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Lenny Taelman

The zeta function of a K3 surface over a finite field satisfies a number of obvious
(archimedean and `-adic) and a number of less obvious (p-adic) constraints. We
consider the converse question, in the style of Honda–Tate: given a function Z
satisfying all these constraints, does there exist a K3 surface whose zeta-function
equals Z? Assuming semistable reduction, we show that the answer is yes if we
allow a finite extension of the finite field. An important ingredient in the proof is
the construction of complex projective K3 surfaces with complex multiplication
by a given CM field.

Introduction

Let X be a K3 surface over Fq . The zeta function of X has the form

Z(X/Fq , T )=
1

(1− T )L(X/Fq , qT )(1− q2T )

where the polynomial L(X/Fq) is defined by

L(X/Fq , T ) := det
(
1− T Frob,H2(XFq

,Q`(1))
)
∈Q[T ].

We have L(X/Fq , T ) =
∏22

i=1(1− γi T ) with the γi of complex absolute value 1.
The polynomial L(X/Fq , T ) factors in Q[T ] as L = LalgL trc with

Lalg(X/Fq , T )=
∏
γi∈µ∞

(1− T γi ), L trc(X/Fq , T )=
∏
γi 6∈µ∞

(1− T γi ),

where µ∞ is the group of complex roots of unity.

Theorem 1. Let X be a K3 surface over Fq with q = pa . Assume that X is not
supersingular. Then

(1) all complex roots of L trc(X/Fq , T ) have absolute value 1;

(2) no root of L trc(X/Fq , T ) is a root of unity;
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(3) L trc(X/Fq , T ) ∈ Z`[T ] for all ` 6= p;

(4) the Newton polygon of L trc(X/Fq , T ) at p is of the form

h 2d − h 2d

−a

with h and d integers satisfying 1≤ h ≤ d ≤ 10;

(5) L trc(X/Fq , T )= Qe for some e > 0 and some irreducible Q ∈Q[T ], and Q
has a unique irreducible factor in Qp[T ] with negative slope.

The above theorem collects results of Deligne, Artin, Mazur, Yu and Yui, and
slightly expands on these, see Section 1 for the details. The integer h in the theorem
is the height of X (which is finite by the assumption that X is not supersingular),
and assuming the Tate conjecture (which is now known in almost all cases [Charles
2013; 2014; Madapusi Pera 2015]) the Picard rank of XFq

is 22− 2d .

Definition 2 (Property (?)). A K3 surface X over a finite extension k of Qp is said
to satisfy (?) if there exists a finite extension k ⊂ ` and a proper flat algebraic space
X→ SpecO` such that

(1) X×SpecO`
Spec `∼= X ×Spec k Spec `,

(2) X is regular,

(3) the special fiber of X is a reduced normal crossings divisor with smooth
components,

(4) ωX/O`
∼=OX.

Property (?) is a strong form of potential semistability. It is expected that every
X satisfies (?), but this is presently only known for special classes of K3 surfaces,
see [Maulik 2014, §4] and [Liedtke and Matsumoto 2015, §2]. Our main result is
the following partial converse to Theorem 1.

Theorem 3. Assume every K3 surface X over a p-adic field satisfies (?). Let

L =
2d∏

i=1

(1− γi T ) ∈ 1+ T Q[T ]

be a polynomial which satisfies properties (1)–(5) of Theorem 1. Then there exists a
positive integer n and a K3 surface X over Fqn such that

L trc(X/Fqn , T )=
2d∏

i=1

(1− γ n
i T ).
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The proof of Theorem 3 follows the same strategy as the proof of the Honda–Tate
theorem [Tate 1971]: given L trc, one constructs a K3 surface over a finite field by
first producing a complex projective K3 surface with CM by a suitably chosen CM
field, then descending it to a number field, and finally reducing it to the residue field
at a suitably chosen prime above p. In the final step a criterion of good reduction
is needed, which has been obtained recently by Matsumoto [2015] and Liedtke and
Matsumoto [2015], under the assumption (?).

