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In the group of polynomial automorphisms of the plane, the conjugacy class
of an element is closed if and only if the element is diagonalisable. In this
article, we show that this does not hold for the group of special automorphisms,
giving a first step in the direction of showing that this group is not simple, as an
infinite-dimensional algebraic group.

1. Introduction

In this article, k will always denote an algebraically closed field. The conjugacy
classes of the algebraic groups GL(n, k) and SL(n, k) are well known. In particular,
the following observation is classical:

An element is diagonalisable if and only if its conjugacy class is Zariski-closed.
As observed in [Furter and Maubach 2010], the same holds for the group Aut(A2

C
)

of complex polynomial automorphisms of the affine plane. Here, the topology cor-
responds to the topology of Aut(An

k) induced by families parametrised by algebraic
varieties A, called morphisms A→ Aut(An

k) and corresponding to elements of
Aut(An

k[A]) (see Section 2A).
In fact, there is one easy direction in the result of [Furter and Maubach 2010],

which corresponds to showing that if the conjugacy class is closed, then the element
is diagonalisable. This works over any algebraically closed field k and follows from
the following observation: If f ∈ Aut(An

k) is an element that fixes the origin, the
conjugation of f by

(x1, . . . , xn) 7−→

(
1
t

x1, . . . ,
1
t

xn

)
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yields an element of Aut(An
k(t)) whose value at t = 0 is the linear part of f , which

is an element of GL(n, k). Moreover elements of Aut(A2
k) which do not have fixed

points are easy to handle (these are conjugate to (x1, x2) 7→ (x1+ 1, ax2+ P(x2))

for some polynomial P ∈ k[x2] and a ∈ k∗).
In this article, we focus on the closed normal subgroup SAut(An

k) of Aut(An
k) of

elements of Jacobian 1. We will show that the conjugacy classes of the two groups
SAut(An

k) and Aut(An
k) have a very different behaviour.

We say that an element f ∈ Aut(An
k) is dynamically regular if the extensions of

f and f −1 to Pn
k have disjoint indeterminacy loci (see Section 2B). We will also say

that f is algebraic if {deg( f n)}n∈N is bounded. The dynamically regular elements
are never algebraic, and in dimension 2, nonalgebraic elements are conjugate to
dynamically regular elements (see Remark 4.3).

The first result that we obtain is to show that there is no degeneration of conjugates
of dynamically regular elements in SAut(An

k), contrary to the case of Aut(An
k).

Theorem 1.1. Let f ∈ SAut(An
k) be a dynamically regular element.

(1) If α ∈ SAut(An
k((t))) is such that α f α−1 has a value at t = 0, then this value is

conjugate to f by α(0) in SAut(An
k) (in particular α is defined at t = 0).

(2) For each integer d, the set {g f g−1
| g ∈ SAut(An

k), deg(g)≤ d} is closed.

(3) If n = 2, the conjugacy class of f in SAut(An
k) is closed.

(4) If k is uncountable, the following holds: for each morphism A→ SAut(An
k),

where A is an algebraic variety, the preimage of the conjugacy class of f
contains the closure of each locally closed subset B ⊂ A that it contains.

Remark 1.2. The proof of this result is given in Section 3. As we will show, part
(1) implies the others.

In the notation of [Furter and Kraft ≥ 2016], assertion (4) can be reinterpreted
by saying that the conjugacy class C( f ) of a dynamically regular element f is
weakly closed in SAut(An

k).

In dimension 2, an easy consequence of Theorem 1.1 and of the Jung–van der
Kulk theorem is the fact the conjugacy class of nonalgebraic elements of SAut(A2

k)

is in fact closed, contrary to the case of Aut(A2
k). In fact, we can be much more

precise: we describe in Section 4 the conjugacy classes of elements in SAut(A2
k),

and decide which ones are closed. In particular, we obtain the following complete
description.

Theorem 1.3. Let f ∈ SAut(A2
k). Then:

(1) If f is diagonalisable, its conjugacy class is closed.
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(2) If f is algebraic but not diagonalisable, its conjugacy class is not closed. More
precisely, there exists an element F ∈ SAut(A2

k[t]) such that for each t 6= 0,
F(t) ∈ SAut(A2

K ) is conjugate to f , and F(0) ∈ SAut(A2
k) is diagonalisable.

(3) If f is not algebraic, its conjugacy class is closed.

Remark 1.4. Since the set SAut(A2
k)alg of algebraic elements of SAut(A2

k) is closed
(Corollary 4.4), we can decompose SAut(A2

k) as an infinite union of disjoint closed
sets, one being SAut(A2

k)alg and the others being conjugacy classes of nonalgebraic
elements. The group SAut(A2

k) is however irreducible, by the simple observation
made above.

Remark 1.5. Note that these results show that the group SAut(A2
k) is more rigid

than the group Aut(A2
k), in the sense that there are less possible degenerations of

conjugates.
One can check, using the conjugations around fixed points as above, that every

normal closed subgroup of Aut(A2
k) is either trivial, SAut(A2

k) or Aut(A2
k). The

interesting question is then to know whether SAut(A2
k) contains nontrivial closed

normal subgroups (by [Furter and Lamy 2010], it contains many nontrivial normal
subgroups which contain only nonalgebraic elements, and the identity).

The fact that the conjugacy classes of nonalgebraic elements are closed suggests
that SAut(A2

k) could contain nontrivial closed normal subgroups. This text can then
be viewed as a first step towards the study of the simplicity of SAut(An

k), viewed
as an infinite-dimensional algebraic group (ind-group). In [Shafarevich 1966], it is
claimed that this one is simple, but the proof contains serious gaps.

2. Preliminaries

As we said, in the sequel k will always be an algebraically closed field. We will
sometimes also work on a general field (most of the time with an extension of k),
and will denote it by K .

In this section, we introduce the terminology and give some basic results (most
of them classical, maybe in alternate formulations) on the topology of Aut(An

k)

(Section 2A), the relation between the iterations of a map and the indeterminacy
sets at infinity (Section 2B) and the families of automorphisms parametrised by
formal series (Section 2C), that we will need in Sections 3 and 4.

2A. Topology on Aut(An
k).

Notation 2.1. Let R be any commutative unitary ring.

(1) We denote by End(An
R) the set of algebraic endomorphisms of An

R . An element
f ∈ End(An

R) is given by

f : (x1, . . . , xn) 7−→ ( f1(x1, . . . , xn), . . . , fn(x1, . . . , xn))
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for some polynomials f1, . . . , fn ∈ R[x1, . . . , xn]. The degree of f is by definition
the maximal degree of the fi , and we will use the notation

f = ( f1, . . . , fn).

This corresponds to a natural bijection End(An
R)→ (R[x1, . . . , xn])

n .

(2) The group Aut(An
R) is equal to the group of automorphisms of An

R , i.e., to the
elements of End(An

R) that admit an inverse in this set.

(3) For each f ∈ End(An
R), we denote by

Jac( f )= det
(
∂ fi

x j

)n

i, j=1
∈ R[x1, . . . , xn]

the Jacobian of f , and denote by SAut(An
R), the normal subgroup of Aut(An

R) given
by { f ∈ Aut(An

R) | Jac( f )= 1}.

(4) We denote by End(An
R)≤d and Aut(An

R)≤d the subsets of End(An
R) and Aut(An

R)

respectively, given by elements of degree ≤ d.

Example 2.2. For each p1 ∈ R[x1], p2 ∈ R[x1, x2], . . . , pn−1 ∈ R[x1, . . . , xn−1]

and a1, . . . , an ∈ R∗ the element

(a1x1, a2x2+ p1, a3x3+ p2, . . . , anxn + pn−1)

belongs to Aut(An
R). Such elements are usually called triangular, or de Jonquières.

Remark 2.3. Suppose that R is a field K . Extending the scalars to an algebraically
closed field, we observe that the Jacobian matrix of every element of Aut(An

K ) is
invertible everywhere, so Jac( f ) ∈ K ∗. In particular,

Aut(An
K )⊂ { f ∈ End(An

K ) | Jac( f ) ∈ K ∗},

and the equality, when K is of characteristic zero, is the classical Jacobian conjecture,
open for any n ≥ 2.

If Z is an algebraic variety defined over k, where k is algebraically closed as
before, there is a natural way to endow the group Bir(Z) of birational transformations
of Z with a topology (see for example [Demazure 1970; Serre 2010; Blanc 2010;
Blanc and Furter 2013]). When restricted to the subgroup Aut(Z) of automorphisms,
we obtain the following:

Definition 2.4. Let A, Z be two algebraic varieties defined over k. We say that a
morphism f : A→ Aut(Z) is a map given by an A-automorphism of A× Z .

The Zariski topology on Aut(Z) is defined as follows: a set F ⊂Aut(Z) is closed
if and only if f −1(F)⊂ A is closed for any algebraic variety A and any morphism
f : A→ Aut(Z).



Conjugacy classes of special automorphisms of the affine spaces 943

Remark 2.5. When the group Aut(Z) has a natural structure of an algebraic group
(for example when Z = Pn), the topology defined above agrees with the classi-
cal topology of the algebraic group, and morphisms A→ Aut(Z) correspond to
morphisms of algebraic varieties.

However, in general the group Aut(Z) is too big to be an algebraic variety, for
instance for Z = An , n ≥ 2 (see Example 2.2).

