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Michael Larsen and Aner Shalev

We introduce the notion of a probabilistic identity of a residually finite group 0.
By this we mean a nontrivial word w such that the probabilities that w = 1 in the
finite quotients of 0 are bounded away from zero.

We prove that a finitely generated linear group satisfies a probabilistic identity
if and only if it is virtually solvable.

A main application of this result is a probabilistic variant of the Tits alternative:
Let 0 be a finitely generated linear group over any field and let G be its profinite
completion. Then either 0 is virtually solvable, or, for any n ≥ 1, n random
elements g1, . . . , gn of G freely generate a free (abstract) subgroup of G with
probability 1.

We also prove other related results and discuss open problems and applications.

1. Introduction

The celebrated Tits alternative [1972] asserts that a finitely generated linear group is
either virtually solvable or has a (nonabelian) free subgroup. A number of variations
and extensions of this result have been obtained over the years. In particular, it
is shown in [Breuillard and Gelander 2007] that if 0 is a finitely generated linear
group which is not virtually solvable then its profinite completion 0̂ has a dense
free subgroup of finite rank (this answers a question from [Dixon et al. 2003],
where a somewhat weaker result was obtained). The purpose of this paper is to
establish a probabilistic version of the Tits alternative, and to relate it to the notion
of probabilistic identities, which is interesting in its own right.

In order to formulate our first result, let us say that a profinite group G is randomly
free if for any positive integer n the set of n-tuples in Gn which freely generate a free
subgroup of G (isomorphic to Fn) has measure 1 (with respect to the normalized
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Haar measure on Gn). We also say that a (discrete) residually finite group 0 is
randomly free if its profinite completion is randomly free.

Recall that related notions have already been studied in various contexts. For
example, Epstein [1971] showed that connected finite-dimensional nonsolvable
real Lie groups are randomly free (in the sense that the set of n-tuples which do
not freely generate a free subgroup has measure zero). Later it was shown by
Szegedy [2005] that the Nottingham pro-p group is randomly free (answering a
question of the second author). Furthermore, Abért proved [2005] that some other
groups are randomly free; these include the Grigorchuk group and profinite weakly
branch groups.

We can now state our probabilistic Tits alternative.

Theorem 1.1. Let 0 be a finitely generated linear group over any field. Then either
0 is virtually solvable or 0 is randomly free.

The proof of this result relies on the notion and properties of probabilistic
identities which we introduce below.

Let w = w(x1, . . . , xn) be a nontrivial element of the free group Fn , and let
0 be a residually finite group. Consider the induced word map 0n

→ 0, which,
by a slight abuse of notation, we also denote w. If the image w(0n) of this map
is {1} then w is an identity of 0. We say that w is a probabilistic identity of 0 if
there exists ε > 0 such that, for each finite quotient H = 0/1 of 0, the probability
PH (w) that w(h1, . . . , hn)= 1 (where the hi ∈ H are chosen independently with
respect to the uniform distribution on H ) is at least ε. This amounts to saying that,
in the profinite completion G = 0̂ of 0, the probability (with respect to the Haar
measure) that w(g1, . . . , gn)= 1 is positive.

For example, w = x2
1 is a probabilistic identity of the infinite dihedral group

0 = D∞, since in any finite quotient 0/1= Dn of 0 we have P0/1(w)≥ 1
2 . Note

that, in this example, w is not an identity on a finite index subgroup of 0, but it is
an identity on a coset of the cyclic subgroup of index two.

More generally, probabilistic identities may be regarded as an extension of the
notion of coset identities. Recall that a word 1 6= w ∈ Fn is said to be a coset
identity of the infinite group 0 if there exists a finite index subgroup 1 ≤ 0 and
cosets γ11, . . . , γn1 (where γi ∈ 0) such that w(γ11, . . . , γn1)= {1}.

Our main result on probabilistic identities is the following.

Theorem 1.2. A finitely generated linear group satisfies a probabilistic identity if
and only if it is virtually solvable.

