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Given a smooth plane quartic curve C over a field k of characteristic 0, with
Jacobian variety J, and a marked rational point P ∈C(k), we construct a reductive
group G and a G-variety X, together with an injection J (k)/2J (k) ↪→G(k)\X (k).
We do this using the Mumford theta group of the divisor 22 of J, and a construc-
tion of Lurie which passes from Heisenberg groups to Lie algebras.
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Introduction

Motivation. Let C be a smooth, projective, geometrically connected algebraic curve
over a field k of characteristic 0, and let J denote its Jacobian variety. It is of interest
to calculate the group J (k)/2J (k). For example, when k =Q, this is often the first
step in understanding the structure of the finitely generated abelian group J (Q).
Calculating the group J (k)/2J (k) is known as performing a 2-descent.

In order to calculate J (k)/2J (k), it is often very useful to be able to understand
this group in terms of explicit objects in representation theory. This is particularly
the case if one wishes to understand the behavior of the groups J (k)/2J (k) as
the curve C is allowed to vary. A famous example is the description of this
group in terms of binary quartic forms, in the case where C = J is an elliptic
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curve [Birch and Swinnerton-Dyer 1963]. More recently, Bhargava and Gross
[2013] and Wang [2013] have given a similar description in the case where C
is an odd hyperelliptic curve, i.e., a hyperelliptic curve with a marked rational
Weierstrass point P ∈ C(k). In this case, the group J (k)/2J (k) is understood in
terms of equivalence classes of self-adjoint linear operators with fixed characteristic
polynomial.

The aim of this paper is to give an invariant-theoretic description of the group
J (k)/2J (k) when C is a nonhyperelliptic genus-3 curve with a marked rational
point P ∈ C(k). Such a curve is canonically embedded as a quartic curve in P2

k ,
which explains the title of this paper. The set of such pairs (C, P) breaks up into
4 natural families, according to the behavior of the projective tangent line to C at P
(these are described below).

Our results can be summarized in broad terms as follows: for each family of
curves, we obtain a reductive group G over k, an algebraic variety X on which G
acts, and, for each pair x = (C, P) defined over k, a closed G-orbit Xx ⊂ X and a
canonical injection

J (k)/2J (k) ↪→ G(k) \ Xx(k).

If k is separably closed, then the set G(k) \ Xx(k) has a single element. In general,
the set Xx(k) of k-rational points breaks up into many G(k)-orbits, which become
conjugate over the separable closure. The set of G(k)-orbits can be described in
terms of Galois cohomology, and this allows us to make a link with the theory of
2-descent.

Two of the spaces X that we construct are in fact linear representations, and
our results in these cases (although not our proofs) parallel those in [Bhargava and
Gross 2013, §4]. Bhargava and Gross apply the results of [loc. cit.] to understand
the average size of the 2-Selmer group of the Jacobian of an odd hyperelliptic curve
over Q. We hope that our results will have similar applications in the future, but
we do not pursue the study of Selmer groups in this paper.

The other two spaces we construct are global analogues of Vinberg’s θ-groups,
which have been previously studied from the point of view of geometric invariant
theory by Richardson [1982b]. We wonder if they can have similar applications in
arithmetic invariant theory, and if there are similar and simpler spaces which are
related, for example, to elliptic curves.

Description of main results. We now describe more precisely what we prove in
this paper. Let k be a field of characteristic 0. We are interested in the arithmetic
of all pairs (C, P) over k, where C is a smooth nonhyperelliptic curve of genus 3,
and P ∈ C(k) is a marked rational point. We break up such pairs into 4 families,
corresponding to the behavior of the projective tangent line `= TPC in the canonical
embedding:
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Case E7: ` meets C at exactly 3 points (the generic case).

Case e7: ` meets C at exactly 2 points, with contact of order 3 at P (` is a flex).

Case E6: `meets C at exactly 2 points, with contact of order 2 at P (` is a bitangent
line).

Case e6: ` meets C at exactly 1 point (` is a hyperflex).

The name for each case indicates the semisimple algebraic group or Lie algebra
inside which we will construct the variety X described above. The definitions are
as follows:

Case E7: Let H be a split adjoint simple group of type E7, and let θ : H→ H be a
split stable involution (see Proposition 1.9 below). We define G to be the
identity component of the θ -fixed group H θ, and Y to be the connected
component of the identity in the θ -inverted set H θ(h)=h−1

. (Equivalently,
Y can be realized as the quotient H/G.)

Case e7: Let H, θ , and G be as in case E7. We define V to be the tangent space to Y
at the identity, where Y is as in case E7. Then V is a linear representation
of G, and can be identified with the −1-eigenspace of θ in h= Lie H.

Case E6: Let H be instead a split adjoint simple group of type E6, and let θ :H→H
be a split stable involution. We define G to be the identity component
of the θ-fixed group H θ, and Y to be the connected component of the
identity in the θ -inverted set H θ(h)=h−1

.

Case e6: Let H, θ , and G be as in case E6. We define V to be the tangent space to Y
at the identity, where Y is as in case E6. Equivalently, V = hθ=−1

⊂ h.

In case E7 or E6, we let X = Y. In case e7 or e6, we let X = V. In each case the
open subscheme X s

⊂ X of geometric stable orbits (i.e., closed orbits with finite
stabilizers) is nonempty, and can be realized as the complement of a discriminant
hypersurface. A Chevalley restriction theorem holds, and if k is separably closed
then two elements x, y ∈ X s(k) are G(k)-conjugate if and only if they have the
same image in the categorical quotient X//G. (We remark that the quotients V//G
are abstractly isomorphic to affine space. This is not so for the quotients Y//G,
although it would be so if in their definition we replaced the adjoint group H by
its simply connected cover.) The spaces V are linear representations of G of the
type arising from Vinberg theory, and have been studied in the context of arithmetic
invariant theory in, e.g., [Thorne 2013]. The spaces Y are a “global” analogue of
the representations V.

Our first main result is the construction of a point of G(k) \ X s(k) which corre-
sponds to the trivial element of the group J (k)/2J (k):
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Theorem 1 (see Theorem 3.5). (1) In case E7 or E6, let S denote the functor
k-alg→ Sets which classifies pairs (C, P), where C is a smooth, nonhyperelliptic
curve of genus 3, and P is a point of C as above. Then there is a canonical map

S(k)→ G(k) \ Y s(k).

If k is separably closed, then this map is bijective.

(2) In case e7 or e6, let S denote the functor k-alg→ Sets which classifies tuples
(C, P, t), where C is a smooth nonhyperelliptic curve of genus 3, P is a point of C
as above, and t is a nonzero element of the Zariski tangent space of C at P. Then
there is a canonical map

S(k)→ G(k) \ V s(k).

If k is separably closed, this map is bijective.

In any of the above cases, given x ∈S(k) corresponding to a tuple (C, P, . . . ), we
write Jx for the Jacobian of C and Xx ⊂ X for the geometric stable orbit containing
the image of x , where again X = Y in case E7 or E6, and X = V in case e7 or e6. As
noted above, G(k) acts transitively on Xx(k) if k is separably closed, but in general
this is not the case; instead, the orbits comprising G(k) \ Xx(k) can be described in
terms of Galois cohomology. Our main theorem shows how to construct orbits in
G(k) \ Xx(k) using rational points of Jx(k):

Theorem 2 (see Theorem 3.6). Let notation be as above. Then there is a canonical
injection Jx(k)/2Jx(k) ↪→G(k)\ Xx(k). The image of the identity element of Jx(k)
is the image of x under the map of Theorem 1.

