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Anabelian geometry
and descent obstructions on moduli spaces

Stefan Patrikis, José Felipe Voloch and Yuri G. Zarhin

We study the section conjecture of anabelian geometry and the sufficiency of
the finite descent obstruction to the Hasse principle for the moduli spaces of
principally polarized abelian varieties and of curves over number fields. For the
former we show that the section conjecture fails and the finite descent obstruction
holds for a general class of adelic points, assuming several well-known conjec-
tures. This is done by relating the problem to a local-global principle for Galois
representations. For the latter, we show how the sufficiency of the finite descent
obstruction implies the same for all hyperbolic curves.

1. Introduction

Anabelian geometry is a program proposed by Grothendieck [1997a; 1997b] which
suggests that for a certain class of varieties (called anabelian but, as yet, undefined)
over a number field, one can recover the varieties from their étale fundamental
group together with the Galois action of the absolute Galois group of the number
field. Precise conjectures exist only for curves and some of them have been proved,
notably by Mochizuki [1996]. Grothendieck suggested that moduli spaces of curves
and abelian varieties (the latter perhaps less emphatically) should be anabelian.
Already Ihara and Nakamura [1997] have shown that moduli spaces of abelian
varieties should not be anabelian as one cannot recover their automorphism group
from the fundamental group and we will further show that other anabelian properties
fail in this case.

The finite descent obstruction is a construction that describes a subset of the
adelic points of a variety over a number field containing the closure of the rational
(or integral) points and is conjectured, for hyperbolic curves (Stoll [2007] in the
projective case and Harari and Voloch [2010] in the affine case), to equal that
closure. It’s not unreasonable to conjecture the same for all anabelian varieties.
The relationship between the finite descent obstruction and the section conjecture
in anabelian geometry has been discussed by Harari and Stix [2012], Stix [2013,
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Section 11], and others. We will review the relevant definitions below, although our
point of view will be slightly different.

The purpose of this paper is to study the section conjecture of anabelian geometry
and the finite descent obstruction for the moduli spaces of principally polarized
abelian varieties and of curves over number fields. For the moduli of abelian
varieties we show that the section conjecture fails in general and that both the
section conjecture and finite descent obstruction hold for a general class of adelic
points, assuming many established conjectures in arithmetic geometry (specifically,
we assume the Hodge, Tate, Fontaine–Mazur and Grothendieck–Serre conjectures,
in the precise forms stated in Section 3). This is done by converting the question
into one about Galois representations.

The section conjecture predicts that sections of the fundamental exact sequence
(Section 3, Equation (1)) of an anabelian variety over a number field correspond
to rational points. In this paper, we look at the sections of the fundamental exact
sequence of the moduli spaces of principally polarized abelian varieties that, locally
at every place of the ground field, come from a point rational over the completion,
which moreover is integral for all but finitely many places. This set is denoted
S0(K ,Ag) and defined precisely at the end of Section 2. We explain, in Section 3,
how sections of the fundamental exact sequence of the moduli spaces of princi-
pally polarized abelian varieties correspond to Galois representations and prove,
Theorem 3.7, the following result.

Theorem 1.1. Assume the Hodge, Tate, Fontaine–Mazur, and Grothendieck–Serre
conjectures. Let K be a number field. Suppose s ∈ S0(K ,Ag) gives rise to a system
of `-adic Galois representations one of which is absolutely irreducible. Then there
exists, up to isomorphism, a unique principally polarized abelian variety which,
viewed as point of Ag(K ), induces (up to conjugation) the section s.

We also give examples (see Theorems 4.4 and 4.5) showing that weaker versions
of the above result do not hold. Specifically, the local conditions cannot be weakened
to hold almost everywhere, for instance.

For the moduli of curves, we show how combining some of our results and
assuming sufficiency of finite descent obstruction for the moduli of curves, we
deduce the sufficiency of finite descent obstruction for all hyperbolic curves.

In the next section we give more precise definitions of the objects we use and in
the following two sections we give the applications mentioned above.

2. Preliminaries

Let X/K be a smooth geometrically connected variety over a field K . Let GK

be the absolute Galois group of K and X the base-change of X to an algebraic
closure of K . We denote by π1(·) the algebraic fundamental group functor on
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(geometrically pointed) schemes and we omit base-points from the notation. We
have the fundamental exact sequence

1→ π1(X)→ π1(X)→ GK → 1. (1)

The map pX : π1(X)→ GK from the above sequence is obtained by functoriality
from the structural morphism X → Spec K . Grothendieck’s anabelian program
is to specify a class of varieties, termed anabelian, for which the varieties and
morphisms between them can be recovered from the corresponding fundamental
groups together with the corresponding maps pX when the ground field is finitely
generated over Q. As this is very vague, we single out here two special cases with
precise statements. The first is a (special case of a) theorem of Mochizuki [1996]
which implies part of Grothendieck’s conjectures for curves but also extends it by
considering p-adic fields.

Theorem 2.1 [Mochizuki 1996]. Let X, Y be smooth projective curves of genus
bigger than one over a field K which is a subfield of a finitely generated extension
of Qp. If there is an isomorphism from π1(X) to π1(Y ) inducing the identity on GK

via pX , pY , then X is isomorphic to Y .

A point P ∈ X (K ) gives, by functoriality, a section GK → π1(X) of the funda-
mental exact sequence (1) well-defined up to conjugation by an element of π1(X)
(the indeterminacy is because of base points).

We denote by H(K ,X) the set of sections GK → π1(X) modulo conjugation
by π1(X) and we denote by σX/K : X (K )→ H(K ,X) the map that associates to
a point the class of its corresponding section, as above, and we call it the section
map. As part of the anabelian program, it is expected that σX/K is a bijection if
X is projective, anabelian and K is finitely generated over its prime field. This is
widely believed in the case of hyperbolic curves over number fields and is usually
referred as the section conjecture. For a similar statement in the nonprojective case,
one needs to consider the so-called cuspidal sections, see [Stix 2013, Section 18].
Although we will discuss nonprojective varieties in what follows, we will not need
to specify the notion of cuspidal sections. The reason for this is that we will be
considering sections that locally come from points (the Selmer set defined below)
and these will not be cuspidal.

We remark that the choice of a particular section s0 :GK → π1(X) induces an ac-
tion of GK on π1(X), x 7→ s0(γ )xs0(γ )

−1. For an arbitrary section s :GK→π1(X)
the map γ 7→ s(γ )s0(γ )

−1 is a 1-cocycle for the above action of GK on π1(X)
and this induces a bijection H 1(GK , π1(X))→ H(K ,X). We stress that this only
holds when H(K ,X) is nonempty and a choice of s0 can be made. It is possible
for H(K ,X) to be empty, in which case there is no natural choice of action of GK
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on π1(X) by which to define H 1(GK , π1(X)), which would be nonempty in any
case, if defined.

Let X/K be as above, where K is now a number field. If v is a place of K , we
have the completion Kv and a fixed inclusion K ⊂ K v induces a map αv :GKv

→GK

and a map βv : π1(Xv)→ π1(X), where Xv is the base-change of X to Kv. We
define the Selmer set of X/K as the set S(K ,X) ⊂ H(K ,X) consisting of the
equivalence classes of sections s such that for all places v there exists Pv ∈ X (Kv)

with s ◦αv = βv ◦ σXv/Kv
(Pv). Note that if v is complex, then the condition at v is

vacuous and that if v is real, σXv/Kv
factors through X (Kv)•, the set of connected

components of X (Kv), equipped with the quotient topology (see [Mochizuki 2003;
Pál 2011]). In the nonarchimedian case, X (Kv) is totally disconnected so X (Kv)=

X (Kv)• and we have the following diagram:

X (K ) //

σX/K

��

∏
X (Kv)• ⊃ X f

∏
σXv/Kv

��

S(K ,X)⊂ H(K ,X) α
//
∏

H(Kv,Xv)

We define the set X f (the finite descent obstruction) as the set of points (Pv)v ∈∏
v X (Kv)• for which there exists s∈H(K ,X) (which is then necessarily an element

of S(K ,X)) satisfying s ◦αv = βv ◦σXv/Kv
(Pv) for all places v. Also, it is clear that

the image of X (K ) is contained in X f . At least when X is proper, X f is closed
(this follows from the compactness of H(K ,X) [Stix 2013, Corollary 45]). In that
case, one may consider whether the closure of the image of X (K ) in

∏
X (Kv)•

equals X f . A related statement is the equality σX/K (X (K ))= S(K ,X), which is
implied by the “section conjecture”, i.e., the bijectivity of σX/K : X (K )→ H(K ,X).
As a specific instance of this relation, we record the following easy fact.