Theorem 1.2 has several consequences. First, it easily implies Theorem 1.1. To
show this, suppose 0 is not virtually solvable, and let G be the profinite completion
of 0. Note that g1, . . . , gn ∈ G freely generate a free subgroup of G if and only if
w(g1, . . . , gn) 6= 1 for every 1 6= w ∈ Fn . By Theorem 1.2 above, the probability
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that w(g1, . . . , gn) = 1 is 0 for any such w. As Haar measure is σ -additive, the
probability that there exists w 6= 1 such that w(g1, . . . , gn) = 1 is also 0. Thus,
g1, . . . , gn freely generate a free subgroup with probability 1, proving Theorem 1.1.

Secondly, Theorem 1.2 immediately implies the following.

Corollary 1.3. A finitely generated linear group which satisfies a probabilistic
identity satisfies an identity.

It would be interesting to find out whether the same holds without the linearity
assumption. We discuss this and related problems and applications in Section 3.

In the course of the proof of Theorem 1.2 we establish a result of independent
interest, showing that probabilistic identities on finitely generated linear groups are
in fact coset identities.

The arguments proving this result also prove a more general result on probabilistic
identities with parameters. Let w(x1, . . . , xn, y1, . . . , ym) be a word in the variables
x1, . . . , xn, y1, . . . , ym , and let γ1, . . . , γm be elements of a residually finite group
0. Consider the word with parameters v(x1, . . . , xn) :=w(x1, . . . , xn, γ1, . . . , γm).
The notions of a probabilistic identity with parameters and of a coset identity with
parameters are then defined in the obvious way.

Note that Theorem 1.2 cannot be generalized to probabilistic identities with
parameters. For example, let γ1 ∈ 0 be a central element. Then the word with
parameters [x1, γ1] is an identity on 0, though 0 need not be virtually solvable.
However, we can show the following.

Theorem 1.4. Let 0 be a finitely generated linear group over any field. Then every
probabilistic identity (possibly with parameters) on 0 is a coset identity.

It easily follows that, if w is a word in n variables (possibly with parameters
from 0), and γ ∈0 is such that in all finite quotients H =0/1 of 0 the probability
that w(h1, . . . , hn) = γ +1 is at least some fixed ε > 0, then the fiber w−1(γ )

contains the Cartesian product γ11× · · · × γn1 of cosets of some finite index
subgroup 1≤ 0. Indeed, apply Theorem 1.4 to the word with parameters wγ−1.

In fact, the proof of Theorem 1.4 gives rise to an even more general result of
independent interest. In order to formulate it, let 0 be a linear group and let n be
a positive integer. Let us say that a subset 4 of 0n is Zariski-closed if there is
an embedding of 0 in GLr (F) (for some field F and a positive integer r) and a
Zariski-closed subset X of GLn

r such that 4= X (F)∩0n.
Then we have the following.

Theorem 1.5. Let 0 be a finitely generated linear group over any field, and let
n ≥ 1. Let 4 ⊆ 0n be a Zariski-closed subset. Suppose there exists ε > 0 such
that |41n/1n

| ≥ ε|0/1|n for all normal subgroups of finite index 1 of 0. Then
there exists a finite index subgroup 1 ≤ 0 and elements γ1, . . . , γn ∈ 0 such that
4⊇ γ11× · · ·× γn1.
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This result is proved using an easy adaptation of the proof of Theorem 1.4, which
we leave for the interested reader. Theorem 1.5 amounts to saying that if the closure
of 4 in the profinite group (0̂)n has positive Haar measure, then it has a nonempty
interior.

It is shown in [Breuillard and Gelander 2007, Theorem 8.4] that a finitely
generated linear group which satisfies a coset identity (without parameters) is
virtually solvable. Using this result we can immediately deduce Theorem 1.2 from
Theorem 1.4. In fact, we provide here a self-contained proof of Theorem 1.2 using
Theorem 1.4 and Proposition 2.5 below.

Our original approach to proving Theorem 1.2 relied on strong approximation for
linear groups and on establishing upper bounds on the probabilities PG(w), where
G is a group satisfying T k

≤ G ≤ Aut(T k) for a finite simple group T. However,
this approach is rather involved. A shorter and simpler proof of Theorems 1.4
and 1.2 is given in Section 2.