A crucial intermediate result, that may be of independent interest, is the following
theorem.

Theorem 4. Let E be a CM field with [E :Q] ≤ 20. Then there exists a K3 surface
over C with CM by E.

See Section 2 for the definition of “CM by E”, and see Section 3 for the proof
of this theorem.

Remark 5. I do not know if one can take n= 1 in Theorem 3. Finite extensions are
used in several parts of the proof, both in constructing a K3 surface X over some
finite field, and in verifying that the action of Frobenius on H2 is the prescribed one.

Recently Kedlaya and Sutherland [2015] obtained some computational evidence
suggesting that the theorem might hold with n=1. They enumerated all polynomials
L satisfying (1)–(5) with q = 2, deg L = deg Q = 20 and with L(1) = 2 and
L(−1) 6= 2. There are 1995 such polynomials. If L = L trc(X/F2, T ) for a K3
surface over F2, then the Artin–Tate formula [Milne 1975; Elsenhans and Jahnel
2015] puts strong restrictions on the Néron–Severi lattice of X . These restrictions
suggest that X should be realizable as a smooth quartic, and indeed for each of the
1995 polynomials Kedlaya and Sutherland manage to identify a smooth quartic X
defined over F2 with L = L trc(X/F2, T ).

If one can take n = 1 in Theorem 3, then new ideas will be needed to prove this.
Indeed, there is no reason at all that the X constructed in the current proof is defined
over Fq . A similar problem occurs in the proof of the Honda-Tate theorem [Tate
1971]: given a q-Weil number one first constructs an abelian variety over a finite
extension of Fq , and then identifies the desired abelian variety as a simple factor of
the Weil restriction to Fq . Perhaps a variation of this argument in the context of
hyperkähler varieties can be made to work in our setting?

Remark 6. By the work of Madapusi Pera [2015], for every d there is an étale map
M2d → Sh2d from the moduli space of quasipolarized K3 surfaces of degree 2d to
a an integral model of a certain Shimura variety, over Z[1/2]. It is surjective over
C, and assuming (?), one can deduce from the criterion of Liedtke and Matsumoto
that it is surjective on Fp-points. In odd characteristic, Kottwitz [1990] and Kisin
[2013] have given a group-theoretic description of the isogeny classes in Sh2d(Fp),
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for every d. With arguments similar to those in Section 3, it should be possible to
deduce Theorem 1 and Theorem 3 from the above results.

1. p-adic properties of zeta functions of K3 surfaces

1.1. Recap on the formal Brauer group of a K3 surface. Let X be a K3 surface
over a field k. Artin and Mazur [1977] have shown that the functor

R 7→ ker (Br X R→ Br X)

on Artinian k-algebras is prorepresentable by a (one-dimensional) formal group
B̂r X over k. This formal group is called the formal Brauer group of X .

Assume now that k is a perfect field of characteristic p > 0 and that X is not
supersingular. Then B̂r X has finite height h satisfying 1≤ h ≤ 10. We denote by
D(B̂r X) the (covariant) Dieudonné module of B̂r X . This has the structure of an
F-crystal over k. It is free of rank h over the ring W of Witt vectors of k.

We denote by H2
crys(X/W )<1 the maximal sub-F-crystal of H2

crys(X/W ) that
has all slopes < 1.

Proposition 7. If X is not supersingular, then there is a canonical isomorphism

H2
crys(X/W )<1 ∼= D(B̂r X)

of F-crystals over k.

Proof. By [Illusie 1979, §7.2] there is a canonical isomorphism of F-crystals

H2
crys(X/W )= H2(X,WOX )⊕H1(X,W�1

X/k)⊕H0(X,W�2
X/k), (1)

coming from the de Rham–Witt complex, and by [Artin and Mazur 1977, Corol-
lary 4.3] we have an isomorphism of F-crystals

H2(X,WOX )= D(B̂r X).