Proposition 2.2. We have that X f
=∅ if and only if S(K ,X)=∅.

Proof. If X f
6= ∅ and (Pv) ∈ X f , then there exists s ∈ S(K ,X) with s ◦ αv =

βv ◦ σXv/Kv
(Pv) for all places v, so S(K ,X) 6=∅.

If s ∈ S(K ,X), there exists (Pv) with s ◦αv = βv ◦ σXv/Kv
(Pv) for all places v.

So (Pv) ∈ X f . �

If X is not projective, then one has to take into account questions of integrality.
We choose an integral model X/OS,K , where S is a finite set of places of K and
OS,K is the ring of S-integers of K . The image of X (K ) in X f actually lands in
the adelic points which are the points that satisfy Pv ∈ X (Ov) for all but finitely
many v, where Ov is the local ring at v. Similarly, the image of σX/K belongs to the
subset of S(K ,X) where the corresponding local points Pv also belong to X (Ov)
for all but finitely many v. We denote this subset of S(K ,X) by S0(K ,X) and call
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it the integral Selmer set. We note that S0(K ,X) is independent of the choice of
the model X .

In order to set notation, we recall here some basic notions about the Tate module
of abelian varieties which will be used in the next two sections. If A is an abelian
variety over the field K then we write End(A) for its ring of all K -endomorphisms
and End0(A) for the corresponding (finite-dimensional semisimple) Q-algebra
End(A)⊗Q. If n ≥ 3 is an integer that is not divisible by char(K ) and all points
of order n on A are defined over K then, by a theorem of Silverberg [1992], all
K -endomorphisms of A are defined over K , i.e., lie in End(A).

If ` is a prime different from char(K ) then we write T`(A) for the Z`-Tate
module of A which is a free Z`-module of rank 2 dim(A) provided with the natural
continuous homomorphism

ρ`,A : GK → AutZ`(T`(A))

and the Z`-ring embedding

el : End(A)⊗Z` ↪→ EndZ`(T`(A)).

The image of End(A)⊗Z` commutes with ρ`,A(GK ). Tensoring by Q` (over Z`),
we obtain the Q`-Tate module of A

V`(A)= T`(A)⊗Z` Q`,

which is a 2 dim(A)-dimensional Q`-vector space containing

T`(A)= T`(A)⊗ 1

as a Z`-lattice. We may view ρ`,A as an `-adic representation

ρ`,A : GK → AutZ`(T`(A))⊂ AutQ`
(V`(A))

and extend e` by Q`-linearity to the embedding of Q`-algebras

End0(A)⊗Q Q` = End(A)⊗Q` ↪→ EndQ`
(V`(A)),

which we still denote by e`. Further we will identify End0(A)⊗Q Q` with its image
in EndQ`

(V`(A)).
This provides V`(A) with the natural structure of GK -module; in addition,

End0(A)⊗QQ` is a Q`-(sub)algebra of endomorphisms of the Galois module V`(A).
In other words,

End0(A)⊗Q Q` ⊂ EndGK (V`(A)).

Let χ` be the cyclotomic character χ` : GK → Z∗` that defines the Galois action
on all `-power roots of unity, and Z`(1) the `-adic Tate module of the multiplicative
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group Gm . The group Z`(1) is a free Z`-module of rank 1 provided with the Galois
action that is defined by

χ` : GK → Z∗` = AutZ`(Z`(1)).

Let Â be the dual (Picard) variety of A [Lang 1959; Mumford 1970], which is an
abelian variety over K that is isogenous to A. There is the Weil pairing [Lang 1959,
Chapter VII, Section 2]

e` : T`(A)× T`( Â)→ Z`(1),

which is a Galois-equivariant, Z`-bilinear perfect/unimodular pairing of free Z`-
modules T`(A) and T`( Â). This implies that the Galois modules T`( Â) and
HomZ`(T`(A),Z`(1)) are isomorphic.

3. Moduli of abelian varieties

The moduli space of principally polarized abelian varieties of dimension g is denoted
by Ag. It is actually a Deligne–Mumford stack or orbifold and we will consider
its fundamental group as such. For a general definition of fundamental groups of
stacks including a proof of the fundamental exact sequence in this generality, see
[Zoonekynd 2001]. For a discussion of the case of Ag, see [Hain 2011]. We can
also get what we need from [Ihara and Nakamura 1997] (see below) or by working
with a level structure which brings us back to the case of smooth varieties.

As Ag is defined over Q, we can consider it over an arbitrary number field K .
As per our earlier conventions, Ag is the base change of Ag to an algebraic closure
of Q and not a compactification. In fact, we will not consider a compactification at
all here. The topological fundamental group of Ag is the symplectic group Sp2g(Z)

and the algebraic fundamental group is its profinite completion. When g> 1 (which
we henceforth assume) Sp2g(Z) has the congruence subgroup property [Bass et al.
1964; Mennicke 1965] and therefore its profinite completion is Sp2g(Ẑ).

The group π1(Ag) is essentially described by the exact sequences (3.2) and (3.3)
of [Ihara and Nakamura 1997] and it follows that the set H(K ,Ag) consists of Ẑ

representations of GK of rank 2g preserving the symplectic form up to a multiplier
given by the cyclotomic character. Indeed, it is clear that every section gives such a
representation and the converse follows formally from the diagram below, which is
a consequence of (3.2) and (3.3) of [Ihara and Nakamura 1997].

In the following we denote the cyclotomic character by χ : GK → Ẑ∗.

1 // π1(Ag) //

∼=
��

π1(Ag) //

��

GK //

χ
��

1

1 // Sp2g(Ẑ)
// GSp2g(Ẑ)

// Ẑ∗ // 1
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The coverings of Ag corresponding to the congruence subgroups of Sp2g(Ẑ) are
those obtained by adding level structures. In particular, for an abelian variety A,
σAg/K (A) =

∏
T`(A), the product of its Tate modules considered, as usual, as a

GK -module. If K is a number field, whenever two abelian varieties are mapped to
the same point by σAg/K , then they are isogenous, by [Faltings 1983]. The finiteness
of isogeny classes of polarized abelian varieties over K [Faltings 1983] (see also
[Zarhin 1985]) implies that for any given K and g every fiber of σAg/K is finite. On
the other hand, σAg/K is not necessarily injective to S0(K ,Ag). For example, for
each g there exists K with noninjective σAg/K . Regarding surjectivity, we will prove
that those elements of S0(K ,Ag) for which the corresponding Galois representation
is absolutely irreducible (see below for the precise hypothesis and Theorem 3.7 for
a precise statement) are in the image of σAg/K , assuming the Fontaine–Mazur con-
jecture, the Grothendieck–Serre conjecture on semisimplicity of `-adic cohomology
of smooth projective varieties, and the Tate and Hodge conjectures. The integral
Selmer set S0(K ,Ag), defined in the previous section, corresponds to the set of
Galois representations that are almost everywhere unramified and, locally, come
from abelian varieties (which thus are of good reduction for almost all places of K )
and we will also consider a few variants of the question of surjectivity of σAg/K to
S0(K ,Ag) by different local hypotheses and discuss what we can and cannot prove.
A version of this kind of question has also been considered by B. Mazur [1999].

Here is the setting. Let K be a number field, with GK = Gal(K/K ). Fix
a finite set of rational primes S, and consider a collection of continuous `-adic
representations

{ρ` : GK → GLN (Q`)} 6̀∈S.

