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We explore the geometry and establish the slope-stability of tautological vector
bundles on Hilbert schemes of points on smooth surfaces. By establishing stability
in general, we complete a series of results of Schlickewei and Wandel, who proved
the slope-stability of these vector bundles for Hilbert schemes of 2 points or 3
points on K3 or abelian surfaces with Picard group restrictions. In exploring
the geometry, we show that every sufficiently positive semistable vector bundle
on a smooth curve arises as the restriction of a tautological vector bundle on
the Hilbert scheme of points on the projective plane. Moreover, we show that
the tautological bundle of the tangent bundle is naturally isomorphic to the log
tangent sheaf of the exceptional divisor of the Hilbert–Chow morphism.

Introduction

The purpose of this paper is to explore the geometry of tautological bundles on
Hilbert schemes of smooth surfaces and to establish the slope-stability of these
bundles.

Let S be a smooth complex projective surface, and denote by S[n] the Hilbert
scheme parametrizing length-n subschemes of S. This parameter space carries
some natural tautological vector bundles: if L is a line bundle on S then L[n] is the
rank-n vector bundle whose fiber at the point corresponding to a length-n subscheme
ξ ⊂ S is the vector space H 0(S,L⊗Oξ ). These tautological vector bundles have
attracted a great deal of interest. Lehn [1999] first computed the cohomology of the
tautological bundles. Later Danila [2001] and Scala [2009] identified the induced
symmetric group representations on the cohomology of the tautological bundles.
Ellingsrud and Strømme [1993] showed that the Chern classes of the bundles
O[n]

P2 , OP2(1)[n], and OP2(2)[n] generate the cohomology of (P2)[n]. Nakajima gave
a nicely exposited interpretation [1999, §4.3] of the McKay correspondence by
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restricting the tautological bundles to the G-Hilbert scheme. Recently Okounkov
[2014] formulated a conjecture about special generating functions associated to the
tautological bundles.

Given the importance of the tautological bundles, it is natural to explore how
different geometric aspects of vector bundles transform to their tautological bundles.
For instance, we ask when the tautological bundle of a stable bundle is also stable. In
[Schlickewei 2010; Wandel 2013; 2014] this question has been answered positively
for Hilbert schemes of 2 points or 3 points on a K3 or abelian surface with Picard
group restrictions. Our first result establishes the stability of these bundles for
arbitrary n and any surface.

Theorem A. If L is a nontrivial line bundle on S, then L[n] is slope-stable with
respect to natural Chow divisors on S[n].

More precisely, an ample divisor on S determines a natural ample divisor on
Symn(S), and the pullback via the Hilbert–Chow morphism gives one such natural
Chow divisor on S[n], which is not ample but is big and semiample. More generally,
we prove that if E 6∼= OS is any slope-stable vector bundle on S with respect to
some ample divisor then E [n] is slope-stable with respect to the corresponding Chow
divisor. Although Theorem A only gives stability with respect to a strictly big and
nef divisor, we are able to deduce stability with respect to nearby ample divisors
via a perturbation argument on the nef cone.

If S is any smooth surface, there is a divisor Bn in S[n] which consists of
nonreduced subschemes. The pair (S[n], Bn) gives a natural closure of the space
of n distinct points in S. The vector fields on S[n] tangent to Bn form the sheaf
of logarithmic vector fields DerC(−log Bn). Our second result says the sheaf
DerC(−log Bn) is naturally isomorphic to the tautological bundle associated to the
tangent bundle on S.

Theorem B. For any smooth surface S there exists a natural injection

αn : (TS)
[n]
→ TS[n],

and αn induces an isomorphism between (TS)
[n] and DerC(−log Bn).

The analogous statement also holds for smooth curves. In general, the sheaves
DerC(−log Bn) are only guaranteed to be reflexive, as Bn is not a simple normal
crossing divisor. However, Theorem B shows DerC(−log Bn) is locally free; that is,
Bn is a free divisor. Buchweitz, Ebeling, and Graf von Bothmer [Buchweitz et al.
2009] have already shown that Bn is a free divisor using different methods.

Using Aubin and Yau’s theorem [Aubin 1976] we obtain:

Corollary C. If a surface S has ample canonical bundle, then the log tangent bundle
DerC(−log Bn) is polystable with respect to the big and nef canonical divisor KS[n] .
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Finally, we explore the geometry of the tautological bundles when the surface
is the projective plane. We prove that the tautological bundles on (P2)[n] are rich
enough to capture all semistable rank-n bundles on curves.

Theorem D. If C is a smooth projective curve and E is a semistable rank-n vector
bundle on C with sufficiently positive degree, then there exists an embedding
C→ (P2)[n] such that

OP2(1)[n]|C ∼= E .

