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Modular elliptic curves over
real abelian fields and the generalized

Fermat equation x 2`+ y 2m = zp

Samuele Anni and Samir Siksek

Let K be a real abelian field of odd class number in which 5 is unramified. Let
S5 be the set of places of K above 5. Suppose for every nonempty proper subset
S ⊂ S5 there is a totally positive unit u ∈OK such that∏

q∈S

NormFq/F5(u mod q) 6= 1̄.

We prove that every semistable elliptic curve over K is modular, using a combi-
nation of several powerful modularity theorems and class field theory. We deduce
that if K is a real abelian field of conductor n< 100, with 5 - n and n 6= 29, 87, 89,
then every semistable elliptic curve E over K is modular.

Let `,m, p be prime, with `,m ≥ 5 and p ≥ 3. To a putative nontrivial
primitive solution of the generalized Fermat equation x2`

+ y2m
= z p we associate

a Frey elliptic curve defined over Q(ζp)
+, and study its mod ` representation with

the help of level lowering and our modularity result. We deduce the nonexistence
of nontrivial primitive solutions if p ≤ 11, or if p = 13 and `,m 6= 7.

1. Introduction

Let p, q, r ∈ Z≥2. The equation

x p
+ yq
= zr (1)

is known as the generalized Fermat equation (or the Fermat–Catalan equation)
with signature (p, q, r). As in Fermat’s last theorem, one is interested in integer
solutions x, y, z. Such a solution is called nontrivial if xyz 6= 0, and primitive if
x, y, z are coprime. Let χ = p−1

+ q−1
+ r−1. The generalized Fermat conjecture

[Darmon and Granville 1995; Darmon 1997], also known as the Tijdeman–Zagier
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EP/K034383/1.
MSC2010: primary 11D41, 11F80; secondary 11G05, 11F41.
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1148 Samuele Anni and Samir Siksek

conjecture and as the Beal conjecture [Beukers 2012], is concerned with the case
χ < 1. It states that the only nontrivial primitive solutions to (1) with χ < 1 are

1+ 23
= 32, 25

+ 72
= 34,

73
+ 132

= 29, 27
+ 173

= 712,

35
+ 114

= 1222, 14143
+ 22134592

= 657,

177
+ 762713

= 210639282, 92623
+ 153122832

= 1137,

438
+ 962223

= 300429072, 338
+ 15490342

= 156133.

The conjecture has been established for many signatures (p, q, r), including several
infinite families of signatures, starting with Fermat’s last theorem (p, p, p) by
Wiles [1995]; (p, p, 2) and (p, p, 3) by Darmon and Merel [1997]; (2, 4, p) by
Ellenberg [2004] and Bennett, Ellenberg and Ng [Bennett et al. 2010]; (2p, 2p, 5)
by Bennett [2006]; (2, 6, p) by Bennett and Chen [2012]; and other signatures
by other researchers. An excellent, exhaustive and up-to-date survey was recently
compiled by Bennett, Chen, Dahmen and Yazdani [Bennett et al. 2015a], which
also proves the generalized Fermat conjecture for several families of signatures,
including (2p, 4, 3).

The main Diophantine result of this paper is the following theorem.

Theorem 1.1. Let p = 3, 5, 7, 11 or 13. Let `,m ≥ 5 be primes, and if p = 13
suppose moreover that `,m 6= 7. Then the only primitive solutions to

x2`
+ y2m

= z p (2)

are the trivial ones (x, y, z)= (±1, 0, 1) and (0,±1, 1).

If `= 2, 3 or m = 2, 3 then (2) has no nontrivial primitive solutions for prime
p≥ 3; this follows from the aforementioned work on Fermat equations of signatures
(2, 4, p), (2, 6, p) and (2p, 4, 3).

Our approach is unusual in that it treats several bi-infinite families of signatures.
We start with a descent argument (Section 4), inspired by the approach of Bennett
[2006] for x2n

+ y2n
= z5 and that of Freitas [2015] for xr

+ yr
= z p with certain

small values of r . For p = 3 the descent argument allows us to quickly obtain a
contradiction (Section 5) through results of Bennett and Skinner [2004]. The bulk of
the paper is devoted to 5≤ p ≤ 13. Our descent allows us to construct Frey curves
(Sections 6 and 7) attached to (2) that are defined over the real cyclotomic field
K =Q(ζ+ζ−1) where ζ is a p-th root of unity, or, for p≡ 1 (mod 4), defined over
the unique subfield K ′ of K of degree 1

4(p− 1). These Frey curves are semistable
over K , though not necessarily over K ′.

In the remainder of the paper we study the mod ` representations of these Frey
curves using modularity and level lowering. Several recent papers [Dieulefait and
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Freitas 2013; Freitas and Siksek 2015a; 2015c; Freitas 2015; Bennett et al. 2015b]
apply modularity and level lowering over totally real fields to study Diophantine
problems. We need to refine many of the ideas in those papers, both because we
are dealing with representations over number fields of relatively high degree, and
because we are aiming for a “clean” result without any exceptions (the methods
are much easier to apply for sufficiently large `). We first establish modularity
of the Frey curves by combining a modularity theorem for residually reducible
representations due to Skinner and Wiles [1999] with a theorem of Thorne [2016]
for residually dihedral representations, and implicitly applying modularity lifting
theorems of Kisin [2009] and others for representations with “big image”. We use
class field theory to glue together these great modularity theorems and produce our
own theorem (proved in Section 2) that applies to our Frey curves, but which we
expect to be of independent interest.

Theorem 1.2. Let K be a real abelian number field. Write S5 for the prime ideals
q of K above 5. Suppose

(a) 5 is unramified in K ;

(b) the class number of K is odd;

(c) for each nonempty proper subset S of S5, there is some totally positive unit u
of OK such that ∏

q∈S

NormFq/F5(u mod q) 6= 1̄. (3)

Then every semistable elliptic curve E over K is modular.

Theorem 1.2 allows us to deduce the following corollary (also proved in Section 2).

Corollary 1.3. Let K be a real abelian field of conductor n < 100 with 5 - n and
n 6= 29, 87, 89. Let E be a semistable elliptic curve over K . Then E is modular.

To apply level lowering theorems to a modular mod ` representation, one must
first show that this representation is irreducible. Let GK = Gal(K/K ). The mod `
representation that concerns us, denoted ρ̄E,` : GK → GL2(F`), is the one attached
to the `-torsion of our semistable Frey elliptic curve E defined over the field
K =Q(ζ + ζ−1) of degree 1

2(p− 1). We exploit semistability of our Frey curve to
show, with the help of class field theory, that if ρ̄E,` is reducible then E or some
`-isogenous curve possesses nontrivial K-rational `-torsion. Using famous results
on torsion of elliptic curves over number fields of small degree due to Kamienny
[1992], Parent [2000; 2003], and Derickx et al. [≥ 2016] and some computations
of K-points on certain modular curves, we prove the required irreducibility result
(Section 10).

The final step (Section 11) in the proof of Theorem 1.1 requires computations
of certain Hilbert eigenforms over the fields K together with their eigenvalues at
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primes of small norm. For these computations we have made use of the “Hilbert
modular forms package” developed by Dembélé, Donnelly, Greenberg and Voight
and available within the Magma computer algebra system [Bosma et al. 1997].
For the theory behind this package see [Dembélé and Voight 2013]. For p ≥ 17,
the required computations are beyond the capabilities of current software, though
the strategy for proving Theorem 1.1 should be applicable to larger p once these
computational limitations are overcome. In fact, at the end of Section 11, we
heuristically argue that the larger the value of p is, the more likely that the argument
used to complete the proof of Theorem 1.1 will succeed for that particular p. We
content ourselves with proving the following theorem (Section 8).

Theorem 1.4. Let p be an odd prime, and let K =Q(ζ+ζ−1) for ζ = exp(2π i/p).
Write OK for the ring of integers in K and p for the unique prime ideal above p.
Suppose that there are no elliptic curves E/K with full 2-torsion and conductors
2OK , 2p. Then there is an ineffective constant C p (depending only on p) such that
for all primes `,m ≥ C p, the only primitive solutions to (2) are the trivial ones
(x, y, z)= (±1, 0, 1) and (0,±1, 1).

If p ≡ 1 (mod 4) then let K ′ be the unique subfield of K of degree 1
4(p − 1).

Let B be the unique prime ideal of K ′ above p. Suppose that there are no elliptic
curves E/K ′ with nontrivial 2-torsion and conductors 2B, 2B2. Then there is an
ineffective constant C p (depending only on p) such that for all primes `, m ≥ C p,
the only primitive solutions to (2) are the trivial ones (x, y, z) = (±1, 0, 1) and
(0,±1, 1).

The computations described in this paper were carried out using the computer
algebra system Magma [Bosma et al. 1997]. The code and output is available from

http://homepages.warwick.ac.uk/∼maseap/progs/diophantine/

2. Proof of Theorem 1.2 and Corollary 1.3

We need a result from class field theory. The following version is proved by Kraus
[2007, Appendice A].

Proposition 2.1. Let K be a number field, and q a rational prime that does not
ramify in K . Denote the mod q cyclotomic character by χq : GK → F×q . Write Sq

for the set of primes q of K above q , and let S be a subset of Sq . Let ϕ : GK → F×q
be a character satisfying:

(a) ϕ is unramified outside S and the infinite places of K ;

(b) ϕ|Iq = χq |Iq for all q ∈ S; here Iq denotes the inertia subgroup of GK at q.

Let u ∈OK be a unit that is positive in each real embedding of K . Then∏
q∈S

NormFq/Fq (u mod q)= 1̄.

http://homepages.warwick.ac.uk/~maseap/progs/diophantine/
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Proof. For the reader’s convenience we give a sketch of Kraus’s elegant argument.
Let L be the cyclic field extension of K cut out by the kernel of ϕ. Then we may
view ϕ as a character Gal(L/K )→ F×q . Write MK for the places of K. For υ ∈MK ,
let 2υ : K ∗υ → Gal(L/K ) be the local Artin map. Let u ∈ OK be a unit that is
positive in each real embedding. We consider the values ϕ(2υ(u))∈ F×q as υ ranges
over MK .

Suppose first that υ ∈ MK is infinite. If υ is complex then 2υ is trivial and so
certainly ϕ(2υ(u))= 1̄ in F×q . So suppose υ is real. As u is positive in Kυ , it is a
local norm and hence in the kernel of 2υ . Therefore ϕ(2υ(u))= 1̄.

Suppose next that υ ∈ MK is finite. As u ∈O×υ , it follows from local reciprocity
that 2υ(u) belongs to the inertia subgroup Iυ ⊆Gal(L/K ). If υ /∈ S then ϕ(Iυ)= 1
by (a) and so ϕ(2υ(u))= 1̄. Thus suppose that υ = q ∈ S. It follows from (b) that
ϕ(2q(u))=χq(2q(u)). Through an explicit calculation, Kraus [2007, Appendice A,
Proposition 1] shows that χq(2q(u))= NormFq/Fq (u mod q)−1.

Finally, by global reciprocity,
∏
υ∈MK

2υ(u) = 1. Applying ϕ to this equality
completes the proof. �

We also make use of the following theorem of Thorne [2016, Theorem 1.1].

Theorem 2.2 (Thorne). Let E be an elliptic curve over a totally real field K .
Suppose 5 is not a square in K and that E has no 5-isogenies defined over K . Then
E is modular.

Thorne deduces this result by combining his beautiful modularity theorem for
residually dihedral representations [Thorne 2016, Theorem 1.2], with [Freitas et al.
2015, Theorem 3]. The latter result is essentially a straightforward consequence
of the powerful modularity lifting theorems for residual representations with “big
image” due to Kisin [2009], Barnet-Lamb et al. [2012; 2013] and Breuil and
Diamond [2014].

Finally we need the following modularity theorem for residually reducible repre-
sentations due to Skinner and Wiles [1999, Theorem A].

Theorem 2.3 (Skinner and Wiles). Let K be a real abelian number field. Let q be
an odd prime, and

ρ : GK → GL2(Qq)

be a continuous, irreducible representation, unramified away from a finite number
of places of K . Suppose ρ̄ is reducible and write ρ̄ss

= ψ1⊕ψ2 . Suppose further
that

(i) the splitting field K (ψ1/ψ2) of ψ1/ψ2 is abelian over Q;

(ii) (ψ1/ψ2)(τ )=−1 for each complex conjugation τ ;

(iii) (ψ1/ψ2)|Dq 6= 1 for each q | q;
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(iv) for all q | q,

ρ|Dq ∼

(
φ
(q)
1 · ψ̃1 ∗

0 φ
(q)
2 · ψ̃2

)
with φ(q)2 factoring through a pro-q extension of Kq and φ(q)2 |Iq having finite
order, and where ψ̃i is a Teichmüller lift of ψi ;

(v) det(ρ)= ψχ k−1
q , where ψ is a character of finite order and k ≥ 2 is an integer.

Then the representation ρ is associated to a Hilbert modular newform.

Proof of Theorem 1.2. As 5 is unramified in K , it certainly is not a square in K . If
E has no 5-isogenies defined over K then the result follows from Thorne’s theorem.
We may thus suppose that the mod 5 representation ρ̄ of E is reducible, and write
ρ̄ss
= ψ1⊕ψ2. We verify hypotheses (i)–(v) in the theorem of Skinner and Wiles

(with q = 5) to deduce the modularity of ρ : GK →Aut(T5(E))∼=GL2(Z5), where
T5(E) is the 5-adic Tate module of E . If E has good supersingular reduction at some
q | 5 then (as q is unramified) ρ̄|Iq is irreducible [Serre 1972, Proposition 12], con-
tradicting the reducibility of ρ̄. It follows that E has good ordinary or multiplicative
reduction at all q | 5. In particular, hypothesis (iv) holds with φ(q)i = 1.

Nowψ1ψ2=det(ρ)=χ5 so hypothesis (v) holds withψ=1 and k=2. Moreover,
for each complex conjugation τ , we have

(ψ1/ψ2)(τ )= ψ1(τ )ψ2(τ
−1)= ψ1(τ )ψ2(τ )= χ5(τ )=−1,

so (ii) is satisfied. It follows from the fact that E has good ordinary or multiplicative
reduction at all q | 5, that (ρ̄|Iq)

ss
= χ5|Iq ⊕ 1 and so ψ1/ψ2 is nontrivial when

restricted to Iq (again as q is unramified in K ); this proves (iii).
It remains to verify (i). Note thatψ1/ψ2=χ5/ψ

2
2 . Hence K (ψ1/ψ2) is contained

in the compositum of the fields K (ζ5) and K (ψ2
2 ), and by symmetry also contained

in the compositum of the fields K (ζ5) and K (ψ2
1 ). It is sufficient to show that either

K (ψ2
2 ) = K or K (ψ2

1 ) = K . Note that ψ2
i : GK → F×5 are quadratic characters

that are unramified at all archimedean places. We will show that one of them is
everywhere unramified, and then the desired result follows from the assumption
that the class number of K is odd. First note, by the semistability of E , that ψ1 and
ψ2 are unramified at all finite primes p - 5. Let S be the subset of q ∈ S5 such that
ψ1 is unramified at q. By the above, we know that these are precisely the q ∈ S5

such that ψ2|Iq = χ5|Iq . By assumption (c) and Proposition 2.1, we have that either
S =∅ or S = S5. If S =∅ then ψ2 is unramified at all q | 5, and if S = S5 then ψ1

is unramified at all q | 5. This completes the proof. �

Proof of Corollary 1.3. Suppose first that K = Q(ζn)
+. If n ≡ 2 (mod 4) then

Q(ζn)=Q(ζn/2), so we adopt the usual convention of supposing that n 6≡ 2 (mod 4).
We consider values n < 100 and impose the restriction 5 - n, which ensures that
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condition (a) of Theorem 1.2 is satisfied. It is known [Miller 2014] that the class
number h+n of K is 1 for all n < 100. Thus condition (b) is also satisfied. Write E+n
for the group of units of K and C+n for the subgroup of cyclotomic units. A result
of Sinnott [1978] asserts that [E+n : C

+
n ] = b · h+n , where b is an explicit constant

that happens to be 1 for n with at most 3 distinct prime divisors, and so certainly
for all n in our range. It follows that E+n =C+n for n < 100. Now let S5 be as in the
statement of Theorem 1.2. We wrote a simple Magma script which for each n< 100
satisfying 5 - n and n 6≡ 2 (mod 4) writes down a basis for the cyclotomic units C+n
and deduces a basis for the totally positive units. It then checks, for every nonempty
proper subset of S5, if there is an element u of this basis of totally positive units
that satisfies (3). We found this to be the case for all n under consideration except
n = 29, 87 and 89. The corollary follows from Theorem 1.2 for K =Q(ζn)

+ with
n as in the statement of the corollary.

Now let K be a real abelian field with conductor n as in the statement of the
corollary. Then K ⊆ Q(ζn)

+. As Q(ζn)
+/K is cyclic, modularity of an elliptic

curve E/K follows, by Langlands’ cyclic base change theorem [Langlands 1980],
from modularity of E over Q(ζn)

+, completing the proof of the corollary. �

3. Cyclotomic preliminaries

Throughout p will be an odd prime. Let ζ be a primitive p-th root of unity, and
K =Q(ζ + ζ−1) the maximal real subfield of Q(ζ ). We write

θ j = ζ
j
+ ζ− j

∈ K , j = 1, . . . , 1
2(p− 1).

Let OK be the ring of integers of K . Let p be the unique prime ideal of K above p.
Then pOK = p(p−1)/2.

Lemma 3.1. For j = 1, . . . , 1
2(p− 1), we have

θ j ∈O×K , θ j + 2 ∈O×K , (θ j − 2)OK = p.

Moreover, (θ j − θk)OK = p for 1≤ j < k ≤ 1
2(p− 1).

Proof. Observe that θ j = (ζ
2 j
− ζ−2 j )/(ζ j

− ζ− j ) and thus belongs to the group
of cyclotomic units. Given j , let j ≡ 2r (mod p). Then θ j + 2= θ2

r ∈O
×

K .
For now, let L=Q(ζ ). Let P be the prime of OL above p. Then pOL =P2. As is

well-known, P= (1−ζ u)OL for u= 1, 2, . . . , p−1. Note that θ j−2= (ζ r
−ζ−r )2,

with j ≡ 2r (mod p), from which we deduce that (θ j − 2)OL =P2
= pOL , hence

(θ j − 2)OK = p.
For the final part, j 6≡ ±k (mod p). Thus there exist u, v 6≡ 0 (mod p) such that

u+ v ≡ j, u− v ≡ k (mod p).
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Then
(ζ u
− ζ−u)(ζ v − ζ−v)= θ j − θk,

and so (θ j − θk)OL =P2
= pOL . This completes the proof. �

4. The descent

Now let `,m ≥ 5 be prime, and let (x, y, z) be a nontrivial, primitive solution
to (2). If ` = p, then (2) can be rewritten as z p

+ (−x2)p
= (ym)2. Darmon and

Merel [1997] have shown that the only primitive solutions to the generalized Fermat
equation (1) with signature (p, p, 2) are the trivial ones, giving us a contradiction.
We shall henceforth suppose that ` 6= p and m 6= p.

Clearly z is odd. By swapping in (2) the terms x` and ym if necessary, we may
suppose that 2 | x . We factor the left-hand side over Z[i]. It follows from our
assumptions that the two factors x`+ ymi and x`− ymi are coprime. There exist
coprime rational integers a, b such that

x`+ ymi = (a+ bi)p, z = a2
+ b2.

Then

x` = 1
2((a+ bi)p

+ (a− bi)p)

= a ·
p−1∏
j=1

((a+ bi)+ (a− bi)ζ j )

= a ·
(p−1)/2∏

j=1

((a+ bi)+ (a− bi)ζ j ) · ((a+ bi)+ (a− bi)ζ− j ).

In the last step we have paired up the complex conjugate factors. Multiplying out
these pairs we obtain a factorization of x` over OK :

x` = a ·
(p−1)/2∏

j=1

((θ j + 2)a2
+ (θ j − 2)b2). (4)

To ease notation, write

β j = (θ j + 2)a2
+ (θ j − 2)b2, j = 1, . . . , 1

2(p− 1) . (5)

Lemma 4.1. Write n = υ2(x)≥ 1.

(i) If p - x then
a = 2`nα`, β jOK = b`j ,

where α is a rational integer and αOK , b1, . . . , b(p−1)/2 are pairwise coprime
ideals of OK , all of which are coprime to 2p.
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(ii) If p | x then
a = 2`n pκ`−1α`, β jOK = p · b`j ,

where κ = υ p(x)≥ 1, α is a rational integer and α ·OK , b1, . . . , b(p−1)/2 are
pairwise coprime ideals of OK , all of which are coprime to 2p.

Proof. As z = a2
+ b2 is odd, exactly one of a, b is even. Thus the β j are coprime

to 2OK . We see from (4) that 2`n ‖ a, and hence that b is odd.
As a, b are coprime, it is clear that the greatest common divisor of aOK and

β jOK divides (θ j − 2)OK = p. Moreover, for k 6= j , the greatest common divisor
of β jOK and βkOK divides

((θ j + 2)(θk − 2)− (θk + 2)(θ j − 2))OK = 4(θk − θ j )OK = 4p.

However, β j is odd, and so the greatest common divisor of β jOK and βkOK

divides p. Now (i) follows immediately from (4). So suppose p | x . For (ii) we have
to check that p‖β j . However, since (θ j −2)OK = p and θ j +2 ∈O×K , reducing (4)
modulo p shows that a p

≡ 0 (mod p), and hence that p | a. Since a, b are coprime,
it follows that υp(β j )= 1. Now, from (4),

1
2(p− 1) υ p(a)= υp(a)= ` υp(x)−

(p−1)/2∑
j=1

υp(β j )=
1
2(p− 1)(κ`− 1),

giving the desired exponent of p in the factorization of a. �

5. Proof of Theorem 1.1 for p= 3

Suppose p = 3. Then K =Q and θ := θ1 =−1. We treat first the case 3 - x . By
Lemma 4.1,

a = 2`nα`, a2
− 3b2

= γ `

for some coprime odd rational integers α and γ . We obtain the equation

22`nα2`
− γ ` = 3b2.

Bennett and Skinner [2004, Theorem 1] show that the equation xn
+ yn
= 3z2 has

no solutions in coprime integers x, y, z for n ≥ 4, giving us a contradiction.
We now treat 3 | x . By Lemma 4.1,

a = 2`n3κ`−1α`, a2
− 3b2

= 3γ `

for coprime rational integers α, γ that are also coprime to 6. Thus

22`n32κ`−3α2`
− γ ` = b2.
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Using the recipes of Bennett and Skinner [2004, Sections 2, 3], we can attach a Frey
curve to such a triple (α, γ, b) whose mod ` representation arises from a classical
newform of weight 2 and level 6. As there are no such newforms our contradiction
is complete.

6. The Frey curve

We shall henceforth suppose p ≥ 5. From now on, fix 1 ≤ j , k ≤ 1
2(p− 1) with

j 6= k. The expressions β j , βk are given by (5). For each such choice of ( j, k) we
shall construct a Frey curve. The idea is that the three expressions a2, β j , βk are
roughly `-th powers (Lemma 4.1). Moreover they are linear combinations of a2

and b2, and hence must be linearly dependent. Writing down this linear relation
gives a Fermat equation (with coefficients) of signature (`, `, `). As in the work
of Hellegouarch, Frey, Serre, Ribet, Kraus and many others, one can associate
to such an equation a Frey elliptic curve whose mod ` representation has very
little ramification. In what follows we take care to scale the expressions a2, β j , βk

appropriately so that the Frey curve is semistable.

Case I: p - x . Let

u = β j , v =−
(θ j − 2)
(θk − 2)

βk, w =
4(θ j − θk)

(θk − 2)
· a2. (6)

Then u+ v+w = 0. Moreover, by Lemmas 3.1 and 4.1,

uOK = b`j , vOK = b`k, wOK = 22`n+2
·α2`OK .

We let the Frey curve be

E = E j,k : Y 2
= X (X − u)(X + v). (7)

For a nonzero ideal a, we define its radical, denoted by Rad(a), to be the product
of the distinct prime ideal factors of a.

Lemma 6.1. Suppose p - x. Let E be the Frey curve (7) where u, v, w are given
by (6). The curve E is semistable, with multiplicative reduction at all primes above
2 and good reduction at p. It has minimal discriminant and conductor

DE/K = 24`n−4α4`b2`
j b

2`
k , NE/K = 2 ·Rad(αb jbk).

Proof. The invariants c4, c6,1, j (E) have their usual meanings and are given by

c4 = 16(u2
− vw)= 16(v2

−wu)= 16(w2
− uv),

c6 =−32(u− v)(v−w)(w− u), 1= 16u2v2w2, j (E)= c3
4/1.

(8)

By Lemma 4.1, we have that αOK , b j and bk are pairwise coprime, and all coprime
to 2p. In particular p -1 and so E has good reduction at p. Moreover, c4 and 1 are
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coprime away from 2. Hence the model in (7) is already semistable away from 2.
Recall that 2` | a and 2 - b. Thus

u ≡ (θ j − 2)b2 (mod 22`), v ≡−(θ j − 2)b2 (mod 22`), w ≡ 0 (mod 22`+2).

It is clear that υq( j)< 0 for all q | 2. Thus E has potentially multiplicative reduction
at all q | 2. Write γ =−c4/c6. To show that E has multiplicative reduction at q it
is enough to show that Kq(

√
γ )/Kq is an unramified extension [Silverman 1994,

Exercise V.5.11]. However,

1
16 c4 = (u2

− vw)≡ (θ j − 2)2 · b4 (mod 22`),

which shows that c4 is a square in Kq. Moreover,

−
1
16 c6 = 2(u− v)(v−w)(w− u)≡ 4 · (θ j − 2)3 · b6 (mod 22`+1).

Thus Kq(
√
γ )= Kq(

√
θ j − 2). As before, letting r satisfy 2r ≡ j (mod p), we have

θ j−2= (ζ r
−ζ−r )2 and so Kq(

√
γ ) is contained in the unramified extension Kq(ζ ).

Hence E has multiplicative reduction at q | 2.
Finally 2 is unramified in K , and so υq(c4) = υ2(16) = 4. It follows that

DE/K = (1/212) ·OK , as required. �

Case II: p | x . Let

u =
β j

(θ j − 2)
, v =−

βk

(θk − 2)
, w =

4(θ j − θk)

(θ j − 2)(θk − 2)
· a2. (9)

Then, from Lemmas 3.1 and 4.1,

uOK = b`j , vOK = b`k, wOK = 22`n+2
· pδ ·α2`OK ,

where
δ = (κ`− 1)(p− 1)− 1. (10)

Again u+ v+w = 0 and the Frey curve is given by (7).

Lemma 6.2. Suppose p | x. Let E be the Frey curve (7) where u, v, w are given
by (9). The curve E is semistable, with multiplicative reduction at p and at all
primes above 2. It has minimal discriminant and conductor

DE/K = 24`n−4p2δα4`b2`
j b

2`
k , NE/K = 2p ·Rad(αb jbk).

Proof. The proof is an easy modification of the proof of Lemma 6.1. �

7. A closer look at the Frey curve for p≡ 1 (mod 4)

In this section we suppose that p≡1 (mod 4). The Galois group of K =Q(ζ+ζ−1)

is cyclic of order 1
2(p−1). Thus the field K =Q(ζ + ζ−1) has a unique involution

τ ∈ Gal(K/Q), and we let K ′ be the subfield of degree 1
4(p− 1) that is fixed by
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this involution. In the previous section we let 1≤ j, k ≤ 1
2(p− 1) with j 6= k. In

this section we shall impose the further condition that τ(θ j )= θk . Now a glance at
the definition (7) of the Frey curve E and the formulae (9) for u and v in the case
p | x shows that the curve E is in fact defined over K ′. This is not true in the case
p - x , but we can take a twist of the Frey curve so that it is defined over K ′.

Case I: p - x . Let

u′ = (θk − 2)β j , v′ =−(θ j − 2)βk, w′ = 4(θ j − θk) · a2, (11)

and let
E ′ : Y 2

= X (X − u′)(X + v′).

Clearly the coefficients of E ′ are invariant under τ , and so E ′ is defined over K ′.
Moreover, E ′/K is the quadratic twist of E/K by (θk − 2). Let B be the unique
prime of K ′ above p. Let

b j,k = NormK/K ′(b j )= NormK/K ′(bk).

It follows from Lemma 4.1 that the OK ′-ideal b j,k is coprime to α and to 2p. An
easy calculation leads us to the following lemma.

Lemma 7.1. Suppose p - x. Let E ′/K ′ be the above Frey elliptic curve. Then E ′ is
semistable away from B, with minimal discriminant and conductor

DE ′/K ′ = 24`n−4B3α4`b2`
j,k, NE ′/K ′ = 2 ·B2

·Rad(αb j,k).

Case II: p | x . Another straightforward computation yields the following lemma.

Lemma 7.2. Suppose p | x. Let E ′ = E be the Frey curve in Lemma 6.2. Then E ′

is defined over K ′. The curve E ′/K ′ is semistable with minimal discriminant and
conductor

DE ′/K ′ = 24`n−4Bδα4`b2`
j,k, NE ′/K ′ = 2 ·B ·Rad(αb j,k),

where δ is given by (10).

Remark. Clearly E has full 2-torsion over K . The curve E ′ has a point of order 2
over K ′, but not necessarily full 2-torsion.

8. Proof of Theorem 1.4

Lemma 8.1. Let p be an odd prime. There is an ineffective constant C (1)
p depending

on p such that for odd primes `,m ≥ C (1)
p and any nontrivial primitive solution

(x, y, z) of (2), the Frey curve E/K as in Section 6 is modular. If p ≡ 1 (mod 4)
then under the same assumptions, the Frey curve E ′/K ′ as in Section 7 is modular.



Modular elliptic curves over real abelian fields and generalized Fermat 1159

Proof. Freitas et al. [2015] show that for any totally real field K there are at
most finitely many nonmodular j-invariants. Let j1, . . . , jr be the values of these
j-invariants. Let q be a prime of K above 2. By Lemmas 6.1 and 6.2, we have
υq( j (E)) = −(4`n − 4) with n ≥ 1. Thus for `,m sufficiently large we have
υq( j (E)) < υq( ji ) for i = 1, . . . , r , completing the proof. �

Remarks. • The argument in [Freitas et al. 2015] relies on Faltings’ theorem
(finiteness of the number of rational points on a curve of genus ≥ 2) to deduce
finiteness of the list of possibly nonmodular j-invariants. It is for this reason
that the constant C (1)

p (and hence the constant C p in Theorem 1.4) is ineffective.

• In the above argument, it seems that it is enough to suppose that ` is sufficiently
large without an assumption on m. However, in Section 4 we swapped the terms
x2` and y2m in (2) if needed to ensure that x is even. Thus in the above argument
we need to suppose that both ` and m are sufficiently large.

We shall make use of the following result due to Freitas and Siksek [2015b,
Theorem 2]. It is a variant of results proved by Kraus [2007] and by David [2012].
All these build on the celebrated uniform boundedness theorem of Merel [1996].

Theorem 8.2. Let K be a totally real field. There is an effectively computable
constant CK such that for a prime `>CK , and for an elliptic curve E/K semistable
at all λ | `, the mod ` representation ρ̄E,` : GK → GL2(F`) is irreducible.

In [Freitas and Siksek 2015b, Theorem 2] it is assumed that K is Galois as well
as totally real. Theorem 8.2 follows immediately on replacing K with its Galois
closure.

Lemma 8.3. Let E/K be the Frey curve given in Section 6. Suppose ρ̄E,` is
irreducible and E is modular. Then ρ̄E,`∼ ρ̄f,λ for some Hilbert cuspidal eigenform
f over K of parallel weight 2 that is new at level N`, where

N` =

{
2OK if p - x ,
2p if p | x.

Here λ | ` is a prime of Qf, the field generated over Q by the eigenvalues of f.
If p≡ 1 (mod 4), let E ′/K ′ be the Frey curve given in Section 7. Suppose ρ̄E ′,` is

irreducible and E is modular. Then ρ̄E ′,`∼ ρ̄f,λ for some Hilbert cuspidal eigenform
f over K of parallel weight 2 that is new at level N ′`, where

N ′` =
{

2B2 if p - x ,
2B if p | x.

Proof. This is immediate from Lemmas 6.1, 6.2, 7.1 and 7.2, and a standard level
lowering recipe derived in [Freitas and Siksek 2015a, Section 2.3] from the work of
Jarvis, Fujiwara and Rajaei. Alternatively, one could use modern modularity lifting
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theorems which integrate level lowering with modularity lifting, as for example in
[Breuil and Diamond 2014]. �

Proof of Theorem 1.4. Let K =Q(ζ + ζ−1) and E be the Frey curve constructed in
Section 6. Let C (1)

p be the constant in Lemma 8.1, and C (2)
p = CK be the constant

in Theorem 8.2. Let C p = max(C (1)
p ,C (2)

p ). Suppose that `,m ≥ C p. Then ρ̄E,`

is irreducible and modular, and it follows from Lemma 8.3 that ρ̄E,` ∼ ρ̄f,λ for
some Hilbert eigenform over K of parallel weight 2 that is new at level N`, where
N` = 2OK or 2p. Now a standard argument (see [Bennett and Skinner 2004,
Section 4], [Kraus 1997, Section 3] or [Siksek 2012, Section 9]) shows that, after
enlarging C p by an effective amount, we may suppose that the field of eigenvalues
of f is Q. Observe that the level N` is nonsquarefull (meaning there is a prime q

at which the level has valuation 1). As the level is nonsquarefull and the field of
eigenvalues is Q, the eigenform f is known to correspond to some elliptic curve
E1/K of conductor N` [Blasius 2004], and ρ̄E,` ∼ ρ̄E1,`. Finally, and again by
standard arguments (see one of the references a few lines above), we may enlarge
C p by an effective constant so that the isomorphism ρ̄E,` ∼ ρ̄E1,` forces E1 to
either have full 2-torsion, or to be isogenous to an elliptic curve E2/K that has full
2-torsion. This contradicts the hypothesis of Theorem 1.4 that there are no such
elliptic curves with conductor 2OK , 2p, and completes the proof of the first part
of the theorem. The proof of the second part is similar, and makes use of the Frey
curve E ′/K ′. �

9. Modularity of the Frey curve for 5≤ p ≤ 13

Lemma 9.1. If p = 5, 7, 11 or 13 then the Frey curve E/K in Section 6 is modular.
If p = 5, 13 then the Frey curve E ′/K ′ in Section 7 is modular.

Proof. Recall that E is defined over K =Q(ζ + ζ−1), where ζ is a primitive p-th
root of unity. If p = 5 then K =Q(

√
5), and modularity of elliptic curves over real

quadratic fields was recently established by Freitas et al. [2015].
For p = 7, 11, 13, the prime 5 is unramified in K , the class number of K is 1

and condition (c) of Theorem 1.2 is easily verified. Thus E is modular.
For p= 13, the curves E and E ′ are at worst quadratic twists over K , and K/K ′

is quadratic. The modularity of E ′/K ′ follows from the modularity of E/K and
the cyclic base change theorem of [Langlands 1980]. For p = 5 we could use the
same argument, or more simply note that K ′ =Q, and conclude by the modularity
theorem over the rationals [Breuil et al. 2001]. �

10. Irreducibility of ρ̄E,` for 5≤ p ≤ 13

We let E be the Frey curve as in Section 6, and p=5, 7, 11, 13. To apply Lemma 8.3
we need to prove the irreducibility of ρ̄E,` for `≥ 5; equivalently, we need to show
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that E does not have an `-isogeny for `≥ 5. Alas, there is not yet a uniform bound-
edness theorem for isogenies. The papers [Kraus 2007; David 2012; Freitas and
Siksek 2015b] do give effective bounds CK such that for ` > CK the representation
ρ̄E,` is irreducible, however these bounds are too large for our present purpose. We
refine the arguments in those papers, making use of the fact that the curve E is
semistable, and the number fields K =Q(ζ + ζ−1) all have narrow class number 1.
Before doing this, we relate, for p = 5 and 13, the representations ρ̄E,` and ρ̄E ′,`,
where E ′ is the Frey curve in Section 7.

Lemma 10.1. Suppose p = 5 or 13. Let τ be the unique involution of K , and K ′

the subfield fixed by it. Let j and k satisfy τ(θ j )= θk . Let E/K be the Frey elliptic
curve in Section 6 and E ′/K ′ the Frey curve in Section 7, associated to this pair
( j, k). Then ρ̄E,` is irreducible as a representation of GK if and only if ρ̄E ′,` is
irreducible as a representation of GK ′ .

Proof. Note that K/K ′ is a quadratic extension and E/K is a quadratic twist
of E ′/K . Thus ρ̄E,` is a twist of ρ̄E ′,`|GK by a quadratic character. If ρ̄E ′,` is re-
ducible as a representation of GK ′ then certainly ρ̄E,` is reducible as a representation
of GK .

Conversely, suppose ρ̄E ′,`(GK ′) is irreducible. We would like to show that
ρ̄E,`(GK ) is irreducible. It is enough to show that ρ̄E ′,`(GK ) is irreducible. Let q | 2
be a prime of K ′. Then υq( j (E ′))= 4−4`n, which is negative but not divisible by `.
Thus ρ̄E ′,`(GK ′) contains an element of order ` [Silverman 1994, Proposition V.6.1].
By Dickson’s classification [Swinnerton-Dyer 1973] of subgroups of GL2(F`) we
see that ρ̄E ′,`(GK ′) must contain SL2(F`). The latter is a simple group, and must
therefore be contained in ρ̄E ′,`(GK ). This completes the proof. �

Lemma 10.2. Suppose ρ̄E,` is reducible. Then E/K either has nontrivial `-torsion,
or is `-isogenous to an elliptic curve defined over K that has nontrivial `-torsion.

Proof. Suppose ρ̄E,` is reducible, and write

ρ̄E,` ∼

(
ψ1 ∗

0 ψ2

)
.

We show that either ψ1 or ψ2 is trivial. It follows in the former case that E has
nontrivial `-torsion, and in the latter case that the K-isogenous curve E/Ker(ψ1)

has nontrivial `-torsion.
As K has narrow class number 1 for p = 5, 7, 11, 13, it is sufficient to show that

one of ψ1, ψ2 is unramified at all finite places. As E is semistable, the characters
ψ1 and ψ2 are unramified away from ` and the infinite places. Let S` be the set
of primes λ | ` of K . Let S ⊂ S` for the set of λ ∈ S` such that ψ1 is ramified
at λ. Then ψ2 is ramified exactly at the primes S \ S` (see proof of Theorem 1.2).



1162 Samuele Anni and Samir Siksek

Moreover, ψ1|Iλ = χ`|Iλ for all λ ∈ S, and ψ2|Iλ = χ`|Iλ for all λ ∈ S` \ S. It is
enough to show that either S is empty or S` \ S is empty.

Suppose S is a nonempty proper subset of S`. Fix λ ∈ S and let

D = Dλ ⊂ G = Gal(K/Q)

be the decomposition group of λ; by definition λσ = λ for all σ ∈ Dλ. As K/Q is
abelian and Galois, Dλ′ = D for all λ′ ∈ S`, and G/D acts transitively and freely
on S`. Fix a set T of coset representatives for G/D. Then there is a subset T ′ ⊂ T
such that

S = {λτ
−1
: τ ∈ T ′}, S` \ S = {λτ

−1
: τ ∈ T \ T ′}.

As S is a nonempty proper subset of S`, we have that T ′ is a nonempty proper
subset of T . Now, by Proposition 2.1, for any totally positive unit u of OK ,∏

τ∈T ′
NormFλ/F`(u+ λ

τ−1
)= 1̄.

But

NormFλ/F`(u+ λ
τ−1
)=

∏
σ∈D

(u+ λτ
−1
)σ

=

∏
σ∈D

(uσ + λτ
−1
)

=

(∏
σ∈D

(uστ + λ)
)τ−1

=

∏
σ∈D

(uστ + λ) (as this expression belongs to F`).

Let

BT ′,D(u)= NormK/Q

(( ∏
τ∈T ′,σ∈D

uστ
)
− 1

)
.

It follows that ` | BT ′,D(u). Now let u1, . . . , ud be a system of totally positive units.
Then ` divides

BT ′,D(u1, . . . , ud)= gcd(BT ′,D(u1), . . . , BT ′,D(ud)).

To sum up, if the lemma is false for `, then there is some subgroup D of G and
some nonempty proper subset T ′ of G/D such that ` divides BT ′,D(u1, . . . , ud).

The proof of the lemma is completed by a computation that we now describe.
For each of p = 5, 7, 11, 13 we fix a basis u1, . . . , ud for the system of totally
positive units of OK . We run through the subgroups D of G =Gal(K/Q). For each
subgroup D we fix a set of coset representatives T , and run through the nonempty
proper subsets T ′ of T , computing BT ′,D(u1, . . . , ud). We found that for p = 5, 7
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the possible values for BT ′,D(u1, . . . , ud) are all 1; for p = 11 they are 1 and 23;
and for p = 13 they are 1, 52 and 35. Thus the proof is complete for p = 5, 7 and
it remains to deal with (p, `) = (11, 23), (13, 5). For each of these possibilities
we run through the nonempty proper S ⊂ S` and check that there is some totally
positive unit u such that

∏
λ∈S Norm(u+ λ) 6= 1̄. This completes the proof. �

Suppose ρ̄E,` is reducible. It follows from Lemma 10.2 that there is an elliptic
curve E1/K (which is either E or `-isogenous to E) such that E1(K ) has a subgroup
isomorphic to Z/2Z×Z/2`Z. Such an elliptic curve is isogenous1 to an elliptic
curve E2/K with a K-rational cyclic subgroup isomorphic to Z/4`Z. Thus we
obtain a noncuspidal K-point on the curves

X0(`), X1(`), X0(2`), X1(2`), X0(4`), X1(2, 2`).

To achieve a contradiction it is enough to show that there are no noncuspidal K-
points on one of these curves. For small values of `, we find Magma’s “small
modular curves package”, as well as Magma’s functionality for computing Mordell–
Weil groups of elliptic curves over number fields, invaluable. Four of the modular
curves of interest to us happen to be elliptic curves. The aforementioned Magma
package gives the following models:

X0(20) : y2
= x3
+ x2
+ 4x + 4 (Cremona label 20a1), (12)

X0(14) : y2
+ xy+ y = x3

+ 4x − 6 (Cremona label 14a1), (13)

X0(11) : y2
+ y = x3

− x2
− 10x − 20 (Cremona label 11a1), (14)

X0(19) : y2
+ y = x3

+ x2
− 9x − 15 (Cremona label 19a1). (15)

Lemma 10.3. Let p = 5. Then ρ̄E,` is irreducible. Moreover, ρ̄E ′,` is irreducible.

Proof. Suppose ρ̄E,` is reducible. By the above there is an elliptic curve E2

over the quadratic field K = Q(
√

5), with a K-rational subgroup isomorphic to
Z/2Z× Z/2`Z. From classification of torsion subgroups of elliptic curves over
quadratic fields [Kamienny 1992] we deduce that `≤ 5. However we are assuming
throughout that `≥ 5 and ` 6= p. This gives a contradiction as p = 5. Thus ρ̄E,` is
irreducible. The irreducibility of ρ̄E ′,` follows from Lemma 10.1. �

Lemma 10.4. Let p = 7. Then ρ̄E,` is irreducible.

1At the suggestion of one of the referees we prove this statement. Let P1, P2 ∈ E1(K ) be
independent points of order 2. Let Q be a solution to the equation 2X = P1. Then Q has order 4 and
the complete set of solutions is {Q, Q+P2, 3Q, 3Q+P2}, which is Galois-stable. Let E2= E1/〈P2〉
and let φ : E1→ E2 be the induced isogeny. As Ker(φ)∩ 〈Q〉 = 0, we see that Q′ = Q+〈P2〉 has
order 4. Moreover, the set {Q′, 3Q′} is Galois-stable, so 〈Q′〉 is a K-rational cyclic subgroup of order
4 on E2. The point of order ` on E1 survives the isogeny, and so E2 has a K-rational cyclic subgroup
of order 4`.
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Proof. In this case K is a cubic field. By the classification of cyclic `-torsion on
elliptic curves over cubic fields [Parent 2000; 2003], we know `≤ 13. Since ` 6= p,
we need only deal with the case `= 5, 11, 13. To eliminate `= 5 and `= 11 we
computed the K-points on the modular curves X0(20) and X0(11). These both have
rank 0 and their K-points are in fact defined over Q. The Q-points of X0(20) are
cuspidal thus ` 6= 5. The three noncuspidal Q-points on X0(11) all have integral j-
invariants. As our curve E has multiplicative reduction at 2OK , it follows that ` 6=11.

We suppose ` = 13. We now apply [Bruin and Najman 2016, Theorem 1].
That theorem gives a useful and practical criterion for ruling out the existence
of torsion subgroups Z/mZ×Z/nZ on elliptic curves over a given number field
K (the remarks at the end of Section 2 of [Bruin and Najman 2016] are useful
when applying that theorem). The theorem involves making certain choices and we
indicate them briefly; in the notation of the theorem, we take A = Z/26Z, L =Q,
m = 1, n = 26, X = X ′ = X1(26), p = p0 = 7. To apply the theorem we need
the fact that the gonality of X1(26) is 6 [Derickx and van Hoeij 2014], and that
its Jacobian has Mordell–Weil rank 0 over Q [Bruin and Najman 2016, page 11].
We merely check that conditions (i)–(vi) of [Bruin and Najman 2016, Theorem 1]
are satisfied, and conclude that there are no elliptic curves over K with a subgroup
isomorphic to Z/26Z. This completes the proof. �

Lemma 10.5. Let p = 11. Then ρ̄E,` is irreducible.

Proof. Now K has degree 5. By the classification of cyclic `-torsion on elliptic
curves over quintic fields [Derickx et al. ≥ 2016] we know that `≤ 19. As ` 6= p
we need to deal with `= 5, 7, 13, 17, 19.

The elliptic curves X0(20), X0(14) and X0(19) have rank 0 over K and this
allows us to quickly eliminate `= 5, 7, 19.

Suppose ` = 13. We again apply [Bruin and Najman 2016, Theorem 1], with
choices A = Z/26Z, L =Q, m = 1, n = 26, X = X ′ = X1(26), p = p0 = 11 (with
Mordell–Weil and gonality information as in the proof of Lemma 10.4). This shows
that there are no elliptic curves over K with a subgroup isomorphic to Z/26Z,
allowing us to eliminate `= 13.

Suppose `= 17. We apply the same theorem with choices A = Z/34Z, L =Q,
m=1, n=34, X= X ′= X1(34), p=p0=11. For this we need the fact that X has go-
nality 10 [Derickx and van Hoeij 2014] and that the rank of J1(34) over Q is 0 [Bruin
and Najman 2016, page 11]. Applying the theorem shows that there are no elliptic
curves over K with a subgroup isomorphic to Z/34Z. This completes the proof. �

It remains to deal with p = 13. Unfortunately the field K in this case is sextic,
and the known bound [Derickx et al. ≥ 2016] for cyclic `-torsion over sextic fields
is `≤ 37, and we have been unable to deal with the cases `= 37 directly over the
sextic field. We therefore proceed a little differently. We are in fact most interested
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in showing the irreducibility of ρ̄E ′,`, where E ′ is the Frey curve defined over the
degree 3 subfield K ′.

Lemma 10.6. Let p = 13. Then ρ̄E ′,` is irreducible.

Proof. Suppose ρ̄E ′,` is reducible. We treat the cases 13 | x and 13 - x sepa-
rately. Suppose first that 13 | x . Then the curve E ′ over the field K ′ is semistable
(Lemma 7.2). It is now straightforward to adapt the proof of Lemma 10.2 to show
that E ′ has nontrivial `-torsion, or is `-isogenous to an elliptic curve with nontrivial
`-torsion. Thus there is an elliptic curve over K ′ with a point of exact order 2`.
Now K ′ is cubic, so by [Parent 2000; 2003] we have `≤ 13. As ` 6= p, it remains
to deal with the cases ` = 5, 7, 11. The elliptic curves X0(14) and X0(11) have
rank zero over K ′, and in fact their K ′-points are the same as their Q-points. This
easily allows us to eliminate ` = 7 and ` = 11 as before. The curve X0(10) has
genus 0 so we need a different approach, and we leave this case to the end of the
proof (recall that E ′ does not necessarily have full 2-torsion over K ′).

Now suppose that 13 - x . Here E ′/K ′ is not semistable. As we have assumed
that ρ̄E ′,` is reducible, we have that ρ̄E,` is reducible (Lemma 10.1). Now we may
apply Lemma 10.2 to deduce the existence of E1/K (which is E or `-isogenous to
it) that has a subgroup isomorphic to Z/2Z×Z/2`Z. As before, let p be the unique
prime of K above 13. By Lemma 6.1 the Frey curve E has good reduction at p. As
p - 2`, we know from injectivity of torsion that 4` | #E(Fp). But Fp = F13. By the
Hasse–Weil bounds,

`≤ (
√

13+ 1)2/4≈ 5.3.

Thus `= 5.
It remains to deal with the case `= 5 for both 13 | x and 13 - x . In both cases

we obtain a K-point on X = X0(20) whose image in X0(10) is a K ′-point. We
would like to compute X (K ). This computation proved beyond Magma’s capability.
However, K = K ′(

√
13). Thus the rank of X (K ) is the sum of the ranks of X (K ′)

and of X ′(K ′), where X ′ is the quadratic twist of X by 13. Computing the ranks of
X (K ′) and X ′(K ′) turns out to be a task within the capabilities of Magma, and we
find that they are respectively 0 and 1. Thus X (K ) has rank 1. With a little more
work we find that

X (K )= Z

6Z
· (4, 10)+Z · (3, 2

√
13) .

Thus X (K ) = X (Q(
√

13)). It follows that the j-invariant of E ′ must belong to
Q(
√

13). But the j -invariant belongs to K ′ too, and so belongs to Q(
√

13)∩K ′=Q.
Let the rational integers a, b be as in Sections 4 and 6. Recall that b is odd,

and that υ2(a) = 5n, where n > 0. Write a = 25na′, where a′ is odd. We know
that υ2( j (E))=−(20n− 4). The prime 2 is inert in K ′. An explicit calculation,
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making use of the fact that a′ ≡ b ≡ 1 (mod 2), shows that

220n−4 j (E)≡
θ2

j θ
2
k

(θ j − θk)2
(mod 2).

Computing this residue for the possible values of j and k, we check that it does not
belong to F2, giving us a contradiction. �

11. Proof of Theorem 1.1

In Section 5 we proved Theorem 1.1 for p = 3. In this section we deal with the
values p = 5, 7, 11, 13. Let `,m ≥ 5 be primes. Suppose (x, y, z) is a primitive
nontrivial solution to (2). Without loss of generality, 2 | x . We let K =Q(ζ + ζ−1)

where ζ = exp(2π i/p). For p = 13 we also let K ′ be the unique subfield of K
of degree 3. Let E be the Frey curve attached to this solution (x, y, z) defined in
Section 6, where we take j = 1 and k = 2. For p = 13 we also work with the Frey
curve E ′ defined in Section 7, where we take j = 1 and k = 5 (these choices satisfy
the condition τ(θ j )= θk , where τ is unique involution on K ). By Lemma 9.1 these
elliptic curves are modular. Moreover, by the results of Section 10 the representation
ρ̄E,` is irreducible for p = 5, 7, 11, 13, and the representation ρ̄E ′,` is irreducible
for p = 13. Let K be the number field K unless p = 13 and 13 | x , in which case
we take K= K ′. Also let E be the Frey curve E unless p = 13 and 13 | x , in which
we take E to be E ′. By Lemma 8.3 there is a Hilbert cuspidal eigenform f over K
of parallel weight 2 and level N as given in Table 1, such that ρ̄E,` ∼ ρ̄f,λ, where
λ | ` is a prime of Qf, the field generated by the Hecke eigenvalues of f.

Using the Magma “Hilbert modular forms” package we compute the possible
Hilbert newforms at these levels. The information is summarized in Table 1.

As shown in the table, there are no newforms at the relevant levels for p = 5,
completing the contradiction for this case.2

We now explain how we complete the contradiction for the remaining cases.
Suppose q a prime of K such that q - 2p`. In particular, q does not divide the level
of f, and E has good or multiplicative reduction at q. Write σq for a Frobenius
element of GK at q. Comparing the traces of ρ̄E,`(σq) and ρ̄f,λ(σq) we obtain

(i) if E has good reduction at q then aq(E)≡ aq(f) (mod λ);

(ii) if E has split multiplicative reduction at q then Norm(q)+ 1≡ aq(f) (mod λ);

(iii) if E has nonsplit multiplicative reduction at q then −(Norm(q)+ 1) ≡ aq(f)
(mod λ).

2We point out in passing that for p = 5 we could have also worked with the Frey curve E ′/Q.
In that case the Hilbert newforms f are actually classical newforms of weight 2 and levels 2 and 50.
There are no such newforms of level 2, but there are two newforms of level 50 corresponding to the
elliptic curve isogeny classes 50a and 50b. These would require further work to eliminate.
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p case field K Frey curve E level N eigenforms f [Qf :Q]

5
5 - x K E 2OK – –

5 | x K E 2p – –

7
7 - x K E 2OK – –

7 | x K E 2p f1 1

11
11 - x K E 2OK f2 2

11 | x K E 2p f3, f4 5

f5, f6 1
13 - x K E 2OK f7 2

13 f8 3

13 | x K ′ E ′ 2B f9, f10 1
f11, f12 3

Table 1. Frey curve and Hilbert eigenform information. Here p is
the unique prime of K above p, and B is the unique prime of K ′

above p.

Let q - 2p` be a rational prime and let

Aq = {(η, µ) : 0≤ η, µ≤ q − 1, (η, µ) 6= (0, 0)}.

For (η, µ) ∈Aq let

u(η, µ)=


(θ j + 2)η2

+ (θ j − 2)µ2 if p - x ,
1

(θ j−2)
((θ j + 2)η2

+ (θ j − 2)µ2) if p | x ,

v(η, µ)=


−
(θ j − 2)
(θk − 2)

((θk + 2)η2
+ (θk − 2)µ2) if p - x ,

−
1

(θk−2)
((θk + 2)η2

+ (θk − 2)µ2) if p | x .

Write
E(η,µ) : Y 2

= X (X − u(η, µ))(X + v(η, µ)).

Let 1(η,µ), c4(η, µ) and c6(η, µ) be the usual invariants of this model. Let
γ (η, µ) = −c4(η, µ)/c6(η, µ). Let (a, b) be as in Section 4. As gcd(a, b) = 1,
we have (a, b) ≡ (η, µ) (mod q) for some (η, µ) ∈ Aq . In particular, (a, b) ≡
(η, µ) (mod q) for all primes q | q of K. From the definitions of the Frey curves
E and E ′ in Sections 6 and 7 we see that E has good reduction at q if and only if
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q -1(η,µ), and in this case aq(E)= aq(E(η,µ)). Let

Bq(f, η, µ)=


aq(E(η,µ))− aq(f) if q -1(η,µ),
Norm(q)+ 1− aq(f) if q |1(η,µ) and γ (η, µ) ∈ (F∗q)

2,
Norm(q)+ 1+ aq(f) if q |1(η,µ) and γ (η, µ) /∈ (F∗q)

2.

From (i)–(iii) above we see that λ | Bq(f, η, µ). Now let

Bq(f, η, µ)=
∑
q|q

Bq(f, η, µ) ·Of,

where Of is the ring of integers of Qf. Since (a, b)≡ (η, µ) (mod q) for all q | q,
we have that λ | Bq(f, η, µ). Now (η, µ) is some unknown element of Aq . Let

B ′q(f)=
∏

(η,µ)∈Aq

Bq(f, η, µ).

Then λ | B ′q(f). Previously, we have supposed that q - 2p`. This is inconvenient as
` is unknown. Now we simply suppose q - 2p, and let Bq(f)= q B ′q(f). Then, since
λ | `, we certainly have that λ | Bq(f) regardless of whether q = ` or not.

Finally, if S = {q1, q2, . . . , qr } is a set of rational primes with qi - 2p, then λ
divides the Of-ideal

∑r
i=1 Bqi (f), and thus ` divides BS(f)= Norm

(∑r
i=1 Bqi (f)

)
.

Table 2 gives our choices for the set S and the corresponding value of BS(f) for
each of the eigenforms f1, . . . , f12 appearing in Table 1. Recalling that `≥ 5 and
` 6= p gives a contradiction unless p = 13 and `= 7. This completes the proof of
Theorem 1.1. �

The reader may be wondering whether we can eliminate the case p = 13 and
`= 7 by enlarging our set S; here we need only concern ourselves with forms f9
and f11. Consider (η, µ)= (0, 1), which belongs to Aq for any q . The corresponding
Weierstrass model E(0,1) is singular with a split note. It follows that

Bq(f, 0, 1)= Norm(q)+ 1− aq(f).

Note that if λ is a prime of Qf that divides Norm(q)+ 1− aq(f) for all q - 26, then
` will divide BS(f) for any set S where λ | `. This appears to be the case with `= 7
for f11, and we now show that it is indeed the case for f9. Let F be the elliptic curve
with Cremona label 26b1:

F : y2
+ xy+ y = x3

− x2
− 3x + 3,

which has conductor 2B as an elliptic curve over K. As K/Q is cyclic, we know
that F is modular over K and hence corresponds to a Hilbert modular form of
parallel weight 2 and level 2B, and by comparing eigenvalues we can show that
it in fact corresponds to f9. Now the point (1, 0) on F has order 7. It follows that
7 | #E(Fq)= Norm(q)+ 1− aq(f) for all q - 26, showing that for f9 we can never
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p case S eigenform f BS(f)

7 7 | x {3} f1 28
× 35
× 76

11 - x {23, 43} f2 1
11

11 | x {23, 43} f3 1
f4 1

f5 26240
× 3312

13 - x {79, 103}
f6 212792

× 3234

f7 210608
× 3624

13
f8 218720

× 3936

f9 72

13 | x {3, 5, 31, 47} f10 37

f11 76

f12 1

Table 2. Our choice of set of primes S and the value of BS(f) for
each of the eigenforms in Table 1.

eliminate `= 7 by enlarging the set S. We can still complete the contradiction in
this case as follows. Note that ρ̄f9,7∼ ρ̄F,7 which is reducible. As ρ̄E,7 is irreducible
we have ρ̄E,7 6∼ ρ̄f9,7, completing the contradiction for f= f9. We strongly suspect
that reducibility of ρ̄f11,λ (where λ is the unique prime above 7 of Qf11), but we are
unable to prove it.

Remark. We now explain why we believe that the above strategy will succeed in
proving that (2) has no nontrivial primitive solutions, or at least in bounding the
exponent `, for larger values of p provided the eigenforms f at the relevant levels
can be computed. The usual obstruction to bounding the exponent (see [Siksek
2012, Section 9]) comes from eigenforms f that correspond to elliptic curves with
a torsion structure that matches the Frey curve E . Let f be such an eigenform.
Let q - 2p be a rational prime and q1, . . . , qr be the primes of K above q. Note
that Norm(q1) = · · · = Norm(qr ) = qd/r , where d = [K : Q]. We would like to
estimate the “probability” that Bq(f) is nonzero. Observe that if Bq(f) is nonzero,
then we obtain a bound for `. Examining the definitions above shows that the ideal
Bq(f) is 0 if and only if there is some (η, µ) ∈Aq such that aq(E(η,µ))= aq(f) for
q= q1, q2, . . . , qr . Treating aq(E(η,µ)) as a random variable belonging to the Hasse
interval [−2qd/2r, 2qd/2r

], we see that the “probability” that aq(E(η,µ))= aq(f) is
roughly c/qd/2r , with c = 1

4 .
We can be a little more sophisticated and take account of the fact that the

torsion structures coincide, and that these impose congruence restrictions on both
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traces. In that case we should take c = 1 if E has full 2-torsion (i.e., E is the
Frey curve E) and take c = 1

2 if E has just one nontrivial point of order 2 (i.e.,
E = E ′ and p ≡ 1 (mod 4)). Thus the “probability” that aq(E(η,µ))= aq(f) for all
q | q simultaneously is roughly cr/qd/2. Since Bq(f)= q

∏
(η,µ)∈Aq

Bq(f, η, µ), it
follows that the “probability” Pq (say) that Bq(f) is nonzero satisfies

Pq ∼

(
1−

cr

qd/2

)q2
−1

.

For q large, we have (1− cr/qd/2)q
d/2
≈ e−cr

. For d ≥ 5, from the above estimates,
we expect that Pq→ 1 as q→∞. Thus we certainly expect our strategy to succeed
in bounding the exponent `.
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Geometry and stability
of tautological bundles

on Hilbert schemes of points
David Stapleton

We explore the geometry and establish the slope-stability of tautological vector
bundles on Hilbert schemes of points on smooth surfaces. By establishing stability
in general, we complete a series of results of Schlickewei and Wandel, who proved
the slope-stability of these vector bundles for Hilbert schemes of 2 points or 3
points on K3 or abelian surfaces with Picard group restrictions. In exploring
the geometry, we show that every sufficiently positive semistable vector bundle
on a smooth curve arises as the restriction of a tautological vector bundle on
the Hilbert scheme of points on the projective plane. Moreover, we show that
the tautological bundle of the tangent bundle is naturally isomorphic to the log
tangent sheaf of the exceptional divisor of the Hilbert–Chow morphism.

Introduction

The purpose of this paper is to explore the geometry of tautological bundles on
Hilbert schemes of smooth surfaces and to establish the slope-stability of these
bundles.

Let S be a smooth complex projective surface, and denote by S[n] the Hilbert
scheme parametrizing length-n subschemes of S. This parameter space carries
some natural tautological vector bundles: if L is a line bundle on S then L[n] is the
rank-n vector bundle whose fiber at the point corresponding to a length-n subscheme
ξ ⊂ S is the vector space H 0(S,L⊗Oξ ). These tautological vector bundles have
attracted a great deal of interest. Lehn [1999] first computed the cohomology of the
tautological bundles. Later Danila [2001] and Scala [2009] identified the induced
symmetric group representations on the cohomology of the tautological bundles.
Ellingsrud and Strømme [1993] showed that the Chern classes of the bundles
O[n]

P2 , OP2(1)[n], and OP2(2)[n] generate the cohomology of (P2)[n]. Nakajima gave
a nicely exposited interpretation [1999, §4.3] of the McKay correspondence by
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slope-stability, spectral curves, log tangent bundle, tautological bundles, Hilbert schemes of points.
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restricting the tautological bundles to the G-Hilbert scheme. Recently Okounkov
[2014] formulated a conjecture about special generating functions associated to the
tautological bundles.

Given the importance of the tautological bundles, it is natural to explore how
different geometric aspects of vector bundles transform to their tautological bundles.
For instance, we ask when the tautological bundle of a stable bundle is also stable. In
[Schlickewei 2010; Wandel 2013; 2014] this question has been answered positively
for Hilbert schemes of 2 points or 3 points on a K3 or abelian surface with Picard
group restrictions. Our first result establishes the stability of these bundles for
arbitrary n and any surface.

Theorem A. If L is a nontrivial line bundle on S, then L[n] is slope-stable with
respect to natural Chow divisors on S[n].

More precisely, an ample divisor on S determines a natural ample divisor on
Symn(S), and the pullback via the Hilbert–Chow morphism gives one such natural
Chow divisor on S[n], which is not ample but is big and semiample. More generally,
we prove that if E 6∼= OS is any slope-stable vector bundle on S with respect to
some ample divisor then E [n] is slope-stable with respect to the corresponding Chow
divisor. Although Theorem A only gives stability with respect to a strictly big and
nef divisor, we are able to deduce stability with respect to nearby ample divisors
via a perturbation argument on the nef cone.

If S is any smooth surface, there is a divisor Bn in S[n] which consists of
nonreduced subschemes. The pair (S[n], Bn) gives a natural closure of the space
of n distinct points in S. The vector fields on S[n] tangent to Bn form the sheaf
of logarithmic vector fields DerC(−log Bn). Our second result says the sheaf
DerC(−log Bn) is naturally isomorphic to the tautological bundle associated to the
tangent bundle on S.

Theorem B. For any smooth surface S there exists a natural injection

αn : (TS)
[n]
→ TS[n],

and αn induces an isomorphism between (TS)
[n] and DerC(−log Bn).

The analogous statement also holds for smooth curves. In general, the sheaves
DerC(−log Bn) are only guaranteed to be reflexive, as Bn is not a simple normal
crossing divisor. However, Theorem B shows DerC(−log Bn) is locally free; that is,
Bn is a free divisor. Buchweitz, Ebeling, and Graf von Bothmer [Buchweitz et al.
2009] have already shown that Bn is a free divisor using different methods.

Using Aubin and Yau’s theorem [Aubin 1976] we obtain:

Corollary C. If a surface S has ample canonical bundle, then the log tangent bundle
DerC(−log Bn) is polystable with respect to the big and nef canonical divisor KS[n] .
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Finally, we explore the geometry of the tautological bundles when the surface
is the projective plane. We prove that the tautological bundles on (P2)[n] are rich
enough to capture all semistable rank-n bundles on curves.

Theorem D. If C is a smooth projective curve and E is a semistable rank-n vector
bundle on C with sufficiently positive degree, then there exists an embedding
C→ (P2)[n] such that

OP2(1)[n]|C ∼= E .