We will observe (in Lemma 2.7 below) that this topology, when restricted to
Aut(An

k), gives the one introduced by Shafarevich in [Shafarevich 1966], i.e., the
inductive limit topology given by the inclusion of affine algebraic varieties

Aff(An
k)= Aut(An

k)≤1 ⊂ Aut(An
k)≤2 ⊂ Aut(An

k)≤3 ⊂ · · ·

and corresponds in fact to an infinite-dimensional algebraic group. In order to do
this, we recall how one obtains natural structures of affine varieties for Aut(An

k)≤d

and SAut(An
k)≤d .

Lemma 2.6. Let us fix some integers d, n ≥ 1, and see End(An
k)≤d as an affine

space, via the bijection End(An
k)→ (k[x1, . . . , xn]≤d)

n . Then, the following hold:

(1) Jk∗ = { f ∈ End(An
k)≤d | Jac( f ) ∈ k∗} is locally closed in End(An

k)≤d , and
inherits from it the structure of an affine variety.

(2) J1 = { f ∈ End(An
k)≤d | Jac( f )= 1} is closed in End(An

k)≤d .

(3) Aut(An
k)≤d is a closed subset of Jk∗ .

(4) SAut(An
k)≤d is a closed subset of J1.

Proof. The Jacobian being a morphism End(An
k)≤d → k[x1, . . . , xn]≤n(d−1), the

sets
Jk = { f ∈ End(An

k)≤d | Jac( f ) ∈ k} and J1

are closed in End(An
k)≤d and are thus affine algebraic varieties. Since J0 =

{ f ∈ End(An
k)≤d | Jac( f )= 0} is given by one equation in Jk, the set Jk∗ = Jk \ J0

is affine (and locally closed in End(An
k)≤d ). This yields assertions (1) and (2).

In order to show (3) and (4), we define Wd to be the set of nonzero (n+1)-tuples
(h0, . . . , hn) of homogeneous polynomials hi ∈ k[x0, . . . , xn] of degree d, where
h0 = µxd

0 , µ ∈ k, up to linear equivalence: (h0, . . . , hn)∼ (λh0, . . . , λhn) for any
λ∈k∗. The equivalence class of (h0, . . . , hn)will be denoted by [h0 : · · · :hn]. Since
the set of homogeneous polynomials of degree d in n+ 1 variables is a k-vector
space, this gives to Wd a canonical projective space structure. We then denote by
Bd ⊂Wd the hyperplane given by h0 = 0 and obtain a canonical isomorphism of
affine spaces

Wd \ Bd −→
∼ End(An

k)≤d ,

[xd
0 : h1 : · · · : hn] 7−→ (h1(1, x1, . . . , xn), . . . , hn(1, x1, . . . , xn)).
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We denote by Y ⊆ Wdn−1 × (Wd \ Bd) the set consisting of elements (g, f ),
such that h := (g0( f0, . . . , fn), . . . , gn( f0, . . . , fn)) is a multiple (maybe 0) of
the identity, i.e., hi x j = h j xi for all i, j . The description of Y shows that it is
closed in Wdn−1 × (Wd \ Bd). Since Wdn−1 is a complete variety, the projection
p2 : Wdn−1 × (Wd \ Bd)→ (Wd \ Bd) is a Zariski-closed morphism, so p2(Y ) is
closed in (Wd \ Bd)' End(An

k)≤d .
In order to show (3) and (4), we only need to show that p2(Y )∩ Jk∗ =Aut(An

k)≤d ,
which implies that p2(Y )∩ J1 = SAut(An

k)≤d . We then show both inclusions.

(i) If f ∈Aut(An
k)≤d , there exists g ∈Aut(An

k)≤dn−1 such that g◦ f = id ([Bass et al.
1982, Theorem 1.5, page 292]). In consequence, we obtain (g, f )∈Y , so f ∈ p2(Y ).
The fact that f belongs to Jk∗ is given by Remark 2.3, so Aut(An

k)≤d ⊆ p2(Y )∩ Jk∗ .

(ii) Let (g, f ) ∈ Y , with f ∈ Jk∗ . By definition of Y , the element (g0( f0, . . . , fn),
. . ., gn( f0, . . . , fn)) is a multiple of the identity. There exists some j such that
g j 6= 0. The fact that f ∈ Jk∗ implies that f : An

k → An
k is dominant. Hence,

g j ( f0(1, x0, . . . , xn), . . . , fn(1, x0, . . . , xn)) is not equal to zero. This implies that
g ∈ End(An−1)≤dn−1 and that g ◦ f = id. Hence, f ∈ Aut(An

k)≤d . This yields
p2(Y )∩ Jk∗ ⊆ Aut(An

k)≤d . �

Lemma 2.7. Let us fix some integers d, n≥ 1, and see Aut(An
k)≤d and SAut(An

k)≤d

as affine varieties, via their inclusion in End(An
k)≤d ' (k[x1, . . . , xn]≤d)

n (see
Lemma 2.6). Then, the following hold:

(1) Morphisms A→ Aut(An
k) correspond to elements of Aut(An

k[A]).

(2) For each k-algebraic variety A, the morphisms A→ Aut(An
k) that have image

in Aut(An
k)≤d correspond to morphisms of algebraic varieties A→Aut(An

k)≤d .

(3) The set Aut(An
k)≤d is closed in Aut(An

k), and the restriction of the topology of
Aut(An

k) on it yields the topology of its algebraic variety structure.

(4) A subset of Aut(An
k) is closed if and only if its intersection with Aut(An

k)≤d is
closed, for each integer d ≥ 1.

Moreover, everything works the same replacing Aut with SAut.

Proof. We do the proof with Aut, the same proof works replacing Aut with SAut.
The map

End(An
k)≤d ×An

k −→ End(An
k)≤d ×An

k, ( f, x) 7−→ ( f, f (x))

is a morphism of algebraic varieties, so every morphism of algebraic varieties
A → Aut(An

k)≤d yields an A-automorphism of A × An
k, and thus a morphism

A→ Aut(An
k) with image in Aut(An

k)≤d .
Conversely, let f : A→Aut(An

k) be a morphism. By definition, this is given by an
A-automorphism of A×An

k. Composing with the projection A×An
k→An

k and then
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with the function xi on An
k, we obtain an element fi ∈ k[A×An

k]= k[A][x1, . . . , xn].
Hence, ( f1, . . . , fn) is an element of Aut(An

k[A]). Such an element yields a mor-
phism of algebraic varieties A→ End(An

k)≤m for some m ∈ N, having image in
Aut(An

k). This yields (1) and (2). Assertion (3) also follows, after observing that
the preimage of Aut(An

k)≤i is a closed subset of A, for each i ≥ 0.
It remains to show (4). Let Y ⊂ Aut(An

k) be any subset. If Y is closed in
Aut(An

k), then Y ∩Aut(An
k)≤d is closed (in Aut(An

k) or Aut(An
k)≤d ) for each d, by

(3). Suppose conversely that Y ∩Aut(An
k)≤d is closed for each d . In order to show

that Y is closed in Aut(An
k), we take any morphism A→ Aut(An

k), and show that
the preimage of Y is closed. As we observed before, we can see this morphism as a
morphism of algebraic varieties A→Aut(An

k)≤m for some m. Since Y∩Aut(An
k)≤m

is closed, the preimage of Y is closed. �

2B. Dynamical properties and the behaviour at infinity. In the sequel, we fix a
canonical open embedding An

k→ Pn
k given by

(x1, . . . , xn) 7−→ [1 : x1 : · · · : xn]

and denote by H∞ ⊂ Pn
k the complement H∞ = Pn

k \An
k, which is a hyperplane.

Once this is fixed, we have a canonical extension of any element of End(An
k) to a

rational map Pn
k 99K Pn

k. In particular, this yields inclusions

Aut(An
k)−→ Bir(An

k)
'
−→ Bir(Pn

k).

The automorphisms of degree 1 (affine automorphisms) correspond to those which
extend to elements of Aut(Pn

k). The others extend to birational maps which are not
automorphisms, and we can associate to them two sets, which are classical objects
in dynamics (see for example [Sibony 1999; Guedj and Sibony 2002; Bisi 2008]):

Definition 2.8. For each f ∈ Aut(An
k) of degree ≥ 2, we define If ⊂ Pn

k to be the
indeterminacy locus of the extension of f to Pn

k, and X f ⊂ Pn
k to be the image of

H∞\(If ).

In order to see the sets If , X f explicitly, we use the following definition.

Definition 2.9. If f = ( f1, . . . , fn) ∈ Aut(An
k) is an element of degree d and ai is

the homogeneous part of fi of degree d , for i = 1, . . . , n, we say that (a1, . . . , an)∈

End(An
k) is the highest homogeneous part of f .

Remark 2.10. If (a1, . . . , an) is the highest homogeneous part of f ∈ Aut(An
k),

the set If ⊂ Pn
k is given by

x0 = 0, a1 = · · · = an = 0,

and is a proper closed subset of the hyperplane at infinity H∞ (given by x0 = 0).
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Moreover, the set X f is equal to

{[0 : a1(x1, . . . , xn) : · · · : an(x1, . . . , xn)] | [0 : x1 : · · · : xn] ∈ H∞\If }.

Remark 2.11 (regular terminology). In dynamics, the elements f ∈ Aut(An
k) such

that If ∩ If −1 = ∅ are called “regular” and elements such that X f ∩ If = ∅ are
called “weakly regular” in [Guedj and Sibony 2002] or “quasiregular” in [Bisi
2008]. The use of this terminology in algebraic geometry can be confusing, because
of the common use of the word regular for maps (in fact all elements of Aut(An

k)

are morphisms, hence biregular). This is why we will say “dynamically regular” if
If ∩ If −1 =∅; we will not use the words “quasiregular” or “weakly regular”.