The proof of Theorem A follows the approach taken by Mistretta [2006], who
studies the stability of tautological bundles on the symmetric powers of a curve.
The idea is to examine the tautological vector bundles on the cartesian power Sn and
show there are no Sn-equivariant destabilizing subsheaves. This strategy is more
effective for surfaces because the diagonals in Sn have codimension 2. The map in
Theorem B arises from pushing forward the normal sequence of the universal family.
The proof of Theorem D is constructive, using the spectral curves of Beauville,
Narasimhan, and Ramanan [Beauville et al. 1989].

In Section 1 we give the proof of Theorem A. In Section 2 we prove Theorem B
and deduce Corollary C. In Section 3 we prove Theorem D. In Section 4 we give
the perturbation argument, deducing that the tautological bundles are stable with
respect to ample divisors.

Throughout, we work over the complex numbers. If X is a variety of dimension d
and E is a vector bundle on X, then for any divisor class H ∈ N 1(X) we define the
slope of E with respect to H to be the rational number

µH (E) :=
c1(E) · H d−1

rank(E)
.

We say E is slope-stable (resp. slope-semistable) with respect to H if, for all
subsheaves F ⊂ E of intermediate rank, we have

µH (F) < µH (E) (resp. µH (F)≤ µH (E)).

1. Stability of tautological bundles

In this section we prove that the tautological bundle of a stable vector bundle E is
stable with respect to natural Chow divisors on S[n]. Thus we deduce Theorem A
when E is a nontrivial line bundle. We start by defining the essential objects in the
study of Hilbert schemes of points on surfaces.

Let S be a smooth complex projective surface. We write S[n] for the Hilbert
scheme of length-n subschemes of S. We denote by Zn the universal family of S[n]



1176 David Stapleton

with the following projections:

S× S[n] ⊃ Zn
p1
//

p2
��

S

S[n]

For a fixed vector bundle E on S of rank r , we define

E [n] := (p2)∗(p∗1E),

which is the tautological vector bundle associated to E and has rank rn. The fiber of
E [n] at a point [ξ ] ∈ S[n] can be naturally identified with the vector space H 0(S, E|ξ ).

The symmetric group on n elements, Sn , naturally acts on the cartesian product
Sn, and we write σn for the quotient map

σn : Sn
→ Sn/Sn =: Symn(S).

There is also a Hilbert–Chow morphism,

hn : S[n]→ Symn(S),

which is a semismall map [de Cataldo and Migliorini 2002, Definition 2.1.1].
We wish to view E [n] as an Sn-equivariant sheaf on Sn. Recall that if G is a

finite group that acts on a scheme X, and if F is a coherent sheaf on X , then a
G-equivariant structure on F is given by a choice of isomorphisms

φg : F→ g∗F

for all g ∈ G satisfying the compatibility condition h∗(φg) ◦φh = φgh . Following
[Danila 2001] and [Scala 2009], we study the tautological bundles on S[n] by
working with Sn-equivariant sheaves on Sn. For our purposes it is enough to study
E [n] equivariantly on the open subset of distinct points in S[n].

We write Symn(S)◦ for the open subset of Symn(S) of distinct points. Likewise,
given a map f : X→ Symn(S), we write X◦ for f −1(Symn(S)◦). By abuse of nota-
tion, given another map g : X→ Y with domain X we define g◦ := g|X◦ , and given
a coherent sheaf F on X we define F◦ := F |X◦ . The map hn,◦ : S[n]◦ → Symn(S)◦
is an isomorphism. We define

σn,◦ := h−1
n,◦ ◦ σn,◦ : Sn

◦
→ S[n]

◦
.

Given a torsion-free coherent sheaf F on S[n], we define a torsion-free coherent
sheaf on Sn by

(F)Sn := j∗(σ ∗n,◦(F◦)),

where j is the inclusion j : Sn
◦
→ Sn. The sheaf (F)Sn can be thought of as a

modification of F along the exceptional divisor of hn .
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The pullback σ ∗n,◦(−) is left exact, as the map σn,◦ is étale; thus the functor
(−)Sn is left exact. If F is reflexive, the normality of Sn implies that the natural
Sn-equivariant structure on the reflexive sheaf σ ∗n,◦(F◦) pushes forward uniquely
to an Sn-equivariant structure on (F)Sn .

Let qi denote the projection from Sn onto the i-th factor. Given a vector bundle E
on S, there is an Sn-equivariant vector bundle on Sn defined by

E�n
:=

n⊕
i=1

q∗i (E).

We have given two natural Sn-equivariant sheaves on Sn associated to E . In fact,
they are equivalent.

Lemma 1.1. Given a vector bundle E on S there is an isomorphism

(E [n])Sn ∼= E�n

of Sn-equivariant vector bundles on Sn.