The proof of Theorem A follows the approach taken by Mistretta [2006], who
studies the stability of tautological bundles on the symmetric powers of a curve.
The idea is to examine the tautological vector bundles on the cartesian power Sn and
show there are no Sn-equivariant destabilizing subsheaves. This strategy is more
effective for surfaces because the diagonals in Sn have codimension 2. The map in
Theorem B arises from pushing forward the normal sequence of the universal family.
The proof of Theorem D is constructive, using the spectral curves of Beauville,
Narasimhan, and Ramanan [Beauville et al. 1989].

In Section 1 we give the proof of Theorem A. In Section 2 we prove Theorem B
and deduce Corollary C. In Section 3 we prove Theorem D. In Section 4 we give
the perturbation argument, deducing that the tautological bundles are stable with
respect to ample divisors.

Throughout, we work over the complex numbers. If X is a variety of dimension d
and E is a vector bundle on X, then for any divisor class H ∈ N 1(X) we define the
slope of E with respect to H to be the rational number

µH (E) :=
c1(E) · H d−1

rank(E)
.

We say E is slope-stable (resp. slope-semistable) with respect to H if, for all
subsheaves F ⊂ E of intermediate rank, we have

µH (F) < µH (E) (resp. µH (F)≤ µH (E)).

1. Stability of tautological bundles

In this section we prove that the tautological bundle of a stable vector bundle E is
stable with respect to natural Chow divisors on S[n]. Thus we deduce Theorem A
when E is a nontrivial line bundle. We start by defining the essential objects in the
study of Hilbert schemes of points on surfaces.

Let S be a smooth complex projective surface. We write S[n] for the Hilbert
scheme of length-n subschemes of S. We denote by Zn the universal family of S[n]
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with the following projections:

S× S[n] ⊃ Zn
p1
//

p2
��

S

S[n]

For a fixed vector bundle E on S of rank r , we define

E [n] := (p2)∗(p∗1E),

which is the tautological vector bundle associated to E and has rank rn. The fiber of
E [n] at a point [ξ ] ∈ S[n] can be naturally identified with the vector space H 0(S, E|ξ ).

The symmetric group on n elements, Sn , naturally acts on the cartesian product
Sn, and we write σn for the quotient map

σn : Sn
→ Sn/Sn =: Symn(S).

There is also a Hilbert–Chow morphism,

hn : S[n]→ Symn(S),

which is a semismall map [de Cataldo and Migliorini 2002, Definition 2.1.1].
We wish to view E [n] as an Sn-equivariant sheaf on Sn. Recall that if G is a

finite group that acts on a scheme X, and if F is a coherent sheaf on X , then a
G-equivariant structure on F is given by a choice of isomorphisms

φg : F→ g∗F

for all g ∈ G satisfying the compatibility condition h∗(φg) ◦φh = φgh . Following
[Danila 2001] and [Scala 2009], we study the tautological bundles on S[n] by
working with Sn-equivariant sheaves on Sn. For our purposes it is enough to study
E [n] equivariantly on the open subset of distinct points in S[n].

We write Symn(S)◦ for the open subset of Symn(S) of distinct points. Likewise,
given a map f : X→ Symn(S), we write X◦ for f −1(Symn(S)◦). By abuse of nota-
tion, given another map g : X→ Y with domain X we define g◦ := g|X◦ , and given
a coherent sheaf F on X we define F◦ := F |X◦ . The map hn,◦ : S[n]◦ → Symn(S)◦
is an isomorphism. We define

σn,◦ := h−1
n,◦ ◦ σn,◦ : Sn

◦
→ S[n]

◦
.

Given a torsion-free coherent sheaf F on S[n], we define a torsion-free coherent
sheaf on Sn by

(F)Sn := j∗(σ ∗n,◦(F◦)),

where j is the inclusion j : Sn
◦
→ Sn. The sheaf (F)Sn can be thought of as a

modification of F along the exceptional divisor of hn .
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The pullback σ ∗n,◦(−) is left exact, as the map σn,◦ is étale; thus the functor
(−)Sn is left exact. If F is reflexive, the normality of Sn implies that the natural
Sn-equivariant structure on the reflexive sheaf σ ∗n,◦(F◦) pushes forward uniquely
to an Sn-equivariant structure on (F)Sn .

Let qi denote the projection from Sn onto the i-th factor. Given a vector bundle E
on S, there is an Sn-equivariant vector bundle on Sn defined by

E�n
:=

n⊕
i=1

q∗i (E).

We have given two natural Sn-equivariant sheaves on Sn associated to E . In fact,
they are equivalent.

Lemma 1.1. Given a vector bundle E on S there is an isomorphism

(E [n])Sn ∼= E�n

of Sn-equivariant vector bundles on Sn.

Proof. Consider the following fiber square:

F := Zn,◦×S[n]◦
Sn
◦

σ ′n,◦

��

p′2,◦
// Sn
◦

σn,◦
��

Zn,◦
p2,◦

// S[n]
◦

Every map in the fiber square is an étale map between Sn-schemes (the Sn-action
on Zn,◦ and S[n]

◦
is trivial). We write 0i for the subscheme of Sn

◦
× S that is the

graph of the map qi,◦ : Sn
◦
→ S. The scheme F is equal to the disjoint union

∐
0i

and is a subscheme of Sn
◦
× S. The restriction p1,◦ ◦σ

′
n,◦|0i is the projection 0i→ S.

So there is an equivariant isomorphism

(p′2,◦)∗
(
(σ ′n,◦)

∗(p∗1,◦(E))
)
∼= E�n
◦
.

As the fiber square is made of flat proper Sn-maps, there is a natural Sn-
equivariant isomorphism

(p′2,◦)∗
(
(σ ′n,◦)

∗(p∗1,◦(E))
)
∼= σ

∗

n,◦
(
(p2,◦)∗(p

∗

1,◦(E))
)
.

The latter sheaf is (E [n])Sn,◦. Finally, any isomorphism between vector bundles
on Sn

◦
uniquely extends to an isomorphism between their pushforwards along j .

Therefore, there is a natural Sn-equivariant isomorphism (E [n])Sn ∼= E�n. �
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Given an ample divisor H on S, there is a natural Sn-invariant ample divisor
on Sn defined by

HSn :=

n∑
i=1

q∗i (H).

This is the Chow divisor that appears in Theorem A. Fogarty [1973, Lemma 6.1]
shows every divisor HSn descends to an ample Cartier divisor on Symn(S). Pulling
back this Cartier divisor along the Hilbert–Chow morphism gives a big and nef
divisor on S[n], which we denote by Hn . If H is effective then Hn can be realized
set-theoretically as

Hn = {ξ ∈ S[n] | ξ ∩Supp(H) 6=∅}.

Lemma 1.2. If F is a torsion-free sheaf on S[n] then

(n!)
∫

S[n]

c1(F) · (Hn)
2n−1
=

∫
Sn

c1((F)Sn ) · (HSn )2n−1.

Proof. This is a straightforward calculation using S[n]
◦

, Symn(S)◦, and Sn
◦

. �

In the following lemma we assume Proposition 4.7, which says the pullback of a
stable bundle to a product is stable with respect to a product polarization. For the
sake of the exposition we give the proof of Proposition 4.7 in Section 4.

Lemma 1.3. If E 6∼= OS is slope-stable on S with respect to an ample divisor H
then there are no Sn-equivariant subsheaves of E�n that are slope-destabilizing
with respect to HSn .

Proof. Let 0 6= F ⊂ E�n be an Sn-equivariant subsheaf. We can find a (not
necessarily equivariant) slope-stable subsheaf 0 6=F ′⊂F which has maximal slope
with respect to HSn . Fix i so that the composition

F ′→ E�n
→ q∗i E

is nonzero. By Proposition 4.7 we know that each q∗i E is slope-stable with respect
to HSn . A nonzero map between slope-stable sheaves can only exist if

(1) the slope of F ′ is less than the slope of q∗i E , or

(2) F ′→ q∗i E is an isomorphism.

In case (1), µHSn (F) ≤ µHSn (F ′) < µHSn (q∗i E). By symmetry, µHSn (q∗i E) =
µHSn (q∗j E) for all i and j . Thus we have µHSn (q∗i E)= µHSn (E�n), and F does not
destabilize E�n.
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In case (2), we know F ′ ∼= q∗i E . Because E 6∼=OS , the pullbacks q∗i E and q∗j E are
not isomorphic unless i= j . As all the q∗j E have the same slope and are stable with re-
spect to HSn , we have Hom(F ′, q∗j E)=0 for j 6= i . In particular, all the compositions

F ′→ E�n
→ q∗j E

are zero for j 6= i . Thus F ′ is a summand of E�n. So F is an Sn-equivariant
subsheaf of E�n, which contains one of the summands. But Sn acts transitively on
the summands so F contains all the summands, hence F does not destabilize E�n. �

Now we prove Theorem A in full generality.

Theorem 1.4. If E 6∼=OS is a vector bundle on S which is slope-stable with respect
to an ample divisor H, then E [n] is slope-stable with respect to Hn .

Proof. Let F ⊂ E [n] be a reflexive subsheaf of intermediate rank. It is enough to
consider reflexive sheaves because the saturation of a torsion-free subsheaf of E [n]

is reflexive of the same rank and its slope cannot decrease. By Lemma 1.2, the
slope of a torsion-free sheaf F with respect to Hn is, up to a fixed positive multiple,
the same as the slope of (F)Sn with respect to HSn . In particular,

µHn (F) < µHn (E
[n]) ⇐⇒ µHSn ((F)Sn ) < µHSn (E�n).

Now (F)Sn is naturally an Sn-equivariant subsheaf of E�n. Thus, by Lemma 1.3,

µHSn ((F)Sn ) < µHSn (E�n).

Therefore, µHn (F) < µHn (E [n]) for all torsion-free subsheaves of intermediate rank,
and E [n] is stable with respect to Hn . �

2. The tautological tangent map

For any smooth (not necessarily projective) surface S, the Hilbert scheme S[n] is a
smooth closure of the space of n distinct points in S. The boundary Bn is the locus
of nonreduced length-n subschemes of S. We are interested in vector fields which
are tangent to the boundary Bn .

Definition 2.1. If D is a codimension-1 subvariety of a smooth variety X , then the
sheaf of logarithmic vector fields, denoted DerC(−log D), is the subsheaf of TX

consisting of vector fields which along the regular locus of D are tangent to D.

When D is smooth, DerC(−log D) is just the elementary transformation of the
tangent bundle along the normal bundle of D in X; in particular, it is a vector bundle.
Even when D is singular, DerC(−log D) is reflexive by definition, so it is enough
to define DerC(−log D) away from the singular locus (or any codimension-2 set
in X ) of D and then pushforward.
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For Hilbert schemes of points on a surface, DerC(−log Bn) can be naturally
understood as the tautological bundle of the tangent bundle on the surface.

Theorem B. For any smooth connected surface S there exists a natural injection

αn : (TS)
[n]
→ TS[n],

and αn induces an isomorphism between (TS)
[n] and DerC(−log Bn).

At a point [ξ ] ∈ S[n] the map αn|[ξ ] can be interpreted as deformations of ξ
coming from tangent vectors of S. We expect that the degeneracy loci of αn give
an interesting stratification of S[n].

Before proving Theorem B we prove a general lemma.

Lemma 2.2. Let X and Y be smooth varieties and f : X→ Y a branched covering
with reduced branch locus B ⊂ Y. If δ ∈ H 0(Y, T Y ) is a vector field on Y whose
pullback f ∗δ ∈ H 0(X, f ∗T Y ) is in the image of

d f : H 0(X, T X)→ H 0(X, f ∗T Y ),

then δ ∈ H 0(Y,DerC(−log B)).

Proof. It is enough to check that δ is tangent to B for points p ∈ B outside of a
codimension-2 subset in Y. Let p ∈ B be a general point and q a ramified point in
the fiber of f over p. We can choose local analytic coordinates y1, . . . , yn centered
at p and coordinates x1, . . . , xn centered at q such that

f ∗(y1)= xm
1 , f ∗(yi )= xi for i > 1.

That is, y1 is a local equation for B and x1 is a local equation for the reduced
component of ramification containing q . Then the derivative d f maps

∂

∂x1
7→ mxm−1

1 f ∗
(
∂

∂y1

)
,

∂

∂xi
7→ f ∗

(
∂

∂yi

)
for i > 1.

Now f ∗δ is in the image of d f . Expanding locally,

f ∗δ = f ∗(g1) f ∗
(
∂

∂y1

)
+ · · ·+ f ∗(gn) f ∗

(
∂

∂yn

)
.

Thus xm−1
1 divides f ∗(g1). So y1 divides g1 and δ is in H 0(Y,DerC(−log B)). �

Proof of Theorem B. As in Section 1 we use Zn ⊂ S× S[n] to denote the universal
family of the Hilbert scheme of points. Applying relative Serre duality to the
main result of [Lehn 1998] shows that the tangent bundle of S[n] is given by
TS[n] = (p2)∗Hom(IZn ,OZn ). The normal sequence for Zn gives a map

p∗1 TS ⊕ p∗2 TS[n]
∼= TS×S[n] |Zn

β
−→ (IZn/I

2
Zn
)∨ ∼=Hom(IZn ,OZn ).
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Thus after pushing forward the first summand we get a map

αn : (TS)
[n]
:= (p2)∗(p∗1 TS)−→ (p2)∗Hom(IZn ,OZn )= TS[n] .

To prove that αn maps (TS)
[n] isomorphically onto DerC(−log Bn)we first restrict

to the open set U ⊂ S[n] parametrizing subschemes ξ ⊂ S, where ξ contains at least
n− 1 distinct points. The complement of U has codimension 2 so by reflexivity it
is enough to prove the theorem on U. Moreover, the open set

V := p−1
2 U ⊂ Zn

is smooth so we are in a situation where we can apply Lemma 2.2. There is a map

p∗2(TS)
[n]
|V

p∗2αn |V⊕−φ|V

��

0 // TZn |V
// p∗2 TS[n] |V ⊕ p∗1 TS|V

β
// Hom(IZn ,OZn )|V

in which φ is the natural map coming from pulling back a pushforward. The
composition

β ◦ (p∗2αn|V ⊕−φ|V )

is identically zero. Therefore, the pullback of each local section of (TS)
[n]
|U lies in

TZn |V . It follows from Lemma 2.2 that (TS)
[n] is contained in DerC(−log Bn). Now

we can think of αn as having codomain DerC(−log Bn). The map is an isomorphism
of (TS)

[n] and DerC(−log Bn) away from Bn and they both have the same first Chern
class. Therefore, αn could only fail to be an isomorphism in codimension greater
than 2. But both sheaves are reflexive, and any isomorphism between reflexive
sheaves away from codimension 2 on a normal variety extends uniquely to an
isomorphism on the whole variety. �

Proof of Corollary C. As a reminder, a vector bundle is polystable if it is a direct
sum of stable bundles of the same slope. The theorem of Aubin and Yau [Aubin
1976] proves the existence of Kähler–Einstein metrics for canonically polarized
manifolds. This implies that the tangent bundle is polystable with respect to the
canonical bundle (see [Kobayashi 1987, Theorem 8.3]; this is the easy direction
of the Donaldson–Uhlenbeck–Yau theorem [Donaldson 1985]). Thus TS is either
stable or a direct sum of line bundles of the same canonical degree. In the first case,
Corollary C follows directly from Theorems A and B.

For the second case, let TS ∼= L1⊕L2. First we point out that taking tautological
bundles respects direct sums; that is,

(E ⊕F)[n] ∼= E [n]⊕F [n].



1182 David Stapleton

We then note that neither L1 nor L2 is trivial so their tautological bundles are stable
by Theorem A. And if two line bundles on S have equal degrees with respect to
the canonical bundle then their tautological bundles also have equal degrees with
respect to KS[n] . Thus, by Theorem B, DerC(−log Bn) is a direct sum of stable
bundles of the same slope with respect to KS[n] , proving Corollary C. �

Remark 2.3 (on the rank of αn). The restriction of αn to any point [ξ ] ∈ S[n] is
precisely the map from H 0(S, TS|ξ ) to Hom(Iξ ,Oξ ) in the normal sequence of
ξ ⊂ S. In [Bejleri and Stapleton 2016] we relate the rank of αn to the dimension
of the tangent space of the fibers of the Hilbert–Chow morphism. In particular,
we show that if ξ ⊂ C2 is cut out by monomials and Pξ denotes the fiber of the
Hilbert–Chow morphism at ξ , then

dim T[ξ ]Pξ = 2n− rank(αn|[ξ ]).

Moreover, we give an explicit combinatorial formula for computing rank(αn|[ξ ]) at
these monomial subschemes.

3. Spectral curves and tautological bundles

In this section we prove that every sufficiently positive, rank-n, semistable vector
bundle on a smooth projective curve arises as the pullback of OP2(1)[n] along an
embedding of the curve in (P2)[n]. To prove the theorem we need the spectral
curves of [Beauville et al. 1989]. For completeness, we recall the construction.

Let π : D→ C be an n:1 map between smooth irreducible projective curves and
let E be an OC -module. If D can be embedded into the total space

L := SpecOC
(Sym•(L∨)) πL

−→C

of a line bundle L on C , with π = πL|D , then this gives a presentation

π∗OD ∼= Sym•(L∨)/(xn
+ s1xn−1

+ · · ·+ sn)

for xn
+ s1xn−1

+ · · · + sn ∈ H 0(L, (π∗LL)
⊗n). Here we write x ∈ H 0(L, π∗L (L))

for the coordinate section of π∗L (L). To give E the structure of a π∗OD-module we
need to specify a multiplication map m : E ⊗L−1

→ E (equivalently E→ E ⊗L)
which satisfies the relation mn

+ s1mn−1
+ · · ·+ sn = 0.

Every L-twisted endomorphism m : E → E ⊗ L has an associated L-twisted
characteristic polynomial which is a global section pm(x) ∈ H 0(L, (π∗LL)

⊗n). A
global version of the Cayley–Hamilton theorem says that m automatically satisfies
its L-twisted characteristic polynomial. In particular, if the zero set of pm(x) is D
then E can naturally be thought of as a π∗OD-module. Fixing s ∈ H 0(L, (π∗LL)

⊗n),
which cuts out the integral curve D, [Beauville et al. 1989, Proposition 3.6] gives
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the beautiful correspondence

{E m
−→ E ⊗L | E a vector bundle and pm(x)= s}

1:1
←→{invertible sheaves M on D}. (�)

The correspondence going from right to left is given by taking the coordinate section
of π∗L (L), restricting to D, twisting by M, and pushing forward along π .

To prove Theorem D we need the following key lemma, which provides sufficient
conditions for when a section of End(E)⊗L produces a smooth spectral curve.

Key Lemma. If C is a smooth connected genus-g curve, E is a rank-n semistable
vector bundle on C , and L is an ample line bundle on C with deg(L) ≥ 2g, then
the spectral curve associated to a generic section of End(E)⊗ L is smooth and
irreducible.

The method of proof of the Key Lemma involves a standard analysis of the
discriminant locus, where a section of End(E)⊗L has eigenvalues with multiplicity
≥ 2. Before proving the Key Lemma, we show that Theorem D follows immediately.

Proof of Theorem D. Let C be a smooth projective genus-g curve and E a rank-n
semistable vector bundle on C . Let L be a line bundle on C of degree ≥ 2g. By
the Key Lemma, if

m : E→ E ⊗L

is a general L-twisted endomorphism then the resulting L-twisted characteristic
polynomial is smooth and irreducible.

Thus, by the correspondence (�) there is a line bundle M on D such that
π∗M∼= E . The genus of D is gD =

(r
2

)
deg(L)+ n(g− 1)+ 1 and is independent

of E . However, the degree of M is deg(E)+
(r

2

)
deg(L) and does depend on the

degree of E . In particular, if

deg(E)≥
(r

2

)
deg(L)+ r(2g− 2)+ 3

then M is very ample and three general sections of M give a map φ : D→P2 such
that the induced maps π×φ : D→C×P2 and ψπ,φ :C→ (P2)[n] are embeddings.
Under the embedding ψπ,φ , the restriction of OP2(1)[n] to C is precisely E , proving
Theorem D. �

We now proceed with the proof of the Key Lemma.

Lemma 3.1. If a subvariety X ⊂ E of a globally generated vector bundle E over
a smooth curve C has codimension ≥ 2 then a generic section of E avoids X. If
X ⊂ E is a reduced divisor then a generic section of E meets X transversely.
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Proof. This is an elementary dimension count using generic smoothness in charac-
teristic 0 and the incidence correspondence

I = {(w, ex , x) ∈W × E|x ×C | w(x)= ex} ⊂W × E,

where W is a subspace of sections of E→ C that globally generate E. The key
point is that the projection from I to E is an affine bundle, so the total space of I is
smooth. �

If H is the total space of End(E)⊗ L, and C = L⊕ · · · ⊕ L⊗n , then there is a
map ε : H→ C which sends an L-twisted endomorphism to the coefficients of
its characteristic polynomial. There is a reduced and irreducible divisor in U⊂ C

which consists of characteristic polynomials with multiple roots. Let V⊂ H be the
scheme-theoretic inverse of U.

Lemma 3.2. V is reduced and irreducible. If a section s : C→ H meets V trans-
versely and avoids the locus in V with more than one repeated eigenvalue or an
eigenvalue of multiplicity ≥ 3, then the corresponding spectral curve is smooth.

Proof. First, local trivialization of H, U, V and L implies it is enough to check on
a fiber. Over a point x ∈ C we have H|x ∼=Matn×n(k) and C|x ∼= An. Let V|x be
the locus of matrices whose eigenvalues have multiplicity ≥ 2, and let U|x be the
discriminant locus. Irreducibility of V|x follows from [Arnold 1971, §5.6], and the
fact that it is reduced follows from the observation that dε|x,M has maximal rank
for a general matrix M ∈ U|x . For the last statement in the lemma, it suffices to
verify smoothness for an eigenvalues cover associated to a 1-dimensional family of
matrices which meets the discriminant locus transversely at matrices with exactly
one repeated eigenvalue; this is a straightforward local calculation. �

Proof of Key Lemma. Semistability of E and the inequality degL≥ 2g imply that
End(E)⊗L is globally generated. By Lemma 3.1 and the first part of Lemma 3.2,
a generic section s of End(E)⊗L meets V transversely and avoids the locus with
more than one repeated eigenvalue or an eigenvalue of multiplicity of ≥ 3. By the
second part of Lemma 3.2, the associated spectral curve is smooth. By construction
of the spectral curve Cs we have

π∗OCs
∼=OC ⊕ · · ·⊕L−(n−1).

Since we assumed L is ample, H 0(Cs,OCs ) = H 0(C, π∗OCs ) = H 0(C,OC) is
1-dimensional. Thus Cs is connected and smooth, so it is irreducible. �

4. Perturbation of polarization and stability

The goal of this section is to prove (in Proposition 4.7) that the pullback of a stable
bundle to a product is stable with respect to a product polarization. Proposition 4.7
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was important in the proof of Theorem A. We also prove that stability of the
tautological bundles with respect to the natural Chow divisors implies stability
with respect to nearby ample divisors. Our approach to proving both of these
facts involves considering stability with respect to numerical classes of curves so
that we can apply ideas of convexity. In particular, our approach follows ideas
appearing recently in [Greb and Toma 2013; Greb et al. 2016] and we recommend
looking at these articles to see how these ideas can be developed further and
systematically.

Throughout this section, denote by X a normal complex projective variety of
dimension d . Let γ ∈ N1(X)R be a real curve class and let E be a torsion-free sheaf
on X. For any sheaf Q on X, we denote by Sing(Q) the closed locus where Q is
not locally free.

Definition 4.1. The slope of E with respect to γ is the real number

µγ (E) :=
c1(E) · γ
rank(E)

.

Remark 4.2. Fixing an ample class H ∈ N 1(X)R, it is true that µH (E)=µHd−1
(E).

Nonetheless, to distinguish the concepts we use subscripts to denote slope with
respect to an ample divisor and superscripts to denote slope with respect to a
curve class.

Definition 4.3. We say E is slope-stable (resp. slope-semistable) with respect to γ
if, for all torsion-free quotients E→Q→ 0 of intermediate rank, we have

µγ (E) < µγ (Q) (resp. µγ (E)≤ µγ (Q)).

A benefit of working with slope-(semi)stability with respect to curves rather than
divisors is that we can apply ideas of convexity.

Lemma 4.4. If γ , δ are classes in N1(X)R such that E is semistable with respect
to γ and E is stable with respect to δ, then E is stable with respect to aγ + bδ for
a, b > 0. �

If C ⊂ X is an irreducible curve, we would like to relate the stability of E|C and
the stability of E with respect to the class of C . However, if Q is a coherent sheaf
and C meets Sing(Q), it is possible that c1(Q|C) 6= c1(Q)|C . Thankfully we can
say something if C is not entirely contained in Sing(Q).

Proposition 4.5. Let E→Q→ 0 be a torsion-free quotient which destabilizes E
with respect to the curve class γ . Suppose C ⊂ X is a smooth irreducible closed
curve which represents γ , avoids Sing(E), and avoids the singularities of X. If C is
not contained in Sing(Q) then E|C is not stable on C.
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Proof. First, we can reduce to the surface case by choosing a normal surface S ⊂ X
containing C such that S is smooth along C , and S meets Sing(Q) and Sing(E) prop-
erly. This is possible because when the dimension of X is greater than 3 a generic,
high-degree hyperplane section containing C is normal and smooth along C and
meets both Sing(Q) and Sing(E) properly. Once such a surface is chosen, we have

c1(Q)|S=c1(Q|S)=c1(Q|S/Tors(Q|S)), c1(E)|S=c1(E|S)=c1(E|S/Tors(E|S))

because both Sing(Q)∩ S and Sing(E)∩ S are zero-dimensional. Thus

E|S/Tors(E|S)→Q|S/Tors(Q|S)→ 0

is a torsion-free quotient on S which destabilizes E|S/Tors(E|S) with respect to the
class of C . So we have reduced the proposition to the case when X is a surface.

Let X be a surface. It is enough to show c1(Q|C) = c1(Q)|C . The restriction
c1(Q)|C is computed via the derived pullback

c1(Q)|C =
∞∑

i=0

(−1)i c1(TorOX
i (Q,OC)),

where the TorOX
i (Q,OC) are thought of as modules on C (see [Fulton 1998, §15.1]

for the smooth case). Further, C is a Cartier divisor on X, so OC has a two-term
locally free resolution. So the TorOX

i (Q,OC) vanish for i>2 and TorOX
1 (Q,OC)=0

because Q is torsion-free. Therefore,

c1(Q)|C = c1(TorOX
0 (Q,OC))= c1(Q|C).

So E|C is not slope-stable. �

An immediate corollary is the following coarse criterion for checking slope-
stability with respect to γ .

Corollary 4.6. Let π : CT → T be a family of smooth irreducible closed curves
in X with class γ . For t ∈ T we write Ct to denote π−1(t). Suppose E is a vector
bundle on X such that E|Ct is stable for all t ∈ T. If the curves in CT are dense in X
then E is stable with respect to the curve class γ .

Proof. Suppose for contradiction that E is unstable with respect to γ . Then there
exists a torsion-free quotient E→Q→ 0 with µγ (Q)≤µγ (E). As Q is torsion-free,
Sing(Q) has codimension ≥ 2. The curves in CT are dense in X so there is a t ∈ T
such that Ct is not contained in Sing(Q). Then Proposition 4.5 guarantees that E|Ct

is not stable, which contradicts our hypothesis. �

Proposition 4.5 can be adjusted so that Corollary 4.6 also holds if stability is
replaced by semistability. As a consequence we prove the following basic result
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about slope-stable vector bundles, which we have already used in the proof of
Theorem A.

Proposition 4.7. Let X and Y be smooth projective varieties of dimension d and e,
respectively. Let HX be an ample divisor on X and let HY be an ample divisor on Y .
Let p1 denote the projection from X × Y to X and p2 the projection from X × Y
to Y . If E is a vector bundle on X which is slope-stable with respect to HX , then
p∗1(E) is slope-stable on X×Y with respect to the ample divisor p∗1(HX )+ p∗2(HY ).

Proof. By [Mehta and Ramanathan 1984, Theorem 4.3] if k� 0 and C is a general
curve which is a complete intersection of divisors linearly equivalent to k HX then
E|C is stable. Let F ⊂ |k HX |

d−1 be the open subset of the cartesian power of the
complete linear series of k HX defined as

F := {(H1, . . . , Hd−1) ∈ |k HX |
d−1
| C = H1 ∩ · · · ∩ Hd−1

is a smooth complete intersection curve and E|C is stable}.

We write CF for the natural family of smooth curves in X parametrized by F.
Likewise, the fiber product CF ×F (F × Y ) is naturally a family of smooth curves
in X ×Y parametrized by F ×Y. The image of CF ×F (F ×Y ) in X ×Y is dense,
and for any ( f, y) ∈ F×Y the restriction of p∗1(E) to C( f,y) is stable. Therefore, by
Corollary 4.6, p∗1(E) is stable with respect to the numerical class of C( f,y), which
we denote by γ .

For l� 0 the divisor l HY is very ample on Y and a general complete intersection
of divisors linearly equivalent to l HY is smooth. Let G ⊂ |l HY |

e−1 be the open
subset of the cartesian power of the complete linear series of l HY defined as

G := {(H1, . . . , He−1) ∈ |l HY |
e−1
| H1 ∩ · · · ∩ He−1

is a smooth complete intersection curve}.

As before, there is a natural family DG of smooth curves in Y parametrized by G.
The fiber product DG×G (X×G) is a family of smooth curves in X×Y parametrized
by X × G. For (x, g) ∈ X × G the restriction of p∗1(E) to D(x,g) is a direct
sum of trivial bundles, thus the restriction is semistable. Therefore, by applying
Corollary 4.6 in the semistable case, p∗1(E) is semistable with respect to the curve
class of D(x,g), which we denote by δ.

Finally,

(p∗1 HX + p∗2 HY )
d+e−1

=

(d+e−1
e

)(HY )
e

kd−1 · γ +
(d+e−1

d

)(HX )
d

le−1 · δ.

Thus, by Lemma 4.4, p∗1(E) is slope-stable with respect to p∗1(HX )+ p∗2(HY ). �

This completes the proof of Theorem A. We now give a proof of the perturbation
argument. The idea is to use [Greb et al. 2016, Theorem 3.4] on openness of
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stability along with the fact that the natural Chow divisors are lef in the sense of
[de Cataldo and Migliorini 2002, Definition 2.1.3].

Proposition 4.8. Let H be a nef divisor and A an ample Q-divisor on a normal
complex projective variety X. Suppose E is a rank-r torsion-free sheaf on X which
is slope-stable with respect to the class of H d−1. Assume

−∩ H d−2
: N 1(X)R→ N1(X)R, ξ 7→ ξ · H d−2

is an isomorphism. Then E is stable with respect to H + εA for ε sufficiently small.

This implies that we can perturb our Chow polarization to obtain stability of
tautological bundles with respect to nearby ample divisors.

Corollary 4.9. If E is a vector bundle on a smooth projective surface S which is
stable with respect to an ample divisor H , then E [n] is stable with respect to an
ample divisor near the Chow divisor Hn .

Proof of Corollary 4.9. By [de Cataldo and Migliorini 2002, Theorem 2.3.1] we
know Hn is lef, so E [n] and Hn satisfy the conditions of Proposition 4.8. Therefore,
E [n] is stable with respect to ample divisors close to Hn . �

Proof of Proposition 4.8. Identifying the tangent space of a vector space with the
vector space, the derivative of the (d − 1)-st power map N 1(X)R→ N1(X)R at H
is given by

−∩ (d − 1)H d−2
: N 1(X)R→ N1(X)R.

The assumption that the intersection with the H d−2 map is an isomorphism implies
that the (d − 1)-st power map is locally an isomorphism.

It follows from [Greb et al. 2016, Theorem 3.4] that there is a nonempty convex
open set U ⊂ N1(X)R whose closure contains [H d−1

] such that, for all γ ∈U, E is
stable with respect to γ . More precisely, if δ ∈ N1(X)R represents the (d − 1)-st
power of an ample divisor then E is stable with respect to the perturbed curve class
[H d−1

] + ε · δ for ε sufficiently small. By estimating the (d − 1)-st power map by
its derivative (which is an isomorphism at H ) and by our ability to perturb linearly
towards ample curve classes, we see that, for small enough ε, (H + εA)d−1 maps
into U. Therefore, for ε sufficiently small, E is stable with respect to H + εA. �
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Anabelian geometry
and descent obstructions on moduli spaces

Stefan Patrikis, José Felipe Voloch and Yuri G. Zarhin

We study the section conjecture of anabelian geometry and the sufficiency of
the finite descent obstruction to the Hasse principle for the moduli spaces of
principally polarized abelian varieties and of curves over number fields. For the
former we show that the section conjecture fails and the finite descent obstruction
holds for a general class of adelic points, assuming several well-known conjec-
tures. This is done by relating the problem to a local-global principle for Galois
representations. For the latter, we show how the sufficiency of the finite descent
obstruction implies the same for all hyperbolic curves.

1. Introduction

Anabelian geometry is a program proposed by Grothendieck [1997a; 1997b] which
suggests that for a certain class of varieties (called anabelian but, as yet, undefined)
over a number field, one can recover the varieties from their étale fundamental
group together with the Galois action of the absolute Galois group of the number
field. Precise conjectures exist only for curves and some of them have been proved,
notably by Mochizuki [1996]. Grothendieck suggested that moduli spaces of curves
and abelian varieties (the latter perhaps less emphatically) should be anabelian.
Already Ihara and Nakamura [1997] have shown that moduli spaces of abelian
varieties should not be anabelian as one cannot recover their automorphism group
from the fundamental group and we will further show that other anabelian properties
fail in this case.

The finite descent obstruction is a construction that describes a subset of the
adelic points of a variety over a number field containing the closure of the rational
(or integral) points and is conjectured, for hyperbolic curves (Stoll [2007] in the
projective case and Harari and Voloch [2010] in the affine case), to equal that
closure. It’s not unreasonable to conjecture the same for all anabelian varieties.
The relationship between the finite descent obstruction and the section conjecture
in anabelian geometry has been discussed by Harari and Stix [2012], Stix [2013,

MSC2010: primary 11G35; secondary 14G05, 14G35.
Keywords: Anabelian geometry, moduli spaces, abelian varieties, descent obstruction.
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Section 11], and others. We will review the relevant definitions below, although our
point of view will be slightly different.

The purpose of this paper is to study the section conjecture of anabelian geometry
and the finite descent obstruction for the moduli spaces of principally polarized
abelian varieties and of curves over number fields. For the moduli of abelian
varieties we show that the section conjecture fails in general and that both the
section conjecture and finite descent obstruction hold for a general class of adelic
points, assuming many established conjectures in arithmetic geometry (specifically,
we assume the Hodge, Tate, Fontaine–Mazur and Grothendieck–Serre conjectures,
in the precise forms stated in Section 3). This is done by converting the question
into one about Galois representations.

The section conjecture predicts that sections of the fundamental exact sequence
(Section 3, Equation (1)) of an anabelian variety over a number field correspond
to rational points. In this paper, we look at the sections of the fundamental exact
sequence of the moduli spaces of principally polarized abelian varieties that, locally
at every place of the ground field, come from a point rational over the completion,
which moreover is integral for all but finitely many places. This set is denoted
S0(K ,Ag) and defined precisely at the end of Section 2. We explain, in Section 3,
how sections of the fundamental exact sequence of the moduli spaces of princi-
pally polarized abelian varieties correspond to Galois representations and prove,
Theorem 3.7, the following result.

Theorem 1.1. Assume the Hodge, Tate, Fontaine–Mazur, and Grothendieck–Serre
conjectures. Let K be a number field. Suppose s ∈ S0(K ,Ag) gives rise to a system
of `-adic Galois representations one of which is absolutely irreducible. Then there
exists, up to isomorphism, a unique principally polarized abelian variety which,
viewed as point of Ag(K ), induces (up to conjugation) the section s.

We also give examples (see Theorems 4.4 and 4.5) showing that weaker versions
of the above result do not hold. Specifically, the local conditions cannot be weakened
to hold almost everywhere, for instance.

For the moduli of curves, we show how combining some of our results and
assuming sufficiency of finite descent obstruction for the moduli of curves, we
deduce the sufficiency of finite descent obstruction for all hyperbolic curves.

In the next section we give more precise definitions of the objects we use and in
the following two sections we give the applications mentioned above.

2. Preliminaries

Let X/K be a smooth geometrically connected variety over a field K . Let GK

be the absolute Galois group of K and X the base-change of X to an algebraic
closure of K . We denote by π1(·) the algebraic fundamental group functor on
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(geometrically pointed) schemes and we omit base-points from the notation. We
have the fundamental exact sequence

1→ π1(X)→ π1(X)→ GK → 1. (1)

The map pX : π1(X)→ GK from the above sequence is obtained by functoriality
from the structural morphism X → Spec K . Grothendieck’s anabelian program
is to specify a class of varieties, termed anabelian, for which the varieties and
morphisms between them can be recovered from the corresponding fundamental
groups together with the corresponding maps pX when the ground field is finitely
generated over Q. As this is very vague, we single out here two special cases with
precise statements. The first is a (special case of a) theorem of Mochizuki [1996]
which implies part of Grothendieck’s conjectures for curves but also extends it by
considering p-adic fields.

Theorem 2.1 [Mochizuki 1996]. Let X, Y be smooth projective curves of genus
bigger than one over a field K which is a subfield of a finitely generated extension
of Qp. If there is an isomorphism from π1(X) to π1(Y ) inducing the identity on GK

via pX , pY , then X is isomorphic to Y .

A point P ∈ X (K ) gives, by functoriality, a section GK → π1(X) of the funda-
mental exact sequence (1) well-defined up to conjugation by an element of π1(X)
(the indeterminacy is because of base points).

We denote by H(K ,X) the set of sections GK → π1(X) modulo conjugation
by π1(X) and we denote by σX/K : X (K )→ H(K ,X) the map that associates to
a point the class of its corresponding section, as above, and we call it the section
map. As part of the anabelian program, it is expected that σX/K is a bijection if
X is projective, anabelian and K is finitely generated over its prime field. This is
widely believed in the case of hyperbolic curves over number fields and is usually
referred as the section conjecture. For a similar statement in the nonprojective case,
one needs to consider the so-called cuspidal sections, see [Stix 2013, Section 18].
Although we will discuss nonprojective varieties in what follows, we will not need
to specify the notion of cuspidal sections. The reason for this is that we will be
considering sections that locally come from points (the Selmer set defined below)
and these will not be cuspidal.

We remark that the choice of a particular section s0 :GK → π1(X) induces an ac-
tion of GK on π1(X), x 7→ s0(γ )xs0(γ )

−1. For an arbitrary section s :GK→π1(X)
the map γ 7→ s(γ )s0(γ )

−1 is a 1-cocycle for the above action of GK on π1(X)
and this induces a bijection H 1(GK , π1(X))→ H(K ,X). We stress that this only
holds when H(K ,X) is nonempty and a choice of s0 can be made. It is possible
for H(K ,X) to be empty, in which case there is no natural choice of action of GK
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on π1(X) by which to define H 1(GK , π1(X)), which would be nonempty in any
case, if defined.

Let X/K be as above, where K is now a number field. If v is a place of K , we
have the completion Kv and a fixed inclusion K ⊂ K v induces a map αv :GKv

→GK

and a map βv : π1(Xv)→ π1(X), where Xv is the base-change of X to Kv. We
define the Selmer set of X/K as the set S(K ,X) ⊂ H(K ,X) consisting of the
equivalence classes of sections s such that for all places v there exists Pv ∈ X (Kv)

with s ◦αv = βv ◦ σXv/Kv
(Pv). Note that if v is complex, then the condition at v is

vacuous and that if v is real, σXv/Kv
factors through X (Kv)•, the set of connected

components of X (Kv), equipped with the quotient topology (see [Mochizuki 2003;
Pál 2011]). In the nonarchimedian case, X (Kv) is totally disconnected so X (Kv)=

X (Kv)• and we have the following diagram:

X (K ) //

σX/K

��

∏
X (Kv)• ⊃ X f

∏
σXv/Kv

��

S(K ,X)⊂ H(K ,X) α
//
∏

H(Kv,Xv)

We define the set X f (the finite descent obstruction) as the set of points (Pv)v ∈∏
v X (Kv)• for which there exists s∈H(K ,X) (which is then necessarily an element

of S(K ,X)) satisfying s ◦αv = βv ◦σXv/Kv
(Pv) for all places v. Also, it is clear that

the image of X (K ) is contained in X f . At least when X is proper, X f is closed
(this follows from the compactness of H(K ,X) [Stix 2013, Corollary 45]). In that
case, one may consider whether the closure of the image of X (K ) in

∏
X (Kv)•

equals X f . A related statement is the equality σX/K (X (K ))= S(K ,X), which is
implied by the “section conjecture”, i.e., the bijectivity of σX/K : X (K )→ H(K ,X).
As a specific instance of this relation, we record the following easy fact.

Proposition 2.2. We have that X f
=∅ if and only if S(K ,X)=∅.

Proof. If X f
6= ∅ and (Pv) ∈ X f , then there exists s ∈ S(K ,X) with s ◦ αv =

βv ◦ σXv/Kv
(Pv) for all places v, so S(K ,X) 6=∅.

If s ∈ S(K ,X), there exists (Pv) with s ◦αv = βv ◦ σXv/Kv
(Pv) for all places v.

So (Pv) ∈ X f . �

If X is not projective, then one has to take into account questions of integrality.
We choose an integral model X/OS,K , where S is a finite set of places of K and
OS,K is the ring of S-integers of K . The image of X (K ) in X f actually lands in
the adelic points which are the points that satisfy Pv ∈ X (Ov) for all but finitely
many v, where Ov is the local ring at v. Similarly, the image of σX/K belongs to the
subset of S(K ,X) where the corresponding local points Pv also belong to X (Ov)
for all but finitely many v. We denote this subset of S(K ,X) by S0(K ,X) and call
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it the integral Selmer set. We note that S0(K ,X) is independent of the choice of
the model X .

In order to set notation, we recall here some basic notions about the Tate module
of abelian varieties which will be used in the next two sections. If A is an abelian
variety over the field K then we write End(A) for its ring of all K -endomorphisms
and End0(A) for the corresponding (finite-dimensional semisimple) Q-algebra
End(A)⊗Q. If n ≥ 3 is an integer that is not divisible by char(K ) and all points
of order n on A are defined over K then, by a theorem of Silverberg [1992], all
K -endomorphisms of A are defined over K , i.e., lie in End(A).

If ` is a prime different from char(K ) then we write T`(A) for the Z`-Tate
module of A which is a free Z`-module of rank 2 dim(A) provided with the natural
continuous homomorphism

ρ`,A : GK → AutZ`(T`(A))

and the Z`-ring embedding

el : End(A)⊗Z` ↪→ EndZ`(T`(A)).

The image of End(A)⊗Z` commutes with ρ`,A(GK ). Tensoring by Q` (over Z`),
we obtain the Q`-Tate module of A

V`(A)= T`(A)⊗Z` Q`,

which is a 2 dim(A)-dimensional Q`-vector space containing

T`(A)= T`(A)⊗ 1

as a Z`-lattice. We may view ρ`,A as an `-adic representation

ρ`,A : GK → AutZ`(T`(A))⊂ AutQ`
(V`(A))

and extend e` by Q`-linearity to the embedding of Q`-algebras

End0(A)⊗Q Q` = End(A)⊗Q` ↪→ EndQ`
(V`(A)),

which we still denote by e`. Further we will identify End0(A)⊗Q Q` with its image
in EndQ`

(V`(A)).
This provides V`(A) with the natural structure of GK -module; in addition,

End0(A)⊗QQ` is a Q`-(sub)algebra of endomorphisms of the Galois module V`(A).
In other words,

End0(A)⊗Q Q` ⊂ EndGK (V`(A)).

Let χ` be the cyclotomic character χ` : GK → Z∗` that defines the Galois action
on all `-power roots of unity, and Z`(1) the `-adic Tate module of the multiplicative
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group Gm . The group Z`(1) is a free Z`-module of rank 1 provided with the Galois
action that is defined by

χ` : GK → Z∗` = AutZ`(Z`(1)).

Let Â be the dual (Picard) variety of A [Lang 1959; Mumford 1970], which is an
abelian variety over K that is isogenous to A. There is the Weil pairing [Lang 1959,
Chapter VII, Section 2]

e` : T`(A)× T`( Â)→ Z`(1),

which is a Galois-equivariant, Z`-bilinear perfect/unimodular pairing of free Z`-
modules T`(A) and T`( Â). This implies that the Galois modules T`( Â) and
HomZ`(T`(A),Z`(1)) are isomorphic.

3. Moduli of abelian varieties

The moduli space of principally polarized abelian varieties of dimension g is denoted
by Ag. It is actually a Deligne–Mumford stack or orbifold and we will consider
its fundamental group as such. For a general definition of fundamental groups of
stacks including a proof of the fundamental exact sequence in this generality, see
[Zoonekynd 2001]. For a discussion of the case of Ag, see [Hain 2011]. We can
also get what we need from [Ihara and Nakamura 1997] (see below) or by working
with a level structure which brings us back to the case of smooth varieties.

As Ag is defined over Q, we can consider it over an arbitrary number field K .
As per our earlier conventions, Ag is the base change of Ag to an algebraic closure
of Q and not a compactification. In fact, we will not consider a compactification at
all here. The topological fundamental group of Ag is the symplectic group Sp2g(Z)

and the algebraic fundamental group is its profinite completion. When g> 1 (which
we henceforth assume) Sp2g(Z) has the congruence subgroup property [Bass et al.
1964; Mennicke 1965] and therefore its profinite completion is Sp2g(Ẑ).

The group π1(Ag) is essentially described by the exact sequences (3.2) and (3.3)
of [Ihara and Nakamura 1997] and it follows that the set H(K ,Ag) consists of Ẑ

representations of GK of rank 2g preserving the symplectic form up to a multiplier
given by the cyclotomic character. Indeed, it is clear that every section gives such a
representation and the converse follows formally from the diagram below, which is
a consequence of (3.2) and (3.3) of [Ihara and Nakamura 1997].

In the following we denote the cyclotomic character by χ : GK → Ẑ∗.

1 // π1(Ag) //

∼=
��

π1(Ag) //

��

GK //

χ
��

1

1 // Sp2g(Ẑ)
// GSp2g(Ẑ)

// Ẑ∗ // 1
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The coverings of Ag corresponding to the congruence subgroups of Sp2g(Ẑ) are
those obtained by adding level structures. In particular, for an abelian variety A,
σAg/K (A) =

∏
T`(A), the product of its Tate modules considered, as usual, as a

GK -module. If K is a number field, whenever two abelian varieties are mapped to
the same point by σAg/K , then they are isogenous, by [Faltings 1983]. The finiteness
of isogeny classes of polarized abelian varieties over K [Faltings 1983] (see also
[Zarhin 1985]) implies that for any given K and g every fiber of σAg/K is finite. On
the other hand, σAg/K is not necessarily injective to S0(K ,Ag). For example, for
each g there exists K with noninjective σAg/K . Regarding surjectivity, we will prove
that those elements of S0(K ,Ag) for which the corresponding Galois representation
is absolutely irreducible (see below for the precise hypothesis and Theorem 3.7 for
a precise statement) are in the image of σAg/K , assuming the Fontaine–Mazur con-
jecture, the Grothendieck–Serre conjecture on semisimplicity of `-adic cohomology
of smooth projective varieties, and the Tate and Hodge conjectures. The integral
Selmer set S0(K ,Ag), defined in the previous section, corresponds to the set of
Galois representations that are almost everywhere unramified and, locally, come
from abelian varieties (which thus are of good reduction for almost all places of K )
and we will also consider a few variants of the question of surjectivity of σAg/K to
S0(K ,Ag) by different local hypotheses and discuss what we can and cannot prove.
A version of this kind of question has also been considered by B. Mazur [1999].

Here is the setting. Let K be a number field, with GK = Gal(K/K ). Fix
a finite set of rational primes S, and consider a collection of continuous `-adic
representations

{ρ` : GK → GLN (Q`)} 6̀∈S.

We will say that the collection {ρ`} 6̀∈S is weakly compatible if there exists a finite
set of places 6 of K such that

(1) for all ` 6∈ S, ρ` is unramified outside the union of 6 and the places 6` of K
dividing `; and

(2) for all v 6∈6 ∪6`, denoting by frv a (geometric) frobenius element at v, the
characteristic polynomial of ρ`(frv) has rational coefficients and is independent
of ` 6∈ S.1

Our aim is to prove the following:

Theorem 3.1. We will assume {ρ`} 6̀∈S is weakly compatible and moreover satisfies
the following three conditions:

(1) For some prime `0 6∈ S, ρ`0 is de Rham at all places of K above `0.

(2) For some prime `1 6∈ S, ρ`1 is absolutely irreducible.

1These systems were introduced by Serre [1989], who called them strictly compatible.



1198 Stefan Patrikis, José Felipe Voloch and Yuri G. Zarhin

(3) For some prime `2 6∈ S, and at least one place v|`2 of K , ρ`2 |GKv
is de Rham

with Hodge–Tate weights −1, 0, each with multiplicity N/2. (This condition
holds if there exists an abelian variety Av/Kv such that ρ`2 |GKv

∼= V`2(Av).)

Assume the Hodge, Tate, Fontaine–Mazur, and Grothendieck–Serre conjectures,
and suppose that the set S is empty. Then there exists an abelian variety A over K
such that ρ` ∼= V`(A) for all `.

We note that the arguments allow `0 = `2, and the reader may prefer to think of
these together as a single condition; we have phrased it this way to have hypotheses
that most clearly match the form of the argument.

We begin by making precise the combined implications of the Grothendieck–
Serre, Tate, and Fontaine–Mazur conjectures (the Hodge conjecture will only be
used later, in the proof of Lemma 3.5). For any field k and characteristic zero
field E , let Mk,E denote the category of pure homological motives over k with
coefficients in E (omitting E from the notation will mean E =Q).

Lemma 3.2. Assume the Tate conjecture for all finitely generated extensions k of Q.
Then:

(1) The Lefschetz standard conjecture holds for all fields of characteristic zero.

(2) All of the standard conjectures (namely, the Künneth and Hodge standard
conjectures, and the agreement of numerical and homological equivalence)
hold for all fields of characteristic zero.

(3) For any field k that can be embedded in C, the category Mk is a semisimple
neutral Tannakian category over Q.

(4) For any finitely generated k/Q, the étale `-adic realization functor

Mk,Q`
→ RepQ`

(Gk),

valued in the category of continuous `-adic representations of Gk , is fully
faithful.

Proof. For the first assertion, see, e.g., [André 2004, 7.3.1.3]; for the second, see
[André 2004, 5.4.2.2]. The third part is the basic motivating consequence of the
standard conjectures (a fiber functor over Q is given by Betti cohomology, after
fixing an embedding k ↪→ C): see [Jannsen 1992, Corollary 2], especially for the
semisimplicity claim. Finally, for the last part, fullness is the Tate conjecture; and
faithfulness follows from the agreement of numerical and homological equivalence
and [Tate 1994, Lemma 2.5] (note that faithfulness on Mk is simply by definition
of homological equivalence: it is only with Q`-coefficients that some argument is
needed). �
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For the rest of this section, we assume the Tate conjecture for all finitely generated
k of characteristic zero. Thus, we have a motivic Galois formalism: Mk,E is
equivalent to Rep(Gk,E) for some proreductive group Gk,E over E , the equivalence
depending on the choice of an E-linear fiber functor. We will implicitly fix an
embedding k ↪→ C and use the associated Betti realization as our fiber functor.
Before proceeding, we introduce two pieces of notation. For an extension of fields
k ′/k, we denote the base-change of motives by

(·)|k′ :Mk,E →Mk′,E .

This is not to be confused with the change of coefficients. Fix an embedding
ι :Q ↪→Q`, so that when E is a subfield of Q we can speak of the `-adic realization

Hι :Mk,E → RepQ`
(Gk)

associated to ι.
Now we turn to the case of number fields, i.e., k = K . The Tate conjecture

alone does not suffice to link Galois representations with motives: it yields full
faithfulness of the `-adic realization (as in Lemma 3.2), but does not characterize
the essential image. This is done via the combination of the Fontaine–Mazur and
Grothendieck–Serre semisimplicity conjectures, which we now recall. A semisimple
representation r` :GK →GLN (Q`) is said to be geometric (in the sense of Fontaine
and Mazur [1995]) if it is unramified outside a finite set of places of K , and if for
all v|` of K , the restriction r`|GKv

is de Rham (equivalently, potentially semistable,
as in the original formulation). See [Fontaine and Ouyang 2007; Brinon and Conrad
2009] for the definition and basic properties of de Rham representations. Fontaine
and Mazur have conjectured that any irreducible geometric r` is isomorphic to
a subquotient of H i (X K ,Q`)( j) for some smooth projective variety X/K and
some integers i and j ; that the converse assertion holds is a consequence of the
base-change theorems of étale cohomology [SGA 4 1

2 1977] and the p-adic de Rham
comparison isomorphism of Faltings [1989]. Grothendieck and Serre have moreover
conjectured that for any smooth projective X/K , and any integer i , H i (X K ,Q`) is
a semisimple representation of GK . Putting all of these conjectures together, we
can characterize the essential image of Hι:

Lemma 3.3. Assume the Tate, Fontaine–Mazur, and Grothendieck–Serre conjec-
tures. Let r` : GK → GLN (Q`) be an irreducible geometric Galois representation.
Then there exists an object M of MK ,Q such that

r`⊗Q`
Q`
∼= Hι(M).

More generally, the essential image of Hι consists of all semisimple geometric
representations (with coefficients in Q`) of GK .
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Proof. The Fontaine–Mazur conjecture asserts that for some smooth projective
variety X/k, r` is a subquotient of H i (X K ,Q`)( j) for some integers i and j ,
and the Grothendieck–Serre conjecture implies this subquotient is in fact a direct
summand. Under the Künneth standard conjecture (a consequence of our hypotheses
by Lemma 3.2), MK has a canonical (weight) grading, and we denote by H i(X)
the weight i component of the motive of X . The Tate conjecture then implies
(Lemma 3.2) that

Hι : EndMK

(
H i (X)( j)

)
⊗Q Q` −→

∼ EndQ`[GK ]

(
H i (X K ,Q`)( j)

)
(2)

is an isomorphism.
Now, there is a projector (of Q`[GK ]-modules) H i (X K ,Q`)( j) � r`, which

combined with Equation (2) yields a projector in EndMK (H
i (X)( j))⊗Q Q` whose

image has `-adic realization r`. But EndMK (H
i (X)( j)) is a semisimple algebra

over Q (Lemma 3.2), which certainly splits over Q, so the decomposition of
H i (X)( j) into simple objects of MK ,Q`

is already realized in MK ,Q.2

For the final claim about the essential image (which we do not use in what
follows), it suffices to show an irreducible rι : GK → GLN (Q`) lies in the essential
image. Such an rι is defined over a finite extension of Q` and can thus be regarded as
a higher-dimensional geometric representation r` with Q`-coefficients, necessarily
semisimple. By the first part of the lemma, r`⊗Q`

Q` is isomorphic to Hι(M) for
some M ∈MK ,Q, and by the Tate conjecture there is a projector in End(M)⊗Q Q`

inducing the canonical (adjunction) projector r`⊗Q`
Q` � rι. Arguing as before (a

simple object of MK ,Q`
arises by scalar-extension from one of MK ,Q), we see that

rι is in the essential image of Hι. �

Returning to our particular setting, fix any `0 6∈ S as in our first condition
on the compatible system {ρ`} 6̀∈S , and also fix an embedding ι0 : Q ↪→ Q`0 ,
so that Lemma 3.3 provides us with a number field (the linear combinations of
correspondences needed to cut out a given object of MK ,Q have coefficients in a
finite extension of Q) E ⊂Q (which we may assume Galois over Q) and a motivic
Galois representation ρ : GK ,E → GLN ,E such that Hι0(ρ) ∼= ρ`0 ⊗Q`0 . Let us
denote by λ0 the place of E induced by E ⊂Q−→

ι0 Q`. Then for all finite places λ of
E (say λ|`), and for almost all places v of K , compatibility gives us the following
equality of rational numbers (note that ρλ denotes the λ-adic realization of the
motivic Galois representation ρ, while ρ` denotes the original `-adic representation
in our compatible system):

tr(ρλ(frv))= tr(ρλ0(frv))= tr(ρ`0(frv))= tr(ρ`(frv).

2In fact, it is realized over the maximal CM subfield of Q: see, e.g., [Patrikis 2012, Lemma 4.1.22].
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Here we use the fact that the collection of `-adic realizations of a motive form a
(weakly) compatible system; this follows from the Lefschetz trace formula, in its
“formal” version for correspondences (see for instance [André 2004, 3.3.3, 7.1.4]).
We deduce as usual (Brauer–Nesbitt and Chebotarev, see [Serre 1989, theorem on
p. I-10; Ribet 1976, Theorem 1.3.1, p. 756]) that ρss

` ⊗Q`
Eλ ∼= ρλ; this holds for

all λ for which ρ` makes sense, i.e., for all λ above ` 6∈ S.
Recall that for some `1 6∈ S, we have assumed ρ`1 is absolutely irreducible; hence

for any place λ1 of E above `1, the previous paragraph shows that ρλ1
∼= ρ`1 ⊗ Eλ1

is absolutely irreducible. A fortiori, ρ is absolutely irreducible, and then by the Tate
conjecture all ρλ are absolutely irreducible, so we can upgrade the conclusion of
the previous paragraph to an isomorphism of absolutely irreducible representations
ρ`⊗Q`

Eλ ∼= ρλ, for all ` 6∈ S.
The next question is whether having each (or almost all) ρλ in fact definable

over Q` forces ρ to be definable over Q. Since the ρλ descend to Q`, the Tate
conjecture implies that for all σ ∈ Gal(E/Q), σρ ∼= ρ; and since End(ρ) is E , the
obstruction to descending ρ to a Q-rational representation of GK is an element obsρ
of H 1(Gal(E/Q),PGLN (E)).

Lemma 3.4. With the notation above, obsρ in fact belongs to

ker
(

H 1(Gal(E/Q),PGLN (E)
)
→

∏
6̀∈S

H 1(Gal(Eλ/Q`),PGLN (Eλ)
))
.

In particular, if S is empty, then ρ can be defined over Q.

Proof. We know that each of the λ-adic realizations ρλ (for λ|` 6∈ S) can be defined
over Q`; to prove the lemma, we need to verify that the canonical localizations of
obsρ (which arise by extending scalars on the motivic Galois representation) are
in fact given by the corresponding obstruction classes for the λ-adic realizations.
Thus, we have to recall how these realizations are constructed from ρ itself. The
surjection GK � GK admits a continuous section on Q`-points, s` : GK → GK (Q`);
composition with ρ⊗E Eλ yields ρλ:

GK

ρλ

++

s`
// GK (Q`)

� � // GK ,E(Eλ)
ρ⊗E Eλ

// GLN (Eλ).

By construction of the respective obstruction classes, the canonical map from
endomorphisms of ρ⊗E Eλ to those of ρλ realizes the obstruction class for ρλ as
the localization of obsρ at Gal(Eλ/Q`). But we have seen that ρλ can be defined
over Q`, so we conclude that obsρ has trivial restriction to each Gal(Eλ/Q`), as
desired.
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For the final claim, note that by Hilbert 90 we can regard obsρ as an element of

ker
(

H 2(Gal(E/Q), E×
)
→

∏
6̀∈S

H 2(Gal(Eλ/Q`), E×λ
))
.

If S is empty, then the structure of the Brauer group of Q (which has only one
infinite place!) then forces obsρ to be trivial. �

Proof of Theorem 3.1. From now on we assume S = ∅, so that our compatible
system {ρ`}` arises from a rational representation

ρ : GK → GLN ,Q.

Let M be the rank N object of MK corresponding to ρ via the Tannakian equiv-
alence. Recall that we are given a prime `2 and a place v|`2 of K for which we
are given that ρ`2 |GKv

is de Rham with Hodge numbers equal to those of an abelian
variety of dimension N/2. All objects of MK enjoy the de Rham comparison
theorem of “`2-adic Hodge theory”: denoting Fontaine’s period ring over Kv by
BdR,Kv

, and the de Rham realization functor by HdR :MK → FilK (the category
of filtered K -vector spaces), we have the comparison (respecting filtration and
GKv

-action)
HdR(M)⊗K BdR,Kv

−→∼ H`2(M)⊗Q`2
BdR,Kv

,

hence
HdR(M)⊗K Kv

∼= DdR,Kv
(H`2(M)).

The Hodge filtration on HdR(M) therefore satisfies

dimK gr0(HdR(M))= dimK gr−1(HdR(M))=
N
2

(3)

and gri (HdR(M))= 0 for i 6= 0,−1.
Now we turn to the Betti picture. Recall that to define the fiber functor on MK we

had to fix an embedding K ↪→C; we regard K as a subfield of C via this embedding.
Then we also have the analytic Betti–de Rham comparison isomorphism

HdR(M)⊗K C−→∼ HB(M |C)⊗Q C. (4)

We collect our findings in the following lemma, which relies on an application of
the Hodge conjecture.

Lemma 3.5. There is an abelian variety A over K , and an isomorphism of motives
H1(A)∼= M.

Proof. We see from Equations (3) and (4) that HB(M |C) is a polarizable rational
Hodge structure of type {(0,−1), (−1, 0)}. It follows from Riemann’s theorem
that there is an abelian variety A/C and an isomorphism of Q-Hodge structures
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H1(A(C),Q) ∼= HB(M |C). The Hodge conjecture implies that this isomorphism
comes from an isomorphism H1(A)−→∼ M |C in MC.

For any σ ∈ Aut(C/Q), we deduce an isomorphism

σH1(A)−→∼ σM |C = M |C←−∼ H1(A),

and again from Riemann’s theorem we see that σA and A are isogenous.
The following statement will be proven later in this paper.

Lemma 3.6. Let K be a countable subfield of the field C and K the algebraic
closure of K in C. Let Y be a complex abelian variety of dimension g such that
for each field automorphism σ ∈ Aut(C/K) the complex abelian variety Y and its

“conjugate” σY = Y ×C,σ C are isogenous. Then there exists an abelian variety Y0

over K such that Y0×K C is isomorphic to Y .

It follows from Lemma 3.6 that A has a model AQ over Q. The morphism

HomMQ
(H1(AQ),M |Q)→ HomMC

(H1(A),M |C)

is an isomorphism, and then by general principles we deduce the existence of some
finite extension L/K inside Q over which A descends to an abelian variety AL ,
and where we have an isomorphism H1(AL)−→

∼ M |L in ML .
Finally, we treat the descent to K itself. We form the restriction of scalars abelian

variety ResL/K (AL); under the fully faithful embedding

AV0
K ⊂MK , B 7→ H1(B),

we can think of H1(ResL/K (AL)) as IndK
L (H1(AL)), where the induction is taken

in the sense of motivic Galois representations (note that the quotient GK /GL is
canonically Gal(L/K ), so this is just the usual induction from a finite-index
subgroup). Frobenius reciprocity then implies the existence of a nonzero map
M→ IndK

L (H1(AL)) in MK . Since M is a simple motive, this map realizes it as a
direct summand in MK , and consequently (full-faithfulness) in AV0

K as well. That
is, there is an endomorphism of ResL/K (AL) whose image is an abelian variety A
over K with H1(A)∼= M . �

Proof of Lemma 3.6. We may assume that g ≥ 1. Since K is also countable, we may
replace K by K, i.e., assume that K is algebraically closed. Since the isogeny class of
Y consists of a countable set of (complex) abelian varieties (up to an isomorphism),
we conclude that the set Aut(C/K)(Y) of isomorphism classes of complex abelian
varieties of the form {σY | σ ∈ Aut(C/K)} is either finite or countable.

Our plan is as follows. Let us consider a fine moduli space Ag,? over Q of
g-dimensional abelian varieties (schemes) with certain additional structures (there
should be only finitely many choices of these structures for any given abelian
variety) such that it is a quasiprojective subvariety in some projective space PN .
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Choose these additional structures for Y (there should be only finitely many choices)
and let P ∈Ag,?(C) be the corresponding point of our moduli space. We need to
prove that

P ∈Ag,?(K).

Suppose that it is not true. Then the orbit Aut(C/K)(P) of P is uncountable.
Indeed, P lies in one of the (N + 1) affine charts/spaces AN that do cover PN.
This implies that P does not belong to AN(K) and therefore (at least) one of its
coordinates is transcendental over K. But the Aut(C/K)-orbit of this coordinate
coincides with uncountable C \K and therefore the Aut(C/K)-orbit Aut(C/K)(P)
of P is uncountable in Ag,?(C). However, for each σ ∈ Aut(C/K) the point σ(P)
corresponds to σY with some additional structures and there are only finitely many
choices for these structures. Since we know that the orbit Aut(C/K)(Y) of Y , is,
at most, countable, we conclude that the orbit Aut(C/K)(P) of P is also, at most,
countable, which is not the case. This gives us a desired contradiction.

