (U(A)R,U(B)R) = 0 and also
HomNNum(k)R (U(B)R,U(A)R)= 0. This proves item (i).

If p - ind(Aop
⊗ B) and R is a field, then ind(Aop

⊗ B) is invertible in R. It
follows then from the bilinear pairing (6.3) that U(A)R ' U(B)R in NChow(k)R .
This proves item (ii). �

Let A, C ⊆ B be smooth proper pretriangulated dg categories for which the
triangulated subcategories H0(A),H0(C) ⊆ H0(B) are admissible and induce a
semiorthogonal decomposition H0(B)= 〈H0(A),H0(C)〉. As proved in [Tabuada
2005, Theorem 6.3], the inclusion dg functors A, C ⊆ B induce an isomorphism
U(A)⊕U(C) ' U(B) in the additive category NChow(k). Consequently, if we
denote by K0(NChow(k)) the Grothendieck ring of the symmetric monoidal additive
NChow(k), we obtain a well-defined ring homomorphism

PT (k)→ K0(NChow(k)), [A] 7→ [U(A)].

By precomposing it with the isomorphism K (2)
0 (k)' PT (k) of Theorem 1.1 and

with (2.1), we hence obtain the canonical map

dBr(k)→ K0(NChow(k)), [A] 7→ [U(A)]. (6.4)

The proof of Theorem 2.3 now follows from the next result.
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Theorem 6.5. Let k be a noetherian commutative ring of characteristic zero (resp.
positive prime characteristic p) and A a dg Azumaya algebra which is not Morita
equivalent to an ordinary Azumaya algebra. If K0(k)Q 'Q (resp. K0(k)Fp ' Fp),
then the image of [A] under the canonical map (6.4) is nontrivial. Moreover, when
k is of characteristic zero (resp. positive prime characteristic p), this nontrivial
image is different from the images of the ordinary Azumaya algebras (resp. of the
ordinary Azumaya algebras whose index is not a multiple of p).

Proof. Similarly to ordinary Azumaya algebras (see [Tabuada and Van den Bergh
2015, Lemma 8.10]), we have the equivalence of symmetric monoidal triangulated
categories

Dc(k)−→
' Dc(Aop

⊗
L A), M 7→ M ⊗L A,

where the symmetric monoidal structure on Dc(k) (resp. Dc(Aop
⊗

L A)) is induced
by −⊗L

− (resp. −⊗L
A−). Consequently, we obtain an induced ring isomorphism

EndNChow(k)(U(k))−→∼ EndNChow(k)(U(A)). (6.6)

Let us prove the first claim. Assume that k is of characteristic zero; the proof of
the cases where k is of positive prime characteristic p is similar. By definition
of the category of noncommutative Chow motives, the left-hand side of (6.6) is
given by the Grothendieck ring K0(k). Therefore, the assumption K0(k)Q ' Q

combined with the isomorphism (6.6) implies that EndNChow(k)Q(U(k)Q)'Q and
EndNChow(k)Q(U(A)Q) ' Q. By construction of the category of noncommuta-
tive numerical motives, we have EndNNum(k)Q(U(k)Q) ' Q. Using the fact that
U(A)Q ∈ NChow(k)Q is a ⊗-invertible object and that the Q-linear quotient func-
tor NChow(k)Q → NNum(k)Q is symmetric monoidal, we hence conclude that
EndNNum(k)Q(U(A)Q) is also isomorphic to Q. This gives rise to the implication

U(A)Q 6'U(k)Q in NChow(k)Q H⇒ U(A)Q 6'U(k)Q in NNum(k)Q. (6.7)

Note that since the quotient functor NChow(k)Q→ NNum(k)Q is full, implication
(6.7) is equivalent to the fact that every morphism U(A)Q→U(k)Q in NChow(k)Q
which becomes invertible in NNum(k)Q is already invertible in NChow(k)Q.

Recall from Proposition 6.1 that U(A)Q 6' U(k)Q in NChow(k)Q when k is
noetherian. Making use of (6.7), we hence conclude that U(A)Q 6' U(k)Q in
NNum(k)Q. By definition, we have [U(A)] = [U(k)] in the Grothendieck ring
K0(NChow(k)) if and only if the following condition holds:

there exists an NM ∈ NChow(k) such that U(A)⊕ NM 'U(k)⊕ NM. (6.8)

Thanks to Theorem 5.5, the category NNum(k)Q is abelian semisimple. Conse-
quently, it satisfies the cancellation property with respect to direct sums. Therefore,
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if condition (6.8) holds, one would conclude that U(A)Q 'U(k)Q in NNum(k)Q,
which is a contradiction. This finishes the proof of the first claim.