The idea is to use linearity to map 0 into a “linear algebraic group” G over an
infinite product

∏
m A/m of finite fields. The closure of the image is then a profinite

group. Suppose that for some Zariski-closed subset X ⊂ Gn, the measure of the
closure of X

(∏
m A/m

)
∩0n is positive. Every translate of X by an element of 0n

has the same property. Unless X is a union of connected components of Gn we
can find an infinite set of pairwise distinct translates of X , each of which has the
same positive-measure property. Thus, some pairs of translates of X must intersect
0n with positive measure; intersecting X with a suitable translate by an element
of 0n, we obtain a proper closed subset of X with the same property as X itself.
This process cannot continue indefinitely. The theorem is obtained by applying it
to the fiber over 1 of a nontrivial word map w. The actual implementation uses the
language of (affine) schemes and a notion somewhat weaker than that of measure.

In fact, this method of proof, and Proposition 2.5 in particular, yields the following
extension of Theorem 1.2: Suppose 0 is a finitely generated linear group which
is not virtually solvable. Then all fibers in (0̂)n of all nontrivial words w ∈ Fn have
measure 0.

In other words, for a finite group H, let PH,w denote the probability distri-
bution induced on H by w (so that, for h ∈ H , Pw,H (h) is the probability that
w(h1, . . . , hn)=h). Its `∞-norm is defined by ‖PH,w‖∞=maxh∈H PH,w(h). Then
we have:

Theorem 1.6. Let 0 be a finitely generated linear group. Suppose for some n ≥ 1
and 1 6= w ∈ Fn there exists ε > 0 such that for all finite quotients H of 0 we have
‖PH,w‖∞ ≥ ε. Then 0 is virtually solvable.

See also [Aoun 2011] for a different probabilistic Tits alternative, related to
certain random walks on the discrete linear group 0.
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2. Proof of Theorems 1.4 and 1.2

If a group 0 acts on a topological space X and Y ⊆ X , we say Y is 0-finite if its
orbit under 0 is finite. We say a closed subset Z ⊆ X is 0-covered by Y if Z is a
closed subset of some finite union of 0-translates of Y.

Lemma 2.1. Let 0 be a group acting on a set X. If Y1, . . . , Yn are subsets of X
which are not 0-finite, then there exists g ∈ 0 such that gYi 6= Yj for 1≤ i, j ≤ n.

Proof. For given i , j , the set of g such that gYi = Yj is either empty or is a left
coset of the stabilizer of Yi in 0. By a theorem of B. H. Neumann [1954], a group
cannot be covered by a finite collection of left cosets of subgroups of infinite index.
The result follows. �

Proposition 2.2. Let X be a Noetherian topological space and 0 a group of home-
omorphisms X→ X. Let f denote a function from the set of closed subsets of X to
[0, 1] satisfying the following conditions:

(I) If Z ⊆ Y are closed subsets of X , then f (Z)≤ f (Y ).

(II) For all closed subsets Y ⊆ X and all g ∈ 0 such that f (Y ∩ gY )= 0, we have

f (Y ∪ gY )≥ 2 f (Y ).

If Y ⊆ X is closed and 0-covers some closed subset W ⊆ X with f (W ) > 0, then Y
0-covers some closed 0-stable subset Z ⊆ X with f (Z) > 0.

Proof. By the Noetherian hypothesis, we may assume without loss of generality
that Y is minimal for the property of 0-covering a set of positive f -value. If two
distinct irreducible components Yi and Yj of Y were 0-translates of one another, we
could replace Y with the union of all of its components except Yj , and the resulting
closed set would still 0-cover a set of positive f -value. This is impossible by the
minimality of Y.

If Y is 0-finite, then

Z :=
⋃
g∈0

gY

is a 0-stable finite union of 0-translates of Y containing W. By condition (I), it
satisfies f (Z)> 0, so we are done. As Y is a finite union of irreducible components,
we may therefore assume at least one such component Y0 is not 0-finite. We write
Y = Y0 ∪ Y ′, where no 0-translate of Y ′ contains Y0.