We choose as Ag,? the moduli space of (polarized) abelian schemes of relative
dimension g with theta structures of type δ that was introduced and studied by
D. Mumford [1966]. In order to choose (define) a suitable δ, let us pick a totally
symmetric ample invertible sheaf L0 on Y [Mumford 1966, Section 2] and consider
its 8th power L :=L8

0 in Pic(Y). Then L is a very ample invertible sheaf that defines
a polarization 3(L) on Y [Mumford 1966, Part I, Section 1] that is an isogeny
from Y to its dual; the kernel H(L) of 3(L) is a finite commutative subgroup of
Y(C) (that contains all points of order 8). The order of H(L) is the degree of the
polarization. The type δ is essentially the isomorphism class of the group H(L)
[Mumford 1966, Part I, Section 1, p. 294]. The resulting moduli space Ag,? := Mδ

[Mumford 1966, Part II, Section 6] enjoys all the properties that we used in the
course of the proof. �

Here is the anabelian application already mentioned in the introduction:

Theorem 3.7. Assume the Hodge, Tate, Fontaine–Mazur, and Grothendieck–Serre
conjectures. Suppose s ∈ S0(K ,Ag) gives rise to a system of `-adic Galois represen-
tations one of which is absolutely irreducible. Then there exists up to isomorphism
a unique principally polarized abelian variety B/K with σAg/K (B)= s.

Proof. Let us write s` for the `-adic representation associated to s; thus s` is a
representation of GK on a free Z`-module T` of rank 2g, automatically satisfying
Hypothesis 2 of Theorem 3.1 since s belongs to S0(K ,Ag). Hypothesis 1 of
Theorem 3.1 is satisfied by assumption, so we obtain an abelian variety A/K (well-
defined up to isogeny) whose rational Tate modules V`(A) are isomorphic (as `-adic
representations) to the given s`⊗Z` Q` (for all `). Moreover Hypothesis 1 implies
that the endomorphism ring of A is Z. It remains to see that within the isogeny class
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of A there is a principally polarized abelian variety B over K whose integral Tate
module T`(B) is isomorphic as a Z`[GK ]-module to T` (for all `), i.e., such that
σAg/K (B)= s. For this, we first observe that by [Deligne 1971, Proposition 3.3]
(which readily generalizes to abelian varieties of any dimension), it suffices to
show that for almost all `, there is an isomorphism T`(A)∼= T`. Since End(A)= Z,
[Zarhin 1985, Corollary 5.4.5] implies that A[`] is an absolutely simple Galois
module for almost all `, and hence that for almost all `, all Galois-stable lattices
in V`(A) are of the form `m T`(A) for some integer m; we conclude that T`(A) is
isomorphic to T` for almost all `. Thus there exists an abelian variety B in the
isogeny class of A such that the Z`[GK ]-modules T`(B) and T` are isomorphic for
all `.

In order to prove the uniqueness of such a B up to an isomorphism, first, notice
that End(B)= Z. Second, let C be an abelian variety over K such that the Z`[GK ]-
modules T`(B) and T`(C) are isomorphic for all primes `. This implies that the
Z`-ranks of T`(B) and T`(C) coincide and therefore

dim(B)= dim(C).

By a theorem of Faltings [1983],

Hom(B,C)= HomGK (T`(B), T`(C)).

Since Hom(B,C) is dense in Hom(B,C)⊗Z` in the `-adic topology, and the set of
isomorphisms T`(B)∼= T`(C) is open in Hom(B,C)⊗Z`, there is a homomorphism
φ` ∈ Hom(B,C) that induces an isomorphism of Tate modules T`(B) ∼= T`(C).
Clearly, ker(φ`) does not contain points of order ` and therefore is finite. Since
dim(B) = dim(C), we obtain that φ` is an isogeny, whose degree is prime to `.
In particular, B and C are isogenous. On the other hand, since End(B) = Z, the
group Hom(B,C) is a free Z-module of rank 1. Let us choose ψ : B→ C that is a
generator of Hom(B,C). Clearly, ψ is an isogeny. Since for all primes `

φ` ∈ Hom(B,C)= Z ·ψ,

deg(ψ) is not divisible by ` and therefore deg(ψ)= 1, i.e., ψ is an isomorphism
of abelian varieties B and C .

We still need to check that B is principally polarized. Since s` comes from s,
there is an alternating Galois-equivariant Z`-bilinear perfect/unimodular form

T`× T`→ Z`(1).

Since T` is isomorphic as a Z`[GK ]-module to T`(B), there is a Galois-equivariant,
Z`-bilinear perfect/unimodular form

T`(B)× T`(B)→ Z`(1).
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This implies that the Galois modules T`(B) and HomZ`(T`(B),Z`(1)) are isomor-
phic. It follows from the last sentence of Section 2 that the Galois modules T`(B)
and T`(B̂) are isomorphic for all primes `. This implies that the abelian varieties B̂
and B are isomorphic. Since End(B)=Z, there is an isomorphism µ : B→ B̂ such
that Hom(B, B̂) = Z ·µ. Let λ : B→ B̂ be a polarization on B. Then there is a
nonzero integer n such that λ= n ·µ. Replacing if necessary µ by −µ, we may and
will assume that n is a positive integer. It follows from [Mumford 1970, Section 23,
Theorem 3] that µ is a polarization, which is obviously principal. (Clearly, there is
exactly one principal polarization on B, namely µ.) So, σAg/K (B) is defined and
obviously coincides with s. �

Remark 3.8. Note that for each prime ` we get the Riemann form [Lang 1959,
Chapter VII, Section 2; Mumford 1970, Section 20]

E`,µ : T`(B)× T`(B)→ Z`(1), x, y 7→ e`(x, µy) for all x, y ∈ T`(B),

which is an alternating Galois-equivariant Z`-bilinear perfect/unimodular form on
the free Z`-module T`(B). Since End(B)= Z, the already cited result of Faltings
implies that EndGK(T`(A))= Z`. It follows that any alternating Galois-equivariant
Z`-bilinear perfect/unimodular form

T`(B)× T`(B)→ Z`(1)

coincides with c`·E`,µ for some c`∈Z∗` . This implies that any isomorphism between
the Z`[GK ]-modules T` and T`(B) induces isomorphisms between the corresponding
symplectic groups and between the corresponding groups of symplectic similitudes.

Results in the same vein as this corollary have been obtained for elliptic curves
over Q in [Helm and Voloch 2011] and for elliptic curves over function fields in
[Voloch 2012].

4. Counterexamples

Now we will construct an example of Galois representation that will provide us
with examples that show that some of the hypotheses of the above results are
indispensable.

Let k be a real quadratic field. Let us choose a prime p that splits in k. Now let
D be the indefinite quaternion k-algebra that splits everywhere outside (two) prime
divisors of p and is ramified at these divisors. If ` is a prime then we have

D⊗Q Q` = [D⊗k k]⊗Q Q` = D⊗k [k⊗Q Q`].

This implies that if ` 6= p then D⊗Q Q` is either (isomorphic to) the simple matrix
algebra (of size 2) over a quadratic extension of Q` or a direct sum of two copies of



Anabelian geometry and descent obstructions on moduli spaces 1207

the simple matrix algebra (of size 2) over Q`. (In both cases, D⊗Q Q` is isomorphic
to the matrix algebra M2(k⊗Q Q`) of size 2 over k⊗Q Q`.)

In particular, the image of D⊗Q Q` under each nonzero Q`-algebra homomor-
phism contains zero divisors.

Let Y be an abelian variety over a field L . Suppose that all L-endomorphisms of
Y are defined over L and there is a Q-algebra embedding

D ↪→ End0(Y )

that sends 1 to 1. This gives us the embedding

D⊗Q Q` ⊂ End0(Y )⊗Q Q` ⊂ EndGL (V`(Y )).

Recall that if ` 6= p then D⊗Q Q` is isomorphic to the matrix algebra of size 2 over
k⊗Q Q`. This implies that there are two isomorphic Q`[GL ]-submodules W1,`(Y )
and W2,`(Y ) in V`(Y ) such that

V`(Y )=W1,`(Y )⊕W2,`(Y )∼=W1,`(Y )⊕W1,`(Y )∼=W2,`(Y )⊕W2,`(Y ).

If we denote by W`(Y ) the Q`[GL ]-module W1,` then we get an isomorphism of
Q`[GL ]-modules

V`(Y )∼=W`(Y )⊕W`(Y ).

This implies that the centralizer EndGL (V`(Y )) coincides with the matrix algebra
M2
(
EndGL (W`(Y ))

)
of size 2 over the centralizer EndGL (W`(Y )).

If `= p then k⊗Q Qp =Qp⊕Qp and D⊗Q Qp splits into a direct sum of two
(mutually isomorphic) quaternion algebras over Qp. This also gives us a splitting
of the Galois module Vp(Y ) into a direct sum

Vp(Y )=W1,p(Y )⊕W2,p(Y ).

of its certain nonzero Qp[GL ]-submodules W1,p(Y ) and W2,p(Y ). (Actually,

dimQp W1,p = dimQp W2,p = dim(Y ),

because Vp(Y ) is a free k⊗Q Qp-module of rank 2 dim(Y )/[k :Q] = dim(Y ) [Ribet
1976, Theorem 2.1.1 on p. 768].)

Remark. Let L be a finitely generated field of characteristic 0. Suppose that
D = End0(Y ). By Faltings’ results [1983; 1984] about the Galois action on Tate
modules of abelian varieties, the GL -module V`(Y ) is semisimple and

EndGL (V`(Y ))= D⊗Q Q`.

This implies that if ` 6= p then (the submodule) W`(Y ) is also semisimple and

M2(EndGL (W`(Y )))∼=M2(k⊗Q Q`).
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It follows that
EndGL (W`(Y ))∼= k⊗Q Q`.

On the other hand, the GL -modules W1,p(Y ) and W2,p(Y ) are nonisomorphic.

According to Shimura [1963] (see also the case of Type II(e0 = 2) with m = 1 in
[Oort 1988, Table 8.1 on p. 498] and [Oort and Zarhin 1995, table on p. 23]), there
exists a complex abelian fourfold X , whose endomorphism algebra End0(X) is
isomorphic to D. Clearly, X is defined over a finitely generated field of characteristic
zero. It follows from Serre’s variant of Hilbert’s irreducibility theorem for infinite
Galois extensions combined with results of Faltings that there exists a number field
K and an abelian fourfold A over K such that the endomorphism algebra of all
K -endomorphisms of A is also isomorphic to D (see [Noot 1995, Corollary 1.5 on
p. 165]). Enlarging K , we may assume that all points of order 12 on A are defined
over K and therefore, by the theorem of Silverberg, all K -endomorphisms of A are
defined over K . Now Raynaud’s criterion [SGA 7I 1972] (see also [Silverberg and
Zarhin 1995]), implies that A has everywhere semistable reduction. On the other
hand,

dimQ End0(A)= dimQ D = 8> 4= dim(A).

By [Oort 1988, Lemma 3.9 on p. 484], A has everywhere potential good reduction.
This implies that A has good reduction everywhere. If v is a nonarchimedean
place of K with finite residue field κ(v) then we write A(v) for the reduction of
A at v; clearly, A(v) is an abelian fourfold over κ(v). If char(κ(v)) 6= 2 then all
points of order 4 on A(v) are defined over κ(v); if char(κ(v)) 6= 3 then all points
of order 3 on A(v) are defined over κ(v). It follows from the theorem of Silverberg
that all κ(v)-endomorphisms of A(v) are defined over κ(v). For each v we get an
embedding of Q-algebras

D ∼= End0(A) ↪→ End0(A(v)).

In particular, End0(A(v)) is a noncommutative Q-algebra, whose Q-dimension is
divisible by 8.

Theorem 4.1. If ` := char(κ(v)) 6= p then A(v) is not simple over κ(v).

Proof. We write qv for the cardinality of κ(v). Clearly, qv is a power of `.
Suppose that A(v) is simple over κ(v). Since all endomorphisms of A(v) are

defined over κ(v), the abelian variety A(v) is absolutely simple.
Let π be a Weil qv-number that corresponds to the κ(v)-isogeny class of A(v)

[Tate 1966; 1971]. In particular, π is an algebraic integer (complex number), all
whose Galois conjugates have (complex) absolute value

√
qv. In particular, the

product
ππ = qv,
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where π is the complex conjugate of π .
Let E = Q(π) be the number field generated by π and let OE be the ring of

integers in E . Then E contains π and is isomorphic to the center of End0(A(v))
[Tate 1966; 1971]; one may view End0(A(v)) as a central division algebra over E .
It is known that E is either Q, Q(

√
`) or a (purely imaginary) CM field [Tate 1971,

p. 97]. It is known [ibid] that in the first two (totally real) cases simple A(v) has
dimension 1 or 2, which is not the case. So, E is a CM field; Since dim(A(v))= 4
and [E :Q] divides 2 dim(A(v)), we have [E :Q] = 2, 4 or 8. By [Tate 1971, p. 96,
Theorem 1(ii), formula (2)]3,

8= 2 · 4= 2 dim(A(v)))=
√

dimE(End0(A(v)) · [E :Q].

Since End0(A(v)) is noncommutative, it follows that E is either an imaginary
quadratic field and End0(A(v)) is a 16-dimensional division algebra over E or E is
a CM field of degree 4 and End0(A(v)) is a 4-dimensional (i.e., quaternion) division
algebra over E . In both cases End0(A(v)) is unramified at all places of E except
some places of residual characteristic ` [Tate 1971, p. 96, Theorem 1(ii)]. It follows
from the Hasse–Brauer–Noether theorem that End0(A(v)) is ramified at, at least,
two places of E with residual characteristic `. This implies that OE contains, at
least, two maximal ideals that lie above `.

Clearly,
π, π ∈OE .

Recall that ππ = qv is a power of `. This implies that for every prime r 6= ` both
π and π are r -adic units in E .

First assume that E has degree 4 and End0(A(v)) is a quaternion algebra. Then
(thanks to the theorem of Hasse–Brauer–Noether) there exists a place w of E
with residual characteristic ` and such that the localization End0(A(v))⊗E Ew is a
quaternion division algebra over the w-adic field Ew. On the other hand, there is a
nonzero (because it sends 1 to 1) Q`-algebra homomorphism

D⊗Q Q`→ End0(A(v))⊗Q Q` � End0(A(v))⊗E Ew.

This implies that End0(A(v))⊗E Ew contains zero divisors, which is not the case
and we get a contradiction.

So, now we assume that E is an imaginary quadratic field and

dimE(End0(A(v)))= 16= 42.

In particular, the order of the class of End0(A(v)) in the Brauer group of E divides
4 and therefore is either 2 or 4.

3In [Tate 1971] our E is denoted by F while our End0(A(v)) is denoted by E .
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We have already seen that there exist, at least, two maximal ideals in OE that lie
above `. Since E is an imaginary quadratic field, the ideal `OL of OL splits into a
product of two distinct complex-conjugate maximal ideals w1 and w2 and therefore

Ew1 =Q`, Ew2 =Q`; [Ew1 :Q`] = [Ew2 :Q`] = 1.
Let

ordwi : E
∗� Z

be the discrete valuation map that corresponds to wi . Recall that qv is a power of `,
i.e., qv = `N for a certain positive integer N . Clearly

ordwi (`)= 1, ordwi (π)+ ordwi (π)= ordwi (qv)= N .

By [Tate 1971, p. 96, Theorem 1(ii), formula (1)], the local invariant of End0(A(v))
at wi is

ordwi (π)

ordwi (qv)
· [Ewi :Q`] (mod 1)=

ordwi (π)

N
(mod 1).

In addition, the sum in Q/Z of local invariants of End0(A(v)) at w1 and w2 is zero
[Tate 1971, Section 1, Theorem 1 and Example b)]; we have already seen that
its local invariants at all other places of E do vanish. Using the Hasse–Brauer–
Noether theorem and taking into account that the order of the class of End0(A(v))
in the Brauer group of E is either 2 or 4, we conclude that the local invariants
of End0(A(v)) at {w1, w2} are either

{1
4 mod 1, 3

4 mod 1
}

or
{ 3

4 mod 1, 1
4 mod 1

}
(and in both cases the order of End0(A(v)) in the Brauer group of E is 4) or{ 1

2 mod 1, 1
2 mod 1

}
. In the latter case it follows from the formula for the wi -adic

invariant of End0(A(v)) that

ordwi (π)=
N
2
= ordwi (π)

and therefore π/π is a wi -adic unit for both w1 and w2. Therefore π/π is an `-adic
unit. This implies that π/π is a unit in imaginary quadratic E and therefore is a
root of unity. It follows that

π2

qv
=
π2

ππ
=
π

π

is a root of unity. This implies that there is a positive (even) integer m such that

πm
= qm/2

v ∈Q

and therefore Q(πm)=Q. Let κ(v)m be the finite degree m field extension of κ(v),
which consists of qm

v elements. Then πm is the Weil qm
v -number that corresponds

to the simple 4-dimensional abelian variety A(v) × κ(v)m over κ(v)m . Since
Q(πm) = Q, we conclude (as above) that A(v)× κ(v)m has dimension 1 or 2,
which is not the case.
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In both remaining cases the order of the algebra End0(A(v))⊗E Ew1 in the Brauer
group of the Ew1

∼= Q` is 4. This implies that End0(A(v))⊗E Ew1 is neither the
matrix algebra of size 4 over Ew1 nor the matrix algebra of size two over a quaternion
algebra over Ew1 . The only remaining possibility is that End0(A(v))⊗E Ew1 is a
division algebra over Ew1 . However, there is again a nonzero (because it sends 1
to 1) Q`-algebra homomorphism

D⊗Q Q`→ End0(A(v))⊗Q Q` � End0(A(v))⊗E Ew1 .

This implies that End0(A(v))⊗E Ew1 contains zero divisors, which is not the case
and we get a contradiction. �

Theorem 4.2. If ` := char(κ(v)) 6= p then there exists an abelian surface B(v)
over κ(v) such that A(v) is κ(v)-isogenous to the square B(v)2 of B(v).

Proof. We know that A(v) is not simple and that all κ(v)-endomorphisms of A(v)
are defined over k(v). Now let us split A(v) up to a κ(v)-isogeny into a product
of its κ(v)-isotypic components, using the Poincaré complete reducibility theorem
[Lang 1959, Theorem 6 on p. 28 and Theorem 7 on p. 30]. In other words, there is
a κ(v)-isogeny

S :
∏
i∈I

Ai → A(v),

where each Ai is a nonzero abelian κ(v)-subvariety in A such that End0(Ai ) is a
simple Q-algebra and S induces an isomorphism of Q-algebras

End0(A(v))∼= End0
(∏

i∈I

Ai

)
=

⊕
i∈I

End0(Ai ).

This gives us nonzero Q-algebra homomorphisms

D→ End0(Ai )

that must be injective, since D is a simple Q-algebra. This implies that each
End0(Ai ) is a noncommutative simple Q-algebra, whose Q-dimension is divisible
by 8. In particular, all dim(Ai )≥ 2 and therefore I consists of, at most, 2 elements,
since ∑

i∈I

dim(Ai )= dim(A(v))= 4.

Since all κ(v)-endomorphisms of A(v) are defined over k(v), all κ(v)-endo-
morphisms of Ai are also defined over κ(v); in addition, if i and j are distinct
elements of I , then every κ(v)-homomorphism between Ai and A j is 0.

If we have dim(Ai )= 2 for some i then either Ai is isogenous to a square of a
supersingular elliptic curve or Ai is an absolutely simple abelian surface. However,



1212 Stefan Patrikis, José Felipe Voloch and Yuri G. Zarhin

each absolutely simple abelian surface over a finite field is either ordinary (i.e., the
slopes of its Newton polygon are 0 and 1, both of length 2) or almost ordinary (i.e.,
the slopes of its Newton polygon are 0 and 1, both of length 1, and 1

2 with length 2):
this assertion is well known and follows easily from [Zarhin 2015, Remark 4.1 on
p. 2088]. However, in both (ordinary and almost ordinary) cases the endomorphism
algebra of a simple abelian variety is commutative [Oort 1992, Lemma 2.3 on
p. 136]. This implies that if dim(Ai ) = 2 then Ai is κ(v)-isogenous to a square
of a supersingular elliptic curve. However, if I consists of two elements, say i
and j , then it follows that both Ai and A j are 2-dimensional and therefore both
isogenous to a square of a supersingular elliptic curve. This implies that Ai and A j

are isotypic and therefore A itself is isotypic and we get a contradiction, i.e., none
of the Ai has dimension 2. It is also clear that if dim(Ai ) = 3 then dim(A j ) = 1,
which could not be the case. This implies that A(v) itself is isotypic. It follows
that if `= char(κ(v)) 6= p then A(v) is κ(v)-isogenous either to a 4th power of an
elliptic curve or to a square of an abelian surface over κ(v). (Recall that A(v) is
not simple!) In both cases there exists an abelian surface B(v) over κ(v), whose
square B(v)2 is κ(v)-isogenous to A(v). �

Let B(v) be as in Theorem 4.2. One may lift the abelian surface B(v) over
κ(v) to an abelian surface Bv over Kv, whose reduction is B(v) (see [Oort 1987,
Proposition 11.1 on p. 177]). Now if one restricts the action of GK on the Qr -Tate
module (here r is any prime different from char(κ(v)))

Vr (A)= Tr (A)⊗Zr Qr

to the decomposition group D(v)=GKv
then the corresponding GKv

-module Vr (A)
is unramified (i.e., the inertia group acts trivially) and isomorphic to

Vr (Bv)⊕ Vr (Bv).

Theorem 4.3. If r 6= p and char(κ(v)) 6= r then the GKv
-modules Vr (Bv) and

Wr (A) are isomorphic. In particular, the GKv
-modules

Vr (A)=Wr (A)⊕Wr (A)

and
Vr (Bv)⊕ Vr (Bv)= Vr ((Bv)2)

are isomorphic.

Proof. We know that the GKv
-modules Wr (A)⊕Wr (A) and

Vr (Bv)⊕ Vr (Bv)

are both isomorphic to Vr (A). Since the frobenius endomorphism of A(v) acts on
Vr (A) as a semisimple linear operator (by a theorem of A. Weil), the GKv

-module
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Vr (A) is semisimple. This implies that the GKv
-modules Vr (Bv) and Wr (A) are

isomorphic. �

For primes ` 6= p, the algebra D⊗Q Q` splits, and correspondingly, the repre-
sentation V`(A) splits as W`⊕W`. Locally, at a place v - `, we have W`

∼= V`(Bv).
However, globally, the representation W` does not come from an abelian variety
over K . Indeed, if the GK -module W` is isomorphic to V`(B) for an abelian variety
B over K then dim(B) = 2 and the theorem of Faltings implies that there is a
nonzero homomorphism of abelian varieties B→ A over K , which is not the case,
since the fourfold A is simple. On the other hand, if v|` then V`(A) is a de Rham
representation of GKv

with weights 0 and −1, both of multiplicity dim(A) = 4.
Since a subrepresentation of a de Rham representation is also de Rham, we conclude
that W` is de Rham. It is also clear that W` has the same Hodge–Tate weights as

V`(A)=W`⊕W`

but the multiplicities should be divided by 2, i.e., the Hodge–Tate weights of W`

are 0 and −1, both of multiplicity 2.
We thus obtain:

Theorem 4.4. The system of representations {W`} 6̀=p constructed above does not
come globally from an abelian variety defined over the field K but for all v -` the
representation W` locally comes from an abelian variety Bv/Kv. In particular,
{W`} 6̀=p is a weakly compatible system of 4-dimensional `-adic representations
of GK .

If v|` then W` is locally a de Rham representation with Hodge–Tate weights 0
and −1, both of multiplicity 2.

Remark. By a theorem of Faltings [1983], the GK -module V`(A) is semisimple
and therefore its submodule W` is also semisimple. On the other hand, we know
that the centralizer

EndGK (W`)= k⊗Q Q` 6=Q`;

in particular, none of W` is absolutely irreducible. In what follows we construct an
example of a weakly compatible system (for all ` 6= p) of absolutely irreducible
de Rham representations that does not come globally from an abelian variety over
a number field. However, we do not know whether it comes locally from abelian
varieties.

Let p be a prime and H be a definite quaternion algebra over Q that is ramified
exactly at p and ∞. In particular, for each prime ` 6= p we have a Q`-algebra
isomorphism

H ⊗Q Q`
∼=M2(Q`).
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Let g ≥ 4 be an even integer. According to Shimura [1963] (see also the case of
Type III (e0 = 1) with m = g/2 in [Oort 1988, Table 8.1 on p. 498] and [Oort
and Zarhin 1995, table on p. 23]), there exists a complex g-dimensional abelian
variety X , whose endomorphism algebra End0(X) is isomorphic to H . The same
arguments as above (related to D) prove that there exists a g-dimensional abelian
variety B over a certain number field K such that all endomorphisms of B are
defined over K and End0(B) ∼= H . In particular, B is absolutely simple. By the
theorem of Faltings, if ` is a prime then the GK -module V`(B) is semisimple and

EndGK (V`(B))= H ⊗Q Q`.

In particular, if ` 6= p then EndGK (V`(B))∼=M2(Q`) and therefore there are two
isomorphic Q`[GK ]-submodules U1,`(B) and U2,`(B) in V`(B) such that

V`(B)=U1,`(B)⊕U2,`(B)∼=U1,`(B)⊕U1,`(B)∼=U2,`(B)⊕U2,`(B).

If we denote by U` the Q`[GK ]-module U1,`(B) then dimQ`
(U`) = g and we get

an isomorphism of Q`[GK ]-modules

V`(B)∼=U`⊕U`.

Clearly, the submodule U` is semisimple and

M2(Q`)= H ⊗Q Q` = EndGK (V`(B))=M2(EndGK (U`)).

This implies that EndGK (U`)=Q`, i.e., the `-adic (sub)representation

GK → AutQ`
(U`)∼= GLg(Q`)

is absolutely irreducible. Clearly, for each σ ∈ GK its characteristic polynomial
with respect to the action on V`(B) is the square of its characteristic polynomial
with respect to the action on U`. This implies that if v is an nonarchimedean place
v of K where B has good reduction then for all primes ` 6= p such that v - ` the
characteristic polynomial of the frobenius element at v with respect to its action
on U` has rational coefficients and does not depend on `. In other words, U` is a
weakly compatible system of (absolutely irreducible) `-adic representations. As
above, locally for each v|` the GKv

-module V`(B) is de Rham with Hodge weights
0 and −1 with weights g, which implies that U` is also de Rham with the same
Hodge–Tate weights, whose multiplicities are g/2.

Theorem 4.5. The weakly compatible system of g-dimensional absolutely irre-
ducible representations {U`} 6̀=p constructed above does not come globally from an
abelian variety defined over the field K .

If v|` then U` is locally a de Rham representation with Hodge–Tate weights 0
and −1, both of multiplicity g/2.
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Proof. We claim that none of U` comes out from an abelian variety over K . Indeed,
if there is an abelian variety C over K such that the GK -modules V`(C) and
U` are isomorphic then dim(C) = g/2 and the theorem of Faltings implies the
existence of a nonzero homomorphism C→ B, which contradicts the simplicity of
g-dimensional B. �

5. Moduli of curves

The moduli space of smooth projective curves of genus g is denoted by Mg. It is
also an orbifold and we will consider its fundamental group as such. For definitions
see [Hain 2011]. It is defined over Q and thus we can consider it over an arbitrary
number field K . As per our earlier conventions, Mg is the base change of Mg to
an algebraic closure of Q and not a compactification.

Let X be a curve of genus g defined over K . There is a map (an arithmetic
analogue of the Dehn–Nielsen–Baer theorem, see [Matsumoto and Tamagawa 2000],
in particular, Lemma 2.1) ρ : π1(Mg)→Out(π1(X)). This follows by considering
the universal curve Cg of genus g together with the map Cg→Mg, so X can be
viewed as a fiber of this map. This gives rise to the fibration exact sequence

1→ π1(X)→ π1(Cg)→ π1(Mg)→ 1

and the action of π1(Cg) on π1(X) gives ρ. Now, X , viewed as a point on Mg(K ),
gives a map σMg/K (X) : GK → π1(Mg). As pointed out in [Matsumoto and
Tamagawa 2000], ρ ◦ σMg/K (X) induces a map GK → Out(π1(X)) which is none
other than the map obtained from the exact sequence (1) by letting π1(X) act on
π1(X) by conjugation. Combining this with Theorem 2.1 (Mochizuki) gives:

Theorem 5.1. For any field K contained in a finite extension of a p-adic field, the
section map σMg/K is injective.

The following result confirms a conjecture of Stoll [2007] if we assume that
σMg/K surjects onto S0(K ,Mg).

Theorem 5.2. Assume that σMg/K (Mg(K )) = S0(K ,Mg) for all g > 1 and all
number fields K . Then σX/K (X (K ))= S(K ,X) for all smooth projective curves of
genus at least two and all number fields K .

Proof. For any algebraic curve X/K there is a nonconstant map X →Mg with
image Y , say, for some g, defined over an extension L of K , given by the Kodaira–
Parshin construction. This gives a map γ : π1(X ⊗ L)→ π1(Mg⊗ L), over L . Let
s ∈ S(K ,X), then γ ◦(s|GL )∈ S0(L ,Mg) and the assumption of the theorem yields
that γ ◦ (s|GL )= σMg/L(P), P ∈Mg(L). We can combine this with the injectivity
of σMg/Kv

(Mochizuki’s theorem) to deduce that in fact P ∈Y (Lv)∩Mg(L)=Y (L).
We can consider the pullback to X of the Galois orbit of P , which gives us a zero
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dimensional scheme in X having points locally everywhere and, moreover, being
unobstructed by every abelian cover coming from an abelian cover of X . By the
work of Stoll [2007, Proposition 5.2], we conclude that X has a rational point
corresponding to s. �
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On the local Tamagawa number conjecture
for Tate motives over tamely ramified fields

Jay Daigle and Matthias Flach

The local Tamagawa number conjecture, which was first formulated by Fontaine
and Perrin-Riou, expresses the compatibility of the (global) Tamagawa number
conjecture on motivic L-functions with the functional equation. The local con-
jecture was proven for Tate motives over finite unramified extensions K/Qp by
Bloch and Kato. We use the theory of (ϕ,0)-modules and a reciprocity law due
to Cherbonnier and Colmez to provide a new proof in the case of unramified
extensions, and to prove the conjecture for Qp(2) over certain tamely ramified
extensions.

1. Introduction

Let K/Qp be a finite extension and V a de Rham representation of GK :=Gal(K/K ).
The local Tamagawa number conjecture is a statement describing a certain Qp-basis
of the determinant line detQp R0(K , V ) of (continuous) local Galois cohomology
up to units in Z×p . It was first formulated by Fontaine and Perrin-Riou [1994, 4.5.4]
as conjecture CEP and independently by Kato [1993, Conjecture 1.8] as the “local
ε-conjecture”. Both conjectures express compatibility of the (global) Tamagawa
number conjecture on motivic L-functions with the functional equation. The fact
that the local Tamagawa number conjecture is equivalent to this compatibility still
constitutes its main interest. For example, the proof of the Tamagawa number
conjecture for Dirichlet L-functions at integers r ≥ 2 [Burns and Flach 2006]
uses the conjecture at 1− r and compatibility with the functional equation (no
other more direct proof is known). Fukaya and Kato [2006] generalized [Kato
1993, Conjecture 1.8] to de Rham representations with coefficients in a possibly
noncommutative Qp-algebra, and in fact to arbitrary p-adic families of local Galois
representations.

In this paper we shall only consider Tate motives V =Qp(r) with r ≥ 2 (for the
case r = 1 see [Bley and Cobbe 2016; Breuning 2004]). If K/Qp is unramified
the local Tamagawa number conjecture for Qp(r) was first proven by Bloch and
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Keywords: Tamagawa number conjecture.
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Kato [1990] in their seminal paper on the global Tamagawa number conjecture,
and has since been reproven by a number of authors (e.g., [Perrin-Riou 1994;
Benois and Berger 2008]). These later proofs also cover the case where K/Qp

is a cyclotomic extension, or more generally where V is an abelian de Rham
representations of Gal(Qp/Qp) [Kato 1993, Theorem 4.1; Venjakob 2013]. All
proofs have two main ingredients: Iwasawa theory and a “reciprocity law”. The
latter is an explicit description of the exponential or dual exponential map for
the de Rham representation V , which however very often only holds in restricted
situations (e.g., V ordinary or absolutely crystalline). The aim of this paper is
to explore the application of the very general reciprocity law of Cherbonnier and
Colmez [1999], which holds for arbitrary de Rham representations, to the local
Tamagawa number conjecture for Tate motives.

In Section 2 we give a first somewhat explicit statement (Proposition 2) which
is equivalent to the local Tamagawa conjecture for Qp(r) over an arbitrary Galois
extension K/Qp. We in fact work with the refined equivariant conjecture over the
group ring Zp[Gal(K/Qp)], following Fukaya and Kato [2006]. In Section 3 we
focus on the case where p - [K : Qp]. In Section 4 we state the reciprocity law
of Cherbonnier and Colmez in the case of Tate motives. In Section 5 we show
that it also can be used to give a proof of the unramified case (which however
has many common ingredients with the existing proofs). Finally, in Section 6
we formulate our main result, Proposition 44, which is a fairly explicit statement
equivalent to the equivariant local Tamagawa number conjecture for Qp(r) over
K/Qp with p - [K : Qp]. We show that it can be used to prove some new cases;
more specifically we have:

Proposition 1. Assume K/Qp is Galois of degree prime to p and with ramification
degree e< p/4. Then the equivariant local Tamagawa number conjecture holds for
V =Qp(2).

The only cases where the conjecture for tamely ramified fields was known
previously are cyclotomic fields, i.e., where e | p−1, and in this case one can allow ar-
bitrary r [Perrin-Riou 1994; Benois and Berger 2008]. We believe many more cases
can be proven with Proposition 44 and hope to return to this in a subsequent article.

2. The conjecture

Throughout this paper p denotes an odd prime. Let K/Qp be an arbitrary finite
Galois extension with group G and r ≥ 2. In this section we shall explicate the
consequences of the local Tamagawa number conjecture of Fukaya and Kato [2006,
Conjecture 3.4.3] for the triple

(3, T, ζ )= (Zp[G], IndGQp
GK

Zp(1− r), ζ ).
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Here ζ = (ζpn )n ∈ 0(Qp,Zp(1)) is a compatible system of pn-th roots of unity
which we fix throughout this paper. The conjectures for a triple (3, T, ζ ) and
its dual (3op, T ∗(1), ζ ) are equivalent. We find it advantageous to work with
Qp(1− r) rather than Qp(r) as in [Bloch and Kato 1990] since we are employing
the Cherbonnier–Colmez reciprocity law [Cherbonnier and Colmez 1999] which
describes the dual exponential map.

In order to give an idea what the conjecture is about, consider the Bloch–Kato
exponential map [Bloch and Kato 1990]

exp : K −→∼ H 1(K ,Qp(r)).

In a first approximation one may say that the local Tamagawa number conjecture
describes the relation between the two Zp-lattices exp(OK ) and im(H 1(K ,Zp(r)))
inside H 1(K ,Qp(r)). Rather than giving a complete description of the relative po-
sition of these two lattices, the conjecture only specifies their relative volume, that is
the class in Q×p /Z

×
p which multiplies DetZp exp(OK ) to DetZp(im(H

1(K ,Zp(r))))
inside the Qp-line DetQp H 1(K ,Qp(r)). The equivariant form of the conjecture is
a finer statement which arises by replacing determinants over Zp by determinants
over Zp[G]. If G is abelian and im(H 1(K ,Zp(r))) is projective over Zp[G], the
conjecture thereby does specify the relative position of the two lattices in view
of the fact that H 1(K ,Qp(r)) is free of rank one over Qp[G] and so coincides
with its determinant. If G is nonabelian, even though H 1(K ,Qp(r)) remains free
of rank one over Qp[G], the conjecture is an identity in the algebraic K-group
K1(Q

ur
p [G]))/K1(Z

ur
p [G])) and is again quite a bit weaker than a full determination

of the relative position of the two lattices.
Determinants in the sense of [Deligne 1987] (see also [Fukaya and Kato 2006,

1.2]) are only defined for modules of finite projective dimension, or more generally
perfect complexes, and so the first step is to replace the Zp-lattice im(H 1(K ,Zp(r)))
by the entire perfect complex R0(K ,Zp(r)). There still is an isomorphism

R0(K ,Zp(r))⊗Zp Qp ∼= R0(K ,Qp(r))∼= H 1(K ,Qp(r))[−1] (1)

since the groups H 1(K ,Zp(r))tor and H 2(K ,Zp(r)) are finite. If K/Qp is Galois
with group G then R0(K ,Zp(r)) is always a perfect complex of Zp[G]-modules
whereas im(H 1(K ,Zp(r))) or OK need no longer have finite projective dimen-
sion over Zp[G]. A further simplification occurs if one does not try to compare
R0(K ,Zp(r)) to exp(OK ) directly. Instead one uses the “period isomorphism”

per :Qp⊗Qp K ∼=Qp⊗Qp

(
IndGQp

GK
Qp
)
∼=Qp[G]

and tries to compare DetZp R0(K ,Zp(r)) to a suitable lattice in this last space. The
left-Zp[G]-module IndGQp

GK
Zp is always free of rank one whereas OK need not be.

After choosing an embedding K→Qp one gets an isomorphism ψ :GQp/GK ∼=G
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and an isomorphism
IndGQp

GK
Zp ∼= Zp[G] (2)

so that the Zp[G]-linear left action of γ ∈ GQp is given by

Zp[G] 3 x 7→ xψ(γ−1). (3)

The period isomorphism is then given for x ∈ K by

per(x) := per(1⊗ x)=
∑
g∈G

g(x) · g−1
∈Qp[G].

The dual of exp identifies with the dual exponential map

exp∗Qp(r) : H
1(K ,Qp(1− r))→ K

by local Tate duality and the trace pairing on K . Let β ∈ H 1(K ,Zp(1− r)) be an
element spanning a free Zp[G]-submodule and let Cβ be the mapping cone of the
ensuing map of perfect complexes of Zp[G]-modules

(Zp[G] ·β)[−1] → H 1(K ,Zp(1− r))[−1] → R0(K ,Zp(1− r)).

Then Cβ is a perfect complex of Zp[G]-modules with finite cohomology groups,
i.e., such that Cβ ⊗Zp Qp is acyclic. It therefore represents a class [Cβ] in the
relative K -group K0(Zp[G],Qp) for which one has an exact sequence

K1(Zp[G])→ K1(Qp[G])→ K0(Zp[G],Qp)→ 0.

Hence we may also view [Cβ] as an element in K1(Qp[G])/ im(K1(Zp[G])). Ex-
tending scalars to Qp we get an isomorphism of free rank-one Qp[G]-modules

H 1(K ,Qp(1− r))⊗Qp Qp
exp∗⊗Qp
−−−−−→ K ⊗Qp Qp

per
−→Qp[G]

sending the Qp[G]-basis β to a unit per(exp∗(β))∈Qp[G]×. As such it has a class

[per(exp∗(β))] ∈ K1(Qp[G])

via the natural projection map Qp[G]×→ K1(Qp[G]) (recall that for any ring R
we have maps R×→GL(R)→GL(R)ab

=: K1(R)). In Section 2.2 below we shall
define an ε-factor ε(K/Qp, 1− r) ∈ K1(Qp[G]) such that

ε(K/Qp, 1− r) · [per(exp∗(β))] ∈ K1(Q
ur
p [G]).

Let F ⊆ K denote the maximal unramified subfield, 6=Gal(F/Qp) and σ ∈6 the
(arithmetic) Frobenius automorphism. Then Qp[6] is canonically a direct factor of
Qp[G] and Qp[6]

× ∼= K1(Qp[6]) a direct factor of K1(Qp[G]). For α ∈Qp[6]
×

we denote by [α]F its class in K1(Qp[G]). Finally, note that if R is a Q-algebra then
any nonzero rational number n has a class [n] ∈ K1(R) via Q×→ R×→ K1(R).
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Proposition 2. Let K/Qp be Galois with group G and r ≥ 2. The local Tamagawa
number conjecture for the triple

(3, T, ζ )= (Zp[G], IndGQp
GK

Zp(1− r), ζ ).

is equivalent to the identity

[(r − 1)!] · ε(K/Qp, 1− r) · [per(exp∗(β))] · [Cβ]−1
·

[
1− pr−1σ

1− p−rσ−1

]
F
= 1 (4)

in the group K1(Q
ur
p [G])/ im(K1(Z

ur
p [G])).

Before we begin the proof of the proposition we explain what we mean by the
local Tamagawa number conjecture for (Zp[G], IndGQp

GK
Zp(1− r), ζ ). The local

Tamagawa number conjecture [Fukaya and Kato 2006, Conjecture 3.4.3] claims
the existence of ε-isomorphisms ε3,ζ (T ) for all triples (3, T, ζ ), where 3 is a
semilocal pro-p ring satisfying a certain finiteness condition [Fukaya and Kato 2006,
1.4.1], T a finitely generated projective 3-module with continuous GQp -action and
ζ a basis of 0(Qp,Zp(1)), such that certain functorial properties hold. One of these
properties [Fukaya and Kato 2006, Conjecture 3.4.3(v)] says that if L :=3⊗Zp Qp

is a finite extension of Qp and V := T ⊗Zp Qp is a de Rham representation, then

L̃ ⊗3̃ ε3,ζ (T )= εL ,ζ (V ),

where εL ,ζ (V ) is the isomorphism in C L̃ defined in [Fukaya and Kato 2006, 3.3].
Here, for any ring R, CR is the Picard category constructed in [Fukaya and Kato
2006, 1.2], equivalent to the category of virtual objects of [Deligne 1987], S⊗R− :

CR → CS is the Picard functor induced by a ring homomorphism R → S and
R̃ = W (Fp)⊗Zp R for any Zp-algebra R. The construction of εL ,ζ (V ) involves
certain isomorphisms and exact sequences which we recall in the proof below.
If A is a finite dimensional semisimple Qp-algebra and V an A-linear de Rham
representation, those isomorphisms and exact sequences are in fact A-linear and
therefore lead to an isomorphism εA,ζ (V ) in the category C Ã. If A :=3⊗Zp Qp is
a semisimple Qp-algebra and V := T ⊗Zp Qp is a de Rham representation, we say
that the local Tamagawa number conjecture holds for the particular triple (3, T, ζ )
if

Ã⊗3̃ ε3,ζ (T )= εA,ζ (V )

for some isomorphism ε3,ζ (T ) in C3̃.

Proof of Proposition 2. For a perfect complex of Qp[G]-modules P , we set

P∗ = HomQp[G](P,Qp[G]),
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which is a perfect complex of Qp[G]op-modules. Fix r ≥ 2 and set

V = IndGQp
GK

Qp(1− r) and V ∗(1)= IndGQp
GK

Qp(r),

which are free of rank one over Qp[G] and Qp[G]op, respectively. We recall the
ingredients of the isomorphism θQp[G](V ) of [Fukaya and Kato 2006, 3.3.2] (or
rather of its generalization from field coefficients to semisimple coefficients). The
element ζ determines an element t = log(ζ ) of BdR. We have

Dcris(V )= F · tr−1, DdR(V )/D0
dR(V )= 0,

Dcris(V ∗(1))= F · t−r , DdR(V ∗(1))/D0
dR(V

∗(1))= K ,

C f (Qp,V ) : F
1−pr−1σ
−−−−−→ F,

C f (Qp,V ∗(1)) : F
(1−p−rσ,⊆)
−−−−−−−→ F ⊕ K ,

and commutative diagrams

DetQp[G](0)
η(Qp,V )

// DetQp[G] C f (Qp,V )·DetQp[G] DdR(V )/D0
dR(V )

DetQp[G](0)

[1−pr−1σ ]−1
F

OO

η′(Qp,V )
// DetQp[G](0)·DetQp[G](0)

−1
·DetQp[G](0)

c

OO

DetQp[G](0)
η(Qp,V ∗(1))∗,−1

//
DetQp[G] C f (Qp,V ∗(1))∗

×(DetQp[G] DdR(V ∗(1))/D0
dR(V

∗(1)))∗

DetQp[G](0)

[1−p−rσ−1
]F

OO

η′(Qp,V ∗(1))∗,−1
// DetQp[G](0)·DetQp[G](K

∗)−1
·DetQp[G](K

∗)

c

OO

DetQp[G] C f (Qp,V ∗(1))∗
DetQp [G] 9 f (Qp,V ∗(1))∗,−1

// DetQp[G]
(
C(Qp,V )/C f (Qp,V )

)

DetQp[G](K
∗)−1 9 ′

//

c

OO

DetQp[G] H •(Qp,V )

c

OO

where the vertical maps c are induced by passage to cohomology. The morphism
9 ′ is (Det−1

Qp[G] of) the inverse of the isomorphism

H 1(Qp,V )
T
−→ H 1(Qp,V ∗(1))∗

exp∗V∗(1)
−−−−→ K ∗,

where T is the local Tate duality isomorphism. For the isomorphism

θQp[G](V )= η(Qp,V ) ·
(
DetQp[G]9 f (Qp,V ∗(1))∗,−1

◦ η(Qp,V ∗(1))∗,−1)



On the local Tamagawa number conjecture for Tate motives 1227

we obtain a commutative diagram

DetQp[G](0)
θQp [G](V )

// DetQp[G] C(Qp,V ) ·DetQp[G] DdR(V )

DetQp[G](0)
θ ′

//

[
1−p−r σ−1

1−pr−1σ

]
F

OO

DetQp[G] H •(Qp,V ) ·DetQp[G](K )

c

OO

where θ ′ is induced by the dual exponential map

H 1(Qp,V )
exp∗V∗(1)
−−−−→ K .

The isomorphism 0Qp[G](V ) · εQp[G],ζ,d R(V ) of [Fukaya and Kato 2006, 3.3.3] is
the isomorphism

[(−1)r−1(r − 1)!] · ε(K/Qp, 1− r) ·DetQp[G](per)

and the isomorphism

εQp[G],ζ (V )= 0Qp[G](V ) · εQp[G],ζ,d R(V ) · θQp[G](V )

fits into a commutative diagram

DetQur
p [G](0)

εQp [G],ζ (V )
// Qur

p [G] ⊗
Qp[G]

(
DetQp[G] R0(K ,Qp(1− r)) ·DetQp[G](V )

)

DetQur
p [G](0)

[
1−p−r σ−1

1−pr−1σ

]
F

OO

θ ′′
// Qur

p [G] ⊗
Qp[G]

(
Det−1

Qp[G] H 1(K ,Qp(1− r)) ·DetQp[G](Qp[G])
)c

OO

where
θ ′′ = [(−1)r−1(r − 1)!] · ε(K/Qp, 1− r) ·DetQp[G](per) · θ ′

and c involves passage to cohomology as well as our identification V ∼= Qp[G]
chosen above. Now passage to cohomology is also the scalar extension of the
isomorphism

Det−1
Zp[G](Zp[G] ·β) ·DetZp[G](Cβ)∼= DetZp[G] R0(K ,Zp(1− r))

induced by the short exact sequence of perfect complexes of Zp[G]-modules

0→ R0(K ,Zp(1− r))→ Cβ→ Zp[G] ·β→ 0

combined with the acyclicity isomorphism

can : DetQp[G](0)∼= DetQp[G](Cβ,Qp).
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Since the class of Cβ in K0(Zp[G]) vanishes, we can choose an isomorphism

a : DetZp[G](0)∼= DetZp[G](Cβ),

which leads to another isomorphism

c′ : Det−1
Zp[G](Zp[G] ·β)∼= DetZp[G] R0(K ,Zp(1− r))

defined over Zp[G]. Setting

λ := (c′Qp
)−1c ∈ Aut

(
Det−1

Qp[G] H 1(K ,Qp(1− r))
)
= K1(Qp[G]),

we obtain a commutative diagram

DetQur
p [G](0)

εQp [G],ζ (V )
// Qur

p [G] ⊗
Qp[G]

(
DetQp[G] R0(K ,Qp(1− r)) ·DetQp[G](V )

)

DetQur
p [G](0)

[
1−p−r σ−1

1−pr−1σ

]
F

OO

θ ′′′
// Qur

p [G] ⊗
Qp[G]

(
Det−1

Qp[G] H 1(K ,Qp(1− r)) ·DetQp[G](Qp[G])
)c′

Qp

OO

where

θ ′′′ = λ ◦ θ ′′ = λ · [(−1)r−1(r − 1)!] · ε(K/Qp, 1− r) ·DetQp[G](per) · θ ′.

The local Tamagawa number conjecture claims that εQp[G],ζ (V ) is induced by an
isomorphism

DetZur
p [G](0)

εZp [G],ζ (T )
−−−−−−→ Zur

p [G] ⊗
Zp[G]

(
DetZp[G] R0(K ,Zp(1− r)) ·DetZp[G](T )

)
and this will be the case if and only if

θ iv
:= θ ′′′ ·

[
1− pr−1σ

1− p−rσ−1

]
F

is induced by an isomorphism

DetZur
p [G](0)

θ iv
Zp [G]
−−−→ Zur

p [G] ⊗
Zp[G]

(
Det−1

Zp[G](Zp[G] ·β) ·DetZp[G](Zp[G])
)
.

The isomorphism of Qp[G]-modules

τ : H 1(K ,Qp(1−r))⊗Qp Qp
exp∗⊗Qp
−−−−−→ K⊗Qp Qp

per
−→Qp[G]

· per(exp∗(β))−1

−−−−−−−−→Qp[G]

is clearly induced by an isomorphism of Zp[G]-modules

τZp[G] : Zp[G] ·β
∼
−→ Zp[G]
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and we have

θ iv
=

[
1− pr−1σ

1− p−rσ−1

]
F
· λ · [(−1)r−1(r − 1)!]

· ε(K/Qp, 1− r) · [per(exp∗(β))] ·DetQp[G](τ ).

Hence θ iv is induced by an isomorphism θ iv
Zp[G] if and only if the class in K1(Q

ur
p [G])

of [
1− pr−1σ

1− p−rσ−1

]
F
· λ ◦ [(−1)r−1(r − 1)!] · ε(K/Qp, 1− r) · [per(exp∗(β))]

lies in K1(Z
ur
p [G]). Now note that [(−1)] ∈ K1(Z) ⊂ K1(Z

ur
p [G]) and that λ =

[Cβ]−1, so we do indeed obtain identity (4). In order to see this last identity, note
that we have

λ−1
= a−1

· can

and that a−1
· can ∈ K1(Q

ur
p [G]) is a lift of [Cβ] ∈ K0(Z

ur
p [G],Qp) according to

the conventions of [Fukaya and Kato 2006, 1.3.8, Theorem 1.3.15(ii)]. �

2.1. Description of K1. For any finite group G we have the Wedderburn decom-
position

Qp[G] ∼=
∏
χ∈Ĝ

Mdχ (Qp),

where Ĝ is the set of irreducible Qp-valued characters of G and dχ = χ(1) is the
degree of χ . Hence there is a corresponding decomposition

K1(Qp[G])∼=
∏
χ∈Ĝ

K1(Mdχ (Qp))∼=
∏
χ∈Ĝ

Q×p , (5)

which allows one to think of K1(Qp[G]) as a collection of nonzero p-adic numbers
indexed by Ĝ. Note here that for any ring R one has K1(Md(R))= K1(R) and for
a commutative semilocal ring R one has K1(R)= R×.

If p - |G| then all characters χ ∈ Ĝ take values in Zur
p , the Wedderburn de-

composition is already defined over Zur
p and so is the decomposition of K1. One

has
K1(Z

ur
p [G])∼=

∏
χ∈Ĝ

K1(Mdχ (Z
ur
p ))
∼=

∏
χ∈Ĝ

Zur,×
p

and
K1(Q

ur
p [G])/ im(K1(Z

ur
p [G]))∼=

∏
χ∈Ĝ

Qur,×
p /Zur,×

p
∼=

∏
χ∈Ĝ

pZ, (6)

which allows one to think of elements in K1(Q
ur
p [G])/ im(K1(Z

ur
p [G])) as a collec-

tion of integers (p-adic valuations) indexed by Ĝ.
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2.2. Definition of the ε-factor. If L is a local field, E an algebraically closed field
of characteristic 0 with the discrete topology, µL a Haar measure on the additive
group of L with values in E , ψL : L→ E× a continuous character, the theory of
Langlands–Deligne [Deligne 1973] associates to each continuous representation r
of the Weil group WL over E an ε-factor ε(r, ψL , µL) ∈ E×.

We shall take E = Qp and always fix µL and ψL so that µL(OL) = 1 and
ψL =ψQp ◦TrL/Qp where ψQp(p

−n)= ζpn for our fixed ζ = (ζpn )n ∈0(Qp,Zp(1)).
Setting

ε(r) := ε(r, ψL , µL) ∈ E×

and leaving the dependence on ζ implicit, we have the following properties (see
also [Benois and Berger 2008] for a review, [Fukaya and Kato 2006] only reviews
the case L =Qp). Let π be a uniformizer of OL , δL the exponent of the different
of L/Qp and q = |OL/π |.

(a) If r :WL → E× is a homomorphism, set

r] : L×
rec
−→W ab

L
r
−→ E×

where rec is normalized as in [Deligne 1973, (2.3)] and sends a uniformizer to a
geometric Frobenius automorphism in W ab

L . Then we have

ε(r)=
{

qδL if c = 0,
qδL r](π c+δL )τ (r], ψπ ) if c > 0,

where c ∈ Z is the conductor of r and

τ(r], ψπ )=
∑

u∈(OL/π c)×

r−1
] (u)ψπ (u) (7)

is the Gauss sum associated to the restriction of r] to (OL/(π
c))× and the additive

character
u 7→ ψπ (u) := ψK (π

−δL−cu)
of OL/(π

c).

(b) If L/K is unramified then ε(r)= ε(IndWK
WL

r) for any representation r of WL .

(c) If r(α) is the twist of r with the unramified character with FrobL -eigenvalue
α ∈ E×, and c(r) ∈ Z is the conductor of r , then

ε(r(α))= α−c(r)−dimE (r)δL ε(r).

Here FrobL denotes the usual (arithmetic) Frobenius automorphism.
For a potentially semistable representation V of GQp one first forms Dpst(V ), a

finite dimensional Q̂ur
p -vector space of dimension dimQp V with an action of GQp ,

semilinear with respect to the natural action of GQp on Q̂ur
p and discrete on the

inertia subgroup. Moreover, Dpst(V ) has a Frob-semilinear automorphism ϕ. The
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associated linear representation rV of WQp over E = Q̂ur
p is the space Dpst(V ) with

action
rV (w)(d)= ι(w)ϕ

−ν(w)(d),

where ι : WQp → GQp is the inclusion and ν(w) ∈ Z is such that Frobν(w) is the
image of w in GFp .

From now on we are interested in V = (IndGQp
GK

Qp)(1− r). Here one has

Dpst(V )= (IndGQp
GK

Q̂ur
p ) · t

r−1, rV = (IndWQp
WK

Q̂ur
p )(p

1−r ),

and we notice that rV is the scalar extension from Qur
p to Q̂ur

p of the representation
(IndWQp

WK
Qur

p )(p
1−r ). So completion of Qur

p is not needed in this example. Associated
to rV ⊗Qur

p
Qp is an ε-factor in ε(rV )∈Q×p = K1(Qp). However, as explained above

before (3), rV carries a left action of Qur
p [G] commuting with the left WQp-action,

so we will actually be able to associate to rV ⊗Qur
p

Qp a refined ε-factor

ε(K/Qp, 1− r) ∈ K1(Qp[G]).

For each χ ∈ Ĝ define a representation rχ of WQp over E =Qp by

WQp

ι
−→ GQp

ψ
−→ G

ρχ
−→ GLdχ(E), (8)

where ρχ : G→GLdχ(E) is a homomorphism realizing χ . Let Edχ be the space of
row vectors on which G acts on the right via ρχ and define another representation
of WQp over E =Qp

rV,χ = Edχ ⊗Qur
p [G] rV = Edχ ⊗Qur

p [G] (IndWQp
WK

Qur
p )(p

1−r )∼= Edχ .

By (3), the left WQp-action on this last space is given by the contragredient
tρχ (ψ(g))−1 of rχ , twisted by the unramified character with eigenvalue p1−r . So
we have

rV,χ ∼= rχ̄ (p1−r ),

where χ̄ is the contragredient character of χ . We view the collection

ε(K/Q, 1− r) := (ε(rV,χ ))χ∈Ĝ = (ε(rχ̄ )p
(r−1)c(rχ̄ ))χ∈Ĝ (9)

as an element of K1(Qp[G]) in the description (5).

3. The conjecture in the case p - |G|

In this section and for most of the rest of the paper we assume that p does not divide
|G| = [K :Qp]. In particular K/Qp is tamely ramified with maximal unramified
subfield F . Although our methods probably extend to an arbitrary tamely ramified
extension K/Qp (i.e., where p is allowed to divide [F : Qp]) this would add an
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extra layer of notational complexity which we have preferred to avoid. The group
G = Gal(K/Qp) is an extension of two cyclic groups

6 := Gal(F/Qp)∼= Z/ f Z,

1 := Gal(K/F)∼= Z/eZ,

where the action of σ ∈ 6 on 1 is given by δ 7→ δ p and we have e | p f
− 1. By

Kummer theory K = F( e
√

p0), where p0 ∈ (F×/(F×)e)6 has order e. We can
and will assume that p0 has p-adic valuation one, and in fact that p0 = λ · p with
λ ∈ µF . Writing p0 = λ

′
· p′0 with p′0 ∈Qp we see that K is contained in F ′( e

√
p′0),

where F ′ := F( e
√
λ′) is unramified over Qp and p′0 is any choice of element in

µQp · p = µp−1 · p. Since for the purpose of proving the local Tamagawa number
conjecture we can always enlarge K , we may and will assume that

K = F( e
√

p0), p0 ∈ µp−1 · p ⊆Qp.

We then have
G = Gal(K/Qp)∼=6n1

since Gal(K/Qp( e
√

p0)) is a complement of 1. If (e, p− 1) = 1, then the fields
K = F( e

√
p0) for p0 ∈ µp−1 · p are all isomorphic; in fact any Galois extension

K/Qp with invariants e and f is then isomorphic to the field F( e
√

p).
The choice of p0 (in fact just the valuation of p0) determines a character

η0 :1−→
∼ µe ⊂ F× ⊂Qur,×

p ⊂Q×p (10)

by the usual formula δ( e
√

p0)= η0(δ) · e
√

p0. Let

η :1→ F×

be any character of 1 and

6η := {g ∈6 | η(gδg−1)= η(δ) for all δ ∈1}

the stabilizer of η. Then for any character η′ :6η→Qur,×
p we obtain a character

η′η : Gη :=6ηn1→Qur,×
p

and an induced character
χ := IndG

Gη
(η′η)

of G. By [Lang 2002, Exercise XVIII.7], all irreducible characters of G are obtained
by this construction, and in fact each χ ∈ Ĝ is parametrized by a unique pair ([η], η′)
where [η] denotes the 6-orbit of η. The degree of χ is given by

dχ = χ(1)= fη := [6 :6η] = [Fη :Qp], (11)

where Fη ⊆ F is the fixed field of 6η.
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We have
rχ = IndWQp

WFη
(rη′η),

where rχ and rη′η are the representations of WQp and WFη , respectively, defined as
in (8). By [Serre 1979, Chapter VI, Corollary to Propoposition 4] we have

c(rχ )= fηc(rη)=
{

0, η = 1,
fη, η 6= 1.

Using (b), (c) and (a) of Section 2.2 we have

ε(rχ )= ε(rη′η)

=

{
1, η = 1,
ε(rη)rη′(FrobFη)

−c(rη) = η(rec(p))τ (rη,], ψp)η
′(σ fη)−1, η 6= 1.

(12)

3.1. Gauss sums. If kη denotes the residue field of Fη, we have a canonical char-
acter

ω : k×η ←−∼ µp fη−1 ⊆ F×η ⊆ K× ⊆Q×p ,

where the first arrow is reduction mod p. On the other hand we have our character

rη,] : F×η
rec
−→W ab

Fη
ι
−→ Gab

Fη
ψ
−→ Gab

η

η
−→Q×p

of order dividing e. So there exists a unique mη ∈ Z/eZ such that

rη,]|µ
p fη−1
= ωmη(p

fη−1)/e (13)

and formula (7) gives

τ(rη,], ψp)= τ(ω
−mη(p

fη−1)/e),

where
τ(ω−i ) :=

∑
a∈k×η

ω(a)−iζ
Trkη/Fp (a)
p

is a Gauss sum associated to the finite field kη. The p-adic valuation of these sums
is known:

Lemma 3 [Washington 1997, Proposition 6.13 and Lemma 6.14]. For 0≤ i≤ p fη−1,
let i = i0 + pi1 + p2i2 + · · · + i fη−1 p fη−1 be the p-adic expansion with digits
0≤ i j ≤ p− 1. Then

vp(τ (ω
−i ))=

i0+ i1+ · · ·+ i fη−1

p− 1
=

fη−1∑
j=0

〈
i p j

p fη − 1

〉
,

where vp :Q
×
p →Q is the p-adic valuation on Qp normalized by vp(p)= 1 and

0≤ 〈x〉< 1 is the fractional part of the real number x.
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Corollary 4. For all η ∈ 1̂ we have

vp(τ (rη,], ψp))=

fη−1∑
j=0

〈mη p j

e

〉
.

After this interlude on Gauss sums we now prove a statement about periods
of certain specific elements in K which will eliminate any further reference to
ε-factors in the proof of Equation (4).

Proposition 5. Let K/Qp be Galois with group G of order prime to p. Then any
fractional OK -ideal is a free Zp[G]-module of rank one and

(ε(rχ̄ ))χ∈Ĝ · [per(b)] ∈ im(K1(Z
ur
p [G]))

for any Zp[G]-basis b of the inverse different ( e
√

p0)
−δK OK = ( e

√
p0)
−(e−1)OK .

Proof. This is a classical result in Galois module theory which can be found in
[Fröhlich 1976] but rather than trying to match our notation to that paper we go
through the main computations again. In this proof σ will temporarily denote a
generic element of 6 rather than the Frobenius.

The image of [per(b)] in the χ-component of the decomposition (5) is the
(dχ× dχ )-determinant

[per(b)]χ := det ρχ

(∑
g∈G

g(b) · g−1
)
= det

∑
g∈G

g(b)ρχ (g)−1
∈Q×p .

This character function is traditionally called a resolvent. With notation as above,
( e
√

p0)
−(e−1)OK is a free Zp[Gη]-module with basis σ(b), where σ ∈Gη\G∼=6η\6

runs through a set of right coset representatives. The image of this basis under the
period map is

per(σ (b))=
∑
g∈G

gσ(b) · g−1
=

∑
τ∈6η\6

(∑
g∈Gη

τ−1gσ(b) · g−1
)
τ

and if χ = IndG
Gη
(χ ′) is an induced character we have by [Fröhlich 1976, (5.15)]

ρχ

(∑
g∈G

g(b) · g−1
)
=

(∑
g∈Gη

τ−1gσ(b) · ρχ ′(g)−1
)
σ,τ

.

In our case of interest χ ′ = η′η is a one-dimensional character. Write

b = ξ · x,
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where x is an OF [1]-basis of ( e
√

p0)
−(e−1)OK fixed by 6 and ξ a Zp[6]-basis

of OF . Then writing g = δσ ′ with δ ∈1 and σ ′ ∈6η this matrix becomes(∑
σ ′∈6η

τ−1σ ′σ(ξ)η′(σ ′)−1
∑
δ∈1

τ−1δ(x) · η(δ)−1
)
σ,τ

and its determinant is

det
(∑
σ ′∈6η

τ−1σ ′σ(ξ)η′(σ ′)−1
)
σ,τ

·

∏
τ∈6η\6

∑
δ∈1

τ−1δτ(x) · η(δ)−1.

The first determinant is a group determinant [Washington 1997, Lemma 5.26] for
the group 6η\6 and equals

ξη′ :=
∏

κ∈(6η\6)∧

∑
σ∈6η\6

( ∑
σ ′∈6η

σ ′σ(ξ)η′(σ ′)−1
)
κ(σ )−1

=

∏
κ

∑
σ∈6

σ(ξ)κ(σ )−1,

where this last product is over all characters κ of 6 restricting to η′ on 6η. The
sum

∑
σ∈6 σ(ξ)κ(σ )

−1 clearly lies in Zur,×
p since its reduction modulo p is the

projection of the Fp[6]-basis ξ̄ of OF/(p)⊗Fp Fp into the κ̄-eigenspace (up to the
unit |6| = f ), hence nonzero. So we find

ξη′ ∈ Zur,×
p . (14)

We now analyze the second factor

xη :=
∏

τ∈6η\6

∑
δ∈1

τ−1δτ(x) · η(δ)−1

which is the product over the projections of x into the ηpi
-eigenspaces for i =

0, . . . , fη − 1 (up to the unit |1| = e). For 0 ≤ j < e the η− j
0 -eigenspace of the

inverse different is generated over OF by ( e
√

p0)
− j and since x was a OF [1]-basis

of the inverse different its projection lies in O×F · ( e
√

p0)
− j . So by Lemma 6 below

we have

xη ∈O×F ·
fη−1∏
i=0

( e
√

p0)
−e〈pi (−mη)/e〉 ⊂ K

and hence

vp(xη)=−
fη−1∑
i=0

〈
−mη pi

e

〉
=−vp(τ (rη̄,], ψp)), (15)

using Corollary 4 and the fact that η̄= η−mη
0 . One checks that τ(rη̄,], ψp)∈Qur

p (ζp)

is an eigenvector for the character

% = η
−mη(p

fη−1)/(p−1)
0
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of the group Gal(Qur
p (ζp) ∩ K ur/Qur

p ). Also, since xη is an eigenvector for %−1,
Equation (15) implies

τ(rη̄,], ψp) · xη ∈ Zur,×
p .