Remark 2.12. Fixing the degree d, we obtain an algebraic variety Aut(An
k)d . It

follows from the definition that the set of dynamically regular elements of Aut(An
k)d

is an open subset (in general not dense). However, the set of dynamically regular
elements of Aut(An

k)≤d (and thus of Aut(An
k)) is not open in general. For n = 2,

this can be seen by taking for example

f = (−x2, x1+ x2
2) ∈ SAut(A2

k), α = (x1+ t x2
2 , x2) ∈ SAut(A2

k[t]),

and considering the family β=α f α−1
∈SAut(A2

k[t]). Then, β(t) is not dynamically
regular for t ∈ k∗ but β(0)= f is dynamically regular.

Remark 2.13. If n = 2, we find X f = If −1 . Indeed, the extension of an element
f ∈ Aut(A2

k) of degree > 1 is an element of Bir(P2
k) which contracts the line at

infinity onto one point X f . The inverse of this birational map is then defined at any
other point of H∞, so we find X f = If −1 .

We now show that the degree of a composition is determined by the sets If and
X f defined above. The following results are classical in the world of dynamics, we
recall the easy proofs for self-containedness.

Lemma 2.14. Let f, g ∈ Aut(An
k) be of degree ≥ 2. Then, the following are

equivalent:

(1) deg(g f )= deg(g) · deg( f ).

(2) The set X f is not contained in Ig.

Moreover, if both conditions hold, then Xg f ⊂ Xg.

Proof. Denoting by (a1, . . . , an) and (b1, . . . , bn) the highest homogeneous parts
of f and g respectively, the equality deg(g f )= deg(g) ·deg( f ) is equivalent to the
fact that one of the polynomials

b1(a1, . . . , an), . . . , bn(a1, . . . , an)

is not equal to zero.
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By definition, the sets Ig, X f ⊂ H∞ are given respectively by

Ig = {[0 : y1 : · · · : yn] ∈ H∞ | b1(y1, . . . , yn)= · · · = bn(y1, . . . , yn)= 0},

X f = {[0 : a1(y1, . . . , yn) : · · · : an(y1, . . . , yn)] | [0 : y1 : · · · : yn] ∈ H∞\If }.

If X f 6⊂ Ig, then there exists a point [0 : y1 : · · · : yn] ∈ H∞\ If such that
[0 : a1(y1, . . . , yn) : · · · : an(y1, . . . , yn)] /∈ Ig, which corresponds to the existence
of an index i ∈ {1, . . . , n} such that bi (a1(y1, . . . , yn), . . . , an(y1, . . . , yn)) 6= 0. In
particular, the polynomial bi (a1, . . . , an) is not zero, so deg(g f )= deg(g) deg( f ).

Conversely, if bi (a1, . . . , an) is a nonzero polynomial, the open subset Ui ⊂ H∞
corresponding to the nonvanishing of this polynomial is nonempty. Intersecting this
open set with H∞\If yields a nonempty open subset of points in H∞ which have
image in X f and not in Ig.

Now that the equivalence between (1) and (2) is shown, we show that these
imply that Xg f ⊂ Xg. Since deg(g f )= deg(g) deg( f ), the homogeneous part of
highest degree of g f is (b1(a1, . . . , an), . . . , bn(a1, . . . , an)). This implies that the
points of Xg f are in the image by g (or more precisely of its extension to Pn

k) of
the set X f \ Ig, and thus lie in Xg. �

Corollary 2.15. Let f, g ∈ Aut(An
k) be of degree ≥ 2. Then, the following hold:

(1) X f ⊂ If −1 .

(2) If Ig ∩ If −1 =∅, then deg(g f )= deg(g) · deg( f ).

(3) X f 6⊂ If ⇔ deg( f 2)= deg( f )2.

Proof. Since deg( f −1 f ) < deg( f −1) deg( f ), part (1) follows from Lemma 2.14.
If Ig ∩ If −1 = ∅, then X f 6⊂ Ig by (1), so the equality deg(g f ) = deg(g) deg( f )
follows again from Lemma 2.14. Part (3) corresponds to Lemma 2.14, in the case
f = g. �

Corollary 2.16. If f ∈ Aut(An
k) is an element such that X f ∩ If =∅, then

deg( f m)= deg( f )m and X f m ⊂ X f

for each m ≥ 1.

Proof. We prove the result by induction on m, the case m = 1 being obvious.
For m ≥ 2, we use the facts that X f ∩ If = ∅ and X f m−1 ⊂ X f , which imply
that X f m−1 6⊂ If . Applying Lemma 2.14 to the composition f ◦ f m−1, we obtain
that deg( f m) = deg( f m−1) deg( f ), which is equal to deg( f )m by the induction
hypothesis, and also that X f m ⊂ X f . �

Restricting to dimension 2, we obtain the following result.

Corollary 2.17. Let f ∈ Aut(A2
k) be of degree ≥ 1. The following are equivalent:

(1) If 6= If −1 ;
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(2) If ∩ If −1 =∅;

(3) deg( f 2)= deg( f )2;

(4) deg( f m)= deg( f )m for each m ≥ 1.

Proof. As we are in dimension 2, we have X f = If −1 and X f −1 = If , which are two
points of H∞, which can be distinct or not (see Remark 2.13).

The equality deg( f 2)= deg( f )2 is equivalent to X f 6⊂ If (Corollary 2.15), which
is here equivalent to If −1 6= If or If −1∩If =∅. Hence, (1), (2), and (3) are equivalent,
and of course implied by (4). It remains to see that (2) corresponds to X f ∩ If =∅,
which implies that deg( f m)= deg( f )m for each m ≥ 1 by Corollary 2.16. �

Remark 2.18. The most interesting implication of this corollary is (3)⇒ (4), i.e.,
that deg( f 2)= deg( f )2 implies that deg( f m)= deg( f )m for m ≥ 1, a fact already
observed by Jean-Philippe Furter [1999] (at least when char(k)= 0).

Looking at the proof, this result has no reason to be true in dimension n ≥ 3, and
is in fact false on the easiest nontrivial example, that we describe now.

Example 2.19. Let f = (x1 + x2
2 , x2 + x2

3 , x3) ∈ SAut(A3
k), which has highest

homogeneous part a = (x2
2 , x2

3 , 0) ∈ End(A3
k). Then,

If = [0 : 1 : 0 : 0], X f = {[0 : x1 : x2 : 0] | [x1 : x2] ∈ P1
}.

Since X f 6⊂ If , we have deg( f 2) = deg( f )2 = 4 and X f 2 ⊂ X f . More precisely,
the homogeneous part of f 2 is a2

= (x4
3 , 0, 0), so

If 2 = If = X f 2 = [0 : 1 : 0 : 0].

In particular, X f 2 ⊂ If , so deg( f 3) < deg( f 2) · deg( f ).
In fact, one easily checks with the formulas that deg( f n) ≤ 4 for each n, and

that deg( f n)= 4 for each n ≥ 2 if char(k)= 0. Indeed

f n
=
(
x1+ nx2

2 + n(n− 1)x2x2
3 +

(∑n−1
i=1 i2

)
x4

3 , x2+ nx2
3 , x3

)
,

for each n ≥ 0.

2C. Families of automorphisms and valuations. In the sequel, we will study fam-
ilies of elements of Aut(An

k), which correspond to elements of Aut(An
k((t))).

It is then natural to use the valuation

ν : k((t))[x1, . . . , xn] → Z∪ {−∞}

associated to t . We define precisely this valuation here, as we will use it often
afterwards.
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Definition 2.20. Every element f ∈ k((t))[x1, . . . , xn] \ {0} can be written as

f =
∞∑

k=m

ak tk

where m ∈ Z, ai ∈ k[x1, . . . , xn] for i ≥ m, and am 6= 0. We then define ν( f )= m.
Choosing ν(0)=−∞, we obtain a valuation

ν : k((t))[x1, . . . , xn] −→ Z∪ {−∞}.

(1) If ν( f )= 0, we define f (0)= a0.

(2) If ν( f ) > 0, we define f (0)= 0.

(3) If ν( f ) < 0, we say that f has a pole at t = 0 and that f (0) is not defined.

Definition 2.21. Let f = ( f1, . . . , fn) ∈ Aut(An
k((t))). We define

ν( f )=min{ν( fi ) | i = 1, . . . , n}.

(1) If ν( f )≥ 0, we say that f is defined at the origin (or has a value), and define

f (0)= ( f1(0), . . . , fn(0)),

to be its value, which is an element of End(An
k).

(2) If ν( f ) < 0, we say that f has a pole at t = 0, and say that f (0) is not defined.

Remark 2.22. In the above definition, it is possible that the element f (0) is defined,
but does not belong to Aut(An

k). This is for example the case when one of the
components becomes 0, or for f = (t x1 + x2, x2, . . . , xn). This phenomenon is
however impossible for SAut(An

k), as the following result shows.

Lemma 2.23. Let α ∈ SAut(An
k((t))) be an element which has no pole at t = 0.

Then, α−1 has no pole at t = 0, and replacing t with 0 yields two automorphisms
β, γ ∈ SAut(An

k),
β = α(0), γ = α−1(0),

such that βγ = id.