By condition (I), there exists a finite sequence g1, . . . , gr ∈0 such that f (Z) > 0
for

Z := g1Y ∪ · · · ∪ gr Y.
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We choose the gi so that

f (Z) >
sup1(0 finite f

(⋃
g∈1 gY

)
2

. (2-1)

As no 0-translate of Y0 is 0-finite, Lemma 2.1 implies that there exists g such
that gi Y0 6= ggj Y0 for all i , j . Thus,

Y ′ ∪
⋃
i, j

(Y0 ∩ g−1
i ggj Y0)( Y

0-covers Z ∩ gZ . By the minimality of Y, this means f (Z ∩ gZ)= 0. By condi-
tion (II), f (Z ∪ gZ)≥ 2 f (Z), which contradicts (2-1). We conclude that Z must
be 0-finite. �

Now, let A be an integral domain finitely generated over Z with fraction field K.
Let G = Spec B be an affine group scheme of finite type over A (see [Waterhouse
1979]). As usual, for every commutative A-algebra T, let G(T ) denote the set of
Spec T-points of G→ Spec A, i.e., the set of A-algebra homomorphisms B→ T.
The group structure on G makes each G(T ) a group, functorially in T. We regard G
as a topological space with respect to its Zariski topology. If Y ⊆ G is a closed
subset, we define Y (T ) to be the subset of G(T ) consisting of A-homomorphisms
B→ T such that the corresponding map of topological spaces Spec T → G sends
Spec T into a subset of Y. If Z ⊆ G is another closed subset, then

(Y ∩ Z)(T )= Y (T )∩ Z(T ),

but, in general, the inclusion

Y (T )∪ Z(T )⊆ (Y ∪ Z)(T )

need not be an equality.
We define

P(G, A) :=
∏

m∈Maxspec(A)

G(A/m),

where Maxspec denotes the set of maximal ideals, and P(G, A) is endowed with
the product topology. Note that as G is of finite type (i.e., B is a finitely generated
A-algebra) and every A/m is a field finitely generated over Z (and hence finite), it
follows that each G(A/m) is finite and P(G, A) is a profinite group. For any closed
subset X ⊆ G, we define the closed subset

P(X, A) :=
∏

m∈Maxspec(A)

X (A/m)⊆ P(G, A).

Lemma 2.3. If X ⊆ G does not meet the generic fiber Spec B ⊗A K ⊂ G, then
P(X, A) is empty.
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Proof. If I ⊆ B is the ideal defining X , then (B/I )⊗A K = 0, so I⊗A K = B⊗A K.
It follows that there exist elements bi ∈ I and ai/a′i ∈ K such that∑

i

bi ⊗
ai

a′i
= 1,

and clearing denominators we see that some nonzero element a′ :=
∏

i a′i ∈ A
belongs to I. If m is a maximal ideal of A[1/a′], then A[1/a′]/m is a field finitely
generated over Z, hence a finite field, and therefore m∩ A is a maximal ideal of A.
Thus, the image of a′ in A/(m∩ A) is nonzero, from which it follows that there are
no A-homomorphisms B/I → A/(m∩ A), i.e., X (A/(m∩ A))=∅. �

For any subgroup 0 ⊆ G(A)⊆ P(G, A), we define 0 to be the closure of 0 in
P(G, A). This is a closed subgroup of a profinite group and therefore a profinite
group itself. We endow it with Haar measure µ0, normalized so that (0, µ0) is
a probability space. In particular, left translation by 0 is a continuous measure-
preserving action on (0, µ0). As Haar measure is outer regular, for every Borel
set B,

µ0(B)= inf
S⊆Maxspec(A)

|prS B|
|prS 0|

,

where S ranges over all finite sets of maximal ideals of A and prS denotes projection
onto

∏
m∈S G(A/m).

For any positive integer n, we let Gn denote the n-th fiber power of G relative
to A, i.e., defining

Bn := B⊗A B⊗A · · · ⊗A B︸ ︷︷ ︸
n

,

we define Gn
:= Spec Bn , regarded as a topological space with respect to the Zariski

topology. Note that in general the Zariski topology on Gn is not the product topol-
ogy. However, by the universal property of tensor products, Gn(T ) is canonically
isomorphic to G(T )n for all commutative A-algebras T. Moreover, Bn is a finitely
generated Z-algebra, and by the Hilbert basis theorem this implies that Gn is a
Noetherian topological space.

We consider the closure 0n of 0n in P(Gn, A). For any closed subset Y ⊆ Gn,
we define

P0(Y ) := 0n
∩ P(Y, A).