We observe that the Jacobian Jx depends only on the curve C , but the set
G(k) \ Xx(k) depends on the choice of auxiliary data; an analogous situation arises
when doing 2-descent on the Jacobian of a hyperelliptic curve which has more than
one k-rational Weierstrass point.

Methods. The methods we adopt to prove Theorems 1 and 2 seem to be different
to preceding work of a similar type. This reflects the fact that we are now in the
territory of exceptional groups, whereas, e.g., 2-descent on hyperelliptic curves can
be understood using the invariant theory of Vinberg θ -groups which are constructed
inside classical groups (in fact, groups of type An).

Our starting point is a classical geometric construction. For concreteness, we
describe what happens just in the case of type E6. Let us therefore take a smooth,
nonhyperelliptic curve C over C of genus 3, and let P ∈ C(C) be a marked point
where the projective tangent line in the canonical embedding is a bitangent line.
The double cover π : S→ P2 branched over C is a del Pezzo surface of degree 2,
and the strict transform of ` is the union of two −1-curves; blowing down one of
these, we obtain a smooth cubic surface S.



Arithmetic invariant theory and 2-descent for plane quartic curves 1377

There is a well-known connection between cubic surfaces and the root system
of type E6: let 3 = K⊥S ⊂ H 2(S,Z) denote the orthogonal complement of the
canonical class of S. Then 3 is in fact a root lattice of type E6. This does not
immediately provide a relation with geometric invariant theory because there is no
functorial construction of a reductive group from a root lattice.

However, Lurie [2001] has observed that one can construct in a functorial way
the group H corresponding to 3 given the additional data of a double cover of
V =3/23, i.e., a group extension

1→ {±1} → Ṽ → V → 1 (0-1)

satisfying some additional conditions — in particular, that the quadratic form
q : V → F2 corresponding to this extension agrees with the one derived from
the natural quadratic form on 3.

It turns out that the realization of the cubic surface X using the plane quartic
curve C is exactly the data required for input into Lurie’s construction. Indeed, let
J denote the Jacobian of the curve C . Then J has a natural principal polarization2,
and associated to L= 22 is the Mumford theta group

1→ {±1} → H̃L→ J [2] → 1. (0-2)

(More precisely, the Mumford theta group is a central extension of J [2] by Gm .
The presence of the odd theta characteristic corresponding to the bitangent ` allows
us to refine it to an extension by {±1}.) We show that there is a canonical iso-
morphism J [2] ∼= 3/23; pushing out the sequence (0-2) by this isomorphism,
we obtain a sequence of type (0-1), to which Lurie’s construction applies. We
thus obtain from the data (C, `) an algebraic group of type E6. (We remark here
that the isomorphism J [2] ∼=3/23 is well-known and classical; see, for example,
[Dolgachev and Ortland 1988, Chapter IX, §1]. We thank the anonymous referee
for this reference.)

The principle underlying this paper is that the construction outlined above is
sufficiently functorial that we can recover the arithmetic situation over any field k of
characteristic 0 simply by Galois descent. To construct the orbits whose existence
is asserted by Theorem 2, we simply twist the extension (0-2). More precisely, we
recall in Section 1C below how a point of Jx(k) gives rise to a twisted form of the
Heisenberg group H̃L. We then construct additional orbits by applying our version
of Lurie’s construction to this twisted Heisenberg group.

Other remarks. There are some minor subtleties in our construction that we remark
on now. One point is that, in cases e6, e7, we associate orbits not to pairs (C, P) but
to triples (C, P, t), where t is a nonzero Zariski tangent vector at the point P. This
reflects the fact that the space X constructed in this case has an extra symmetry: it is
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a linear representation of the reductive group G, so we are free to multiply elements
by scalars. This scaling corresponds to scaling the tangent vector t . A similar feature
appears in [Bhargava and Gross 2013], where it allows one to “clear denominators”
when working over Q, and restrict to integral orbits.

Another point is that, in the geometric construction sketched above, we associate
a point to a pair (C, `), and do not need the point P which gives rise to the
bitangent `. Of course, ` being fixed, there are exactly two possible choices of
point P. It turns out that, in each case, the data of the point P is exactly the
data required to rigidify the picture so that we obtain the expected bijection (as in
Theorem 1) when k is separably closed. This is an essential feature, since we rely
heavily on Galois descent.

Our modified version of Lurie’s construction associates to an appropriate exten-
sion Ṽ with action by the absolute Galois group of k a triple (h, t, θ) consisting
of a Lie algebra over k of the correct Dynkin type, a Cartan subalgebra t⊂ h, and
a stable involution θ of h which acts as multiplication by −1 on t. For arithmetic
applications, we extend this construction in a surprising way: we show that a
representation of the group Ṽ appearing in the extension (0-1), and on which
−1 acts as multiplication by −1, gives rise to a representation of the θ-fixed Lie
algebra hθ.

The features of these constructions suggest that they should have an inverse, i.e.,
that, given a tuple (h, t, θ) consisting of a simple Lie algebra h over k, a Cartan
subalgebra t⊂ h and an involution θ of h which acts as −1 on t, one should be able
to pass in the opposite direction to obtain a root lattice 3 with 0k-action and an
extension Ṽ of V =3/23 of type (0-1). The existence of such an inverse has been
shown by Tasho Kaletha, and appears in the Appendix to this paper. He finds the
group Ṽ inside the simply connected cover of the group G = (H θ )◦, where H is
the adjoint simple group over k with Lie algebra h. In Section 3B, we apply these
results to calculate the number of orbits with given invariants in the case k = R.

Organization of this paper. In Section 1 below, we recall some basic facts about
quadratic forms, 2-descent for abelian varieties, and the invariant theory of the
G-varieties under consideration here. In Section 2 we describe our modifications to
Lurie’s constructions. In Section 3 we apply these constructions to the geometry of
plane quartics, in order to arrive at the results described in this introduction. We
conclude in Section 3B with an explicit example in the case k = R.

Notation. Throughout this paper, k will denote a field of characteristic 0, and ks

a fixed separable closure of k. We write 0k = Gal(ks/k). If X is a k-vector space
or a scheme of finite type over k, then we write Xks for the object obtained by
extending scalars to ks. If X is a smooth projective variety over k, then we write KX

for its canonical class. If G, H, . . . are connected algebraic groups over k, then we
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use gothic letters g, h, . . . to denote their Lie algebras. If H is an algebraic group
over k, then we write H 1(k, H) for the continuous cohomology set H 1(0k, H(ks)),
where H(ks) is endowed with the discrete topology. If θ is an involution of H, then
we write H θ for the closed subgroup of H consisting of θ-fixed elements, and hθ

for the Lie algebra of H (equivalently, the +1-eigenspace of the differential of θ
in h). We will make use of the equivalence between commutative finite k-groups
and Z[0k]-modules of finite cardinality (given by H 7→ H(ks)).

By definition, a lattice (3, 〈 · , · 〉) is a finite free Z-module 3 together with
a symmetric and positive-definite bilinear form 〈 · , · 〉 : 3×3→ Z. We define
3∨= {λ∈3⊗Z Q | 〈λ,3〉 ⊂Z}, which is naturally identified with Hom(3,Z). We
call 3 a (simply laced) root lattice if it satisfies the following additional conditions:

• For each λ ∈3, 〈λ, λ〉 is an even integer.

• The set 0 = {λ ∈3 | 〈λ, λ〉 = 2} generates 3 as an abelian group.

In this case, 0 is a simply laced root system, each γ ∈ 0 being associated with the
simple reflection sγ (x)= x−〈x, γ 〉γ . If 0 is irreducible, then it is a root system of
type A, D, or E . In any case, we write W (3)⊂ Aut(3) for the Weyl group of 0,
a finite group generated by the simple reflections sγ , γ ∈ 0.