We will say that the collection {ρ`} 6̀∈S is weakly compatible if there exists a finite
set of places 6 of K such that

(1) for all ` 6∈ S, ρ` is unramified outside the union of 6 and the places 6` of K
dividing `; and

(2) for all v 6∈6 ∪6`, denoting by frv a (geometric) frobenius element at v, the
characteristic polynomial of ρ`(frv) has rational coefficients and is independent
of ` 6∈ S.1

Our aim is to prove the following:

Theorem 3.1. We will assume {ρ`} 6̀∈S is weakly compatible and moreover satisfies
the following three conditions:

(1) For some prime `0 6∈ S, ρ`0 is de Rham at all places of K above `0.

(2) For some prime `1 6∈ S, ρ`1 is absolutely irreducible.

1These systems were introduced by Serre [1989], who called them strictly compatible.
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(3) For some prime `2 6∈ S, and at least one place v|`2 of K , ρ`2 |GKv
is de Rham

with Hodge–Tate weights −1, 0, each with multiplicity N/2. (This condition
holds if there exists an abelian variety Av/Kv such that ρ`2 |GKv

∼= V`2(Av).)

Assume the Hodge, Tate, Fontaine–Mazur, and Grothendieck–Serre conjectures,
and suppose that the set S is empty. Then there exists an abelian variety A over K
such that ρ` ∼= V`(A) for all `.

We note that the arguments allow `0 = `2, and the reader may prefer to think of
these together as a single condition; we have phrased it this way to have hypotheses
that most clearly match the form of the argument.

We begin by making precise the combined implications of the Grothendieck–
Serre, Tate, and Fontaine–Mazur conjectures (the Hodge conjecture will only be
used later, in the proof of Lemma 3.5). For any field k and characteristic zero
field E , let Mk,E denote the category of pure homological motives over k with
coefficients in E (omitting E from the notation will mean E =Q).

Lemma 3.2. Assume the Tate conjecture for all finitely generated extensions k of Q.
Then:

(1) The Lefschetz standard conjecture holds for all fields of characteristic zero.

(2) All of the standard conjectures (namely, the Künneth and Hodge standard
conjectures, and the agreement of numerical and homological equivalence)
hold for all fields of characteristic zero.

(3) For any field k that can be embedded in C, the category Mk is a semisimple
neutral Tannakian category over Q.

(4) For any finitely generated k/Q, the étale `-adic realization functor

Mk,Q`
→ RepQ`

(Gk),

valued in the category of continuous `-adic representations of Gk , is fully
faithful.

Proof. For the first assertion, see, e.g., [André 2004, 7.3.1.3]; for the second, see
[André 2004, 5.4.2.2]. The third part is the basic motivating consequence of the
standard conjectures (a fiber functor over Q is given by Betti cohomology, after
fixing an embedding k ↪→ C): see [Jannsen 1992, Corollary 2], especially for the
semisimplicity claim. Finally, for the last part, fullness is the Tate conjecture; and
faithfulness follows from the agreement of numerical and homological equivalence
and [Tate 1994, Lemma 2.5] (note that faithfulness on Mk is simply by definition
of homological equivalence: it is only with Q`-coefficients that some argument is
needed). �
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For the rest of this section, we assume the Tate conjecture for all finitely generated
k of characteristic zero. Thus, we have a motivic Galois formalism: Mk,E is
equivalent to Rep(Gk,E) for some proreductive group Gk,E over E , the equivalence
depending on the choice of an E-linear fiber functor. We will implicitly fix an
embedding k ↪→ C and use the associated Betti realization as our fiber functor.
Before proceeding, we introduce two pieces of notation. For an extension of fields
k ′/k, we denote the base-change of motives by

(·)|k′ :Mk,E →Mk′,E .

This is not to be confused with the change of coefficients. Fix an embedding
ι :Q ↪→Q`, so that when E is a subfield of Q we can speak of the `-adic realization

Hι :Mk,E → RepQ`
(Gk)

associated to ι.
Now we turn to the case of number fields, i.e., k = K . The Tate conjecture

alone does not suffice to link Galois representations with motives: it yields full
faithfulness of the `-adic realization (as in Lemma 3.2), but does not characterize
the essential image. This is done via the combination of the Fontaine–Mazur and
Grothendieck–Serre semisimplicity conjectures, which we now recall. A semisimple
representation r` :GK →GLN (Q`) is said to be geometric (in the sense of Fontaine
and Mazur [1995]) if it is unramified outside a finite set of places of K , and if for
all v|` of K , the restriction r`|GKv

is de Rham (equivalently, potentially semistable,
as in the original formulation). See [Fontaine and Ouyang 2007; Brinon and Conrad
2009] for the definition and basic properties of de Rham representations. Fontaine
and Mazur have conjectured that any irreducible geometric r` is isomorphic to
a subquotient of H i (X K ,Q`)( j) for some smooth projective variety X/K and
some integers i and j ; that the converse assertion holds is a consequence of the
base-change theorems of étale cohomology [SGA 4 1

2 1977] and the p-adic de Rham
comparison isomorphism of Faltings [1989]. Grothendieck and Serre have moreover
conjectured that for any smooth projective X/K , and any integer i , H i (X K ,Q`) is
a semisimple representation of GK . Putting all of these conjectures together, we
can characterize the essential image of Hι:

Lemma 3.3. Assume the Tate, Fontaine–Mazur, and Grothendieck–Serre conjec-
tures. Let r` : GK → GLN (Q`) be an irreducible geometric Galois representation.
Then there exists an object M of MK ,Q such that

r`⊗Q`
Q`
∼= Hι(M).

More generally, the essential image of Hι consists of all semisimple geometric
representations (with coefficients in Q`) of GK .
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Proof. The Fontaine–Mazur conjecture asserts that for some smooth projective
variety X/k, r` is a subquotient of H i (X K ,Q`)( j) for some integers i and j ,
and the Grothendieck–Serre conjecture implies this subquotient is in fact a direct
summand. Under the Künneth standard conjecture (a consequence of our hypotheses
by Lemma 3.2), MK has a canonical (weight) grading, and we denote by H i(X)
the weight i component of the motive of X . The Tate conjecture then implies
(Lemma 3.2) that

Hι : EndMK

(
H i (X)( j)

)
⊗Q Q` −→

∼ EndQ`[GK ]

(
H i (X K ,Q`)( j)

)
(2)

is an isomorphism.
Now, there is a projector (of Q`[GK ]-modules) H i (X K ,Q`)( j) � r`, which

combined with Equation (2) yields a projector in EndMK (H
i (X)( j))⊗Q Q` whose

image has `-adic realization r`. But EndMK (H
i (X)( j)) is a semisimple algebra

over Q (Lemma 3.2), which certainly splits over Q, so the decomposition of
H i (X)( j) into simple objects of MK ,Q`

is already realized in MK ,Q.2

For the final claim about the essential image (which we do not use in what
follows), it suffices to show an irreducible rι : GK → GLN (Q`) lies in the essential
image. Such an rι is defined over a finite extension of Q` and can thus be regarded as
a higher-dimensional geometric representation r` with Q`-coefficients, necessarily
semisimple. By the first part of the lemma, r`⊗Q`

Q` is isomorphic to Hι(M) for
some M ∈MK ,Q, and by the Tate conjecture there is a projector in End(M)⊗Q Q`

inducing the canonical (adjunction) projector r`⊗Q`
Q` � rι. Arguing as before (a

simple object of MK ,Q`
arises by scalar-extension from one of MK ,Q), we see that

rι is in the essential image of Hι. �

Returning to our particular setting, fix any `0 6∈ S as in our first condition
on the compatible system {ρ`} 6̀∈S , and also fix an embedding ι0 : Q ↪→ Q`0 ,
so that Lemma 3.3 provides us with a number field (the linear combinations of
correspondences needed to cut out a given object of MK ,Q have coefficients in a
finite extension of Q) E ⊂Q (which we may assume Galois over Q) and a motivic
Galois representation ρ : GK ,E → GLN ,E such that Hι0(ρ) ∼= ρ`0 ⊗Q`0 . Let us
denote by λ0 the place of E induced by E ⊂Q−→

ι0 Q`. Then for all finite places λ of
E (say λ|`), and for almost all places v of K , compatibility gives us the following
equality of rational numbers (note that ρλ denotes the λ-adic realization of the
motivic Galois representation ρ, while ρ` denotes the original `-adic representation
in our compatible system):

tr(ρλ(frv))= tr(ρλ0(frv))= tr(ρ`0(frv))= tr(ρ`(frv).