Thus, if Y and Z are closed subsets of Gn,

P0(Y ∩ Z)= 0n
∩ P(Y ∩ Z , A)= 0n

∩ (P(Y, A)∩ P(Z , A))= P0(Y )∩ P0(Z).
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As

P(Y ∪ Z , A)=
∏

m∈Maxspec(A)

(Y (A/m)∪ Z(A/m))⊇ P(Y, A)∪ P(Z , A),

we have
P0(Y ∪ Z)⊇ P0(Y )∪ P0(Z).

Defining
f (Y ) := µ0n (P0(Y )),

condition (I) of Proposition 2.2 is obvious. As µ0n is a measure, if f (Y ∩ Z)= 0,
then

f (Y ∪ Z)= µ0n (P0(Y ∪ Z))

≥ µ0n (P0(Y )∪ P0(Z))

= µ0n (P0(Y ))+µ0n (P0(Z))−µ0n (P0(Y )∩ P0(Z))

= f (Y )+ f (Z)− f (Y ∩ Z)= f (Y )+ f (Z).

As µ0n is 0n-invariant, this implies condition (II).

Proposition 2.4. Let G denote a linear algebraic group over a field K. If 0 is
Zariski-dense in G(K ), then a nonempty closed subset Y of Gn is 0n-finite if and
only if it is a union of connected components of Gn.

Proof. If Y is 0n-finite, its stabilizer 1 is of finite index in 0n, which implies that
the Zariski closure D of 1 in Gn has finite index in Gn. Thus D ∩ (Gn)◦ is of
finite index in (Gn)◦. As (Gn)◦ is connected, it follows that D contains (Gn)◦. The
Zariski closure of any left coset of 0n is a left coset of D and therefore a union of
cosets of (Gn)◦. Conversely, any left translate of a coset of (Gn)◦ is again such a
coset, so the orbit of any union of connected components of Gn is finite. �

We can now prove Theorem 1.4.

Proof. We fix a faithful representation ρ :0→GLr (F), where F is an algebraically
closed field. Let G ⊂ GLr denote the Zariski closure of 0 in GLr .

We recall how to extend G to a subgroup scheme of GLr defined over a finitely
generated Z-algebra. Let

RZ,r := Z[xi j , y]i, j=1,...,r/(y det(xi j )− 1)

denote the coordinate ring of GLr over Z, and let

1Z,r : RZ,r → RZ,r ⊗Z RZ,r , SZ,r : RZ,r → RZ,r , and εZ,r : RZ,r → Z

denote the ring homomorphisms associated to the multiplication, inverse, and unit
maps. Closed subschemes of GLr over any commutative ring A are in one-to-one
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correspondence with ideals I of RA,r := A⊗Z RZ,r , and such an ideal defines a
group subscheme if and only if I is a Hopf ideal [Waterhouse 1979, §2.1], i.e., if
and only if it satisfies the following three conditions:

1A,r (I )⊆ I ⊗A RA,r + RA,r ⊗A I,

SA,r (I )⊆ I,

εA,r (I )= {0}.

We fix a finite set of generators hk of the ideal IF in RF,r associated to G as a
closed subvariety of GLr over F. We lift each hk to an element h̃k ∈ F[xi j , y]. For
any subring A⊆ F such that h̃k ∈ A[xi j , y], we denote again by hk the image of h̃k

in RA,r ; this should not cause confusion. Let A0 denote the subring of F generated
by all matrix entries in GLr (F) of the ρ(gj ), as gj runs over some finite generating
set of 0, together with all coefficients of the h̃k . Let I0 denote the ideal generated
by the elements hk in RA0,r , and let K denote the fraction field of A0. As

1A0,r (I0)⊆ I0⊗A0 RK,r + RK,r ⊗A0 I0

and
SA0,r (I0)⊆ I0⊗A0 RK,r ,

there exists a ∈ A0 such that

1A0,r (hi ) ∈ I0⊗A0 RA0[1/a],r + RA0[1/a],r ⊗A0 I0

and
SA0,r (hi ) ∈ I0⊗A0 A0[1/a]

for all i , and therefore, setting A := A0[1/a] and I := I0⊗A0 A, we have that I is
a Hopf ideal of RA,r . We set G := Spec RA,r/I, the closed group subscheme of
GLr over A defined by hk ∈ RA,r . By construction, ρ(0) is a Zariski-dense finitely
generated subgroup of G(A).