Let us now prove the second claim. Note first that by combining Proposition 6.1
with implication (6.7), we conclude that

U(A)Q 6'U(k)Q in NNum(k)Q
(
resp. U(A)Fp 6'U(k)Fp in NNum(k)Fp

)
. (6.9)

Let B be an ordinary Azumaya k-algebra (resp. an ordinary Azumaya k-algebra
whose index is not a multiple of p). In the latter case, by definition of index, we
can assume without loss of generality that the rank of B is not a multiple of p. We
have [U(A)] = [U(B)] in the Grothendieck ring K0(NChow(k)) if and only if

there exists an NM ∈ NChow(k) such that U(A)⊕ NM 'U(B)⊕ NM. (6.10)

Thanks to Theorem 5.5, the category NNum(k)Q (resp. NNum(k)Fp ) is abelian
semisimple. Consequently, it satisfies the cancellation property with respect to
direct sums. Therefore, if (6.10) holds, one would conclude that U(A)Q'U(B)Q in
NNum(k)Q (resp. U(A)Fp 'U(B)Fp in NNum(k)Fp ). On one hand, Corollary B.14
of [Tabuada and Van den Bergh 2014] implies that U(B)Q 'U(k)Q in NNum(k)Q.
This contradicts the left-hand side of (6.9). On the other hand, since the rank of B
is invertible in Fp, the corollary implies that U(B)Fp 'U(k)Fp . This contradicts the
right-hand side of (6.9). The proof of the second claim is then finished. �

Proposition 6.11. Let k be a field and R a field of positive characteristic p. In
this case, the category CSA(k)⊕R (see Notation 5.4) is equivalent to the category of
Br(k){p}-graded finite dimensional R-vector spaces.

Proof. Let A be a central simple k-algebra. Similarly to the proof of Theorem 6.5,
we have a ring isomorphism EndCSA(k)R (U(A)R)' R.

Let A, B be central simple k-algebras such that [A],[B]∈Br(k){p} and [A] 6= [B].
Since ind(Aop

⊗ B) | ind(Aop) · ind(B) and [A] 6= [B], we have p | ind(Aop
⊗ B).

Therefore, Proposition 6.2(i) implies that HomCSA(k)R (U(A)R,U(B)R)= 0 and also
that HomCSA(k)R (U(B)R,U(A)R)= 0.

Let A be a central simple k-algebra such that [A] ∈
⊕

q 6=p Br(k){q}. Then,
Proposition 6.2(ii) implies that U(A)R 'U(k)R in CSA(k)R .

The proof now follows automatically from the combination of the above facts. �

The proof of Theorem 2.5 now follows from the next result.

Theorem 6.12. Let k be a field of characteristic zero. In this case, the canonical
map (6.4) is injective.

Proof. Let A and B be two central simple k-algebras such that [A] 6= [B] in Br(k).
Recall that ind(Aop

⊗ B)= 1 if and only if [A] = [B]. Therefore, let us choose a
prime number p such that p | ind(Aop

⊗ B). Thanks to Proposition 6.2(i), we have
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U(A)Fp 6'U(B)Fp in NChow(k)Fp . Consequently, similarly to implication (6.7), we
have U(A)Fp 6'U(B)Fp in NNum(k)Fp . By definition, we have [U(A)] = [U(B)] in
the Grothendieck ring K0(NChow(k)) if and only if the following condition holds:

there exists an NM ∈ NChow(k) such that U(A)⊕ NM 'U(B)⊕ NM. (6.13)

Thanks to Lemma 6.17 below, if condition (6.13) holds, then there exist nonnegative
integers n,m ≥ 0 and a noncommutative numerical motive NM ′ such that

n+1⊕
i=1

U(A)Fp ⊕

m⊕
j=1

U(B)Fp ⊕ NM ′ '
n⊕

i=1

U(A)Fp ⊕

m+1⊕
j=1

U(B)Fp ⊕ NM ′ (6.14)

in NNum(k)Fp . Note that the composition bilinear pairing (in NNum(k)Fp )

Hom(U(A)Fp , NM ′)×Hom(NM ′,U(A)Fp)→ Hom(U(A)Fp ,U(A)Fp) (6.15)

is zero; similarly for U(B)Fp . This follows from the fact that the right-hand side
of (6.15) identifies with Fp, from the fact that the category NNum(k)Fp is Fp-linear,
and from the fact that the noncommutative numerical motive NM ′ does not contain
U(A)Fp as a direct summand. The composition bilinear pairing (in NNum(k)Fp )

Hom(U(A)Fp , NM ′)×Hom(NM ′,U(B)Fp)→ Hom(U(A)Fp ,U(B)Fp) (6.16)

is also zero; similarly with A and B replaced by B and A, respectively. This
follows automatically from the fact that the right-hand side of (6.16) is zero; see
Proposition 6.2(i). Now, note that the triviality of the pairings (6.15)–(6.16) implies
that the isomorphism (6.14) restricts to an isomorphism