Combining this with (14) and (12) we find

ε(rχ̄ ) · [per(b)]χ = η̄(rec(p))τ (rη̄,], ψp)η̄
′(σ fη) · xη · ξη′ ∈ Zur,×

p

and hence
(ε(rχ̄ ))χ∈Ĝ · [per(b)] ∈ im(K1(Z

ur
p [G])). �

Lemma 6. We have η = ηmη
0 , where η0 is the character (10) associated to the

element p0 of valuation 1 and mη was defined in (13).

Proof. It suffices to show that the composite map

ω′ : µp fη−1 ⊂ F×
rec
−→ Gab

F → Gal(K/F)
ηmη

0
−−→ µe

agrees with the (mη(p
fη − 1)/e)-th power map. By definition [Neukirch 1999,

Theorem V.3.1] of the tame local Hilbert symbol and the fact that our map rec is
the inverse of that used in [Neukirch 1999], we have

ω′(ζ )=

(
ζ−1, pmη

0

F

)
,

which by [Neukirch 1999, Theorem V.3.4] equals(
ζ−1, pmη

0

F

)
=

(
(−1)αβ

pβ0
ζ−α

)(p fη−1)/e

= ζmη(p
fη−1)/e,

where α = vp(pmη
0 )= mη and β = vp(ζ

−1)= 0. �

Denote by γ a topological generator of

0 := Gal(Qp(ζp∞)/Qp)

and by
χ cyclo

: Gal(Qp(ζp∞)/Qp)∼= Z×p

the cyclotomic character. As in the proof of Proposition 5 choose b such that

Zp[G] · b = ( e
√

p0)
−(e−1)OK .

Denote by e1 =
1
|6|

∑
g∈6 g ∈ Zp[6] the idempotent for the trivial character of 6.

Proposition 7. If p - |G| then one can choose β ∈ H 1(K ,Zp(1− r)) such that

H 1(K ,Zp(1− r))= H 1(K ,Zp(1− r))tor⊕Zp[G] ·β
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and the local Tamagawa number conjecture (4) is equivalent to the identity

[(r−1)!]·(p(r−1)c(χ))χ∈Ĝ ·[per(b)]−1
·[per(exp∗(β))]·[Cβ]−1

·

[
1− pr−1σ

1− p−rσ−1

]
F
=1

in the group K1(Q
ur
p [G])/ im K1(Z

ur
p [G]). The projection of this identity into the

group K1(Q
ur
p [6])/ im K1(Z

ur
p [6]) is

[(r − 1)!] · [per(exp∗(β))]F ·
[
χ cyclo(γ )r − 1
χ cyclo(γ )r−1− 1

e1+ 1− e1

]
·

[
1− pr−1σ

1− p−rσ−1

]
F
= 1

and in the components of K1(Q
ur
p [G])/ im K1(Z

ur
p [G]) indexed by χ = ([η], η′) with

η|Gal(K/K∩F(ζp)) 6= 1

this identity is equivalent to

((r − 1)!) fη · p(r−1) fη · [per(b)]−1
χ · [per(exp∗(β))]χ ∈ Zur,×

p . (16)

Proof. If p - |G| then the module H 1(K ,Zp(1− r))/tor is free over Zp[G] since
this is true for any lattice in a free rank-one Qp[G]-module. The first statement is
then clear from (9) and Proposition 5.

Since
R0(K ,Zp(1− r))⊗L

Zp[G] Zp[6] ∼= R0(F,Zp(1− r)),

the projection [Cβ]F of [Cβ] into K1(Q
ur
p [6])/ im K1(Z

ur
p [6]) is the class of the

complex
H 1(F,Zp(1− r))tor[−1]⊕ H 2(F,Zp(1− r))[−2]

and both modules have trivial 6-action. Any finite cyclic Zp[6]-module M with
trivial 6-action has a projective resolution

0→ Zp[6]
|M |e1+1−e1
−−−−−−−→ Zp[6] → M→ 0

and the class of M in K0(Zp[6],Qp) is represented by [|M |e1 + 1 − e1]
−1
∈

K1(Qp[6]). Using Tate local duality we have

[Cβ]F = [H 1(F,Zp(1− r))tor]
−1
· [H 2(F,Zp(1− r))]

= [H 0(F,Qp/Zp(1− r))]−1
· [H 0(F,Qp/Zp(r))]

= [(χ cyclo(γ )r−1
− 1)e1+ 1− e1] · [(χ

cyclo(γ )r − 1)e1+ 1− e1]
−1

=

[
χ cyclo(γ )r−1

− 1
χ cyclo(γ )r − 1

e1+ 1− e1

]
.
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By Proposition 5 [per(b)]χ is a p-adic unit if η = 1, which gives the second
statement. The third statement follows from the fact that Gal(K/K ∩ F(ζp)) acts
trivially on R0(K ,Zp(1− r)) which implies that [Cβ]χ = 1 if the restriction of η
to Gal(K/K ∩ F(ζp)) is nontrivial. �

4. The Cherbonnier–Colmez reciprocity law

Now that we have reformulated Equation (4) according to Proposition 7 we see
that we must compute the image of exp∗(β). In order to do this we will use an
explicit reciprocity law of [Cherbonnier and Colmez 1999], which uses the theory
of (ϕ,0K )-modules and the rings of periods of Fontaine. Rather than developing
this machinery in full, we will give only the definitions and results needed to state
the reciprocity in our case; the reader is invited to read [Cherbonnier and Colmez
1999] to see the theory and the reciprocity law developed in full generality.

4.1. Iwasawa theory. In this subsection and the next we recall results of [Cher-
bonnier and Colmez 1999] specialized to the representation V =Qp(1). For this
discussion we temporarily suspend our assumption that p - |G|. So let K again be
an arbitrary finite Galois extension of Qp, define

Kn = K (ζpn ), K∞ =
⋃
n∈N

Kn,

0K := Gal(K∞/K ), 3K = Zp[[Gal(K∞/Qp)]]

and

H m
Iw(K ,Zp(1))= lim

←−−
n

H m(Kn,Zp(1))∼= lim
←−−

n
H m(K , IndGK

G Kn
Zp(1))∼= H m(K , T ),

where the inverse limit is taken with respect to corestriction maps, the second
isomorphism is Shapiro’s lemma and

T := lim
←−−

n
IndGK

G Kn
Zp(1)∼= lim

←−−
n

Zp[Gal(Kn/K )](1)∼= Zp[[0K ]](1)

is a free rank-one Zp[[0K ]]-module with GK -action given by ψ−1χ cyclo, where

ψ : GK → 0K ⊆ Zp[[0K ]]
×

is the tautological character (see the analogous discussion of (2)). From this it is
easy to see that for any r ∈ Z one has an exact sequence of GK -modules

0→ T
γK ·χ

cyclo(γK )
r−1
−1

−−−−−−−−−−−→ T −−→ Zp(r)→ 0 (17)
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where γK ∈ 0K is a topological generator (our assumption that p is odd assures
that 0K is procyclic for any K ). It is clear from the definition that

H m
Iw(K ,Zp(1))∼= H m

Iw(Kn,Zp(1)) (18)

for any n≥ 0. So H m
Iw(K ,Zp(1)) only depends on the field K∞, and it is naturally a

3K -module. Since our base field K was arbitrary an analogous sequence holds with
K replaced by Kn and T by the corresponding G Kn -module Tn so that T ∼= IndGK

G Kn
Tn .

In view of (18) we obtain induced maps

prn,r : H
1
Iw(K ,Zp(1))→ H 1(Kn,Zp(r)) (19)

for any n ≥ 0 and r ∈ Z.

Lemma 8. Set γn = γKn . If r 6= 1 then the map prn,r induces an isomorphism

H 1
Iw(K ,Zp(1))/(γn −χ

cyclo(γn)
1−r )H 1

Iw(K ,Zp(1))∼= H 1(Kn,Zp(r)).

Proof. The short exact sequence (17) over Kn induces a long exact sequence of
cohomology groups

0 // H 0
Iw(K ,Zp(1))

γn−χ
cyclo(γn)

1−r
// H 0

Iw(K ,Zp(1)) // H 0(Kn,Zp(r))

rr

H 1
Iw(K ,Zp(1))

γn−χ
cyclo(γn)

1−r
// H 1

Iw(K ,Zp(1))
prn,r
// H 1(Kn,Zp(r))

rr

H 2
Iw(K ,Zp(1))

γn−χ
cyclo(γn)

1−r
// H 2

Iw(K ,Zp(1)) // H 2(Kn,Zp(r)) // 0.

By Tate local duality there is a canonical isomorphism of Gal(Kn/K )-modules

H 2(Kn,Zp(1))∼= Zp

for each n, and the corestriction map is the identity map on Zp. Hence,

H 2
Iw(K ,Zp(1))∼= Zp

with trivial action of 0Kn . This implies that for r 6= 1 multiplication by

γn −χ
cyclo(γn)

1−r
= 1−χ cyclo(γn)

1−r

is injective on H 2
Iw(K ,Zp(1)). Hence prn,r is surjective and we obtain the desired

isomorphism. �
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4.2. The ring AK and the reciprocity law. The theory of (ϕ,0K )-modules [Cher-
bonnier and Colmez 1999] involves a ring

AK =
(
OF ′[[πK ]][1/πK ]

)∧
=

{∑
n∈Z

anπ
n
K : an ∈OF ′, lim

n→−∞
an = 0

}
,

where πK is (for now) a formal variable and F ′ ⊇ F is the maximal unramified
subfield of K∞. (The notation (−)∧ means −̂.) The ring AK carries an operator ϕ
extending the Frobenius on OF ′ and an action of 0K commuting with ϕ, which are
somewhat hard to describe in terms of πK . However, on the subring

AF ′ =
(
OF ′[[π ]][1/π ]

)∧
⊆ AK

one has
ϕ(1+π)= (1+π)p, γ (1+π)= (1+π)χ

cyclo(γ ) (20)

for γ ∈ 0K .
The ring AK is a complete, discrete valuation ring with uniformizer p. We denote

by EK ∼= k((πK )) its residue field and by BK = AK [1/p] its field of fractions. We
see that ϕ(BK ) is a subfield of BK (of degree p), and thus we can define

ψ = p−1ϕ−1 TrBK /ϕBK

and
N = ϕ−1 NBK /ϕBK

as further operators on BK . We observe that if f ∈ BK , then

ψ(ϕ( f ))= f.

Thus ψ is an additive left inverse of ϕ. We write Aψ=1
K ⊂ AK for the set of elements

fixed by the operator ψ . The (ϕ,0K )-module associated to the representation Zp(1)
is AK (1)where the Tate twist refers to the 0K -action being twisted by the cyclotomic
character.

By [Cherbonnier and Colmez 1999, III.2] the field BK is contained in a field B̃
on which ϕ is bijective and B̃ contains a GK -stable subring B̃†,n consisting of
elements x for which ϕ−n(x) converges to an element in BdR. So one has a GK -
equivariant ring homomorphism

ϕ−n
: B̃†,n

→ BdR,

which again is rather inexplicit in general but is given by

ϕ−n(π)= ζpn et/pn
− 1

on the element π .
The main result [Cherbonnier and Colmez 1999, théorème IV.2.1] specialized to

the representation V =Qp(1) can now be summarized as follows.
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Theorem 9. Let K/Qp be any finite Galois extension and

3K := Zp[[Gal(K∞/Qp)]]

its Iwasawa algebra.

(a) There is an isomorphism of 3K -modules

Exp∗Zp
: H 1

Iw(K ,Zp(1))∼= Aψ=1
K (1).

(b) There is n0 ∈ Z such that for n ≥ n0 the following hold:

(b1) Aψ=1
K ⊆ B̃†,n .

(b2) The GK -equivariant map ϕ−n
: Aψ=1

K → BdR factors through

ϕ−n
: Aψ=1

K → Kn[[t]] ⊆ BdR.

(b3) One has

p−nϕ−n(Exp∗Zp
(u))=

∞∑
r=1

exp∗Qp(r)(prn,1−r (u)) · t
r−1

for any u ∈ H 1
Iw(K ,Zp(1)).

Theorem 9 contains all the information we shall need when analyzing the case
of tamely ramified K in Section 6 below. However, the paper [Cherbonnier and
Colmez 1999] contains further information on the map Exp∗Zp

, which we summarize
in the next proposition. We shall only need this proposition when reproving the
unramified case of the local Tamagawa number in Section 5 below. First recall
from [Cherbonnier and Colmez 1999, p. 257] that the ring BK carries a derivation

∇ : BK → BK ,

uniquely specified by its value on π :

∇(π)= 1+π.

We set

∇ log(x)= ∇(x)
x

and denote by

M̂ := lim
←−−

n
M/pn M

the p-adic completion of an abelian group M .
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Proposition 10. There is a commutative diagram of 3K -modules, where the maps
labeled by ∼= are isomorphism.

H 1
Iw(K ,Zp(1))

Exp∗
Zp

∼=

**

A(K∞) := lim
←−−m,n K×n /(K

×
n )

pm ιK

∼=

//

δ

∼=

55

(E×K )
∧ (AN=1

K )∧
∼=

mod p
oo

∼=

∇ log
// Aψ=1

K (1)

U := lim
←−−m,n O

×

Kn
/(O×Kn

)pm ιK |U

∼=

//
?�

OO

1+π K k[[π K ]]
?�

OO

Proof. The isomorphism δ arises from Kummer theory. The theory of the field of
norms gives an isomorphism of multiplicative monoids [Cherbonnier and Colmez
1999, proposition I.1.1]

lim
←−−

n
OKn −→

∼= k[[πK ]],

which induces our isomorphism ιK |U after restricting to units and passing to p-adic
completions and our isomorphism ιK by taking the field of fractions and passing to
p-adic completions of its units.

By [Cherbonnier and Colmez 1999, corollaire V.1.2] (see also [Daigle 2014,
3.2.1] for more details), the reduction-mod-p-map (AN=1

K )∧→ (E×K )
∧ is an iso-

morphism.
By [Cherbonnier and Colmez 1999, proposition V.3.2(iii)] the map ∇ log makes

the upper triangle in our diagram commute. Since all other maps in this triangle
are isomorphisms, the map ∇ log is an isomorphism as well. �

4.3. Specialization to the tamely ramified case. We now resume our assumption
that p does not divide the degree of [K :Qp] together with (most of) the notation
from Section 3. In addition we assume that

ζp ∈ K ,

which implies that K∞/K is totally ramified and hence that F = F ′ is the maximal
unramified subfield of K∞. The theory of fields of norms [Cherbonnier and Colmez
1999, remarque I.1.2] shows that EK is a Galois extension of EF of degree

e := [K∞ : F∞] = [K : F(ζp)]

with group
Gal(EK /EF )∼= Gal(K∞/F∞)∼= Gal(K/F(ζp)).

Note that with this notation the ramification degree of K/Qp is e(p− 1) whereas
it was denoted by e in Section 3. The element p0 of Section 3 we choose to be −p,
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i.e., we assume that

K = F( e(p−1)
√
−p).

An easy computation shows that (ζp−1)p−1
=−p ·u with u ∈ 1+ (ζp−1)Zp[ζp]

and hence we can choose the root (p−1)
√
−p such that

ζp − 1= (p−1)
√
−p · u′ (21)

with u′ ∈ 1+ (ζp − 1)Zp[ζp]. By Kummer theory we then also have

K = F( e
√
ζp − 1)

and BK = BF (
e
√
π). Any choice of πK =

e
√
π fixes a choice of

e
√
ζp − 1= ϕ−1(πK )|t=0

and of
e(p−1)
√
−p = e

√
ζp − 1 · (u′)−1/e.

We have

G ∼=6n1

with 6 cyclic of order f and 1 cyclic of order e(p− 1) and

3K ∼= Zp[[G×0K ]] ∼= Zp[6n1][[γ1− 1]],

where γ1 = γ
p−1 is a topological generator of 0K .

Proposition 11. There is an isomorphism of 3K -modules

H 1
Iw(K ,Zp(1))∼=3K ·βIw⊕Zp(1).

Proof. In view of the Kummer theory isomorphism

δ : A(K∞)∼= H 1
Iw(K ,Zp(1))

it suffices to quote the structure theorem for the 3K -module A(K∞) given in
[Neukirch et al. 2000, Theorem 11.2.3] (where k =Qp and our group 6n1 is the
group 1 of [loc. cit.]). �

Corollary 12. There is an isomorphism of Zp[G]-modules

H 1(K ,Zp(1− r))∼= Zp[G] ·β⊕ H 1(K ,Zp(1− r))tor,

where β = pr0,1−r (βIw)= pr1,1−r (βIw).
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Proof. This is clear from Proposition 11 and Lemma 8 (with r replaced by 1− r )
in view of the isomorphisms

Zp[G] −→∼ 3K /(γ1−χ
cyclo(γ1)

r )3K

and

Zp(1)/(γ1−χ
cyclo(γ1)

r )Zp(1)= Zp/(χ
cyclo(γ1)−χ

cyclo(γ1)
r )Zp

∼= H 0(K ,Qp/Zp(1− r)))
∼= H 1(K ,Zp(1− r))tor. �

If we choose the element β of Corollary 12 to verify the identity in Proposition 7
it remains to get an explicit hold on some 3K -basis βIw, or rather of its image

α = Exp∗Zp
(βIw) ∈ Aψ=1

K (1). (22)

Since α is a (infinite) Laurent series in πK it will be amenable to somewhat explicit
analysis. In the unramified components of Proposition 7 (η = 1) we can compute α
in terms of the well-known Perrin-Riou basis (see Proposition 24 below) which is a
main ingredient in all known proofs of the unramified case of the local Tamagawa
number conjecture. In the other components (η 6=1) we shall simply use Nakayama’s
lemma to analyze α as much as we can in Section 6.

In order to compute exp∗
Qp(r)(β) we also need to be able to apply Theorem 9 for

n = 1.

Proposition 13. Part (b) of Theorem 9 holds with n0 = 1.

Proof. It will follow from an explicit analysis of elements in Aψ=1
K in Corollary 37

below that ϕ−1(a) converges for a ∈ Aψ=1
K , which shows (b1). Since π e

K = π and
ϕ−n(π)= ζpn et/pn

− 1 it is also clear that the values of ϕ−n on AK , if convergent,
lie in F( e

√
ζpn − 1)[[t]] = Kn[[t]]. This shows (b2). By [Cherbonnier and Colmez

1999, théorème IV.2.1] the right-hand side of (b3) is given by Tnϕ
−m(Exp∗Zp

(u))
for m ≥ n large enough (see the next section for the definition of Tn). The statement
in (b3) then follows from Corollary 17 below. �

4.4. Some power series computations. The purpose of this section is simply to
record some computations justifying Theorem 9(b3) for n ≥ 1. Another aim is
to write the coefficients of the right-hand side of Theorem 9(b3) in terms of the
derivation ∇ applied to the left-hand side. First we have

Lemma 14 [Cherbonnier and Colmez 1999, lemme III.2.3]. Suppose ϕ−n f and
ϕ−n(∇ f ) both converge in BdR. Then

ϕ−n(∇ f )= pn d
dt
(ϕ−n( f )).



On the local Tamagawa number conjecture for Tate motives 1245

Proof. It’s enough to check that ϕ−n
◦∇ and pn d

dt ◦ϕ
−n both agree on 1+π , since

they are both derivations. We see that

ϕ−n
∇(1+π)= ϕ−n(1+π)= ζpn et/pn

pn d
dt
ϕ−n(1+π)= pn d

dt
ζpn et/pn

= ζpn et/pn
. �

The next Lemma shows that ∇ is compatible with other operators that we have
introduced. The ring B is defined as in [Cherbonnier and Colmez 1999].

Lemma 15. Let f ∈ BK . Then we have

(a) ∇γ f = χ cyclo(γ ) · γ∇ f ,

(b) ∇ϕ f = p ·ϕ∇ f ,

(c) ∇ TrB/ϕB f = TrB/ϕB ∇ f ,

(d) ∇ψ f = p−1
·ψ∇ f .

Proof. This is a straightforward computation. For example, to see (c) note that
(1+π)i , i = 0, . . . , p− 1 is a ϕB-basis of B and

TrB/ϕB(x)= TrB/ϕB

(p−1∑
i=0

ϕxi · (1+π)i
)
= p ·ϕx0.

Hence

TrB/ϕB(∇x)= TrB/ϕB

(p−1∑
i=0

∇ϕxi · (1+π)i +ϕxi · i · (1+π)i
)

= TrB/ϕB

(p−1∑
i=0

ϕ(p∇xi + xi · i) · (1+π)i
)

= p2ϕ∇x0 =∇(p ·ϕx0)=∇ TrB/ϕB(x).

See [Daigle 2014, Lemma 3.1.3] for more details. �

Recall the normalized trace maps

Tn : K∞→ Kn

from [Cherbonnier and Colmez 1999, p. 259] which are given by

Tn(x)= p−m TrKm/Kn x

for any m ≥ n such that x ∈ Km , and extend to a map

Tn : K∞[[t]] → Kn[[t]]

by linearity. By [Cherbonnier and Colmez 1999, théorème IV.2.1] the right-hand
side of Theorem 9(b3) is given by Tnϕ

−m( f ) for f = Exp∗Zp
(u) ∈ Aψ=1

K and m ≥ n
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large enough. In order to get access to individual Taylor coefficients of the right-
hand side we wish to compute dr−1

dtr−1 Tnϕ
−m( f ), but from Lemmas 14 and 15 we see

that
dr−1

dtr−1 Tnϕ
−m
= p−m(r−1)Tnϕ

−m
∇

r−1

and thus we can study the map Tnϕ
−m on ∇r−1 Aψ=1

K . But since ψ∇x = p∇ψx ,
we see that ∇r−1 Aψ=1

K ⊆ Aψ=pr−1

K , and so we wish to study Tnϕ
−m on Aψ=pr−1

K .

Lemma 16. Let P ∈ Aψ=pr−1

K be such that

(ϕ−n P)(0) := ϕ−n P|t=0

converges and assume m ≥ n. Then if n ≥ 1 we have

(Tnϕ
−m P)(0)= p(r−1)m−rn(ϕ−n P)(0). (23)

and if n = 0 we have

(T0ϕ
−m P)(0)= p(r−1)m(1− p−rσ−1)(ϕ−0 P)(0). (24)

Proof. Since P ∈ Aψ=pr−1

K , we know that ψ(P)= pr−1 P and thus that

p−r TrB/ϕB(P)= ϕ(P).

Recall that we can choose πK such that π e
K = π . Then {((1+π)ζ −1)1/e : ζ ∈ µp}

is the set of conjugates of πK over ϕ(B) in an algebraic closure of B, so this gives

p−r
∑
ζ∈µp

P
(
((1+π)ζ − 1)1/e

)
= Pσ

(
((1+π)p

− 1)1/e
)
.

Whenever ϕ−(l+1)P converges for some l ∈ N, the operator ϕ−(l+1)P|t=0 corre-
sponds to setting π = ζpl+1 − 1 and applying σ−(l+1) to each coefficient. We get

p−r
∑
ζ∈µp

Pσ
−(l+1)

((ζ · ζpl+1 − 1)1/e)= Pσ
−l
((ζpl − 1)1/e). (25)

If l ≥ 1, this simplifies to

p−r TrKl+1/Kl Pσ
−(l+1)

((ζpl+1 − 1)1/e)= Pσ
−l
((ζpl − 1)1/e),

and by induction, we see that for any 1≤ n < m,

pm−r(m−n)Tn Pσ
−m
((ζpm − 1)1/e)= Pσ

−n
((ζpn − 1)1/e). (26)
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Since Pσ
−m
((ζpm − 1)1/e)= (ϕ−m P)(0), this proves Equation (23). If l = 0 then

Equation (25) becomes

p−r
∑
ζ∈µp

Pσ
−1
((ζ · ζp − 1)1/e)= (ϕ−0 P)(0).

The left-hand side is now equal to

p−r Pσ
−1
(0)+ p−r TrK1/K0 Pσ

−1
((ζp − 1)1/e)

and we have

p−r TrK1/K0(P
σ−1
((ζp − 1)1/e))= (1− p−rσ−1)(ϕ−0 P)(0).

By induction we get

pm−rm T0 Pσ
−m
((ζpm − 1)1/e)= (1− p−rσ−1)(ϕ−0 P)(0),

which proves Equation (24). �

Corollary 17. If P ∈ Aψ=1
K is such that ϕ−n P converges and m ≥ n, then we have

Tnϕ
−m P = p−nϕ−n P

if n ≥ 1, and

T0ϕ
−m P = (1− p−1σ−1)ϕ−0 P

if n = 0.

Proof. This follows by combining Lemma 16 for all r . �

5. The unramified case

In this section we reprove the local Tamagawa number conjecture (4) in the case
where K = F is unramified over Qp. This was first proven in [Bloch and Kato
1990] and other proofs can be found in [Perrin-Riou 1994; Benois and Berger 2008].
The proofs differ in the kind of “reciprocity law” which they employ but all proofs,
including ours, use the “Perrin-Riou basis,” i.e., the 3F -basis in Proposition 24
below.

5.1. An extension of Proposition 10 in the unramified case. In this section we
use results of Perrin-Riou [1990] to extend the diagram in Proposition 10 to the
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diagram in Corollary 21 below. Define

PF :=

{∑
n≥0

anπ
n
∈ F[[π ]] : nan ∈OF

}
,

PF := PF/pOF [[π ]],

PF,log := { f ∈ PF : (p−ϕ)( f )= 0},

PF,log := { f ∈ PF : f̄ ∈ PF,log} = { f ∈ PF : (p−ϕ)( f ) ∈ pOF [[π ]]},

OF [[π ]]log := { f ∈OF [[π ]]
×
: f mod pOF [[π ]] ∈ 1+πk[[π ]]}

= 1+ (π, p).

Note that PF is the space of power series in F whose derivative with respect to
π lies in OF [[π ]]. Observe that the map d log is given by an integral power series,
and therefore logOF [[π ]]log ⊆ PF where the logarithm map

log(1+ x)=
∑
n≥1

(−1)n−1 xn

n

is given by the usual power series. Since ϕ reduces modulo p to the Frobenius, i.e.,
to the p-th power map, the logarithm series in fact induces a map

log :OF [[π ]]log→ PF,log.

We wish to show that this map is an isomorphism, and to do this we first recall a
couple of lemmas from [Perrin-Riou 1990].

Lemma 18 [Perrin-Riou 1990, lemme 2.1]. Let

f ∈ 1+πk[[π ]] = Ĝm(k[[π ]])

and let f̂ be any lift of f to OF [[π ]]log. Then

log( f̂ ) mod pOF [[π ]] ∈ PF,log

does not depend on the choice of f̂ , and the map f 7→ log( f̂ ) mod pOF [[π ]] is an
isomorphism logk : 1+πk[[π ]] −→∼ PF,log.

Lemma 19 [Perrin-Riou 1990, lemme 2.2]. Let f ∈ PF,log. Then the sequence
pmψm( f ) converges to a limit f∞ ∈ PF,log, and we have

(1) f∞ ≡ f mod pOF [[π ]],

(2) ψ( f∞)= p−1 f∞,

(3) (1− p−1ϕ) f∞ ∈OF [[π ]],

(4) f∞ = 0 if f ∈OF [[π ]],

(5) f∞ = g∞ if f ≡ g mod pOF [[π ]].
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Corollary 20. (1) The map log :OF [[π ]]log→ PF,log is an isomorphism.

(2) One has a commutative diagram of isomorphisms

OF [[π ]]
N=1
log

log

∼=

//

mod p∼=

��

Pψ=p−1

F,log

mod p∼=

��

1+πk[[π ]]
logk

∼=

// PF,log

Proof. To see the first part, note that we have a commutative diagram

1

��

0

��

1+ pOF [[π ]]

��

log

∼=

// pOF [[π ]]

��

OF [[π ]]log

��

log
// PF,log

��

1+πk[[π ]]

��

logk

∼=

// PF,log

��

1 0

and that the logarithm map on 1+ pOF [[π ]] is an isomorphism since its inverse
is given by the exponential series. By the five lemma, the middle arrow is an
isomorphism. For the second part, it suffices to note that Lemma 19 shows that any
element in PF,log has a unique lift in Pψ=p−1

F,log and that logN (x)= pψ log(x). �

Corollary 21. For K = F the commutative diagram from Proposition 10 extends
to a commutative diagram of 3F -modules:

A(F∞)= lim
←−−m,n F×n /(F

×
n )

pm
(E×F )

∧
∼=

oo (AN=1
F )∧

∼=

mod p
oo

∼=

∇ log
// Aψ=1

F (1)

U = lim
←−−m,n O

×

Fn
/(O×Fn

)pm
?�

OO

1+πk[[π ]]
∼=

oo
?�

OO

OF [[π ]]
N=1
log

∼=

mod p
oo

∼=

log
//

?�

OO

Pψ=p−1

F,log

?�
∇

OO

Proof. This is immediate from Corollary 20(2). �
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This diagram allows us to determine the exact relationship between Pψ=p−1

F,log and

Aψ=1
F (1) since the relationship between A(F∞) and U is quite transparent. There

is an exact sequence of 3F -modules

0→U → A(F∞)
v
−→ Zp→ 0,

where v is the valuation map and Zp carries the trivial 6×0-action. By [Neukirch
et al. 2000, Theorem 11.2.3], already used in the proof of Proposition 11, there is
an isomorphism

A(F∞)∼=3F ⊕Zp(1) (27)

and the torsion submodule Zp(1) is clearly contained in U . Hence we obtain an
exact sequence

0→Utf→ A(F∞)tf
v
−→ Zp→ 0,

where Mtf := M/Mtors. The module A(F∞)tf is free of rank one and since the
(6×0)-action on Zp is trivial we find

Utf = I ·A(F∞)tf,

where

I := (σ − 1, γ − 1)⊆3F

is the augmentation ideal.

Lemma 22. The augmentation ideal I is principal, generated by the element

(1− e1)+ (γ − 1)e1,

where e1 ∈ Zp[6] is the idempotent for the trivial character of 6.

Proof. This hinges on our assumption that p does not divide the order of 6, which
implies that e1 has coefficients in Zp. Using e2

1 = e1 we then find immediately

σ − 1= (σ − 1)(1− e1)= (σ − 1)(1− e1) · [(1− e1)+ (γ − 1)e1],

γ − 1= ((γ − 1)(1− e1)+ e1) · [(1− e1)+ (γ − 1)e1]. �

Lemma 23. There are elements α ∈ Aψ=1
F (1), α̃ ∈ Pψ=p−1

F,log such that

(1) Aψ=1
F (1)=3F ·α⊕Zp(1) · 1,

(2) Pψ=p−1

F,log =3F · α̃⊕Zp · log(1+π),

(3) ∇α̃ = ((1− e1)+ (γ − 1)e1) ·α.
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Proof. Part (1) follows from (27) and Corollary 21. For part (2) one checks easily
that Zp · log(1+π) is the torsion submodule of Pψ=p−1

F,log and that (Pψ=p−1

F,log )tf is free
of rank one over 3F , since it is isomorphic under ∇ to the free module

I ·α =3F · ((1− e1)+ (γ − 1)e1) ·α

by Lemma 22. Note that we view α here as an element of AF (1), i.e., the action
of γ is χ cyclo(γ ) times the standard action (20) of γ on AF . Setting

α̃ := ∇−1((1− e1)+ (γ − 1)e1) ·α

we obtain (3). �

5.2. The Coleman exact sequence and the Perrin-Riou basis. Lemma 23 tells us
that (Pψ=p−1

F,log )tf is generated over 3F by a single element α̃, but not what this α̃ is.
By studying one more space, OF [[π ]]

ψ=0, we are able to describe α̃ and hence α.

Proposition 24. (1) There is an exact sequence of 3F -modules

0→ Zp · log(1+π)→ Pψ=p−1

F,log
1−ϕ/p
−−−→OF [[π ]]

ψ=0
→ Zp(1)→ 0. (28)

(2) OF [[π ]]
ψ=0 is a free 3F -module of rank one generated by ξ(1+ π), where

ξ ∈OF is a basis of OF over Zp[6].

Proof. Part (1) is Theorem 2.3 in [Perrin-Riou 1990] and goes back to Coleman
[1979]. See also [Daigle 2014, Proposition 4.1.10]. Part (2) is Lemma 1.5 in
[Perrin-Riou 1990]. �

Corollary 25. The bases α and α̃ in Lemma 23 can be chosen such that

(1−ϕ/p) · α̃ =
(
(1− e1)+ (γ −χ

cyclo(γ ))e1
)
· ξ(1+π). (29)

Proof. The cokernel of (1−ϕ/p) in (28) is isomorphic to

Zp(1)∼=3F/(σ − 1, γ −χ cyclo(γ ))

so the image of (1−ϕ/p)must be (σ−1, γ−χ cyclo(γ ))·ξ(1+π). As in Lemma 22
we can show that this ideal is principal, and is generated by

(1− e1)+ (γ −χ
cyclo(γ ))e1. �

5.3. Proof of the conjecture for unramified fields. We now have the tools we
need to explicitly compute exp∗

Qp(r)(H
1(F,Zp(1− r))) and prove the equality of

Proposition 7 for K = F (i.e., e = 1). By Lemma 8 we can take

β := pr0,1−r (βIw),
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where βIw satisfies

α = Exp∗Zp
(βIw),

∇α̃ = ((1− e1)+ (γ − 1)e1) ·α,

(1−ϕ/p) · α̃ =
(
(1− e1)+ (γ −χ

cyclo(γ ))e1
)
· ξ(1+π),

(30)

using (22), Lemma 23(3) and (29). We cannot immediately apply Theorem 9 to
n = 0, but going back to [Cherbonnier and Colmez 1999, théorème IV.2.1] we have

∞∑
r=1

exp∗Qp(r)(pr0,1−r (u)) · t
r−1
= T0ϕ

−m Exp∗Zp
(u).

Applying this to

u = ((1− e1)+ (γ − 1)e1) ·βIw (31)

assures that

Exp∗Zp
(u)=∇α̃ ∈OF [[π ]]

and therefore

ϕ−0 P := ϕ−0
∇

r−1 Exp∗Zp
(u)= ϕ−0

∇
r α̃

converges in BdR for any r ≥ 1. Lemma 16 then implies

exp∗Qp(r)(pr0,1−r (u))=
1

(r−1)!

( d
dt

)r−1
T0ϕ
−m Exp∗Zp

(u)
∣∣
t=0

=
1

(r−1)!
T0 p−(r−1)mϕ−m

∇
r−1 Exp∗Zp

(u)
∣∣
t=0

=
1

(r−1)!
(1− p−rσ−1)ϕ−0

∇
r α̃
∣∣
t=0

=
1

(r − 1)!
(1− p−rσ−1)∇r α̃

∣∣
π=0.

Applying ∇r to (29) and using Lemma 15 we have

(1− pr−1ϕ) · ∇r α̃ =
(
(1− e1)+ (χ

cyclo(γ )rγ −χ cyclo(γ ))e1
)
· ∇

rξ(1+π)

=
(
(1− e1)+ (χ

cyclo(γ )rγ −χ cyclo(γ ))e1
)
· ξ(1+π)

and so we find

exp∗Qp(r)(pr0,1−r (u))

=
1

(r − 1)!
·

1− p−rσ−1

1− pr−1σ
·
(
(1− e1)+ (χ

cyclo(γ )r −χ cyclo(γ ))e1
)
· ξ.
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By Lemma 8 the action of γ ∈ 3F on H 1(F,Zp(1 − r)) is via the character
χ cyclo(γ )r . Hence, for our choice (31) of u, we have

pr0,1−r (u)= ((1− e1)+ (χ
cyclo(γ )r − 1)e1) · pr0,1−r (βIw)

= ((1− e1)+ (χ
cyclo(γ )r − 1)e1) ·β

and we can finally compute

exp∗Qp(r)(β)=
1

(r − 1)!
·

1− p−rσ−1

1− pr−1σ
·
(1− e1)+ (χ

cyclo(γ )r −χ cyclo(γ ))e1

(1− e1)+ (χ cyclo(γ )r − 1)e1
· ξ.

This verifies the identity of Proposition 7.

6. Results in the tamely ramified case

We resume our notation and assumptions from Section 4.3. Our first aim in this
section is to prove Proposition 44 below which is a yet more explicit reformulation
of the identity (16) in Proposition 7. We then prove this identity for e< p and r = 1
as well as for e< p/4 and r =2. In the isotypic components where η|Gal(K/F(ζp))=1
this can easily be done (for any r ) using computations similar to those in Section 5.3
with

β1 := pr1,1−r (βIw)

and βIw defined in (30). The notation here is relative to the base field K = F . In
any case, the equivariant local Tamagawa number conjecture is known for any r in
those isotypic components by [Benois and Berger 2008]. We shall therefore entirely
focus on isotypic components with

η|Gal(K/F(ζp)) 6= 1.

In this case we need to verify Equation (16). The main problem is that we do not
have any closed formula for a 3K -basis of (the torsion free part of) Aψ=1

K . We shall
analyze a general basis using Nakayama’s lemma, and to do this we first need to
analyze which restrictions are put on a power series

a =
∑

n

anπ
n
K ∈ AK

by the condition ψ(a)= a.

6.1. Analyzing the condition ψ = 1. Proposition 34 below, which is the main
result of this subsection, gives the rate of convergence of an→ 0 as n→−∞ for
a ∈ Aψ=1

K .
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Definition 26. For n ∈ N0 and m ∈ Z(p) define

bm,n := p−1
∑
ζ∈µp

ζm(1− ζ−1)n

= p−1 TrQ(ζp)/Q ζ
m
p (1− ζ

−1
p )n, if n ≥ 1.

Clearly bm,n only depends on m (mod p).

Lemma 27. One has bm,n ∈ Z and

bm,n =

{
(− 1)m

( n
m

)
, 0≤ n < p,

(− 1)m
( n

m

)
− (−1)m

( n
m+p

)
, p ≤ n < 2p,

(32)

where 0≤ m < p is the representative for m (mod p). Moreover,

p
⌊ n+p−2

p−1

⌋
−1 ∣∣ bm,n

for n ≥ 1 and hence
p j
| bm,n

for j (p− 1) < n ≤ ( j + 1)(p− 1).

Proof. Formula (32) follows from the binomial expansion of (1− ζ−1)n and the
fact that ∑

ζ∈µp

ζ k
=

{
0, p - k,
p, p | k.

In particular bm,0 = 0, 1 according to whether p - m or p | m. The different of the
extension Q(ζp)/Q is (1− ζp)

p−2, so we have

TrQ(ζp)/Q

(
ζm

p (1− ζ
−1
p )n

)
⊆ pN Z

⇐⇒ ((1− ζp)
n)⊆

(
pN (1− ζp)

2−p)
=
(
(1− ζp)

N (p−1)+2−p)
⇐⇒ n ≥ N (p− 1)+ 2− p⇐⇒ N ≤

n+ p− 2
p− 1

. �

Definition 28. Define integers βn, j ∈ Z by β1, j :=
1
p

(p
j

)
for 1≤ j ≤ p− 1 and(p−1∑

j=1

β1, j x j
)n

=

n(p−1)∑
j=n

βn, j x j .

Proposition 29. An element a =
∑

i aiπ
i
K ∈ AK lies in Aψ=1

K if and only if for all
N ∈ Z one has
∞∑

n=0

aN+en

( N
e + n

n

)
b(N/e)+n,n =

∑
0≤n≤ j≤n(p−1)

aσ(N+ je)/p

( N+ je
pe
n

)
βn, j · pn (33)
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with the convention that ar = 0 for r /∈ Z. Equation (33) holds for all N ∈ Z if and
only if it holds for all N ∈ pZ.

Proof. This is just comparing coefficients in the identity p−1 TrB/ϕ(B)(a)= ϕ(a).
One has ϕ(π)= (1+π)p

− 1= π p(1+ p · y) with y =
∑p−1

j=1 β1, jπ
− j and hence

ϕ(πK )= π
p

K · λ · (1+ p · y)1/e

with λ ∈ µe and (1+ Z)1/e the binomial series. In fact, λ = 1 since ϕ(πK ) ≡ π
p

K
mod p. Therefore

ϕ(πm
K )= π

pm
K (1+ p · y)m/e = π pm

K

∞∑
n=0

(m
e
n

)
yn
· pn

=

∞∑
n=0

(m
e
n

) n(p−1)∑
j=n

βn, jπ
pm−ej

K · pn

and the coefficient of π N
K in ϕ(a)=

∑
m aσmϕ(π

m
K ) is∑

m,n, j,N=pm−ej

aσm

(m
e
n

)
βn, j · pn,

which is the right-hand side of (33). The conjugates of π over ϕ(B) are

(1+π)ζ − 1= π · ζ · (1+ (1− ζ−1)π−1),

hence the conjugates of πm
K are

πm
K · ζ

m/e
·
(
1+ (1− ζ−1)π−1)m/e

= πm
K · ζ

m/e
·

∞∑
n=0

(m
e
n

)
(1− ζ−1)nπ−n

and

p−1 TrB/ϕ(B)(π
m
K )= π

m
K ·

∞∑
n=0

(m
e
n

)
bm/e,nπ

−n
=

∞∑
n=0

(m
e
n

)
bm/e,nπ

m−en
K ,

and the coefficient of π N
K in p−1 TrB/ϕ(B)(a) is the left-hand side of (33). Note

here that B(ζ )/ϕ(B) is totally ramified, so all the conjugates must be congruent
modulo 1− ζ .

Denote by (33)m the equation (33) modulo pm . By Lemma 30 below, (33)1 for
all N ∈ Z is equivalent to (33)1 for all N ∈ pZ. We shall show by induction on
m that this equivalence holds for all m. Suppose a ∈ AK satisfies (33)m+1 for all
N ∈ pZ. Let b ∈ Aψ=1

K be a lift of ā ∈ Eψ=1
K , which exists by Lemma 32 below, and

write a− b = c · p. Then a− b satisfies (33)m+1 for all N ∈ pZ, hence c satisfies
(33)m for all N ∈ pZ. By the induction assumption c satisfies (33)m for all N ∈ Z.
But then p · c satisfies (33)m+1 for all N ∈ Z, hence so does a = b+ c · p. �
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Lemma 30. An element a =
∑

i aiπ
i
K ∈ EK lies in Eψ=1

K if and only if for all k ∈ Z

one has
p−1∑
n=0

akp+ne(−1)n = aσk . (34)

Proof. The only nonzero term on the right-hand side of (33)1 is aσN/p, corresponding
to n = j = 0, and the nonzero terms on the left-hand side are for n ≤ p− 1 by
Lemma 27. For m ∈ Z(p) one has(

m
n

)(
n
m

)
=

m(m− 1) · · · (m− n+ 1)
n!

·
n!

m!(n−m)!
≡

{
0, m < n,
1, m = n,

since for m < n one of the factors in m(m − 1) · · · (m − n+ 1) is divisible by p,
whereas for m = n this product is congruent to m! modulo p. For m > n one has(n

m

)
= 0, so

(m
n

)(n
m

)
≡ 0 whenever m 6= n. Using (32) the left-hand side of (33)1 is

p−1∑
n=0

aN+en

(
m
n

)(
n
m

)
(−1)m

for m = (N/e)+ n. So the left-hand side vanishes for N /∈ pZ and is equal to the
left-hand side of (34) for N = pk. �

For later reference we also record here a more explicit version of (33)2.

Lemma 31. Let H0 = 0 and Hn =
∑n

i=1 1/ i be the harmonic number. Then (33)2

holds if and only if for all k ∈ Z one has

p−1∑
n=0

akp+ne(−1)n
(

1+ kp
e

Hn

)
+

2(p−1)∑
n=p+1

akp+ne(−1)n−p
· p·Hn−p

(
1+ k

e

)
≡aσk . (35)

Proof. The only nonzero term on the right-hand side of (33)2 for N = kp is aσk ,
corresponding to n = j = 0, since for n = 1 there is no 1 ≤ j ≤ (p − 1) with
p | (N+ je)= kp+ je. The nonzero terms on the left-hand side are for n≤ 2(p−1)
by Lemma 27. Note that for 1 ≤ j ≤ n < 2p only j = p is divisible by p. So
computing modulo p2 we have( kp

e + n
n

)
=

∏n
j=1
( kp

e + j
)

n!
≡

n! + kp
e

∑n
j=1

n!
j +

( kp
e

)2∑
1≤ j1< j2≤n

n!
j1 j2

n!

≡ 1+ kp
e

Hn +

(kp
e

)2 ∑
1≤ j1< j2≤n

1
j1 j2

≡

{
1+ kp

e Hn, n < p,
1+ k

e +
kp
e Hn−p +

( k
e

)2
· p · Hn−p, p ≤ n < 2p.
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Here we have used Hp−1 ≡ 0 mod p and
∑n

j=p+1 1/j ≡ Hn−p mod p. By (32)
we have

b(kp/e)+n,n =


(n

n

)
(−1)n = (−1)n, n < p,

0, n = p,
(−1)n−p

(( n
n−p

)
−
(n

n

))
, p < n < 2p

and( n
n− p

)
−

(n
n

)
=
(p+ n− p)(p+ n− p− 1) · · · (p+ 1)

(n− p)!
− 1≡ p ·

n−p∑
j=1

1
j
.

So the summand for n = p vanishes and for p < n < 2p we have( kp
e +n

n

)
b(kp/e)+n,n ≡

(
1+ k

e
+

kp
e

Hn−p+

(k
e
)2
· p ·Hn−p

)
(−1)n−p

· p ·Hn−p

≡ (−1)n−p
(

1+ k
e

)
· p ·Hn−p. �

Lemma 32. The map Aψ=1
K → Eψ=1

K is surjective.

Proof. This follows from the snake lemma applied to

0 // AK
p

//

ψ−1

��

AK //

ψ−1

��

EK //

ψ−1

��

0

0 // AK
p

// AK // EK // 0

and the fact that AK /(ψ − 1)AK ∼= H 2
Iw(K ,Zp(1)) ∼= Zp (see [Cherbonnier and

Colmez 1999, remarque II.3.2.]) is p-torsion free. �

Definition 33. For a =
∑

i aiπ
i
K ∈ AK and ν ≥ 1 we set

lν(a) :=min{i | pν - ai }.

In particular
l(a) := l1(a)= vπK(ā)

is the valuation of ā ∈ EK .

Note that l(a) is independent of a choice of uniformizer for AK , but for ν ≥ 2,
lν(a) is not.

Proposition 34. Let a ∈ Aψ=1
K .

(a) For all ν ≥ 1 we have

lν(a)≥−
ν(p− 1)+ 1

p
· e.



1258 Jay Daigle and Matthias Flach

In particular l(a)≥−e.

(b) If l(a) <−e+ e(p− 1) then

l2(a) > l(a)− e(p− 1),

while if l(a)≥−e+ e(p− 1) then l2(a)≥−e.

(c) If l(a) <−e+ 2e(p− 1) and l2(a)≥ l(a)− e(p− 1) then

l3(a) > l(a)− 2e(p− 1),

while if l(a)≥−e+ 2e(p− 1) and l2(a)≥ l(a)− e(p− 1) then l3(a)≥−e.

Remark 35. Part (b) is a small improvement of part (a) for ν = 2 and a with

l(a) >−
(

2− 1
p

)
e+ e(p− 1),

while part (c) improves (a) for ν = 3 and a with

l(a) >−
(

3− 2
p

)
e+ 2e(p− 1)

and l2(a)≥ l(a)− e(p− 1).

Proof. Suppose a =
∑

i aiπ
i
K ∈ Aψ=1

K . Part (a) is equivalent to the statement

i <−
ν(p− 1)+ 1

p
· e ⇒ pν | ai , (36)

which we denote by (36)ν if we want to emphasize dependence on ν. We shall
prove (36)ν by induction on ν, the statement (36)0 being trivial. Now assume (36)ν′
for ν ′ ≤ ν and assume pν+1 - ai for some

i <−
(ν+ 1)(p− 1)+ 1

p
· e.

We shall show that there is another i ′ < i with pν+1 - ai ′ . Hence there are infinitely
many i < 0 with pν+1 - ai which contradicts the fact that a ∈ AK . This proves
(36)ν+1.

In order to find i ′ we look at (33) for N = pi

∞∑
n=0

api+en

( pi
e + n

n

)
b(pi/e)+n,n=aσi +

∑
1≤n≤pλ≤n(p−1)

aσi+λe

( i
e + λ

n

)
βn,pλ · pn (37)

and first notice that
pν+1−n

| ai+λe
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for n/p ≤ λ≤ n(p− 1)/p. This is because of

i + λe <−
(ν+ 1)(p− 1)+ 1

p
· e+

n(p− 1)
p

· e =−
(ν+ 1− n)(p− 1)+ 1

p
· e

and the induction assumption. Since
(
(i/e)+λ

n

)
βn,pλ is a p-adic integer we conclude

that pν+1 divides the sum over λ, n in the right-hand side of (37) and hence does
not divide the right-hand side of (37).

Considering the left-hand side of (37) we first recall that Lemma 27 implies that

p j
| b(pi/e)+n,n (38)

for j (p− 1) < n ≤ ( j + 1)(p− 1). For n in this range we have

pi+ne ≤ pi+( j+1)(p−1)e <−
(
(ν+1)(p−1)+1

)
e+( j+1)(p−1)e

=−
(
(ν+1− j)(p−1)+1

)
e+(p−1)e

≤−
(ν+1− j)(p−1)+1

p
·e (39)

provided this last inequality holds which is equivalent to

p
(
(ν+ 1− j)(p− 1)+ 1

)
− p(p− 1)≥ (ν+ 1− j)(p− 1)+ 1

⇐⇒ (p− 1)
(
(ν+ 1− j)(p− 1)+ 1

)
≥ p(p− 1)

⇐⇒
(
(ν+ 1− j)(p− 1)+ 1

)
≥ p

⇐⇒ (ν+ 1− j)≥ 1⇐⇒ ν ≥ j.

So for 1≤ j ≤ ν inequality (39) holds, and the induction assumption implies

pν+1− j
| api+ne.

Using (38) we conclude that pν+1 divides all summands in the left-hand side of
(37) except perhaps those with n < p (corresponding to j = 0). Since pν+1 does
not divide the right-hand side, it does not divide the left-hand side of (37). So
there must be one summand with n < p not divisible by pν+1 and hence some
i ′ := pi + en with n ≤ p− 1 such that pν+1 - ai ′ . It remains to remark that

i ′ = pi + en ≤ pi + e(p− 1) < pi − i(p− 1)= i (40)

since i <−e.
To prove (b) we use the same argument. Assuming the existence of

i ≤min{l(a)− e(p− 1),−e− 1}

with p2 - ai we find another i ′< i with p2 - ai ′ . On the right-hand side of (37), apart
from aσi , all summands are divisible by p2 (note there are none with n = 1 since λ
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has to be an integer). On the left-hand side, summands for n> 2(p−1) are divisible
by p2 by Lemma 27. For p≤ n≤ 2(p−1) we have, assuming l(a)<−e+e(p−1),

pi + en ≤
(
l(a)− e(p− 1)

)
+ 2(p− 1)e = l(a)+ (p− 1)l(a)− (p− 2)(p− 1)e

< l(a)+ (p− 1)(−e+ e(p− 1))− (p− 2)(p− 1)e = l(a)

and therefore p | api+en . If l(a)≥−e+ e(p− 1) we have

pi + en < p(−e)+ 2(p− 1)e =−e+ e(p− 1)≤ l(a)

and again conclude p | api+en . So all summands on the left-hand side with n ≥ p
are divisible by p2. Hence some i ′ := pi + en with n ≤ p − 1 satisfies p2 - ai ′ .
Moreover, (40) holds since i <−e.

For (c) we use this argument yet another time. Assume

i ≤min{l(a)− 2e(p− 1),−e− 1}

and p3 -ai . On the right-hand side of (37) we need p |ai+λe for 2/p≤λ≤2(p−1)/p,
i.e., λ= 1. But

i + e ≤min{l(a)− 2e(p− 1)+ e,−1}< l(a),

so p | ai+e. Assume first l(a) <−e+ 2e(p− 1). On the left-hand side we have for
p ≤ n ≤ 2(p− 1)

pi + en ≤ p
(
l(a)− 2e(p− 1)

)
+ 2(p− 1)e

= l(a)− e(p− 1)+ (p− 1)l(a)+ e(p− 1)− (2p− 2)(p− 1)e

< l(a)− e(p− 1)+ (p− 1)(−e+ 2e(p− 1))− (2p− 3)(p− 1)e

= l(a)− e(p− 1)≤ l2(a)

and therefore p2
| api+en . For 2p− 1≤ n ≤ 3(p− 1) we just add (p− 1)e to this

last estimate to conclude

pi + en ≤ p
(
l(a)− 2e(p− 1)

)
+ 3(p− 1)e

< l(a)− e(p− 1)+ e(p− 1)= l(a)

and hence p | api+en . Now assume l(a)≥−e+ 2e(p− 1). For p ≤ n ≤ 2(p− 1)
we have

pi + en ≤ p(−e)+ 2(p− 1)e ≤ l(a)− e(p− 1)≤ l2(a)

and therefore p2
| api+en . For 2p−1≤ n ≤ 3(p−1) we again add (p−1)e to this

last estimate to conclude pi + en < l(a) and p | api+en . As before we conclude
that, for some i ′ := pi + en with n ≤ p− 1, we have p3 - ai ′ . Moreover (40) holds
since i <−e. �
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Before drawing consequences of Proposition 34 we make the following definition.

Definition 36. Let $ be the uniformizer of K given by

$ = e
√
ζp − 1= ϕ−1(πK)|t=0

and denote by v$ the unnormalized valuation of the field K , i.e.,

v$ (p)= e(p− 1).

For a ∈ B†,1
K define

v$ (a) := v$ (ϕ−1(a)|t=0).

Corollary 37. For all a ∈ Aψ=1
K the series ϕ−1(a) converges, i.e., Aψ=1

K ⊆ B†,1
K .

Proof. By (a) we have pν | ai for

−
(ν+ 1)(p− 1)+ 1

p
· e ≤ i <−

ν(p− 1)+ 1
p

· e

and hence

vp(ai )≥ ν ≥−
i p+ e

e(p− 1)
− 1

and
v$ (ai$

i )≥−(i p+ e)− e(p− 1)+ i =−(p− 1)i − pe. (41)

This implies
lim

i→−∞
v$ (ai$

i )=∞

and hence the series
∑

i∈Z ai$
i converges in K ⊆ Q̂p. By [Colmez 1999, proposi-

tion II.25] this implies that ϕ−1(a) converges in BdR. �

Proposition 38. For each a∈ Eψ=1
K we have l(a)≥−e. If l(a)>−e then l(a) 6≡−e

mod p. Conversely, for each c ∈ k× and n ∈ Z with

−e < n 6≡ −e mod p

there is an element a ∈ Eψ=1
K with l(a)= n and leading coefficient c.

Proof. That l(a)≥−e is Proposition 34(a). Assume that l(a) >−e and l(a)≡−e
mod p. Then l(a)= kp+ (p− 1)e for some k ∈ Z and

k =
l(a)− (p− 1)e

p
= l(a)−

(
1− 1

p

)
(l(a)+ e) < l(a),

so we have ak = 0. Further, akp+ie = 0 for i = 0, .., p− 2 since kp+ ie < l(a).
Hence there is only one nonzero term in (34) which gives a contradiction.
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To show the second part one can solve (34) by an easy recursion. Alternatively,
Proposition 10 implies that ∇ log(a) ∈ Eψ=1

K for any a ∈ E×K . Now compute

∇ log(1+ cπn
K )=

∇(1+ cπn
K )

1+ cπn
K
=

cn/e · (πn−e
K +πn

K )

1+ cπn
K

=
cn
e
·πn−e

K + · · ·

and note that for p - n one can produce any leading coefficient. �

Remark 39. Elements a ∈ Eψ=1
K with l(a)=−e exist, e.g.,

∇ log(π j )= j ·π−1
+ j = j ·π−e

K + j,

but their leading coefficient is restricted to elements in Fp.

Corollary 40. If a ∈ Aψ=1
K and

l(a) <−e+ e(p− 1),

we have v$ (a)= l(a).

Proof. Since v$ (al(a)$
l(a))= l(a) we need to show

v$ (ai$
i ) > l(a)

for i 6= l(a). This is clear for i > l(a), and also for

l(a)− e(p− 1) < i < l(a)

since in that range p | ai and so v$ (ai$
i )≥ e(p− 1)+ i > l(a). For

l(a)− 2e(p− 1) < i ≤ l(a)− e(p− 1)

we have p2
| ai by part (b) and hence v$ (ai$

i )≥ 2e(p−1)+ i > l(a). Finally for

i ≤ l(a)− 2e(p− 1) <−e− e(p− 1)=−ep <−2e

we have by (41)

v$ (ai$
i )≥−(p− 1)i − pe > (p− 1)2e− pe = (p− 2)e > l(a),

using the assumption on l(a). �

In order to study v$ (a) for a ∈ Aψ=1
K with l(a) >−e+ e(p−1) we need to use

Lemma 31. The next proposition will show that v$ (a) cannot only depend on l(a)
in this case. In the situation of Proposition 41(b) one can have v$ (a) = l(a) but
for any b ∈ Aψ=1

K with l(b) < l(a)− e(p− 1) and p2 - al(b)+ pbl(b) one has

l(a+ pb)= l(a), v$ (a+ pb)≤ l(b)+ e(p− 1) < l(a)= v$ (a).
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Proposition 41. Let a′ ∈ Aψ=1
K with

l(a′)= µp− e+ e(p− 1)

for some µ ∈ Z with 1≤ µ < e(p−1)
p .

(a) There exists a ≡ a′ mod p with

l2(a)≥ µp− e = l(a)− e(p− 1).

(b) For a as in (a) we have v$ (a) ≥ l(a) with equality if p - µ− e. This last
condition is automatic for e < p.

Proof. First note that l2(a′) ≥ −e by Proposition 34(b). If l2(a′) = −e then
Equation (35) for k := −e reads

a′σ
−e ≡ a′kp+e(p−1) = a′

−e

since i = kp+ en < l2(a′) for n < p− 1 and i = kp+ en ≤−e+ e(p− 1) < l(a′)
for p+1≤ n ≤ 2(p−1). Hence a′

−e/p mod p ∈ Fp. Adding an element pb to a′,
where b with l(b)=−e is as in Remark 39, we can assume that l2(a′) >−e. More
generally, as long as l2(a′) < l(a′), we can add elements pb to a′ whose existence
is guaranteed by Proposition 38 and increase l2(a′) until l2(a′) is not one of the
possible l(b), i.e.,

l2(a′)= µ′ p− e = (µ′− e)p+ (p− 1)e

for some µ′ ≥ 1. Equation (35) for k := µ′− e then reads

0≡ a′kp+e(p−1)+

2(p−1)∑
n=p+1

a′kp+ne · (−1)n−p
· p · Hn−p

(
1+ k

e

)
(42)

since i = kp + en < l2(a′) for n < p − 1 and also i = k < l2(a′), so a′i ≡ 0 for
those i . If µ′ < µ we have for p+ 1≤ n ≤ 2(p− 1)

kp+ ne < (µ− e)p+ 2(p− 1)e = l(a′)

and hence p | a′kp+ne. So if µ′ <µ then a′kp+e(p−1) is the only nonzero term in (42)
and we arrive at a contradiction. Therefore µ′ ≥ µ and we have found our a, or
otherwise we arrive at an a with l2(a)= l(a). In either case this proves part (a).

Equation (42) for k := µ− e gives

0≡ akp+e(p−1)+ al(a) · (−1) · p · Hp−2

(
1+ µ−e

e

)
≡ akp+e(p−1)− al(a) · p ·

µ

e
(mod p2) (43)
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since p | akp+ne for kp+ ne < kp+ 2(p− 1)e = l(a). Note also

Hp−2 = Hp−1−
1

p−1
≡ 0− (−1)= 1 (mod p).

For part (b) we need to show that v$ (ai$
i )≥ l(a) for all i ∈ Z (and compute the

sum over those i for which there is equality). As in the proof of Corollary 40 for
i > l(a) and l(a)− e(p− 1) < i < l(a) we obviously have v$ (ai$

i ) > l(a). By
(43) we have

al(a)−e(p−1)$
l(a)−e(p−1)

+al(a)$
l(a)
≡

( pµ
$ e(p−1)e

+1
)

al(a)$
l(a)

=

(
−
µ

e
+1
)

al(a)$
l(a)
+O($ l(a)+1) (44)

since

$ e(p−1)
= (ζp − 1)p−1

≡−p (mod (ζp − 1)p).

So if p -−(µ/e)+ 1 this is the leading term of valuation l(a). For

l(a)− 2e(p− 1) < i < l(a)− e(p− 1),

since l2(a) ≥ l(a)− e(p− 1) by part (a), we have p2
| ai and hence v$ (ai$

i ) ≥

2e(p− 1)+ i > l(a). For

l(a)− 3e(p− 1) < i ≤ l(a)− 2e(p− 1)

we have p3
| ai by (c) of Proposition 34 and hence v$ (ai$

i )≥ 3e(p−1)+i > l(a).
Finally for

i ≤ l(a)− 3e(p− 1) <−e− e(p− 1)=−ep

we have by (41)

v$ (ai$
i )≥−(p− 1)i − pe > (p− 1)pe− pe = (p− 2)pe ≥ (2p− 3)e > l(a)

using the assumption on l(a). �

6.2. Isotypic components. We introduce some notation for isotypic components.
Recall that

G ∼=6n1

with 6 cyclic of order f and 1 cyclic of order e(p− 1). For any 6-orbit [η] we
define the idempotent

e[η] =
∑
η′∈6̂η

eχ ∈ Zp[G],
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where the irreducible characters χ = ([η], η′) of G are parametrized as in Section 3.
For any Zp[G]-module M its [η]-isotypic component

M [η] := e[η]M

is a again a Zp[G]-module. The 6-orbit

[η] = {η, ηp, ηp2
, . . . , ηp fη−1

} = {η
n1
0 , . . . , η

n fη
0 } (45)

corresponds to an orbit {n1, . . . , n fη} ⊆ Z/e(p − 1)Z of residue classes modulo
e(p−1) under the multiplication-by-p map, i.e., we have ni+1∼=ni p mod e(p−1)
where we view the index i as a class in Z/ fηZ. We shall use the notation

[η] = {n1, . . . , n fη} = [ni ]

to denote both the orbit of residue classes in Z/e(p−1)Z and the orbit of characters.
By (21) the group

1e := Gal(K/F(ζp))

acts on e
√
ζp − 1=ϕ−1(πK )|t=0 via the character η0 defined in Section 3 and acts on

πK via ηp
0 . The [η] = {n1, . . . , n fη}-isotypic component of the Zp[6n1e]-module

AK is {
a =

∑
anπ

n
K

∣∣ an = 0 for n mod e /∈ {n1, . . . , n fη}

}
,

but A[η]K is much harder to describe since πK is not an eigenvector for the full
group 1. However, there is the following fact about leading terms.

Lemma 42. Fix ν≥1, a=
∑

j a jπ
j

K ∈ AK and denote by eη∈OF [1] the idempotent
for η = ηn

0 . If
p · lν(a)≡ n mod e(p− 1), (46)

then
lν(eηa)= lν(a)

and the leading coefficients modulo pν of eηa and a agree. If a = eηa is an
eigenvector for 1 then (46) holds.

Proof. Denote by
ω :1→ Gal(F(ζp)/F)→ Z×p

the Teichmüller character. For δ ∈1 we have

δ(πK )=
(
(1+π)ω(δ)− 1

)1/e
=

( ∞∑
i=1

(
ω(δ)

i

)
π i
)1

e

= λ(δ)πK

(
1+

∞∑
i=2

1
ω(δ)

(
ω(δ)

i

)
π i−1

)1
e
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where λ(δ) ∈ µe(p−1) satisfies λ(δ)e = ω(δ) and (1 + Z)1/e denotes the usual
binomial series. Applying ϕ−1

|t=0 we find

δ( e
√
ζp − 1)≡ λ(δ)1/p

·
e
√
ζp − 1 mod $ 2

and since e
√
ζp − 1 ≡ e(p−1)

√
−p mod $ 2 we obtain λ(δ) = η0(δ)

p. In particular,
for any a ∈ AK

δ(a)≡ η0(δ)
p·lν(a) · alν(a) ·π

lν(a)
K mod (pν, π lν(a)+1

K )

and

eηa =
1

e(p−1)

∑
δ∈1

η−1(δ)δ(a)≡ 1
e(p−1)

∑
δ∈1

η0(δ)
p·lν(a)−n

· alν(a) ·π
lν(a)
K

≡

{
alν(a) ·π

lν(a)
K if p · lν(a)≡ n mod e(p− 1),

0 if p · lν(a) 6≡ n mod e(p− 1),

where the congruences are modulo (pν, π lν(a)+1
K ). This implies both statements in

the lemma. �

Remark 43. With the notation introduced in this section we have

e[η] =
fη∑

i=1

e
ηpi .

6.3. The main result. We view 6 as a subgroup of G such that e(p−1)
√
−p ∈ K6 ,

where e(p−1)
√
−p is the choice of root corresponding to our choice of root πK of π .

Then the Zp[6]-algebra Zp[G] is finite free of rank e(p− 1). For each choice of η
the [η]-isotypic component of Zp[G] is free of rank fη over Zp[6] and for each
η 6= ω the [η]-isotypic component

(Aψ=1
K (1))[η]

of Aψ=1
K (1) is free of rank fη over Zp[6][[γ1− 1]]. Write

[η] = {n1, . . . , n fη} = [n1] ⊆ Z/e(p− 1)Z

and pick representatives ni ∈ Z with

0< ni < e(p− 1), i = 1, . . . , fη.