In several places, we will consider central group extensions of the form

1→ {±1} → Ẽ→ E→ 1.

If ẽ ∈ Ẽ , then we will write −ẽ for the element (−1) · ẽ. We note that this is not
necessarily equal to ẽ−1. We write e for the image of ẽ in E .

1. Background

We first recall some background material. For proofs of the results in Sections 1A
and 1B, we refer the reader to [Gross and Harris 2004].

1A. Quadratic forms over F2. Let V be a finite-dimensional F2-vector space, and
let 〈 · , · 〉 : V × V → F2 be a strictly alternating pairing.

Definition 1.1. A quadratic refinement of V is a function q : V → F2 such that, for
all v,w ∈ V, we have 〈v,w〉 = q(v+w)+ q(v)+ q(w).

In general, there is no distinguished quadratic refinement of V. However, we
have the following result.

Proposition 1.2. Suppose that the pairing 〈 · , · 〉 is nondegenerate.

(1) Fix a decomposition V = U ⊕U ′, where U, U ′ are isotropic subspaces of
dimension g ≥ 0. Then the function qU,U ′(v) = 〈vU , vU ′〉 is a quadratic
refinement. (Here we write vU , vU ′ for the projections of v ∈ V onto the two
isotropic subspaces.)
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(2) The set of quadratic refinements of V is a principal homogeneous space for V,
addition being defined by the formula (v+ q)(w)= q(w)+〈v,w〉.

Definition 1.3. Suppose that the pairing 〈 · , · 〉 is nondegenerate, and let q be a
quadratic refinement of V. The Arf invariant a(q) ∈ F2 of q is defined as follows.
Fix a decomposition V =U ⊕U ′ into isotropic subspaces of dimension g ≥ 0. Let
{e1, . . . , eg} be a basis of U, and let {ε1, . . . , εg} denote the dual basis of U ′. Then
a(q)=

∑g
i=1 q(ei )q(εi ).

Lemma 1.4. Suppose that the pairing 〈 · , · 〉 is nondegenerate, and let dim V = 2g.

(1) The Arf invariant a(q) is well-defined.

(2) Let Sp(V ) denote the group of automorphisms of the pair (V, 〈 · , · 〉). Then
Sp(V ) has precisely 2 orbits on the set of quadratic refinements of V, which
are distinguished by their Arf invariants. The set of refinements with a(q)= 0
has cardinality 2g−1(2g

+ 1) and the set of refinements with a(q) = 1 has
cardinality 2g−1(2g

− 1).

(3) If q is a quadratic refinement and v ∈ V, then a(q + v)= a(q)+ q(v).

1B. Theta characteristics. Let k be a field of characteristic 0, and let C be a
smooth, projective, geometrically irreducible curve over k, of genus g ≥ 2. We
write KC for the canonical bundle of C , and J = Pic0(C) for the Jacobian of
C . We write V = J [2], a finite k-group. We view V as an F2-vector space of
dimension 2g with continuous 0k-action. The Weil pairing defines a nondegenerate,
strictly alternating bilinear form 〈 · , · 〉 : V × V → F2 which is 0k-invariant.

Definition 1.5. (1) A theta characteristic is a line bundle L on C such that L⊗2∼=KC .

(2) Let L be a theta characteristic. We say that L is odd (resp. even) if h0(L) is
odd (resp. even).

Here and below we write h0(L)= dimk H 0(C,L) for any line bundle L on the
curve C .

Lemma 1.6. (1) As a principal homogeneous space for V, the k-variety of iso-
morphism classes of theta characteristics is canonically identified with the
k-scheme of quadratic refinements of the Weil pairing: if L is a theta charac-
teristic, we associate to it the quadratic refinement q : V → F2 defined by the
formula q(v)= h0(L⊗OC v)+ h0(v) mod 2.

(2) With notation as above, the Arf invariant of q is a(q)= h0(L) mod 2.

Henceforth, we identify the set of theta characteristics of the curve C with the
set of quadratic refinements κ : V → F2.
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1C. Heisenberg groups and descent. We continue with the notation of Section 1B.
Let J g−1 denote the J-torsor of degree-(g− 1) line bundles on C ; it contains the
theta divisor Wg−1. Given a theta characteristic κ defined over k, we have the
translation map tκ : J → J g−1, L 7→ L⊗ κ , and we define 2κ = t∗κWg−1. It is a
symmetric divisor, and all symmetric theta divisors arise in this fashion. (This is
classical; see [Birkenhake and Lange 2004, Chapter 11].) Similarly, if A ∈ J (k)
then there is a translation map tA : J → J, L 7→ L⊗ A.

The isomorphism class of the line bundle Lκ = OJ (22κ) is independent of
the choice of κ , but there is no canonical choice of isomorphism as κ varies. In
particular, even if κ is defined only over ks, the field of definition of this bundle is
equal to k. We choose a bundle L in this isomorphism class defined over k. We
introduce the Heisenberg group H̃L of pairs (ω, ϕ), where ω∈ J [2] and ϕ :L→ t∗ωL
is an isomorphism. It is an extension

0→ Gm→ H̃L→ J [2] → 0.

Lemma 1.7. (1) Let ω, η ∈ J [2], and let ω̃, η̃ denote lifts of these elements to H̃L.
Then ω̃η̃ω̃−1η̃−1

= (−1)〈ω,η〉.

(2) Let Aut(H̃L; J [2]) denote the group of automorphisms of H̃L fixing Gm point-
wise and acting as the identity on J [2]. Then the map

η 7→ ((ω, ϕ) 7→ (ω, (−1)〈η,ω〉ϕ))

defines an isomorphism J [2] ∼= Aut(H̃L; J [2]).

Proof. The first part can be taken as the definition of the Weil pairing. The second
part follows from [Birkenhake and Lange 2004, Lemma 6.6.6]. �

If κ is a theta characteristic defined over k, then we can define a character
χκ : H̃L→ Gm by the formula χκ(ω̃)= ω̃2(−1)qκ (ω). (This makes sense since the
square of any element of H̃L lies in Gm .) We then have an exact sequence

1→ {±1} → kerχκ→ J [2] → 1. (1-1)

This construction will play an important role later on; compare the required data at
the beginning of Section 2 below.

Associated to J is the Kummer exact sequence

0→ J [2] → J → J → 0,

and the associated short exact sequence in Galois cohomology

0→ J (k)/2J (k) δ→ H 1(k, J [2])→ H 1(k, J )[2] → 0.
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The map δ can be written down explicitly as follows: given A ∈ J (k), choose
B ∈ J (ks) such that [2](B)= A. Then the cohomology class δ(A) is represented
by the cocycle σ 7→ σB− B.

We now give another interpretation of this homomorphism in terms of the
group H̃L. The field of definition of the line bundle t∗BL is equal to k; we let LB

denote a choice of descent to k, unique up to k-isomorphism. This allows us to
define the Heisenberg group H̃LB of pairs (ω, ϕ), where ω ∈ J [2] and ϕ is an
isomorphism LB → t∗ωLB . We also fix a choice of isomorphism f : LB → t∗BL
over ks.

The choice of f defines an isomorphism F : (H̃L)ks ∼= (H̃LB )ks , given by the
formula

F : (ω, ϕ) 7→ (ω, t∗ω f −1
◦ t∗Bϕ ◦ f ). (1-2)

We define a cocycle valued in Aut(H̃L; J [2]) by the formula σ 7→ F−1 σF.