Proof. Consider the following fiber square:

F := Zn,◦×S[n]◦
Sn
◦

σ ′n,◦

��

p′2,◦
// Sn
◦

σn,◦
��

Zn,◦
p2,◦

// S[n]
◦

Every map in the fiber square is an étale map between Sn-schemes (the Sn-action
on Zn,◦ and S[n]

◦
is trivial). We write 0i for the subscheme of Sn

◦
× S that is the

graph of the map qi,◦ : Sn
◦
→ S. The scheme F is equal to the disjoint union

∐
0i

and is a subscheme of Sn
◦
× S. The restriction p1,◦ ◦σ

′
n,◦|0i is the projection 0i→ S.

So there is an equivariant isomorphism

(p′2,◦)∗
(
(σ ′n,◦)

∗(p∗1,◦(E))
)
∼= E�n
◦
.

As the fiber square is made of flat proper Sn-maps, there is a natural Sn-
equivariant isomorphism

(p′2,◦)∗
(
(σ ′n,◦)

∗(p∗1,◦(E))
)
∼= σ

∗

n,◦
(
(p2,◦)∗(p

∗

1,◦(E))
)
.

The latter sheaf is (E [n])Sn,◦. Finally, any isomorphism between vector bundles
on Sn

◦
uniquely extends to an isomorphism between their pushforwards along j .

Therefore, there is a natural Sn-equivariant isomorphism (E [n])Sn ∼= E�n. �
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Given an ample divisor H on S, there is a natural Sn-invariant ample divisor
on Sn defined by

HSn :=

n∑
i=1

q∗i (H).

This is the Chow divisor that appears in Theorem A. Fogarty [1973, Lemma 6.1]
shows every divisor HSn descends to an ample Cartier divisor on Symn(S). Pulling
back this Cartier divisor along the Hilbert–Chow morphism gives a big and nef
divisor on S[n], which we denote by Hn . If H is effective then Hn can be realized
set-theoretically as

Hn = {ξ ∈ S[n] | ξ ∩Supp(H) 6=∅}.

Lemma 1.2. If F is a torsion-free sheaf on S[n] then

(n!)
∫

S[n]

c1(F) · (Hn)
2n−1
=

∫
Sn

c1((F)Sn ) · (HSn )2n−1.

Proof. This is a straightforward calculation using S[n]
◦

, Symn(S)◦, and Sn
◦

. �

In the following lemma we assume Proposition 4.7, which says the pullback of a
stable bundle to a product is stable with respect to a product polarization. For the
sake of the exposition we give the proof of Proposition 4.7 in Section 4.

Lemma 1.3. If E 6∼= OS is slope-stable on S with respect to an ample divisor H
then there are no Sn-equivariant subsheaves of E�n that are slope-destabilizing
with respect to HSn .

Proof. Let 0 6= F ⊂ E�n be an Sn-equivariant subsheaf. We can find a (not
necessarily equivariant) slope-stable subsheaf 0 6=F ′⊂F which has maximal slope
with respect to HSn . Fix i so that the composition

F ′→ E�n
→ q∗i E

is nonzero. By Proposition 4.7 we know that each q∗i E is slope-stable with respect
to HSn . A nonzero map between slope-stable sheaves can only exist if

(1) the slope of F ′ is less than the slope of q∗i E , or

(2) F ′→ q∗i E is an isomorphism.

In case (1), µHSn (F) ≤ µHSn (F ′) < µHSn (q∗i E). By symmetry, µHSn (q∗i E) =
µHSn (q∗j E) for all i and j . Thus we have µHSn (q∗i E)= µHSn (E�n), and F does not
destabilize E�n.
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In case (2), we know F ′ ∼= q∗i E . Because E 6∼=OS , the pullbacks q∗i E and q∗j E are
not isomorphic unless i= j . As all the q∗j E have the same slope and are stable with re-
spect to HSn , we have Hom(F ′, q∗j E)=0 for j 6= i . In particular, all the compositions

F ′→ E�n
→ q∗j E

are zero for j 6= i . Thus F ′ is a summand of E�n. So F is an Sn-equivariant
subsheaf of E�n, which contains one of the summands. But Sn acts transitively on
the summands so F contains all the summands, hence F does not destabilize E�n. �

Now we prove Theorem A in full generality.

Theorem 1.4. If E 6∼=OS is a vector bundle on S which is slope-stable with respect
to an ample divisor H, then E [n] is slope-stable with respect to Hn .

Proof. Let F ⊂ E [n] be a reflexive subsheaf of intermediate rank. It is enough to
consider reflexive sheaves because the saturation of a torsion-free subsheaf of E [n]

is reflexive of the same rank and its slope cannot decrease. By Lemma 1.2, the
slope of a torsion-free sheaf F with respect to Hn is, up to a fixed positive multiple,
the same as the slope of (F)Sn with respect to HSn . In particular,

µHn (F) < µHn (E
[n]) ⇐⇒ µHSn ((F)Sn ) < µHSn (E�n).