2In fact, it is realized over the maximal CM subfield of Q: see, e.g., [Patrikis 2012, Lemma 4.1.22].
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Here we use the fact that the collection of `-adic realizations of a motive form a
(weakly) compatible system; this follows from the Lefschetz trace formula, in its
“formal” version for correspondences (see for instance [André 2004, 3.3.3, 7.1.4]).
We deduce as usual (Brauer–Nesbitt and Chebotarev, see [Serre 1989, theorem on
p. I-10; Ribet 1976, Theorem 1.3.1, p. 756]) that ρss

` ⊗Q`
Eλ ∼= ρλ; this holds for

all λ for which ρ` makes sense, i.e., for all λ above ` 6∈ S.
Recall that for some `1 6∈ S, we have assumed ρ`1 is absolutely irreducible; hence

for any place λ1 of E above `1, the previous paragraph shows that ρλ1
∼= ρ`1 ⊗ Eλ1

is absolutely irreducible. A fortiori, ρ is absolutely irreducible, and then by the Tate
conjecture all ρλ are absolutely irreducible, so we can upgrade the conclusion of
the previous paragraph to an isomorphism of absolutely irreducible representations
ρ`⊗Q`

Eλ ∼= ρλ, for all ` 6∈ S.
The next question is whether having each (or almost all) ρλ in fact definable

over Q` forces ρ to be definable over Q. Since the ρλ descend to Q`, the Tate
conjecture implies that for all σ ∈ Gal(E/Q), σρ ∼= ρ; and since End(ρ) is E , the
obstruction to descending ρ to a Q-rational representation of GK is an element obsρ
of H 1(Gal(E/Q),PGLN (E)).

Lemma 3.4. With the notation above, obsρ in fact belongs to

ker
(

H 1(Gal(E/Q),PGLN (E)
)
→

∏
6̀∈S

H 1(Gal(Eλ/Q`),PGLN (Eλ)
))
.

In particular, if S is empty, then ρ can be defined over Q.

Proof. We know that each of the λ-adic realizations ρλ (for λ|` 6∈ S) can be defined
over Q`; to prove the lemma, we need to verify that the canonical localizations of
obsρ (which arise by extending scalars on the motivic Galois representation) are
in fact given by the corresponding obstruction classes for the λ-adic realizations.
Thus, we have to recall how these realizations are constructed from ρ itself. The
surjection GK � GK admits a continuous section on Q`-points, s` : GK → GK (Q`);
composition with ρ⊗E Eλ yields ρλ:

GK

ρλ

++

s`
// GK (Q`)

� � // GK ,E(Eλ)
ρ⊗E Eλ

// GLN (Eλ).

By construction of the respective obstruction classes, the canonical map from
endomorphisms of ρ⊗E Eλ to those of ρλ realizes the obstruction class for ρλ as
the localization of obsρ at Gal(Eλ/Q`). But we have seen that ρλ can be defined
over Q`, so we conclude that obsρ has trivial restriction to each Gal(Eλ/Q`), as
desired.
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For the final claim, note that by Hilbert 90 we can regard obsρ as an element of

ker
(

H 2(Gal(E/Q), E×
)
→

∏
6̀∈S

H 2(Gal(Eλ/Q`), E×λ
))
.

If S is empty, then the structure of the Brauer group of Q (which has only one
infinite place!) then forces obsρ to be trivial. �

Proof of Theorem 3.1. From now on we assume S = ∅, so that our compatible
system {ρ`}` arises from a rational representation

ρ : GK → GLN ,Q.

Let M be the rank N object of MK corresponding to ρ via the Tannakian equiv-
alence. Recall that we are given a prime `2 and a place v|`2 of K for which we
are given that ρ`2 |GKv

is de Rham with Hodge numbers equal to those of an abelian
variety of dimension N/2. All objects of MK enjoy the de Rham comparison
theorem of “`2-adic Hodge theory”: denoting Fontaine’s period ring over Kv by
BdR,Kv

, and the de Rham realization functor by HdR :MK → FilK (the category
of filtered K -vector spaces), we have the comparison (respecting filtration and
GKv

-action)
HdR(M)⊗K BdR,Kv

−→∼ H`2(M)⊗Q`2
BdR,Kv

,

hence
HdR(M)⊗K Kv

∼= DdR,Kv
(H`2(M)).

The Hodge filtration on HdR(M) therefore satisfies

dimK gr0(HdR(M))= dimK gr−1(HdR(M))=
N
2

(3)

and gri (HdR(M))= 0 for i 6= 0,−1.
Now we turn to the Betti picture. Recall that to define the fiber functor on MK we

had to fix an embedding K ↪→C; we regard K as a subfield of C via this embedding.
Then we also have the analytic Betti–de Rham comparison isomorphism

HdR(M)⊗K C−→∼ HB(M |C)⊗Q C. (4)

We collect our findings in the following lemma, which relies on an application of
the Hodge conjecture.

Lemma 3.5. There is an abelian variety A over K , and an isomorphism of motives
H1(A)∼= M.

Proof. We see from Equations (3) and (4) that HB(M |C) is a polarizable rational
Hodge structure of type {(0,−1), (−1, 0)}. It follows from Riemann’s theorem
that there is an abelian variety A/C and an isomorphism of Q-Hodge structures
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H1(A(C),Q) ∼= HB(M |C). The Hodge conjecture implies that this isomorphism
comes from an isomorphism H1(A)−→∼ M |C in MC.

For any σ ∈ Aut(C/Q), we deduce an isomorphism

σH1(A)−→∼ σM |C = M |C←−∼ H1(A),

and again from Riemann’s theorem we see that σA and A are isogenous.
The following statement will be proven later in this paper.

Lemma 3.6. Let K be a countable subfield of the field C and K the algebraic
closure of K in C. Let Y be a complex abelian variety of dimension g such that
for each field automorphism σ ∈ Aut(C/K) the complex abelian variety Y and its

“conjugate” σY = Y ×C,σ C are isogenous. Then there exists an abelian variety Y0

over K such that Y0×K C is isomorphic to Y .

It follows from Lemma 3.6 that A has a model AQ over Q. The morphism

HomMQ
(H1(AQ),M |Q)→ HomMC

(H1(A),M |C)

is an isomorphism, and then by general principles we deduce the existence of some
finite extension L/K inside Q over which A descends to an abelian variety AL ,
and where we have an isomorphism H1(AL)−→

∼ M |L in ML .
Finally, we treat the descent to K itself. We form the restriction of scalars abelian

variety ResL/K (AL); under the fully faithful embedding

AV0
K ⊂MK , B 7→ H1(B),

we can think of H1(ResL/K (AL)) as IndK
L (H1(AL)), where the induction is taken

in the sense of motivic Galois representations (note that the quotient GK /GL is
canonically Gal(L/K ), so this is just the usual induction from a finite-index
subgroup). Frobenius reciprocity then implies the existence of a nonzero map
M→ IndK

L (H1(AL)) in MK . Since M is a simple motive, this map realizes it as a
direct summand in MK , and consequently (full-faithfulness) in AV0

K as well. That
is, there is an endomorphism of ResL/K (AL) whose image is an abelian variety A
over K with H1(A)∼= M . �

Proof of Lemma 3.6. We may assume that g ≥ 1. Since K is also countable, we may
replace K by K, i.e., assume that K is algebraically closed. Since the isogeny class of
Y consists of a countable set of (complex) abelian varieties (up to an isomorphism),
we conclude that the set Aut(C/K)(Y) of isomorphism classes of complex abelian
varieties of the form {σY | σ ∈ Aut(C/K)} is either finite or countable.