Proof. Since α has no pole at t = 0, it sends (0, . . . , 0) ∈ An
k((t)) onto an element

having coordinates in k[[t]]. We can thus replace α by its composition with a
translation and assume that α (and thus α−1) fixes the origin. Its linear part is then
equal to an element of SL(n, k[[t]]), whose inverse also belongs to SL(n, k[[t]]).
Replacing with the composition by this inverse, we can assume that α has a trivial
linear part. We denote by m the ideal of k((t))[x1, . . . , xn] generated by the xi , and
can then write

α = ( f1, . . . , fn)
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for some f1, . . . , fn ∈ k[[t]][x1, . . . , xn], fi ≡ xi (mod m2). We write then

α−1
=

(
x1+

d∑
i=2

gi,1, . . . , xn +

d2∑
i=2

gi,n

)
where the gi, j ∈ k((t))[x1, . . . , xn] are homogeneous polynomials of degree i and
d2 is the degree of g. Assume for contradiction that one of the gk, j does not belong
to k[[t]][x1, . . . , xn], and choose k to be minimal for this. Then, the j -th coordinate
of α−1

◦α is equal to

x j = f j +

d2∑
i=2

gi, j ( f1, . . . , fn),

which implies that
∑d

i=k gi, j ( f1, . . . , fn) ∈ k[[t]][x1, . . . , xn]. But the part of de-
gree k of this sum is in fact equal to gi, j (x1, . . . , xn), which does not belong to
k[[t]][x1, . . . , xn].

We have proved that α−1 does not have any pole at the origin. We then denote by
d1, d2 the degrees of α and α−1 (which are the maximal degree of their components),
and denote by Enddi the set of endomorphisms of An of degree ≤ di , which is
naturally isomorphic to an affine space. Observe that (α, α−1) corresponds to a
k((t))-point of the algebraic variety

{( f, g) ∈ Endd1 ×Endd1 | f ◦ g = id}.

Since neither α neither α−1 has a pole at t = 0, all coefficients are defined at the
origin. Replacing t with 0 gives then the result. �

Remark 2.24. The result of Lemma 2.23 can also be obtained from the fact that
each SAut(An

k)≤d is closed in End(An
k)≤d (Lemma 2.6).

We will apply a classical valuative result (Lemma 2.25 below), and recall the
argument of the proof, given in [Furter 2009, §1.2] (the version that we need here
is slightly more general, but the proof is analogous).

Lemma 2.25. Let Y, Z be two quasiprojective k-algebraic varieties, let ϕ : Y → Z
be a morphism and let z ∈ Z be a (closed) point of Z. The following assertions are
equivalent:

(1) The point z belongs to the closure ϕ(Y ) of the image.

(2) There is an irreducible k-curve 0, a smooth closed point p ∈ 0 and a rational
map ι : 0 99K Y such that ϕ ◦ ι : 0 99K Z is defined at p and sends it onto z.

(3) There is a k((t))-point y ∈ Y (k((t))) such that ϕ(y) ∈ Z(k((t))) has no pole at
t = 0 and ϕ(y)(0)= z.
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Proof. (1)⇒ (2): Replacing Y with one of its irreducible components, we can
assume that Y is irreducible. Putting Z into a projective variety, we can assume that
Z is projective. Then, replacing Z with ϕ(Y ) we can assume that ϕ is dominant.
Since ϕ(Y ) is an irreducible constructible subset of Z , it contains a dense open
subset U of Z . If Z is a point, then ϕ(Y ) = Z , in which case (2) is obvious, so
we can assume that dim Z ≥ 1, and can take a closed irreducible curve C ⊂ Z
containing z and meeting U (through every two points passes at least one irreducible
closed curve, see [Mumford 1970, §II.6, Lemma, page 56]).

We then denote by Y ′ ⊂ Y an irreducible component of ϕ−1(C) such that the
restriction of ϕ yields a dominant morphism Y ′ → C . We choose two points
p1, p2 ∈ Y ′ such that ϕ(p1) 6= ϕ(p2) and take an irreducible curve 00 ⊂ Y ′ passing
through p1, p2 (using again the lemma from [Mumford 1970]). The restriction of
ϕ to 00 yields a dominant morphism 00→ C . We can take an open embedding
ν : 00→ 00, where 00 is an irreducible projective, and denote by η : 0→ 00 the
normalisation. Then, ϕ◦ν−1

◦η yields a rational map 0 99KC , which is a surjective
morphism. It remains to choose for ι : 0 99K 00 ⊂ Y ′ ⊂ Y the rational map ν−1

◦ η.
(2)⇒ (3): The rational maps 0 99K Y → Z correspond to field homomorphisms

k(Z)→ k(Y )→ k(0), sending the local ring Oz,Z to Op,0.
Denote by Ô p,0 the completion of Op,0, with respect to its maximal ideal.

Because Op,0 is a Noetherian regular local ring of dimension 1 with residue field k,
its completion is a complete Noetherian regular local ring with the same properties,
and by the Cohen theorem, it must be isomorphic to a ring of formal power series.
The dimension being 1, one has a k-isomorphism Ô p,0 ' k[[t]], which induces a
field homomorphism k(0)→ k((t)).

The composition k(Y )→ k(0)→ k((t)) corresponds to the k((t))-point y that we
want, and its image corresponds to the composition k(Z)→ k(Y )→ k(0)→ k((t)).
(3) ⇒ (1): View Z as a locally closed subset of Pn and take a polynomial

equation F ∈ k[x0, . . . , xn] that vanishes on ϕ(Y ). Since ϕ(y) is a k((t))-point of
ϕ(Y ), we have F(ϕ(y))= 0. Replacing t with 0 we obtain F(z)= 0. This shows
that z belongs to the closure of Z . �

Corollary 2.26. Let f ∈ SAut(An
k), let d ≥ 1 be an integer and let Y be the k-

algebraic variety SAut(An
k)≤d . The following assertions are equivalent:

(1) The set {g f g−1
| g ∈ Y } is closed in SAut(An

k).

(2) If 0 is an irreducible k-curve 0 and ι : 0 99K Y is a rational map such that
ϕ ◦ ι : 0 99K Z is defined at a smooth point p ∈ 0, the image of p belongs to
{g f g−1

| g ∈ Y }.

(3) If ϕ ∈ Y (k((t))) is an element that has poles at t = 0 and h = ϕ f ϕ−1 has no
poles at t = 0, then h(0) belongs to {g f g−1

| g ∈ Y }.
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Proof. The degree of the inverse of an element g ∈ Y is at most dn−1 (see [Bass et al.
1982, Theorem 1.5, page 292]). Hence, the map Y → SAut(An

k) that sends g onto
g f g−1 corresponds to a morphism of algebraic varieties ϕ : Y → SAut(An

k)≤m for
some m. The result follows then from Lemma 2.25 applied to ϕ, and Lemma 2.7. �

3. Conjugacy classes of dynamically regular automorphisms of An
k

3A. Image at infinity of elements of Aut(An
k((t))). In Section 2B, we explained

how the set X f ⊂ H∞ is defined, for each element f ∈ Aut(An
k), by extending the

map to Pn
k and looking at the image of the hyperplane H∞ at infinity.

We now associate similarly a subset Xα ⊂ H∞ to an element α ∈ Aut(An
k((t)))

which has a pole at t = 0, by taking the limit of the image of α(t), when t goes
towards 0. The formal definition of Xα is the following:

Definition 3.1. Let α ∈ Aut(An
k((t))) be an element of valuation ν(α) = −m < 0,

that we write

α =

(
1
tm α1, . . . ,

1
tm αn

)
,

where α1, . . . , αn ∈ k[[t]][x1, . . . , xn] are such that

α̃ = (α1(0), . . . , αn(0))= (α̃1, . . . , α̃n) ∈ End(An
k) \ {0}.

We then define

Xα={[0 : α̃1(y1, . . . , yn) : · · · : α̃n(y1, . . . , yn)] |(y1, . . . , yn)∈An
k\α̃
−1({0})}⊂H∞.

This definition can be geometrically understood:

Remark 3.2. In the above definition, α is not defined at t = 0, but extending α to
Pn we obtain the element of Bir(Pn

k((t))) given by

[x0 : · · · : xn] 99K [tm xd
0 : F1(x0, . . . , xn, t) : · · · : Fn(x0, . . . , xn, t)],

where d is the degree of α and each Fi (x0, . . . , xn, t) ∈ k[[t]][x0, . . . , xn] is the ho-
mogenisation of αi . This corresponds to a family of rational maps of Pn

k parametrised
by t , which has a value at t = 0, corresponding to

[x0 : · · · : xn] 99K [0 : F1(x0, . . . , xn, 0) : · · · : Fn(x0, . . . , xn, 0)].

The set Xα ⊂ H∞ is then the image of this map by points of An
k which are well-

defined under this map.
Writing such a point as [1 : x1 : · · · : xn], its image by the extension of α is

[tm
: F1(1, . . . , xn, t) : · · · : Fn(1, . . . , xn, t)]

= [tm
: α1(x1, . . . , xn, t) : · · · : αn(x1, . . . , xn, t)]
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and corresponds to a curve in Pn whose point, when t = 0, belongs to Xα.
The set Xα corresponds then to the limit, viewed in Pn

k, of the image of points
of An

k under α(t) when t goes towards 0.

Proposition 3.3. Let f ∈ SAut(An
k) be an element of degree d > 1, and let α ∈

SAut(An
k((t))) be an element that has a pole at t = 0. If

Xα 6⊂ If ,

then α−1 f α has a pole at t = 0.

Proof. We write
f = ( f1, . . . , fn)

for some f1, . . . , fn ∈ k[x1, . . . , xn] and denote by (a1, . . . , an) the highest homo-
geneous part of f (which is of degree d). In particular, the indeterminacy locus
If ⊂ Pn

k of the extension of f to Pn
k is given by

x0 = 0, a1 = · · · = an = 0.