Lemma 1.8. This cocycle is equal to the cocycle σ 7→ σB− B under the identifica-
tion of Lemma 1.7.

In particular, this cocycle depends only on B, and not on any other choice.

Proof. The proof is by an explicit calculation, F−1 σF being given by

(ω, ϕ) 7→
(
ω, t∗ω−B f ◦ t∗

−B
[
t∗ω
σf −1
◦ t∗σBϕ ◦

σf
]
◦ t∗
−B f −1).

We must show that this expression is equal to (ω, (−1)〈ω,
σB−B〉ϕ). However, writing

η = σB− B and ψ = t∗
−σB( f ◦ σf −1), we have (η, ψ) ∈ H̃L and, by Lemma 1.7,(

ω, (−1)〈ω,
σB−B〉ϕ

)
= (η, ψ)(ω, ϕ)(η, ψ)−1(ω, ϕ)−1(ω, ϕ)

= (η, ψ)(ω, ϕ)(η, ψ)−1

=
(
ω, t∗ω+ηψ ◦ t∗ηϕ ◦ t∗ηψ

−1).
Expanding this expression now shows it to be equal to F−1 σF. �

1D. Invariant theory of reductive groups with involution. Let k be a field of char-
acteristic 0, and let H be a split adjoint simple group over k of type A, D, or E .

Proposition 1.9. There exists a unique H(k)-conjugacy class of involutions θ of H
satisfying the following two conditions:

(1) tr(dθ : h→ h)=− rank H.

(2) The group (H θ )◦ is split.

Proof. The result [Thorne 2013, Corollary 2.15] states that there is a unique H(k)-
orbit of involutions θ : H → H such that tr dθ =− rank H and hdθ=−1 contains a
regular nilpotent element. The discussion there also shows by construction that, for
each θ in this class, the group (H θ )◦ is split. We must show that if θ : H → H is
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an involution such that tr dθ =− rank H and (H θ )◦ is split, then hdθ=−1 contains
a regular nilpotent. Let t0 ⊂ hdθ=1 be a split Cartan subalgebra, and let t⊂ h be a
split Cartan subalgebra containing t0.

By [Thorne 2013, Lemmas 2.6 and 2.14], we can find a normal sl2-triple
(E, X, F) in h⊗k ks , i.e., a tuple of elements E, X, F ∈ h⊗k ks satisfying the
relations

[E, F] = X, θ(X)= X,

[X, E] = 2E, θ(E)=−E,

[X, F] = −2F, θ(F)=−F,

with E regular nilpotent and X ∈ t0⊗k ks. Since X is part of an sl2-triple, it follows
that α(X) ∈ Z for every root of t in h, hence X ∈ t, hence X ∈ t0. By [de Graaf
2011, Proposition 7], we can find elements E ′ ∈ hdθ=−1 and F ′ ∈ hdθ=−1

⊗k ks

such that (E ′, X, F ′) is a normal sl2-triple. In particular, E ′ is a regular nilpotent.
This completes the proof. �

Henceforth, we fix a choice of θ satisfying the conclusion of Proposition 1.9
and write G = (H θ )◦. Then G is a split semisimple group. (For a proof that G
is semisimple, see Section A2 of the Appendix to this paper.) We will study the
invariant theory of two different actions of G. We first consider V = hdθ=−1. Then
V is a linear representation of the group G.

Theorem 1.10. (1) V satisfies the Chevalley restriction theorem: if t ⊂ V is a
Cartan subalgebra, then the map NG(t)→ Wt = NH (t)/ZH (t) is surjective,
and the inclusion t⊂ V induces an isomorphism

t //Wt
∼= V//G.

In particular, the quotient V//G is isomorphic to affine space.

(2) Suppose that k = ks, and let x, y ∈ V be regular semisimple elements. Then x
is G(k)-conjugate to y if and only if x , y have the same image in V//G.

(3) There exists a discriminant polynomial 1 ∈ k[V ] such that, for all x ∈ V, x is
regular semisimple if and only if 1(x) 6= 0, if and only if the G-orbit of x is
closed in V and StabG(x) is finite.

Proof. This follows from results of Vinberg, which are summarized in [Panyushev
2005] or (in our case of interest) [Thorne 2013, §2]. �

We now consider the variety Y ⊂ H, the locally closed image of the mor-
phism H → H , h 7→ h−1θ(h). It is a connected component of the subvariety
{h ∈ H | θ(h)= h−1

}, and is in particular closed in H. Note that Y has a marked
point (namely the identity element of H ), and the tangent space to Y at this marked
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point is canonically isomorphic, as a G-representation, to the representation V
defined above.

Theorem 1.11. (1) Y satisfies the Chevalley restriction theorem: if T ⊂ Y is a
maximal torus, then NG(T )→ WT = NH (T )/ZH (T ) is surjective, and the
inclusion T ⊂ Y induces an isomorphism

T//WT ∼= Y//G.

(2) Suppose that k = ks, and let x, y ∈ Y be regular semisimple elements. Then x
is G(k)-conjugate to y if and only if x , y have the same image in Y//G.

(3) There exists a discriminant polynomial 1 ∈ k[Y ] such that, for all x ∈ Y, x is
regular semisimple if and only if 1(x) 6= 0, if and only if the G-orbit of x is
closed in Y and StabG(x) is finite.

Proof. See [Richardson 1982b, §0]. �

2. A group with involution

Let k be a field of characteristic 0. Suppose that we are given the following data:

• An irreducible simply laced root lattice (3, 〈 · , · 〉) together with a continuous
homomorphism 0k→W (3)⊂ Aut(3).

• A central extension Ṽ of V =3/23

0→ {±1} → Ṽ → V → 0

together with a homomorphism 0k → Aut(Ṽ ). We suppose that 0k leaves
invariant the subgroup {±1}, and that the induced homomorphism0k→Aut(V )
agrees with the homomorphism 0k→ Aut(3)→ Aut(3/23)= Aut(V ). We
also suppose that, for ṽ ∈ Ṽ, we have the relation ṽ2

=(−1)
1
2 〈v,v〉.

In terms of this data we will define, following [Lurie 2001]:

(1) A simple Lie algebra h over k of type equal to the Dynkin type of 3.

(2) A maximal torus T of H, the adjoint group over k with Lie algebra h, together
with an isomorphism T [2](ks)∼= V∨ of Z[0k]-modules.

(3) An involution θ : H → H leaving T stable, and satisfying θ(t)= t−1 for all
t ∈ T (k).

Suppose, given further the data of a finite-dimensional k-vector space W and a
homomorphism ρ : Ṽ →GL(Wks) such that ρ(−1)=− idW and for all σ ∈ 0k and
ṽ ∈ Ṽ, we have ρ(σṽ)= σρ(ṽ). Then we will further define:

(4) A Lie algebra homomorphism R : hθ → gl(W ).
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(Using the equivalence between Z[0k]-modules of finite cardinality and commutative
finite k-groups, ρ corresponds to a homomorphism Ṽ → GL(W ) of k-groups.)

Let 3̃ equal 3×V Ṽ, a central extension of 3 by {±1}. Let 0 ⊂ 3 be the set
of roots, and 0̃ ⊂ 3̃ its inverse image. Following [Lurie 2001], we define L ′ to be
the free abelian group on symbols X γ̃ for γ̃ ∈ 0̃, modulo the relation X γ̃ =−X−γ̃ .
(Thus {γ̃ ,−γ̃ } is the inverse image in 0̃ of γ ∈ 0.) We set L =3∨⊕ L ′, and define
a bracket [ · , · ] : L × L→ L by the formulae:

• [λ, λ′] = 0 for all λ, λ′ ∈3∨.