Note that our running assumption η|1e 6= 1 implies e - ni .

Proposition 44. Fix η|1e 6= 1 and let {αi | i = 1, . . . , fη} be a Zp[6][[γ1−1]]-basis
of (Aψ=1

K (1))[η]. Let ni,r be representatives for the residue classes

[n1− re] ⊆ Z/e(p− 1)Z
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with
0< ni,r < e(p− 1)

indexed such that ni − re ≡ ni,r mod e(p− 1). Consider the two Zp[6]-lattices

Lr :=

fη⊕
i=1

Zp[6] · (∇
r−1ασ

−1

i )( e
√
ζp − 1)

and

O[n1−re]
K =

fη⊕
i=1

OF · (
e(p−1)
√
−p)ni,r

in the [n1− re]-isotypic component

K [n1−re]
=

fη⊕
i=1

F · ( e(p−1)
√
−p)ni,r =

fη⊕
i=1

F · ( e(p−1)
√
−p)ni−re

of K . Then the conjunction of (16) (in Proposition 7) for χ = ([n1− re], η′) over
all η′ holds if and only if Lr and O[n1−re]

K have the same Zp[6]-volume, i.e.,

DetZp[6] Lr = DetZp[6]O
[n1−re]
K (47)

inside DetQp[6] K [n1−re].

Proof. Let α be a 3K e[n1]-basis of (Aψ=1
K (1))[n1]. Then

βIw := (Exp∗Zp
)−1(α)

is a 3K e[n1]-basis of H 1
Iw(K ,Zp(1))[n1] and the element

β = pr1,1−r (βIw)

of Corollary 12 is a Zp[G]e[n1−re]-basis of (H 1(K ,Zp(1− r))/tor)[n1−re]. This
follows from the fact that the isomorphism pr1,1−r of Lemma 8 is not 3K -linear but
3K -κ−r -semilinear, where κ j is the automorphism of3K given by g 7→ gχ cyclo(g) j

for g ∈ G×0K . Theorem 9 and Proposition 13 imply

exp∗Qp(r)(β)=
1

(r − 1)!

(
d
dt

)r−1

p−1ϕ−1(α)|t=0

=
p−r

(r − 1)!
(∇r−1ασ

−1
)( e
√
ζp − 1).

Hence the Zp[G]e[n1−re]-lattice

Zp[G] · (r − 1)! · pr−1
· exp∗Qp(r)(β)⊂ K [n1−re] (48)

is free over Zp[6] with basis

(r − 1)! · pr−1
·

p−r

(r − 1)!
(∇r−1ασ

−1

i ) e
√
ζp − 1= p−1

· (∇r−1ασ
−1

i )( e
√
ζp − 1),
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where i = 1, . . . , fη. Now the conjunction of (16) for χ = ([n1 − re], η′) over
all η′ is equivalent to the statement that the lattice (48) and the [n1− re]-isotypic
component of the inverse different(

e
√
ζp − 1

)−(e(p−1)−1)OK

have the same Zp[6]-volume. Since e - n1 we have((
e
√
ζp − 1

)−(e(p−1)−1)OK
)[n1−re]

= (p−1OK )
[n1−re]

and the statement follows. �

6.4. Proof for r = 1, 2 and small e. We retain the notation of the previous section.
As in Proposition 24 denote by ξ a Zp[6]-basis of OF .

Proposition 45. There exists a Zp[6][[γ1− 1]]-basis

αi = ξ ·π
l(αi )
K + · · · ∈ Aψ=1

K , i = 1, . . . , fη

of (Aψ=1
K )[n1−e] with

l(αi )=

{
ni − e if p - ni ,

ni − e+ e(p− 1) if p | ni .

Proof. By Nakayama’s lemma it suffices to find a Fp[6]-basis for

(Aψ=1
K )[n1−e]/(p, γ1− 1)∼=

(
Aψ=1

K /(p, γ1− 1)
)[n1−e]

. (49)

By Lemma 32 we have Aψ=1
K /p Aψ=1

K = Eψ=1
K . By Proposition 38 (reductions

mod p of) elements αi as described in Proposition 45 exist in Eψ=1
K . By projection

and Lemma 42 we can also assume that they are in the [n1−e]-isotypic component.
Let a′ be a nonzero Zp[6]-linear combination of the αi and assume

a′ ≡ (γ1− 1)a mod p

for some a ∈ Aψ=1
K . By Lemma 46 below we have l(a′) ≥ −e+ e(p− 1). Since

l(a′)= l(αi ) for some i , this implies

l(a′)≡−e+ e(p− 1)≡−2e mod p.

Using Lemma 46 again we have l(a) ≤ l(a′)− e(p − 1) ≡ −e mod p. Since
l(a) 6≡ −e mod p by Proposition 38 we have strict inequality. Lemma 46 then
shows p | l(a) and hence p | l(a′), contradicting l(a′)≡−2e mod p. We conclude
that the αi are linearly independent in (49). Since the Fp[6]-rank of (49) is fη this
finishes the proof. �
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Lemma 46. For a ∈ Eψ=1
K with l(a)= j pκ with p - j we have

l((γ1− 1)a)= ( j + e(p− 1))pκ .

In particular
l((γ1− 1)a)≥ l(a)+ e(p− 1)

with equality if and only if p - l(a), and

l((γ1− 1)a)≥−e+ e(p− 1)

for all a ∈ Eψ=1
K .

Proof. Since χ cyclo(γ1)= 1+ p we find from (20) that (in EK )

γ1(π)= π +π
p
+π p+1

and hence for n = j pκ

(γ1− 1)πn
K = (π +π

p
+π p+1)n/e−πn/e

= πn
K
(
(1+π p−1

+π p)n/e− 1
)

= πn
K
(
(1+π pκ (p−1)

+π pκ+1
) j/e
− 1

)
=

j
e
·π

n+epκ (p−1)
K + · · ·

and this is indeed the leading term since p - j . The last assertion follows from
Proposition 34(a). �

Proposition 47. If e < p, the identity (47) holds for r = 1.

Proof. We first remark that for each i we have

v$ (αi )= l(αi )=

{
ni − e if p - ni ,

ni − e+ e(p− 1) if p | ni

by Corollary 40 and Proposition 41. Note that there is at most one ni , n1 say, with

0< n1 ≤ e− 1

since all the ni lie in the same residue class modulo p− 1 and e ≤ p− 1. Then

n2 = pn1 ≤ ep− p < ep− e = e(p− 1)

and conversely, p | n2 if and only if 0 < n1 := n2/p ≤ e− 1. For all other i we
have ni − e = ni,1. So if no ni − e is negative then

qi := α
σ−1

i
(

e
√
ζp − 1

)
∈ K

is already a basis of O[n1−e]
K . Otherwise

p · q1, p−1
· q2, q3, . . . , q fη
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is a basis of O[n1−e]
K . Since L1 is the span of the qi the statement follows. �

Remark 48. Although not covered by Proposition 2, it is in fact true that the
equivariant local Tamagawa number conjecture for r = 1 is equivalent to (47) for
r = 1 and so Proposition 47 proves this conjecture for e < p. However, for r = 1
one can give a direct proof without any assumption on e other than p - e by studying
the exponential map instead of the dual exponential map. Since the exponential
power series gives a G-equivariant isomorphism

exp : p ·OK ∼= 1+ p ·OK ,

the (equivariant) relative volume of exp(OK ) and (O×K )
∧
⊆ H 1(K ,Zp(1)) can be

easily computed. For more work on the case r = 1, see [Bley and Cobbe 2016] and
references therein.

To prepare for the proof of Proposition 51 below we need to compute v$ (∇αi ),
i.e., prove the analogues of Corollary 40 and Proposition 41 for ∇a ∈ Aψ=p

K .

Lemma 49. Assume e < p/2. For a ∈ Aψ=1
K with

p - l(a) <−e+ e(p− 1)
or with

l(a)= µp− e+ e(p− 1)

and chosen as in Proposition 41(a) we have

v$ (∇a)= l(∇a)= l(a)− e.

Proof. Since

∇π
j

K =
j
e
π

j−e
K +

j
e
π

j
K , (50)

it is clear that l(∇a)= l(a)− e if p - l(a). To compute v$ (∇a), note that from the
proof of Corollary 40 we already know

v$ (a j$
j ) > l(a)

for j 6= l(a). But this implies

v$

(
a j

j
e
$ j−e

)
> l(a)− e, v$

(
a j

j
e
$ j

)
> l(a) > l(a)− e (51)

for j 6= l(a). This finishes the proof for the case p - l(a) <−e+ e(p− 1). If

l(a)= µp− e+ e(p− 1)

then recall from the proof of Proposition 41(b) that we had to compute modulo p2

and there were two terms in (44) with valuation l(a) arising from j = l(a) and
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j = l(a)− e(p− 1). Normalizing the leading coefficient to be ξ (as in the αi ) we
have

a ≡ ξ ·
µp
e
·π

l(a)−e(p−1)
K + · · ·+ ξ ·π

l(a)
K + · · · mod p2

and

∇a ≡ ξ ·
µp
e
·
µp− e

e
·π

l(a)−e−e(p−1)
K + · · ·+ ξ ·

l(a)
e
·π

l(a)−e
K + · · · mod p2

and hence
µp
e
·
µp− e

e
·$ l(a)−e−e(p−1)

+
l(a)

e
·$ l(a)−e

≡

(
−
µ

e
·
µp− e

e
+

l(a)
e

)
·$ l(a)−e mod p2.

Computing the leading coefficient modulo p we find(
µ

e
+
−2e

e

)
=
µ

e
− 2,

which is divisible by p if and only if p | µ− 2e. Since e < p/2 we have

−p <−2e < µ− 2e <
e(p− 1)

p
− 2e =

(
−1− 1

p

)
e < 0

and hence p -µ−2e. In the proof of Proposition 41(b) we showed v$ (a j$
j )> l(a)

for j 6= l(a), l(a)−e(p−1) and as above this implies that the corresponding terms
in ∇a all have valuation larger than l(a)− e. �

We handle the case p | l(a) in a separate lemma. Similar to Proposition 41 we
need to compute modulo p2.

Lemma 50. Assume e < p/4 and 0 < µp < −e + e(p − 1). Then there exists
a ∈ (Aψ=1

K )[µp] with l(a)= µp and

v$ (∇a)= l(∇a)= µp− e+ e(p− 1).

Moreover we can choose a with any leading coefficient.

Proof. The statement about the leading coefficient will be clear from the proof,
so to alleviate notation we take the leading coefficient to be 1. First we can find
a′ ∈ Aψ=1

K with
a′ ≡ πµp

K −π
µp+e(p−1)
K + · · · (mod p2),

i.e., with a′i ≡ 0 for all i <µp+e(p−1) and i 6=µp. To see this, first note that (35)
is satisfied for k = µ since Hp−1 ≡ 0 (mod p) (and we take a′µp+ne arbitrary but
divisible by p for n = p+1, . . . , 2(p−1)). In any Equation (35) with index k <µ
the coefficient a′µp does not occur on the left-hand side since kp+ ne is a multiple
of p only for n=0 among n∈{0, . . . , p−1, p+1, . . . , 2(p−1)}. On the right-hand
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side we always have a′k ≡ 0 since k <µ<µp. Similarly, the coefficient a′µp+e(p−1)
does not occur on the left-hand side for k<µ since kp+ne=µp+e(p−1) implies
n ≡−1 (mod p), i.e., n = p−1. So the fact that a′i 6≡ 0 for i = µp, µp+ e(p−1)
forces no further nonzero terms in equations with index k <µ. Equations (35) with
index k >µ can always be satisfied inductively by adjusting the variable a′kp+(p−1)e
since a′kp+(p−1)e does not occur in any equation with index k ′ < k.

With the notation introduced in Section 6.2 set

a = e[µp]a′ ∈ (A
ψ=1
K )[µp]

so that l(a)= l2(a)= µp by Lemma 42. We have

∇a′ ≡
µp
e
·π

µp−e
K +

µp
e
·π

µp
K −

µp+ e(p− 1)
e

·π
µp−e+e(p−1)
K + · · · (mod p2)

and hence

∇a =∇e[µp]a′ = e[µp−e]∇a′

≡
µp
e
·π

µp−e
K +· · ·−

(
µp+e(p−1)

e
−
µp
e

x
)
·π

µp−e+e(p−1)
K +· · · (mod p2),

where x is the coefficient of πµp−e+e(p−1)
K in the expansion of e[µp−e](π

µp−e
K +π

µp
K ).

Moreover

l(∇a)= l(∇e[µp]a′)= l(e[µp−e]∇a′)= l(∇a′)= µp− e+ e(p− 1).

In order to show that v$ (∇a)= l(∇a) write

∇a =
∑

i

bi ·π
i
K .

The terms for i = µp− e and i = µp− e+ e(p− 1) contribute the leading term in
the variable $

µp
e
·$µp−e

−

(
µp+ e(p− 1)

e
−
µp
e

x
)
·$µp−e+e(p−1)

+ · · ·

=

(
−
µ

e
−
µp+ e(p− 1)

e
+
µp
e

x
)
·$µp−e+e(p−1)

+ · · ·

since, similarly to (44), we have p - −µe + 1 as e < p. For the terms with i 6=
µp− e+ e(p− 1), µp− e we must again verify that

v$ (bi$
i ) > µp− e+ e(p− 1).

This is clear for i > µp− e+ e(p− 1) and for

µp− e < i < µp− e+ e(p− 1)
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since then p | bi . For i < µp− e it suffices to show by (51) that we have instead

v$ (ai$
i ) > µp+ e(p− 1)

for i < µp. Since l2(a)= µp we have v$ (ai )≥ 2e(p− 1) for

µp− e(p− 1) < i < µp

and hence v$ (ai$
i ) > µp+ e(p− 1). For

µp− 2e(p− 1) < i ≤ µp− e(p− 1)

we have by v$ (ai )≥ 3e(p− 1) by Proposition 34(a) since

i ≤ µp− e(p− 1) <−
(

3− 2
p

)
· e.

Indeed this last inequality is equivalent to

µp <
(
(p− 1)−

(
3− 2

p

))
· e⇐⇒ µ < e−

( 4
p
−

2
p2

)
· e,

which holds by our assumption 4e< p, noting that e−1 is the maximal value for µ.
Finally for

i ≤ µp− 2e(p− 1) <−e− e(p− 1)=−ep

we have by (41)

v$ (ai$
i )≥−(p− 1)i − pe > (p− 1)pe− pe = (p− 2)pe

≥ (2p− 3)e =−e+ 2e(p− 1) > µp+ e(p− 1). �

Proposition 51. If e < p/4 the identity (47) holds for r = 2.

Proof. By Lemmas 49 and 50 we can choose αi such that

v$ (∇αi )= l(∇αi )=

{
ni − 2e if p - ni and p - ni − e,
ni − 2e+ e(p− 1) if p | ni or p | ni − e.

As in the proof of Proposition 47, for each 0< n1 < e there is a unique n2 = pn1

divisible by p. Similarly for each nh with e < nh < 2e (which is unique if it exists)
there is a unique

nh+1− e = p(nh − e)

divisible by p. Note here that nh ≤ 2e− 1 and hence

nh+1 ≤ p(e− 1)+ e < e(p− 1)

using 2e < p. Let
qi := ∇α

σ−1

i ( e
√
ζp − 1) ∈ K
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be the basis of L2. We again find that

p · q1, p−1
· q2, . . . , p · qh, p−1

· qh+1, . . . , q fη if n1 < e and e < nh < 2e,

p · q1, p−1
· q2, . . . , qh, qh+1, . . . , q fη if n1 < e and 6 ∃ e < nh < 2e,

q1, q2, . . . , p · qh, p−1
· qh+1, . . . , q fη if 6 ∃ n1 < e and e < nh < 2e,

q1, q2, . . . , qh, qh+1, . . . , q fη if 6 ∃ n1 < e nor e < nh < 2e,

is a basis of O[n1−2e]
K and the statement follows. �
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Heegner divisors in generalized Jacobians
and traces of singular moduli

Jan Hendrik Bruinier and Yingkun Li

We prove an abstract modularity result for classes of Heegner divisors in the
generalized Jacobian of a modular curve associated to a cuspidal modulus. Ex-
tending the Gross–Kohnen–Zagier theorem, we prove that the generating series
of these classes is a weakly holomorphic modular form of weight 3

2 . Moreover,
we show that any harmonic Maass form of weight 0 defines a functional on the
generalized Jacobian. Combining these results, we obtain a unifying framework
and new proofs for the Gross–Kohnen–Zagier theorem and Zagier’s modularity
of traces of singular moduli, together with new geometric interpretations of the
traces with nonpositive index.

1. Introduction

The celebrated Gross–Kohnen–Zagier theorem [Gross et al. 1987] states that the
generating series of Heegner divisors on the modular curve X0(N ) is a cusp form
of weight 3

2 with values in the Jacobian of X0(N ). This result was later generalized
by various authors to orthogonal and unitary Shimura varieties of higher dimension;
see, e.g., [Borcherds 1999; Kudla 2004; Liu 2011].

In a different direction, Zagier [2002] proved that the traces of the normalized
j-invariant over Heegner divisors of discriminant −d on the modular curve X (1)
are the coefficients of a weakly holomorphic modular form of weight 3

2 . This result
was also generalized in subsequent work to modular curves of arbitrary level, traces
of harmonic Maass forms over twisted Heegner divisors, and to cover more general
nonpositive weight modular functions; see, e.g., [Alfes and Ehlen 2013; Bringmann
et al. 2005; Bruinier and Funke 2006; Duke and Jenkins 2008; Funke 2002; Kim
2004]. Recently, Gross [2012] has explained how Zagier’s original result can be
related to their earlier joint result with Kohnen. He showed that the traces of singular
moduli on X (1) can be interpreted in terms of Heegner divisors in the generalized
Jacobian associated with the modulus 2 · (∞).

The authors are partially supported by DFG grant BR-2163/4-1.
MSC2010: primary 14G35; secondary 14H40, 11F27, 11F30.
Keywords: Singular moduli, generalized Jacobian, Heegner point, Borcherds product, harmonic
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We pick up this idea of Gross and define classes of Heegner divisors of arbitrary
discriminant in the generalized Jacobian Jm(X) of a modular curve X of arbitrary
level with cuspidal modulus m. Then we prove that the generating series of these
classes is a weakly holomorphic modular form of weight 3

2 with values in Jm(X).
Our argument is a generalization of Borhcerds’ proof [1999] of the Gross–Kohnen–
Zagier theorem [Borcherds 1999] and relies on the construction of explicit relations
among Heegner divisors given by automorphic products. Note that, in contrast
to [Borcherds 1999], we need to use the explicit infinite product expansions of
automorphic products at all cusps of X . By applying the natural map between Jm(X)
and the usual Jacobian J (X) to this generating series we recover the “classical”
Gross–Kohnen–Zagier theorem.

Then we show that every harmonic Maass form F of weight 0 on X with
vanishing constant term at every cusp (such as the normalized j-function when
X = X (1)) defines a functional trF on Jm(X). The value of trF on Heegner divisors
of negative discriminant −d is just the sum of the values of F over the Heegner
points of discriminant −d . The value of trF on “Heegner divisors” of nonnegative
discriminant can be explicitly computed in terms of the principal parts of F at the
cusps. In that way we are able to recover Zagier’s result and its generalizations in
[Alfes and Ehlen 2013; Bruinier and Funke 2006].

We now describe the content of the present paper in more detail. To simplify the
exposition, throughout this introduction we let p be prime or 1 and consider the
modular curve X∗0(p) associated to the extension 0∗0(p) of 00(p) in PSL2(Z) by the
Fricke involution. In the body of this paper, we consider modular curves of arbitrary
level (as modular curves associated to orthogonal groups of signature (1, 2)).

Let∞ be the cusp of X∗0(p) and let m be a nonnegative integer. Then m=m ·(∞)
is an effective divisor. Recall that the generalized Jacobian Jm(X∗0(p)) of X∗0(p)
associated with the modulus m is a commutative algebraic group whose rational
points correspond to classes of divisors of degree zero modulo m-equivalence; see
Section 2 and [Serre 1988]. If m = 0, then Jm(X∗0(p)) is simply the usual Jacobian.
For any integer d, let Qp,d be the set of (positive definite if d > 0) integral binary
quadratic forms [a, b, c] of discriminant −d = b2

−4ac with p dividing a. If d 6= 0
then 0∗0(p) acts on Qp,d with finitely many orbits.

If d is positive, then any Q ∈ Qp,d defines a point αQ in the upper complex
half-plane H, the solution of the equation az2

+ bz+ c = 0 with positive imaginary
part. There is a corresponding Heegner divisor of discriminant −d on X∗0(p) given
by

Y (d)=
∑

Q∈Qp,d/0
∗

0 (p)

1
|0∗0(p)Q |

· (αQ),

where 0∗0(p)Q is the (finite) stabilizer of Q (see Equation (1.5) in [Bruinier and
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Funke 2006]). The divisor

Z(d)= Y (d)− deg(Y (d)) · (∞)

has degree zero and is defined over Q. We denote by [Z(d)]m its class in the
generalized Jacobian Jm(X∗0(p)).

If d is negative, any Q ∈Qp,d defines an oriented geodesic cycle on H∪ P1(R),
given by the equation a|z|2 + b<(z)+ c = 0. It has nontrivial intersection with
P1(Q) if and only if d is the negative of a square of an integer. In this case the
two solutions in P1(Q) define cusps of the modular curve. There is a unique cusp
cQ ∈ P1(Q) from which the geodesic originates. (In the present 0∗0(p) example all
cusps collapse to∞ under the map to the quotient, but this is of course not true for
more general congruence subgroups.) If d =−b2 for a nonzero integer b, then Q
is 0∗0(p)-equivalent to [0, b, c] with c ∈ Z/bZ and cQ is equivalent to∞. We let
hQ ∈Q(X∗0(p))

× be a function satisfying

hQ = 1− qb
∞
+ O(qm

∞
)

at the cusp∞, where q∞ is the uniformizing parameter of the completed local ring
at∞ given by the Tate curve over Z[[q∞]]. Then we define

[Z(d)]m = [div(h[0,b,0])]m =
∑

Q∈Qp,d/0
∗

0 (p)

1
b
· [div(hQ)]m.

Note that this class vanishes if d ≤−m2. If d < 0 is not the negative of the square
of an integer, we put [Z(d)]m= 0. Finally, for d = 0, we define [Z(0)]m as the class
of the line bundle of modular forms M−1 of weight −1 on X∗0(p) (see Section 2
for details).

To describe the relations among the classes [Z(d)]m, we consider the generating
series

Am(τ )=
∑
d∈Z

d>−m2

[Z(d)]m · qd
∈ C((q))⊗ Jm(X∗0(p)).

It is a formal Laurent series in the variable q = e2π iτ for τ ∈ H. Our first main
result is the following (see also Theorem 4.2).

Theorem 1.1. The generating series Am(τ ) is a weakly holomorphic modular form
of weight 3

2 for the group 00(4p), that is, Am(τ ) ∈ M !3/2(00(4p))⊗ Jm(X∗0(p)).

Under the natural map

Jm(X∗0(p))→ J (X∗0(p))

the classes [Z(d)]m with d ≤ 0 are mapped to zero. Applying it to Am(τ ), we
recover the Gross–Kohnen–Zagier theorem (see also Corollary 4.5).
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Corollary 1.2 (Gross–Kohnen–Zagier). The generating series A0(τ ) of classes of
Heegner divisors [Z(d)]0 in the Jacobian is a cusp form of weight 3

2 for the group
00(4p), that is, A0(τ ) ∈ S3/2(00(4p))⊗ J (X∗0(p)).

To recover the results of [Zagier 2002] and [Bruinier and Funke 2006] on traces
of modular functions from Theorem 1.1, we show that harmonic Maass forms define
functionals on Jm(X∗0(p)). Let F ∈ H+0 (0

∗

0(p)) be a harmonic Maass form for
0∗0(p) of weight 0 as in [Bruinier and Funke 2004]. Denote the Fourier expansion
of the holomorphic part of F by

F+(τ )=
∑

n�−∞

c+F (n) · q
n
∞
.

Proposition 1.3. Assume that c+F (n)= 0 for n ≤−m and c+F (0)= 0. Then there is
a linear map trF : Jm(X∗0(p))→ C defined by

[D]m 7→ trF (D) :=
∑

a∈supp(D)\{∞}

na · F(a),

for divisors D =
∑

a na · (a) in Div0(X∗0(p)).

The images under trF of the classes [Z(d)]m with d ≤ 0 can be explicitly
computed in terms of the principal part of F . As a consequence we derive the
following theorem (see also Theorem 5.2).

Theorem 1.4. The series trF (Am) is a weakly holomorphic modular form in the
space M !3/2(00(4p)). It is explicitly given by

trF (Am)=
∑
d>0

F(Y (d)) · qd
+

∑
n≥1

c+F (−n)(σ1(n)+ pσ1(n/p))

−

∑
b>0

∑
n>0

c+F (−bn) · b · q−b2
.

The modularity of the right-hand side was also proved in [Bruinier and Funke
2006] by interpreting it as the Kudla–Millson theta lift of F . Applying this theorem
to the special case where p = 1, m ≥ 2, and F = j − 744, Zagier’s original result
on traces of singular moduli can be obtained.

In the body of the paper we work with modular curves of arbitrary level associated
with orthogonal groups of even lattices of signature (1, 2). This setup is natural,
since the proof of Theorem 1.1 implicitly relies on the singular theta correspondence
for the dual reductive pair given by SL2 and O(1, 2). For the modulus we allow
arbitrary effective divisors that are supported on the cusps. The generating series of
Heegner divisors is then a vector-valued modular form for the metaplectic extension
of SL2(Z) transforming with the Weil representation of a finite quadratic module.
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In Section 2 we recall some basic facts on generalized Jacobians of curves.
Section 3 contains our setup for modular curves associated to orthogonal groups,
Heegner divisors, and vector-valued modular forms. Then we define classes of
Heegner divisors in generalized Jacobians in Section 4, and prove the abstract
modularity theorem for these classes. In Section 5 we prove that harmonic Maass
forms define functionals on the generalized Jacobian and derive modularity results
for the traces of harmonic Maass forms over Heegner divisors from the abstract
modularity theorem. We also give some explicit examples and indicate possible
generalizations in Section 6.

2. Generalized Jacobians

Let X be a complete nonsingular algebraic curve over a field k of characteristic 0.
Let Div0(X) be the group of divisors of X of degree 0 defined over k, and denote
by P(X) the subgroup of divisors of rational functions f ∈ k(X)×. The Jacobian
J (X) of X is a commutative algebraic group over k whose k-rational points are
isomorphic to the quotient group Div0(X)/P(X).

Recall that there is the notion of the generalized Jacobian; see, e.g., [Serre 1988,
Chapter 5] for details. Let S ⊂ X (k) be a finite set of points, and for s ∈ S let
ms ∈ Z≥0. Then

m=
∑
s∈S

ms · (s)

is an effective divisor defined over k. Let Os be the ring of integers in the completion
k(X)s of k(X) at s, and let πs ∈ Os be a uniformizer. If f, g ∈ k(X)s and n ∈ Z,
we write

f = g+ O(πn
s )

if f − g ∈ πn
s Os . We consider the subgroup

Pm(X)= {div( f ) : f ∈ k(X)× with π− ords( f )
s f = 1+ O(πms

s ) for all s ∈ S}

of P(X). The generalized Jacobian Jm(X) associated with the modulus m is a
commutative algebraic group over k, whose k-rational points satisfy

Jm(X)(k)∼= Div0(X)/Pm(X). (2-1)

The quotient on the right hand side is also canonically isomorphic to the subgroup of
divisors in Div0(X) coprime to S modulo m-equivalence. For a divisor D∈Div0(X)
we denote by [D]m the corresponding class in Jm(X)(k).

There is a canonical rational map ϕm : X → Jm(X) defined over k which is
regular outside S, see [Serre 1988, Chapter 5, Theorem 1]. If m′ is another effective
divisor on X satisfying m≥m′ ≥ 0, there exists a unique homomorphism Jm→ Jm′
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which is compatible with ϕm and ϕm′ . It is surjective and separable [Serre 1988,
Chapter 5, Proposition 6]. In particular, there exists a surjective homomorphism

Jm(X)→ J (X). (2-2)

Its kernel is isomorphic to

Hm =

(∏
s∈S

ms>0

Gm ×Gms−1
a

)/
Gm, (2-3)

where the quotient is with respect to the diagonally embedded multiplicative group.
Typical elements of the kernel are obtained, by choosing a pair (s, n) with s ∈ S
and n > 0 and a function hs,n ∈ k(X)× such that

hs,n =

{
1−πn

s + O(πms
s ) at s,

1+ O(πmt
t ) at all t ∈ S \ {s}.

(2-4)

An argument as in [Serre 1988, Chapter 5, Proposition 8] shows that the “additive
part” of Hm is generated by the classes

[div(hs,n)]m, (2-5)

for s ∈ S and 0< n < ms . Note that for n ≥ ms the class [div(hs,n)]m vanishes.
Let s0 ∈ S be a fixed base point. If L is a line bundle on X which is defined

over k, and (φs)s∈S is a family of local trivializations of L at the points of S, we
can associate to the pair (L, (φs)) a class in Jm(X) as follows. It is easily seen that
there exists a rational section f of L such that

φ−1
s f = πas

s · (1+ O(πms
s )), (2-6)

for some as ∈ Z at every s ∈ S. Then we define

[(L, (φs))]m = [div( f )− deg(L) · (s0)]m ∈ Jm(X)(k). (2-7)

3. Modular curves

Here we recall the description of modular curves as Shimura varieties associated
to orthogonal groups. We also define classes of Heegner divisors in generalized
Jacobians.

Let (L , Q) be an isotropic even lattice of signature (1, 2). We denote by (x, y)
the bilinear form corresponding to the quadratic form Q, normalized such that
Q(x)= 1

2(x, x). For any commutative ring R we write L R = L ⊗Z R. Throughout
we fix an orientation on LR, and write L ′ for the dual lattice of L . Let

N =min{n ∈ Z>0 : nQ(λ) ∈ Z for all λ ∈ L ′}
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be the level of L , and denote by disc(L) = |L ′/L| the discriminant of L . We let
SO(L) be the special orthogonal group of L and write SO+(L) for the intersection
of SO(L) with the connected component of the identity of SO(L)(R). The even
Clifford algebra of LQ is isomorphic to the matrix algebra Mat2(Q), which induces
an isomorphism PGL2(Q)∼= SO(L)(Q). We realize the hermitian symmetric space
corresponding to SO(L) as the domain

D = {z ∈ LC : (z, z)= 0, (z, z̄) < 0}/C×.

It decomposes into 2 connected components. We fix one of these components and
denote it by D+.

Let 0 = 0L be the discriminant kernel subgroup of SO+(L), that is, the kernel
of the natural homomorphism

SO+(L)→ Aut(L ′/L).

Recall that rescaling the quadratic form by a factor of n does not change SO+(L)
while it replaces the discriminant kernel by the full congruence subgroup of level n.
We denote by

Y0 = 0\D+ (3-1)

the noncompact modular curve associated with 0.
Let Iso(L) be the set of isotropic lines in L (i.e., primitive isotropic rank-1

sublattices I ⊂ L). The group 0 acts with finitely many orbits on Iso(L). We
denote by X0 the compact modular curve obtained by adding to Y0 the cusps
corresponding to the 0-classes of isotropic lines I ∈ Iso(L); see, e.g., [Bruinier and
Funke 2006]. It is well known that X0 is a projective algebraic curve which has a
canonical model over a cyclotomic field.

As in [Bruinier and Funke 2006], we choose an orientation on the isotropic lines
as follows. We fix one line I0 ∈ Iso(L) together with an orientation on I0 given by
a basis vector x0 ∈ I0,R. For any other I ∈ Iso(L) we choose a g ∈ SO+(L)(R) such
that gI0,R = IR. Then gx0 ∈ IR defines an orientation on I which is independent of
the choices of g and x0.

Let I ⊂ L be a primitive isotropic line and write cI ∈ X0 for the cusp correspond-
ing to I . Local coordinates near cI can be described as follows. We write NI for
the positive generator of the ideal (I, L)⊂ Z. It is a divisor of N . Throughout, we
let `= `I be the positive generator of I and fix a vector `′ = `′I ∈ L ′ such that

(`, `′)= 1. (3-2)

We let K be the even negative definite lattice

K = L ∩ `⊥ ∩ `′⊥. (3-3)
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If `K ∈K denotes a generator, then K is isomorphic to Z equipped with the quadratic
form x 7→ Q(`K )x2. The quantity 4Q(`K ) divides N . The holomorphic map

H→ D, w 7→ C×
(
w⊗ `K + `

′
− Q(w⊗ `K )`− Q(`′)`

)
(3-4)

is injective and has one of the two connected components of D as its image. Possibly
replacing `K by its negative, we may assume that this map is an isomorphism from H

onto D+. It is compatible with the natural actions of PGL+2 (Q) on H by fractional
linear transformations and on D+ via the isomorphism with SO+(L)(Q). For
µ ∈ LQ ∩ I⊥ we consider the Eichler transformation

E`,µ(x)= x + (x, `)µ− (x, µ)`− (x, `)Q(µ)` (3-5)

in SO+(L)(Q). It belongs to 0 if µ ∈ K .

Lemma 3.1. The stabilizer in 0 of the primitive isotropic line I is given by

0I = {E`,µ : µ ∈ K }.

Proof. Let γ ∈ 0I . Then γ `=±`. We first assume that γ `= `. Then

u := γ `′− `′

belongs to L ∩ `⊥, and v := u− (u, `′)` belongs to K . It is easily checked that

E`,v(`)= `, E`,v(`′)= γ `′.

Hence γ−1 E`,v leaves the vectors ` and `′ fixed. Consequently, it maps the or-
thogonal complement K to itself, and therefore `K to ±`K . Since γ−1 E`,v has
determinant 1, the sign must be positive and thus γ = E`,v.

We now consider the case γ ` = −`. The orthogonal transformation σ tak-
ing ` to −`, and `′ to −`′, and `K to itself belongs to SO(L)(Q). The element
σγ ∈ SO(L)(Q) fixes `. Arguing as above, we see that it is equal to an Eichler
transformation E`,u ∈ SO+(L)(Q). This implies that σ belongs to the connected
component of the identity of SO(L)(R). But this leads to a contradiction, since the
spinor norm of σ is negative, showing that the case γ `=−` cannot occur. �

The action of Z on H by translations corresponds to the action of 0I on D+. The
induced map

Z\H→ 0I\D+ (3-6)

is an isomorphism. Hence, qI = e2π iw defines a local parameter at the cusp cI

of X0.

Example 3.2. In the special case when NI = 1, then 4N =−Q(`K ) and the dis-
criminant kernel subgroup 0 is isomorphic to 00(N/4). The curve X0 is isomorphic
to X0(N/4), with cI corresponding to the cusp at∞; see, e.g., [Bruinier and Ono
2010, Section 2.4].
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The Weil representation. Let Mp2(Z) be the metaplectic extension of SL2(Z) by
{±1}, realized by the two possible choices of a holomorphic square root of the
automorphy factor cτ + d for

(
a b
c d

)
∈ SL2(Z); see, e.g., [Borcherds 1998; Kudla

2003].
Recall that there is a Weil representation ωL of Mp2(Z) on the complex vector

space SL of functions L ′/L→ C on the discriminant group. Identifying SL with
the space of Schwartz–Bruhat functions on L ⊗ Q̂ which are supported on L ′⊗ Ẑ

and translation invariant under L ⊗ Ẑ, the representation ωL can be viewed as the
restriction of the usual Weil representation of Mp2(Q̂) on L ⊗ Q̂ with respect to
the standard additive character of Q̂; see [Kudla 2003]. The representation ωL is
the complex conjugate of the representation ρL in [Borcherds 1998; Bruinier 2002;
Bruinier and Funke 2006]. The action of Mp2(Z) on SL commutes with the natural
action of Aut(L ′/L) by translation of the argument.

If k ∈ 1
2 Z, we denote by M !k(ωL) the space of SL -valued weakly holomorphic

modular forms for Mp2(Z) of weight k with representation ωL . The subspace of
holomorphic modular forms is denoted by Mk(ωL).

Heegner divisors. For any d ∈Q×, the group 0 acts on the set

L ′d = {λ ∈ L ′ : Q(λ)= d}

with finitely many orbits. For every λ ∈ L ′ with Q(λ) > 0, the stabilizer 0λ ⊂ 0
of λ is finite, and there is a unique point zλ ∈ D+ which is orthogonal to λ. For
d ∈Q>0 and ϕ ∈ SL we consider the Heegner divisor

Y (d, ϕ)=
∑

λ∈L ′d/0

1
2|0λ|

ϕ(λ) · (zλ) (3-7)

on X0. It is defined over the field of definition of X0 and has coefficients in the
field of definition of ϕ. Let I0 ∈ Iso(L) be a fixed isotropic line. We define a divisor
of degree 0 on X0 by putting

Z(d, ϕ)= Y (d, ϕ)− deg(Y (d, ϕ)) · (cI0). (3-8)

4. A generalized Gross–Kohnen–Zagier theorem

We now consider classes of Heegner divisors in the generalized Jacobian of the
modular curve X := X0 as defined in the previous section. We let k ⊂ C be
the number field obtained by adjoining the primitive root of unity e2π i/N to the
common field of definition of the canonical model and all of the cusps of X . Let
S = {cI : I ∈ Iso(L)/0} be the set of cusps of X and let

m=
∑

I∈Iso(L)/0

m I · (cI )



1286 Jan Hendrik Bruinier and Yingkun Li

be a fixed effective divisor supported on S. We consider the generalized Jacobian
of X associated with the modulus m. For I ∈ Iso(L), we take as the uniformizing
parameter in the completed local ring at cI the parameter qI = e2π iw defined by (3-6)
(given by the Tate curve over Z[[qI ]] when NI = 1 such that X0 ∼= X0(N/4)).

Since, throughout this section, we are only interested in the k-valued points of
the generalized Jacobian, we briefly write Jm(X) instead of Jm(X)(k). For every
degree-zero divisor D =

∑
aI · (cI ) ∈ Div0(X) supported on S and every tuple

r = (rI ) ∈ G
|S|
m (k), we choose a function u D,r ∈ k(X)× such that

u D,r = rI qaI
I · (1+ O(qm I

I )) (4-1)

at cI for I ∈ Iso(L). We write HGm ,m for the subgroup of Jm(X) generated by the
classes [div(u D,r )]m of all these functions and let

J add
m (X)= Jm(X)/HGm ,m. (4-2)

By definition we have J add
m (X) = Jm(X) when |S| = 1. By the Manin–Drinfeld

theorem we have J add
m (X)Q = Jm(X)Q when m = 0. For general m the kernel of

the induced homomorphism

J add
m (X)Q→ J (X)Q (4-3)

is isomorphic to the product of the groups Gm I−1
a for I ∈ Iso(L)/0 with m I > 0.

For d ∈Q>0 and ϕ ∈ SL we consider the class

[Z(d, ϕ)]m ∈ Jm(X)C (4-4)

of the Heegner divisor Z(d, ϕ) in the generalized Jacobian.
Let T be the tautological bundle on X , and define the line bundle of modular

forms of weight 2k on X by M2k = T ⊗k . (Sections of M2k correspond to classical
elliptic modular forms of weight 2k under the isomorphism SO(L)(Q)∼=PGL2(Q).)
Recall that T is canonically trivial in small neighborhoods of the cusps. Hence,
taking the induced trivializations and putting s0 = cI0 in (2-7), we obtain a class
[Mk]m ∈ Jm(X)Q. For d = 0 we define

[Z(0, ϕ)]m = ϕ(0) · [M−1]m. (4-5)

We also define classes for d ∈Q<0 as follows. For a vector λ∈ L ′d , the orthogonal
complement λ⊥ ⊂ LQ is isotropic if and only if d ∈ −2 disc(L)(Q×)2. In this case
there is a unique pair of isotropic lines I, Ĩ∈ Iso(L) such that λ⊥= IQ⊕ ĨQ and such
that the triple (λ, x, x̃) is a positively oriented basis of LQ for positive basis vectors
x ∈ I and x̃ ∈ Ĩ . Following [Bruinier and Funke 2006], we call I the isotropic line
associated to λ and write I ∼ λ. Note that Ĩ is the isotropic line associated to −λ.
We define the I -content nI (µ) of any µ ∈ L ′ ∩ I⊥ as follows: If Q(µ)= 0 we put
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nI (µ)= 0. If Q(µ) 6= 0 we let nI (µ) be the unique nonzero integer such that

(µ, L ∩ I⊥)= nI (µ) ·Z (4-6)

and sgn(nI (µ)) ·µ∼ I .
Now, if d ∈−2 disc(L)(Q×)2 and λ ∈ L ′d , we let I ∈ Iso(L) be the isotropic line

associated to λ and let `′ ∈ L ′ be as in (3-2) such that (`′, I ) = Z. We choose a
function hλ ∈ k(X)× such that

hλ =
{

1− e2π i(λ,`′)qnI (λ)
I + O(qm I

I ) at the cusp cI ,

1+ O(qm J
J ), at all other cusps cJ .

(4-7)

The existence of hλ follows for instance from the approximation theorem for
valuations, see page 29 in [Serre 1988]. If (λ, `′) ∈ Z, then hλ agrees with the
function hcI ,nI (λ) ∈ k(X)× defined in (2-4). For ϕ ∈ SL we define

[Z(d, ϕ)]m =
∑

λ∈L ′d/0

1
2nI (λ)

(ϕ(λ)+ϕ(−λ)) · [div(h−1
λ )]m. (4-8)

It is easily checked that this class is independent of the choices of the functions hλ.
If d < 0 and d /∈ −2 disc(L)(Q×)2, we put [Z(d, ϕ)]m = 0.

Finally, for all d ∈Q we write [Z(d)]m for the element of

Hom(SL , Jm(X)C)∼= Jm(X)C⊗ S∨L

given by ϕ 7→ [Z(d, ϕ)]m.
The classes [Z(d, ϕ)]m with d < 0 can also be expressed in a slightly different

way. To this end, for an isotropic line I we define

L ′d,I = {λ ∈ L ′d : λ⊥ I and λ∼ I }.

Lemma 4.1. For d < 0 we have

[Z(d, ϕ)]m =
∑

I∈Iso(L)/0

∑
λ∈L ′d,I /I

1
2(ϕ(λ)+ϕ(−λ)) · [div(h−1

λ )]m.

Proof. If Ld,I is nonempty and if we fix λ0 ∈ L ′d,I , we have

L ′d,I = {λ0+ a`/NI : a ∈ Z},

L ′d,I /0I = {λ0+ a`/NI : a ∈ Z/NI nI (λ0)Z},

L ′d,I /I = {λ0+ a`/NI : a ∈ Z/NI Z}.

This implies the assertion. �
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An abstract modularity theorem. To describe the relations in the generalized Ja-
cobian among the classes [Z(d)]m we form the generating series

Am(τ )=
∑

d∈ 1
N Z

[Z(d)]m · qd
∈ S∨L ((q))⊗ J add

m (X)C. (4-9)

It is a formal Laurent series in the variable1 q = e2π iτ , where τ ∈H, with exponents
in 1

N Z and coefficients in S∨L ⊗ J add
m (X)C.

Theorem 4.2. The generating series Am(τ ) is the q-expansion of a weakly holo-
morphic modular form in M !3/2(ω

∨

L )⊗ J add
m (X)C.

To prove this result, we use the following variant of Borcherds’ modularity
criterion [Borcherds 1999, Theorem 3.1]. Let ρ be a finite dimensional representa-
tion of Mp2(Z) on a complex vector space V which is trivial on some congruence
subgroup. The stabilizer in Mp2(Z) of the cusp∞ is generated by the elements
T =

((
1 1
0 1

)
, 1
)

and Z =
((
−1 0
0 −1

)
, i
)
. The hypothesis on ρ implies that some power

of ρ(T ) is the identity, and therefore all eigenvalues of ρ(T ) are roots of unity.
If g ∈ M !k(ρ) is a weakly holomorphic modular form for Mp2(Z) of weight k ∈ 1

2 Z

with representation ρ, then it has a Fourier expansion

g(τ )=
∑
n∈Q

a(n) · qn,

where the coefficients a(n) ∈ V satisfy the conditions

ρ(T )a(n)= e2π ina(n), (4-10)

ρ(Z)a(n)= e−π ika(n). (4-11)

We write ρ∨ for the representation dual to ρ, and denote by ( · , · ) the natural pairing
V × V∨→ C.

Proposition 4.3. A formal Laurent series

g(τ )=
∑
n∈Q

a(n) · qn
∈ V ((q)),

with coefficients a(n) satisfying the conditions (4-10) and (4-11) is the q-expansion
of a weakly holomorphic modular form in M !k(ρ) if and only if∑

n∈Q

(a(n), c(−n))= 0

for all
f (τ )=

∑
n∈Q

c(n) · qn
∈ M !2−k(ρ

∨).

1Confusion with the local parameter qI at the cusp cI of X should not be possible.
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Proof. This result is proved in Section 3 of [Borcherds 1999] in the special case
when g is actually a formal power series. The same proof applies to our slightly
more general case, if we replace the vector bundle of modular forms of type ρ by a
twist with a power of the line bundle L(∞) corresponding to the cusp at∞.

Alternatively, we may replace the q-series g by the q-series g′ = 1 j g for a
positive integer j such that 1 j g is a power series. Here 1 is the normalized cusp
form of weight 12. Then one can literally apply [Borcherds 1999, Theorem 3.1]
to g′ to deduce modularity in Mk+12 j (ρ) of this power series. Dividing out the
power of 1 again, we obtain the result. �

Proof of Theorem 4.2. According to Proposition 4.3 with ρ = ω∨L , it suffices to
show that ∑

d∈Q

(c(−d), [Z(d)]m)= 0 ∈ J add
m (X)C, (4-12)

for every
f (τ )=

∑
d∈Q

c(d) · qd
∈ M !1/2(ωL). (4-13)

Since the space M !1/2(ωL) has a basis of modular forms with integral coefficients
[McGraw 2003], it suffices to check that for every f with integral coefficients the
relation (4-12) holds. For µ ∈ L ′ we put c(d, µ)= c(d)(µ).

Let 9(z, f ) be the Borcherds lift of f as in [Borcherds 1998, Theorem 13.3].
This is a meromorphic modular form on D+ for the group 0 of weight c(0, 0) with
some multiplier system of finite order. Its divisor on X is given by

div(9(z, f ))=
∑
d>0

(c(−d), Z(d))+ B( f ),

where B( f ) is a divisor of degree 1
12 c(0, 0) supported at the cusps of X . Let

I ∈ Iso(L). To determine the behavior of 9(z, f ) near the cusp cI , we identify D+

with the upper complex half-plane H using (3-4). Then 9(w, f ) has the infinite
product expansion

9(w, f )= RI · q
ρI
I

∏
λ∈(L ′∩I⊥)/I

nI (λ)>0

(
1− e2π i(λ,`′)qnI (λ)

I

)c(−Q(λ),λ)
, (4-14)

which converges near the cusp cI , that is, forw∈H with sufficiently large imaginary
part. Here the product runs over vectors λ of negative norm which are associated
to I , and ρI ∈Q is the Weyl vector at the cusp cI corresponding to f . Moreover,
the quantity RI is some constant in k× of modulus 1 times∏

a∈Z/NI Z
a 6=0

(
1− e2π ia/NI

)c(0,a`/NI )/2
.
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Hence, the (finite) product

9(w, f )× R−1
I

∏
λ∈(L ′∩I⊥)/I
m I>nI (λ)>0

h−c(−Q(λ),λ)
λ

is a meromorphic modular form of weight c(0, 0) satisfying the condition (2-6)
at cI . There exists a degree-zero divisor D supported on S such that the finite
product

9(w, f )× u−1
D,(RI )

×

∏
I∈Iso(L)/0

∏
λ∈(L ′∩I⊥)/I
m I>nI (λ)>0

h−c(−Q(λ),λ)
λ

is a meromorphic modular form of weight c(0, 0) satisfying the condition (2-6) at
all cusps and having order 0 at all cusps different from cI0 . Here u D,r ∈ HGm ,m

denotes the function defined in (4-1).
By the choice of the base point s0 = cI0 in (2-7), the class of the line bundle

Mc(0,0) in Jm(X) is given by

[Mc(0,0)]m = [div(9( f ))− deg(Mc(0,0))(cI0)]m− [div(u D,(RI ))]m

−

∑
I∈Iso(L)/0

∑
λ∈(L ′∩I⊥)/I
m I>nI (λ)>0

c(−Q(λ), λ) · [div(hλ)]m. (4-15)

Using Lemma 4.1, we see that∑
I∈Iso(L)/0

∑
λ∈(L ′∩I⊥)/I
m I>nI (λ)>0

c(−Q(λ), λ) · [div(hλ)]m =−
∑
d<0

(
c(−d), [Z(d)]m

)
.

Inserting this into (4-15), we obtain the relation

−c(0, 0)[M−1]m=
∑
d>0

(
c(−d), [Z(d)]m

)
+

∑
d<0

(
c(−d), [Z(d)]m

)
−[div(u D,(RI ))]m

in Jm(X)C. This implies (4-12) in J add
m (X)C, concluding the proof. �

Remark 4.4. To be able to describe the generating series in Jm(X)C instead of in
the quotient J add

m (X)C, we would have to know the normalizing factors RI in (4-14)
more precisely. It would be very interesting to understand these better. Are they
roots of unity?

By the Manin–Drinfed theorem, the natural homomorphism Jm(X)→ J (X)
induces a linear map

J add
m (X)C→ J (X)C.

The classes [Z(d)]m with d ≤ 0 are in the kernel. Applying this map coefficientwise
to the generating series Am in Theorem 4.2, we obtain the Gross–Kohnen–Zagier
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theorem.

Corollary 4.5 (Gross–Kohnen–Zagier). The generating series

A0(τ )=
∑
d>0

[Z(d)]0 · qd

of the classes of the Heegner divisors in the Jacobian J (X)C is the q-expansion of
a cusp form in S3/2(ω

∨

L )⊗ J (X)C.

5. Traces of singular moduli

Here we show that every harmonic Maass form of weight zero with vanishing
constant terms defines a linear functional of the generalized Jacobian J add

m (X)C.
Applying it to the generating series Am, one obtains modularity results for traces of
CM values of harmonic Maass forms and weakly holomorphic modular forms as in
[Zagier 2002; Bruinier and Funke 2006].

Let H+k (0) be the space of harmonic Maass forms of weight k for 0 as in
[Bruinier and Funke 2004, Section 3]. Recall that there is a surjective differential
operator ξk : H+k (0)→ S2−k(0) to cusp forms of “dual” weight 2− k.

For the rest of this section we fix a nonzero F ∈ H+0 (0). We denote the holomor-
phic part of the Fourier expansion of F at the cusp cI corresponding to I∈ Iso(L) by

F+I =
∑
j∈Z

c+F,I ( j) · q j
I . (5-1)

We define the order of F at the cusp cI by

ordcI (F)=min{ j ∈ Z : c+F,I ( j) 6= 0}.

Proposition 5.1. Assume that for all I ∈ Iso(L) we have ordcI (F) > −m I and
c+F,I (0)= 0.

(i) There is a linear map,
trF : Jm(X)→ C,

defined by
[D]m 7→ trF (D) :=

∑
a∈supp(D)\S

na · F(a),

for divisors D =
∑

a na · (a) in Div0(X).

(ii) The map trF vanishes on HGm ,m and factors through J add
m (X).

Proof. (i) We have to show that trF (D)= 0, for every divisor D = div(g) ∈ Pm(X)
given by a rational function g ∈ k(X)× satisfying

q
− ordcI (g)
I g = 1+ O(qm I

I )
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at every cusp cI . The expansion of the logarithmic derivative of g with respect to
the local parameter qI at cI is of the form

dg
g
= ordcI (g)q

−1
I + O(qm I−1

I ).

If F is weakly holomorphic, then η := F(dg/g) is a meromorphic 1-form on X .
Hence, by the residue theorem, the sum of the residues of η vanishes, and we have∑

a∈X\S

resa(η)=−
∑
a∈S

resa(η).

The left-hand side of this equality is given by trF (D), while the right-hand side
satisfies∑
a∈S

resa(η)=
∑

I∈Iso(L)/0

rescI (η)

=

∑
I∈Iso(L)/0

resqI=0

((
ordcI (g)q

−1
I + O(qm I−1

I )
) ∑
j>−m I

c+F,I ( j) · q j
I

)
= 0.

Here we have also used the fact that c+F,I (0)= 0 for all I .
To prove the assertion for general F ∈ H+0 (0), we let Xε be the manifold with

boundary obtained from X by cutting out small oriented discs of radius ε around
the points in supp(div(g))∪ S. Then for the 1-form η := F(dg/g) it is still true that

lim
ε→0

∫
∂Xε

η = 0.

Indeed, we have∫
∂Xε
η =

∫
∂Xε

F · ∂ log |g|2 =
∫

Xε
d(F · ∂ log |g|2).

Since log |g|2 and F are harmonic functions on Xε, we find that∫
∂Xε
η =

∫
Xε
(∂̄F)∧ (∂ log |g|2)=−

∫
Xε
∂
(
(∂̄F) log |g|2

)
=−

∫
∂Xε
(∂̄F) log |g|2.

In the latter integral, the differential ∂̄F = ξ0(F)dz̄ is antiholomorphic (hence
smooth) on all of X . Since log |g|2 has only logarithmic singularities, the integral
vanishes in the limit ε→ 0.

On the other hand, a local computation shows that

lim
ε→0

∫
∂Xε

η = trF (D) +
∑

I∈Iso(L)/0

rescI

(
F+I ·

dg
g

)
. (5-2)

The vanishing of the second summand on the right-hand side follows as before,
proving that trF (D)= 0 again.
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(ii) Let u D,r be as in (4-1). The same argument shows that trF (div(u D,r )) vanishes
and trF factors through J add

m (X). �

Theorem 5.2. Assume that ordcI (F) > −m I and c+F,I (0) = 0 for all I ∈ Iso(L).
Then trF (Am) is a weakly holomorphic modular form in M !3/2(ω

∨

L ), and

trF (Am)(ϕ)=
∑
d<0

trF ([Z(d, ϕ)]m) · qd
+ trF ([M−1]m)ϕ(0)+

∑
d>0

F(Y (d, ϕ)) · qd .

Moreover, for d < 0 the quantity trF ([Z(d, ϕ)]m) is given by the finite sum

trF ([Z(d, ϕ)]m)

=−
1
2

∑
I∈Iso(L)/0

∑
λ∈L ′d,I /0I

(ϕ(λ)+ϕ(−λ)) ·
∑
j≥1

e2π i(λ,`′I ) j c+F,I (−nI (λ) j).

Proof. The modularity of trF (Am) is a direct consequence of Theorem 4.2 and
Proposition 5.1.

We now compute the q-expansion. For d > 0 and ϕ ∈ SL we have by definition
of the map trF that

trF ([Z(d, ϕ)]m)= F(Y (d, ϕ)).

If d < 0 and d ∈−2 disc(L)(Q×)2, we obtain by the definition of the class [Z(d)]m
that

trF ([Z(d, ϕ)]m)=
∑

λ∈L ′d/0

1
2nI (λ)

(ϕ(λ)+ϕ(−λ)) · trF
(
div(h−1

λ )
)

=−

∑
I∈Iso(L)/0

∑
λ∈L ′d,I /0I

1
2nI (λ)

(ϕ(λ)+ϕ(−λ)) · F(div(hλ)).

Arguing as in the proof of Proposition 5.1, in particular (5-2), we find for λ ∈ L ′d,I
that

F(div(hλ))=−
∑

J∈Iso(L)/0

rescJ

(
F+J ·

dhλ
hλ

)

= rescI

(
F+I ·

nI (λ) · e2π i(λ,`′I )qnI (λ)−1
I + O(qm I−1

I )

1− e2π i(λ,`′I )qnI (λ)
I

)
= nI (λ)

∑
j≥1

e2π i(λ,`′I ) j c+F,I (−nI (λ) j). (5-3)

Inserting this into the previous equation, we obtain the assertion. �

Remark 5.3. The constant term trF ([Z(0, ϕ)]m) can also be computed explicitly,
see Proposition 5.4 for an example.
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An example. Consider the modular curve X0(M) for a squarefree M ∈ Z>0. Let L
be the lattice

L =
{(

b a/M
c −b

)
: a, b, c ∈ Z

}
, (5-4)

with the quadratic form Q(X)= M det(X). Then L ′/L ∼= Z/2MZ and SO+(L) is
isomorphic to the extension 0∗0(M) of 00(M) by the Atkin–Lehner involutions. The
discriminant kernel subgroup 0 is isomorphic to 00(M), and the modular curve X0
is isomorphic to X0(M) with the cusp associated to the isotropic line I0 = Z

(
0 0
1 0

)
corresponding to∞; see, e.g., [Bruinier and Ono 2010, Section 2.4].

The group 0∗0(M) acts transitively on Iso(L), and the orbits are represented
by the lines ID = WD.I0 for the positive divisors D |M . Here WD ∈ PGL+2 (Q)
denotes the Atkin–Lehner involution with index D. In particular, the set S of cusps
of X0(M) is in bijection with the set of positive divisors of M . If I ∈ Iso(L), we
write DI for the unique positive divisor of M such that I is equivalent to WDI .I0

under 0. Let F ∈ H+0 (0) be a harmonic Maass form. The expansion of F at the
cusp ID as in (5-1) is given by the Fourier expansion of F |WD .

Proposition 5.4. Assume that for all I ∈ Iso(L) we have ordcI (F) > −m I and
c+F,I (0)= 0. The constant term of the generating series trF (Am) is given by

trF ([M−1]m)= 2
∑
D |M

∑
j≥1

c+F,ID
(− j) · D · σ1( j/D).

Remark 5.5. As shown in [Bruinier and Funke 2006, Remark 4.9], the right-hand
side above is also equal to − 1

4π

∫ reg
00(M)\H

F dµ. The proposition gives a geometric
interpretation of this regularized integral.

Proof of Proposition 5.4. We use the notation of the proof of Theorem 5.2. By
linearity it suffices to compute the class of the line bundle M12. Since X0∼= X0(M),
a section of this line bundle is the usual discriminant function given by

1= q
∏
n≥1

(1− qn)24.

To compute the class of M12 in the generalized Jacobian, we have to modify this
section by multiplying with rational functions such that the local conditions (2-6)
at the cusps are satisfied. It is easily checked that

1 |WD = D−61(Dτ)= D−6q D
∏
n≥1

(1− q Dn)24.

This implies that the section

s =1 ·
∏

I∈Iso(L)/0

∏
λ∈(L ′∩I⊥)/I
m I>nI (λ)>0

h−24
DIλ
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has the expansion
s = D−6q D

ID
·
(
1+ O

(
q Dm I

ID

))
at the cusp ID . For the |S|-tuple r = (D6)D |M , and the function u0,r ∈Q(X0(M))×,
the section s ·u0,r of M12 satisfies the local conditions (2-6) at all cusps. Therefore,
in view of (2-7) and Proposition 5.1 (ii), we have

trF ([M12]m)= trF ([div(s · u0,r )− deg(M12) · (cI0)]m)

=−24
∑

I∈Iso(L)/0

∑
λ∈(L ′∩I⊥)/I
m I>nI (λ)>0

F(div(hDIλ)).

Using formula (5-3), we get

trF ([M12]m)=−24
∑

I∈Iso(L)/0

m I−1∑
n=1

DI n
∑
j≥1

c+F,I (−DI nj)

=−24
∑
D |M

∑
j≥1

c+F,ID
(− j) · D · σ1( j/D).

This concludes the proof of the proposition. �

We now explain how to obtain a scalar-valued generating series from trF (Am).
By means of the canonical pairing (SL , S∨L )→ C, we define a map

S∨L → C, u 7→ (χ1, u),

given by the pairing with the constant function χ1 with value 1. It induces a map
from S∨L -valued to scalar-valued modular forms,

M !3/2(ω
∨

L )→ M !3/2(00(4M)), f (τ ) 7→ f scal(τ ) := f (χ1)(4Mτ),

see [Eichler and Zagier 1985, §5]. The image lies in the Kohnen plus-space.
Applying this map to the generating series Am of Theorem 4.2, we obtain a scalar
valued generating series which has level 4M . In particular, this implies Theorem 1.1
of the introduction. If we apply this map to Theorem 5.2 and use Proposition 5.4,
we obtain:

Theorem 5.6. Let L be as in (5-4). Assume that for all I ∈ Iso(L) we have
ordcI (F) >−m I and c+F,I (0)= 0. Then trF (Ascal

m ) ∈ M !3/2(00(4M)), and

trF (Ascal
m )=−

∑
D |M

∑
b≥1

∑
n≥1

c+F,ID
(−bn) · b · q−b2

+ 2
∑
D |M

∑
n≥1

c+F,ID
(−n) · D · σ1(n/D)+

∑
d∈Z>0

F(Y (d/4M, χ1)) · qd .
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When M = p is a prime and F is invariant under the Fricke involution, we obtain
Theorem 1.4 of the introduction.

Now let M=1 and let j = E3
4/1 be the classical j -function. Write J = j−744=

q−1
+ 196884q + · · · for the normalized Hauptmodul for PSL2(Z) with vanishing

constant term. Applying Theorem 5.6 with F = J , we recover Zagier’s original
result [2002]:

Corollary 5.7. The generating series

−q−1
+ 2+

∑
d∈Zd>0

J (Y (d/4, χ1)) · qd

of the traces of singular moduli is a weakly holomorphic modular form for 00(4) of
weight 3

2 in the plus-space.

6. Generalizations

In the section we describe some variants of our main results and indicate possible
generalizations.

Modularity in the generalized class group. In the definition of the Heegner divi-
sors Z(d) we have projected to degree-0 divisors by subtracting a suitable multiple
of (cI0). We now briefly describe what happens if we do not apply this projection
and consider the divisors Y (d, ϕ) defined in (3-7) for d> 0. Then the corresponding
generating series is a nonholomorphic modular form, where the nonholomorphic
part is coming from a generalization of Zagier’s weight- 3

2 Eisenstein series.
We let Clm(X) be the generalized class group of X with respect to the modulus m,

which we define as the quotient of the group of divisors on X defined over k modulo
the subgroup Pm(X). Moreover, in analogy with (4-2) we put

Cladd
m (X)= Clm(X)/HGm ,m. (6-1)

If d > 0, we write [Y (d, ϕ)]m for the class of the divisor Y (d, ϕ) in Clm(X).
For d = 0 we put [Y (0, ϕ)]m = ϕ(0)[M−1]m, where the class in Clm(X) of a line
bundle L is defined as in (2-7) but without the summand deg(L) · (s0). Finally,
for d < 0 we let [Y (d, ϕ)]m = [Z(d, ϕ)]m.

Recall from [Funke 2002, Theorem 3.5] that there is a (nonholomorphic) weight-
3
2 Eisenstein series E3/2,L(τ ) whose coefficients with nonnegative index are given
by the degrees of the Y (d, ϕ) (see also [Kudla 2003]). It is a harmonic Maass form
of weight 3

2 for the group Mp2(Z) with representation ω∨L and generalizes Zagier’s
nonholomorphic Eisenstein series [1975]. Its Fourier expansion decomposes as

E 3
2 ,L
(τ )= E+3

2 ,L
(τ )+ E−3

2 ,L
(τ ),



Heegner divisors in generalized Jacobians and singular moduli 1297

where the holomorphic part is the generating series of the degrees of Heegner
divisors,

E+3
2 ,L
(τ )=

∑
d≥0

deg(Y (d)) · qd ,

and the nonholomorphic part E−3/2,L is a period integral of a linear combination of
unary theta series. We obtain the following variant of Theorem 4.2.

Theorem 6.1. The generating series

Ãm(τ )=
∑

d∈ 1
N Z

[Y (d)]m · qd
+ E−3

2 ,L
· (cI0)

is a nonholomorphic modular form of weight 3
2 for Mp2(Z) with representation ω∨L

with values in Cladd
m (X). Moreover, we have

Am = Ãm− E 3
2 ,L
· (cI0).

Twists by genus characters. Let L be the lattice of page 1294 for a squarefree
M ∈ Z>0, and recall that 0 ∼= 00(M). For a discriminant 1 6= 1 and r ∈ Z such
that 1≡ r2 mod 4M , we can define a generalized genus character χ1 on L ′ as in
[Gross et al. 1987, Section I.2] and [Bruinier and Ono 2010, Section 4] let

χ1(λ)=


(
1
n

)
if 1 | b2

− 4Mac and (b2
− 4Mac)/1 is a square modulo 4M

and gcd(a, b, c,1)= 1,
0 otherwise,

with λ=
( b/2M

c
−a/M
−b/2M

)
∈ L ′ and n ∈ Z any integer prime to 1 represented by one

of the quadratic forms [M1a, b,M2c] with M1 M2 = M . Note that χ1 is invariant
under SO+(L).

If λ ∈ L ′ with Q(λ) ∈ −4M(Q×)2, let I be the isotropic line associated with λ,
and let h1,λ ∈Q(

√
1)(X)× be a rational function with the following expansions:

h1,λ =

{∏
b∈Z/1Z

(
1− e2π ib/1qn I (λ)

I

)(1
b

)
+ O(qm I

I ) at the cusp cI ,

1+ O(qm J
J ) at all other cusps cJ .