Now (F)Sn is naturally an Sn-equivariant subsheaf of E�n. Thus, by Lemma 1.3,

µHSn ((F)Sn ) < µHSn (E�n).

Therefore, µHn (F) < µHn (E [n]) for all torsion-free subsheaves of intermediate rank,
and E [n] is stable with respect to Hn . �

2. The tautological tangent map

For any smooth (not necessarily projective) surface S, the Hilbert scheme S[n] is a
smooth closure of the space of n distinct points in S. The boundary Bn is the locus
of nonreduced length-n subschemes of S. We are interested in vector fields which
are tangent to the boundary Bn .

Definition 2.1. If D is a codimension-1 subvariety of a smooth variety X , then the
sheaf of logarithmic vector fields, denoted DerC(−log D), is the subsheaf of TX

consisting of vector fields which along the regular locus of D are tangent to D.

When D is smooth, DerC(−log D) is just the elementary transformation of the
tangent bundle along the normal bundle of D in X; in particular, it is a vector bundle.
Even when D is singular, DerC(−log D) is reflexive by definition, so it is enough
to define DerC(−log D) away from the singular locus (or any codimension-2 set
in X ) of D and then pushforward.
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For Hilbert schemes of points on a surface, DerC(−log Bn) can be naturally
understood as the tautological bundle of the tangent bundle on the surface.

Theorem B. For any smooth connected surface S there exists a natural injection

αn : (TS)
[n]
→ TS[n],

and αn induces an isomorphism between (TS)
[n] and DerC(−log Bn).

At a point [ξ ] ∈ S[n] the map αn|[ξ ] can be interpreted as deformations of ξ
coming from tangent vectors of S. We expect that the degeneracy loci of αn give
an interesting stratification of S[n].

Before proving Theorem B we prove a general lemma.

Lemma 2.2. Let X and Y be smooth varieties and f : X→ Y a branched covering
with reduced branch locus B ⊂ Y. If δ ∈ H 0(Y, T Y ) is a vector field on Y whose
pullback f ∗δ ∈ H 0(X, f ∗T Y ) is in the image of

d f : H 0(X, T X)→ H 0(X, f ∗T Y ),

then δ ∈ H 0(Y,DerC(−log B)).

Proof. It is enough to check that δ is tangent to B for points p ∈ B outside of a
codimension-2 subset in Y. Let p ∈ B be a general point and q a ramified point in
the fiber of f over p. We can choose local analytic coordinates y1, . . . , yn centered
at p and coordinates x1, . . . , xn centered at q such that

f ∗(y1)= xm
1 , f ∗(yi )= xi for i > 1.

That is, y1 is a local equation for B and x1 is a local equation for the reduced
component of ramification containing q . Then the derivative d f maps

∂

∂x1
7→ mxm−1

1 f ∗
(
∂

∂y1

)
,

∂

∂xi
7→ f ∗

(
∂

∂yi

)
for i > 1.

Now f ∗δ is in the image of d f . Expanding locally,

f ∗δ = f ∗(g1) f ∗
(
∂

∂y1

)
+ · · ·+ f ∗(gn) f ∗

(
∂

∂yn

)
.

Thus xm−1
1 divides f ∗(g1). So y1 divides g1 and δ is in H 0(Y,DerC(−log B)). �

Proof of Theorem B. As in Section 1 we use Zn ⊂ S× S[n] to denote the universal
family of the Hilbert scheme of points. Applying relative Serre duality to the
main result of [Lehn 1998] shows that the tangent bundle of S[n] is given by
TS[n] = (p2)∗Hom(IZn ,OZn ). The normal sequence for Zn gives a map

p∗1 TS ⊕ p∗2 TS[n]
∼= TS×S[n] |Zn

β
−→ (IZn/I

2
Zn
)∨ ∼=Hom(IZn ,OZn ).
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Thus after pushing forward the first summand we get a map

αn : (TS)
[n]
:= (p2)∗(p∗1 TS)−→ (p2)∗Hom(IZn ,OZn )= TS[n] .

To prove that αn maps (TS)
[n] isomorphically onto DerC(−log Bn)we first restrict

to the open set U ⊂ S[n] parametrizing subschemes ξ ⊂ S, where ξ contains at least
n− 1 distinct points. The complement of U has codimension 2 so by reflexivity it
is enough to prove the theorem on U. Moreover, the open set

V := p−1
2 U ⊂ Zn

is smooth so we are in a situation where we can apply Lemma 2.2. There is a map

p∗2(TS)
[n]
|V

p∗2αn |V⊕−φ|V

��

0 // TZn |V
// p∗2 TS[n] |V ⊕ p∗1 TS|V

β
// Hom(IZn ,OZn )|V

in which φ is the natural map coming from pulling back a pushforward. The
composition