• [λ, X γ̃ ] = −[X γ̃ , λ] = 〈λ, γ 〉X γ̃ for λ ∈3∨.

• [X γ̃ , X γ̃ ′] = X γ̃ γ̃ ′ if γ + γ ′ ∈ 0.

• [X γ̃ , X γ̃ ′] = εγ̃ γ̃ ′γ if γ + γ ′ = 0. (By definition, εγ̃ γ̃ ′ = γ̃ γ̃ ′ ∈ {±1} ⊂ Z.)

• [X γ̃ , X γ̃ ′] = 0 otherwise.

Theorem 2.1. (1) L is a Lie algebra over Z. There is a natural action of 0k on L ,
respecting the Lie bracket [ · , · ].

(2) Let h= (L⊗k ks)0k. Then h is a simple Lie algebra over k of Dynkin type equal
to the type of the root lattice 3.

Proof. (1) That L is a Lie algebra over Z of the required type follows from [Lurie
2001, §3.1]. The Galois group 0k acts on 3 and on 0̃ by the given data. We make
it act on L = 3⊕ L ′ by its standard action on 3 and on L ′ by permuting basis
vectors X γ̃ , γ̃ ∈ 0̃. It is immediate from the definition that this respects the bracket.

(2) By Galois descent, the natural map hks → L ⊗k ks is an isomorphism. The
result follows immediately from this. �

Let H denote the simple adjoint group over k with Lie algebra h. Let t =
(3∨⊗k ks)0k ⊂ h; it is the Lie algebra of a maximal torus T of H, whose module
of characters X∗(Tks) is identified with the Z[0k]-module 3. In particular, there is
an isomorphism of Z[0k]-modules T [2](ks)∼=3∨/23∨ ∼= V∨.

We now define the involution θ . Given γ̃ ∈ 0̃, we define Yγ̃ = X γ̃−1 . By
definition, then, [X γ̃ , Yγ̃ ] = γ ∈3. It easy to check that Y−γ̃ =−Yγ̃ . We define an
involution σ : L→ L by taking σ to be multiplication by −1 on 3 and by taking
σ(X γ̃ )=−Yγ̃ .

Proposition 2.2. (1) σ is a well-defined Lie algebra involution, and respects the
action of the group 0k .

(2) Let θ denote the involution of h induced by σ by functoriality. Then tr θ =
− rank h.

Proof. (1) We must check that σ preserves the relations defining [ · , · ]. Let us show
that σ [X γ̃ , X γ̃ ′] = σ X γ̃ γ̃ ′ = −Yγ̃ γ̃ ′ is equal to [σ X γ̃ , σ X γ̃ ′] = [X γ̃−1, X γ̃ ′−1] =
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X γ̃−1γ̃ ′−1 , when γ + γ ′ ∈ 0. Equivalently, we must show that γ̃ γ̃ ′ =−γ̃ ′γ̃ . By the
definition of 3̃, it is equivalent to show that 〈γ, γ ′〉 is odd. Since we work in a
simply laced root system, this is implied by the condition that γ + γ ′ is a root.

(2) This follows because θ acts as −1 on t. �

We define G = (H θ )◦. We define NV to be the image of the natural homomor-
phism V → V∨; it is a Z[0k]-module, and the induced symplectic form on NV

is nondegenerate and 0k-equivariant. The isomorphism T [2] ∼= V∨ restricts to an
isomorphism (T [2] ∩G)∼= NV (cf. [Thorne 2013, Corollary 2.8]).

It remains to define, given a finite-dimensional k-vector space W and a Galois-
equivariant homomorphism ρ : Ṽ → GL(Wks) such that ρ(−1) = − idW , a Lie
algebra homomorphism R : g→ gl(W ). Let us first assume that k = ks. Then the
Lie algebra g is spanned by the elements X γ̃ + X−γ̃−1 = Z γ̃ , say. Let π : 0̃→ Ṽ
denote the natural map. We define a morphism R : g→ gl(W ) of k-vector spaces
by the formula

R(Z γ̃ )= 1
2ρ(π(γ̃ )).

This is well-defined since Z γ̃ =−Z−γ̃ =−Z γ̃−1 , and π(γ̃ )= (−1)
1
2 〈γ,γ 〉π(γ̃ )−1

=

−π(γ̃ )−1. In the case k 6= ks, this defines a homomorphism gks → gl(Wks) which
commutes with the action of 0k , and we write R : g→ gl(W ) for the homomorphism
obtained by Galois descent.

Proposition 2.3. R : g→ gl(W ) is a Lie algebra homomorphism.

Proof. We can again assume that k=ks. We must show that, given γ̃ , γ̃ ′∈ 0̃, we have

R([Z γ̃ , Z γ̃ ′])= [R(Z γ̃ ), R(Z γ̃ ′)].

We now break up into cases according to the value of 〈γ, γ ′〉.

(1) If 〈γ, γ ′〉 = ±2, then γ ′ =±γ , hence γ̃ ′ =±γ̃±1, and both sides of the above
equation are zero.

(2) If 〈γ, γ ′〉 = ±1, then γ ∓ γ ′ is a root. Let us assume for simplicity that
〈γ, γ ′〉=−1, so that γ+γ ′ is a root, and [Z γ̃ , Z γ̃ ′]= Z γ̃ γ̃ ′ . We must show that

1
2ρ(π(γ̃ γ̃

′))= 1
4ρ(π(γ̃ )) · ρ(π(γ̃

′))− 1
4ρ(π(γ̃

′)) · ρ(π(γ̃ )).

This follows from the fact that γ̃ ′γ̃=(−1)〈γ,γ
′
〉γ̃ γ̃ ′=−γ̃ γ̃ ′ and ρ(−1)=− idW .

(3) If 〈γ, γ ′〉 = 0 then neither of γ ± γ ′ is a root, and the left-hand side of the
above equation is zero. On the other hand, π(γ̃ ) and π(γ̃ ′) commute, so the
right-hand side is also zero.

This concludes the proof. �
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The above constructions are evidently functorial in Ṽ, in the following sense:
given Ṽ, ṼB satisfying the conditions at the beginning of this section, and a 0k-
equivariant isomorphism f : Ṽ → ṼB , we obtain an isomorphism of associated
simple adjoint groups F : H ∼= HB , intertwining θ , θB , and restricting to an isomor-
phism T → TB which induces the identity on 3. In this connection, we have the
following lemma.

Lemma 2.4. (1) Let us write Aut(Ṽ ; V ) for the group of automorphisms of Ṽ
leaving the central subgroup {±1} invariant and inducing the identity on
V. Then there is a canonical isomorphism V∨ ∼= Aut(Ṽ ; V ), given by f 7→
(ṽ 7→ (−1) f (v)

· ṽ).

(2) Let f ∈ V∨, and let F denote the induced automorphism of the triple (H, θ, T ).
Let s denote the image of f under the canonical isomorphism V∨ ∼= T [2](ks).
Then F = Ad(s).

Proof. (1) Immediate.

(2) The automorphism f induces the automorphism γ̃ 7→ (−1) f (γ )γ̃ of 0̃. We must
therefore show that (−1) f (γ )

= 〈γ, s〉. However, this follows from the definition of
the element s. �

3. Plane quartic curves

Let k be a field of characteristic 0 and C a smooth (geometrically connected,
projective) nonhyperelliptic curve of genus 3 over k. The canonical embedding then
gives C as a plane quartic curve in P2

k ; let us write π : S→P2
k for the double cover

of P2
k branched over S. Then S is a del Pezzo surface of degree 2, i.e., a smooth

surface with −KS ample and K 2
S = 2. (We note that if k 6= ks, then S depends, up

to isomorphism, on a choice of defining equation of C ; a particular choice will be
specified below. The set of isomorphism classes is a torsor for k×/(k×)2.)