Our plan is as follows. Let us consider a fine moduli space Ag,? over Q of
g-dimensional abelian varieties (schemes) with certain additional structures (there
should be only finitely many choices of these structures for any given abelian
variety) such that it is a quasiprojective subvariety in some projective space PN .
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Choose these additional structures for Y (there should be only finitely many choices)
and let P ∈Ag,?(C) be the corresponding point of our moduli space. We need to
prove that

P ∈Ag,?(K).

Suppose that it is not true. Then the orbit Aut(C/K)(P) of P is uncountable.
Indeed, P lies in one of the (N + 1) affine charts/spaces AN that do cover PN.
This implies that P does not belong to AN(K) and therefore (at least) one of its
coordinates is transcendental over K. But the Aut(C/K)-orbit of this coordinate
coincides with uncountable C \K and therefore the Aut(C/K)-orbit Aut(C/K)(P)
of P is uncountable in Ag,?(C). However, for each σ ∈ Aut(C/K) the point σ(P)
corresponds to σY with some additional structures and there are only finitely many
choices for these structures. Since we know that the orbit Aut(C/K)(Y) of Y , is,
at most, countable, we conclude that the orbit Aut(C/K)(P) of P is also, at most,
countable, which is not the case. This gives us a desired contradiction.

We choose as Ag,? the moduli space of (polarized) abelian schemes of relative
dimension g with theta structures of type δ that was introduced and studied by
D. Mumford [1966]. In order to choose (define) a suitable δ, let us pick a totally
symmetric ample invertible sheaf L0 on Y [Mumford 1966, Section 2] and consider
its 8th power L :=L8

0 in Pic(Y). Then L is a very ample invertible sheaf that defines
a polarization 3(L) on Y [Mumford 1966, Part I, Section 1] that is an isogeny
from Y to its dual; the kernel H(L) of 3(L) is a finite commutative subgroup of
Y(C) (that contains all points of order 8). The order of H(L) is the degree of the
polarization. The type δ is essentially the isomorphism class of the group H(L)
[Mumford 1966, Part I, Section 1, p. 294]. The resulting moduli space Ag,? := Mδ

[Mumford 1966, Part II, Section 6] enjoys all the properties that we used in the
course of the proof. �

Here is the anabelian application already mentioned in the introduction:

Theorem 3.7. Assume the Hodge, Tate, Fontaine–Mazur, and Grothendieck–Serre
conjectures. Suppose s ∈ S0(K ,Ag) gives rise to a system of `-adic Galois represen-
tations one of which is absolutely irreducible. Then there exists up to isomorphism
a unique principally polarized abelian variety B/K with σAg/K (B)= s.

Proof. Let us write s` for the `-adic representation associated to s; thus s` is a
representation of GK on a free Z`-module T` of rank 2g, automatically satisfying
Hypothesis 2 of Theorem 3.1 since s belongs to S0(K ,Ag). Hypothesis 1 of
Theorem 3.1 is satisfied by assumption, so we obtain an abelian variety A/K (well-
defined up to isogeny) whose rational Tate modules V`(A) are isomorphic (as `-adic
representations) to the given s`⊗Z` Q` (for all `). Moreover Hypothesis 1 implies
that the endomorphism ring of A is Z. It remains to see that within the isogeny class
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of A there is a principally polarized abelian variety B over K whose integral Tate
module T`(B) is isomorphic as a Z`[GK ]-module to T` (for all `), i.e., such that
σAg/K (B)= s. For this, we first observe that by [Deligne 1971, Proposition 3.3]
(which readily generalizes to abelian varieties of any dimension), it suffices to
show that for almost all `, there is an isomorphism T`(A)∼= T`. Since End(A)= Z,
[Zarhin 1985, Corollary 5.4.5] implies that A[`] is an absolutely simple Galois
module for almost all `, and hence that for almost all `, all Galois-stable lattices
in V`(A) are of the form `m T`(A) for some integer m; we conclude that T`(A) is
isomorphic to T` for almost all `. Thus there exists an abelian variety B in the
isogeny class of A such that the Z`[GK ]-modules T`(B) and T` are isomorphic for
all `.

In order to prove the uniqueness of such a B up to an isomorphism, first, notice
that End(B)= Z. Second, let C be an abelian variety over K such that the Z`[GK ]-
modules T`(B) and T`(C) are isomorphic for all primes `. This implies that the
Z`-ranks of T`(B) and T`(C) coincide and therefore

dim(B)= dim(C).

By a theorem of Faltings [1983],

Hom(B,C)= HomGK (T`(B), T`(C)).

Since Hom(B,C) is dense in Hom(B,C)⊗Z` in the `-adic topology, and the set of
isomorphisms T`(B)∼= T`(C) is open in Hom(B,C)⊗Z`, there is a homomorphism
φ` ∈ Hom(B,C) that induces an isomorphism of Tate modules T`(B) ∼= T`(C).
Clearly, ker(φ`) does not contain points of order ` and therefore is finite. Since
dim(B) = dim(C), we obtain that φ` is an isogeny, whose degree is prime to `.
In particular, B and C are isogenous. On the other hand, since End(B) = Z, the
group Hom(B,C) is a free Z-module of rank 1. Let us choose ψ : B→ C that is a
generator of Hom(B,C). Clearly, ψ is an isogeny. Since for all primes `

φ` ∈ Hom(B,C)= Z ·ψ,

deg(ψ) is not divisible by ` and therefore deg(ψ)= 1, i.e., ψ is an isomorphism
of abelian varieties B and C .

We still need to check that B is principally polarized. Since s` comes from s,
there is an alternating Galois-equivariant Z`-bilinear perfect/unimodular form

T`× T`→ Z`(1).

Since T` is isomorphic as a Z`[GK ]-module to T`(B), there is a Galois-equivariant,
Z`-bilinear perfect/unimodular form

T`(B)× T`(B)→ Z`(1).
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This implies that the Galois modules T`(B) and HomZ`(T`(B),Z`(1)) are isomor-
phic. It follows from the last sentence of Section 2 that the Galois modules T`(B)
and T`(B̂) are isomorphic for all primes `. This implies that the abelian varieties B̂
and B are isomorphic. Since End(B)=Z, there is an isomorphism µ : B→ B̂ such
that Hom(B, B̂) = Z ·µ. Let λ : B→ B̂ be a polarization on B. Then there is a
nonzero integer n such that λ= n ·µ. Replacing if necessary µ by −µ, we may and
will assume that n is a positive integer. It follows from [Mumford 1970, Section 23,
Theorem 3] that µ is a polarization, which is obviously principal. (Clearly, there is
exactly one principal polarization on B, namely µ.) So, σAg/K (B) is defined and
obviously coincides with s. �

Remark 3.8. Note that for each prime ` we get the Riemann form [Lang 1959,
Chapter VII, Section 2; Mumford 1970, Section 20]

E`,µ : T`(B)× T`(B)→ Z`(1), x, y 7→ e`(x, µy) for all x, y ∈ T`(B),

which is an alternating Galois-equivariant Z`-bilinear perfect/unimodular form on
the free Z`-module T`(B). Since End(B)= Z, the already cited result of Faltings
implies that EndGK(T`(A))= Z`. It follows that any alternating Galois-equivariant
Z`-bilinear perfect/unimodular form

T`(B)× T`(B)→ Z`(1)

coincides with c`·E`,µ for some c`∈Z∗` . This implies that any isomorphism between
the Z`[GK ]-modules T` and T`(B) induces isomorphisms between the corresponding
symplectic groups and between the corresponding groups of symplectic similitudes.

Results in the same vein as this corollary have been obtained for elliptic curves
over Q in [Helm and Voloch 2011] and for elliptic curves over function fields in
[Voloch 2012].