β ◦ (p∗2αn|V ⊕−φ|V )

is identically zero. Therefore, the pullback of each local section of (TS)
[n]
|U lies in

TZn |V . It follows from Lemma 2.2 that (TS)
[n] is contained in DerC(−log Bn). Now

we can think of αn as having codomain DerC(−log Bn). The map is an isomorphism
of (TS)

[n] and DerC(−log Bn) away from Bn and they both have the same first Chern
class. Therefore, αn could only fail to be an isomorphism in codimension greater
than 2. But both sheaves are reflexive, and any isomorphism between reflexive
sheaves away from codimension 2 on a normal variety extends uniquely to an
isomorphism on the whole variety. �

Proof of Corollary C. As a reminder, a vector bundle is polystable if it is a direct
sum of stable bundles of the same slope. The theorem of Aubin and Yau [Aubin
1976] proves the existence of Kähler–Einstein metrics for canonically polarized
manifolds. This implies that the tangent bundle is polystable with respect to the
canonical bundle (see [Kobayashi 1987, Theorem 8.3]; this is the easy direction
of the Donaldson–Uhlenbeck–Yau theorem [Donaldson 1985]). Thus TS is either
stable or a direct sum of line bundles of the same canonical degree. In the first case,
Corollary C follows directly from Theorems A and B.

For the second case, let TS ∼= L1⊕L2. First we point out that taking tautological
bundles respects direct sums; that is,

(E ⊕F)[n] ∼= E [n]⊕F [n].
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We then note that neither L1 nor L2 is trivial so their tautological bundles are stable
by Theorem A. And if two line bundles on S have equal degrees with respect to
the canonical bundle then their tautological bundles also have equal degrees with
respect to KS[n] . Thus, by Theorem B, DerC(−log Bn) is a direct sum of stable
bundles of the same slope with respect to KS[n] , proving Corollary C. �

Remark 2.3 (on the rank of αn). The restriction of αn to any point [ξ ] ∈ S[n] is
precisely the map from H 0(S, TS|ξ ) to Hom(Iξ ,Oξ ) in the normal sequence of
ξ ⊂ S. In [Bejleri and Stapleton 2016] we relate the rank of αn to the dimension
of the tangent space of the fibers of the Hilbert–Chow morphism. In particular,
we show that if ξ ⊂ C2 is cut out by monomials and Pξ denotes the fiber of the
Hilbert–Chow morphism at ξ , then

dim T[ξ ]Pξ = 2n− rank(αn|[ξ ]).

Moreover, we give an explicit combinatorial formula for computing rank(αn|[ξ ]) at
these monomial subschemes.

3. Spectral curves and tautological bundles

In this section we prove that every sufficiently positive, rank-n, semistable vector
bundle on a smooth projective curve arises as the pullback of OP2(1)[n] along an
embedding of the curve in (P2)[n]. To prove the theorem we need the spectral
curves of [Beauville et al. 1989]. For completeness, we recall the construction.

Let π : D→ C be an n:1 map between smooth irreducible projective curves and
let E be an OC -module. If D can be embedded into the total space

L := SpecOC
(Sym•(L∨)) πL

−→C

of a line bundle L on C , with π = πL|D , then this gives a presentation

π∗OD ∼= Sym•(L∨)/(xn
+ s1xn−1

+ · · ·+ sn)

for xn
+ s1xn−1

+ · · · + sn ∈ H 0(L, (π∗LL)
⊗n). Here we write x ∈ H 0(L, π∗L (L))

for the coordinate section of π∗L (L). To give E the structure of a π∗OD-module we
need to specify a multiplication map m : E ⊗L−1

→ E (equivalently E→ E ⊗L)
which satisfies the relation mn

+ s1mn−1
+ · · ·+ sn = 0.

Every L-twisted endomorphism m : E → E ⊗ L has an associated L-twisted
characteristic polynomial which is a global section pm(x) ∈ H 0(L, (π∗LL)

⊗n). A
global version of the Cayley–Hamilton theorem says that m automatically satisfies
its L-twisted characteristic polynomial. In particular, if the zero set of pm(x) is D
then E can naturally be thought of as a π∗OD-module. Fixing s ∈ H 0(L, (π∗LL)

⊗n),
which cuts out the integral curve D, [Beauville et al. 1989, Proposition 3.6] gives
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the beautiful correspondence

{E m
−→ E ⊗L | E a vector bundle and pm(x)= s}

1:1
←→{invertible sheaves M on D}. (�)

The correspondence going from right to left is given by taking the coordinate section
of π∗L (L), restricting to D, twisting by M, and pushing forward along π .

To prove Theorem D we need the following key lemma, which provides sufficient
conditions for when a section of End(E)⊗L produces a smooth spectral curve.