Since B̂r X is a formal group, the slopes of H2(X,WOX )= D(B̂r X) are < 1. On
the other hand, since F is divisible by pi on H2−i (X,W�i

X/k), the slopes of the
other summands in (1) are ≥ 1. This proves the theorem. �

1.2. Proof of Theorem 1.

Proof. Property (2) holds by definition, (3) is a formal consequence of the trace
formula in `-adic cohomology (see, e.g., [Deligne 1974, §1]), and (1) is part of the
Weil conjectures [Deligne 1972; 1974].

The other properties make use of crystalline cohomology. Property (4) is well,
known. It follows for example from Mazur’s proof of “Newton above Hodge”
[Mazur 1972; 1973] for liftable varieties with torsion-free cohomology, see [Mazur
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1972, §2]. Property (5) is a sharpening of a result of Yu and Yui [2008, Proposi-
tion 3.2]. The argument is essentially the same as in [loc. cit.], we repeat it for
completeness.

For a polynomial Q =
∏
(1− γi T ) ∈Qp[T ] we denote by Q<0 the product

Q<0 =
∏

vp(γi )<0

(1− γi T ) ∈Qp[T ].

Let K be the field of fractions of W . If q = pa , then by Proposition 7 we have

L trc,<0 := L trc,<0(X/Fq , T )= detK
(
1− FaT, K ⊗W D(B̂r X)(1)

)
in Qp[T ] ⊂ K [T ]. Since B̂r X is a one-dimensional formal group of finite height,
the crystal D(B̂r X) is indecomposable. It follows that the endomorphism Fa of
D(B̂r X) has an irreducible minimum polynomial over K , and hence L trc,<0 = Pe

<0
for some irreducible P<0 ∈ Qp(T ). Let Q be an irreducible factor of L trc. Then
Q has a reciprocal root γ with vp(γ ) < 0, for otherwise the roots of Q would be
algebraic integers and hence roots of unity. In particular Q<0 = P<0. Apparently
any two irreducible factors of L trc share a common root, hence L trc = Qe. This
proves (5). �

2. CM theory of K3 surfaces

This section collects results of Zarhin, Shafarevich and Rizov.

2.1. Hodge theoretic aspects. For a projective K3 surface X over C we denote
by NS(X) its Néron–Severi group and by T(X)⊂ H2(X,Z(1)) the transcendental
lattice, i.e., T(X) is the orthogonal complement of NS(X). We have a decomposition

H2(X,Q(1))= NS(X)Q⊕ T(X)Q.

The Hodge structure T(X)Q is irreducible [Zarhin 1983, Theorem 1.4.1]. The cup
product pairing defines even symmetric bilinear forms on NS(X) and T(X) of
signature (1, ρ− 1) and (2, 20− ρ), with ρ = rk NS(X).

Proposition 8 [Zarhin 1983, §2]. Let X be a projective K3 surface over C. Then
the following are equivalent:

(1) The Hodge group of T(X)Q is commutative.

(2) E := EndHS T(X)Q is a CM field and dimE T(X)Q = 1. �

Definition 9. If X satisfies the equivalent conditions (1) and (2) of Proposition 8,
then we say that X is a K3 surface with CM (by E).

Remark 10. Another equivalent condition is that T(X)Q is contained in the Tan-
nakian category of Hodge structures generated by the H1 of CM abelian varieties.
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If E is a CM field, then we denote the canonical complex conjugation of E by
z 7→ z̄, and its fixed field by E0. We have [E : E0] = 2, and E0 is a totally real
number field.

Proposition 11. Let X be a K3 surface with CM by E. Then

(1) ax · y = x · ā y for all a ∈ E and x, y ∈ T(X)Q;

(2) the group of Hodge isometries of T(X)Q is ker(Nm : E×→ E×0 ).