4. Counterexamples

Now we will construct an example of Galois representation that will provide us
with examples that show that some of the hypotheses of the above results are
indispensable.

Let k be a real quadratic field. Let us choose a prime p that splits in k. Now let
D be the indefinite quaternion k-algebra that splits everywhere outside (two) prime
divisors of p and is ramified at these divisors. If ` is a prime then we have

D⊗Q Q` = [D⊗k k]⊗Q Q` = D⊗k [k⊗Q Q`].

This implies that if ` 6= p then D⊗Q Q` is either (isomorphic to) the simple matrix
algebra (of size 2) over a quadratic extension of Q` or a direct sum of two copies of
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the simple matrix algebra (of size 2) over Q`. (In both cases, D⊗Q Q` is isomorphic
to the matrix algebra M2(k⊗Q Q`) of size 2 over k⊗Q Q`.)

In particular, the image of D⊗Q Q` under each nonzero Q`-algebra homomor-
phism contains zero divisors.

Let Y be an abelian variety over a field L . Suppose that all L-endomorphisms of
Y are defined over L and there is a Q-algebra embedding

D ↪→ End0(Y )

that sends 1 to 1. This gives us the embedding

D⊗Q Q` ⊂ End0(Y )⊗Q Q` ⊂ EndGL (V`(Y )).

Recall that if ` 6= p then D⊗Q Q` is isomorphic to the matrix algebra of size 2 over
k⊗Q Q`. This implies that there are two isomorphic Q`[GL ]-submodules W1,`(Y )
and W2,`(Y ) in V`(Y ) such that

V`(Y )=W1,`(Y )⊕W2,`(Y )∼=W1,`(Y )⊕W1,`(Y )∼=W2,`(Y )⊕W2,`(Y ).

If we denote by W`(Y ) the Q`[GL ]-module W1,` then we get an isomorphism of
Q`[GL ]-modules

V`(Y )∼=W`(Y )⊕W`(Y ).

This implies that the centralizer EndGL (V`(Y )) coincides with the matrix algebra
M2
(
EndGL (W`(Y ))

)
of size 2 over the centralizer EndGL (W`(Y )).

If `= p then k⊗Q Qp =Qp⊕Qp and D⊗Q Qp splits into a direct sum of two
(mutually isomorphic) quaternion algebras over Qp. This also gives us a splitting
of the Galois module Vp(Y ) into a direct sum

Vp(Y )=W1,p(Y )⊕W2,p(Y ).

of its certain nonzero Qp[GL ]-submodules W1,p(Y ) and W2,p(Y ). (Actually,

dimQp W1,p = dimQp W2,p = dim(Y ),

because Vp(Y ) is a free k⊗Q Qp-module of rank 2 dim(Y )/[k :Q] = dim(Y ) [Ribet
1976, Theorem 2.1.1 on p. 768].)

Remark. Let L be a finitely generated field of characteristic 0. Suppose that
D = End0(Y ). By Faltings’ results [1983; 1984] about the Galois action on Tate
modules of abelian varieties, the GL -module V`(Y ) is semisimple and

EndGL (V`(Y ))= D⊗Q Q`.

This implies that if ` 6= p then (the submodule) W`(Y ) is also semisimple and

M2(EndGL (W`(Y )))∼=M2(k⊗Q Q`).
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It follows that
EndGL (W`(Y ))∼= k⊗Q Q`.

On the other hand, the GL -modules W1,p(Y ) and W2,p(Y ) are nonisomorphic.

According to Shimura [1963] (see also the case of Type II(e0 = 2) with m = 1 in
[Oort 1988, Table 8.1 on p. 498] and [Oort and Zarhin 1995, table on p. 23]), there
exists a complex abelian fourfold X , whose endomorphism algebra End0(X) is
isomorphic to D. Clearly, X is defined over a finitely generated field of characteristic
zero. It follows from Serre’s variant of Hilbert’s irreducibility theorem for infinite
Galois extensions combined with results of Faltings that there exists a number field
K and an abelian fourfold A over K such that the endomorphism algebra of all
K -endomorphisms of A is also isomorphic to D (see [Noot 1995, Corollary 1.5 on
p. 165]). Enlarging K , we may assume that all points of order 12 on A are defined
over K and therefore, by the theorem of Silverberg, all K -endomorphisms of A are
defined over K . Now Raynaud’s criterion [SGA 7I 1972] (see also [Silverberg and
Zarhin 1995]), implies that A has everywhere semistable reduction. On the other
hand,

dimQ End0(A)= dimQ D = 8> 4= dim(A).

By [Oort 1988, Lemma 3.9 on p. 484], A has everywhere potential good reduction.
This implies that A has good reduction everywhere. If v is a nonarchimedean
place of K with finite residue field κ(v) then we write A(v) for the reduction of
A at v; clearly, A(v) is an abelian fourfold over κ(v). If char(κ(v)) 6= 2 then all
points of order 4 on A(v) are defined over κ(v); if char(κ(v)) 6= 3 then all points
of order 3 on A(v) are defined over κ(v). It follows from the theorem of Silverberg
that all κ(v)-endomorphisms of A(v) are defined over κ(v). For each v we get an
embedding of Q-algebras

D ∼= End0(A) ↪→ End0(A(v)).

In particular, End0(A(v)) is a noncommutative Q-algebra, whose Q-dimension is
divisible by 8.

Theorem 4.1. If ` := char(κ(v)) 6= p then A(v) is not simple over κ(v).

Proof. We write qv for the cardinality of κ(v). Clearly, qv is a power of `.
Suppose that A(v) is simple over κ(v). Since all endomorphisms of A(v) are

defined over κ(v), the abelian variety A(v) is absolutely simple.
Let π be a Weil qv-number that corresponds to the κ(v)-isogeny class of A(v)

[Tate 1966; 1971]. In particular, π is an algebraic integer (complex number), all
whose Galois conjugates have (complex) absolute value

√
qv. In particular, the

product
ππ = qv,



Anabelian geometry and descent obstructions on moduli spaces 1209

where π is the complex conjugate of π .
Let E = Q(π) be the number field generated by π and let OE be the ring of

integers in E . Then E contains π and is isomorphic to the center of End0(A(v))
[Tate 1966; 1971]; one may view End0(A(v)) as a central division algebra over E .
It is known that E is either Q, Q(

√
`) or a (purely imaginary) CM field [Tate 1971,

p. 97]. It is known [ibid] that in the first two (totally real) cases simple A(v) has
dimension 1 or 2, which is not the case. So, E is a CM field; Since dim(A(v))= 4
and [E :Q] divides 2 dim(A(v)), we have [E :Q] = 2, 4 or 8. By [Tate 1971, p. 96,
Theorem 1(ii), formula (2)]3,

8= 2 · 4= 2 dim(A(v)))=
√

dimE(End0(A(v)) · [E :Q].

Since End0(A(v)) is noncommutative, it follows that E is either an imaginary
quadratic field and End0(A(v)) is a 16-dimensional division algebra over E or E is
a CM field of degree 4 and End0(A(v)) is a 4-dimensional (i.e., quaternion) division
algebra over E . In both cases End0(A(v)) is unramified at all places of E except
some places of residual characteristic ` [Tate 1971, p. 96, Theorem 1(ii)]. It follows
from the Hasse–Brauer–Noether theorem that End0(A(v)) is ramified at, at least,
two places of E with residual characteristic `. This implies that OE contains, at
least, two maximal ideals that lie above `.

Clearly,
π, π ∈OE .

Recall that ππ = qv is a power of `. This implies that for every prime r 6= ` both
π and π are r -adic units in E .

First assume that E has degree 4 and End0(A(v)) is a quaternion algebra. Then
(thanks to the theorem of Hasse–Brauer–Noether) there exists a place w of E
with residual characteristic ` and such that the localization End0(A(v))⊗E Ew is a
quaternion division algebra over the w-adic field Ew. On the other hand, there is a
nonzero (because it sends 1 to 1) Q`-algebra homomorphism

D⊗Q Q`→ End0(A(v))⊗Q Q` � End0(A(v))⊗E Ew.