Because α has a pole at t = 0, we have ν(α) = −m < 0 and can write α =
(t−mα1, . . . , t−mαn), where α1, . . . , αn ∈ k[[t]][x1, . . . , xn] are such that

α̃ = (α1(0), . . . , αn(0))= (α̃1, . . . , α̃n) ∈ End(An
k) \ {0},

and so the subset Xα ⊂ H∞ is described by

Xα = {[0 : α̃1(y1, . . . , yn) : · · · : α̃n(y1, . . . , yn)] | (y1, . . . , yn) ∈ An
k \ α̃

−1({0})}.

The fact that Xα is not included in If yields a point (y1, . . . , yn) ∈An
k \ α̃

−1({0})
and an integer i ∈ {1, . . . , n} such that

ai (α̃1(y1, . . . , yn), . . . , α̃n(y1, . . . , yn)) 6= 0.

In particular, we have

ai (α̃1, . . . , α̃n)= ai (α1(0), . . . , αn(0)) ∈ k[x1, . . . , xn] \ {0}.

Thus ai (t−mα1, . . . , t−mαn) = t−mdai (α1, . . . , αn) has valuation −md, and
hence f α has also valuation −md.

It remains to show that this implies that β = α−1 f α has a pole at t = 0. Indeed,
if β had no pole, we would have ν(αβ)≥ ν(α)=−m, which is impossible since
f α = αβ and ν( f α)=−md . �

Corollary 3.4. Let f ∈ SAut(An
k) be a dynamically regular element.

(1) If α ∈ SAut(An
k((t))) is such that g = α−1 f α has no pole at t = 0, then α and

α−1 have no pole at t = 0. In particular, g(0) is an element of SAut(A2
k) that

is conjugate to f .
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(2) For each d ≥ 1, the set {g f g−1
| g ∈ SAut(An

k)≤d} is closed in SAut(An
k).

Proof. (1) We suppose that α has a pole at t = 0, which is equivalent to the fact
that α−1 has a pole at t = 0 (Lemma 2.23), and show that α−1 f α has a pole at
t = 0. If Xα 6⊂ If , this is given by Proposition 3.3. Otherwise, we have Xα 6⊂ If −1 ,
(because If ∩ If −1 = ∅ by hypothesis) and apply the proposition to f −1. This
implies that α f −1α−1 has a pole at t = 0. Hence, α f α−1 has also a pole at t = 0
by Lemma 2.23.

(2) This follows from (1) and Corollary 2.26. �

We obtain thus the following two results.

Proposition 3.5. Let f ∈ SAut(An
k) be a dynamically regular element having the

following property: there exists a function τ : N→ N such that for each conjugate
g ∈ SAut(An

k) of f , there exists h ∈ SAut(An
k) of degree ≤ τ(deg(g)) such that

g = h f h−1.
Then, the conjugacy class of f in SAut(An

k) is closed.

Proof. Let us denote by C ⊂ SAut(An
k) the conjugacy class of f in SAut(An

k). Note
that C is closed (in SAut(An

k)) if and only if

Cd = {g ∈ C | deg(g)≤ d}

is closed in SAut(An
k)≤d for each d ∈ N.

By Corollary 3.4, the set

C ′d = {h f h−1
| h ∈ SAut(An

k)≤d}

is closed in SAut(An
k) for each d.

By hypothesis, we have Cd ⊂ C ′τ(d) for each d ∈ N, which implies that

Cd = C ′τ(d) ∩SAut(An
k)≤d

is closed in SAut(An
k)≤d for each d . �

The additional hypothesis of Proposition 3.5 is fulfilled for all dynamically regular
elements of SAut(A2

k), so we obtain that the conjugacy classes of all dynamically
regular elements of SAut(A2

k) are closed:

Proposition 3.6. Let f ∈ SAut(A2
k) be a dynamically regular element. Then:

(1) If g ∈ SAut(A2
k) is conjugate to f , there exists h ∈ SAut(A2

k), such that

g = h f h−1 and deg(h)2 ≤ deg(g).
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(2) The conjugacy class of f in SAut(A2
k) is closed.

Remark 3.7. The bound of (1) also exists for Bir(A2
k), but is much higher [Blanc

and Cantat 2016].

Proof. Proposition 3.5 yields (1)⇒ (2), so we only need to prove (1).
Recall that, for each g ∈ Aut(A2

k) of degree greater than one, Ig = Xg−1 consists
of one point (Remark 2.13).

Let g = h f h−1 be an element of degree d . Replacing h with h f l , l ∈ Z, we can
assume that

deg(h)≤ deg(h f l), for each l ∈ Z.

We can also assume that deg(h)≥2. This implies, since deg(h)<deg(h f ) deg( f −1),
that If = X f −1= Ih f (Lemma 2.14). Similarly, we have deg(h)<deg(h f −1) deg( f ),
so If −1 = X f = Ih f −1 .

Because the two points If , If −1 ∈ H∞ are distinct, we have Ih 6= If or Ih 6= If −1 . If
Ih 6= If = Ih f , we have deg(h f h−1)=deg(h f ) deg(h−1)≥deg(h) deg(h−1). If Ih 6=

If −1 = Ih f −1 , we have deg(h f −1h−1)= deg(h f −1) deg(h−1)≥ deg(h) deg(h−1).
The degree of an element of Aut(A2

k) and its inverse being the same, we find
deg(g)≥ deg(h)2. �

Proof of Theorem 1.1. Part (1) and (2) correspond to the statements of Corollary 3.4.
Part (3) is provided by Proposition 3.6.

It remains to show (4). For each d ∈ N, the set

Cd = {g f g−1
| g ∈ SAut(An

k)≤d}

is closed in SAut(An
k), and the conjugacy class of f is the infinite union C =

⋃
d Cd .

Let A be an algebraic variety, F : A→ SAut(An
k) be a morphism, and let B ⊂ A

be a locally closed subset which is contained in F−1(C). Writing Bd = F−1(Cd),
the set Bd is closed in B for each d and B =

⋃
d Bd . Since k is uncountable and

Bd ⊂ Bd+1 for each d , we obtain B= Bm for some integer m. Hence, B is contained
in F−1(Cm), which is closed in A, so the closure of B in A is also contained in
F−1(Cm), and thus in F−1(C). �

4. Conjugacy classes of elements in SAut(A2
K )

4A. Overview of the Jung–van der Kulk theorem and its applications. For each
field K , the Jung–van der Kulk theorem [Jung 1942; van der Kulk 1953] asserts
that the group Aut(A2

K ) is generated by the groups

Aff(A2
K )=

{
(ax1+ bx2+ e, cx1+ dx2+ f )

∣∣∣ (a b
c d

)
∈ GL(2, K ), e, f ∈ K

}
,

J(A2
K )= {(ax1+ P(x2), bx2+ c) | a, b ∈ K ∗, c ∈ K, P ∈ K [x2]}.
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Multiplying the decomposition of an element of SAut(A2
K ) with homotheties we

can assume that each one has determinant 1. This implies that the group SAut(A2
K )

is generated by the groups

SAff(A2
K )=

{
(ax1+ bx2+ e, cx1+ dx2+ f )

∣∣∣ (a b
c d

)
∈ SL(2, K ), e, f ∈ K

}
,

SJ(A2
K )= {(ax1+ P(x2), a−1x2+ c) | a ∈ K ∗, c ∈ K , P ∈ K [x2]}.

The Jung–van der Kulk theorem implies that we have an amalgamated product
structure on SAut(A2

K ). It also yields the following classical result. We recall here
the simple proof.

Lemma 4.1. Every element f ∈ SAut(A2
K ) is conjugate either to an element of

SJ(A2
K ) or to an element of the form

f = am jm · · · a1 j1,

where m ≥ 1 and each ai ∈ SAff(A2
K ) \SJ(A2

K ) and each ji ∈ SJ(A2
K ) \SAff(A2

K ).

Proof. We write f as a product of elements of A = SAff(A2
K ) and J = SJ(A2

K ):

f = am jmam−1 · · · a1 j1a0,

where each ai ∈ A and each ji ∈ J . By merging elements we can moreover assume
that ji 6∈ A for i = 1, . . . ,m, and that ai 6∈ J for i = 1, . . . ,m− 1.

Suppose first that m = 0, which implies that f = a0 ∈ A, so it extends to an
element of Aut(P2

K ). The action at infinity has a fixed point, and conjugating by
an element of SL(2, K ), we can assume that this point corresponds to [0 : 1 : 0],
which implies that f preserves the pencil of lines through the point, so f ∈ J .

Suppose now that m ≥ 1, which implies that j1 ∈ J \ A. We conjugate f by a0

and assume that a0 = id. If m = 1 and am = a1 ∈ J , then f ∈ J . If m ≥ 2 and
am ∈ J , we conjugate by j1 and decrease m by 1. This reduces to the case m ≥ 1,
a1 = id, am 6∈ J . �

Remark 4.2. Elements of the form f = am jm · · · a1 j1, where m ≥ 1 and each
ai ∈ SAff(A2

K )\SJ(A2
K ) and each ji ∈ SJ(A2

K )\SAff(A2
K ) are usually called Hénon

automorphisms. Note that each element ji satisfies X ji = Iji = [0 : 1 : 0], and that
each ai extends to an automorphism of P2

K that moves [0 : 1 : 0]. By Lemma 2.14,
this implies that

deg( f )=
m∏

i=1

deg( ji ), If = [0 : 1 : 0], X f = If −1 = am([0 : 1 : 0]).