Key Lemma. If C is a smooth connected genus-g curve, E is a rank-n semistable
vector bundle on C , and L is an ample line bundle on C with deg(L) ≥ 2g, then
the spectral curve associated to a generic section of End(E)⊗ L is smooth and
irreducible.

The method of proof of the Key Lemma involves a standard analysis of the
discriminant locus, where a section of End(E)⊗L has eigenvalues with multiplicity
≥ 2. Before proving the Key Lemma, we show that Theorem D follows immediately.

Proof of Theorem D. Let C be a smooth projective genus-g curve and E a rank-n
semistable vector bundle on C . Let L be a line bundle on C of degree ≥ 2g. By
the Key Lemma, if

m : E→ E ⊗L

is a general L-twisted endomorphism then the resulting L-twisted characteristic
polynomial is smooth and irreducible.

Thus, by the correspondence (�) there is a line bundle M on D such that
π∗M∼= E . The genus of D is gD =

(r
2

)
deg(L)+ n(g− 1)+ 1 and is independent

of E . However, the degree of M is deg(E)+
(r

2

)
deg(L) and does depend on the

degree of E . In particular, if

deg(E)≥
(r

2

)
deg(L)+ r(2g− 2)+ 3

then M is very ample and three general sections of M give a map φ : D→P2 such
that the induced maps π×φ : D→C×P2 and ψπ,φ :C→ (P2)[n] are embeddings.
Under the embedding ψπ,φ , the restriction of OP2(1)[n] to C is precisely E , proving
Theorem D. �

We now proceed with the proof of the Key Lemma.

Lemma 3.1. If a subvariety X ⊂ E of a globally generated vector bundle E over
a smooth curve C has codimension ≥ 2 then a generic section of E avoids X. If
X ⊂ E is a reduced divisor then a generic section of E meets X transversely.



1184 David Stapleton

Proof. This is an elementary dimension count using generic smoothness in charac-
teristic 0 and the incidence correspondence

I = {(w, ex , x) ∈W × E|x ×C | w(x)= ex} ⊂W × E,

where W is a subspace of sections of E→ C that globally generate E. The key
point is that the projection from I to E is an affine bundle, so the total space of I is
smooth. �

If H is the total space of End(E)⊗ L, and C = L⊕ · · · ⊕ L⊗n , then there is a
map ε : H→ C which sends an L-twisted endomorphism to the coefficients of
its characteristic polynomial. There is a reduced and irreducible divisor in U⊂ C

which consists of characteristic polynomials with multiple roots. Let V⊂ H be the
scheme-theoretic inverse of U.

Lemma 3.2. V is reduced and irreducible. If a section s : C→ H meets V trans-
versely and avoids the locus in V with more than one repeated eigenvalue or an
eigenvalue of multiplicity ≥ 3, then the corresponding spectral curve is smooth.

Proof. First, local trivialization of H, U, V and L implies it is enough to check on
a fiber. Over a point x ∈ C we have H|x ∼=Matn×n(k) and C|x ∼= An. Let V|x be
the locus of matrices whose eigenvalues have multiplicity ≥ 2, and let U|x be the
discriminant locus. Irreducibility of V|x follows from [Arnold 1971, §5.6], and the
fact that it is reduced follows from the observation that dε|x,M has maximal rank
for a general matrix M ∈ U|x . For the last statement in the lemma, it suffices to
verify smoothness for an eigenvalues cover associated to a 1-dimensional family of
matrices which meets the discriminant locus transversely at matrices with exactly
one repeated eigenvalue; this is a straightforward local calculation. �

Proof of Key Lemma. Semistability of E and the inequality degL≥ 2g imply that
End(E)⊗L is globally generated. By Lemma 3.1 and the first part of Lemma 3.2,
a generic section s of End(E)⊗L meets V transversely and avoids the locus with
more than one repeated eigenvalue or an eigenvalue of multiplicity of ≥ 3. By the
second part of Lemma 3.2, the associated spectral curve is smooth. By construction
of the spectral curve Cs we have

π∗OCs
∼=OC ⊕ · · ·⊕L−(n−1).

Since we assumed L is ample, H 0(Cs,OCs ) = H 0(C, π∗OCs ) = H 0(C,OC) is
1-dimensional. Thus Cs is connected and smooth, so it is irreducible. �

4. Perturbation of polarization and stability

The goal of this section is to prove (in Proposition 4.7) that the pullback of a stable
bundle to a product is stable with respect to a product polarization. Proposition 4.7
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was important in the proof of Theorem A. We also prove that stability of the
tautological bundles with respect to the natural Chow divisors implies stability
with respect to nearby ample divisors. Our approach to proving both of these
facts involves considering stability with respect to numerical classes of curves so
that we can apply ideas of convexity. In particular, our approach follows ideas
appearing recently in [Greb and Toma 2013; Greb et al. 2016] and we recommend
looking at these articles to see how these ideas can be developed further and
systematically.