Suppose that (1, 2M) = 1, or equivalently (r, 2M) = 1. For each d ∈ 1
4M Z and

ϕ ∈ SL , we can define the divisor Z1,r (d, ϕ) ∈ Div0(X)C by

Z1,r (d, ϕ) :=



∑
λ∈L ′d|1|/0

χ1(λ)ϕ(r−1λ)

2|0λ|
·(zλ) if d > 0,

∑
λ∈L ′d/|1|/0

ϕ(rλ)+sgn(1)ϕ(−rλ)
2nI (λ)

div(h−1
1,λ) if d ∈− |1|

4M
(Z>0)

2,

0 otherwise.
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All these divisors are defined over Q(
√
1) and have coefficients in the field of

definition of ϕ. We write [Z1,r (d)]m ∈ S∨L ⊗ J add
m (X) for the element that sends

ϕ to [Z1,r (d, ϕ)]m ∈ J add
m (X). Define the representation ω̃L to be ωL if 1 > 0

and ωL if 1< 0. Then we have the following abstract modularity result.

Theorem 6.2. The generating series

A1,r,m(τ ) :=
∑

d∈ 1
4M Z

[Z1,r (d)]m · qd
∈ S∨L ((q))⊗ J add

m (X)C

is the q-expansion of a weakly holomorphic modular form in M !3/2(ω̃L)⊗ J add
m (X)C.

This result comes out of calculating the effect of the intertwining operator in
[Alfes and Ehlen 2013, Section 3] applied to the generating series Am(τ ) associated
to the scaled lattice (1L , Q(·)/|1|). The conditions that M is squarefree and
(1, 2M) = 1 are imposed to simplify the definition of Z1,r (d, ϕ) and can be
removed with a more complicated definition of the classes. Note that it is necessary
for sgn(1), which determines the parity of ω̃L , to appear in the definition of
Z1,r (d, ϕ). Alternatively, one could use the twisted Borcherds products in [Bruinier
and Ono 2010, Theorem 6.1] to give a proof of Theorem 6.2 along the same line
as that of Theorem 4.2 above. By applying the functionals of Proposition 5.1 to
the twisted generating series of Theorem 6.2, the main result of [Alfes and Ehlen
2013] on twisted traces of harmonic Maass forms can be recovered.

Other orthogonal Shimura varieties. The Gross–Kohnen–Zagier theorem has been
generalized to higher dimensional orthogonal Shimura varieties in [Borcherds 1999].
Hence it is natural to ask whether our main results can also be generalized in the same
direction. Let L be an even lattice of signature (n, 2), and let 0 be the discriminant
kernel subgroup of SO+(L). Denote by X0 a (suitable) toroidal compactification of
the connected Shimura variety Y0 associated to 0. It would be interesting to define
a generalized divisor class group as the group of divisors on X0 modulo divisors
of rational functions that satisfy certain growth conditions along the boundary of
X0. Is it possible to prove a modularity result analogous to Theorem 4.2 for the
classes of special divisors? In this context, the product expansions obtained in
[Kudla 2014] with respect to one-dimensional Baily–Borel boundary components
may be helpful.

To illustrate this question, let us consider the easiest case for n = 2 where the
lattice L is the even unimodular lattice of signature (2, 2). Then the variety X0 can
be identified with the product X (1)× X (1) of two copies of the compact modular
curve of level 1. Special divisors on X0 of positive index d in the sense of [Kudla
1997] are given by the Hecke correspondences Z(d). Let q = (q1, q2) be the usual
local coordinates near the boundary point s = (∞,∞) ∈ X0. Let m be a positive
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integer, and put m= m · (s). If k = (k1, k2) ∈ Z2 we briefly write qk
= qk1

1 qk2
2 , and

for a meromorphic function f in a neighborhood of (∞,∞) we write f = O(qm) if
in the Taylor expansion of f at (∞,∞) only terms of total degree at least m occur.

Let Divm(X0) be the free abelian group generated by pairs (D, gD), where D is a
prime Weil divisor on X0 and gD is a local equation for D in a small neighborhood
of s. The local equations give rise to local equations gD near s for arbitrary Weil
divisors D. Let Pm(X0) be the subgroup of pairs (D, gD) ∈ Divm(X0) for which
D = div( f ) is the divisor of a meromorphic function f satisfying

f · g−1
D = 1+ O(qm)

near s. We define a generalized class group as the quotient

Clm(X0)= Divm(X0)/Pm(X0).

It would be interesting to define suitable classes of special divisors in Clm(X0) of
arbitrary integral index d and to prove a modularity result for the generating series
of these classes.
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We describe the generic blocks in the category of smooth locally admissible
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Theorem 1.1. Assume that p = 2. Let F be a totally real field where 2 is totally
split, let S be a finite set of places of F containing all the places above 2 and all the
infinite places and let

ρ : GF,S→ GL2(O)

be a continuous representation of the Galois group of the maximal extension of F
unramified outside S. Suppose:

(i) ρ̄ : GF,S
ρ
→GL2(O)→ GL2(k) is modular with nonsolvable image.

(ii) If v | 2 then ρ|GFv
is potentially semistable with distinct Hodge–Tate weights.

(iii) det ρ is totally odd.

(iv) If v | 2 then ρ̄|GFv
6∼=
(
χ
0
∗

χ

)
for any character χ : GFv → k×.

Then ρ is modular.

Kisin [2009a] and Emerton [2011] have proved an analogous theorem for p > 2.
Our proof follows the strategy of Kisin. We patch automorphic forms on definite
quaternion algebras and deduce the theorem from a weak form of the Breuil–Mézard
conjecture, which we prove for all p under some technical assumptions on the
residual representation of GQp (see Theorems 2.34 and 2.37) which force us to
assume (iv) in the theorem.

The Breuil–Mézard conjecture is proved by employing a formalism developed in
[Paškūnas 2015b], where an analogous result is proved under the assumption that
p ≥ 5 and the residual representation has scalar endomorphisms. We can prove the
result for primes 2 and 3 by better understanding the smooth representation theory
of G := GL2(Qp) in characteristic p: in the local part of the paper we extend the
results of [Paškūnas 2013] to the generic blocks, when p is 2 and 3, which we will
now describe.

Let Modsm
G (O) be the category of smooth G-representation on O-torsion modules.

We fix a continuous character ψ : Q×p → O× and let Modl.adm
G,ψ (O) be the full

subcategory of Modsm
G (O), consisting of representations on which the center of G

acts by the character ψ and which are equal to the union of their admissible
subrepresentations. The categories Modsm

G (O) and Modl.adm
G,ψ (O) are abelian; see

[Emerton 2010a, Proposition 2.2.18]. A finitely generated smooth admissible
representation of G with a central character is of finite length by Theorem 2.3.8 of
[Emerton 2010a]. This makes Modl.adm

G,ψ (O) into a locally finite category. Gabriel
[1962] has proved that a locally finite category decomposes into a direct product of
indecomposable subcategories as follows.

Let Irradm
G be the set of irreducible representations in Modl.adm

G,ψ (O). We define
an equivalence relation ∼ on Irradm

G by writing π ∼ τ if there exists a sequence
π = π1, π2, . . . , πn = τ in Irradm

G such that for each i one of the following holds:
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(1) πi ∼=πi+1; (2) Ext1G(πi , πi+1) 6= 0; (3) Ext1G(πi+1, πi ) 6= 0. We have a canonical
decomposition

Modl.adm
G,ψ (O)∼=

∏
B∈Irradm

G /∼

Modl.adm
G,ψ (O)[B], (1)

where Modl.adm
G,ψ (O)[B] is the full subcategory of Modl.adm

G,ψ (O) consisting of repre-
sentations with all irreducible subquotients in B. A block is an equivalence class
of ∼.

For a blockB let πB=
⊕

π∈B π , let πB ↪→ JB be an injective envelope of πB and
let EB :=EndG(JB). Then JB is an injective generator for Modl.adm

G,ψ (O)[B], EB is
a pseudocompact ring and the functor κ 7→HomG(κ, JB) induces an antiequivalence
of categories between Modl.adm

G,ψ (O)[B] and the category of right pseudocompact
EB-modules. The inverse functor is given by m 7→

(
m ⊗̂EB J∨B

)∨, where ∨ denotes
the Pontryagin dual; see [Gabriel 1962, Chapitre IV, §4]. The main result of
[Paškūnas 2013] computes the rings EB for each block B and describes the Galois
representation of GQp obtained by applying the Colmez’s functor to JB under the
assumption p ≥ 5 or p ≥ 3, depending on the block B.

If π ∈ Irradm
G then one may show that, after extending scalars, π is isomorphic

to a finite direct sum of absolutely irreducible representations of G. It has been
proved in [Paškūnas 2014] that the blocks containing an absolutely irreducible
representation are given by

(i) B= {π} with π supersingular;

(ii) B=
{(

IndG
B χ1⊗χ2ω

−1
)
sm,

(
IndG

B χ2⊗χ1ω
−1
)
sm

}
with χ2χ

−1
1 6= ω

±1, 1;

(iii) p > 2 and B=
{(

IndG
B χ ⊗χω

−1
)
sm

}
;

(iv) p = 2 and B= {1,Sp}⊗χ ◦ det;

(v) p ≥ 5 and B=
{
1,Sp,

(
IndG

B ω⊗ω
−1
)
sm

}
⊗χ ◦ det;

(vi) p = 3 and B= {1,Sp, ω ◦ det,Sp⊗ω ◦ det}⊗χ ◦ det;

where χ, χ1, χ2 :Q
×
p → k× are smooth characters, ω :Q×p → k× is the character

ω(x) = x |x | (mod$) and we view χ1 ⊗ χ2 as a character of the subgroup of
upper-triangular matrices B in G which sends

(a
0

b
d

)
to χ1(a)χ2(d). An absolutely

irreducible representation π is supersingular if it is not a subquotient of a principal
series representation (they have been classified by Breuil [2003a]) and Sp denotes
the Steinberg representation.

To each block above one may attach a semisimple 2-dimensional k-representation
ρ̄ss of GQp : in case (i) ρ̄ss is absolutely irreducible, and such that Colmez’s functor V
(see Section 2B1) maps π to ρ̄ss; in case (ii) ρ̄ss

= χ1⊕χ2; in cases (iii) and (iv)
ρ̄ss
=χ⊕χ ; in cases (v) and (vi) ρ̄ss

=χ⊕χω, where we consider characters of GQp

as characters of Q×p via local class field theory, normalized so that uniformizers
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correspond to geometric Frobenii. We note that the determinant of ρ̄ss is equal to
ψε modulo $ , where ε is the p-adic cyclotomic character and ω is its reduction
modulo $ .

Theorem 1.2. If B = {π} with π supersingular (so that ρ̄ss is irreducible) then
EB is naturally isomorphic to the quotient of the universal deformation ring of ρ̄ss

parametrizing deformations with determinant ψε, and V (JB)∨(ψε) is a tautologi-
cal deformation of ρ̄ss to EB.

We also obtain an analogous result for blocks in (ii); see Theorem 2.23. Let
Rps be the deformation ring parametrizing all the 2-dimensional determinants, in
the sense of [Chenevier 2014], lifting (tr ρ̄ss, det ρ̄ss), and let Rps,ψ be the quotient
of Rps parametrizing those which have determinant ψε.

Theorem 1.3. Assume that the block B is given by (i) or (ii) above. Then the center
of the category Modl.adm

G,ψ (O)[B] is naturally isomorphic to Rps,ψ.

We view this theorem as an analogue of the Bernstein center for this category.
Theorems 1.2 and 1.3 are new if p=2 and if p=3 and B={π}with π supersingular.
Together with the results of [Paškūnas 2013] this covers all the blocks except for
those in (iv) and (vi) above.

One also has a decomposition similar to (1) for the category Banadm
G,ψ(L) of

admissible unitary L-Banach space representations of G on which the center of G
acts byψ ; see Section 2B4. An admissible unitary L-Banach space representation5
lies in Banadm

G,ψ(L)[B] if and only if all the irreducible subquotients of the reduction
modulo $ of a unit ball in 5 modulo $ lie in B. An irreducible 5 is ordinary if
it is a subquotient of a unitary parabolic induction of a unitary character. Otherwise
it is called nonordinary.

Corollary 1.4. Assume that the block B is given by (i) or (ii) above. Colmez’s
Montreal functor5 7→ V̌ (5) induces a bijection between the isomorphism classes of

• absolutely irreducible nonordinary 5 ∈ Banadm
G,ψ(L)[B];

• absolutely irreducible ρ̃ : GQp → GL2(L) such that det ρ̃ = ψε and the
semisimplification of the reduction modulo$ of a GQp-invariant O-lattice in ρ̃
is isomorphic to ρ̄ss.

A stronger result, avoiding the assumption on B, is proved in [Colmez et al.
2014]. However, our proof of Corollary 1.4 avoids the hard p-adic functional
analysis, which is used to construct representations of GL2(Qp) out of 2-dimensional
representations of GQp via the theory of (ϕ, 0)-modules by Colmez [2010], which
plays the key role in [Colmez et al. 2014].

It might be possible, given the global part of this paper, and the results of
[Paškūnas 2015a], where various deformation rings are computed, when p = 2,
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to prove Theorem 1.1 by repeating the arguments of Kisin [2009a]. We have not
checked this. However, our original goal was to prove Theorems 1.2 and 1.3;
Theorem 1.1 came out as a bonus at the end.

1A. Outline of the paper. The paper has two largely independent parts: a local one
and a global one. We will review each of them individually by carefully explaining
which arguments are new.

1A1. Local part. For concreteness, assume that B = {π} with π supersingular.
Let ρ̄ = V (π), let Rρ̄ be the universal deformation ring of ρ̄ and let Rψρ̄ be the
quotient of Rρ̄ parametrizing deformations with determinant ψε. We follow the
strategy outlined in [Paškūnas 2013, §5.8]. We show that J∨B is the universal
deformation of π∨ and EB is the universal deformation ring by verifying that
hypotheses (H0)–(H5), made in Section 3 of [Paškūnas 2013], hold. In Section 3.3
of the same work we developed a criterion to check that the ring EB is commutative.
To apply this criterion, one needs the ring Rψρ̄ to be formally smooth and to control
the image of some Ext1-group in some Ext2-group. The first condition does not
hold if p = 2 and if p = 3 and ρ̄ ∼= ρ̄ ⊗ ω. Even if p = 3 and ρ̄ 6∼= ρ̄ ⊗ ω, so
that the ring is formally smooth, to check the second condition is a computational
nightmare. In [Colmez et al. 2014] we found a different characteristic-0 argument
to get around this. The key input is the result of [Berger and Breuil 2010] which
says that if a locally algebraic principal series representation admits a G-invariant
norm, then its completion is irreducible, and π occurs in the reduction modulo $
with multiplicity one. We deduce from [Colmez et al. 2014, Corollary 2.22] that the
ring EB is commutative. The argument of Kisin [2010] shows that V (JB)∨(ψε) is
a deformation of ρ̄ to EB and we have surjections Rρ̄ � EB � Rψρ̄ .

To prove Theorem 1.2 we have to show that the surjection ϕ : EB � Rψρ̄ is an
isomorphism. The proof of this claim is new and is carried out in Section 2B3.
Corollary 1.4 is then a formal consequence of this isomorphism. If p ≥ 5 then Rψρ̄
is formally smooth and the claim is proved by a calculation on tangent spaces in
[Paškūnas 2013]. This does not hold if p = 2 or p = 3 and ρ̄ ∼= ρ̄ ⊗ω. We also
note that even if we admit the main result of [Colmez et al. 2014] (which we don’t),
we would only get that ϕ induces a bijection on maximal spectra of the generic
fibers of the rings. From this one could deduce that the map induces an isomorphism
between the maximal reduced quotient of EB and Rψρ̄ , and it is not at all clear
that EB is reduced. However, by using techniques of [Paškūnas 2015b] we can
show that certain quotients EB/a are reduced and identify them with crystabeline
deformation rings of ρ̄ via ϕ. Again the argument uses the results of [Berger and
Breuil 2010] in a crucial way. Further, we show that the intersection of all such
ideals in EB is zero, which allows us to conclude the proof. A similar argument
using density appears in [Colmez et al. 2014, §2.4], however we have to work a bit
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more here, because we fix a central character; see Section 2A. Theorem 1.2 implies
immediately that det V̌ (5)=ψε for all5∈Banadm

G,ψ(L)[B]. This is proved directly
in [Colmez et al. 2014] without any restriction on B, and is the most technical part
of that paper.

Once we have Theorem 1.2, the Breuil–Mézard conjecture is proved the same
way as in [Paškūnas 2015b]; see Section 2C. If B is the block containing two
generic principal series representations, so that ρ̄ss

=χ1⊕χ2, with χ1χ
−1
2 6= 1, ω±1,

then we prove the Breuil–Mézard conjecture for both nonsplit extensions
(χ1

0
∗

χ2

)
and(χ1

∗

0
χ2

)
and deduce the conjecture in the split case in a companion paper [Paškūnas

2015a], following an idea of Hu and Tan [2015]. We formulate and prove the
Breuil–Mézard conjecture in the language of cycles, as introduced by Emerton and
Gee [2014]. All our arguments are local, except that if the inertial type extends
to an irreducible representation of the Weil group WQp of Qp, the description of
locally algebraic vectors in the Banach space representations relies on a global input
of Emerton [2011, §7.4]. Dospinescu’s results [2015] on locally algebraic vectors
in extensions of Banach space representations of G are also crucial in this case.

1A2. Global part. As already explained, an analogue of Theorem 1.1 has been
proved by Kisin if p > 2. Moreover, if p = 2 and ρ|GFv

is semistable with Hodge–
Tate weights (0, 1) for all v | 2, then the theorem has been proved by Khare and
Wintenberger [2009b] and Kisin [2009b] in their work on Serre’s conjecture. We
use their results as an input in our proof.

The strategy of the proof is the same as in [Kisin 2009a]. By base change
arguments, which are the same as in [Khare and Wintenberger 2009b; Kisin 2009b;
2009c] (see Section 3F) we reduce ourselves to a situation where the ramification of
ρ and ρ̄ outside 2 is minimal and ρ̄ comes from an automorphic form on a definite
quaternion algebra. We patch automorphic forms on definite quaternion algebras
and deduce the theorem from a weak form of the Breuil–Mézard conjecture, which
is proved in the local part of the paper. Assumption (iv) in Theorem 1.1 comes
from the local part of the paper.

Let us explain some differences with [Kisin 2009a]. If p > 2 then the patched
ring is formally smooth over a completed tensor product of local deformation rings.
This implies that the patched ring is reduced, equidimensional and O-flat and that its
Hilbert–Samuel multiplicity is equal to the product of Hilbert–Samuel multiplicities
of the local deformation rings. For p = 2 we modify the patching argument used
in [Kisin 2009a] following [Khare and Wintenberger 2009b]. This gives us two
patched rings, and the passage between them and the completed tensor product of
local rings is not as straightforward as before. To overcome this we use an idea
which appears in errata to [Kisin 2009a] published in [Gee and Kisin 2014]. If
ρf is a Galois representation associated to a Hilbert modular form lifting ρ̄ and
v is a place of F above p, then one knows from [Blasius 2006; Katz and Messing
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1974; Saito 2009] that the Weil–Deligne representation associated to ρ|GFv
is pure.

Kisin shows that this implies that the point on the generic fiber of the potentially
semistable deformation ring, defined by ρf |GFv

, cannot lie on the intersection of
two irreducible components, and hence is regular. Using this we show that the
localization of patched rings at the prime ideal defined by ρf is regular, and we
are in a position to use the Auslander–Buchsbaum theorem; see Lemma 3.14 and
Proposition 3.17. As explained in [Gee and Kisin 2014], this observation enables
us to deal with cases when the patched module is not generically free of rank 1
over the patched ring, which was the case in the original paper [Kisin 2009a]. In
particular, we don’t add any Hecke operators at places above 2 and we don’t use
[Darmon et al. 1997, Lemma 4.11].

As a part of his proof, Kisin uses the description by Gee [2011] of Serre weights
for ρ̄, which is available only for p > 2. We determine Serre weights for ρ̄ when
p = 2 in Section 3D under assumption (iv) of Theorem 1.1. As in [Gee 2011]
the main input is a modularity lifting theorem, which in our case is the theorem
proved by Khare and Wintenberger [2009b] and Kisin [2009b]. We do this by a
characteristic-0 argument, where Gee argues in characteristic p; see Section 3D.

The modularity lifting theorems for p = 2 proved by Kisin [2009b], and more
recently by Thorne [2016], do not require 2 to split completely in the totally real
field F, but they put a more restrictive hypothesis on ρ|GFv

for v | 2. Kisin assumes
that ρ|GFv

for all v | 2 is potentially crystalline with Hodge–Tate weights equal to
(0, 1) for every embedding Fv ↪→ Q2 and Fv = Q2 if ρ|GFv

is ordinary. Thorne
removes this last assumption, but requires instead that ρ̄|GFv

be nontrivial for at least
one v |∞. We need 2 to split completely in F in order to apply the results on the
p-adic Langlands correspondence, which is currently available only for GL2(Qp).

2. Local part

2A. Capture. Let K be a profinite group with an open pro-p group. Let O[[K ]] be
the completed group algebra, and let Modpro

K (O) be the category of compact linear-
topological O[[K ]]-modules. Let ψ : Z(K )→O× be a continuous character. We
let Modpro

K ,ψ(O) be the full subcategory of Modpro
K (O) such that M ∈ Modpro

K (O)
lies in Modpro

K ,ψ(O) if and only if Z(K ) acts on M via ψ−1. Let {Vi }i∈I be a family
of continuous representations of K on finite-dimensional L-vector spaces, and let
M ∈Modpro

K (O).
Definition 2.1. We say that {Vi }i∈I captures M if the smallest quotient M � Q
such that Homcont

O[[K ]](Q, V ∗i )∼= Homcont
O[[K ]](M, V ∗i ) for all i ∈ I is equal to M.

We let c :=
(
−1

0
0
−1

)
and note that the center of SL2(Zp) is equal to {1, c}.

Lemma 2.2. If K =SL2(Zp) then O[[K ]]/(c−1) and O[[K ]]/(c+1) are O-torsion-
free.
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Proof. If Kn is an open normal subgroup of K such that the image of c in K/Kn is
nontrivial, then O[K/Kn] is a free O[Z ]-module, where Z is the center of K. This
implies that O[K/Kn]/(c± 1) is a free O-module and by passing to the limit we
obtain the assertion. �

Lemma 2.3. Let K = SL2(Zp), let Z be the center of K and let {Vi }i∈I be a family
which captures O[[K ]] such that each Vi has a central character. Let I+ and I−

be subsets of I consisting of i such that c acts on Vi by 1 and by −1, respectively.
Let ψ : Z → L× be a character. If ψ(c) = 1 then I+ captures every projective
object in Modpro

K ,ψ(O). If ψ(c) = −1 then I− captures every projective object in
Modpro

K ,ψ(O).

Proof. If M ∈ Modpro
K (O) is O-torsion-free then I captures M if and only if

the image of the evaluation map
⊕

i∈I Vi ⊗HomK (Vi ,5)→ 5 is dense, where
5 = Homcont

O (M, L) is the Banach space representation of K with the topol-
ogy induced by the supremum norm [Colmez et al. 2014, Lemma 2.10]. Let
5 = Homcont

O (O[[K ]], L) and 5± := Homcont
O (O[[K ]]/(c ± 1), L). Since 5 =

5+⊕5−, and {Vi } captures O[[K ]], we deduce that the image of the evaluation map⊕
i∈I Vi⊗HomK (Vi ,5

±)→5± is dense. If i ∈ I+ then c acts trivially on Vi and so
HomK (Vi ,5

−)= 0. This implies the image of
⊕

i∈I+Vi ⊗HomK (Vi ,5
+)→5+

is dense. Using Lemma 2.2 we deduce that I+ captures O[[K ]]/(c− 1). A sim-
ilar argument shows that I− captures O[[K ]]/(c+ 1). Every projective object in
Modpro

K ,ψ(O) can be realized as a direct summand of a product of some copies of
O[[K ]]/(c − ψ(c)), which implies the assertion; see the proof of [Colmez et al.
2014, Lemma 2.11]. �

Lemma 2.4. Let K =SL2(Zp), and let Z be the center of K, ψ : Z→ L× a charac-
ter and V a continuous representation of K on a finite-dimensional L-vector space
with a central character ψV . If ψ(c) = ψV (c) then {V ⊗ Sym2a L2

}a∈N captures
every projective object in Modpro

K ,ψ(O); if ψ(c)=−ψV (c) then {V⊗Sym2a+1L2
}a∈N

captures every projective object in Modpro
K ,ψ(O).

Proof. Proposition 2.12 in [Colmez et al. 2014] implies that {Syma L2
}a∈N captures

O[[K ]]. We leave it as an exercise for the reader to check that this implies that
{V ⊗Syma L2

}a∈N also captures O[[K ]]. The assertion follows from Lemma 2.3. �

Lemma 2.5. Let M ∈Modpro
GL2(Zp),ψ

(O) and let V be a continuous representation
of K on a finite-dimensional L-vector space with a central character ψ . Then⋂

φ

Kerφ =
⋂
ξ,η

Ker ξ,

where the first intersection is taken over all φ ∈ Homcont
O[[SL2(Zp)]]

(M, V ∗) and the
second intersection is taken over all characters η : Z×p → L× with η2

= 1 and all
ξ ∈ Homcont

O[[GL2(Zp)]]
(M, (V ⊗ η ◦ det)∗).
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Proof. Let Z be the center of GL2(Zp). The determinant induces the isomorphism
GL2(Zp)/Z SL2(Zp)∼= Z×p /(Z

×
p )

2, which is a cyclic group of order 2 if p 6= 2, and
a product of cyclic groups of order 2 if p = 2. Hence, IndGL2(Zp)

Z SL2(Zp)
1∼=

⊕
η ◦ det,

where the sum is taken over all characters η with η2
= 1. The isomorphism

Homcont
O[[SL2(Zp)]]

(M, V ∗)∼= Homcont
O[[Z SL2(Zp)]]

(M, V ∗)

∼= Homcont
O[[GL2(Zp)]]

(M, V ∗⊗ IndGL2(Zp)

Z SL2(Zp)
1)

∼=

⊕
η

Homcont
O[[GL2(Zp)]]

(M, V ∗⊗ η ◦ det)

implies the assertion. �

Lemma 2.6. Let M∈Modpro
GL2(Zp),ψ

(O) and let {Vi }i∈I be a family of continuous rep-
resentations of K on finite-dimensional L-vector spaces with a central character ψ .
If {Vi |SL2(Zp)}i∈I captures M |SL2(Zp) then {Vi ⊗ η ◦ det}i∈I,η captures M, where η
runs over all characters η : Z×p → L× with η2

= 1.

Proof. The assertion follows from Lemma 2.5 and [Colmez et al. 2014, Lemma 2.7].
�

Proposition 2.7. Let K =GL2(Zp), and let Z be the center of K and ψ : Z→ L×

a continuous character. There is a smooth irreducible representation τ of K which
is a type for a Bernstein component containing a principal series representation,
but not containing a special series representation, such that

{τ ⊗Syma L2
⊗ η′ ◦ det}a∈N,η′

captures every projective object in Modpro
K ,ψ(O). Here, for each a ∈N, η′ runs over

all continuous characters η′ :Z×p → L× such that τ⊗Syma L2
⊗η′ ◦det has central

character ψ .

Proof. If p 6= 2 (resp. p = 2) then 1+ pZp (resp. 1+ 4Z2) is a free pro-p group
of rank 1. Using this one may show that there is a smooth, nontrivial character
χ : Z×p → L× and a continuous character η0 : Z

×
p → L× such that ψ = χη2

0. Let e
be the smallest integer such that χ is trivial on 1+ peZp. Let

J =
(

Z×p Zp

peZp Z×p

)
,

and let χ ⊗ 1 : J → L× be the character which sends
(a

c
b
d

)
7→ χ(a). The rep-

resentation τ := IndK
J (χ ⊗ 1) is irreducible and is a type. More precisely, for an

irreducible smooth L-representation π of G =GL2(Qp), we have HomK (τ, π) 6= 0
if and only if π ∼= (IndG

B ψ1⊗ψ2)sm, where B is a Borel subgroup and ψ1|Z×p = χ

and ψ2|Z×p = 1; see [Henniart 2002, §A.2.2]. The central character of τ is equal to χ .
We claim that the family

{
τ ⊗Sym2a L2

⊗ (det)−a
⊗ ηη0 ◦ det

}
a∈N,η

, where η runs
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over all the characters with η2
= 1, captures every projective object in Modpro

K ,ψ(O).
If M ∈Modpro

K ,ψ(O) is projective then M |SL2(Zp) is projective in Modpro
SL2(Zp),ψ

(O)
[Emerton 2010b, Proposition 2.1.11]. Lemma 2.4 implies that the family captures
M |SL2(Zp). Since each representation in the family has central character equal to
χη2

0 = ψ , the claim follows from Lemma 2.6. Since the family of representations
appearing in the claim is a subfamily of the representations appearing in the propo-
sition, the claim implies the proposition. �

2B. The image of Colmez’s Montreal functor. Let G =GL2(Qp), K =GL2(Zp).
Let B be the subgroup of upper-triangular matrices in G, let T be the subgroup of
diagonal matrices and let Z be the center of G. We make no assumption on the
prime p. We fix a continuous character ψ : Z→O×.

Let Modpro
G (O) be the category of profinite augmented representations of G

[Emerton 2010a, Definition 2.1.6]. The Pontryagin duality

π 7→ π∨ := Homcont
O (π, L/O)

induces an antiequivalence of categories between Modsm
G (O) and Modpro

G (O) [Emer-
ton 2010a, (2.2.8)]. Let Modl.adm

G (O) be the full subcategory of Modsm
G (O) con-

sisting of locally admissible [Emerton 2010a, Definition 2.2.17] representations
of G and let Modl.adm

G,ψ (O) be the full subcategory of Modl.adm
G (O) consisting of

those representations on which Z acts by the character ψ . Let C(O) be the full
subcategory of Modpro

G (O) antiequivalent to Modl.adm
G,ψ (O) via the Pontryagin duality.

For π1, π2 ∈Modl.adm
G,ψ (O) we let ExtiG,ψ(π1, π2) be the Yoneda Ext group computed

in Modl.adm
G,ψ (O).

Let π ∈Modl.adm
G,ψ (O) be absolutely irreducible and either supersingular [Barthel

and Livné 1994; Breuil 2003a] or a principal series representation isomorphic to(
IndG

B χ1⊗χ2ω
−1
)
sm, for some smooth characters χ1, χ2 : Q×p → k× such that

χ1χ
−1
2 6= ω

±1, 1. This hypothesis ensures that π ′ :=
(
IndG

B χ2⊗χ1ω
−1
)
sm is also

absolutely irreducible and π 6∼= π ′. Let P � π∨ be a projective envelope of π∨

in C(O) and let E = EndC(O)(P). Then E is naturally a topological ring with a
unique maximal ideal and residue field k = EndC(O)(π∨); see [Paškūnas 2013, §2].

Proposition 2.8. If π is supersingular then k ⊗̂E P ∼= π∨. If π is a principal series
then k ⊗̂E P ∼= κ∨, where κ is the unique nonsplit extension 0→ π→ κ→ π ′→ 0 .

Proof. In both cases, (k ⊗̂E P)∨ is the unique representation in Modl.adm
G,ψ (O) which

is maximal with respect to the following conditions: (1) socG(k ⊗̂E P)∨ ∼= π ;
(2) π occurs in (k ⊗̂E P)∨ with multiplicity one; see [Paškūnas 2013, Remark 1.13].
For, if τ ∈ Modl.adm

G,ψ (O) satisfies both conditions, then (1) and [Paškūnas 2013,
Lemma 2.10] imply that the natural map HomC(O)(P, τ∨) ⊗̂E P → τ∨ is surjec-
tive, and (2) and the exactness of HomC(O)(P, ∗) imply that HomC(O)(P, τ∨) ∼=
HomC(O)(P, π∨)∼= k. Hence, dually we obtain an injection τ ↪→ (k ⊗̂E P)∨.
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Let π1 be an irreducible representation in Modl.adm
G,ψ (O) such that Ext1G,ψ(π1, π) is

nonzero. It follows from Corollary 1.2 in [Paškūnas 2014] that if π is supersingular
then π1 ∼= π and hence (k ⊗̂E P)∨ ∼= π , and if π is a principal series as above
then π1 ∼= π or π1 ∼= π

′. We will now explain how to modify the arguments
of [Paškūnas 2013, §8] so that they also work for p = 2, the main point being
that Emerton’s functor of ordinary parts works for all p. Proposition 4.3.15(2)
of [Emerton 2010b] implies that Ext1G,ψ(π

′, π) is one-dimensional. Let κ be the
unique nonsplit extension 0→ π→ κ→ π ′→ 0. We claim that Extn

G,ψ(π
′, κ)= 0

for all n ≥ 0. The claim for n = 1 implies that (k ⊗̂E P)∨ ∼= κ . It is proved in
[Emerton and Paškūnas 2010, Corollary 3.12] that the δ-functor H •OrdB , defined in
[Emerton 2010b, Definition 3.3.1], is effaceable in Modl.adm

G,ψ (O). Hence it coincides
with the derived functor R

•OrdB . An open compact subgroup N0 of the unipotent
radical of B is isomorphic to Zp, and hence H i (N0, ∗) vanishes for i ≥ 2. This
implies that Ri OrdB = H i OrdB = 0 for i ≥ 2. The proof of [Paškūnas 2013,
Lemma 8.1] does not use the assumption p > 2 and gives that

OrdB κ ∼= OrdB π ∼= R1 OrdB π
′ ∼= R1 OrdB κ ∼= χ2ω

−1
⊗χ1. (2)

Our assumption on χ1 and χ2 implies that χ1ω
−1
⊗ χ2 and χ2ω

−1
⊗ χ1 are

distinct characters of T. It follows from [Emerton 2010b, Lemma 4.3.10] that
all the Ext-groups between them vanish. Since π ′ ∼=

(
IndG

B
χ1ω

−1
⊗χ2

)
sm, where

B is the subgroup of lower-triangular matrices in G, all the terms in Emerton’s
spectral sequence [2010b, (3.7.4)] converging to Extn

G,ψ(π
′, κ) are zero. Hence,

Extn
G,ψ(π2, κ) = 0 for all n ≥ 0. Let us also note that the 5-term exact sequence

associated to the spectral sequence implies that Ext1G,ψ(π, κ) is finite-dimensional.
�

Proposition 2.9. If π is supersingular then let S = Q = π∨. If π is a principal
series then let S = π∨ and Q = κ∨. Then S and Q satisfy the hypotheses (H0)–(H5)
of [Paškūnas 2013, §3].

Proof. If π is supersingular then there are no other irreducible representations in
the block of π and hence the only hypothesis to check is (H4), which is equivalent
to the finite-dimensionality of Ext1G,ψ(π, π). This follows from Proposition 9.1 in
[Paškūnas 2010b]. If π is a principal series then the assertion follows from the
Ext-group calculations made in the proof of Proposition 2.8. �

The proposition enables us to apply the formalism developed in [Paškūnas 2013,
Section 3]. Corollary 3.12 of [Paškūnas 2013] implies:

Proposition 2.10. The functor ⊗̂E P is an exact functor from the category of pseudo-
compact right E-modules to C(O).
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If m is a pseudocompact right E-module then HomC(O)(P,m ⊗̂E P) ∼= m by
[Paškūnas 2013, Lemma 2.9]. This implies that the functor is fully faithful, so that

Homcont
E (m1,m2)∼= HomC(O)(m1 ⊗̂E P,m2 ⊗̂E P). (3)

Proposition 2.11. E is commutative.

Proof. Let C̃(O) be the full subcategory of Modpro
G (O) which is antiequivalent

to Modl.adm
G (O) via the Pontryagin duality. Let P̃ be a projective envelope of π∨

in C̃(O), let Ẽ :=EndC̃(O)(P̃) and let a be the closed two-sided ideal of Ẽ generated
by the elements z−ψ−1(z), for all z in the center of G. We may consider C(O) as
a full subcategory of C̃(O). Since the center of G acts on P̃/aP̃ by ψ−1, we have
P̃/aP̃ ∈ C(O). The functor HomC(O)(P̃/aP̃, ∗) is exact, since

HomC(O)(P̃/aP̃,M)= HomC̃(O)(P̃,M) (4)

for all M ∈ C(O), and P̃ is projective. Hence, P̃/aP̃ is projective in C(O). Its
G-cosocle is isomorphic to π∨, since the same is true of P̃. Hence, P̃/aP̃ is a pro-
jective envelope of π∨ in C(O). Since projective envelopes are unique up to isomor-
phism, P̃/aP̃ is isomorphic to P. Since a is generated by central elements, any φ∈ Ẽ
maps aP̃ to itself. This yields a ring homomorphism Ẽ→ EndC(O)(P̃/aP̃) ∼= E .
Projectivity of P̃ and (4) applied with M = P̃/aP̃ implies that the homomorphism
is surjective and induces an isomorphism Ẽ/a∼= EndC(O)(P̃/aP̃). Since Ẽ is com-
mutative [Colmez et al. 2014, Corollary 2.22] we deduce that E is commutative. �

Proposition 2.12. E is a complete local noetherian commutative O-algebra with
residue field k.

Proof. Proposition 2.11 asserts that E is commutative. Corollary 3.11 of [Paškūnas
2013] implies that the natural topology on E (see [Paškūnas 2013, §2]) coincides
with the topology defined by the maximal ideal m, which implies that E is com-
plete for the m-adic topology. It follows from Lemma 3.7, Proposition 3.8(iii) of
[Paškūnas 2013] that m/(m2

+ ($)) is a finite-dimensional k-vector space. Since
E is commutative, we deduce that E is noetherian. �

Proposition 2.13. Let Q = π∨ if π is supersingular and let Q = κ∨ if π is a
principal series. The ring E represents the universal deformation problem of Q
in C(O), and P is the universal deformation of Q.

Proof. Since E is commutative by Proposition 2.11 and since hypotheses (H0)–(H5)
of [Paškūnas 2013, §3] are satisfied by Proposition 2.9, the assertion follows from
[Paškūnas 2013, Corollary 3.27]. �
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2B1. Colmez’s Montreal functor. This subsection is essentially the same as Section
5.7 of [Paškūnas 2013]. Let GQp be the absolute Galois group of Qp. We will
consider ψ as a character of GQp via local class field theory, normalized so that the
uniformizers correspond to geometric Frobenii. Let ε : GQp →O× be the p-adic
cyclotomic character. Similarly, we will identify ε with the character of Q×p , which
maps x to x |x |.

Colmez [2010] has defined an exact and covariant functor V from the category
of smooth, finite-length representations of G on O-torsion modules with a central
character to the category of continuous finite-length representations of GQp on
O-torsion modules. This functor enables us to make the connection between the
GL2(Qp) and GQp worlds. We modify Colmez’s functor to obtain an exact covariant
functor

V̌ : C(O)→Modpro
GQp
(O)

as follows. Let M be in C(O). If it is of finite length then V̌ (M) := V (M∨)∨(εψ),
where ∨ denotes the Pontryagin dual and ε is the cyclotomic character. In general,
we may write M ∼= lim

←−−
Mi , where the limit is taken over all quotients of finite length

in C(O), and we define V̌ (M) := lim
←−−

V̌ (Mi ). If π ∈ Modl.fin
G,ψ(k) is absolutely

irreducible, then π∨ is an object of C(O), and if π is supersingular in the sense
of [Barthel and Livné 1994], then V̌ (π∨) ∼= V (π) is an absolutely irreducible
continuous representation of GQp associated to π by Breuil [2003a]. If π ∼=(
IndG

B χ1⊗χ2ω
−1
)
sm then V̌ (π∨) ∼= χ1. If π ∼= χ ◦ det then V̌ (π∨) = 0 and if

π ∼= Sp⊗χ ◦det, where Sp is the Steinberg representation, then V̌ (π∨)∼= χ . Since
V̌ is exact we obtain an exact sequence of GQp-representations

0→ χ2→ V̌ (κ∨)→ χ1→ 0. (5)

The sequence is nonsplit by [Colmez 2010, Proposition VII.4.13(iii)]. If m is a
pseudocompact right E-module then there exists a natural isomorphism of GQp-
representations

V̌ (m ⊗̂E P)∼=m ⊗̂E V̌ (P), (6)

by [Paškūnas 2013, Lemma 5.53]. It follows from (6) and Proposition 2.10 that
V̌ (P) is a deformation of ρ := V̌ (k ⊗̂E P) to E . If π is supersingular then ρ is an
absolutely irreducible 2-dimensional representation of GQp , and if π is a principal
series then ρ is a nonsplit extension of distinct characters; see (5). In both cases,
EndGQp

(ρ)= k and so the universal deformation problem of ρ is represented by a
complete local noetherian O-algebra R. Let Rψ be the quotient of R parametrizing
deformations of ρ with determinant equal to ψε.

Proposition 2.14. The functor V̌ induces surjective homomorphisms R � E and
ϕ : E � Rψ.
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Proof. This is proved in the same way as [Paškūnas 2013, Proposition 5.56, §5.8],
following [Kisin 2010]. For the first surjection it is enough to prove that V̌ induces
an injection

Ext1C(O)(Q, Q) ↪→ Ext1GQp
(ρ, ρ).

This follows from [Colmez 2010, Théorème VII.5.2]. To prove the second surjection,
we observe that Rψ is reduced and O-torsion-free: if p ≥ 5 then Rψ is formally
smooth over O, if p = 3 then the assertion follows from results of [Böckle 2010],
and if p=2 then the assertion follows from [Chenevier 2009, Proposition 4.1]. Thus
it is enough to show that every closed point of Spec Rψ [1/p] is contained in Spec E .
This is equivalent to showing that for every deformation ρ̃ of ρ with determinant ψε
there is a Banach space representation 5 lifting Q∨ with central character ψ such
that V̌ (5)∼= ρ̃. This follows from [Colmez et al. 2015, Theorem 10.1]. �

2B2. Banach space representations. Let Banadm
G,ψ(L) be the category of admissible

unitary L-Banach space representations [Schneider and Teitelbaum 2002, §3] on
which Z acts by the character ψ . If 5 ∈ Banadm

G,ψ(L) then we let

V̌ (5) := V̌ (2d)⊗O L , (7)

where 2 is any open bounded G-invariant lattice in 5. Therefore, V̌ is exact and
contravariant on Banadm

G,ψ(L).

Remark 2.15. One of the reasons we use V̌ instead of V is that this allows us to
define V̌ (5) without making the assumption that the reduction of 5 modulo $
has finite length as a G-representation.

If m is an E[1/p]-module of finite length then we let

5(m) := Homcont
O (m0

⊗̂E P, L), (8)

where m0 is any E-stable O-lattice in m. Then 5(m) is an admissible unitary
L-Banach space representation of G, by [Paškūnas 2015b, Lemma 2.21], with
the topology given by the supremum norm. Since the functor ⊗̂E P is exact by
Proposition 2.10, the functor m 7→5(m) is exact and contravariant. Moreover, it is
fully faithful, as

HomG(5(m1),5(m2))∼= HomC(O)
(
m0

2 ⊗̂E P,m0
1 ⊗̂E P

)
L

∼= HomE[1/p](m2,m1), (9)

where the first isomorphism follows from Theorem 2.3 of [Schneider and Teitelbaum
2002] and the second from (3).

Lemma 2.16. Let m be an E[1/p]-module of finite length and let 5 ∈ Banadm
G,ψ(L)

be such that π does not occur as a subquotient in the reduction of an open bounded
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G-invariant lattice in 5 modulo $ . Then Ext1G(5,5(m)) computed in Banadm
G,ψ(L)

is zero.

Proof. If2 is an open bounded G-invariant lattice in B∈Banadm
G,ψ(L) then we define

m(B) :=HomC(O)(P,2d)L . Proposition 4.17 in [Paškūnas 2013] implies that m(B)
is a finitely generated E[1/p]-module. The functor B 7→m(B) is exact by [Paškūnas
2013, Lemma 4.9]. The evaluation map HomC(O)(P,2d) ⊗̂E P→2d induces a
continuous G-equivariant map B→5(m(B)). If m is an E[1/p]-module of finite
length and B∼=5(m) then m(B)∼=m and the map B→5(m(B)) is an isomorphism
by [Paškūnas 2013, Lemma 4.28]. Moreover, m(B)= 0 if and only if π does not oc-
cur as a subquotient of 2/($), by [Colmez et al. 2014, Proposition 2.1(ii)]. Hence,
if we have an exact sequence 0→5(m)→B→5→0 then by applying the functor
m to it, we obtain an isomorphism m∼=m(5(m))∼=m(B) and hence an isomorphism
5(m)∼=5(m(B)). The map B→5(m(B)) splits the exact sequence. �

The proof of [Paškūnas 2015b, Lemma 4.3] shows that we have a natural iso-
morphism of GQp-representations

V̌ (5(m))∼=m⊗E V̌ (P). (10)

Let us point out a special case of this isomorphism. If n is a maximal ideal of E[1/p]
then its residue field κ(n) is a finite extension of L . Let Oκ(n) be the ring of integers
in κ(n) and let $κ(n) be the uniformizer. Then 2 := Homcont

O (Oκ(n) ⊗̂E P,O) is
an open bounded G-invariant lattice in 5(κ(n)). The evaluation map induces an
isomorphism 2d ∼=Oκ(n) ⊗̂E P. Since E is noetherian, Oκ(n) is a finitely presented
E-module and thus the usual and completed tensor products coincide. We obtain

V̌ (2d)∼=Oκ(n)⊗E V̌ (P), V̌ (5(κ(n)))∼= κ(n)⊗E V̌ (P). (11)

Since the residue field of Oκ(n) is k, we have

2/($κ(n))∼= Homcont
k (k ⊗̂E P, k)∼= (k ⊗̂E P)∨. (12)

Recall from [Paškūnas 2013, §4] that 5 ∈ Banadm
G,ψ(L) is irreducible if it does

not have a nontrivial closed G-invariant subspace. It is absolutely irreducible if
5⊗L L ′ is irreducible in Banadm

G,ψ(L
′) for every finite field extension L ′/L . An

irreducible 5 is ordinary if it is a subquotient of a unitary parabolic induction of a
unitary character. Otherwise it is called nonordinary.

Proposition 2.17. If n is a maximal ideal of E[1/p] then either the κ(n)-Banach
space representation 5(κ(n)) is absolutely irreducible nonordinary or

π ∼=
(
IndG

B χ1⊗χ2ω
−1)

sm
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and (after possibly replacing κ(n) by a finite extension) there exists a nonsplit
extension

0→
(
IndG

B δ1⊗ δ2ε
−1)

cont→5(κ(n))→
(
IndG

B δ2⊗ δ1ε
−1)

cont→ 0, (13)

where δ1, δ2 :Q
×
p → κ(n)× are unitary characters congruent to χ1 and χ2, respec-

tively, such that δ1δ2 = ψε.

Proof. It follows from (11) that dimκ(n) V̌ (5(κ(n))) = 2. Since V̌ applied to a
parabolic induction of a unitary character is a one-dimensional representation of
GQp , we deduce that if 5(κ(n)) is absolutely irreducible then it cannot be ordinary.

If π is supersingular then (12) implies that 2/($κ(n))∼= π , which is absolutely
irreducible. This implies that 5(κ(n)) is absolutely irreducible. If π is a principal
series then2/($κ(n)) is of length 2 and both irreducible subquotients are absolutely
irreducible. Hence, 5(κ(n)) is either irreducible or of length 2. Let us assume that
5(κ(n)) is not absolutely irreducible. Then after possibly replacing κ(n) by a finite
extension we have an exact sequence of admissible κ(n)-Banach space representa-
tions 0→51→5(κ(n))→52→ 0. This sequence is nonsplit, since otherwise
V̌ (5(κ(n))) would be a direct sum of two one-dimensional representations, which
would contradict [Paškūnas 2015b, Lemma 4.5(iii)]. Let 21 :=2∩51 and let 22

be the image of 2 in 52. Since we are dealing with admissible representations, 22

is a bounded O-lattice in 52. Lemma 5.5 of [Paškūnas 2010a] says that we have
the exact sequences of Oκ(n)-modules

0→21→2→22→ 0, (14)

0→21/($κ(n))→2/($κ(n))→22/($κ(n))→ 0. (15)

It follows from (12) that the exact sequence of G-representations in (15) is the
unique nonsplit extension 0→ π→ κ→ π ′→ 0. Proposition 4.2.14 of [Emerton
2010b] applied with A =Oκ(n)/($ n

κ(n)) for all n ≥ 1 implies that

51 ∼=
(
IndG

B δ1⊗ δ2ε
−1)

cont, 52 ∼=
(
IndG

B δ
′

2⊗ δ
′

1ε
−1)

cont,

where δ1, δ2, δ
′

1, δ
′

2 : Q×p → κ(n)× are unitary characters with δ1, δ′1 congruent
to χ1 and δ2, δ′2 congruent to χ2 modulo $κ(n). We reduce (14) modulo $ n

κ(n)

to obtain an exact sequence to which we apply OrdB . This gives us an injection
OrdB

(
22/($

n
κ(n))

)
↪→ R1 OrdB

(
22/($

n
κ(n))

)
. Since both are free Oκ(n)/($ n

κ(n))-
modules of rank 1, the injection is an isomorphism. This implies that δ1 is congruent
to δ′1 and δ2 is congruent δ′2 modulo$ n

κ(n) for all n≥1. Hence, δ1=δ
′

1 and δ2=δ
′

2. �

2B3. Main local result. We will prove that the surjection ϕ : E � Rψ in Proposition
2.14 is an isomorphism. The argument combines the first part of the paper with
methods of [Paškūnas 2015b]. The argument in [Paškūnas 2013] used to prove this
statement when p ≥ 5 uses the fact that the rings Rψ are formally smooth in that
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case. This does not hold in general; when p = 2 or 3 and even when the ring is
formally smooth and p = 3, the computations just get too complicated.

Let V be a continuous representation of K with a central character ψ of the form
τ ⊗ Syma L2

⊗ η ◦ det, where η : Z×p → L× is a continuous character, and τ is a
type for a Bernstein component containing a principal series representation, but not
containing a special series representation.

Proposition 2.18. If n is a maximal ideal of E[1/p] then the following hold:

(i) dimκ(n) HomK (V,5(κ(n)))≤ 1.

(ii) dimκ(n) HomK (V,5(En/n
2))≤ 2.

Moreover, if HomK (V,5(κ(n))) 6= 0 then det V̌ (5(κ(n)))= ψε.

Proof. If m is an E[1/p]-module of finite length and L ′ is a finite extension of L , then
5(m⊗L L ′)∼=5(m)⊗L L ′ and HomK (V,5(m))⊗L L ′∼=HomK (V,5(m)⊗L L ′).
This implies that it is enough to prove the assertions after replacing κ(n) by a
finite extension. In particular, we may assume that 5(κ(n)) is either absolutely
irreducible or a nonsplit extension as in Proposition 2.17. Since V̌ is compatible
with twisting by characters, to prove the proposition it is enough to assume that η
is trivial, so that V is a locally algebraic representation of K.

Since τ is a type and 5(κ(n)) is admissible, HomK (V,5(κ(n))) 6= 0 if and
only if (after possibly replacing κ(n) by a finite extension) 5(κ(n)) contains a
subrepresentation of the form 9⊗Syma L2, where 9 is an absolutely irreducible
smooth principal series representation in the Bernstein component described by τ ;
see the proof of [Paškūnas 2010a, Theorem 7.2]. Let 5 be the universal unitary
completion of 9 ⊗ Syma L2. Then 5 is absolutely irreducible, by [Berger and
Breuil 2010, Corollaire 5.3.4] and [Breuil and Emerton 2010, Proposition 2.2.1].

If 5(κ(n)) is absolutely irreducible, we deduce that 5(κ(n))∼=5. Since 5 in
[Berger and Breuil 2010] is constructed out of a (ϕ, 0)-module of a 2-dimensional
crystabeline representation of GQp with determinant ψε, applying V̌ undoes this
construction to obtain the Galois representation we started with. In particular,
det V̌ (5(κ(n)))=ψε. Moreover, it follows from [Colmez 2010, Théorème VI.6.50]
that the locally algebraic vectors in 5(κ(n)) are isomorphic to 9⊗Syma L2, which
implies that

dimκ(n) HomK (V,5(κ(n)))= dimκ(n) HomK (V, 9⊗Syma L2)= 1, (16)

giving part (i).
If5(κ(n)) is reducible, then using the fact that (13) is nonsplit we deduce that5

is the unique irreducible subrepresentation of 5(κ(n)). It follows from [Paškūnas
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2013, Lemma 12.5]1 that the locally algebraic vectors in 5 are isomorphic to
9 ⊗ Syma L2 and the locally algebraic vectors in 5(κ(n))/5 are zero. Thus
locally algebraic vectors in 5(κ(n)) are isomorphic to 9⊗Syma L2 and so part (i)
holds. Moreover, applying V̌ to (13) we obtain an exact sequence 0→ δ2 →

V̌ (5(κ(n)))→ δ1→ 0. Hence, det V̌ (5(κ(n)))= δ1δ2 = ψε.
The exact sequence 0→ n/n2

→ En/n
2
→ κ(n)→ 0 of E[1/p]-modules gives

rise to an exact sequence of admissible Banach space representations of G

0→5(κ(n))→5(En/n
2)→5(κ(n))⊕d

→ 0,

where d=dimκ(n) n/n
2. We claim that HomG(5,5(En/n

2)) is one-dimensional as
a κ(n)-vector space. Given the claim we can deduce part (ii) by the same argument
as in [Paškūnas 2015b, Corollary 4.21]. To show the claim let 5′ :=5(κ(n))/5.
If 5′ is zero then the assertion follows from (9). If 5′ is nonzero then the reduction
of the unit ball modulo $κ(n) is isomorphic to π ′. Since (13) is nonsplit we obtain
HomG(5

′,5(κ(n))) = 0, and Lemma 2.16 implies that Ext1G(5
′,5(κ(n))) = 0.

Hence, HomG(5(κ(n)),5(En/n
2))∼=HomG(5,5(En/n

2)) and the claim follows
from (9). �

Let2 be a K-invariant O-lattice in V and let M(2) :=Homcont
O[[K ]](P,2

d)d, where
(∗)d :=HomO(∗,O). It follows from Proposition 2.8 that (k⊗̂E P)∨ is an admissible
representation of G; dually, this implies that k ⊗̂E P is a finitely generated O[[K ]]-
module. Hence, [Paškūnas 2015b, Proposition 2.15] implies that M(2) is a finitely
generated E-module. We will denote by m-Spec the set of maximal ideals of a
commutative ring.

Proposition 2.19. Let a be the E-annihilator of M(2). Then E/a is reduced
and O-torsion-free. Moreover, m-Spec(E/a)[1/p] is contained in the image of
m-Spec Rψ [1/p] under ϕ] : Spec Rψ → Spec E.

Proof. Theorem 5.2 in [Paškūnas 2015b] implies that there is a P-regular x ∈ E such
that P/xP is a finitely generated O[[K ]]-module which is projective in Modpro

K ,ψ(O).
It follows from [Paškūnas 2015b, Lemma 2.33] that M(2) is Cohen–Macaulay as
a module over E and its Krull dimension is equal to 2. If m is an E[1/p]-module
of finite length then

dimL HomK (V,5(m))= dimL m⊗E M(2), (17)

by [Paškūnas 2015b, Proposition 2.22]. Proposition 2.18 together with [Paškūnas
2015b, Proposition 2.32] imply that E/a is reduced. It is O-torsion-free, since M(2)
is O-torsion-free. Let n be a maximal ideal of E[1/p]. Since E is a quotient of R,
n lies in the image of m-Spec Rψ [1/p] if and only if det κ(n)⊗E V̌ (P) = ψε.

1The assumption p ≥ 5 in [Paškūnas 2013, §12] is only invoked in the proof of Theorem 12.7 by
appealing to Theorem 11.4. All the other arguments in that section work for all primes p.
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Proposition 2.18, (11) and (17) imply that this holds for all the maximal ideals of
(E/a)[1/p]. �

Corollary 2.20. The surjection ϕ : E � Rψ, given by Proposition 2.14, induces an
isomorphism E/a∼= Rψ/ϕ(a).

Proof. Since (E/a)[1/p] and (Rψ/ϕ(a))[1/p] are Jacobson, Proposition 2.19
implies that ϕ induces an isomorphism between E/a and the image of Rψ in the
maximal reduced quotient of (Rψ/ϕ(a))[1/p]. This implies that the surjection
E/a� Rψ/ϕ(a) is injective, and hence an isomorphism. �

Lemma 2.21. The E-annihilators of Homcont
K (P, V ∗) and M(2) are equal.

Proof. One inclusion is trivial; the other follows from [Paškūnas 2015b, (11)],
which says that Homcont

K (P, V ∗) is naturally isomorphic to Homcont
O (M(2), L). �

Theorem 2.22. The functor V̌ induces an isomorphism ϕ : E ∼=
−→ Rψ. Moreover,

V̌ (P) is the universal deformation of ρ with determinant ψε.

Proof. It follows from Corollary 2.20 and Lemma 2.21 that the kernel of ϕ is
contained in the E-annihilator of Homcont

K (P, V ∗). It follows from Proposition 2.7
that the intersection of the annihilators as V varies is zero. Hence, ϕ is injective, and
hence an isomorphism by Proposition 2.14. The second part is a formal consequence
of the first part. �

2B4. Blocks. As explained in the introduction the category Modl.adm
G,ψ (O) decom-

poses into a product of subcategories

Modl.adm
G,ψ (O)∼=

∏
B∈Irradm

G /∼

Modl.adm
G,ψ (O)[B], (18)

where Modl.adm
G,ψ (O)[B] is the full subcategory of Modl.adm

G,ψ (O) consisting of repre-
sentations with all irreducible subquotients in B. Dually we obtain a decomposition

C(O)∼=
∏

B∈Irradm
G /∼

C(O)[B], (19)

where M ∈ C(O) lies in C(O)[B] if and only if M∨ lies in Modl.adm
G,ψ (O)[B].

For a block B let πB =
⊕

π∈B π , and let πB ↪→ JB be an injective envelope
of πB. Then PB := (JB)∨ is a projective envelope of (πB)∨ in C(O). Moreover,
JB is an injective generator of Modl.adm

G,ψ (O)[B] and PB is a projective generator of
C(O)[B]. The ring EB := EndC(O)(PB) carries a natural topology with respect to
which it is a pseudocompact ring; see [Gabriel 1962, Chapitre IV, Proposition 13].
In addition, the functor

M 7→ HomC(O)(PB,M)
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induces an equivalence of categories between C(O)[B] and the category of right
pseudocompact EB-modules; see Corollaire 1 after [Gabriel 1962, Chapitre IV,
Théorème 4]. The inverse functor is given by m 7→ m ⊗̂EB PB, as follows from
Lemmas 2.9 and 2.10 in [Paškūnas 2013]. Moreover, the center of the category
of C(O)[B], which by definition is the ring of the natural transformations of the
identity functor, is naturally isomorphic to the center of the ring EB; see Corollaire 5
after [Gabriel 1962, Chapitre IV, Théorème 4].

Let us prove Theorem 1.2, stated in the introduction. If B is a block containing
a supersingular representation π then B= {π} and so πB = π , PB is a projective
envelope of π∨ and EB coincides with the ring denoted by E in the previous
section. Theorem 2.22 implies that EB is naturally isomorphic to Rψρ , the quotient
of the universal deformation ring of ρ := V̌ (π∨) parametrizing deformations with
determinant ψε. Since this ring is commutative, we deduce that the center of
C(O)[B] is naturally isomorphic to Rψρ . Moreover, V̌ (PB) is the tautological
deformation of ρ to Rψρ ; see Theorem 2.22.

If B contains a generic principal series representation then B= {π1, π2}, where

π1 ∼=
(
IndG

B χ1⊗χ2ω
−1)

sm, π2 ∼=
(
IndG

B χ2⊗χ1ω
−1)

sm, (20)

and χ1, χ2 :Q
×
p → k× are continuous characters such that χ1χ

−1
2 6= 1, ω±1. Then

πB = π1⊕π2 and so PB
∼= P1⊕ P2, where P1 is a projective envelope of π∨1 and

P2 is a projective envelope of π∨2 in C(O). Thus

EB
∼= EndC(O)(P1⊕ P2)∼= Endcont

GQp
(V̌ (P1)⊕ V̌ (P2)), (21)

where the last isomorphism follows from [Paškūnas 2013, Lemma 8.10]. The
assumption on the characters χ1, χ2 implies that if we consider them as repre-
sentations of GQp via the local class field theory, Ext1-groups between them are
1-dimensional. This means there are unique up to isomorphism nonsplit extensions

ρ1 =

(
χ1 ∗

0 χ2

)
, ρ2 =

(
χ1 0
∗ χ2

)
.

Let R1 be the universal deformation ring of ρ1, let Rψ1 be the quotient of R1

parametrizing deformations of ρ1 with determinant ψε, and let ρuniv
1 be the tauto-

logical deformation of ρ1 to Rψ1 . We define R2, Rψ2 and ρuniv
2 in the same way with

ρ2 instead of ρ1. It follows from Theorem 2.22 and (21) that

EB
∼= Endcont

GQp
(ρuniv

1 ⊕ ρuniv
2 ). (22)

We have studied the right-hand side of (22) in [Paškūnas 2013, §B.1] for p > 2 and
in [Paškūnas 2015a] in general. To describe the result we need to recall the theory
of determinants due to Chenevier [2014].
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Let ρ : GQp → GL2(k) be a continuous representation. Let A be the category of
local artinian augmented O-algebras with residue field k. Let Dps

:A→ Sets be the
functor which maps (A,mA) ∈ A to the set of pairs of functions (t, d) : GQp → A
such that:

• d : GQp → A× is a continuous group homomorphism, congruent to det ρ
modulo mA.

• t : GQp → A is a continuous function with t (1)= 2.

• For all g, h ∈ GQp , the following are satisfied:

(i) t (g)≡ tr ρ(g) (mod mA).
(ii) t (gh)= t (hg).

(iii) d(g)t (g−1h)− t (g)t (h)+ t (gh)= 0.

The functor Dps is prorepresented by a complete local noetherian O-algebra Rps.
Let Rps,ψ be the quotient of Rps parametrizing those pairs (t, d) where d = ψε.
Combining (22) with [Paškūnas 2015a, Propositions 3.12 and 4.3, Corollary 4.4]
we obtain the following:

Theorem 2.23. Let B= {π1, π2} as above and let ρ = χ1⊕χ2. The center of EB,
and hence the center of the category C(O)[B], is naturally isomorphic to Rps,ψ.
Moreover, EB is a free Rps,ψ-module of rank 4:

EB
∼=

(
Rps,ψeχ1 Rps,ψ8̃12

Rps,ψ8̃21 Rps,ψeχ2

)
.

The generators satisfy the following relations:

e2
χ1
= eχ1, e2

χ2
= eχ2, eχ1eχ2 = eχ2eχ1 = 0, (23)

eχ18̃12 = 8̃12eχ2 = 8̃12, eχ28̃21 = 8̃21eχ1 = 8̃21, (24)

eχ28̃12 = 8̃12eχ1 = eχ18̃21 = 8̃21eχ2 = 8̃
2
12 = 8̃

2
21 = 0, (25)

8̃128̃21 = ceχ1, 8̃218̃12 = ceχ2 . (26)

The element c is regular in Rps,ψ and generates the reducibility ideal.

In order to state the result about the center of C(O)[B] in a uniform way, as
in Theorem 1.3, we note that if ρ is an irreducible representation then mapping a
deformation ρA to (tr ρA, det ρA) induces a homomorphism of O-algebras Rps

→ Rρ ,
which is an isomorphism by [Chenevier 2014, Theorem 2.22, Example 3.4].

For a block B, let Banadm
G,ψ(L)[B] be the full subcategory of Banadm

G,ψ(L) consist-
ing of those 5 for which, for some (equivalently any) open bounded G-invariant
lattice 2, all the irreducible subquotients of 2 ⊗O k lie in B. It is shown in
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[Paškūnas 2013, Proposition 5.36] that Banadm
G,ψ(L) decomposes into a direct sum

of subcategories
Banadm

G,ψ(L)∼=
⊕

B∈Irradm
G /∼

Banadm
G,ψ(L)[B].

Corollary 2.24. If B = {π} with π supersingular then let ρ = V̌ (π∨). If B =

{π1, π2} with π1, π2 given by (20) then let ρ = V̌ (π∨1 )⊕ V̌ (π∨2 ) = χ1⊕ χ2. The
map 5 7→ V̌ (5) induces a bijection between the isomorphism classes of

• absolutely irreducible nonordinary 5 ∈ Banadm
G,ψ(L)[B];

• absolutely irreducible ρ̃ : GQp → GL2(L) such that det ρ̃ = ψε and the
semisimplification of the reduction modulo$ of a GQp-invariant O-lattice in ρ̃
is isomorphic to ρ.

Proof. Given Theorems 1.2 and 2.23, this is proved in the same way as [Paškūnas
2013, Theorem 11.4]. �

If 5 ∈ Banadm
G,ψ(L)[B] and 2 is an open bounded G-invariant lattice in 5, then

2/$ n is an object of Modl.adm
G,ψ (O)[B] for all n ≥ 1. Theorem 1.3 gives a natural

action of Rps,ψ on 2/$ n for all n ≥ 1. Passing to the limit and inverting p, we
obtain a natural homomorphism Rps,ψ

[1/p] → Endcont
G (5).