In particular, If ∩ If −1 =∅, deg( f ) > 1 and deg( f m)= deg( f )m for each m ≥ 1
(Corollary 2.17). Moreover, the conjugacy class of f in SAut(A2

K
) is closed, where

K is the algebraic closure of K (Proposition 3.6).
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Remark 4.3. Elements of SJ(A2
K ) are algebraic since they are contained in an

algebraic subgroup of Aut(A2
K ) (or equivalently have a bounded degree sequence).

Hénon automorphisms are not algebraic as their degree sequence is not bounded.
Hence, Lemma 4.1 corresponds to saying that nonalgebraic elements are conjugate
to Hénon automorphisms, and algebraic automorphisms to elements of SJ(A2

K ).

The following corollary follows from Lemma 4.1, and also holds (with the same
proof) for Aut(A2

k). This was already observed in [Furter 1999].

Corollary 4.4. (1) An element f ∈ SAut(A2
k) is algebraic if and only if

deg( f 2)≤ deg( f ).

(2) The subset SAut(A2
k)alg of algebraic elements of SAut(A2

k) is closed.

Proof. (1)(a) If f is algebraic it is conjugate to an element j ∈ SJ(A2
K ) (Lemma 4.1,

or more precisely Remark 4.3). We can thus write f =α−1 jα where α ∈SAut(A2
K ).

Then α= a1 j1 · · · , where each ai ∈ SAff(A2
K )\SJ(A2

K ) and each ji ∈ SJ(A2
K ) (if α

starts with an element of SJ(A2
K ) \ SAff(A2

K ) we can merge this element with j).
If j /∈ SAff(A2

K ), then deg( f )=
∏

deg( ji )2 deg( j)= deg(α−1) deg( j) deg(α) (see
Remark 4.2) and thus

deg( f 2)= deg(α−1 j2α)≤ deg(α−1) deg( j2) deg(α)≤ deg( f ),

since deg( j2) ≤ deg( j). If j ∈ SAff(A2
K )∩ SJ(A2

K ), then we can replace j with
a−1

1 ja1 and continue like this to obtain either the previous case or f = α−1aα,
where a ∈ SAff(A2

K ), α = j1a1 · · · , each ai ∈ SAff(A2
K ) \ SJ(A2

K ) and each ji ∈
SJ(A2

K ) \SAff(A2
K ). We obtain similarly deg( f 2)≤ deg( f ).

(1)(b) If f is not algebraic, then f is conjugate to a Hénon map h = am jm · · · a1 j1,
where each ai ∈ SAff(A2

K )\SJ(A2
K ) and each ji ∈ SJ(A2

K )\SAff(A2
K ) (Lemma 4.1,

or more precisely Remark 4.3). Writing f = α−1hα, where α ∈ SAut(A2
K ), we can

write as before α as a product of elements of SAff(A2
K ) and SJ(A2

K ), replace h if α
starts with an element j ′1 ∈ SJ(A2

K ) such that j1 j ′1 ∈ SAff(A2
K ) or if it starts with an

element a′1 ∈ SAff(A2
K ) such that (a′1)

−1αm ∈ SJ(A2
K ) and finish with a simplified

writing where we can directly read that deg( f 2) > deg( f ).

(2) It follows from (1) that the set of algebraic elements of SAut(A2
K )≤d is closed

for each d ≥ 1, which implies the second assertion. �

4B. Conjugacy classes of elements of SJ(A2
K ). It is easy to decide whether two

Hénon automorphisms are conjugate, using the amalgamated product structure. The
writing of such an element is unique up to cycling permutation of the elements and
up to inserting elements of SJ(A2

K )∩ SAff(A2
K ). The classification of conjugacy

classes of SAut(A2
K ) thus reduces to the study of elements of SJ(A2

K ).
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Lemma 4.5. Let f ∈ SJ(A2
K ) be some element. After conjugation in this group, the

element belongs to one of the following families:

(i) (ax1, a−1x2), a ∈ K \ {0, 1},
(ii) (x1+ P(x2), x2), P ∈ K [x2],

(iii) (ζ x1+ xm−1
2 P(xm

2 ), ζ
−1x2), ζ ∈ K \ {0, 1}, P ∈ K [x2] \ {0},

ζ a primitive m-th root of unity,

(iv)
{
(x1, x2+ 1),
(x1+ x p−1

2 P(x p
2 ), x2+ 1),

char(K )= 0,
P ∈ K [x2], char(K )= p.

Proof. An element f ∈ SJ(A2
K ) is equal to (ax1 + P(x2), a−1x2 + c) for some

a ∈ K ∗, c ∈ K , P ∈ K [x2].
If a 6= 1, we conjugate by (x1, x2 + ac/(1− a)) and can assume that c = 0.

Conjugating by (x1− λxn
2 , x2) yields (ax1+ P(x2)+ λ(a − a−n)xn

2 , a−1x2). We
can then kill the coefficient of degree n of P , if a 6= a−n . This gives (i) or (iii).

If a = 1 and c= 0, we get (ii). If a = 1 and c 6= 0, we conjugate by (cx1, c−1x2)

and can assume that c = 1. Conjugating (x1+ P(x2), x2+ 1) by (x1− λxn+1
2 , x2)

yields (x1+ P(x2)+λ(x
n+1
2 −(x2+1)n+1), x2+1). We can thus kill the coefficient

of degree n if n+ 1 is not a multiple of char(K ). This gives (iv). �

The most complicated case corresponds to family (iv), in the case of a field of
characteristic p > 0. In order to describe the conjugacy classes in this family, we
will need the following lemma.

Lemma 4.6. Let K be a field of characteristic p>0. Let V ⊂K [x] be the subvector
space given by

V = {x p−1 P(x p) | P ∈ K [x]},

and let δ, N be the following K -linear maps

δ : K [x] −→ K [x], F(x) 7−→ F(x + 1)− F(x),

N : K [x] −→ K [x], F(x) 7−→ F(x)+ F(x + 1)+ · · ·+ F(x + p− 1).

Then, Im(δ)= Ker(N ) and K [x] = V ⊕ Im(δ)= V ⊕Ker(N ).

Proof. (1) We first show that V + Im(δ)= K [x]. This is the same argument as in
Lemma 4.5(iv). We take any polynomial P(x)=

∑l
j=1 a j x j

∈ K [x]. If P 6∈ V , we
can define m to be the biggest integer such that am 6= 0 and m + 1 6≡ 0 (mod p).
Replacing P with P̃(x)= P(x)−δ(am xm+1/(m+1)), we kill the coefficient of xm .
Continuing this process until all coefficients ai with i + 1 6≡ 0 (mod p) are zero,
we obtain an element of V .
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(2) We now show that Ker(N )∩V = {0}. Let F(x)=
∑n

i=1 ai x i p−1 be an element
of V , and assume that an 6= 0. Since

N (F(x))=
n∑

i=1

ai

( p−1∑
k=0

(x + k)i p−1
)
,

the coefficient of xnp−p of N (F(x)) is equal to

an

( np−1
np− p

) p−1∑
k=0

k p−1
= an

( np−1
np− p

)
(p− 1) ∈ K ∗.

This shows that F /∈ Ker(N ). Hence V ∩Ker(N )= {0}.

(3) The inclusion Im(δ)⊂ Ker(N ) follows from the definition of δ and N , so we
obtain V ∩ Im(δ)= {0} by (2). Moreover, since Ker(N ) is contained in Im(δ)⊕ V
(by (1)) and Ker(N )∩ V = {0}, we have Im(δ)= Ker(N ). �

Remark 4.7. The equality Ker(N ) ∩ V = {0} of Lemma 4.6 corresponds to the
fact that an element of the form

(x1+ x p−1
2 P(x p

2 ), x2+ 1),

where P ∈ K [x2], char(K ) = p (family (iv)) is of order p if and only if P = 0.
Indeed,

(x1+ Q(x2), x2+ 1)p
= (x1+ Q(x2)+ · · ·+ Q(x2+ p− 1), x2),

for each Q ∈ K [x2].

We will also need the following lemma, which is a direct consequence of the
amalgamated product structure of SAut(A2

K ).

Lemma 4.8. Let f ∈ SJ(A2
K ), which is not conjugate to (ax1, a−1x2), a ∈ K ∗ or to

(x1+1, x2) or (x1, x2+1) in the group SJ(A2
K ). Then, f is conjugate to an element

of g ∈ SJ(A2
K ) in the group SAut(A2

K ) if and only if it is conjugate to g in SJ(A2
K ).

Proof. We suppose that g = α f α−1
∈ SJ(A2

K ), for some α ∈ SAut(A2
K ) \ SJ(A2

K ).
We can write α as

α = jm+1am jm · · · j2a1 j1,

where m ≥ 1, each ji ∈ SJ(A2
K ), each ai ∈ SAff(A2

K ), and such that ai 6∈ SJ(A2
K )

for i = 1, . . . ,m, ji /∈ SAff(A2
K ) for i = 2, . . . ,m−1. Since α f α−1

∈ SJ(A2
K ), the

element j1 f j−1
1 belongs to SAff(A2

K )∩SJ(A2
K ), and the same holds for the element

a1 j1 f j−1
1 a−1

1 .
The fact that f1 = j1 f j−1

1 and f2 = a1 j1 f j−1
1 a−1

1 belong to SAff(A2
K )∩SJ(A2

K )

corresponds to the fact that both extend to automorphisms of P2
K that fix the point

[0 : 1 : 0] at infinity. However, a1 ∈ SAff(A2
K ) \ SJ(A2

K ) so it extends to an
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automorphism of P2
K , whose action at the infinity moves the point [0 : 1 : 0]. This

implies that f1 fixes at least two points at infinity. Conjugating by an element of
SAff(A2

K )∩ SJ(A2
K ) we can assume that these points are [0 : 1 : 0] and [0 : 0 : 1].