Throughout this section, denote by X a normal complex projective variety of
dimension d . Let γ ∈ N1(X)R be a real curve class and let E be a torsion-free sheaf
on X. For any sheaf Q on X, we denote by Sing(Q) the closed locus where Q is
not locally free.

Definition 4.1. The slope of E with respect to γ is the real number

µγ (E) :=
c1(E) · γ
rank(E)

.

Remark 4.2. Fixing an ample class H ∈ N 1(X)R, it is true that µH (E)=µHd−1
(E).

Nonetheless, to distinguish the concepts we use subscripts to denote slope with
respect to an ample divisor and superscripts to denote slope with respect to a
curve class.

Definition 4.3. We say E is slope-stable (resp. slope-semistable) with respect to γ
if, for all torsion-free quotients E→Q→ 0 of intermediate rank, we have

µγ (E) < µγ (Q) (resp. µγ (E)≤ µγ (Q)).

A benefit of working with slope-(semi)stability with respect to curves rather than
divisors is that we can apply ideas of convexity.

Lemma 4.4. If γ , δ are classes in N1(X)R such that E is semistable with respect
to γ and E is stable with respect to δ, then E is stable with respect to aγ + bδ for
a, b > 0. �

If C ⊂ X is an irreducible curve, we would like to relate the stability of E|C and
the stability of E with respect to the class of C . However, if Q is a coherent sheaf
and C meets Sing(Q), it is possible that c1(Q|C) 6= c1(Q)|C . Thankfully we can
say something if C is not entirely contained in Sing(Q).

Proposition 4.5. Let E→Q→ 0 be a torsion-free quotient which destabilizes E
with respect to the curve class γ . Suppose C ⊂ X is a smooth irreducible closed
curve which represents γ , avoids Sing(E), and avoids the singularities of X. If C is
not contained in Sing(Q) then E|C is not stable on C.
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Proof. First, we can reduce to the surface case by choosing a normal surface S ⊂ X
containing C such that S is smooth along C , and S meets Sing(Q) and Sing(E) prop-
erly. This is possible because when the dimension of X is greater than 3 a generic,
high-degree hyperplane section containing C is normal and smooth along C and
meets both Sing(Q) and Sing(E) properly. Once such a surface is chosen, we have

c1(Q)|S=c1(Q|S)=c1(Q|S/Tors(Q|S)), c1(E)|S=c1(E|S)=c1(E|S/Tors(E|S))

because both Sing(Q)∩ S and Sing(E)∩ S are zero-dimensional. Thus

E|S/Tors(E|S)→Q|S/Tors(Q|S)→ 0

is a torsion-free quotient on S which destabilizes E|S/Tors(E|S) with respect to the
class of C . So we have reduced the proposition to the case when X is a surface.

Let X be a surface. It is enough to show c1(Q|C) = c1(Q)|C . The restriction
c1(Q)|C is computed via the derived pullback

c1(Q)|C =
∞∑

i=0

(−1)i c1(TorOX
i (Q,OC)),

where the TorOX
i (Q,OC) are thought of as modules on C (see [Fulton 1998, §15.1]

for the smooth case). Further, C is a Cartier divisor on X, so OC has a two-term
locally free resolution. So the TorOX

i (Q,OC) vanish for i>2 and TorOX
1 (Q,OC)=0

because Q is torsion-free. Therefore,

c1(Q)|C = c1(TorOX
0 (Q,OC))= c1(Q|C).

So E|C is not slope-stable. �

An immediate corollary is the following coarse criterion for checking slope-
stability with respect to γ .

Corollary 4.6. Let π : CT → T be a family of smooth irreducible closed curves
in X with class γ . For t ∈ T we write Ct to denote π−1(t). Suppose E is a vector
bundle on X such that E|Ct is stable for all t ∈ T. If the curves in CT are dense in X
then E is stable with respect to the curve class γ .

Proof. Suppose for contradiction that E is unstable with respect to γ . Then there
exists a torsion-free quotient E→Q→ 0 with µγ (Q)≤µγ (E). As Q is torsion-free,
Sing(Q) has codimension ≥ 2. The curves in CT are dense in X so there is a t ∈ T
such that Ct is not contained in Sing(Q). Then Proposition 4.5 guarantees that E|Ct

is not stable, which contradicts our hypothesis. �

Proposition 4.5 can be adjusted so that Corollary 4.6 also holds if stability is
replaced by semistability. As a consequence we prove the following basic result
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about slope-stable vector bundles, which we have already used in the proof of
Theorem A.