Proof. The cup product pairing induces an isomorphism

T(X)Q −→∼ Hom(T(X)Q,Q)

of Hodge structures, and hence the action of E on T(X) induces an “adjoint”
homomorphism ϕ : E→ E such that ax · y = x ·ϕ(a)y. Considering the induced
action on H0,2(X) one sees that ϕ(a) = ā, which proves the first assertion. The
second is an immediate consequence of the first. �

2.2. Arithmetic aspects: the Main Theorem of CM. Let X be a K3 surface over
C with CM by E . Consider the algebraic torus G over Q which is the kernel of
the norm map E×→ E×0 (seen as map of tori over Q). Then G(Q) is the group of
E-linear isometries of T(X)Q.

If X is defined over a subfield k ⊂ C, then we have canonical isomorphisms

H2
et(X k̄,Q`(1))= H2(X (C),Q(1))⊗Q Q`.

Since the Galois action on the left-hand side respects the intersection pairing and
the subgroup NS(X k̄)=NS(XC), we see that both Galk and G(Q`) act on T(X)Q`

.
If we denote by A f the finite adèles of Q, i.e., A f =Q⊗ Ẑ, then we obtain actions
of Galk and G(A f ) on T(X)A f .

Theorem 12 (Main Theorem of CM for K3 surfaces [Rizov 2010]). There exists a
number field k ⊂ C containing E such that

(1) X is defined over k,

(2) the Galois action on T(X)A f factors over a map ρ : Galk→ G(A f )

(3) the diagram

Galk GalE A×E, f /E×

G(A f ) G(A f )/G(Q)

ρ

CFT

z 7→z̄/z

commutes.
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Proof. This is a reformulation of [Rizov 2010, Corollary 3.9.2]. Note however that
the stated definition of complex multiplication [Rizov 2010, Definition 1.4.3] needs
to be corrected (the condition dimE TQ = 1 is missing) for the proof and statement
to be correct. �

Remark 13. A priori, the moduli space of polarized complex K3 surfaces has two
natural models over Q: the “canonical model” of the theory of Shimura varieties
[Deligne 1971, §3], which is defined in terms of the Galois action on special points,
and the model coming from the moduli interpretation. The essential content of
Theorem 12 is that these two models coincide. (See also [Madapusi Pera 2015, §3]).

3. Existence of K3 surface with CM by a given CM field

In this section we prove Theorem 4. By the surjectivity of the period map for K3
surfaces, this reduces to a problem about quadratic forms over Q.

3.1. Invariants of quadratic forms over Q. We quickly recall some basic facts
about quadratic forms over Q. We refer to [Cassels 1978; Scharlau 1985; Serre
1970] for details and proofs. Let k be a field of characteristic different from 2. A
quadratic space over k is a pair V = (V, q) consisting of a finite-dimensional vector
space over k and a nondegenerate symmetric bilinear form q : V ×V → k. To such
a space one associates the following invariants:

(1) the dimension dim(V );

(2) the determinant det(V ) ∈ k×/k×2;

(3) the Hasse invariant w(V ) ∈ Br(k)[2].

Any form V over k is isomorphic to a diagonal form 〈α1, . . . , αn〉 with n = dim V ,
and for such a form the invariants are

det(V )=
∏

i

αi ∈ k×/k×2,

w(V )=
∑
i< j

(αi , α j )k ∈ Br(k)[2],

where (α, β)k denotes the class of the quaternion algebra generated by i and j with
i2
= α, j2

= β, i j =− j i .
We denote the orthogonal sum of two quadratic spaces by V ⊕W .

Lemma 14. Let V and W be quadratic spaces over k. Then

(1) det(V ⊕W )= det(V ) det(W );

(2) w(V ⊕W )= w(V )+w(W )+ (det(V ), det(W ))k .

Proof. This follows from the above formulas for the determinant and Hasse invariant
of a diagonal quadratic form, and the bilinearity of (α, β)k . �
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Theorem 15. Two forms over Qp are isomorphic if and only if they have the same
dimension, determinant and Hasse invariant. For every d ≥ 3, δ ∈ Q×p /Q

×2
p

and w ∈ Br(Qp)[2] there exists a form of dimension d, determinant δ and Hasse
invariant w. �

If k =Q then a fourth invariant is given by the signature of the form VR.