Proposition 3.1. (1) The group Pic(Sks) is free of rank 8 over Z. Its natural
intersection pairing is unimodular.

(2) The sublattice 3= K⊥S ⊂ Pic(Sks) is a root lattice of type E7.

(3) Suppose that ` is a bitangent line of C in its canonical embedding. Then
π−1(`ks) = e ∪ f is a union of two smooth curves of genus 0. Define 3` =
〈e, f 〉⊥ ⊂3. Then 3` is a root lattice of type E6.

(4) There are natural isomorphisms3∨∼= Pic(Sks)/ZKS and3∨` ∼= Pic(Sks)/〈e, f 〉.

(5) Each of Pic(Sks), 3, and 3` (when it is defined) has a natural structure of
Z[0k]-module, which respects the intersection pairings.
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Proof. This is all classical; see [Griffiths and Harris 1994, pp. 545–549] and
[Dolgachev 2012, Chapter 8]. It is useful to note that Sks can be realized as the
blowup of P2

ks at 7 points in general position. �

We define NC to be the image of the natural map 3/23→3∨/23∨. Viewing
C ⊂ S as the ramification locus of π , we see that there is a natural 0k-equivariant
map Pic(Sks)→ Pic(Cks) given by restriction of line bundles.

Proposition 3.2. There is a commutative diagram of finite k-groups

3∨/23∨
∼=
// (Pic(C)/ZKC)[2]

NC

?�

OO

∼=
// Pic0(C)[2]

?�

OO

Proof. We first define the maps. The top map is induced by the composite

3∨ ∼= Pic(S)/ZKS→ Pic(C)/ZKC ,

which takes image in (Pic(C)/ZKC)[2] ⊂ Pic(C)/ZKC . It is well-defined since
KS|C = −KC , and if D is any divisor class on S then 2D|C ∼ (D + ι∗D)|C is
a multiple of KC (where ι : S → S is the involution which swaps sheets). The
left and right maps are the natural inclusions. To see that the bottom map is
derived from the top one, it is enough to note that if D is a divisor class in 3, then
deg D|C = 〈KS, D〉 = 0, so D|C ∈ Pic0(C)[2].

We now show that the top and bottom maps are isomorphisms. We can assume
that k=ks. The groups in the top row have the same cardinality, 27. If ` is a bitangent
line of C corresponding to an odd theta characteristic κ ∈ (Pic(C)/ZKC)[2], and
π−1(`)= e∪ f , then the image of e ∈3∨ in (Pic(C)/ZKC)[2] equals κ . The group
(Pic(C)/ZKC)[2] is generated by the odd theta characteristics. This shows that the
top arrow is surjective, hence an isomorphism. The groups in the bottom row have
the same cardinality, 26, and the bottom arrow is injective. It is therefore also an
isomorphism, and this completes the proof. �

As pointed out in the introduction, Proposition 3.2 is essentially classical.

Proposition 3.3. (1) Under the isomorphism NC ∼= Pic0(C)[2] of Proposition 3.2,
the natural symplectic form on NC is identified with the Weil pairing on
Pic0(C)[2].

(2) Let ` be a k-rational bitangent line of C , and let κ denote the corresponding
k-rational theta characteristic. Let q` : NC → F2 denote the quadratic form
corresponding to the isomorphism3`/23`∼= NC , and let qκ :Pic0(C)[2]→ F2

be the quadratic form induced by κ . Then, under the isomorphism NC ∼=

Pic0(C)[2] of Proposition 3.2, q` and qκ are identified.
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Proof. Since q` and qκ are quadratic refinements of the symplectic forms, it suffices
to prove the second part. These quadratic forms have Arf invariant 1, and therefore
have each exactly 28 zeroes. It therefore suffices to show that q` and qκ have at
least 28 zeroes in common. To do this, we can assume that k = ks. If κ ′ is any odd
theta characteristic of C , then κ − κ ′ ∈ Pic0(C)[2] is a zero of qκ , and there are
exactly 28 such elements. (Use the formula a(q+v)= a(q)+q(v) of Lemma 1.4.)
We must therefore show that if v ∈ 3` has image κ − κ ′, then 〈v, v〉 is divisible
by 4. This is an easy calculation in Pic(Sks). �

We now fix a rational point P ∈C(k). We define elements of certain tori and their
Lie algebras, following [Looijenga 1993, §1]. We break into 4 cases, according to
the geometry of the point P. Let ` denote the tangent line to C at P in P2

k , and
K = π−1(`) its inverse image, an anticanonical curve in S.

Case E7: ` not a flex. In the most general case, the tangent line at P to C in its
plane embedding meets C at 3 distinct points and therefore has contact of order 2
at P. We define a point of the torus T = Hom(3,Gm), up to inversion. Indeed, in
this case K is an irreducible rational curve with a unique nodal singularity at P.
There is a unique choice of S for which the tangent directions of K at P are defined
over k; we make this choice. Restriction of line bundles induces a homomorphism
Pic(S)→ Pic(K ). An element of Pic(S) is orthogonal to KS (under the intersection
pairing) if and only if its restriction to K has degree 0, so we obtain an induced
homomorphism 3→ Pic0(K ). Choosing a group isomorphism Pic0(K )∼=Gm , we
now obtain a point κC ∈ T (k), well-defined up to inversion.

Case e7: ` a flex, not a hyperflex. We now suppose that the tangent line to C at P
has contact of order exactly 3, and fix in addition a nonzero tangent vector t in the
Zariski tangent space of C at P. We define a point κC of the Lie algebra t of the
torus T = Hom(3,Gm), well-defined up to multiplication by −1. The curve K
is irreducible and rational with a unique cuspidal singularity, at P. Restriction
induces a morphism 3→ Pic0(K ). To write down κC , it therefore suffices to give
a normalization of the isomorphism Pic0(K )∼= Ga , at least up to sign.

To do this we find it convenient to introduce explicit coordinates. Using Riemann–
Roch, it is easy to show that there are unique functions x, y ∈ k(C)× satisfying:

• x ∈ H 0(C,OC(2P + Q)) and y ∈ H 0(C,OC(3P − Q)).

• Let z ∈ OC,P be a coordinate such that dz(t) = 1. Then x = z−2
+ · · · and

y = z−3
+ · · · locally at P.

• x and y satisfy the equation

y3
= x3 y+ p10x2

+ x(p2 y2
+ p8 y+ p14)+ p6 y2

+ p12 y+ p18

for some p2, . . . , p18 ∈ k.
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Then we can choose homogeneous coordinates X , Y , Z on P2
k such that C is given

by the equation

Y 3Z= X3Y+p10 X2Z2
+X (p2Y 2Z+p8Y Z2

+p14 Z3)+p6Y 2Z2
+p12Y Z3

+p18 Z4,

and this equation is uniquely determined by the triple (C, P, t). We use it to define
the surface S. Then a chart in S is the affine surface

w2
= z0− (x3

0 + p10x2
0 z2

0+ · · ·+ p18z4
0),

where x0= X/Y, z0= Z/Y, and the curve K is given locally by the equation z0= 0.
Let f : K̃ → K be the normalization. A coordinate in K̃ at the point above P is
given by w/x0. We use the isomorphism Ga ∼= Pic0(K ), t 7→ δ(1+ tw/x0), where
δ is the connecting homomorphism of the exact sequence of sheaves on K

0→O×K → f∗O×K̃ → f∗O×K̃ /O
×

K → 0.