This implies that End0(A(v))⊗E Ew contains zero divisors, which is not the case
and we get a contradiction.

So, now we assume that E is an imaginary quadratic field and

dimE(End0(A(v)))= 16= 42.

In particular, the order of the class of End0(A(v)) in the Brauer group of E divides
4 and therefore is either 2 or 4.

3In [Tate 1971] our E is denoted by F while our End0(A(v)) is denoted by E .
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We have already seen that there exist, at least, two maximal ideals in OE that lie
above `. Since E is an imaginary quadratic field, the ideal `OL of OL splits into a
product of two distinct complex-conjugate maximal ideals w1 and w2 and therefore

Ew1 =Q`, Ew2 =Q`; [Ew1 :Q`] = [Ew2 :Q`] = 1.
Let

ordwi : E
∗� Z

be the discrete valuation map that corresponds to wi . Recall that qv is a power of `,
i.e., qv = `N for a certain positive integer N . Clearly

ordwi (`)= 1, ordwi (π)+ ordwi (π)= ordwi (qv)= N .

By [Tate 1971, p. 96, Theorem 1(ii), formula (1)], the local invariant of End0(A(v))
at wi is

ordwi (π)

ordwi (qv)
· [Ewi :Q`] (mod 1)=

ordwi (π)

N
(mod 1).

In addition, the sum in Q/Z of local invariants of End0(A(v)) at w1 and w2 is zero
[Tate 1971, Section 1, Theorem 1 and Example b)]; we have already seen that
its local invariants at all other places of E do vanish. Using the Hasse–Brauer–
Noether theorem and taking into account that the order of the class of End0(A(v))
in the Brauer group of E is either 2 or 4, we conclude that the local invariants
of End0(A(v)) at {w1, w2} are either

{1
4 mod 1, 3

4 mod 1
}

or
{ 3

4 mod 1, 1
4 mod 1

}
(and in both cases the order of End0(A(v)) in the Brauer group of E is 4) or{ 1

2 mod 1, 1
2 mod 1

}
. In the latter case it follows from the formula for the wi -adic

invariant of End0(A(v)) that

ordwi (π)=
N
2
= ordwi (π)

and therefore π/π is a wi -adic unit for both w1 and w2. Therefore π/π is an `-adic
unit. This implies that π/π is a unit in imaginary quadratic E and therefore is a
root of unity. It follows that

π2

qv
=
π2

ππ
=
π

π

is a root of unity. This implies that there is a positive (even) integer m such that

πm
= qm/2

v ∈Q

and therefore Q(πm)=Q. Let κ(v)m be the finite degree m field extension of κ(v),
which consists of qm

v elements. Then πm is the Weil qm
v -number that corresponds

to the simple 4-dimensional abelian variety A(v) × κ(v)m over κ(v)m . Since
Q(πm) = Q, we conclude (as above) that A(v)× κ(v)m has dimension 1 or 2,
which is not the case.
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In both remaining cases the order of the algebra End0(A(v))⊗E Ew1 in the Brauer
group of the Ew1

∼= Q` is 4. This implies that End0(A(v))⊗E Ew1 is neither the
matrix algebra of size 4 over Ew1 nor the matrix algebra of size two over a quaternion
algebra over Ew1 . The only remaining possibility is that End0(A(v))⊗E Ew1 is a
division algebra over Ew1 . However, there is again a nonzero (because it sends 1
to 1) Q`-algebra homomorphism

D⊗Q Q`→ End0(A(v))⊗Q Q` � End0(A(v))⊗E Ew1 .

This implies that End0(A(v))⊗E Ew1 contains zero divisors, which is not the case
and we get a contradiction. �

Theorem 4.2. If ` := char(κ(v)) 6= p then there exists an abelian surface B(v)
over κ(v) such that A(v) is κ(v)-isogenous to the square B(v)2 of B(v).

Proof. We know that A(v) is not simple and that all κ(v)-endomorphisms of A(v)
are defined over k(v). Now let us split A(v) up to a κ(v)-isogeny into a product
of its κ(v)-isotypic components, using the Poincaré complete reducibility theorem
[Lang 1959, Theorem 6 on p. 28 and Theorem 7 on p. 30]. In other words, there is
a κ(v)-isogeny

S :
∏
i∈I

Ai → A(v),

where each Ai is a nonzero abelian κ(v)-subvariety in A such that End0(Ai ) is a
simple Q-algebra and S induces an isomorphism of Q-algebras

End0(A(v))∼= End0
(∏

i∈I

Ai

)
=

⊕
i∈I

End0(Ai ).

This gives us nonzero Q-algebra homomorphisms

D→ End0(Ai )

that must be injective, since D is a simple Q-algebra. This implies that each
End0(Ai ) is a noncommutative simple Q-algebra, whose Q-dimension is divisible
by 8. In particular, all dim(Ai )≥ 2 and therefore I consists of, at most, 2 elements,
since ∑

i∈I

dim(Ai )= dim(A(v))= 4.

Since all κ(v)-endomorphisms of A(v) are defined over k(v), all κ(v)-endo-
morphisms of Ai are also defined over κ(v); in addition, if i and j are distinct
elements of I , then every κ(v)-homomorphism between Ai and A j is 0.

If we have dim(Ai )= 2 for some i then either Ai is isogenous to a square of a
supersingular elliptic curve or Ai is an absolutely simple abelian surface. However,
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each absolutely simple abelian surface over a finite field is either ordinary (i.e., the
slopes of its Newton polygon are 0 and 1, both of length 2) or almost ordinary (i.e.,
the slopes of its Newton polygon are 0 and 1, both of length 1, and 1

2 with length 2):
this assertion is well known and follows easily from [Zarhin 2015, Remark 4.1 on
p. 2088]. However, in both (ordinary and almost ordinary) cases the endomorphism
algebra of a simple abelian variety is commutative [Oort 1992, Lemma 2.3 on
p. 136]. This implies that if dim(Ai ) = 2 then Ai is κ(v)-isogenous to a square
of a supersingular elliptic curve. However, if I consists of two elements, say i
and j , then it follows that both Ai and A j are 2-dimensional and therefore both
isogenous to a square of a supersingular elliptic curve. This implies that Ai and A j

are isotypic and therefore A itself is isotypic and we get a contradiction, i.e., none
of the Ai has dimension 2. It is also clear that if dim(Ai ) = 3 then dim(A j ) = 1,
which could not be the case. This implies that A(v) itself is isotypic. It follows
that if `= char(κ(v)) 6= p then A(v) is κ(v)-isogenous either to a 4th power of an
elliptic curve or to a square of an abelian surface over κ(v). (Recall that A(v) is
not simple!) In both cases there exists an abelian surface B(v) over κ(v), whose
square B(v)2 is κ(v)-isogenous to A(v). �

Let B(v) be as in Theorem 4.2. One may lift the abelian surface B(v) over
κ(v) to an abelian surface Bv over Kv, whose reduction is B(v) (see [Oort 1987,
Proposition 11.1 on p. 177]). Now if one restricts the action of GK on the Qr -Tate
module (here r is any prime different from char(κ(v)))

Vr (A)= Tr (A)⊗Zr Qr

to the decomposition group D(v)=GKv
then the corresponding GKv

-module Vr (A)
is unramified (i.e., the inertia group acts trivially) and isomorphic to

Vr (Bv)⊕ Vr (Bv).

Theorem 4.3. If r 6= p and char(κ(v)) 6= r then the GKv
-modules Vr (Bv) and

Wr (A) are isomorphic. In particular, the GKv
-modules

Vr (A)=Wr (A)⊕Wr (A)

and
Vr (Bv)⊕ Vr (Bv)= Vr ((Bv)2)

are isomorphic.