This implies that f1 = (ax1 + b, a−1x2 + c), for some (a, b, c) ∈ K ∗ × K 2. It
remains to see that f1 is conjugate to (ax1, a−1x2), (x1+ 1, x2) or (x1, x2+ 1), in
the group SJ(A2

K ). This is a straight-forward calculation, already done in the proof
of Lemma 4.5. �

Proposition 4.9 (Conjugacy classes of algebraic elements in SAut(A2
K )). Every

algebraic element of SAut(A2
K ) is conjugate to one of the families (i)–(iv) of

Lemma 4.5.
Apart from (x1, x2+ 1), which is conjugate to (x1+ 1, x2), no two elements of

distinct families are conjugate in SAut(A2
K ). Moreover, the conjugacy classes in

SAut(A2
K ) within the families are as follows:

(i) (ax1, a−1x1)∼ (bx1, b−1x2)⇐⇒ a = b±1.

(ii) (x1 + P(x2), x2) ∼ (x1 + Q(x2), x2) ⇐⇒ Q(x2) = a P(ax2 + b) for some
(a, b) ∈ K ∗× K .

(iii) (ζ x1 + xm−1
2 P(xm

2 ), ζ
−1x2) is conjugate to (ζ x1 + xm−1

2 am P(axm
2 ), ζ

−1x2)

for each a ∈ K ∗, but not to any other element of family (iii).

(iv) Two elements

f = (x1+ x p−1
2 P(x p

2 ), x2+ 1), g = (x1+ x p−1
2 Q(x p

2 ), x2+ 1),

where P, Q ∈ K [x2], are conjugate if and only their p-th powers,

f p
= (x1+ P̃(x2), x2), g p

= (x1+ Q̃(x2), x2),

where P̃, Q̃ ∈ K [x2], satisfy Q̃(x2)= P̃(x2+ c) for some c ∈ K .

Proof. The first assertion follows from Lemma 4.1 (see Remark 4.3). It remains
to describe the conjugacy classes in the families (i)–(iv). We first observe that
if α ∈ SL(2, K ) is conjugate by ν ∈ SAut(A2

K ) to an element β ∈ SAut(A2
K )

that fixes the origin, the derivative of the equation αν = νβ at the origin yields
αDν(0) = Dν(0)Dβ(0), so the derivative of β at the origin is conjugate to α in
SL(2, K ). This shows that the families (i) and (ii) are disjoint, and gives the
conjugacy classes in (i).

We now observe that two elements f = (x1+P(x2), x2) and (x1+Q(x2), x2) are
conjugate in SAut(A2

K ) if and only if they are conjugate in SJ(A2
K ). This is given by

Lemma 4.8, if f or g is not conjugate to (x1+ 1, x2) or (x1, x2) in SJ(A2
K ), and is

trivial in the remaining cases (when both f and g are conjugate to one of these two
elements). It remains to observe that the conjugation of f = (x1+ P(x2), x2) by
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(ax1+ R(x2), a−1(x2− b)) yields (x1+ a P(ax2+ b), x2) to obtain the conjugacy
classes in (ii).

An element f = (ζ x1+ xm−1
2 P(xm

2 ), ζ
−1x2) in family (iii) satisfies

f m
= (x1+mxm−1

2 P(xm
2 ), x2) 6= (x1, x2).

Since f m belongs to family (ii), f m (and thus f ) is not conjugate to an element
of family (i). Moreover, f is not conjugate to an element of family (ii) because
ζ−1
∈ K \{0, 1} is an eigenvalue of the action of f ∗ on K [x1, x2]. By Lemma 4.8, f

is conjugate to another element g of family (iii) in SAut(A2
K ) if and only if this con-

jugation holds in SJ(A2
K ). Looking at the second coordinate, we have to conjugate

by α= (ax1+R(x2), a−1x2). This implies that g= (ζ x1+xm−1
2 Q(xm

2 ), ζ
−1x2) for

some polynomial Q. Looking at gm
= α f mα−1

= (x1+mam xm−1
2 P((ax2)

m), x2),
we obtain Q(xm

2 )= am P((ax2)
m). This yields a necessary condition on Q, which

is also sufficient, by choosing R = 0.
It remains to study the last class (iv). The element (x1, x2+ 1) is conjugate to

(x1+ 1, x2) by (x2,−x1). If char(K )= 0, there is no other element in the family.
So we assume that char(K )= p > 0, and consider f = (x1+ x p−1

2 P(x p
2 ), x2+ 1),

for some polynomial P ∈ K [x2] \ {0}. Because the action of f ∗ on K [x1, x2] has
only eigenvalues equal to 1, f is not conjugate to any element of family (i) or (iii).
Moreover, the fact that P 6= 0 implies that f p is not the identity (see Remark 4.7).
Hence, f is not conjugate to an element of family (ii).

We then take g = (x1+ x p−1
2 Q(x p

2 ), x2+ 1), for some Q ∈ K [x2], write

f p
= (x1+ P̃(x2), x2), g p

= (x1+ Q̃(x2), x2),

for some P̃, Q̃ ∈ K [x2], and show that f and g are conjugate if and only if
Q̃(x2)= P̃(x2+ c) for some c ∈ K . This will conclude the proof.

Suppose first that f is conjugate to g. Lemma 4.8 yields the existence of
α ∈ SJ(A2

K ) such that α f α−1
= g. Looking at the second coordinate, we see

that α = (x1 + R(x2), x2 − c) for some R ∈ K [x2], c ∈ K . Then, α f pα−1
=

(x1+ P̃(x2+ c), x2), which implies that Q̃(x2)= P̃(x2+ c) as we wanted.
Conversely, suppose that Q̃(x2)= P̃(x2+c) for some c ∈ K . We conjugate then

g with (x1, x2+ c); this changes maybe the polynomial Q, and replaces Q̃ with P̃ .
Hence, we can assume that f p

= g p. This corresponds to the equality

N (x p−1
2 P(x p

2 ))= N (x p−1
2 Q(x p

2 )),

where N : K [x2] → K [x2] is the K -linear map that sends f (x2) to f (x2) +

f (x2+1)+· · ·+ f (x2+ p−1). The element x p−1
2 Q(x p

2 )−x p−1
2 P(x p

2 ) is an element
of the kernel of N , and is thus equal to R(x2+ 1)− R(x2) for some polynomial
R ∈ K [x2] (Lemma 4.6). This corresponds to the fact that f is conjugate to g by
α = (x1+ R(x2), x2). �
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4C. Degenerations between the four families of conjugacy classes. In the re-
maining part of the article, we show that every algebraic element of SAut(A2

K )

admits a degeneration of conjugates towards a diagonalisable element.

4C1. From family (ii) and (iii) to family (i). These are the easiest degenerations.
Taking any f ∈ SAut(A2

K ) that belongs to family (ii) or (iii), and conjugating by
diagonal elements of SAut(A2

K (t)) we obtain elements of SAut(A2
K [t]) which yield

families of conjugates of f that converge towards an element of family (i). Indeed,
we have

(t x1, t−1x2)(x1+ P(x2), x2)(t
−1x1, t x2)= (x1+ t P(x2), x2),

(t x1, t−1x2) f (t−1x1, t x2)= (ζ x1+ tm xm−1
2 P(t xm

2 ), ζ
−1x2).

In particular, there is a diagonalisable element in the closure of the conjugacy
class of any element of families (ii) and (iii), and thus of any algebraic element of
SAut(A2

K ), if char(K )= 0.

4C2. Family (iv). The last family, when char(K )= p > 0, is the most interesting.
The elements of this family are of the form (x1+Q(x2), x2+1), for some polynomial
Q ∈ K [x2]. Diagonal conjugations by (t x1, t−1x2) or (t−1x1, t x2) yield elements
of SAut(A2

K [t±1
]
) which do not have a value at t = 0.

In the following proposition, we provide two explicit degenerations, typical to
positive characteristic, to either (x1, x2+ 1) or the identity.

Proposition 4.10. Assume that char(K )= p > 0 and let

f = (x1+ Q(x2), x2+ 1)

for some polynomial Q ∈ K [x2].
Then, there are two elements F1, F2 ∈ SAut(A2

K [t]), which are conjugate to f in
SAut(A2

K [t±1]
), and have the following properties:

(1) For each t ∈ K \{0}, F1(t),F2(t)∈SAut(A2
K ) are conjugate to f in SAut(A2

K ).

(2) F1(0)= (x1, x2+ 1), F2(0)= (x1, x2).

Proof. If Q = 0, we can choose F1(t)= f and F2(t) to be the conjugation of f by
(t−1x1, t x2) ∈ SAut(A2

K [t±1]
).

We can thus assume that Q 6= 0, denote by d ≥ 0 the degree of Q and by µ ∈ K ∗

the coefficient of degree d . We then choose some integer a≥ 1 such that q= pa > d ,
write λ= 1/µq

∈ K ∗, and define

α =

(
x1

td , td x2+ λxq
1 +

1
t

)
∈ SAut(A2

K [t,t−1]
).
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A direct computation yields

α−1 f α

=

(
x1+td Q

(
td x2+λxq

1+
1
t

)
, x2+

1
td+

λxq
1

td −
λ

td

(
x1+td Q

(
td x2+λxq

1+
1
t

))q)
.