Theorem 16. Two forms over Q are isomorphic if and only if they have the same
signature, determinant, and Hasse invariant. All forms V over Q of signature (r, s)
satisfy

(1) the sign of δ(V ) is (−1)s ;

(2) the image of w(V ) in Br(R)[2] = Z/2Z is s(s− 1)/2 mod 2.

If r + s ≥ 3, and if δ and w satisfy (1) and (2) above, then there exists a quadratic
space over Q with signature (r, s), determinant δ and Hasse invariant w. �

Lemma 17. For 3K 3,Q =Q⊗Z 3K 3, the Hasse invariant w(3K 3,Q) ∈ Br(Q)[2]
is the class of the quaternion algebra (−1,−1)Q, and det(3K 3,Q)=−1.

Proof. We have 3K 3 ∼= (−E8)⊕ (−E8)⊕U ⊕U ⊕U where U is the standard
hyperbolic plane. Using this explicit description, one computes (over Q) an orthog-
onal basis, and computes the invariants using the formula for diagonal forms. �

3.2. The form qλ. Let E be a CM field with maximal totally real subfield E0. Put
d := [E0 : Q]. Denote by z 7→ z̄ the complex conjugation on E . For λ ∈ E×0 the
map

qλ : E × E 7→Q, (x, y) 7→ trE0/Q(λx ȳ)

is a nondegenerate symmetric bilinear form over Q.
We denote the discriminant of the number field E by 1(E/Q).

Lemma 18 [Bayer-Fluckiger 2014, Lemma 1.3.2].

det(qλ)= (−1)d 1(E/Q) in Q×/Q×2.

Lemma 19. If λ ∈ E×0 has signature (r, s), then qλ has signature (2r, 2s). �

3.3. Construction of a K3 surface with CM by E. A key ingredient in the proof
of Theorem 4 is the following proposition on rational quadratic forms. I am grateful
to Eva Bayer for pointing me to her work on maximal tori in orthogonal groups
[Bayer-Fluckiger 2014], and for explaining how it simplifies an earlier version of
the proof below.

Proposition 20. Let E be a CM field with maximal totally real subfield E0, and
assume d := [E0 :Q] ≤ 10. Then there exists a λ ∈ E×0 of signature (1, d − 1) and
a quadratic space V such that, as quadratic spaces over Q,

(E, qλ) ⊕ V ∼= 3K 3,Q �
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Proof. If d < 10 then we claim that for every choice of λ a complement V exists.
Indeed, given a choice of λ, then the dimension, signature, determinant and Hasse
invariant of V are determined by Lemma 14. These invariants satisfy conditions (1)
and (2) of Theorem 16 because they are satisfied by the invariants of (E, qλ) and
3K 3,Q. Since dim(V ) > 2, the theorem then guarantees the existence of a form V
with (E, qλ)⊕ V ∼=3K 3,Q.

So we assume d = 10. Let δ =1(E/Q) ∈Q×/Q×2. Note that δ > 0 (since d is
even). Consider the diagonal quadratic space V = 〈−1, δ〉. By the same reasoning
as above, there exists a unique quadratic space W of dimension 20 such that

W ⊕ 〈−1, δ〉 ∼= 3K 3,Q.

We will show that W can be realized as (E, qλ) for a suitable choice of λ ∈ E×0 .
Note that W has signature (2, 18), so by Lemma 19 the scalar λ will automatically
have signature (1, 9).

By Corollary 4.0.3 and Proposition 1.3.1 of [Bayer-Fluckiger 2014], there exists
a λ with (E, qλ)∼=W if and only if the following three conditions hold:

(1) the signature of W is even;

(2) disc(W )= δ;

(3) for every prime p such that all places of E0 above p split in E , we have that
WQp is isomorphic to an orthogonal sum of 10 hyperbolic planes.