Corollary 2.25. Let B be as in Corollary 2.24 and let 5 ∈ Banadm
G,ψ(L)[B] be

absolutely irreducible. Then tr V̌ (5) is equal to the specialization of the universal
pseudocharacter tuniv

: GQp → Rps,ψ at x : Rps,ψ
→ Endcont

G (5)∼= L.

Proof. This is proved in the same way as [Paškūnas 2013, Proposition 11.3]. To carry
out that proof we need to verify that V̌ (PB) is annihilated by g2

−tuniv(g)g+ψε(g)
for all g ∈ GQp . If B contains a supersingular representation this follows from
Cayley–Hamilton since V̌ (PB) is the universal deformation of ρ with determinant
ψε, and tr V̌ (PB)= tuniv by [Chenevier 2014, Theorem 2.22, Example 3.4]. If B
contains a generic principal series then V̌ (PB) ∼= ρ

univ
1 ⊕ ρuniv

2 and the assertion
follows from [Paškūnas 2015a, Proposition 3.9]. �

Corollary 2.26. For any 5 as in Corollary 2.24, we have dimL Ext1G,ψ(5,5)= 3.

Proof. Let Banadm.fl
G,ψ (L)[B] be the full subcategory of Banadm

G,ψ(L)[B] consisting of
objects of finite length. It follows from [Paškūnas 2013, Theorem 4.36] that this
category decomposes into a direct sum of subcategories

Banadm.fl
G,ψ (L)[B] ∼=

⊕
n∈m-Spec Rps,ψ [1/p]

Banadm.fl
G,ψ (L)[B]n,

where, for a maximal ideal n of Rps,ψ
[1/p], the direct summand Banadm.fl

G,ψ (L)[B]n
consists of those finite-length representations which are killed by a power of n.
Moreover, the last part of [Paškūnas 2013, Theorem 4.36] implies that the functor
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5 7→ HomC(O)(PB,2
d)[1/p], where 2 is any open bounded G-invariant lattice

in 5, induces an antiequivalence of categories between Banadm.fl
G,ψ (L)[B]n and the

category of modules of finite length over the n-adic completion of EB[1/p], which
we denote by ÊB,n.

Let ρ̃= V̌ (5). Corollary 2.24 tells us that ρ̃ is an absolutely irreducible represen-
tation with determinantψε. Let n be the maximal ideal of Rps,ψ

[1/p] corresponding
to the pair (tr ρ̃, det ρ̃). It follows from Corollary 2.25 that 5 is annihilated by n

and hence lies in Banadm.fl
G,ψ (L)[B]n. Let A be the completion of Rps,ψ

[1/p] at n.
In the supersingular case, EB = Rps,ψ

= Rψ, and so ÊB,n = A. In the generic
principal series case, since ρ̃ is absolutely irreducible, the image of the generator
of the reducible locus in Rps,ψ in κ(n) is nonzero. It follows from the description
of EB in Theorem 2.23 that ÊB,n is isomorphic to the algebra of 2× 2 matrices
with entries in A. Thus in both cases we get that Banadm.fl

G,ψ (L)[B]n is antiequivalent
to the category of A-modules of finite length, and 5 is identified with the residue
field κ(n) of A. Hence,

Ext1G,ψ(5,5)∼= Ext1A(κ(n), κ(n)).

Arguing as in [Kisin 2009c, Lemma 2.3.3] we may identify A with the universal
deformation ring parametrizing pseudocharacters with determinant ψε and values
in local artinian L-algebras which lift tr ρ̃. Since ρ̃ is absolutely irreducible we
may further identify this ring with the quotient of the universal deformation ring
of ρ̃ to local artinian L-algebras parametrizing deformations with determinant ψε.
This ring is formally smooth over L of dimension 3, as H 2(GQp , ad0(ρ̃)) ∼=

H 0(GQp , ad0(ρ̃)(1)) = 0 and so the deformation problem of ρ̃ is unobstructed.
In particular, dimL Ext1A(κ(n), κ(n))= dimL nA/n2 A = 3. �

2C. The Breuil–Mézard conjecture. In this section we apply the formalism de-
veloped in [Paškūnas 2015b] to prove new cases of the Breuil–Mézard conjecture,
when p = 2. We place no restriction on p in this section.

Let ρ : GQp → GL2(k) be a continuous representation which is either abso-
lutely irreducible, in which case we let π be a supersingular representation of G
such that V (π)∼= ρ, or which is isomorphic to

(
χ1
0
∗

χ2

)
, a nonsplit extension with

χ1χ
−1
2 6= 1, ω±1, in which case we let π =

(
IndG

B χ1⊗χ2ω
−1
)
sm. As before we let

Rψ be the quotient of the universal deformation ring of ρ parametrizing deformations
with determinant ψε and let ρuniv be the tautological deformation of ρ to Rψ.

Proposition 2.27. P satisfies the hypotheses (N0)–(N2) of [Paškūnas 2015b, §4].

Proof. (N0) says that k ⊗̂Rψ P is of finite length and finitely generated over O[[K ]].
This follows from Proposition 2.8. To verify (N1) we need to show that

HomSL2(Qp)(1, P∨)= 0.



1324 Vytautas Paškūnas

The SL2(Qp)-invariants in P∨ are stable under the action of G. Since P∨ is an in-
jective envelope of π , if the subspace is nonzero then it must intersect π nontrivially.
However, πSL2(Qp) = 0, which concludes the proof. (N2) requires V̌ (P) and ρuniv

to be isomorphic as Rψ [[GQp ]]-modules and this is proved in Theorem 2.22. �

Recall from [Serre 2000, §V.A] that the group of d-dimensional cycles Zd(A) of a
noetherian ring A is a free abelian group generated by p∈Spec A with dim A/p= d .
For d-dimensional cycles

∑
p npp and

∑
p mpp, we write

∑
p npp ≤

∑
p mpp, if

np ≤ mp for all p ∈ Spec A with dim A/p= d .
If M is a finitely generated A-module of dimension at most d then Mp is an Ap-

module of finite length, which we denote by `Ap(Mp), for all p with dim A/p=d . We
note that `Ap(Mp) is nonzero only for finitely many p. Thus zd(M) :=

∑
p `Ap(Mp)p,

where the sum is taken over all p ∈ Spec A such that dim A/p= d , is a well defined
element of Zd(A).

If (A,m) is a local ring then we define a Hilbert–Samuel multiplicity e(z) of
a cycle z =

∑
p npp ∈ Zd(A) to equal

∑
p npe(A/p), where e(A/p) is the Hilbert–

Samuel multiplicity of the ring A/p. If M is a finitely generated A-module of
dimension d then the Hilbert–Samuel multiplicity of M is equal to the Hilbert–
Samuel multiplicity of its cycle zd(M); see [Serre 2000, §V.2].

If2 is a continuous representation of K on a free O-module of finite rank, we let

M(2) :=
(
Homcont

O[[K ]](P,2
d)
)d
,

where (∗)d := HomO(∗,O). If λ is a smooth representation of K on an O-torsion
module of finite length then we let

M(λ) :=
(
Homcont

O[[K ]](P, λ
∨)
)∨
,

where the superscript ∨ denotes the Pontryagin dual.

Proposition 2.28. Let2 be a continuous representation of K on a free O-module of
finite rank with central character ψ . Then M(2) is a finitely generated Rψ-module.
If M(2) is nonzero then it is Cohen–Macaulay and has Krull dimension equal to 2.
We have an equality of 1-dimensional cycles

z1(M(2)/$)=
∑
σ

mσ z1(M(σ )), (27)

where the sum is taken over all the irreducible smooth k-representations of K, and
mσ denotes the multiplicity with which σ appears as a subquotient of 2⊗O k.

Moreover, M(σ ) 6= 0 if and only if HomK (σ, π) 6= 0, in which case the Hilbert–
Samuel multiplicity of z1(M(σ )) is equal to 1.

Proof. We showed in Proposition 2.27 that k ⊗̂Rψ P is a finitely generated O[[K ]]-
module. It follows from Corollary 2.5 in [Paškūnas 2015b] that M(2) is a finitely
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generated Rψ-module. The restriction of P to K is projective in Modpro
K ,ψ(O) by

[Paškūnas 2015b, Corollary 5.3]. Proposition 2.24 in [Paškūnas 2015b] implies
that (27) holds as an equality of (d − 1)-dimensional cycles, where d is the Krull
dimension of M(2). Theorem 5.2 in [Paškūnas 2015b] shows that there is an x
in the maximal ideal of Rψ such that we have an exact sequence 0→ P x

→ P→
P/xP→0, where the restriction of P/xP to K is a projective envelope of (socK π)

∨

in Modpro
K ,ψ(O). Lemma 2.33 in [Paškūnas 2015b] implies that M(2) is a Cohen–

Macaulay module of dimension 2 and that $, x is a regular sequence of parameters.
If σ is an irreducible smooth k-representation of K with central character ψ then
the proof of [Paškūnas 2015b, Lemma 2.33] yields an exact sequence

0−→ M(σ ) x
−→M(σ )−→

(
Homcont

O[[K ]](P/xP, σ∨)
)∨
−→ 0.

Since P/xP is a projective envelope of (socK π)
∨ in Modpro

K ,ψ(O), we deduce that
dimk M(σ )/x M(σ ) is equal to dimk HomK (σ, π). If HomK (σ, π) is zero then
Nakayama’s lemma implies that M(σ )= 0. If HomK (σ, π) is nonzero then it is a
one-dimensional k-vector space, since the K-socle of π is multiplicity free. The
exact sequence 0→M(σ ) x

→M(σ )→ k→ 0 implies that M(σ ) is a cyclic module,
and if a denotes its annihilator then Rψ/a∼= k[[x]]. �

Remark 2.29. If ρ is absolutely irreducible and ρ|IQp
∼=
(
ωr+1

2 ⊕ω
p(r+1)
2

)
⊗ωm

then

socK π ∼=
(
Symr k2

⊕Symp−1−r k2
⊗ detr

)
⊗ detm,

where 0≤ r ≤ p− 1, 0≤ m ≤ p− 2 and ω2 is the fundamental character of Serre
of niveau 2; see [Breuil 2003a; 2003b]. If ρ ∼=

(
χ1
0

∗

χ2ωr+1

)
⊗ωm, where χ1, χ2 are

unramified and χ1 6= χ2ω
r+1 then

π ∼=
(
IndG

B χ1⊗χ2ω
r)

sm⊗ω
m
◦ det .

Hence, socK π ∼= Symr k2
⊗ detm if 0< r < p− 1 and detm ⊕Symp−1 k2

⊗ detm

otherwise. In particular, socK π is multiplicity free.

If n ∈m-Spec Rψ [1/p] then the residue field κ(n) is a finite extension of L . Let
Oκ(n) be the ring of integers in κ(n). By specializing the universal deformation at n,
we obtain a continuous representation ρuniv

n : GQp →GL2(Oκ(n)), which reduces to
ρ modulo the maximal ideal of Oκ(n). A p-adic Hodge type (w, τ, ψ) consists of
the following data: w= (a, b) is a pair of integers with b> a, τ : IQp→GL2(L) is
a representation of the inertia subgroup with an open kernel and ψ :GQp→O× is a
continuous character such that ψε ≡ det ρ (mod$), ψ |IQp

= εa+b−1 det τ , where
ε is the p-adic cyclotomic character. If ρuniv

n is potentially semistable then we say
that it is of type (w, τ, ψ) if its Hodge–Tate weights are equal to w, the determinant
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is equal to ψ and the restriction of the Weil–Deligne representation, associated to
ρun
n by Fontaine [1994], to IQp is isomorphic to τ .

Henniart [2002] has shown the existence of a smooth irreducible representation
σ(τ) (resp. σ cr(τ )) of K on an L-vector space such that if π is a smooth absolutely
irreducible infinite-dimensional representation of G and LL(π) is the Weil–Deligne
representation attached to π by the classical local Langlands correspondence then
HomK (σ (τ ), π) 6= 0 (resp. HomK (σ

cr(τ ), π) 6= 0) if and only if LL(π)|IQp
∼= τ

(resp. LL(π)|IQp
∼= τ and the monodromy operator N is 0). The representations

σ(τ) and σ cr(τ ) are uniquely determined if p> 2. If p= 2 there might be different
choices; we choose one.

We let σ(w, τ ) := σ(τ)⊗Symb−a−1L2
⊗ deta. Then σ(w, τ ) is a finite-dimen-

sional L-vector space. Since K is compact and the action of K on σ(w, τ ) is
continuous, there is a K-invariant O-lattice 2 in σ(w, τ ). Then 2/($) is a smooth
finite-length k-representation of K, and we let σ(w, τ ) be its semisimplification.
One may show that σ(w, τ ) does not depend on the choice of a lattice. For each
smooth irreducible k-representation σ of K we let mσ (w, τ ) be the multiplicity
with which σ occurs in σ(w, τ ). We let σ cr(w, τ ) := σ cr(τ )⊗Symb−a−1L2

⊗deta

and let mcr
σ (w, τ ) be the multiplicity of σ in σ cr(w, τ ). If p= 2 then one may show

that σ(w, τ ) and σ cr(w, τ ) do not depend on the choice of σ(τ) and σ cr(τ ).

Proposition 2.30. Let V =σ(w,τ ) (resp. V =σ cr(w,τ )) and let2 be a K-invariant
lattice in V. Then n ∈ m-Spec Rψ [1/p] lies in the support of M(2) if and only
if ρuniv

n is potentially semistable (resp. potentially crystalline) of type (w, τ, ψ).
Moreover, for such n, we have dimκ(n) M(2)⊗Rψ κ(n)= 1.

Proof. Proposition 2.22 of [Paškūnas 2015b] implies that

dimκ(n) M(2)⊗Rψ κ(n)= dimκ(n) HomK (V,5(κ(n))).

Since V is a locally algebraic representation,

HomK (V,5(κ(n)))∼= HomK (V,5(κ(n))alg),

where the superscript alg denotes the subspace of locally algebraic vectors. This last
subspace is nonzero if and only if ρuniv

n is potentially semistable (resp. potentially
crystalline) of type (w, τ, ψ), in which case it is one-dimensional. The argument is
identical to the proof of [Paškūnas 2015b, Proposition 4.14], except that, because
we assume that ρ is generic, we don’t have to consider the nasty cases here. �

Corollary 2.31. There exists a reduced, O-torsion-free quotient Rψ(w, τ ) of Rψ

such that a map of O-algebras x : Rψ → L ′ into a finite field extension of L factors
through Rψ(w, τ ) if and only if ρuniv

x is potentially semistable of type (w, τ, ψ).
Moreover, if 2 is a K-invariant O-lattice in σ(w, τ ) and a is the Rψ-annihilator

of M(2) then Rψ(w, τ )= Rψ/
√
a.
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The same result holds if we consider potentially crystalline instead of potentially
semistable representations with σ cr(w, τ ) instead of σ(w, τ ).

Proof. Since the support of M(2) is closed in Spec Rψ, the assertion follows from
Proposition 2.30. �

Corollary 2.32. Let 2 be a K-invariant lattice in either σ(w, τ ) or σ cr(w, τ ) and
let a be the Rψ-annihilator of M(2). Then we have equalities of cycles

z2(Rψ/a)= z2(M(2)), z1(Rψ/(a,$))= z1(M(2)/$).

Proof. The last part of Proposition 2.30 implies that M(2) is generically free of
rank 1. This implies the first assertion; see [Paškūnas 2015b, Lemma 2.27]. The
second follows from the first combined with the fact that $ is both Rψ/a- and
M(2)-regular; see Proposition 2.2.13 in [Emerton and Gee 2014]. �

Proposition 2.33. Let a be the Rψ-annihilator of M(2), where 2 is a K-invariant
O-lattice in σ(w, τ ) (resp. σ cr(w, τ )). Then Rψ/a is reduced. In particular, it is
equal to Rψ(w, τ ) (resp. Rψ,cr(w, τ )).

Proof. Proposition 2.30 of [Paškūnas 2015b] together with the last part of Proposition
2.30 of the current paper says that it is enough to show that, for almost all n in
m-Spec Rψ [1/p] lying in the support of M(2),

dimκ(n) HomK (V,5(Rψn /n
2 Rψn ))≤ 2.

This amounts to checking that the subspace E of Ext1G(5(κ(n)),5(κ(n))) generated
by the extensions of admissible unitary κ(n)-Banach spaces 0→5(κ(n))→ B→
5(κ(n))→ 0 such that the induced map between the subspaces of locally algebraic
vectors Balg

→5(κ(n))alg is surjective, is at most one-dimensional; see the proof
of [Paškūnas 2015b, Corollary 4.21].

If τ does not extend to an irreducible representation of WQp then the proof
of [Paškūnas 2015b, Theorem 4.19] carries over: the key input into that proof
is that the closure of 5(κ(n))alg in 5(κ(n)) is equal to the universal unitary
completion of 5(κ(n))alg and the only case of this fact not covered by the ref-
erences given in the proof of [Paškūnas 2015b, Theorem 4.19] is when p = 2 and
5(κ(n))alg ∼=

(
IndG

B χ ⊗χ | � |
−1
)
sm⊗W , where W is an algebraic representation

of G and χ : Q×p → κ(n)× is a smooth character. However, in that case it is
explained in the second paragraph of the proof of [Paškūnas 2014, Proposition 6.13]
how to deduce from [Paškūnas 2009, Proposition 4.2] that any G-invariant O-lattice
in 5(κ(n))alg is a finitely generated O[G]-module, which provides the key input
also in this case. We note that the assumption p > 2 in [Paškūnas 2009, §4] is only
used to apply the results of Berger, Li and Zhu; in particular, the proof of [Paškūnas
2009, Proposition 4.2] works for all p.
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If τ extends to an irreducible representation of WQp then the assertion is proved
by Dospinescu [2015]. Although2 the main theorem of [Dospinescu 2015] is stated
under the assumption p ≥ 5, the argument only uses that assumption if we let
5=5(κ(n)), in which case det V̌ (5)= ψε and dimL Ext1G,ψ(5,5)= 3. This is
given by Corollaries 2.24 and 2.26. �

Theorem 2.34. There is a finite set {Cσ }σ ⊂ Z1(Rψ/$), indexed by the irreducible
smooth k-representations σ of K, such that for all p-adic Hodge types (w, τ ) we
have equalities

z1(Rψ(w, τ )/$)=
∑
σ

mσ (w, τ )Cσ ,

z1(Rψ,cr(w, τ )/$)=
∑
σ

mcr
σ (w, τ )Cσ .

The cycle Cσ is nonzero if and only if HomK (σ, π) 6= 0, in which case its Hilbert–
Samuel multiplicity is equal to 1.

Proof. Let a be the Rψ-annihilator of M(2), where 2 is a K-invariant O-lattice in
σ(w, τ ). Corollary 2.31 and Proposition 2.33 imply that

z1(Rψ(w, τ )/$)= z1(Rψ/(
√
a,$))= z1(Rψ/(a,$)).

Corollary 2.32 and Proposition 2.28 imply that

z1(Rψ/(a,$))=
∑
σ

mσ (w, τ )z1(M(σ )).

We let Cσ = z1(M(σ )). The proof in the potentially crystalline case is the same. �

Remark 2.35. One may use a global argument to prove Proposition 2.33, without
using the results of [Dospinescu 2015]. However, one needs to assume that the local
residual representation can be realized as a restriction to GQp of a global modular
representation.

Let b be the kernel Rψ/a� Rψ/
√
a. Since M(2) is Cohen–Macaulay, Rψ/a is

equidimensional. Thus if b is nonzero then it is a 2-dimensional Rψ-module, and
the cycle z1(b/$) is nonzero. Since

z1(Rψ/(a,$))= z1(Rψ/(
√
a,$))+ z1(b/$),

if Rψ/a is not reduced then we would conclude that e(Rψ/(a,$))>e(Rψ(w,τ )/$).
Since e(Rψ/(a,$))= e(M(2)/$)=

∑
σ mσ (w, τ )e(Cσ ), in this case we would

obtain a contradiction to the Breuil–Mézard conjecture.
If the residual representation can be suitably globalized (when p = 2 this means

that it is of the form ρ̄|GQp
, where ρ̄ satisfies the assumptions made in Section 3B)

then a global argument gives an inequality in the opposite direction, thus allowing

2I thank G. Dospinescu for pointing this out to me.
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us to conclude that Rψ/a is reduced. If p > 2 then such an argument is made in
[Kisin 2009a, §2.3]. If p = 2 then the same argument can be made using inequality
(41) in the proof of Proposition 3.17 and the proof of Corollary 3.27.

Remark 2.36. If R� is the framed deformation ring of ρ and R is the universal
deformation ring of ρ then R�∼= R[[x1, x2, x3]]. Thus we have a map of cycle groups

f : Zi (R)→ Zi+3(R�), p 7→ p[[x1, x2, x3]],

which preserves Hilbert–Samuel multiplicities. The extra variables only keep
track of a choice of basis. This implies that if Rψ,�(w, τ ) is the quotient of R�

parametrizing potentially semistable framed deformations of type (w, τ, ψ) then
Rψ,�(w, τ ) ∼= Rψ(w, τ )[[x1, x2, x3]], so that the cycle of Rψ,�(w, τ )/$ is the
image of the cycle of Rψ(w, τ )/$ under f . Using this, one may deduce a version
of Theorem 2.34 for framed deformation rings.

Let ρ =
(
χ1
0

0
χ2

)
, and let R� be the universal framed deformation ring of ρ. Let

Rψ,�(w, τ ) (resp. Rψ,�,cr(w, τ )) be the reduced, O-torsion-free quotient of R�

parametrizing potentially semistable (resp. potentially crystalline) lifts of p-adic
Hodge type (w, τ, ψ).

Theorem 2.37. There is a subset {C1,σ , C2,σ }σ of Z4(Rψ,�/$) indexed by the ir-
reducible smooth k-representations σ of K such that for all p-adic Hodge types
(w, τ ) we have equalities

z4
(
Rψ,�(w, τ )/$

)
=

∑
σ

mσ (w, τ )(C1,σ + C2,σ ),

z4
(
Rψ,�,cr(w, τ )/$

)
=

∑
σ

mcr
σ (w, τ )(C1,σ + C2,σ ).

The cycle C1,σ is nonzero if and only if HomK
(
σ,
(
IndG

B χ1⊗χ2ω
−1
)
sm

)
6= 0, and

C2,σ is nonzero if and only if HomK
(
σ,
(
IndG

B χ2⊗χ1ω
−1
)
sm

)
6= 0, in which case

the Hilbert–Samuel multiplicity is equal to 1.

Proof. Given Theorem 2.34, the assertion follows from Theorem 7.3 and Remark 7.4
of [Paškūnas 2015a]. �

The following corollary will be used in the global part of the paper.

Corollary 2.38. Assume that p = 2, ψ is unramified and either ρ is absolutely
irreducible or ρss

= χ1⊕χ2, with χ1 6= χ2. If w = (0, 1) and τ = 1⊕ 1 then

Rψ,�,cr(w, τ )= Rψ,�(w, τ ).

In other words, every semistable lift of ρ with Hodge–Tate weights (0, 1) is
crystalline.
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Proof. It is enough to prove the statement when ρ is nonsplit. Since if the assertion
was false in the split case then by choosing a different lattice in the semistable,
noncrystalline lift we would also obtain a contradiction in the nonsplit case. Since
framed deformation rings are formally smooth over the nonframed ones, it is enough
to prove that Rψ(w, τ )= Rψ,cr(w, τ ). By the same argument as in Remark 2.35
we see that it is enough to show that Rψ(w, τ )/$ and Rψ,cr(w, τ )/$ have the
same cycles (and even the equality of Hilbert–Samuel multiplicities will suffice).
Since p = 2 there are only 2 irreducible smooth k-representations of K : 1 and st.
The K-socle of π in all the cases is isomorphic to 1⊕ st, σ(w, τ )/$ ∼= st and
σ cr(w, τ )/$ ∼= 1. The assertion follows from Theorem 2.34. �

Remark 2.39. Assume that p = 2, let ξ : GQp → O× be unramified and congru-
ent to ψ modulo $ , and let (w, τ ) be arbitrary. It follows from Theorem 2.34,
Remark 2.36, Theorem 2.37 and the proof of Corollary 2.38 that

z4
(
Rψ,�(w, τ )/$

)
= (m1(w, τ )+mst(w, τ ))z4

(
Rξ,�((0, 1), 1⊕ 1)/$

)
,

where the cycles live in Z4(R�). This equality implies the equality of the respective
Hilbert–Samuel multiplicities.

3. Global part

In the global part of the paper we let p = 2, so that L is a finite extension of Q2

with the ring integers O and residue field k.

3A. Quaternionic modular forms. We follow very closely [Kisin 2009b, §3.1].
Let F be a totally real field in which 2 splits completely. Let D be a quaternion
algebra with center F, ramified at all the infinite places of F and a set of finite
places 6 which does not contain any primes dividing 2. We fix a maximal order OD

of D, and for each finite place v 6∈6 we have an isomorphism (OD)v ∼= M2(OFv ).
For each finite place v of F we will denote by N(v) the order of the residue field
at v, and by $v ∈ Fv a uniformizer.

Denote by A
f
F ⊂ AF the finite adeles, and let U =

∏
vUv be a compact open

subgroup contained in
∏
v(OD)

×
v . We assume that if v ∈ 6 then Uv = (OD)

×
v

and if v | 2 then Uv = GL2(OFv ) = GL2(Z2). Let A be a topological Z2-algebra.
For each v | 2, we fix a continuous representation σv :Uv→ Aut(Wσv ) on a finite
free A-module. Write Wσ =

⊗
v|2,AWσv and denote by σ :

∏
v|2Uv → Aut(Wσ )

the corresponding representation. We regard σ as being a representation of U by
letting Uv act trivially if v - 2. Finally, assume there exists a continuous character
ψ : (A

f
F )
×/F×→ A× such that, for any place v of F, the action of Uv ∩O×Fv on σ

is given by multiplication by ψ . We extend the action of U on Wσ to U (A f
F )
×

by letting (A f
F )
× act via ψ .
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Let Sσ,ψ(U, A) denote the set of continuous functions

f : D× \ (D⊗F A
f
F )
×
→Wσ

such that for g ∈ (D⊗F A
f
F )
× we have f (gu)= σ(u)−1 f (g), u ∈U , and f (gz)=

ψ−1(z) f (g), z ∈ (A f
F )
×. If we write (D⊗F A

f
F )
×
=
∐

i∈I D×tiU (A
f
F )
× for some

ti ∈ (D ⊗F A
f
F )
× and some finite index set I, then we have an isomorphism of

A-modules

Sσ,ψ(U, A) ∼=−→
⊕
i∈I

W
(
U (A f

F )
×
∩t−1

i D×ti
)
/F×

σ , f 7→ ( f (ti ))i∈I . (28)

Lemma 3.1. Let Umax =
∏
vO
×

Dv
, where the product is taken over all finite places

of F. Let t ∈ (D⊗F A
f
F )
×. Then the group

(
Umax(A

f
F )
×
∩ t D×t−1

)
/F× is finite

and there is an integer N, independent of t , such that its order divides N.

Proof. This is explained in Section 7.2 of [Khare and Wintenberger 2009b]; see
also [Taylor 2006, Lemma 1.1]. �

I thank Mark Kisin for explaining the proof of the following lemma to me.

Lemma 3.2. Let v1 be a finite place of F such that D splits at v1 and v1 does
not divide 2N, where N is the integer defined in Lemma 3.1. Let U =

∏
vUv be a

subgroup of (D⊗F A
f
F )
× such that Uv =O×Dv

if v 6= v1 and Uv1 is the subgroup of
upper triangular, unipotent matrices modulo $v1 . Then(

U (A f
F )
×
∩ t D×t−1)/F× = 1 for all t ∈ (D⊗F A

f
F )
×. (29)

Proof. Let u ∈
(
U (A f

F )
×
∩ t D×t−1

)
such that u 6∈ F×. Then the F-subalgebra F[u]

of t Dt−1 is a quadratic field extension of F. Let u′ be the conjugate of u over F.
Then u′ = Nm(u)/u, where Nm is the reduced norm. Consider w = u/u′ =
u2/Nm(u). Write u = hg with h ∈ U and g ∈ (A f

F )
×. Then Nm(g) = g2 and so

w = u/u′ = h2/Nm(h). Thus w is in U and also in t D×t−1.
Since

(
U (A f

F )
×
∩ t D×t−1

)
/F× is a subgroup of

(
Umax(A

f
F )
×
∩ t D×t−1

)
/F×,

uN is in F× and hence wN
= uN/(u′)N

= 1. Let l be the prime dividing N(v1).
Since Uv1 is a pro-l group and l does not divide N, the image of w under the
projection U →Uv1 is equal to 1. Since for every v the map D→ Dv is injective,
we conclude that w = 1, which implies that u ∈ F. �

If (29) holds then it follows from (28) that σ 7→ Sσ,ψ(U, A) defines an exact
functor from the category of continuous representations of U on finitely generated
A-modules, on which Uv for v - 2 acts trivially and U ∩ (A f

F )
× acts by ψ , to the

category of finitely generated A-modules.
Let S be a finite set of places of F containing 6, all the places above 2,

all the infinite places and all the places v for which Uv is not maximal. Let
Tuniv

S,A = A[Tv, Sv]v 6∈S be a commutative polynomial ring in the indicated formal
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variables. We let (D⊗F A
f
F )
× act on the space of continuous Wσ -valued functions

on (D⊗F A
f
F )
× by right translations, (h f )(g) := f (gh). Then Sσ,ψ(U, A) becomes

a Tuniv
S,A -module with Sv acting via the double coset Uv

(
$v
0

0
$v

)
Uv and Tv acting via

the double coset Uv
(
$v
0

0
1

)
Uv. We write Tσ,ψ(U, A) or Tσ,ψ(U ) for the image of

Tuniv
S,A in the endomorphisms of Sσ,ψ(U, A).

3B. Residual Galois representation. Keeping the notation of the previous section
we fix an algebraic closure F of F and let GF,S be the Galois group of the maximal
extension of F in F which is unramified outside S. We view ψ as a character of
GF,S via global class field theory, normalized so that uniformizers are mapped to
geometric Frobenii. Let χcyc :GF,S→O× be the global 2-adic cyclotomic character.
We note that χcyc is trivial modulo $ . For each place v of F, including the infinite
places, we fix an embedding F ↪→ Fv . This induces a continuous homomorphism
of Galois groups GFv := Gal(Fv/Fv)→ GF,S . We fix a continuous representation

ρ̄ : GF,S→ GL2(k)

and assume that the following conditions hold:

• The image of ρ̄ is nonsolvable.

• ρ̄ is unramified at all finite places v - 2.

• If v ∈ S is a finite place, v 6∈6, and v - 2, then the eigenvalues of ρ̄(Frobv) are
distinct.

• If v ∈6 then the eigenvalues of ρ̄(Frobv) are equal.

• det ρ̄ ≡ ψχcyc (mod$).

• If v ∈ S is a finite place, v 6∈6, and v - 2, then

Uv =
{
g ∈ GL2(OFv ) : g ≡

( 1
0
∗

1

)
(mod$v)

}
and at least one such v does not divide 2N, so that the condition of Lemma 3.2
is satisfied.

3B1. Local deformation rings. We fix a basis of the underlying vector space Vk

of ρ̄. For each v ∈ S let R�
v be the framed deformation ring of ρ̄|GFv

and let Rψ,�v

be the quotient of R�
v parametrizing lifts with determinant ψχcyc. We will now

introduce some quotients of Rψ,�v .
For v | 2 let τv be a 2-dimensional representation of the inertia group Iv with an

open kernel, and let wv = (av, bv) be a pair of integers with bv > av. Let σ(τv)
be any absolutely irreducible representation of Uv = GL2(Z2) with the property
that, for all irreducible infinite-dimensional smooth representations π of GL2(Q2),
HomUv (σ (τv), π) 6= 0 if and only if the restriction to Iv of the Weil–Deligne
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representation LL(π) associated to π via the local Langlands correspondence is
isomorphic to τ . The existence of such σ(τv) is shown in [Henniart 2002], where it
is also shown that if HomUv (σ (τv), π) 6= 0 then it is one-dimensional. We choose
a Uv-invariant O-lattice σ(τv)0 in σ(τv) and let

σv := σ(τv)
0
⊗O Symbv−av−1O2

⊗O detav . (30)

We let Rψ,�v (σv) be the reduced, O-flat quotient of Rψ,�v parametrizing potentially
semistable lifts with Hodge–Tate weights wv and inertial type τv. This ring is
denoted by Rψ,�(w, τ ) in the local part of the paper.

We similarly define σ cr(τv) by additionally requiring that HomUv (σ
cr(τv), π) 6= 0

if and only if the monodromy operator N in LL(π) is zero and LL(π)|Iv∼= τv. In
this case we let

σv := σ
cr(τv)

0
⊗O Symbv−av−1O2

⊗O detav . (31)

We let Rψ,�v (σv) be the quotient of Rψ,�v parametrizing potentially crystalline
lifts with Hodge–Tate weights wv and inertial type τv. This ring is denoted by
Rψ,�,cr(w, τ ) in the local part of the paper.

It follows either from the local part of the paper or from [Kisin 2008], where a
more general result is proved, that if Rψ,�v (σv) is nonzero then it is equidimensional
of Krull dimension 5. Since the residue field of Z2 has 2 elements, σ(τv) need not
be unique (see [Henniart 2002, §§A.2.6, A.2.7]); however, the semisimplification
of σ(τv)0⊗O k is the same in all cases.

If v is infinite then Rψ,�v is a domain of Krull dimension 3 and Rψ,�v

[ 1
2

]
is regular

[Kisin 2009b, Proposition 2.5.6; Khare and Wintenberger 2009b, Proposition 3.1].
If v is finite, ρ̄ is unramified at v and ρ̄(Frobv) has distinct Frobenius eigenvalues,

then Rψ,�v has Krull dimension 4 and Rψ,�v

[1
2

]
is regular. This follows from

[Kisin 2009b, Proposition 2.5.4], where it is shown that the dimension is 4 and
the irreducible components are regular. Since we assume that the eigenvalues of
ρ̄(Frobv) are distinct, ρ̄ cannot have a lift of the form γ ⊕ γχcyc. It follows from
the proof of [Kisin 2009b, Proposition 2.5.4] that different irreducible components
of Rψ,�v

[ 1
2

]
do not intersect.

If v is finite, ψ and ρ̄ are unramified at v and ρ̄(Frobv) has equal eigenvalues,
then for an unramified character γ :GFv→O× such that γ 2

=ψ |GFv
we let Rψ,�v (γ )

be a reduced O-torsion-free quotient of Rψ,�v with the property that if L ′/L is a
finite extension then a map x : Rψ,�v → L ′ factors through Rψ,�v (γ ) if and only if Vx

is isomorphic to
(γχcyc

0
∗

γ

)
. It follows from [Kisin 2009b, Proposition 2.5.2] via

[Kisin 2009c, Proposition 2.6.6] and [Khare and Wintenberger 2009b, Theorem 3.1]
that Rψ,�v (γ ) is a domain of Krull dimension 4 and Rψ,�v (γ )

[ 1
2

]
is regular. If L is

large enough then there are precisely two such characters, which we denote by γ1
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and γ2. We let R̄ψ,�v be the image of

Rψ,�v → Rψ,�v (γ1)
[ 1

2

]
× Rψ,�v (γ2)

[ 1
2

]
.

Then R̄ψ,�v is a reduced, O-flat quotient of Rψ,�v such that if L ′/L is a finite extension
then a map x : Rψ,�v → L ′ factors through R̄ψ,�v if and only if Vx is isomorphic to(γχcyc

0
∗

γ

)
for an unramified character γ . Moreover,

R̄ψ,�v

[ 1
2

]
∼= Rψ,�v (γ1)

[ 1
2

]
× Rψ,�v (γ2)

[ 1
2

]
.

Thus R̄ψ,�v

[1
2

]
is regular and equidimensional and the Krull dimension of R̄ψ,�v is 4.

We let
R�

S =
⊗̂
v∈S

R�
v , Rψ,�S =

⊗̂
v∈S

Rψ,�v , σ :=
⊗̂
v|2

σv,

and
Rψ,�S (σ ) :=

⊗̂
v|2

Rψ,�v (σv)
⊗̂
v∈6

R̄ψ,�v

⊗̂
v∈S\6
v -2∞

Rψ,�v

⊗̂
v|∞

Rψ,�v .

It follows from above that Rψ,�S (σ ) is equidimensional of Krull dimension equal to

1+ 4
∑
v | 2

1+ 3|6| + 3
(
|S| − |6| −

∑
v | 2

1−
∑
v |∞

1
)
+ 2

∑
v |∞

1= 1+ 3|S|. (32)

3B2. Global deformation rings. Since ρ̄ is assumed to have nonsolvable image,
ρ̄ is absolutely irreducible. We define RψF,S to be the quotient of the universal
deformation ring of ρ̄ parametrizing deformations with determinant ψχcyc. If Q
is a finite set of places of F disjoint from S then we let SQ = S ∪ Q and define
RψF,SQ

in the same way by viewing ρ̄ as a representation of GF,SQ .
Denote by Rψ,�F,SQ

the complete local O-algebra representing the functor which as-
signs to an artinian, augmented O-algebra A the set of isomorphism classes of tuples
{VA, βw}w∈S , where VA is a deformation of ρ̄ to A with determinant ψχcyc and βw
is a lift of a chosen basis of Vk to a basis of VA. The map {VA, βw}w∈S 7→ {VA, βv}

induces a homomorphism of O-algebras Rψ,�v → Rψ,�F,SQ
for every v ∈ S and hence

a homomorphism of O-algebras Rψ,�S → Rψ,�F,SQ
.

3C. Patching. For each n≥ 1 let Qn be the set of places of F disjoint from S, as in
[Kisin 2009b, Lemma 3.2.2] via [Khare and Wintenberger 2009b, Proposition 5.10].
We let Q0 = ∅, so that SQn = S for n = 0. Let UQn =

∏
v(UQn )v be a compact

open subgroup of (D⊗F A
f
F )
× such that (UQn )v = Uv for v 6∈ Qn and (UQn )v is

defined as in [Kisin 2009b, §3.1.6] for v ∈ Qn .
Let m be a maximal ideal of Tuniv

S,O such that the residue field is k, Tv is mapped to
tr ρ̄(Frobv) and Sv is mapped to the image of ψ(Frobv) in k for all v 6∈ S. We define
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mQn in Tuniv
SQn ,O

in the same manner. Let σ =
⊗

v|2 σv, where each σv is given by
either (30) or (31). We assume that Sσ,ψ(U,O)m 6= 0. Then for all n ≥ 0 there is
a surjective homomorphism of O-algebras RψF,SQn

→ Tσ,ψ(UQn )mQn
such that for

all v 6∈ SQn the trace of Frobv of the tautological RψF,SQn
-representation of GF,SQn

is mapped to Tv. Set

Mn(σ )= Rψ,�F,SQn
⊗RψF,SQn

Sσ,ψ(UQn ,O)mQn
,

with the convention that if n = 0 then Qn =∅, SQn = S, mQn =m, so that

M0(σ )= Rψ,�F,S ⊗RψF,S
Sσ,ψ(U,O)m.

It follows from the local-global compatibility of Jacquet–Langlands and Langlands
correspondences that the action of Rψ,�F,SQn

on Mn(σ ) factors through the quotient

Rψ,�F,SQn
(σ ) := Rψ,�S (σ )⊗

Rψ,�S
Rψ,�F,SQn

.

Let h= dimk H 1(GF,S, adρ̄)−2= |Qn|. Let a∞ denote the ideal of O[[y1, . . . , yh]]

generated by (y1, . . . , yh). Since Rψ,�F,SQn
is formally smooth over RψF,SQn

of relative
dimension j = 4|S| − 1 we may choose an identification

Rψ,�F,SQn
= RψF,SQn

[[yh+1, . . . , yh+ j ]]

and regard Mn(σ ) as an O[[y1, . . . , yh+ j ]]-module. This allows us to consider RψF,SQn

as an Rψ,�S -algebra via the map Rψ,�S → Rψ,�F,SQn
/(yh+1, . . . , yh+ j )= RψF,SQn

. We let

RψF,SQn
(σ ) := Rψ,�S (σ )⊗

Rψ,�S
RψF,SQn

.

Let g=2|Qn|+1 and t=2−|S|+|Qn| and let Ĝm be the completion of the O-group
Gm along the identity section. The patching argument as in [Khare and Wintenberger
2009b, Proposition 9.3] shows that there exist O[[y1, . . . , yh+ j ]]-algebras R′

∞
(σ )

and R∞(σ ) and an R∞(σ )-module M∞(σ ) with the following properties:

(P1) There are surjections of O-algebras

Rψ,�S (σ )[[x1, . . . , xg]]� R′
∞
(σ )� R∞(σ ).

(P2) There is an isomorphism of Rψ,�S (σ )-algebras

R∞(σ )/a∞R∞(σ )
∼=
−→ Rψ,�F,S (σ )

and an isomorphism of Rψ,�F,S (σ )-modules

M∞(σ )/a∞M∞(σ )
∼=
−→M0(σ ).

(P3) M∞(σ ) is finite flat over O[[y1, . . . , yh+ j ]].



1336 Vytautas Paškūnas

(P4) Spf R′
∞
(σ ) is equipped with a free action of (Ĝm)

t, and a (Ĝm)
t -equivariant

morphism δ : Spf R′
∞
(σ )→ (Ĝm)

t, where (Ĝm)
t acts on itself by the square

of the identity map.

(P5) We have δ−1(1) = Spf R∞(σ ) ⊂ Spf R′
∞
(σ ), and the induced action of

(Ĝm[2])t on Spf R∞(σ ) lifts to M∞(σ ).

If A is a local noetherian ring of dimension d and M is a finitely generated
A-module, we denote by e(M, A) the coefficient of xd in the Hilbert–Samuel
polynomial of M with respect to the maximal ideal of A, multiplied by d!. In
particular, e(M, A)=0 if dim M<dim A. If M= A we abbreviate e(M, A) to e(A).

It follows from [Khare and Wintenberger 2009b, Proposition 2.5] that there is a
complete local noetherian O-algebra

(
Rinv
∞
(σ ),minv

σ

)
with residue field k such that

Spf Rinv
∞
(σ )= Spf R′

∞
(σ )/(Ĝm)

t. Moreover,

R′
∞
(σ )= Rinv

∞
(σ ) ⊗̂O O[[Zt

2]]
∼= Rinv

∞
(σ )[[z1, . . . , zt ]]. (33)

This implies that

dim R′
∞
(σ )= dim Rinv

∞
(σ )+ t, e(R′

∞
(σ )/$)= e(Rinv

∞
(σ )/$). (34)

Lemma 3.3. There are a1, . . . , at ∈m
inv
σ such that

R∞(σ )∼=
Rinv
∞
(σ )[[z1]]

((1+ z1)2− (1+ a1))
⊗Rinv

∞ (σ )
· · ·⊗Rinv

∞ (σ )

Rinv
∞
(σ )[[zt ]]

((1+ zt)2− (1+ at))
. (35)

In particular, R∞(σ ) is a free Rinv
∞
(σ )-module of rank 2t.

Proof. It follows from [Khare and Wintenberger 2009b, Lemma 9.4] that Spf R∞(σ )
is a (Ĝm[2])t -torsor over Spf Rinv

∞
(σ ). The assertion follows from [SGA 3 II 1970,

Exposé VIII, Proposition 4.1]. �

Lemma 3.4. Let p ∈ Spec Rinv
∞
(σ ). The group (Ĝm[2])t(O) acts transitively on the

set of prime ideals of R∞(σ ) lying above p.

Proof. Let us write X for Spf R∞(σ ) and G for (Ĝm[2])t. The action of G on X
induces an action of (±1)t = G(O) ↪→ G(R∞(σ )) on X (R∞(σ )). If g ∈ G(O)
we let φg ∈ X (R∞(σ )) be the image of (g, idR∞(σ )). The map g 7→ φg induces a
homomorphism of groups G(O)→ Aut(R∞(σ )). Explicitly, if g = (ε1, . . . , εt),
where εi is either 1 or −1, then φg is Rinv

∞
(σ )-linear and maps 1+ zi to εi (1+ zi )

for 1≤ i ≤ t . It follows from (35) that G(O) acts transitively on the set of maximal
ideals of κ(p)⊗Rinv

∞ (σ )
R∞(σ ). �

Lemma 3.5. The support of M∞(σ ) in Spec R∞(σ ) is a union of irreducible com-
ponents. The Krull dimension of Spec R∞(σ ) is equal to h+ j + 1.
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Proof. It follows from part (P3) above that the support of M∞(σ ) is equidimensional
of dimension h+ j+1. To prove the assertion it is enough to show that the dimension
of R∞(σ ) is less than or equal to h+ j+1. Using Lemma 3.3, (34), (P1) and (32) we
deduce that dim R∞(σ )≤ dim Rψ,�S (σ )+ g− t = 3|S|+1+ g− t = h+ j +1. �

Lemma 3.6. e(R′
∞
(σ )/$)≤ e

(
Rψ,�S (σ )/$

)
.

Proof. It follows from (33) and Lemmas 3.3 and 3.5 that

dim R′
∞
(σ )= dim R∞(σ )+ t = t + h+ j + 1= 3|S| + 1+ g,

which is also the dimension of Rψ,�S (σ )[[x1, . . . , xg]] by (32). The surjection in
(P1) above implies that

e(R′
∞
(σ )/$)≤ e

(
Rψ,�S (σ )[[x1, . . . , xg]]/$

)
= e

(
Rψ,�S (σ )/$

)
. �

Lemma 3.7. If Sσ,ψ(U,O)m is supported on a closed point n ∈ Spec Rψ,�S (σ )
[ 1

2

]
then the localization Rψ,�S (σ )n is a regular ring.

Proof. Since the rings R�
v

[1
2

]
are regular for all v - 2 it is enough to show that n

defines a regular point in Spec Rψ,�v (σ ) for all v | 2. This follows from the proof of
Lemma B.5.1 in [Gee and Kisin 2014]. The argument is as follows: if the point
is not regular, then it must lie on the intersection of two irreducible components
of Spec Rψ,�v (σ ), but this would violate the weight–monodromy conjecture for
WD(ρn|GFv

); see [Gee and Kisin 2014] for details. �

Lemma 3.8. If Sσ,ψ(U,O)m is supported on a closed point n ∈ Spec R∞(σ )
[ 1

2

]
then the localization R∞(σ )n is a regular ring.

Proof. Let nS be the image of n in Spec Rψ,�S [[x1, . . . , xg]], let n′ be the image of n
in Spec R′

∞
(σ ) via the maps in (P1), and let ninv be the image of n in Spec Rinv

∞
(σ )

via (35). It follows from Lemma 3.7 that Rψ,�S (σ )[[x1, . . . , xg]]nS is a regular ring.
If the map

Rψ,�S (σ )[[x1, . . . , xg]]nS � R′
∞
(σ )n′ (36)

is an isomorphism, then R′
∞
(σ )n′ is a regular ring. We may assume that L is

sufficiently large, so that using (33) we may write n′ = (ninv, z1− a1, . . . , zt − at)

with ai ∈ $O for 1 ≤ i ≤ t . The images of z1 − a1, . . . , zt − at in n′/(n′)2 are
linearly independent. Since

Rinv
∞
(σ )ninv ∼= R′

∞
(σ )n′/(z1− a1, . . . , zt − at)R′∞(σ )n′,

we deduce that Rinv
∞
(σ )ninv is regular. It follows from (35) that the map

Rinv
∞
(σ )

[1
2

]
→ R∞(σ )

[ 1
2

]
is étale. Hence R∞(σ )n is a regular ring.
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If (36) is not an isomorphism then the dimension of the quotient must decrease.
This leads to the inequality dim R∞(σ)n<dim R∞(σ)−1. Since M∞(σ ) is a Cohen–
Macaulay module, as follows from (P3), its support cannot contain embedded
components, hence dim M∞(σ )n = dim M∞(σ )− 1. This leads to a contradiction,
as M∞(σ )n is a finitely generated R∞(σ )n-module. �

Lemma 3.9. Let A be a local noetherian ring and let (x1, . . . , xd) be a system of
parameters of A. If A is equidimensional then every irreducible component of A
contains a closed point of (A/(x2, . . . , xd))[1/x1].

Proof. Let p be an irreducible component of A. If A/(p, x2, . . . , xd)[1/x1] is
zero then x1 is nilpotent in A/(p, x2, . . . , xd). Since (x1, . . . , xd) is a system of
parameters of A, we conclude that A/(p, x2, . . . , xd) is zero dimensional, which
implies that dim A/p≤ d − 1, contradicting equidimensionality of A. �

Lemma 3.10. There is an integer r , independent of σ and the choices made in
the patching process, such that for all p ∈ Spec R∞(σ ) in the support of M∞(σ )
we have

dimκ(p) M∞(σ )⊗R∞(σ ) κ(p)≥ r,

with equality if p is a minimal prime of R∞(σ ) in the support of M∞(σ ).

Proof. Let q be a minimal prime of R∞(σ ) in the support of M∞(σ ). It is enough
to show that dimκ(q) M∞(σ )⊗R∞(σ ) κ(q) is independent of q and σ . Since

M∞(σ )/(y1, . . . , yh+ j )M∞(σ )∼= Sσ,ψ(U,O)m

and Sσ,ψ(U,O)m is a finitely generated O-module, y1, . . . , yh+ j ,$ is a system of
parameters for R∞(σ )/q and it follows from Lemma 3.9 that there is a maximal
ideal n of R∞(σ )

[ 1
2

]
, contained in V (q), such that Sσ,ψ(U,O)n 6= 0. It follows from

(P3) that M∞(σ ) is a Cohen–Macaulay module. The same holds for the localization
at n. Since R∞(σ )n is a regular ring by Lemma 3.8, a standard argument with the
Auslander–Buchsbaum theorem shows that M∞(σ )n is a free R∞(σ )n-module. By
localizing further at q we deduce that

dimκ(q) M∞(σ )⊗R∞(σ ) κ(q)= dimκ(n) M∞(σ )⊗R∞(σ ) κ(n)

= dimκ(n) Sσ,ψ(U,O)m⊗R∞(σ ) κ(n). (37)

So it is enough show that dimκ(n) Sσ,ψ(U,O)m⊗R∞(σ )κ(n) is independent of n and σ .
The action of R∞(σ ) on Sσ,ψ(U,O)m factors through the action of the Hecke algebra
Tσ,ψ(U ), which is reduced. Thus Tσ,ψ(U )

[ 1
2

]
is a product of finite field extensions

of L and we have

Sσ,ψ(U,O)m⊗R∞(σ ) κ(n)= Sσ,ψ(U,O)n = (Sσ,ψ(U,O)m⊗O L)[n].
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Let π =⊗′vπv be the automorphic representation of (D⊗F A
f
F )
× corresponding to

f D
∈ (Sσ,ψ(U,O)m⊗O L)[n]. We assume that L is sufficiently large. It follows

from the discussion in [Kisin 2009c, §3.1.14], relating Sσ,ψ(U, L) to the space of
classical automorphic forms on (D⊗F A

f
F )
×, that

dimL(Sσ,ψ(U,O)m⊗O L)[n] =
∏
v∈S
v -2∞

dimL π
Uv
v

∏
v | 2

dimL HomUv (σ (τv), πv).

We claim that the right-hand side of the above equation is equal to 2|S\(6∪{v|2∞})|.
The claim will follow from the local-global compatibility of Langlands and Jacquet–
Langlands correspondences. Let ρn be the representation of GF,S corresponding
to n, considered as a maximal ideal of RψF,S(σ )

[ 1
2

]
. If v | 2 then the results of

[Henniart 2002] imply that dimL HomUv (σ (τv), πv) = 1. If v ∈ 6 then πv is an
unramified character of D×v , and hence dimL π

Uv
v = 1. If v ∈ S, v - 2∞ and v 6∈6

then D is split at v, ρ̄|GFv
is unramified and ρ̄(Frobv) has distinct eigenvalues. This

implies that ρn|GFv
is an extension of distinct tamely ramified characters ψ1, ψ2

such that ψ1ψ
−1
2 6= χ

±1
cyc . We deduce that πv is a tamely ramified principal series.

Since Uv is equal to the subgroup of unipotent upper-triangular matrices modulo$v

in this case, we deduce that dimL π
Uv
v = 2. �

Lemma 3.11. There is an integer r , independent of σ and the choices made in the
patching process, such that for all minimal primes p of Rinv

∞
(σ ) in the support of

M∞(σ ) we have
dimκ(p) M∞(σ )⊗Rinv

∞ (σ )
κ(p)= 2tr.

Proof. To ease the notation, let us drop σ from it in this proof. Since p is minimal,
it is an associated prime and so M∞ will contain Rinv

∞
/p as a submodule. Since M∞

is O-torsion-free, this implies that the quotient field κ(p) has characteristic 0. It
follows from (35) that R∞⊗Rinv

∞
κ(p) is étale over κ(p), and so

R∞⊗Rinv
∞
κ(p)∼=

∏
q

κ(q),

where the product is taken over all prime ideals q of R∞ such that q∩ Rinv
∞
= p.

From this we get

dimκ(p) M∞⊗Rinv
∞
κ(p)=

∑
q

[κ(q) : κ(p)] dimκ(q) M∞⊗R∞ κ(q).

It follows from Lemma 3.4 and (P5) that all q appearing in the sum lie in the support
of M∞. Lemma 3.10 implies that dimκ(q) M∞⊗R∞ κ(q)= r . Thus

dimκ(p) M∞⊗Rinv
∞
κ(p)= r dimκ(p) R∞⊗Rinv

∞
κ(p)= r2t ,

where the last equality follows from Lemma 3.3. �
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Lemma 3.12. Let A be a local noetherian ring, let M, N be finitely generated
A-modules of dimension d , and let x ∈ A be M-regular and N-regular. If `Aq(Mq)≤

`Aq(Nq) for all q ∈ Spec A with dim A/q= d then

e(M/x M, A/x A)≤ e(N/x N , A/x A).

If `Aq(Mq)= `Aq(Nq) for all q ∈ Spec A with dim A/q= d then

e(M/x M, A/x A)= e(N/x N , A/x A).

Proof. It follows from Proposition 2.2.13 in [Emerton and Gee 2014] that

e(M/x M, A/x A)=
∑
q

`Aq(Mq)e(A/(q, x)), (38)

where the sum is taken over all primes q in the support of M such that dim A/q= d .
The above formula implies both assertions. �

Lemma 3.13. e
(
M∞(σ )/$, Rinv

∞
(σ )/$

)
≤ 2tre

(
Rinv
∞
(σ )/$

)
.

Proof. Let Tinv
∞
(σ ) be the image of Rinv

∞
(σ ) in EndO(M∞(σ )). Then

e
(
Tinv
∞
(σ )/$, Rinv

∞
(σ )/$

)
≤ e

(
Rinv
∞
(σ )/$

)
.

If q is a minimal prime of Rinv
∞
(σ ) in the support of M∞(σ ) then it follows from

Lemma 3.11 that there are surjections Tinv
∞
(σ )⊕2tr

q � M∞(σ )q. Thus `(M∞(σ )q)≤
2tr`

(
Tinv
∞
(σ )q

)
. The assertion follows from Lemma 3.12 applied with x = $ ,

M = M∞(σ ) and N = Tinv
∞
(σ )⊕2tr. �

Lemma 3.14. If the support of Sσ,ψ(U,O)m meets every irreducible component of
Rψ,�S (σ ) then the following hold:

(i) Rψ,�S (σ )[[x1, . . . , xg]]� R′
∞
(σ ) is an isomorphism.

(ii) Rinv
∞
(σ ) is reduced, equidimensional and O-flat.

(iii) R∞(σ ) is reduced, equidimensional and O-flat.

(iv) The support of M∞(σ ) meets every irreducible component of R∞(σ ).

(v) 2tre
(
Rψ,�S (σ )/$

)
= e

(
M∞(σ )/$, Rinv

∞
(σ )/$

)
.

Proof. Since Rψ,�S (σ )[[x1, . . . , xg]] is reduced and equidimensional and has the
same dimension as R′

∞
(σ ), to prove (i) it is enough to show that R′

∞
(σ )q 6= 0 for

every irreducible component V (q) of Spec Rψ,�S (σ )[[x1, . . . , xg]]. Since the diagram

Rψ,�S (σ )[[x1, . . . , xg]] //R∞(σ )

��

Rψ,�S (σ ) //

OO

RψF,S(σ )
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commutes and the support of Sσ,ψ(U,O)m meets every irreducible component
of Spec Rψ,�S , V (q) will contain a maximal ideal nS of Rψ,�S (σ )[[x1, . . . , xg]]

[ 1
2

]
,

which lies in the support of Sσ,ψ(U,O)m. It follows from the proof of Lemma 3.8
that (36) is an isomorphism in this case. Thus R′

∞
(σ )q 6= 0.

From part (i) we deduce that R′
∞
(σ ) is reduced, equidimensional and O-flat. It

follows from (33) that the same holds for Rinv
∞
(σ ). Since R∞(σ ) is a free Rinv

∞
(σ )-

module by Lemma 3.3, it is O-flat. Hence, it is enough to show that R∞(σ )
[1

2

]
is

reduced and equidimensional. It follows from Lemma 3.3 that R∞(σ )
[ 1

2

]
is étale

over Rinv
∞
(σ )

[ 1
2

]
, which implies the assertion. We also note that it follows from (i)

that the inequality in Lemma 3.6 is an equality, and (33) implies that

e
(
Rinv
∞
(σ )/$

)
= e

(
Rψ,�S /$

)
. (39)

It follows from our assumption that the support of M∞(σ ) meets every irreducible
component of Rψ,�S (σ )[[x1, . . . , xg]]. Part (i) and (33) imply that the support of
M∞(σ ) meets every irreducible component of Rinv

∞
(σ ). It follows from Lemma 3.4

that the group (Ĝm[2])t(O) acts transitively on the set of irreducible components
of R∞(σ ) lying above a given irreducible component of Rinv

∞
(σ ). Thus for part (iii)

it is enough to show that the support of M∞(σ ) in Spec R∞(σ ) is stable under the
action of (Ĝm[2])t(O). This is given by (P5) and can be proved in the same way as
[Khare and Wintenberger 2009b, Lemma 9.6].

Let V (q) be an irreducible component of Spec R∞(σ ). It follows from (iii) that
the localization R∞(σ )q is a reduced artinian ring, and hence is equal to the quotient
field κ(q). Thus M∞(σ )q ∼= M∞(σ )⊗R∞(σ ) κ(q). It follows from Lemma 3.10 that
M∞(σ )q has length r as an R∞(σ )q-module. By part (iv) M∞(σ ) is supported on
every irreducible component of R∞(σ ), and thus the cycle of M∞(σ ) is equal to
r times the cycle of R∞(σ ). Since both are O-torsion-free, we deduce that the cycle
of M∞(σ )/$ is equal to r times the cycle of R∞(σ )/$ , which implies that

e
(
M∞(σ )/$,Rinv

∞
(σ )/$

)
=re

(
R∞(σ )/$,Rinv

∞
(σ )/$

)
=2tre

(
Rinv
∞
(σ )/$

)
. (40)

Part (v) follows from (39) and (40). �

Proposition 3.15. For some s ≥ 0 there is an isomorphism of Rψ,�S -algebras

Rψ,�F,S
∼= Rψ,�S [[x1, . . . , xs+|S|−1]]/( f1, . . . , fs).

Proof. The assertion follows from the proof of [Khare and Wintenberger 2009b,
Proposition 4.5], where s = dimk H 1

{L⊥v }
(S, (Ad0)∗(1)) in the notation of that paper;

see their Lemma 4.6 and the displayed equation above it. �

Corollary 3.16. For some s ≥ 0 there is an isomorphism of Rψ,�S (σ )-algebras

Rψ,�F,S (σ )
∼= Rψ,�S (σ )[[x1, . . . , xs+|S|−1]]/( f1, . . . , fs).
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In particular, dim Rψ,�F,S (σ )≥ 4|S| and dim RψF,S(σ )≥ 1.

Proof. Since

Rψ,�F,S (σ )
∼= Rψ,�F,S ⊗Rψ,�S

Rψ,�S (σ )

the assertion follows from Proposition 3.15. Since dim Rψ,�S (σ )= 3|S|+1 by (32),
the isomorphism implies that

dim Rψ,�F,S (σ )≥ 3|S| + 1+ s+ |S| − 1− s = 4|S|.

Since Rψ,�F,S (σ ) is formally smooth over RψF,S(σ ) of relative dimension 4|S|−1, we
conclude that dim RψF,S(σ )≥ 1. �

Proposition 3.17. If Sσ,ψ(U,O)m 6= 0 then the following are equivalent:

(a) 2tre
(
Rψ,�S (σ )/$

)
= e

(
M∞(σ )/$, Rinv

∞
(σ )/$

)
.

(b) 2tre
(
Rψ,�S (σ )/$

)
≤ e

(
M∞(σ )/$, Rinv

∞
(σ )/$

)
.

(c) the support of M∞(σ ) meets every irreducible component of R∞(σ ).

(d) RψF,S(σ ) is a finitely generated O-module of rank at least 1 and

Sσ,ψ(U,O)n 6= 0 for all n ∈m-Spec RψF,S(σ )
[1

2

]
.

In this case any representation ρ : GF,S → GL2(O) corresponding to a maximal
ideal of RψF,S(σ )

[ 1
2

]
is modular.

Proof. Lemmas 3.6 and 3.13 and (33) imply that

e
(
M∞(σ )/$, Rinv

∞
(σ )/$

)
≤ 2tre

(
Rψ,�S (σ )/$

)
. (41)

Thus (a) is equivalent to (b). Moreover, if (a) holds then the inequalities in the
lemmas cited above have to be equalities. Since Rψ,�S (σ ) is reduced and O-torsion-
free, we deduce that R′

∞
(σ ) ∼= Rψ,�S (σ )[[x1, . . . , xg]]. Hence, R′

∞
(σ ) is reduced,

equidimensional and O-torsion-free. The isomorphism (33) implies that the same
holds for Rinv

∞
(σ ), which implies that R∞(σ ) is reduced, equidimensional, and

O-torsion-free; see the proof of Lemma 3.14. Since we have assumed (a), we have

2tre
(
Rinv
∞
(σ )/$

)
= e

(
M∞(σ )/$, Rinv

∞
(σ )/$

)
. (42)

Let V (q1), . . . , V (qm) be the irreducible components of the support of M∞(σ )
in Spec R∞(σ ). Since R∞(σ ) is reduced, if V (q) is an irreducible component of
Spec R∞(σ ) then `(R∞(σ )q)= 1. It follows from Lemma 3.10 that if V (q) is an ir-
reducible component of Spec R∞(σ ) in the support of M∞(σ ) then `(M∞(σ )q)= r .
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It follows from (38) that

e
(
M∞(σ )/$, Rinv

∞
(σ )/$

)
= r

m∑
i=1

e
(
R∞(σ )/($, qi ), Rinv

∞
(σ )/$

)
, (43)

e
(
R∞(σ )/$, Rinv

∞
(σ )/$

)
=

∑
q

e
(
R∞(σ )/($, q), Rinv

∞
(σ )/$

)
, (44)

where the last sum is taken over all the irreducible components V (q). Since
e
(
R∞(σ )/($, q), Rinv

∞
(σ )/$

)
6= 0 we deduce from (42)–(44) that (b) implies (c).

We have
R∞(σ )/(y1, . . . , yh+ j )∼= RψF,S(σ ),

M∞(σ )/(y1, . . . , yh+ j )M∞(σ )∼= Sσ,ψ(U,O)m.
Thus, if M∞(σ ) is supported on the whole of Spec R∞(σ ) then Sσ,ψ(U,O)m is
supported on the whole of Spec RψF,S(σ ). Since Sσ,ψ(U,O)m is a free O-module of
finite rank, we deduce that (c) implies (d).

If (d) holds then it follows from Corollary 3.16 that f1, . . . , fs,$ is a part of a
system of parameters of Rψ,�S (σ )[[x1, . . . , xs+|S|−1]], and Lemma 3.9 implies that
every irreducible component of that ring contains a closed point of RψF,S(σ )

[ 1
2

]
.

Since every such component is of the form q[[x1, . . . , xs+|S|−1]], we deduce that
every irreducible component of Rψ,�S (σ ) contains a closed point of RψF,S(σ )

[ 1
2

]
. It

follows from the second part of (d) that the support of Sσ,ψ(U,O)m meets every
irreducible component of Rψ,�S (σ ). It follows from Lemma 3.14 that (d) implies (a).
Since Sσ,ψ(U,O)

[ 1
2

]
is a finite-dimensional L-vector space, the last assertion is a

direct consequence of (d). �

3D. Small weights. Let 1̃ be the trivial representation of GL2(Z2) on a free O-
module of rank 1. We let s̃t be the space of functions f : P1(F2)→ O such that∑

x∈P1(F2)
f (x)=0 equipped with the natural action of GL2(Z2). The reduction of 1̃

modulo $ is the trivial representation, the reduction of s̃t modulo $ is isomorphic
to k2, which we will also denote by st. These are the only smooth irreducible
k-representations of GL2(Z2).