U(A)Fp ⊕

n⊕
i=1

U(A)Fp ⊕

m⊕
j=1

U(B)Fp 'U(B)Fp ⊕

n⊕
i=1

U(A)Fp ⊕

m⊕
j=1

U(B)Fp

in the category CSA(k)⊕Fp
⊂NNum(k)Fp . Since CSA(k)⊕Fp

is equivalent to the cate-
gory of Br(k){p}-graded finite dimensional Fp-vector spaces (see Proposition 6.11),
it satisfies the cancellation property with respect to direct sums. Consequently, we
conclude from the preceding isomorphism that U(A)Fp ' U(B)Fp in NNum(k)Fp ,
which is a contradiction. This finishes the proof. �

Lemma 6.17. There exist nonnegative integers n,m ≥ 0 and a noncommutative
numerical motive NM ′∈ NNum(k)Fp such that:

(i) We have NMFp '
⊕n

i=1U(A)Fp ⊕
⊕m

j=1U(B)Fp ⊕ NM ′ in NNum(k)Fp .

(ii) The noncommutative numerical motive NM ′ does not contain U(A)Fp or U(B)Fp

as a direct summand.
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Proof. Recall that the category NNum(k)Fp is idempotent complete. Therefore,
by inductively splitting the (possible) direct summands U(A)Fp and U(B)Fp of the
noncommutative numerical motive NMFp , we obtain an isomorphism

NMFp 'U(A)Fp ⊕ · · ·⊕U(A)Fp ⊕U(B)Fp ⊕ · · ·⊕U(B)Fp ⊕ NM ′

in NNum(k)Fp , with NM ′ satisfying condition (ii). We claim that the number of
copies of U(A)Fp and U(B)Fp is finite; note that this concludes the proof. We
will focus ourselves on the case U(A)Fp ; the proof of the case U(B)Fp is similar.
Suppose that the number of copies of U(A)Fp is infinite. Since we have natural
isomorphisms

HomNNum(k)Fp
(U(A)Fp ,U(A)Fp)' Fp, (6.18)

this would allow us to construct an infinite sequence f1, f2, . . . of vectors in the
Fp-vector space HomNNum(k)Fp

(U(A)Fp , NMFp), with fi corresponding to the element
1 ∈ Fp of (6.18), such that f1, . . . , fr is linearly independent for every positive
integer r . In other words, this would allow us to conclude that the Fp-vector space
HomNNum(k)Fp

(U(A)Fp , NMFp) is infinite dimensional. Recall from the proof of
[Bruguières 2000, Proposition 1.4.1] that the map Z→ Fp gives rise to a surjective
homomorphism

HomNNum(k)(U(A), NM)⊗Z Fp � HomNNum(k)Fp
(U(A)Fp , NMFp). (6.19)

Since, by assumption, the base field k is of characteristic zero, the abelian group
HomNNum(k)(U(A), NM) is finitely generated; see [Tabuada and Van den Bergh
2014, Theorem 1.2]. Therefore, we conclude that the right-hand side of (6.19)
is a finite dimensional Fp-vector space, which is a contradiction. This finishes
the proof. �

The proof of Theorem 2.7 now follows from the next result.

Theorem 6.20. Let k be a field of positive characteristic p and A, B two central
simple k-algebras. If p | ind(Aop

⊗ B), then the images of [A] and [B] under the
canonical map (6.4) are different. This holds in particular when ind(A) and ind(B)
are coprime and p divides ind(A) or ind(B).

Proof. If p | ind(Aop
⊗ B), then Proposition 6.2(i) implies that U(A)Fp 6'U(B)Fp

in NChow(k)Fp . Consequently, similarly to implication (6.7), we conclude that
U(A)Fp 6'U(B)Fp in NNum(k)Fp . By definition, we have [U(A)] = [U(B)] in the
Grothendieck ring K0(NChow(k)) if and only if the following condition holds:

there exists an NM ∈ NChow(k) such that U(A)⊕ NM 'U(B)⊕ NM. (6.21)

Thanks to Theorem 5.5, the category NNum(k)Fp is abelian semisimple. Conse-
quently, it satisfies the cancellation property with respect to direct sums. Therefore,
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if condition (6.21) holds, one would conclude that U(A)Fp 'U(B)Fp in NNum(k)Fp ,
which is a contradiction. This finishes the proof. �

Corollary 6.22. When k is a field of positive characteristic p, the restriction of
the canonical map (6.4) to the p-primary torsion subgroup Br(k){p} is injective.
Moreover, the image of Br(k){p}− 0 is disjoint from the image of

⊕
q 6=p Br(k){q}.

Remark 6.23. As proved in [Marcolli and Tabuada 2014a, Theorem 7.1], every
ring homomorphism k→ k ′ gives rise to the following commutative square:

dBr(k)

−⊗
L
k k′

��

(6.4)
// K0(NChow(k))

−⊗
L
k k′

��

dBr(k ′)
(6.4)
// K0(NChow(k ′))

Therefore, by combining it with Theorems 6.12 and 6.20, we conclude that Corollary
2.10 also holds with (2.1) replaced by (6.4).
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