Proposition 4.7. Let X and Y be smooth projective varieties of dimension d and e,
respectively. Let HX be an ample divisor on X and let HY be an ample divisor on Y .
Let p1 denote the projection from X × Y to X and p2 the projection from X × Y
to Y . If E is a vector bundle on X which is slope-stable with respect to HX , then
p∗1(E) is slope-stable on X×Y with respect to the ample divisor p∗1(HX )+ p∗2(HY ).

Proof. By [Mehta and Ramanathan 1984, Theorem 4.3] if k� 0 and C is a general
curve which is a complete intersection of divisors linearly equivalent to k HX then
E|C is stable. Let F ⊂ |k HX |

d−1 be the open subset of the cartesian power of the
complete linear series of k HX defined as

F := {(H1, . . . , Hd−1) ∈ |k HX |
d−1
| C = H1 ∩ · · · ∩ Hd−1

is a smooth complete intersection curve and E|C is stable}.

We write CF for the natural family of smooth curves in X parametrized by F.
Likewise, the fiber product CF ×F (F × Y ) is naturally a family of smooth curves
in X ×Y parametrized by F ×Y. The image of CF ×F (F ×Y ) in X ×Y is dense,
and for any ( f, y) ∈ F×Y the restriction of p∗1(E) to C( f,y) is stable. Therefore, by
Corollary 4.6, p∗1(E) is stable with respect to the numerical class of C( f,y), which
we denote by γ .

For l� 0 the divisor l HY is very ample on Y and a general complete intersection
of divisors linearly equivalent to l HY is smooth. Let G ⊂ |l HY |

e−1 be the open
subset of the cartesian power of the complete linear series of l HY defined as

G := {(H1, . . . , He−1) ∈ |l HY |
e−1
| H1 ∩ · · · ∩ He−1

is a smooth complete intersection curve}.

As before, there is a natural family DG of smooth curves in Y parametrized by G.
The fiber product DG×G (X×G) is a family of smooth curves in X×Y parametrized
by X × G. For (x, g) ∈ X × G the restriction of p∗1(E) to D(x,g) is a direct
sum of trivial bundles, thus the restriction is semistable. Therefore, by applying
Corollary 4.6 in the semistable case, p∗1(E) is semistable with respect to the curve
class of D(x,g), which we denote by δ.

Finally,

(p∗1 HX + p∗2 HY )
d+e−1

=

(d+e−1
e

)(HY )
e

kd−1 · γ +
(d+e−1

d

)(HX )
d

le−1 · δ.

Thus, by Lemma 4.4, p∗1(E) is slope-stable with respect to p∗1(HX )+ p∗2(HY ). �

This completes the proof of Theorem A. We now give a proof of the perturbation
argument. The idea is to use [Greb et al. 2016, Theorem 3.4] on openness of
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stability along with the fact that the natural Chow divisors are lef in the sense of
[de Cataldo and Migliorini 2002, Definition 2.1.3].

Proposition 4.8. Let H be a nef divisor and A an ample Q-divisor on a normal
complex projective variety X. Suppose E is a rank-r torsion-free sheaf on X which
is slope-stable with respect to the class of H d−1. Assume

−∩ H d−2
: N 1(X)R→ N1(X)R, ξ 7→ ξ · H d−2

is an isomorphism. Then E is stable with respect to H + εA for ε sufficiently small.

This implies that we can perturb our Chow polarization to obtain stability of
tautological bundles with respect to nearby ample divisors.

Corollary 4.9. If E is a vector bundle on a smooth projective surface S which is
stable with respect to an ample divisor H , then E [n] is stable with respect to an
ample divisor near the Chow divisor Hn .

Proof of Corollary 4.9. By [de Cataldo and Migliorini 2002, Theorem 2.3.1] we
know Hn is lef, so E [n] and Hn satisfy the conditions of Proposition 4.8. Therefore,
E [n] is stable with respect to ample divisors close to Hn . �

Proof of Proposition 4.8. Identifying the tangent space of a vector space with the
vector space, the derivative of the (d − 1)-st power map N 1(X)R→ N1(X)R at H
is given by

−∩ (d − 1)H d−2
: N 1(X)R→ N1(X)R.

The assumption that the intersection with the H d−2 map is an isomorphism implies
that the (d − 1)-st power map is locally an isomorphism.

It follows from [Greb et al. 2016, Theorem 3.4] that there is a nonempty convex
open set U ⊂ N1(X)R whose closure contains [H d−1

] such that, for all γ ∈U, E is
stable with respect to γ . More precisely, if δ ∈ N1(X)R represents the (d − 1)-st
power of an ample divisor then E is stable with respect to the perturbed curve class
[H d−1

] + ε · δ for ε sufficiently small. By estimating the (d − 1)-st power map by
its derivative (which is an isomorphism at H ) and by our ability to perturb linearly
towards ample curve classes, we see that, for small enough ε, (H + εA)d−1 maps
into U. Therefore, for ε sufficiently small, E is stable with respect to H + εA. �
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