Now, let w be a probabilistic identity on 0 (possibly with parameters). Consider
w as a morphism of schemes over A from Gn to G. Let Y := w−1(1) ⊆ Gn. We
define f as above. If f (Y ) > 0, then Y 0-covers a set of positive f -value, so
by Proposition 2.2 Y 0-covers a closed 0-stable subset Z with f (Z) > 0. By
Lemma 2.3, Z must meet the generic fiber Gn of Gn, which implies that Y must
meet the generic fiber. Proposition 2.4 now implies that Z∩Gn contains a connected
component of Gn, and it follows that Y ∩Gn contains a connected component, i.e.,
w is a coset identity. Thus, we may assume f (Y )= 0.

Therefore, for every ε > 0, there exists a finite set S of maximal ideals of A
such that

|prS w
−1(1)|

|prS 0
n|

< ε.
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Defining 1 to be the kernel of prS , we see that, in the finite quotient 0/1, the
probability that the word map w attains the value 1+1 is less than ε. It follows
that w is not a probabilistic identity on 0. This contradiction completes the proof
of Theorem 1.4. �

Proposition 2.5. Let K be a field and G a linear algebraic group over K with
nontrivial adjoint semisimple identity component. Let w ∈ Fn be a nontrivial word
and let g0 ∈G(K ). Then w−1(g0) does not contain any connected component of Gn.

Proof. Equivalently, we claim that dimw−1(g0) < dim Gn. Since dimensions do not
depend on the base field, we may and shall assume, without loss of generality, that
K is algebraically closed. Let G◦ be the identity component, T a maximal torus
of G◦ and B a Borel subgroup of G◦ containing T. Let 8 be the root system of G
with respect to T, and let 8+ denote the set of roots of B with respect to T. Every
maximal torus of G◦ is conjugate under G◦(K ) to T. The Weyl group NG(T )/T acts
transitively on the set of Weyl chambers, so every pair T ′⊂ B ′ is conjugate to T ⊂ B
by some element of G◦(K ). In particular, for any g ∈ G(K ), the pair g−1T g ⊂
g−1 Bg is conjugate in G◦(K ) to T ⊂ B, or, equivalently, there is some element
h∈ gG◦(K ) such that conjugation by h stabilizes T and B. The highest root α of8+

is determined by B, so h likewise preserves α. It therefore normalizes kerα◦, and
therefore the derived group Gα of the centralizer of kerα◦. This group is semisimple
and of type A1, so every element that normalizes it acts by an inner automorphism.
It follows that the centralizer of Gα in G meets every connected component of G.

Suppose now thatw is constant on g1G◦×· · ·×gnG◦ for some g1, . . . , gn ∈G(K ).
Without loss of generality we may assume that all gi centralize Gα . Asw is constant
on g1Gα × · · ·× gnGα, and as

w(g1h1, . . . , gnhn)= w(g1, . . . , gn)w(h1, . . . , hn)

for all h1, . . . , hn ∈ Gα(K ), it follows that w is constant on Gn
α . This is impossible

because nontrivial words give nontrivial word maps on all semisimple algebraic
groups [Borel 1983]. �

Proof of Theorem 1.2. Every virtually solvable linear group satisfies a nontrivial
identity. In the other direction, if 0 ⊂ GLr (K ) satisfies a probabilistic identity,
then it satisfies a coset identity by Theorem 1.4, and the same is true for its Zariski
closure G. If R denotes the maximal solvable normal subgroup of G◦, then G/R
also satisfies a coset identity, and by Proposition 2.5 this implies that G/R is finite,
i.e., that G is virtually solvable, and so is 0. �

3. Open problems

In this section we discuss related open problems concerning finite and residually
finite groups.
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Problem 3.1. Do all finitely generated residually finite groups which satisfy a
probabilistic identity satisfy an identity?

We also pose a related, finitary version of Problem 3.1.

Problem 3.2. Is it true that, for any word 1 6= w ∈ Fn , any positive integer d and
any real number ε > 0, there exists a word 1 6= v ∈ Fm (for some m) such that, if G
is a finite d-generated group satisfying PG(w)≥ ε, then v is an identity of G?