Our W clearly satisfies the first two conditions. For the third, consider a prime p
such that all places of E0 above p split in E . Then the image of δ in Q×p /Q

×2
p is 1.

Together with Lemma 14 and Lemma 17 this allows us to compute the invariants of
WQp , and we find det(WQp)= 1 and w(WQp)= (−1,−1)Qp . These are the same
as the invariants for 10 copies of the hyperbolic plane, so with Theorem 15 we see
that W satisfies the third condition, which finishes the proof of the proposition. �

Finally, we show that for every CM field E of degree at most 20 there exists a
projective K3 surface X with CM by E .

Proof of Theorem 4. Choose λ ∈ E0 and V as in Proposition 20. This guarantees
that there exists an integral lattice

3⊂ (E, qλ)⊕ V

with 3 ∼= 3K 3. Choose such a 3, and choose an embedding ε : E ↪→ C with
ε(λ) > 0. Then we have a splitting

3C = Cε ⊕ Cε ⊕ (⊕σ 6=ε,εCσ ) ⊕ VC.

We make 3 into a pure Z-Hodge structure of weight 0 by declaring Cε to be of
type (1,−1), its conjugate Cε of type (−1, 1), and all the other terms of type (0, 0).
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By construction, the bilinear form 3⊗3→ Z is a morphism of Hodge structures.
Note that E acts on E ⊂ 3Q via Hodge structure endomorphisms, so that E is
irreducible and hence

30,0
∩3Q = V .

For every nonzero z ∈H2,0 we have z · z̄ ∈R>0 since ε(λ)> 0, so that the surjectivity
of the period map [Todorov 1980] gives the existence of a complex analytic K3
surface X and a Hodge isometry 3 ∼= H2(X,Z(1)). A priori, it may not be clear
that X is algebraic. However, as Pic(X)Q ∼= V has signature (1, 21− 2d), there
exists an h ∈ Pic(X) with h · h > 0. By [Barth et al. 2004, Theorem IV.6.2] this
implies that the surface X is projective. By construction, X is a K3 surface with
CM by E . �

Remark 21. A similar construction has been used by Piatetski-Shapiro and Sha-
farevich [1973, §3] in showing the existence of some K3 surfaces with CM. The
new ingredients that allow us to obtain a stronger result are the use of rational (as
opposed to integral) quadratic forms, the results of Bayer on quadratic forms qλ,
and the use of the algebraicity criterion from [Barth et al. 2004], which avoids the
delicate question of identifying an ample h ∈ Pic(X).

4. Existence of K3 surface with given Ltrc

In this section we will prove Theorem 3. So let

L =
2d∏

i=1

(1− γi T ) ∈ 1+ T Q[T ]

be a polynomial satisfying properties (1)–(5) of Theorem 1. Consider the number
field F :=Q(γ1).

Lemma 22. F is a CM field and γ 1γ1 = 1.

Proof. The image γ of γ1 under any homomorphism F→C satisfies |γ | = 1, hence
γ = γ−1. Moreover γ cannot be real, since then γ =±1, contradicting the fact that
γ1 is not a root of unity. It follows that F is a CM field with complex conjugation
γ1 7→ γ−1

1 . �

By property (5), the number field F has a unique valuation v above the prime p
such that v(γ1) < 0.

Lemma 23. There exists an extension E of F with [E :Q] = 2d , and such that

(1) E is a CM field;

(2) the valuation v has a unique extension to E.
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Proof. Let F0 be the maximal totally real subfield of F . Let v0 be the place of F0

under v. Now choose a polynomial P(X) ∈ F0[X ] such that

(1) deg P = e;

(2) P has e real roots for every embedding F0 ↪→ R;

(3) P is irreducible in (F0)v0[X ].