Case E6: ` a bitangent, not a hyperflex. We now suppose that ` meets C at two
distinct points, say P, Q, and that it has contact of order 2 at each point. Then
the root subsystem 3` ⊂ 3 is defined, and we will define a point of the torus
T = Hom(3`,Gm). The curve Kks = eks ∪ fks is a union of two smooth conics,
which meet transversely at two distinct points. We choose S so that these conics
are defined over k. We thus obtain a homomorphism 3`→ Pic0(K )−, where (?)−

denotes the −1-eigenspace of the involution induced by switching sheets. The
group Pic0(K )− is canonically isomorphic to Gm , the isomorphism being specified
as in [Looijenga 1993, §1.12]: if s ∈ Gm tends to 0, then e is contracted to P
and f is contracted to Q. We define κC ∈ T (k) to be the point obtained via this
isomorphism. If the roles of e and f are reversed, then κC is replaced by κ−1

C .

Case e6: ` a hyperflex. We now suppose that ` has contact of order 4 with C at P,
and fix in addition a nonzero tangent vector t in the Zariski tangent space of C
at P. Then the root system 3` ⊂ 3 is defined, and we will define a point κC of
the Lie algebra t of the torus T = Hom(3`,Gm). Restriction once more induces a
map 3`→ Pic0(K )−, and we obtain a point κC ∈ t by specifying an isomorphism
Pic0(K )− ∼= Ga . To do this, we again introduce explicit coordinates. There are
unique functions x, y ∈ k(C)× satisfying:

• x ∈ H 0(C,OC(3P)) and y ∈ H 0(C,OC(4P)).

• Let z ∈ OC,P be a coordinate such that dz(t) = 1. Then x = z−3
+ · · · and

y = z−4
+ · · · locally at P.

• x and y satisfy the equation

y3
= x4
+ y(p2x2

+ p5x + p8)+ p6x2
+ p9x + p12

for some p2, . . . , p12 ∈ k.
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Then we can choose homogeneous coordinates X , Y , Z on P2
k such that C is given

by the equation

Y 3 Z = X4
+ Y (p2 X2 Z + p5 X Z2

+ p8 Z3)+ p6 X2 Z2
+ p9 X Z3

+ p12 Z4,

and this equation is uniquely determined by the triple (C, P, t). We use it to define
the surface S. A chart in S is the affine surface

w2
= z0− (x4

0 + · · ·+ p12z4
0),

where x0= X/Y and z0= Z/Y. The curve K = e∪ f is a union of 2 smooth conics
which are tangent at the point P, and is given in the above chart by the equation
z0 = 0. A coordinate at P in both e and f is given by x0. We use the isomorphism
Ga ∼= Pic0(K )−, t 7→ δ(1+ t x, 1), where δ is the connecting homomorphism in the
exact sequence of sheaves on K

0→O×K →O×e ⊕O×f → (O×e ⊕O×f )/O
×

K → 0.

If the roles of e and f are reversed, then κC is replaced by −κC .
In each case, we write S : k-alg → Sets for the functor of data (C, P, . . . )

considered above. This means:

• In case E7, S is the functor of pairs (C, P), where C is a nonhyperelliptic
curve of genus 3 and P is a point of C which is not a flex or a bitangent in
the canonical embedding. More precisely, for each A ∈ k-alg, S(A) is the set
of isomorphism classes of pairs (π, P) consisting of a proper flat morphism
π : C → Spec A and a section P : Spec A → C of π such that for each
geometric point s̄ of Spec A, the pair (Cs̄, Ps̄) is of this type.

• In case e7, S is the functor of triples (C, P, t), where C is a nonhyperelliptic
curve of genus 3, P is a point of C which is a flex (but not a hyperflex) in the
canonical embedding, and t is a nonzero element of the Zariski tangent space
of C at P.

• In case E6, S is the functor of pairs (C, P), where C is a nonhyperelliptic
curve of genus 3 and P is a point such that TPC is a bitangent in the canonical
embedding of C .

• In case e6, S is the functor of triples (C, P, t), where C is a nonhyperelliptic
curve of genus 3, P is a point which is a hyperflex in the canonical embedding,
and t is a nonzero element of the Zariski tangent space of C at P.

We can now state the following reformulation of some results of Looijenga:

Theorem 3.4. Suppose that k = ks.
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• In case E7, let 30 be a root lattice of the corresponding type, and let T0 =

Hom(30,Gm). Then the Weyl group W =W (30) acts on T0, and the assign-
ment (C, P)→ κC induces a bijection S(k)→ (T rss

0 //W )(k).

• In case E6, let 30 be a root lattice of the corresponding type, and let T0 =

Hom(30,Gm). Fix a nontrivial class e0 ∈ 3
∨

0/30. Then the Weyl group
W =W (30) acts on T0, and the assignment (C, P)→ κC induces a bijection
S(k)→ (T rss

0 //W )(k).

• In case e7, let 30 be a root lattice of the corresponding type, and let t0 =
Hom(30,Ga). Then the Weyl group W = W (30) acts on t0, and the assign-
ment (C, P, t)→ κC induces a bijection S(k)→ (trss

0 //W )(k).

• In case e6, let 30 be a root lattice of the corresponding type, and let t0 =
Hom(30,Ga). Fix a nontrivial class e0 ∈ 3

∨

0/30. Then the Weyl group
W =W (30) acts on t0, and the assignment (C, P, t)→ κC induces a bijection
S(k)→ (trss

0 //W )(k).

The subscript “rss” indicates the open subset of regular semisimple elements,
i.e., the complement of all root hyperplanes.

Proof. We first explain what happens in the case of type E7. For any field k (not
necessarily separably closed), and any pair (C, P) ∈ S(k), we have constructed a
point κC of the torus T =Hom(3,Gm), where3 is the root lattice with Z[0k]-action
constructed above using the curve C .

When k = ks, this action is trivial, and we can choose an isomorphism 3∼=30

of root lattices, which is well-defined up to the action of the group Aut(30). The
Dynkin diagram of type E7 has no extra symmetries, so in fact Aut(30) = W
(see [Bourbaki 2002, Chapter VI, §1, No. 5, Proposition 16]). We thus obtain
an isomorphism T ∼= T0, well-defined up to the action of W, and a point κC ∈

(T0//W )(k)= T0(k)/W. Note that κC is well-defined only up to inversion, but W
contains the element −1. The result [Looijenga 1993, Proposition 1.8] now states
that the point κC is regular semisimple, and that the map S(k)→ (T rss

0 //W )(k) is a
bijection. (In fact, the result is stated when k =C, but the proof is algebrogeometric
in nature and goes through without change when k is any separably closed field of
characteristic 0.) Indeed, the construction given there is exactly the one we have
explicated above.

We now explain what happens in the case of type E6. Our construction gives
a point κC = κ(C, P, e) of the torus T = Hom(3`,Gm), where e is a choice of
irreducible component of the strict transform of the bitangent line ` at P inside S;
we have κ(C, P, f ) = κ(C, P, e)−1. The automorphism group Aut(30) is now
strictly larger than W, because the Dynkin diagram of type E6 has extra symmetries,
the quotient Aut(30)/W being generated by the automorphism −1. In fact, these
ambiguities cancel out.
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Indeed, the quotient 3∨`/3` is cyclic of order 3, and the quotient Aut(30)/W
acts faithfully on it. We can mark the nontrivial elements of 3∨`/3` by e and f as
follows: the class corresponding to e is the one containing the classes of the 27 lines
on S which intersect e (but not f ), and the class corresponding to f is the one
containing the classes of the 27 lines which intersect f (but not e). Let λe :3`→30

be an isomorphism which sends the class in 3∨`/3` corresponding to e to e0. Then
λe is determined up to the action of W (30). The point λeκ(C, P, e) ∈ (T0//W )(k)
is therefore well-defined, and we have λ f κ(C, P, f ) = (λeκ(C, P, e)−1)−1

=

λeκ(C, P, e) mod W0. This gives a map S(k)→ (T0//W )(k) which is independent
of any choices, and which is shown to be a bijection into (T rss

0 //W )(k) by [Looijenga
1993, Proposition 1.13].