The definition of d and µ implies that we can write

Q
(

td x2+ λxq
1 +

1
t

)
=
µ

td +
P

td−1 ,

for some P ∈ K [x1, x2, t]. This yields (remembering that λµq
= 1), the following

equality

α−1 f α=
(

x1+µ+ t P, x2+
1
td −

λ

td (µ+ t P)q
)
=
(
x1+µ+ t P, x2−λtq−d Pq).

Because q > d, the value of this element of SAut(A2
K [t]) at t = 0 is (x1+µ, x2).

Conjugating α−1 f α with (−µx2, µ
−1x1) yields thus F1.

To get F2, we recall that (t x1, t−1x2)(x1 +µ, x2)(t
−1x1, t x2) = (x1 + tµ, x2).

We are then tempted to use (t x1, t−1x2)α
−1 f α(t−1x1, t x2), but this element has in

general no value at t = 0. We then choose m > 0 and define β to be

β =

(
x1

tmd , tmd x2+ λxq
1 +

1
tm

)
∈ SAut(A2

K [t,t−1]
).

Since β is obtained from α by replacing t with tm , we obtain

β−1 fβ =
(
x1+µ+ tm P(x1, x2, tm), x2− λtm(q−d)P(x1, x2, tm)q

)
.

We can now define F2(t)= (t x1, t−1x2)β
−1 fβ(t−1x1, t x2), which is equal to

F2(t)=
(
x1+ tµ+ tm+1 P(t−1x1, t x2, tm), x2− λtm(q−d)−1 P(t−1x1, t x2, tm)q

)
.

Choosing m big enough, F2 is defined at t = 0 and F2(t)= (x1, x2). �

4D. The diagonalisable elements. In order to finish the proof of Theorem 1.3 it
remains to show that the conjugacy classes of diagonalisable elements is closed.
This was shown in [Furter and Maubach 2010], for the group Aut(A2

C
), but with

transcendental methods. In the case of SAut(A2
k), we can however give a simple

proof, that works for any algebraically closed field k.
The proof uses the following result, which follows from the amalgamated struc-

ture product.

Lemma 4.11. Let K be any field, let µ ∈ K ∗, f = (µx1, µ
−1x2) ∈ SAut(A2

K ), and
g ∈ SAut(A2

K ) be a conjugate of f in this group. Then, there exists α ∈ SAut(A2
K )

such that
g = α−1 f α and degα ≤ deg g.
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Proof. We write g = α−1 f α for some α ∈ SAut(A2
K ), and write α as a product of

elements of SAff(A2
K ) and SJ(A2

K ), in a reduced way (no two consecutive elements
belong to the same group). Note that f is conjugate to f −1 by (x2,−x1), so we
can easily exchange f with f −1 if needed.

If α starts with an element a ∈ SAff(A2
K ), then a′ = a−1 ja ∈ SAff(A2

K ). If a′

does not belong to SJ(A2
K ), then deg(g)= deg(α) deg(α−1)= deg(α)2 (the degree

is the product of the Jonquières elements that occur, see Remark 4.2). If a′ belongs
to SJ(A2

K ), then it is conjugate to f or f −1 in SJ(A2
K ) (Proposition 4.9), and we

can thus replace a with an element of SJ(A2
K ) and either decrease the length of α

or it reduces to the case α ∈ SJ(A2
K ).

Suppose now that α starts with an element j ∈ SJ(A2
K ). Replacing j with

ρ j , where ρ is diagonal, we can assume that j = (x1+ P(x2), x2+ c), for some
P ∈ K [x2] and c ∈ K , we thus obtain

j ′= j−1 f j =
(
µx1+P(x2)µ−P(x2+c(µ−1

−1)), µ−1x2+c(µ−1
−1)

)
∈SJ(A2

K ).

We have therefore deg(P(x2))≥ P(x2)µ−P(x2+c(µ−1
−1)), and if equality does

not hold we can kill the highest coefficient of P without changing j ′ = j−1 f j . We
reduce then to the case where deg j ′ = deg j . If this degree is 1, then j ∈ SAff(A2

K )

and we can reduce the length of α, or obtain deg(α)=1. The remaining case is when
deg j ′ = deg j . The result is then obtained if α = j . Otherwise, α = ja1 j1 · · · is a
reduced writing, as well as g= · · · j−1

1 a−1
1 j ′a1 j1 · · · . We again find deg g ≥ degα.

�

Proposition 4.12. Let µ ∈ k∗, f = (µx1, µ
−1x2) ∈ SAut(A2

k) and d ≥ 1. The set

C( f )= {g f g−1
| g ∈ Aut(A2

k)} = {g f g−1
| g ∈ SAut(A2

k)}

is closed in SAut(A2
k).

Proof. The equality between the two sets is obvious: if g ∈ Aut(A2
k), we have

g′ = gτ ∈ SAut(A2
k) for some diagonal τ ∈Aut(A2

k), so g f g−1
= g′ f g′−1. We can

moreover assume that µ 6= 1, otherwise the result is trivial. We fix some integer
d ≥ 1, write Z = SAut(A2

k)≤d and we will show that C( f )∩ Z is closed in Z (this
gives the result by Lemma 2.7).

We consider the morphism of algebraic varieties Z → Aut(A2
k)≤d2 given by

g 7→ g f g−1 and denote by Y ⊂ SAut(A2
k)≤d the preimage of Z . This gives rise to

a morphism ϕ : Y → Z , whose image is equal to C( f )∩ Z by Lemma 4.11. By
Corollary 2.26, it suffices to take an irreducible k-curve 0, a rational map ι : 0 99KY
such that ϕ̂ = ϕ ◦ ι : 0 99K Z is defined at a smooth point p ∈ 0, and to show that
the image g = ϕ̂(p) ∈ Z belongs to C( f ).

Note that ι corresponds to an element α ∈ Aut(A2
k(0)), and that ϕ̂ corresponds

to the element α f α−1
∈ Aut(A2

k(0)), which is defined at p and whose value at p
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corresponds to g. Since the set of algebraic elements is closed (Corollary 4.4),
the element g is conjugate to an element of SJ(A2

k) (Remark 4.3). Looking at
the actions on k(0)[x1, x2], we find that f ∗(x1) = µx1 so (α f α−1)∗(v) = µv,
where v = (α−1)∗(x1) ∈ k(0)[x1, x2]. Replacing v with λv, where λ ∈ k(0),
does not change the equation (α f α−1)∗(v) = µv. We can therefore assume that
α ∈ Op(0)[x1, x2] and that its value at p is not zero. This shows that µ is also
an eigenvalue of g∗. By Lemma 4.5, g is conjugate in SJ(A2

k) to (νx1, ν
−1x2), for

some ν ∈ k \ {0, 1}, or to (ζ x1+ xm−1
2 P(xm

2 ), ζ
−1x2) for some primitive m-th root

of unity ζ , and P ∈ k[x2] \ {0}, and µ belongs to the subgroup of (k∗, · ) generated
by ν or by ζ , respectively. Let us observe that the second case is not possible.
Indeed, otherwise we would have f m

= id, so (α f α−1)m = id and thus gm
= id,

which is not the case since P 6= 0. We can thus assume, after composing α with an
element of SAut(A2

k), that g = (νx1, ν
−1x2) for some ν ∈ k \ {0, 1}.

Denote by U ⊂0 the dense open subset where ι is defined and where 0 is smooth.
Replacing 0 with U ∪ {p}, we can assume that U = 0 \ {p} (if p ∈U , the result
is obvious), and thus that ϕ̂ is a morphism ϕ̂ : 0→ Z . Denote by κ : 0 99K A2

k
the rational map given by κ(u)= ι(u)(0, 0), when u ∈U (the image of the origin
of A2

k).
We now prove that κ is defined at p. To do this, we define F ⊂ 0×A2

k to be
the closed set F = {(c, (x1, x2)) | ϕ̂(c)(x1, x2) = (x1, x2)}. Since F is given by
only two equations, each irreducible component of F has dimension at least 1. The
intersection of F with u×A2

k yields one point, for each u ∈ 0, hence the projection
to 0 yields an isomorphism π : F→ 0 (because 0 is smooth). The rational map
0 99K F given by u 7→ (u, κ(u)) corresponds to the identity, and is thus defined
at p.

The map (x1, x2) 7→ (x1, x2) + κ(u) corresponds therefore to an element of
Aut(A2

O(0)), and replacing α with its composition by this one, we can assume
that α fixes the origin. We obtain thus that the derivative of α f α−1 at the origin
is conjugate to f by an element of SL(2, k), for each u ∈ U , so its eigenvalues
are µ and µ−1, for any point of U . At the point p, we obtain g = (νx1, ν

−1x2),
which implies that ν = µ±1, so that g and f are conjugate in SAut(A2

k) as we
wanted. �

Proof of Theorem 1.3. By Lemma 4.1 and Remarks 4.2 and 4.3, an algebraic element
of SAut(A2

k) is conjugate to an element of SJ(A2
k) and a nonalgebraic element is

conjugate to a Hénon automorphism, which is dynamically regular. In the latter
case, the conjugacy class is closed by Theorem 1.1; this gives (3).

By Proposition 4.12, if f ∈ SAut(A2
k) is diagonalisable, its conjugacy class is

closed.
If f ∈ SAut(A2

k) is algebraic but not diagonalisable, it is conjugate to an element
of the families (ii), (iii) or (iv) of Lemma 4.5. The existence of the degeneration
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stated in (2) is given in Section 4C1 for families (ii), (iii) and in Proposition 4.10
for family (iv). �
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