Proof. We know that the GKv
-modules Wr (A)⊕Wr (A) and

Vr (Bv)⊕ Vr (Bv)

are both isomorphic to Vr (A). Since the frobenius endomorphism of A(v) acts on
Vr (A) as a semisimple linear operator (by a theorem of A. Weil), the GKv

-module
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Vr (A) is semisimple. This implies that the GKv
-modules Vr (Bv) and Wr (A) are

isomorphic. �

For primes ` 6= p, the algebra D⊗Q Q` splits, and correspondingly, the repre-
sentation V`(A) splits as W`⊕W`. Locally, at a place v - `, we have W`

∼= V`(Bv).
However, globally, the representation W` does not come from an abelian variety
over K . Indeed, if the GK -module W` is isomorphic to V`(B) for an abelian variety
B over K then dim(B) = 2 and the theorem of Faltings implies that there is a
nonzero homomorphism of abelian varieties B→ A over K , which is not the case,
since the fourfold A is simple. On the other hand, if v|` then V`(A) is a de Rham
representation of GKv

with weights 0 and −1, both of multiplicity dim(A) = 4.
Since a subrepresentation of a de Rham representation is also de Rham, we conclude
that W` is de Rham. It is also clear that W` has the same Hodge–Tate weights as

V`(A)=W`⊕W`

but the multiplicities should be divided by 2, i.e., the Hodge–Tate weights of W`

are 0 and −1, both of multiplicity 2.
We thus obtain:

Theorem 4.4. The system of representations {W`} 6̀=p constructed above does not
come globally from an abelian variety defined over the field K but for all v -` the
representation W` locally comes from an abelian variety Bv/Kv. In particular,
{W`} 6̀=p is a weakly compatible system of 4-dimensional `-adic representations
of GK .

If v|` then W` is locally a de Rham representation with Hodge–Tate weights 0
and −1, both of multiplicity 2.

Remark. By a theorem of Faltings [1983], the GK -module V`(A) is semisimple
and therefore its submodule W` is also semisimple. On the other hand, we know
that the centralizer

EndGK (W`)= k⊗Q Q` 6=Q`;

in particular, none of W` is absolutely irreducible. In what follows we construct an
example of a weakly compatible system (for all ` 6= p) of absolutely irreducible
de Rham representations that does not come globally from an abelian variety over
a number field. However, we do not know whether it comes locally from abelian
varieties.

Let p be a prime and H be a definite quaternion algebra over Q that is ramified
exactly at p and ∞. In particular, for each prime ` 6= p we have a Q`-algebra
isomorphism

H ⊗Q Q`
∼=M2(Q`).
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Let g ≥ 4 be an even integer. According to Shimura [1963] (see also the case of
Type III (e0 = 1) with m = g/2 in [Oort 1988, Table 8.1 on p. 498] and [Oort
and Zarhin 1995, table on p. 23]), there exists a complex g-dimensional abelian
variety X , whose endomorphism algebra End0(X) is isomorphic to H . The same
arguments as above (related to D) prove that there exists a g-dimensional abelian
variety B over a certain number field K such that all endomorphisms of B are
defined over K and End0(B) ∼= H . In particular, B is absolutely simple. By the
theorem of Faltings, if ` is a prime then the GK -module V`(B) is semisimple and

EndGK (V`(B))= H ⊗Q Q`.

In particular, if ` 6= p then EndGK (V`(B))∼=M2(Q`) and therefore there are two
isomorphic Q`[GK ]-submodules U1,`(B) and U2,`(B) in V`(B) such that

V`(B)=U1,`(B)⊕U2,`(B)∼=U1,`(B)⊕U1,`(B)∼=U2,`(B)⊕U2,`(B).

If we denote by U` the Q`[GK ]-module U1,`(B) then dimQ`
(U`) = g and we get

an isomorphism of Q`[GK ]-modules

V`(B)∼=U`⊕U`.

Clearly, the submodule U` is semisimple and

M2(Q`)= H ⊗Q Q` = EndGK (V`(B))=M2(EndGK (U`)).

This implies that EndGK (U`)=Q`, i.e., the `-adic (sub)representation

GK → AutQ`
(U`)∼= GLg(Q`)

is absolutely irreducible. Clearly, for each σ ∈ GK its characteristic polynomial
with respect to the action on V`(B) is the square of its characteristic polynomial
with respect to the action on U`. This implies that if v is an nonarchimedean place
v of K where B has good reduction then for all primes ` 6= p such that v - ` the
characteristic polynomial of the frobenius element at v with respect to its action
on U` has rational coefficients and does not depend on `. In other words, U` is a
weakly compatible system of (absolutely irreducible) `-adic representations. As
above, locally for each v|` the GKv

-module V`(B) is de Rham with Hodge weights
0 and −1 with weights g, which implies that U` is also de Rham with the same
Hodge–Tate weights, whose multiplicities are g/2.

Theorem 4.5. The weakly compatible system of g-dimensional absolutely irre-
ducible representations {U`} 6̀=p constructed above does not come globally from an
abelian variety defined over the field K .

If v|` then U` is locally a de Rham representation with Hodge–Tate weights 0
and −1, both of multiplicity g/2.
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Proof. We claim that none of U` comes out from an abelian variety over K . Indeed,
if there is an abelian variety C over K such that the GK -modules V`(C) and
U` are isomorphic then dim(C) = g/2 and the theorem of Faltings implies the
existence of a nonzero homomorphism C→ B, which contradicts the simplicity of
g-dimensional B. �

5. Moduli of curves

The moduli space of smooth projective curves of genus g is denoted by Mg. It is
also an orbifold and we will consider its fundamental group as such. For definitions
see [Hain 2011]. It is defined over Q and thus we can consider it over an arbitrary
number field K . As per our earlier conventions, Mg is the base change of Mg to
an algebraic closure of Q and not a compactification.

Let X be a curve of genus g defined over K . There is a map (an arithmetic
analogue of the Dehn–Nielsen–Baer theorem, see [Matsumoto and Tamagawa 2000],
in particular, Lemma 2.1) ρ : π1(Mg)→Out(π1(X)). This follows by considering
the universal curve Cg of genus g together with the map Cg→Mg, so X can be
viewed as a fiber of this map. This gives rise to the fibration exact sequence

1→ π1(X)→ π1(Cg)→ π1(Mg)→ 1

and the action of π1(Cg) on π1(X) gives ρ. Now, X , viewed as a point on Mg(K ),
gives a map σMg/K (X) : GK → π1(Mg). As pointed out in [Matsumoto and
Tamagawa 2000], ρ ◦ σMg/K (X) induces a map GK → Out(π1(X)) which is none
other than the map obtained from the exact sequence (1) by letting π1(X) act on
π1(X) by conjugation. Combining this with Theorem 2.1 (Mochizuki) gives:

Theorem 5.1. For any field K contained in a finite extension of a p-adic field, the
section map σMg/K is injective.

The following result confirms a conjecture of Stoll [2007] if we assume that
σMg/K surjects onto S0(K ,Mg).

Theorem 5.2. Assume that σMg/K (Mg(K )) = S0(K ,Mg) for all g > 1 and all
number fields K . Then σX/K (X (K ))= S(K ,X) for all smooth projective curves of
genus at least two and all number fields K .

Proof. For any algebraic curve X/K there is a nonconstant map X →Mg with
image Y , say, for some g, defined over an extension L of K , given by the Kodaira–
Parshin construction. This gives a map γ : π1(X ⊗ L)→ π1(Mg⊗ L), over L . Let
s ∈ S(K ,X), then γ ◦(s|GL )∈ S0(L ,Mg) and the assumption of the theorem yields
that γ ◦ (s|GL )= σMg/L(P), P ∈Mg(L). We can combine this with the injectivity
of σMg/Kv

(Mochizuki’s theorem) to deduce that in fact P ∈Y (Lv)∩Mg(L)=Y (L).
We can consider the pullback to X of the Galois orbit of P , which gives us a zero
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dimensional scheme in X having points locally everywhere and, moreover, being
unobstructed by every abelian cover coming from an abelian cover of X . By the
work of Stoll [2007, Proposition 5.2], we conclude that X has a rational point
corresponding to s. �
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