Note that v0 splits in F , since by the preceding lemma v̄(γ1) > 0 and hence v̄ 6= v.
In particular P(X) is irreducible in Fv[X ], and it follows that E := F[X ]/P(X) is
a field satisfying the desired conditions. �

We fix an E satisfying the conditions of the lemma. Abusing notation, we will
denote the unique extension of v to E by the same symbol v.

Lemma 24. [Ev :Qp] = h.

Proof. Since L = Qe, and since v is the unique place with v(γ1) < 0, we see from
properties (4) and (5) in Theorem 1 that [Fv :Qp] = h/e. But [E : F] = e and v
has a unique extension to E , hence [Ev :Qp] = h. �

Let X be a K3 surface over C with CM by E . By the Main Theorem of CM
(Theorem 12) this surface is defined over a number field k containing E . Let w be
a place of k lying above v. We extend the commutative diagram of Theorem 12 to
include the local-global compatibility of class field theory:

Wkw WEv E×v

Galk GalE A×E, f /E×

G(A f ) G(A f )/G(Q)

LCFT

ρ

GCFT

z 7→z/z̄

(2)

Here Wkw ⊂ Galkw denotes the Weil group of the local field kw. Extending k if
necessary, we may assume that the residue field Fw is an extension of Fq .

Choose a prime ` 6= p. Then the image of inertia Ikw in G(Z`) is finite, hence
after replacing k by a finite extension, we may assume that the action of Galkw on
H2

et(X k̄,Q`(1)) is unramified.
Now assume Xkw satisfies (?). Then, replacing k once more by a finite extension,

we may assume by the criterion of Liedtke and Matsumoto [2015, Theorem 2.5]
that X has good reduction at w. Let X/Fw be the reduction of X/k at w.

Let σ ∈Wkw be a Frobenius element. Note that γ1 lies in G(Q)⊂ E×.

Proposition 25. There is an m > 0 such that for all ` 6= p we have in G(Q`)

ρ(σm)` = γ
m[Fw :Fq ]

1 .
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Proof. Let π ∈ E×v be the image of σ under the CFT map. Then

v(π)=
e(kw : Ev)
f (Ev :Qp)

.

The image of π in G(A f )/G(Q) is the class of the idèle

(1, . . . , 1, π, π−1, 1, . . . , 1) ∈ A×E, f ,

where π ∈ Ev̄ denotes the image of π under the isomorphism Ev→ Ev̄ induced by
complex conjugation on E .

We have v(γ1)=−[Fq : Fp]/h from which we compute

v(γ
[Fw :Fq ]

1 )=−v(π),

and hence v̄(γ [Fw :Fq ]

1 ) = v(π). Moreover, γ1 is a unit at all places of E different
from v and v̄. It follows that the idèle

α := γ
[Fw :Fq ]

1 · (1, . . . , 1, π, π, 1, . . . , 1) ∈ A×E, f .

lies in the maximal compact subgroup

K = {g ∈ (OE ⊗ Ẑ)× | gḡ = 1} ⊂ G(A f ).

Since Galk is compact also, ρ(σ) lies in K. From the commutativity of the dia-
gram (2) we conclude that ρ(σ)/α lies in the kernel of the map

K→ G(A f )/G(Q).

This kernel equals {g ∈O×E | gḡ = 1}, which is finite by the Dirichlet unit theorem.
We conclude that ρ(σm)= αm for some m, and hence

ρ(σm)` = γ
m
1

in G(Q`) for all ` 6= p. �

We have
L(X/Fw)= detQ`

(1− σT, H2
et(XFw

,Q`(1))).

Since none of the conjugates of γ1 are roots of unity, we conclude from the preceding
proposition that there is a finite extension Fw ⊂ F′w such that

L trc(XF′w
/F′w)= detQ(1− γ

[F′w :Fq ]

1 T, E),

or in other words
L trc(XF′w

/F′w)=
∏

i

(1− γ [F
′
w :Fq ]

i T ),

which finishes the proof of Theorem 3.
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