The purpose of this subsection is to verify that the equivalent conditions of
Proposition 3.17 hold when, for all v | 2, σv is either 1̃ or s̃t, under the assumption
that ρ̄|Gv does not have scalar semisimplification at any place v | 2. If σ is the trivial
representation then the result will follow from the modularity lifting theorem of
[Khare and Wintenberger 2009b; Kisin 2009b]. In the general case, our assumption
implies that any semistable lift of ρ̄|GFv

with Hodge–Tate weights (0, 1) is crystalline
(see Corollary 2.38). This implies that S1̃,ψ(U,O)m and Sσ,ψ(U,O)m and RψF,S(1̃)
and RψF,S(σ ) coincide.

If p> 2, the results of this section are proved in [Gee 2011] by a characteristic-p
argument.
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Proposition 3.18. Assume that ψ is trivial on U ∩ (A f
F )
×, σv = 1̃ for all v | 2

and ρ̄|Gv does not have scalar semisimplification for any v | 2. Then RψF,S(σ ) is a
finite O-module of rank at least 1.

Proof. It follows from Lemma 2.2 in [Taylor 2003] that there is a finite solvable,
totally real extension F ′ of F such that, for all places w of F ′ above a place
v ∈ S, we have F ′w = Fv, except if v | 2 and ρ̄|Gv is unramified, in which case F ′w
is an unramified extension of Q2 and ρ̄|GF ′w

is trivial. Let S′ be the places of F ′

above the places S of F. By changing F by F ′ we are in position to apply Propo-
sition 9.3 of [Khare and Wintenberger 2009b], part (II) of which says that the
ring RψF ′,S′(σ ) is a finite O-module. We now argue as in the last paragraph of the
proof of Theorem 10.1 of [Khare and Wintenberger 2009b]. The restriction to
GF ′,S′ induces a map between the deformation functors and hence a homomorphism
RψF ′,S′(σ )→ RψF,S(σ ). Let ρψF,S :GF,S→GL2

(
RψF,S(σ )

)
be the universal deformation.

Since RψF ′,S′(σ )/$ is finite, the image of GF ′,S′ in GL2
(
RψF,S(σ )/$

)
under ρψF,S is a

finite group. Since F ′/F is finite the image of GF,S in GL2
(
RψF,S(σ )/$

)
is a finite

group. Lemma 3.6 in [Khare and Wintenberger 2009a] implies that RψF,S(σ )/$ is
finite. Since dim RψF,S(σ )≥ 1 by Corollary 3.16, we conclude that dim RψF,S(σ )= 1
and $ is a system of parameters for RψF,S(σ ), which implies that RψF,S(σ ) is a finite
O-module of rank at least 1. �

Corollary 3.19. Assume that ψ is trivial on U ∩ (A f
F )
×, σv = 1̃ for all v | 2 and

ρ̄|Gv does not have scalar semisimplification for any v | 2. If Sσ,ψ(U,O)m 6= 0 then
the equivalent conditions of Proposition 3.17 hold.

Proof. Since Sσ,ψ(U,O)m is nonzero and O-torsion-free, there is a maximal ideal n
of RψF,S

[1
2

]
such that Sσ,ψ(U,O)n 6= 0. This implies that ρ̄ satisfies hypotheses (α)

and (β) made in Section 8.2 of [Khare and Wintenberger 2009b].
Let n be any maximal ideal of Rψ,�F,S (σ )

[ 1
2

]
, and let ρn be the corresponding

representation of GF,S . It follows from Theorem 9.7 in [Khare and Wintenberger
2009b] or Theorem 3.3.5 of [Kisin 2009b] that there is a Hilbert eigenform f over F
such that ρn∼= ρf . Let π =

⊗
′

v πv be the corresponding automorphic representation
of GL2(A

f
F ). If v is a finite place, where D ramifies, then, because of the way we

have set up our deformation problem, ρn|GFv
is isomorphic to

(γvχcyc
0
∗

γv

)
, where γv

is an unramified character. The restriction of the 2-adic cyclotomic character to GFv
is an unramified character which sends the arithmetic Frobenius to qv ∈ Z×2 . Since
ρn arises from a Hilbert modular form, the representation ρn|GFv

cannot be split,
as in this case we would obtain a contradiction to the purity of ρn; see [Blasius
2006, §2.2]. Hence, ρn|GFv

is nonsplit, and this implies that πv is a twist of the
Steinberg representation by an unramified character, at all v, where D is ramified.
By Jacquet–Langlands correspondence there is an eigenform f D

∈ Sσ,ψ(U,O)m
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with the same Hecke eigenvalues as f . This implies that Sσ,ψ(U,O)m is supported
on n. Proposition 3.18 implies that part (d) of Proposition 3.17 holds. �

Lemma 3.20. Fix a place w of F above 2. Let σ and σ ′ be such that for all
v | 2, v 6= w, we have σv = σ ′v, which is equal to either 1̃ or s̃t, and σw = 1̃ and
σ ′w = s̃t. Assume that ψ is trivial on U ∩ (A f

F )
×, and ρ̄|GFw

does not have scalar
semisimplification. Then the rings RψF,S(σ ) and RψF,S(σ

′) are equal. Moreover, if n
is a maximal ideal of RψF,S(σ )

[1
2

]
then Sσ,ψ(U,O)m is supported on n if and only if

Sσ ′,ψ(U,O)m is supported on n.

Proof. The ring Rψ,�w (1̃) parametrizes crystalline lifts of ρ̄|GFw
with Hodge–Tate

weights (0, 1). The ring Rψ,�w (s̃t) parametrizes semistable lifts of ρ̄|GFw
with Hodge–

Tate weights (0, 1). Since both rings are reduced and O-torsion-free, we have a
surjection Rψ,�w (s̃t)� Rψ,�w (1̃). The assumption that ρ̄|GFw

does not have scalar
semisimplification implies that every such semistable lift is automatically crystalline,
hence the map is an isomorphism. This implies that the global deformation rings
are equal; see Corollary 2.38.

We will deduce the second assertion from the Jacquet–Langlands correspondence
and the compatibility of local and global Langlands correspondence. Let τ be either
σ or σ ′. We fix an isomorphism i :Qp ∼= C, let τ

C
= τ ⊗O C and let τ ∗

C
be the C-

linear dual of τ . Since U∩(A f
F )
× acts trivially on τ by assumption, we may consider

τ ∗
C

as a representation of U (A f
F )
×, on which (A f

F )
× acts by ψ . Let U ′ =

∏
vU ′v be

an open subgroup of U such that U ′v =Uv , if v - 2 and U ′v ={g ∈Uv : g≡ 1(mod 2)}
for all v | 2. Then U ′ acts trivially on τ . Let C∞(D×\(D⊗F AF )

×/U ′) be the space
of smooth C-valued functions on D× \ (D⊗F AF )

× which are invariant under U ′.
Since U ′ is a normal subgroup of U, U acts on this space by right translations.
It follows from [Kisin 2009c, §3.1.14; Taylor 2006, Lemma 1.3] that we have an
isomorphism

Sτ,ψ(U,O)⊗O C∼= HomU (A f
F )
×(τ,C∞(D× \ (D⊗F AF )

×/U ′D×
∞
)).

This isomorphism is equivariant for the Hecke operators at v 6∈ S. The action of
Rψ,�F,S (τ ) on Sτ,ψ(U,O)m factors through the action of the Hecke algebra Tτ,ψ(U ).
Let n be a maximal ideal of T(U )τ,ψ

[1
2

]
. The isomorphism above implies that

Sτ,ψ(U,O)n is nonzero if and only if there is an automorphic form

f D
∈ C∞(D× \ (D⊗F AF )

×/U ′D×
∞
),

on which the Hecke operators for v 6∈ S act by the eigenvalues given by the map
Tτ,ψ(U )→ κ(n) i

→C. Additionally, HomU (A f
F )
×(τ
∗

C
, π) 6= 0, where π =⊗′vπv is

the automorphic representation corresponding to f D.
If Sσ,ψ(U,O)n is nonzero then the above implies that HomUw(1, πw) 6= 0, which

implies that πw is an unramified principal series representation, which implies that
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HomUw(s̃t, πw) 6= 0. Since σv = σ ′v for all v 6= w, we conclude that Sσ ′,ψ(U,O)n
is nonzero.

If Sσ ′,ψ(U,O)n is nonzero then the same argument shows that HomUw(s̃t, πw) 6=0,
which implies that πw is either an unramified principal series representation, in
which case HomUw(1, πw) 6= 0 and thus Sσ,ψ(U,O)n 6= 0, or πw is a special series.
We would like to rule the last case out. By Jacquet–Langlands correspondence
to π we may associate an automorphic representation π ′ =⊗′vπ

′
v of GL2(AF ) such

that πv = π ′v for all v, where D is split. In particular, π ′w = πw. Let ρn be the
representation of GF,S corresponding to the maximal ideal n of RψF,S

[ 1
2

]
. By the

compatibility of local and global Langlands correspondence, if π ′w is special then
ρ|GFw

is semistable noncrystalline. However, this cannot happen, as explained
above. �

Corollary 3.21. Assume that ψ is trivial on U ∩ (A f
F )
×, σv is either 1̃ or s̃t

for all v | 2, and ρ̄|Gv does not have scalar semisimplification for any v | 2. If
Sσ,ψ(U,O)m 6= 0 then the equivalent conditions of Proposition 3.17 hold.

Proof. If σv = 1̃ for all v | 2 then the assertion is proved in Corollary 3.19. Using
this case and Lemma 3.20 we may show that part (d) of Proposition 3.17 is verified
for all σ as above. �

3E. Computing Hilbert–Samuel multiplicity. Let σ =
⊗

v|2 σv be a continuous
representation of U on a finitely generated O-module Wσ , where the σv are of the
form (30) or (31). Let ψ : (A f

F )
×/F×→O× be a continuous character such that

U ∩(A f
F )
× acts on Wσ by the character ψ . Let σ̄ and ψ̄ be representations obtained

by reducing σ and ψ modulo $ . We assume that U satisfies (29), which implies
that the subgroups UQn also satisfy (29). Hence, the functor σ 7→ Sσ,ψ(UQn ,O)
is exact. We note that since Rψ,�F,S is formally smooth over RψF,S , it is a flat RψF,S-
module; therefore, the functor ⊗RψF,S

Rψ,�F,S is exact, and so is the localization at mQn .
Hence the functor

σ 7→ Mn(σ )= Rψ,�F,SQn
⊗RψF,SQn

Sσ,ψ(UQn ,O)mQn
(45)

is exact. Following [Kisin 2009a, §2.2.5] we fix a U-invariant filtration on σ̄ by
k-subspaces

0= L0 ⊂ L1 ⊂ · · · ⊂ Ls =Wσ ⊗O k

such that, for i = 0, 1, . . . , s − 1, σi := L i+1/L i is absolutely irreducible. Since
the functor in (45) is exact, this induces a filtration on Mn(σ )⊗O k, which we
denote by

0= M0
n (σ )⊂ M1

n (σ )⊂ · · · ⊂ M s
n(σ )= Mn(σ )⊗O k, (46)
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such that, for i = 0, 1, . . . , s− 1, we have

M i+1
n (σ )/M i

n(σ )
∼= Mn(σi ). (47)

Each representation σi is of the form
⊗

v|2 σi,v, where σi,v is either the trivial rep-
resentation, in which case we let σ̃i,v = 1̃, or st, in which case we let σ̃i,v := s̃t. We
let σ̃i :=

⊗
v|2 σ̃i,v and consider it as a representation of U by letting Uv for v

not above 2 act trivially. We note that, since both 1̃ and s̃t have trivial central
character, U ∩ (A f

F )
× acts trivially on σ̃i . We choose a continuous character

ξ : F×\(A f
F )
×
→O× such thatψ≡ ξ (mod$) and the restriction of ξ to U∩(A f

F )
×

is trivial. For example, we could choose ξ to be a Teichmüller lift of ψ̄ . Let

Mn(σ̃i )= Rξ,�F,SQn
⊗RξF,SQn

Sσ̃i ,ξ (UQn ,O)mQn
.

The exactness of the functor in (45), used with σ̃i and ξ instead of σ and ψ , and
(47) give us an isomorphism

αi,n : M i+1
n (σ )/M i

n(σ )
∼= Mn(σi )∼= Mn(σ̃i )⊗O k. (48)

The isomorphism αi,n is equivariant for the action of the Hecke operators out-
side SQn , since they act by the same formulas on all the modules. Hence (48) is an
isomorphism of R�

S [[x1, . . . , xg]]-modules. We let ai,n be the Rξ,�F,SQn
(σ̃i )-annihilator

of Mn(σ̃i )⊗O k. Since the action of R�
S [[x1, . . . , xg]] on Mn(σ ) and Mn(σ̃i ) fac-

tors through Rψ,�F,SQn
(σ ) and Rξ,�F,SQn

(σ̃i ), respectively, we obtain a surjection

ϕi,n : R
ψ,�
F,SQn

(σ )� Rξ,�F,SQn
(σ̃i )/ai,n. (49)

Proposition 3.22. We may patch in such a way that:

• There is an R∞(σ )-module M∞(σ ) as in Section 3C.

• There is a filtration

0= M0
∞
(σ )⊂ M1

∞
(σ )⊂ · · · ⊂ M s

∞
(σ )= M∞(σ )⊗O k

by R∞(σ )-submodules.

• For each 1≤ i ≤ s there is an R∞(σ̃i )-module M∞(σ̃i ) as in Section 3C and
a surjection ϕi : R∞(σ )� R∞(σ̃i )/ai , where ai is the R∞(σ̃i )-annihilator of
M∞(σ̃i )⊗O k, which allows us to consider M∞(σ̃i )⊗O k as an R∞(σ )-module.

• For each 1≤ i ≤ s there is an isomorphism of R∞(σ )-modules

αi : M i
∞
(σ )/M i−1

∞
(σ )∼= M∞(σ̃i )⊗O k.

Proof. We modify the proof of [Khare and Wintenberger 2009b, Proposition 9.3],
which in turn is a modification of the proof of [Kisin 2009c, Proposition 3.3.1]. Let
1(σ)m := (D(σ )m, L(σ )m, D′(σ )m) be the patching data of level m as in the proof
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of [Khare and Wintenberger 2009b, Proposition 9.3], where σ indicates the fixed
weight and inertial type we are working with. In particular, D(σ )m and D′(σ )m
are finite Rψ,�S (σ )[[x1, . . . , xg]]-algebras, where g = h+ j + t − d , and L(σ )m is a
module over D(σ )m satisfying a number of conditions, listed in the proof of [Khare
and Wintenberger 2009b, Proposition 9.3]. Our patching data of level m consists
of tuples

1m :=
(
1(σ)m, {L(σ )im}

s
i=0, {1(σ̃i )m}

s
i=1, {ϕi,m}

s
i=1, {αi,m}

s
i=1
)
,

where {L(σ )im}
s
i=0 is a filtration of L(σ )m ⊗O k by D(σ )m-submodules, ϕi,m :

D(σ )m � D(σ̃i )m/ai,m is a surjection of R�
S [[x1, . . . , xg]]-algebras, where ai,m

is the D(σ̃i )m-annihilator of L(σ̃i )⊗O k, and αi,m is an isomorphism of D(σ )m-
modules between L(σ )im/L(σ )i−1

m and L(σ̃i )⊗O k, where the action of D(σ )m on
this last module is given by ϕi,m .

An isomorphism of patching data between 1m and 1′m is a tuple
(
β, {βi }

s
i=1

)
,

where β :1m(σ )∼=1
′
m(σ ) and βi :1m(σ̃i )∼=1m(σ̃i ) are isomorphisms of patching

data, in the sense of [Khare and Wintenberger 2009b, Proposition 9.3], which
respect the filtration and the maps {ϕi,m}

s
i=1, {αi,m}

s
i=1. There are only finitely

many isomorphism classes of patching data of level m, since there are only finitely
many isomorphism classes of patching data of level m in the sense of [Khare and
Wintenberger 2009b, Proposition 9.3], and a finite O-module can admit only finitely
many filtrations and there are only finitely many maps between two finite modules.

We then proceed as in the proof of [Khare and Wintenberger 2009b, Proposition
9.3]. In particular, the integers a, rm , n0 and ideals cm and bn are those defined in
[loc. cit.]. For an integer n ≥ n0 + 1 and for m with n ≥ m ≥ 3, let 1n,m(σ ) =

(D(σ )n,m, L(σ )n,m, D′(σ )n,m) be the patching data of level m as in the proof of
[Khare and Wintenberger 2009b, Proposition 9.3]. Then

D(σ )n,m = Rn+a(σ )/
(
cm Rn+a(σ )+m(rm)

Rn+a(σ )

)
,

L(σ )n,m = Mn+a(σ )/cm Mn+a(σ ),

where Rn(σ ) := Rψ,�F,SQn
(σ ). We define 1n,m(σ̃i ) analogously with σ̃i instead of σ

and with ξ instead of ψ . We let (L(σ )in,m)
s
i=1 be the filtration obtained by reducing

(46) modulo cm . Similarly, we let {ϕi,n,m}
s
i=1, {αi,n,m}

s
i=1 be the maps obtained by

reducing (48) and (49) modulo cm . Then

1n,m :=
(
1(σ)n,m, {L(σ )in,m}

s
i=0, {1(σ̃i )n,m}

s
i=1, {ϕi,n,m}

s
i=1, {αi,n,m}

s
i=1}

)
is a patching datum of level m in our sense. Since there are only finitely many
isomorphism classes of patching data of level m, after replacing the sequence(

(Rn+a(σ ),Mn+a(σ )), {(Rn+a(σ̃i ),Mn+a(σ̃i ))}
s
i=1
)

n≥n0+1
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by a subsequence, we may assume that, for each m ≥ n0 + 4 and all n ≥ m, we
have 1m,n =1m,m . The patching data 1m,m form a projective system; see [Kisin
2009c, Proposition 3.3.1]. We obtain the desired objects by passing to the limit. �

We need to control the image of Rinv
∞
(σ ) under ϕi . Following [Khare and

Wintenberger 2009b] we let CNLO be the category of complete local noetherian
O-algebras with a fixed isomorphism of the residue field with k, and whose maps
are local O-algebra homomorphisms. If A ∈CNLO then we let SpA :CNLO→ Sets
be the functor SpA(B) = HomCNLO(A, B). Let G be a finite abelian group. We
let G∗ be the group scheme defined over O such that, for every O-algebra A,
G∗(A)= HomGroups(G, A×). Assume that we are given a free G∗ action on SpA.
This means that, for all B ∈ CNLO, G∗(B) acts on SpA(B) without fixed points.
By Proposition 2.6(1) in [Khare and Wintenberger 2009b] the quotient G∗ \ SpA
exists in CNLO and is represented by (Ainv,minv

A ) ∈ CNLO. Moreover, SpA is a
G∗-torsor over SpAinv .

Lemma 3.23. Let (A,mA) and (B,mB) be in CNLO. Assume that G∗ acts freely
on SpA and SpB and we are given a G∗-equivariant closed immersion SpB ↪→ SpA.
Then the map induces a closed immersion SpB inv ↪→ SpAinv .

Proof. Since G∗ acts trivially on SpAinv , by the universal property of the quotient,
the map SpB→ SpA→ SpAinv factors through SpB inv → SpAinv . Hence, we obtain
the following commutative diagram in CNLO:

Ainv

��

//B inv

��
A // //B

Since SpA is a G∗-torsor over SpAinv , it follows from [SGA 3 II 1970, Exposé VIII,
Proposition 4.1] that A is a free Ainv-module of rank |G|. Similarly, B is a free B inv-
module of rank |G|. It follows from the commutative diagram that the surjection
A � B induces a surjection A/minv

A A � B/minv
B B. Since both k-vector spaces have

dimension |G|, the map is an isomorphism and this implies that the image of minv
A

is equal to minv
B . Hence, the top horizontal arrow in the diagram is surjective. �

Let CNL[m]O be the full subcategory of CNLO consisting of objects (A,mA) such
that mm

A = 0. We have a truncation functor CNLO→CNL[m]O , A 7→ A[m] := A/mm
A .

If A represents the functor X , we denote by X [m] the functor represented by A[m]. For
group chunk actions, we refer the reader to [Khare and Wintenberger 2009b, §2.6].

Lemma 3.24. Let (A,mA) and (B,mB) be in CNLO. Assume that G∗ acts freely on
X := SpA and Y := SpB and we are given an isomorphism X [m] ∼= Y [m] compatible
with the group chunk (G∗)[m]-action. If m is large enough then the image of minv

A A
in A/mm

A = B/mm
B is equal to the image of minv

B B.
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Proof. Let X inv and Y inv denote the quotients of X and Y by G∗. Then we have
isomorphisms

G∗× X ∼= X ×X inv X, G∗× Y ∼= Y ×Y inv Y,

where the map is given by (g, x) 7→ (x, gx). We define Z := X [m] = Y [m] and
C := A/mm

A = B/mm
B . The restriction of the above isomorphism to CNL[m]O gives

us isomorphisms

(G∗× Z)[m] ∼= (Z ×X inv Z)[m], (G∗× Z)[m] ∼= (Z ×Y inv Z)[m].

Thus we have an isomorphism

(Z ×X inv Z)[m] ∼= (Z ×Y inv Z)[m],

where the map is given by (z1, z2) 7→ (z1, z2). On rings this isomorphism reads
(C ⊗Ainv C)[m] ∼= (C ⊗B inv C)[m], c1⊗ c2 7→ c1⊗ c2.

Both A/minv
A A and B/minv

B B are k-vector spaces of dimension |G|. In particular,
if m > |G| then mm

A ⊂minv
A A and mm

B ⊂minv
B B. So we obtain a map C � A/minv

A A.
If m > 2|G| then by base changing along this map, we obtain an isomorphism

A/minv
A A⊗k A/minv

A A ∼= A/minv
A A⊗B inv A/minv

A A.

If the image of B inv in A/minv
A A is not equal to k then, for some b ∈ B inv, 1⊗ b

and b⊗ 1 will be linearly independent over k in the left-hand side of the above
isomorphism and linearly dependent in the right-hand side. This implies that the
image of B inv in A/minv

A A is equal to k. Thus minv
B C ⊂minv

A C and by symmetry we
obtain the other inclusion. �

Let Gn be the Galois group of the maximal abelian extension of F , of degree a
power of 2, which is unramified outside Qn and split at primes in S. Let Gn,2 =

Gn/2Gn . It follows from [Khare and Wintenberger 2009b, Lemma 5.1(f)] that
Gn,2 ∼= (Z/2Z)t. Let G∗n,2 be the group scheme defined over O such that, for every
O-algebra A, G∗n,2(A) = HomGroups(Gn,2, A×). For a local artinian augmented
O-algebra A and χ ∈ G∗n,2(A), if ρA is a GF,SQn

-representation lifting ρ̄ to A then
so is ρA⊗χ . Moreover, since χ2 is trivial, ρA and ρA⊗χ have the same determinant.
This induces an action of G∗n,2 on

Spf R�
F,SQn

, Spf Rψ,�F,SQn
(σ ), and Spf Rξ,�F,SQn

(σ̃i ).

It follows from [Khare and Wintenberger 2009b, Lemma 5.1] that this action is free.
Proposition 2.6 of [Khare and Wintenberger 2009b] implies that the quotient by
G∗n,2 is represented by a complete local noetherian O-algebra, which we will denote
by
(
R�,inv

F,SQn
,minv

n
)
,
(
Rψ,�,inv

F,SQn
(σ ),minv

n,σ
)

and
(
Rξ,�,inv

F,SQn
(σ̃i ),m

inv
n,σ̃i

)
, respectively.
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Lemma 3.25. The map

Spf Rξ,�F,SQn
(σ̃i )/ai,n→ Spf Rψ,�F,SQn

(σ )

induced by (49) is G∗n,2-equivariant. Moreover,

ϕi,n
(
minv

n,σ Rψ,�F,SQn
(σ )

)
=minv

n,σ̃i
Rξ,�F,SQn

(σ̃i )/ai,n.

Proof. The first part follows from [Khare and Wintenberger 2009b, Lemma 9.1];
see the paragraph after the proof of Proposition 7.6 and the third paragraph of the
proof of Lemma 9.6 of the same paper.

Let
qσ : R�

F,SQn
� Rψ,�F,SQn

(σ ) and qσ̃i : R
�
F,SQn

� Rξ,�F,SQn
(σ̃i )

denote the natural surjections. Since ϕi,n ◦ qσ = qσ̃i (mod an,i ), it is enough to
show that qσ

(
minv

n R�
F,SQn

)
=minv

n,σ Rψ,�F,SQn
(σ ) for all σ and ψ as above. This follows

from Lemma 3.23. �

Let minv
σ and minv

σ̃i
be the maximal ideals of Rinv

∞
(σ ) and Rinv

∞
(σ̃i ), respectively.

Proposition 3.26. The surjection ϕi : R∞(σ )� R∞(σ̃i )/ai maps minv
σ R∞(σ ) onto

the image of minv
σ̃i

R∞(σ̃i ). In particular,

e
(
M i
∞
(σ )/M i−1

∞
(σ ), Rinv

∞
(σ )/$

)
= e

(
M∞(σ̃i )⊗O k, Rinv

∞
(σ̃i )/$

)
. (50)

Proof. If (A,m) is a complete local noetherian algebra then by A[r ] we denote the
ring A/mr. We will use the same notation as in the proof of the previous proposition.
It is shown in the course of the proof of part (I) of [Khare and Wintenberger 2009b,
Proposition 9.3] that

R∞(σ )∼= lim
←−−

m
D′′m,m(σ ),

where D′′m,n(σ ) = Rn+a(σ )
[r ′m ]. Moreover, it is shown that the map is (Ĝm[2])t -

equivariant by fixing an identification of Gn+a,2 with (Z/2Z)t.
For each fixed r ≥ 0 we have

R∞(σ )[r ] ∼= lim
←−−

m
D′′m,m(σ )

[r ].

Hence, by choosing m large enough we may assume that R∞(σ )[r ] = D′′m,m(σ )
[r ]

with r ≤ r ′m . Since (Ĝm[2])t -action on SpR∞(σ ) and on SpRn+a(σ )
is free by [Khare

and Wintenberger 2009b, Lemmas 5.1 and 9.4], we are in the situation of Lemma
3.24. Hence the image of minv

σ R∞(σ ) in D′′m,m(σ )
[r ] is equal to the image of

minv
m+a,σ Rm+a(σ ). It follows from Lemma 3.25 that the composition

R∞(σ )−→ Rm+a(σ )
[r ] ϕi,m
−−→ (Rm+a(σ̃i )/ai,m)

[r ]
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mapsminv
σ R∞(σ) onto the image ofminv

σ̃i
R∞(σ̃i). The action of Rm+a(σ̃i) on Lm,m(σ̃i)

factors through Rm+a(σ̃i )
[r ′m ]. Since by construction

ϕi = lim
←−−

m
ϕi,m, R∞(σ̃i )= lim

←−−
m

Rm+a(σ̃i )
[r ′m ], M∞(σ̃i )= lim

←−−
m

Lm,m(σ̃i ),

we deduce that ϕi maps minv
σ R∞(σ ) onto the image of minv

σ̃i
R∞(σ̃i ). �

Corollary 3.27. Assume that Sσ,ψ(U,O)m 6= 0 and that ρ̄|GFv
6∼=
(
χ
0
∗

χ

)
for v | 2 and

any character χ : GFv → k×. Then the equivalent conditions of Proposition 3.17
hold, and any ρ :GF,S→GL2(O) corresponding to a maximal ideal of RψF,S(σ )

[ 1
2

]
is modular.

Proof. We will verify that part (b) of Proposition 3.17 holds. We first note that, since
Sσ,ψ(U,O)m 6= 0 and U satisfies (29), there is an i such that Sσ̃i ,ξ (U, k)m 6= 0. This
implies that Sσ̃i ,ξ (U,O)m 6=0, and it follows from Lemma 3.20 that Sσ̃i ,ξ (U,O)m 6=0
for all 1≤ i ≤ s and S1̃,ξ (U,O)m 6= 0. In particular, the rings Rξ,�S (σ̃i ) are nonzero
and equal to Rξ,�S (1̃). Corollary 3.21 implies that for all 1≤ i ≤ s the equality

2tre
(
Rξ,�S (σ̃i )/$

)
= e

(
M∞(σ̃i )/$, Rinv

∞
(σ̃i )/$

)
(51)

holds. Since the Hilbert–Samuel multiplicity is additive in short exact sequences,
we have

e
(
M∞(σ )/$, Rinv

∞
(σ )/$

)
=

s∑
i=1

e
(
M i
∞
(σ )/M i−1

∞
(σ ), Rinv

∞
(σ )/$

)
. (52)

Proposition 3.26 implies that for all 1≤ i ≤ s we have

e
(
M i
∞
(σ )/M i−1

∞
(σ ), Rinv

∞
(σ )/$

)
= e

(
M∞(σ̃i )/$, Rinv

∞
(σ̃i )/$

)
. (53)

Thus

e
(
M∞(σ )/$, Rinv

∞
(σ )/$

)
= 2tr

s∑
i=1

e
(
Rξ,�S (σ̃i )/$

)
. (54)

Thus to verify part (b) of Proposition 3.17 it is enough to show that

e
(
Rψ,�S (σ )/$

)
≤

s∑
i=1

e
(
Rξ,�S (σ̃i )/$

)
. (55)

If A and B are complete local κ-algebras with residue field κ then it is shown in
[Kisin 2009a, Proposition 1.3.8] that e(A ⊗̂κ B)= e(A)e(B). Since ψ is congruent
to ξ modulo $ , inequality (55) reduces to the following inequality on Hilbert–
Samuel multiplicities of potentially semistable rings at all v | 2:

e
(
Rψ,�v (σv)/$

)
≤

sv∑
i=1

e
(
Rξ,�v (σ̃v,i )/$

)
. (56)
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Here the σv,i are irreducible k-representation of GL2(F2) which appear as graded
pieces of a GL2(Z2)-invariant filtration on σv⊗O k. Inequality (56) is proved in the
local part of the paper; see Remark 2.39. �

3F. Modularity lifting. Let F be a totally real field in which 2 splits completely.

Definition 3.28. An allowable base change is a totally real solvable extension F ′

of F such that 2 splits completely in F ′.

Lemma 3.29. Assume that [F :Q] is even. Let ρ̄ : GF → GL2(k) be a continuous
absolutely irreducible representation. If there is a Hilbert eigenform f such that
ρ̄ ∼= ρ̄f then there is a Hilbert eigenform g of parallel weight 2 such that ρ̄ ∼= ρ̄g

and at v | 2 the corresponding representation πv of GL2(Fv) is either an unramified
principal series or a twist of Steinberg representation by an unramified character.
Moreover, if ρ̄|GFv

6∼=
(
χ
0
∗

χ

)
for all v | 2 and any character χ : GFv → k× then we

may assume that πv is an unramified principal series representation for all v | 2.

Proof. Let D be the totally definite quaternion algebra with center F split at all
the finite places. Let f D

∈ Sτ,ψ(U,O) be the eigenform on D associated to f
by the Jacquet–Langlands correspondence, where U =

∏
vUv is a compact open

subgroup of (D⊗F A
f
F )
× such that Uv=GL2(OFv ) for all v | 2, and U is sufficiently

small, so that (29) holds, and τ =
⊗

v|2 τv is a locally algebraic representation of U.
Let m be the maximal ideal of the Hecke algebra Tuniv

S,O corresponding to ρ̄. Then
f D
∈ Sτ,ψ(U,O)m, and hence Sτ,ψ(U,O)m is nonzero.

Let τ̄ denote the reduction of a U-invariant lattice in τ , and let ψ̄ denote ψ
modulo $ . Since U satisfies (29) the functor σ 7→ Sσ,ψ(U,O) is exact. The
localization functor is also exact. Hence there is an irreducible subquotient σ
of τ̄ such that Sσ,ψ̄(U, k)m is nonzero. Such a σ is of the form

⊗
v|2 σv, where

σv is a representation of GL2(F2). Thus σv is either trivial, in which case we let
σ̃v = 1̃, or k2, in which case we let σ̃v = s̃t. Then the reduction of σ̃v modulo $v is
isomorphic to σv and F×v ∩Uv acts trivially on σ̃v . Let σ̃ :=

⊗
v|2 σ̃v . Choose a lift

ξ : (A
f
F )
×/F×→ O× of ψ̄ , which is trivial on U ∩ (A f

F )
×. The exactness of the

functor σ 7→ Sσ,ξ (U,O) implies that Sσ̃ ,ξ (U,O)m is nonzero, since its reduction
modulo $ is equal to Sσ,ξ (U, k)m. We may take any eigenform gD

∈ Sσ̃ ,ψ̃(U,O)m
and then using Jacquet–Langlands transfer it to a Hilbert modular form, which will
have the prescribed properties. The last part follows from Lemma 3.20. �

Theorem 3.30. Let F be a totally real field where 2 is totally split, and let

ρ : GF,S→ GL2(O)

be a continuous representation. Suppose:



1354 Vytautas Paškūnas

(i) ρ̄ : GF,S
ρ
→GL2(O)→ GL2(k) is modular with nonsolvable image.

(ii) If v | 2 then ρ|GFv
is potentially semistable with distinct Hodge–Tate weights.

(iii) det ρ is totally odd.

(iv) If v | 2 then ρ̄|GFv
6∼=
(
χ
0
∗

χ

)
, for any character χ : GFv → k×.

Then ρ is modular.

Proof. Let ψ = χ−1
cyc det ρ, where χcyc is the 2-adic cyclotomic character. By

solvable base change it is enough to prove the assertion for the restriction of ρ
to GF ′ , where F ′ is a totally real solvable extension of F. Using Lemma 2.2 of
[Taylor 2003] we may find an allowable base change F ′ of F such that [F ′ :Q] is
even and ρ̄|GF ′

is unramified outside places above 2. We may further assume that
if ρ is ramified at v - 2 then the image of inertia is unipotent. Let 6 be the set of
places outside 2 where ρ is ramified. If v ∈6 then

ρ|GF ′v
∼=

(
γvχcyc ∗

0 γv

)
,

where γv is an unramified character such that γ 2
v = ψ |GF ′v

.
Since ρ̄ is assumed to be modular, Lemma 3.29 implies that ρ̄ ∼= ρ̄f , where

f is a Hilbert eigenform of parallel weight 2, and an unramified principal series at
v | 2. Using Lemma 3.5.3 of [Kisin 2009c] (see also Theorem 8.4 of [Khare and
Wintenberger 2009b]) there is an admissible base change F ′′/F ′ such that ρ|GF ′′

is
ramified at an even number of places outside 2. We still denote this set by 6, and
there is a Hilbert eigenform g over F ′′ such that ρ̄|GF ′′

∼= ρ̄g, and such that g has
parallel weight 2, is special of conductor 1 at v ∈6, and is unramified otherwise.

Let D be the quaternion algebra with center F ′′ ramified exactly at all infinite
places and all v ∈ 6. Choose a place v1 of F ′′ as in Lemma 3.2 and such that ρ̄
is unramified at v1 and ρ̄(Frobv1) has distinct eigenvalues. Let S be the union of
infinite places, 6, places above 2 and v1. Let U =

∏
vUv be an open subgroup of

(D⊗F ′′ A
f
F ′′)
× such that Uv =O×Dv

if v 6= v1 and Uv1 is unipotent upper triangular
modulo $v1 . We note that Lemma 3.2 implies that U satisfies (29). Let m be the
maximal ideal in the Hecke algebra Tuniv

S,O corresponding to ρ̄.
Let gD be the eigenform on D corresponding to g via the Jacquet–Langlands

correspondence. Then gD
∈ Sσ,ψ ′(U,O)m, where σ is the trivial representation

of U and ψ ′ : (A f
F ′′)
×
→O× is a suitable character congruent to ψ modulo $ . In

particular, Sσ,ψ ′(U,O)m 6= 0. It follows from Lemma 3.20 that Sσ,ψ ′(U,O)m 6= 0
for all σ =

⊗
v|2 σv, where σv is either 1̃ or s̃t. Since U satisfies (29), we

deduce that Sσ,ψ(U, k)m 6= 0 for any irreducible smooth k-representation σ of∏
v|2 GL2(Z2). Since U satisfies (29), we deduce via Lemma 3.1.4 of [Kisin 2009c]

that Sσ,ψ(U,O)m 6= 0 for any continuous finite-dimensional representation σ of∏
v|2 GL2(Z2) on which U ∩ (A f

F ′′)
× acts by ψ .
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For v | 2 suppose that ρ|GF ′′v
has Hodge–Tate weights wv = (av, bv) with bv > av

and inertial type τv. Let σv be defined by (30) and let σ =
⊗

v|2 σv. The above
implies that Sσ,ψ(U,O)m 6= 0 and, since ρ|GF ′′

defines a maximal ideal of RψF ′′,S
[ 1

2

]
,

the assertion follows from Corollary 3.27. �
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A probabilistic Tits alternative and
probabilistic identities

Michael Larsen and Aner Shalev

We introduce the notion of a probabilistic identity of a residually finite group 0.
By this we mean a nontrivial word w such that the probabilities that w = 1 in the
finite quotients of 0 are bounded away from zero.

We prove that a finitely generated linear group satisfies a probabilistic identity
if and only if it is virtually solvable.

A main application of this result is a probabilistic variant of the Tits alternative:
Let 0 be a finitely generated linear group over any field and let G be its profinite
completion. Then either 0 is virtually solvable, or, for any n ≥ 1, n random
elements g1, . . . , gn of G freely generate a free (abstract) subgroup of G with
probability 1.

We also prove other related results and discuss open problems and applications.

1. Introduction

The celebrated Tits alternative [1972] asserts that a finitely generated linear group is
either virtually solvable or has a (nonabelian) free subgroup. A number of variations
and extensions of this result have been obtained over the years. In particular, it
is shown in [Breuillard and Gelander 2007] that if 0 is a finitely generated linear
group which is not virtually solvable then its profinite completion 0̂ has a dense
free subgroup of finite rank (this answers a question from [Dixon et al. 2003],
where a somewhat weaker result was obtained). The purpose of this paper is to
establish a probabilistic version of the Tits alternative, and to relate it to the notion
of probabilistic identities, which is interesting in its own right.

In order to formulate our first result, let us say that a profinite group G is randomly
free if for any positive integer n the set of n-tuples in Gn which freely generate a free
subgroup of G (isomorphic to Fn) has measure 1 (with respect to the normalized

Larsen was partially supported by NSF grant DMS-1401419. Shalev was partially supported by ERC
advanced grant 247034, ISF grant 1117/13 and the Vinik Chair of Mathematics, which he holds.
MSC2010: primary 20G15; secondary 20E18.
Keywords: Tits alternative, residually finite, virtually solvable, probabilistic identity, profinite

completion.

1359

http://msp.org
http://msp.org/ant/
http://dx.doi.org/10.2140/ant.2016.10-6
http://dx.doi.org/10.2140/ant.2016.10.1359


1360 Michael Larsen and Aner Shalev

Haar measure on Gn). We also say that a (discrete) residually finite group 0 is
randomly free if its profinite completion is randomly free.

Recall that related notions have already been studied in various contexts. For
example, Epstein [1971] showed that connected finite-dimensional nonsolvable
real Lie groups are randomly free (in the sense that the set of n-tuples which do
not freely generate a free subgroup has measure zero). Later it was shown by
Szegedy [2005] that the Nottingham pro-p group is randomly free (answering a
question of the second author). Furthermore, Abért proved [2005] that some other
groups are randomly free; these include the Grigorchuk group and profinite weakly
branch groups.

We can now state our probabilistic Tits alternative.

Theorem 1.1. Let 0 be a finitely generated linear group over any field. Then either
0 is virtually solvable or 0 is randomly free.

The proof of this result relies on the notion and properties of probabilistic
identities which we introduce below.

Let w = w(x1, . . . , xn) be a nontrivial element of the free group Fn , and let
0 be a residually finite group. Consider the induced word map 0n

→ 0, which,
by a slight abuse of notation, we also denote w. If the image w(0n) of this map
is {1} then w is an identity of 0. We say that w is a probabilistic identity of 0 if
there exists ε > 0 such that, for each finite quotient H = 0/1 of 0, the probability
PH (w) that w(h1, . . . , hn)= 1 (where the hi ∈ H are chosen independently with
respect to the uniform distribution on H ) is at least ε. This amounts to saying that,
in the profinite completion G = 0̂ of 0, the probability (with respect to the Haar
measure) that w(g1, . . . , gn)= 1 is positive.

For example, w = x2
1 is a probabilistic identity of the infinite dihedral group

0 = D∞, since in any finite quotient 0/1= Dn of 0 we have P0/1(w)≥ 1
2 . Note

that, in this example, w is not an identity on a finite index subgroup of 0, but it is
an identity on a coset of the cyclic subgroup of index two.

More generally, probabilistic identities may be regarded as an extension of the
notion of coset identities. Recall that a word 1 6= w ∈ Fn is said to be a coset
identity of the infinite group 0 if there exists a finite index subgroup 1 ≤ 0 and
cosets γ11, . . . , γn1 (where γi ∈ 0) such that w(γ11, . . . , γn1)= {1}.

Our main result on probabilistic identities is the following.

Theorem 1.2. A finitely generated linear group satisfies a probabilistic identity if
and only if it is virtually solvable.

Theorem 1.2 has several consequences. First, it easily implies Theorem 1.1. To
show this, suppose 0 is not virtually solvable, and let G be the profinite completion
of 0. Note that g1, . . . , gn ∈ G freely generate a free subgroup of G if and only if
w(g1, . . . , gn) 6= 1 for every 1 6= w ∈ Fn . By Theorem 1.2 above, the probability



A probabilistic Tits alternative and probabilistic identities 1361

that w(g1, . . . , gn) = 1 is 0 for any such w. As Haar measure is σ -additive, the
probability that there exists w 6= 1 such that w(g1, . . . , gn) = 1 is also 0. Thus,
g1, . . . , gn freely generate a free subgroup with probability 1, proving Theorem 1.1.

Secondly, Theorem 1.2 immediately implies the following.

Corollary 1.3. A finitely generated linear group which satisfies a probabilistic
identity satisfies an identity.

It would be interesting to find out whether the same holds without the linearity
assumption. We discuss this and related problems and applications in Section 3.

In the course of the proof of Theorem 1.2 we establish a result of independent
interest, showing that probabilistic identities on finitely generated linear groups are
in fact coset identities.

The arguments proving this result also prove a more general result on probabilistic
identities with parameters. Let w(x1, . . . , xn, y1, . . . , ym) be a word in the variables
x1, . . . , xn, y1, . . . , ym , and let γ1, . . . , γm be elements of a residually finite group
0. Consider the word with parameters v(x1, . . . , xn) :=w(x1, . . . , xn, γ1, . . . , γm).
The notions of a probabilistic identity with parameters and of a coset identity with
parameters are then defined in the obvious way.

Note that Theorem 1.2 cannot be generalized to probabilistic identities with
parameters. For example, let γ1 ∈ 0 be a central element. Then the word with
parameters [x1, γ1] is an identity on 0, though 0 need not be virtually solvable.
However, we can show the following.

Theorem 1.4. Let 0 be a finitely generated linear group over any field. Then every
probabilistic identity (possibly with parameters) on 0 is a coset identity.

It easily follows that, if w is a word in n variables (possibly with parameters
from 0), and γ ∈0 is such that in all finite quotients H =0/1 of 0 the probability
that w(h1, . . . , hn) = γ +1 is at least some fixed ε > 0, then the fiber w−1(γ )

contains the Cartesian product γ11× · · · × γn1 of cosets of some finite index
subgroup 1≤ 0. Indeed, apply Theorem 1.4 to the word with parameters wγ−1.

In fact, the proof of Theorem 1.4 gives rise to an even more general result of
independent interest. In order to formulate it, let 0 be a linear group and let n be
a positive integer. Let us say that a subset 4 of 0n is Zariski-closed if there is
an embedding of 0 in GLr (F) (for some field F and a positive integer r) and a
Zariski-closed subset X of GLn

r such that 4= X (F)∩0n.
Then we have the following.

Theorem 1.5. Let 0 be a finitely generated linear group over any field, and let
n ≥ 1. Let 4 ⊆ 0n be a Zariski-closed subset. Suppose there exists ε > 0 such
that |41n/1n

| ≥ ε|0/1|n for all normal subgroups of finite index 1 of 0. Then
there exists a finite index subgroup 1 ≤ 0 and elements γ1, . . . , γn ∈ 0 such that
4⊇ γ11× · · ·× γn1.
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This result is proved using an easy adaptation of the proof of Theorem 1.4, which
we leave for the interested reader. Theorem 1.5 amounts to saying that if the closure
of 4 in the profinite group (0̂)n has positive Haar measure, then it has a nonempty
interior.

It is shown in [Breuillard and Gelander 2007, Theorem 8.4] that a finitely
generated linear group which satisfies a coset identity (without parameters) is
virtually solvable. Using this result we can immediately deduce Theorem 1.2 from
Theorem 1.4. In fact, we provide here a self-contained proof of Theorem 1.2 using
Theorem 1.4 and Proposition 2.5 below.

Our original approach to proving Theorem 1.2 relied on strong approximation for
linear groups and on establishing upper bounds on the probabilities PG(w), where
G is a group satisfying T k

≤ G ≤ Aut(T k) for a finite simple group T. However,
this approach is rather involved. A shorter and simpler proof of Theorems 1.4
and 1.2 is given in Section 2.

The idea is to use linearity to map 0 into a “linear algebraic group” G over an
infinite product

∏
m A/m of finite fields. The closure of the image is then a profinite

group. Suppose that for some Zariski-closed subset X ⊂ Gn, the measure of the
closure of X

(∏
m A/m

)
∩0n is positive. Every translate of X by an element of 0n

has the same property. Unless X is a union of connected components of Gn we
can find an infinite set of pairwise distinct translates of X , each of which has the
same positive-measure property. Thus, some pairs of translates of X must intersect
0n with positive measure; intersecting X with a suitable translate by an element
of 0n, we obtain a proper closed subset of X with the same property as X itself.
This process cannot continue indefinitely. The theorem is obtained by applying it
to the fiber over 1 of a nontrivial word map w. The actual implementation uses the
language of (affine) schemes and a notion somewhat weaker than that of measure.

In fact, this method of proof, and Proposition 2.5 in particular, yields the following
extension of Theorem 1.2: Suppose 0 is a finitely generated linear group which
is not virtually solvable. Then all fibers in (0̂)n of all nontrivial words w ∈ Fn have
measure 0.

In other words, for a finite group H, let PH,w denote the probability distri-
bution induced on H by w (so that, for h ∈ H , Pw,H (h) is the probability that
w(h1, . . . , hn)=h). Its `∞-norm is defined by ‖PH,w‖∞=maxh∈H PH,w(h). Then
we have:

Theorem 1.6. Let 0 be a finitely generated linear group. Suppose for some n ≥ 1
and 1 6= w ∈ Fn there exists ε > 0 such that for all finite quotients H of 0 we have
‖PH,w‖∞ ≥ ε. Then 0 is virtually solvable.

See also [Aoun 2011] for a different probabilistic Tits alternative, related to
certain random walks on the discrete linear group 0.
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2. Proof of Theorems 1.4 and 1.2

If a group 0 acts on a topological space X and Y ⊆ X , we say Y is 0-finite if its
orbit under 0 is finite. We say a closed subset Z ⊆ X is 0-covered by Y if Z is a
closed subset of some finite union of 0-translates of Y.

Lemma 2.1. Let 0 be a group acting on a set X. If Y1, . . . , Yn are subsets of X
which are not 0-finite, then there exists g ∈ 0 such that gYi 6= Yj for 1≤ i, j ≤ n.

Proof. For given i , j , the set of g such that gYi = Yj is either empty or is a left
coset of the stabilizer of Yi in 0. By a theorem of B. H. Neumann [1954], a group
cannot be covered by a finite collection of left cosets of subgroups of infinite index.
The result follows. �

Proposition 2.2. Let X be a Noetherian topological space and 0 a group of home-
omorphisms X→ X. Let f denote a function from the set of closed subsets of X to
[0, 1] satisfying the following conditions:

(I) If Z ⊆ Y are closed subsets of X , then f (Z)≤ f (Y ).

(II) For all closed subsets Y ⊆ X and all g ∈ 0 such that f (Y ∩ gY )= 0, we have

f (Y ∪ gY )≥ 2 f (Y ).

If Y ⊆ X is closed and 0-covers some closed subset W ⊆ X with f (W ) > 0, then Y
0-covers some closed 0-stable subset Z ⊆ X with f (Z) > 0.

Proof. By the Noetherian hypothesis, we may assume without loss of generality
that Y is minimal for the property of 0-covering a set of positive f -value. If two
distinct irreducible components Yi and Yj of Y were 0-translates of one another, we
could replace Y with the union of all of its components except Yj , and the resulting
closed set would still 0-cover a set of positive f -value. This is impossible by the
minimality of Y.

If Y is 0-finite, then

Z :=
⋃
g∈0

gY

is a 0-stable finite union of 0-translates of Y containing W. By condition (I), it
satisfies f (Z)> 0, so we are done. As Y is a finite union of irreducible components,
we may therefore assume at least one such component Y0 is not 0-finite. We write
Y = Y0 ∪ Y ′, where no 0-translate of Y ′ contains Y0.

By condition (I), there exists a finite sequence g1, . . . , gr ∈0 such that f (Z) > 0
for

Z := g1Y ∪ · · · ∪ gr Y.
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We choose the gi so that

f (Z) >
sup1(0 finite f

(⋃
g∈1 gY

)
2

. (2-1)

As no 0-translate of Y0 is 0-finite, Lemma 2.1 implies that there exists g such
that gi Y0 6= ggj Y0 for all i , j . Thus,

Y ′ ∪
⋃
i, j

(Y0 ∩ g−1
i ggj Y0)( Y

0-covers Z ∩ gZ . By the minimality of Y, this means f (Z ∩ gZ)= 0. By condi-
tion (II), f (Z ∪ gZ)≥ 2 f (Z), which contradicts (2-1). We conclude that Z must
be 0-finite. �

Now, let A be an integral domain finitely generated over Z with fraction field K.
Let G = Spec B be an affine group scheme of finite type over A (see [Waterhouse
1979]). As usual, for every commutative A-algebra T, let G(T ) denote the set of
Spec T-points of G→ Spec A, i.e., the set of A-algebra homomorphisms B→ T.
The group structure on G makes each G(T ) a group, functorially in T. We regard G
as a topological space with respect to its Zariski topology. If Y ⊆ G is a closed
subset, we define Y (T ) to be the subset of G(T ) consisting of A-homomorphisms
B→ T such that the corresponding map of topological spaces Spec T → G sends
Spec T into a subset of Y. If Z ⊆ G is another closed subset, then

(Y ∩ Z)(T )= Y (T )∩ Z(T ),

but, in general, the inclusion

Y (T )∪ Z(T )⊆ (Y ∪ Z)(T )

need not be an equality.
We define

P(G, A) :=
∏

m∈Maxspec(A)

G(A/m),

where Maxspec denotes the set of maximal ideals, and P(G, A) is endowed with
the product topology. Note that as G is of finite type (i.e., B is a finitely generated
A-algebra) and every A/m is a field finitely generated over Z (and hence finite), it
follows that each G(A/m) is finite and P(G, A) is a profinite group. For any closed
subset X ⊆ G, we define the closed subset

P(X, A) :=
∏

m∈Maxspec(A)

X (A/m)⊆ P(G, A).

Lemma 2.3. If X ⊆ G does not meet the generic fiber Spec B ⊗A K ⊂ G, then
P(X, A) is empty.
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Proof. If I ⊆ B is the ideal defining X , then (B/I )⊗A K = 0, so I⊗A K = B⊗A K.
It follows that there exist elements bi ∈ I and ai/a′i ∈ K such that∑

i

bi ⊗
ai

a′i
= 1,

and clearing denominators we see that some nonzero element a′ :=
∏

i a′i ∈ A
belongs to I. If m is a maximal ideal of A[1/a′], then A[1/a′]/m is a field finitely
generated over Z, hence a finite field, and therefore m∩ A is a maximal ideal of A.
Thus, the image of a′ in A/(m∩ A) is nonzero, from which it follows that there are
no A-homomorphisms B/I → A/(m∩ A), i.e., X (A/(m∩ A))=∅. �

For any subgroup 0 ⊆ G(A)⊆ P(G, A), we define 0 to be the closure of 0 in
P(G, A). This is a closed subgroup of a profinite group and therefore a profinite
group itself. We endow it with Haar measure µ0, normalized so that (0, µ0) is
a probability space. In particular, left translation by 0 is a continuous measure-
preserving action on (0, µ0). As Haar measure is outer regular, for every Borel
set B,

µ0(B)= inf
S⊆Maxspec(A)

|prS B|
|prS 0|

,

where S ranges over all finite sets of maximal ideals of A and prS denotes projection
onto

∏
m∈S G(A/m).

For any positive integer n, we let Gn denote the n-th fiber power of G relative
to A, i.e., defining

Bn := B⊗A B⊗A · · · ⊗A B︸ ︷︷ ︸
n

,

we define Gn
:= Spec Bn , regarded as a topological space with respect to the Zariski

topology. Note that in general the Zariski topology on Gn is not the product topol-
ogy. However, by the universal property of tensor products, Gn(T ) is canonically
isomorphic to G(T )n for all commutative A-algebras T. Moreover, Bn is a finitely
generated Z-algebra, and by the Hilbert basis theorem this implies that Gn is a
Noetherian topological space.

We consider the closure 0n of 0n in P(Gn, A). For any closed subset Y ⊆ Gn,
we define

P0(Y ) := 0n
∩ P(Y, A).

Thus, if Y and Z are closed subsets of Gn,

P0(Y ∩ Z)= 0n
∩ P(Y ∩ Z , A)= 0n

∩ (P(Y, A)∩ P(Z , A))= P0(Y )∩ P0(Z).
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As

P(Y ∪ Z , A)=
∏

m∈Maxspec(A)

(Y (A/m)∪ Z(A/m))⊇ P(Y, A)∪ P(Z , A),

we have
P0(Y ∪ Z)⊇ P0(Y )∪ P0(Z).

Defining
f (Y ) := µ0n (P0(Y )),

condition (I) of Proposition 2.2 is obvious. As µ0n is a measure, if f (Y ∩ Z)= 0,
then

f (Y ∪ Z)= µ0n (P0(Y ∪ Z))

≥ µ0n (P0(Y )∪ P0(Z))

= µ0n (P0(Y ))+µ0n (P0(Z))−µ0n (P0(Y )∩ P0(Z))

= f (Y )+ f (Z)− f (Y ∩ Z)= f (Y )+ f (Z).

As µ0n is 0n-invariant, this implies condition (II).

Proposition 2.4. Let G denote a linear algebraic group over a field K. If 0 is
Zariski-dense in G(K ), then a nonempty closed subset Y of Gn is 0n-finite if and
only if it is a union of connected components of Gn.

Proof. If Y is 0n-finite, its stabilizer 1 is of finite index in 0n, which implies that
the Zariski closure D of 1 in Gn has finite index in Gn. Thus D ∩ (Gn)◦ is of
finite index in (Gn)◦. As (Gn)◦ is connected, it follows that D contains (Gn)◦. The
Zariski closure of any left coset of 0n is a left coset of D and therefore a union of
cosets of (Gn)◦. Conversely, any left translate of a coset of (Gn)◦ is again such a
coset, so the orbit of any union of connected components of Gn is finite. �

We can now prove Theorem 1.4.

Proof. We fix a faithful representation ρ :0→GLr (F), where F is an algebraically
closed field. Let G ⊂ GLr denote the Zariski closure of 0 in GLr .

We recall how to extend G to a subgroup scheme of GLr defined over a finitely
generated Z-algebra. Let

RZ,r := Z[xi j , y]i, j=1,...,r/(y det(xi j )− 1)

denote the coordinate ring of GLr over Z, and let

1Z,r : RZ,r → RZ,r ⊗Z RZ,r , SZ,r : RZ,r → RZ,r , and εZ,r : RZ,r → Z

denote the ring homomorphisms associated to the multiplication, inverse, and unit
maps. Closed subschemes of GLr over any commutative ring A are in one-to-one
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correspondence with ideals I of RA,r := A⊗Z RZ,r , and such an ideal defines a
group subscheme if and only if I is a Hopf ideal [Waterhouse 1979, §2.1], i.e., if
and only if it satisfies the following three conditions:

1A,r (I )⊆ I ⊗A RA,r + RA,r ⊗A I,

SA,r (I )⊆ I,

εA,r (I )= {0}.

We fix a finite set of generators hk of the ideal IF in RF,r associated to G as a
closed subvariety of GLr over F. We lift each hk to an element h̃k ∈ F[xi j , y]. For
any subring A⊆ F such that h̃k ∈ A[xi j , y], we denote again by hk the image of h̃k

in RA,r ; this should not cause confusion. Let A0 denote the subring of F generated
by all matrix entries in GLr (F) of the ρ(gj ), as gj runs over some finite generating
set of 0, together with all coefficients of the h̃k . Let I0 denote the ideal generated
by the elements hk in RA0,r , and let K denote the fraction field of A0. As

1A0,r (I0)⊆ I0⊗A0 RK,r + RK,r ⊗A0 I0

and
SA0,r (I0)⊆ I0⊗A0 RK,r ,

there exists a ∈ A0 such that

1A0,r (hi ) ∈ I0⊗A0 RA0[1/a],r + RA0[1/a],r ⊗A0 I0

and
SA0,r (hi ) ∈ I0⊗A0 A0[1/a]

for all i , and therefore, setting A := A0[1/a] and I := I0⊗A0 A, we have that I is
a Hopf ideal of RA,r . We set G := Spec RA,r/I, the closed group subscheme of
GLr over A defined by hk ∈ RA,r . By construction, ρ(0) is a Zariski-dense finitely
generated subgroup of G(A).

Now, let w be a probabilistic identity on 0 (possibly with parameters). Consider
w as a morphism of schemes over A from Gn to G. Let Y := w−1(1) ⊆ Gn. We
define f as above. If f (Y ) > 0, then Y 0-covers a set of positive f -value, so
by Proposition 2.2 Y 0-covers a closed 0-stable subset Z with f (Z) > 0. By
Lemma 2.3, Z must meet the generic fiber Gn of Gn, which implies that Y must
meet the generic fiber. Proposition 2.4 now implies that Z∩Gn contains a connected
component of Gn, and it follows that Y ∩Gn contains a connected component, i.e.,
w is a coset identity. Thus, we may assume f (Y )= 0.

Therefore, for every ε > 0, there exists a finite set S of maximal ideals of A
such that

|prS w
−1(1)|

|prS 0
n|

< ε.
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Defining 1 to be the kernel of prS , we see that, in the finite quotient 0/1, the
probability that the word map w attains the value 1+1 is less than ε. It follows
that w is not a probabilistic identity on 0. This contradiction completes the proof
of Theorem 1.4. �

Proposition 2.5. Let K be a field and G a linear algebraic group over K with
nontrivial adjoint semisimple identity component. Let w ∈ Fn be a nontrivial word
and let g0 ∈G(K ). Then w−1(g0) does not contain any connected component of Gn.

Proof. Equivalently, we claim that dimw−1(g0) < dim Gn. Since dimensions do not
depend on the base field, we may and shall assume, without loss of generality, that
K is algebraically closed. Let G◦ be the identity component, T a maximal torus
of G◦ and B a Borel subgroup of G◦ containing T. Let 8 be the root system of G
with respect to T, and let 8+ denote the set of roots of B with respect to T. Every
maximal torus of G◦ is conjugate under G◦(K ) to T. The Weyl group NG(T )/T acts
transitively on the set of Weyl chambers, so every pair T ′⊂ B ′ is conjugate to T ⊂ B
by some element of G◦(K ). In particular, for any g ∈ G(K ), the pair g−1T g ⊂
g−1 Bg is conjugate in G◦(K ) to T ⊂ B, or, equivalently, there is some element
h∈ gG◦(K ) such that conjugation by h stabilizes T and B. The highest root α of8+

is determined by B, so h likewise preserves α. It therefore normalizes kerα◦, and
therefore the derived group Gα of the centralizer of kerα◦. This group is semisimple
and of type A1, so every element that normalizes it acts by an inner automorphism.
It follows that the centralizer of Gα in G meets every connected component of G.

Suppose now thatw is constant on g1G◦×· · ·×gnG◦ for some g1, . . . , gn ∈G(K ).
Without loss of generality we may assume that all gi centralize Gα . Asw is constant
on g1Gα × · · ·× gnGα, and as

w(g1h1, . . . , gnhn)= w(g1, . . . , gn)w(h1, . . . , hn)

for all h1, . . . , hn ∈ Gα(K ), it follows that w is constant on Gn
α . This is impossible

because nontrivial words give nontrivial word maps on all semisimple algebraic
groups [Borel 1983]. �

Proof of Theorem 1.2. Every virtually solvable linear group satisfies a nontrivial
identity. In the other direction, if 0 ⊂ GLr (K ) satisfies a probabilistic identity,
then it satisfies a coset identity by Theorem 1.4, and the same is true for its Zariski
closure G. If R denotes the maximal solvable normal subgroup of G◦, then G/R
also satisfies a coset identity, and by Proposition 2.5 this implies that G/R is finite,
i.e., that G is virtually solvable, and so is 0. �

3. Open problems

In this section we discuss related open problems concerning finite and residually
finite groups.
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Problem 3.1. Do all finitely generated residually finite groups which satisfy a
probabilistic identity satisfy an identity?

We also pose a related, finitary version of Problem 3.1.

Problem 3.2. Is it true that, for any word 1 6= w ∈ Fn , any positive integer d and
any real number ε > 0, there exists a word 1 6= v ∈ Fm (for some m) such that, if G
is a finite d-generated group satisfying PG(w)≥ ε, then v is an identity of G?

Clearly, a positive answer to Problem 3.2 implies a positive answer to Problem 3.1.
Both seem to be very challenging questions, which might have negative answers in
general. However, in some special cases they are solved affirmatively. For example,
if w= [x1, x2] or w= x2

1 , then it is known (see [Neumann 1989] and [Mann 1994])
that, for a finite group G, if PG(w) ≥ ε > 0, then G is bounded-by-abelian-by-
bounded (in terms of ε). This implies affirmative answers to Problems 3.1 and 3.2
for these particular words w.

In general we cannot answer these problems for words of the form xk
1 (k > 2).

However, for a prime p, a result of Khukhro [1986] shows that, if G is a finitely
generated pro-p group satisfying a coset identity x p

1 (namely, there is a coset of an
open subgroup consisting of elements of order p or 1) then G is virtually nilpotent
(and hence satisfies an identity).

Another positive indication is the result showing that for a (nonabelian) finite
simple group T and a nontrivial word w we have PT (w)→ 0 as |T | →∞ (see
[Dixon et al. 2003] for this result, and also [Larsen and Shalev 2012] for upper
bounds on PT (w) of the form |T |−αw ). This implies that a finite simple group T
satisfying PT (w)≥ ε >0 is of bounded size, hence it satisfies an identity (depending
on w and ε only).

Affirmative answers to Problems 3.1 and 3.2 would have far reaching applications.
The argument proving Theorem 1.1 above also proves the following.

Proposition 3.3. Assume Problem 3.1 has a positive answer, and let 0 be a finitely
generated residually finite group. Then either 0 satisfies an identity or 0 is randomly
free.

In particular:

(i) If 0 does not satisfy an identity then 0̂ has a nonabelian free subgroup.

(ii) If 0̂ has a nonabelian free subgroup then almost all n-tuples in 0̂ freely
generate a free subgroup.

The next application concerns residual properties of free groups. It is well known
that the free group Fn is residually-p. But when is it residually X for a collection X
of finite p-groups? If this is the case, then Fn is also residually Y, where Y is the
subset of X consisting of n-generated p-groups. Thus we may replace X by Y
and assume all p-groups in X are n-generated. It is also clear that if Fn (n > 1) is
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residually X then the groups in X do not satisfy a common identity (namely, they
generate the variety of all groups).

It turns out that, assuming an affirmative answer to Problem 3.2, these conditions
are also sufficient.

Proposition 3.4. Assume Problem 3.2 has a positive answer. Let n≥2 be an integer,
p a prime, and X a set of n-generated finite p-groups. Then the free group Fn is
residually X if and only if the groups in X do not satisfy a common identity.

To prove this, suppose the groups in X do not satisfy a common identity. To
show that Fn is residually X , we have to find, for each 1 6=w=w(x1, . . . , xn)∈ Fn ,
a group G ∈ X and an epimorphism φ : Fn → G, such that φ(w) 6= 1. This
amounts to finding a group G ∈ X and an n-tuple g1, . . . , gn ∈ G generating G
such that w(g1, . . . , gn) 6= 1 (and then φ is defined by sending xi to gi ). Suppose,
given w, that there is no G ∈ X with such an n-tuple. Then, for every G ∈ X , and
every generating n-tuple (g1, . . . , gn) ∈ Gn, we have w(g1, . . . , gn)= 1. Now, the
probability that a random n-tuple in Gn generates G is the probability that its image
in V n spans V, where V = G/8(G) is the Frattini quotient of G, regarded as a
vector space of dimension ≤ n over the field with p elements. This probability is at
least ε :=

∏n
i=1(1− p−i ) > 0. Thus PG(w)≥ ε for all G ∈ X . By the affirmative

answer to Problem 3.2, all the groups G ∈ X satisfy a common identity v 6= 1
(which depends on w, n and p). This contradiction proves Proposition 3.4.

This argument can be generalized to cases when X consists of finite groups G
with the property that n random elements of G generate G with probability bounded
away from zero. See [Jaikin-Zapirain and Pyber 2011] and the references therein for
the description of such groups and the related notion of positively finitely generated
profinite groups.
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