Clearly, a positive answer to Problem 3.2 implies a positive answer to Problem 3.1.
Both seem to be very challenging questions, which might have negative answers in
general. However, in some special cases they are solved affirmatively. For example,
if w= [x1, x2] or w= x2

1 , then it is known (see [Neumann 1989] and [Mann 1994])
that, for a finite group G, if PG(w) ≥ ε > 0, then G is bounded-by-abelian-by-
bounded (in terms of ε). This implies affirmative answers to Problems 3.1 and 3.2
for these particular words w.

In general we cannot answer these problems for words of the form xk
1 (k > 2).

However, for a prime p, a result of Khukhro [1986] shows that, if G is a finitely
generated pro-p group satisfying a coset identity x p

1 (namely, there is a coset of an
open subgroup consisting of elements of order p or 1) then G is virtually nilpotent
(and hence satisfies an identity).

Another positive indication is the result showing that for a (nonabelian) finite
simple group T and a nontrivial word w we have PT (w)→ 0 as |T | →∞ (see
[Dixon et al. 2003] for this result, and also [Larsen and Shalev 2012] for upper
bounds on PT (w) of the form |T |−αw ). This implies that a finite simple group T
satisfying PT (w)≥ ε >0 is of bounded size, hence it satisfies an identity (depending
on w and ε only).

Affirmative answers to Problems 3.1 and 3.2 would have far reaching applications.
The argument proving Theorem 1.1 above also proves the following.

Proposition 3.3. Assume Problem 3.1 has a positive answer, and let 0 be a finitely
generated residually finite group. Then either 0 satisfies an identity or 0 is randomly
free.

In particular:

(i) If 0 does not satisfy an identity then 0̂ has a nonabelian free subgroup.

(ii) If 0̂ has a nonabelian free subgroup then almost all n-tuples in 0̂ freely
generate a free subgroup.

The next application concerns residual properties of free groups. It is well known
that the free group Fn is residually-p. But when is it residually X for a collection X
of finite p-groups? If this is the case, then Fn is also residually Y, where Y is the
subset of X consisting of n-generated p-groups. Thus we may replace X by Y
and assume all p-groups in X are n-generated. It is also clear that if Fn (n > 1) is
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residually X then the groups in X do not satisfy a common identity (namely, they
generate the variety of all groups).

It turns out that, assuming an affirmative answer to Problem 3.2, these conditions
are also sufficient.

Proposition 3.4. Assume Problem 3.2 has a positive answer. Let n≥2 be an integer,
p a prime, and X a set of n-generated finite p-groups. Then the free group Fn is
residually X if and only if the groups in X do not satisfy a common identity.

To prove this, suppose the groups in X do not satisfy a common identity. To
show that Fn is residually X , we have to find, for each 1 6=w=w(x1, . . . , xn)∈ Fn ,
a group G ∈ X and an epimorphism φ : Fn → G, such that φ(w) 6= 1. This
amounts to finding a group G ∈ X and an n-tuple g1, . . . , gn ∈ G generating G
such that w(g1, . . . , gn) 6= 1 (and then φ is defined by sending xi to gi ). Suppose,
given w, that there is no G ∈ X with such an n-tuple. Then, for every G ∈ X , and
every generating n-tuple (g1, . . . , gn) ∈ Gn, we have w(g1, . . . , gn)= 1. Now, the
probability that a random n-tuple in Gn generates G is the probability that its image
in V n spans V, where V = G/8(G) is the Frattini quotient of G, regarded as a
vector space of dimension ≤ n over the field with p elements. This probability is at
least ε :=

∏n
i=1(1− p−i ) > 0. Thus PG(w)≥ ε for all G ∈ X . By the affirmative

answer to Problem 3.2, all the groups G ∈ X satisfy a common identity v 6= 1
(which depends on w, n and p). This contradiction proves Proposition 3.4.

This argument can be generalized to cases when X consists of finite groups G
with the property that n random elements of G generate G with probability bounded
away from zero. See [Jaikin-Zapirain and Pyber 2011] and the references therein for
the description of such groups and the related notion of positively finitely generated
profinite groups.
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