The Lie algebra cases are very similar, making reference to [Looijenga 1993,
Propositions 1.11 and 1.15]. �

3A. Construction of orbits. We now come to the most important part of this paper.
In each of the cases E7, e7, E6 and e6 described above, we give a semisimple
group G over k, together with a G-variety X, and write down orbits in G(k)\ X (k)
corresponding to elements of the groups J (k)/2J (k). We must first fix “reference
data”. This means:

• In cases E7 and e7, we fix a choice of pair (H, θ), where H is a split adjoint
simple group over k of type E7, and θ is an involution satisfying the conditions
of Proposition 1.9. We define G = (H θ )◦, and fix an inner class of isomorphisms
g∼= sl8; equivalently, we distinguish one of the two 8-dimensional representations
of g as the “standard representation”. The group H has no outer automorphisms, but
the group H θ has two connected components, and the nonidentity component acts
on the identity component G by outer automorphisms, exchanging the two choices
of standard representation. Indeed, the component group can be calculated using
[Reeder 2010, Proposition 2.1] and the Kac coordinates of the inner automorphism θ ,
which appear in the tables in [Reeder et al. 2012]. The proof of [Reeder 2010,
Proposition 2.1] shows that we can find a representative of the nontrivial component
which normalizes a maximal torus of G but which does not act on this torus in
the same way as any Weyl element of G; the induced automorphism of G must
therefore be outer.

• In cases E6 and e6, we fix a choice of pair (H, θ), where H is a split adjoint
simple group over k of type E6, and θ is an involution satisfying the conditions
of Proposition 1.9. We define G = (H θ )◦ = H θ, and distinguish one of the two
27-dimensional representations of h as the “standard representation”. The connect-
edness of H θ can be shown as above using [Reeder 2010; Reeder et al. 2012].

We recall that in Section 1D we have defined two G-varieties Y and V in terms
of the pair (H, θ). We use these to define the G-variety X as follows:
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• In cases E7 and E6, we define X = Y ⊂ H.

• In cases e7 and e6, we define X = V ⊂ h.

In each case there is a G-invariant open subscheme X s
⊂ X of regular semisimple

(equivalently, stable) orbits. We can now state our first main theorem:

Theorem 3.5. In each case, the assignment (C, P, . . .) 7→ κC determines a map

S(k)→ G(k) \ X s(k). (3-1)

If k = ks, then this map is bijective.

We observe that the theorem has already been proved in the case k = ks. Indeed,
in this case, the set G(k)\X s(k) can be understood, via the Chevalley isomorphisms
of Section 1D, in terms of Weyl group orbits in a maximal torus or Cartan subalgebra.
Via this isomorphism, the theorem becomes Theorem 3.4. Our problem, then, is to
lift this construction so that it works over any field. This also explains the need for
the “reference data” described at the beginning of Section 3A: it will provide the
correct rigidification, in analogy with what happens in the proof of Theorem 3.4.

We remark that in cases e7 and e6, the functor S is representable (as the triples
(C, P, t) have no automorphisms). This implies that, for any field k, the map S(k)→
G(k) \ V s(k) is injective, and the composite S(k)→ G(k) \ V s(k)→ (V s//G)(k)
is bijective.

Proof. Let us first treat the E7 case. Let (C, P) ∈ S(k), and let V = 3/23. The
point κC defined above lies in T (k), where T = Hom(3,Gm), and is well-defined
up to inversion. We are going to define an extension Ṽ of V, with 0k-action, and
then apply the constructions of Section 2 to build a group around the torus T. Let
H̃L be the Heisenberg group defined in Section 1C; it fits into an exact sequence

1→ Gm→ H̃L→ Pic0(C)[2] → 1.

According to Proposition 3.2, there is a canonical injection Pic0(C)[2] ↪→ V∨ of
finite k-groups. Dualizing, we obtain a surjection V → Pic0(C)[2], and we push
out the above extension by this surjection to obtain a central extension

1→ Gm→ Ẽ→ V → 1.

The commutator pairing of Ẽ descends to the natural symplectic form on V (since
this is true for H̃L, by Lemma 1.7, and the kernel of V → Pic0(C)[2] is exactly
the radical of this symplectic form). Since V is endowed with a 0k-invariant
quadratic form q : V → F2, we can define a character χq : Ẽ→Gm by the formula
ẽ 7→ (−1)q(e)ẽ2. This makes sense since, for any ẽ ∈ Ẽ , we have ẽ2

∈Gm . Taking
Ṽ = kerχq then gives the desired extension

1→ {±1} → Ṽ → V → 1.
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(This is a slight variant on the procedure leading to the extension (1-1).) Note
that if W = H 0(Pic0(C),L), then there is a natural homomorphism of k-groups
Ṽ→GL(W ). Indeed, the group H̃L acts on W by definition by pullback of sections;
we can then pull back this action along the homomorphism Ṽ → H̃L. If k = ks,
then this is an 8-dimensional irreducible representation of the abstract group Ṽ (ks),
which sends −1 to − idWks .

In Section 2 we have associated to the triple (3, Ṽ ,W ) a simple adjoint group H0

of type E7, together with a stable involution θ and maximal torus T ⊂ H0, and a
representation of g0= hθ0 on W. By definition, the torus T is canonically isomorphic
to Hom(3,Gm), and θ acts on it by t 7→ t−1. The group H0 is split; in fact, since
g0 is a form of sl8 with an 8-dimensional representation which is defined over k,
g0 is split. The Lie algebras g0 and h0 are semisimple Lie algebras of rank 7, so
this implies that h0 must also be split.

By Proposition 1.9, there is an isomorphism ϕ : H → H0 satisfying θ0ϕ = ϕθ .
This isomorphism is defined uniquely up to H θ (k)-conjugacy. The group H θ is
disconnected, with two connected components; the nontrivial component acts on
the connected component G= (H θ )◦ by outer automorphisms. In order to pin down
the isomorphism ϕ up to G(k)-conjugacy, we observe that ϕ∗(W ) is an irreducible
8-dimensional representation of g, which is therefore isomorphic either to the fixed
“standard representation” or its dual. After possibly modifying ϕ, we can therefore
assume that ϕ carries W to the standard representation of g. The isomorphism ϕ is
then indeed determined uniquely up to G(k)-conjugacy.

It follows that the orbit G(k) ·ϕ−1(κC) ∈ G(k) \ Y (k) is well-defined. (Note, in
particular, that κC is defined only up to inversion, but that θ acts on κC by inversion
and lies in G(k)— in fact in the center of G(k)— so the orbit is independent of
any choices.) To complete the proof in this case, we must show that ϕ−1(κC) is
stable (equivalently, regular semisimple in T ), and that the map we have defined is
a bijection if k = ks. This follows from the discussion preceding the proof of this
theorem, and Theorem 3.4.

Let us now treat the E6 case. The inverse image π−1(`)= e∪ f of the bitangent `
at P in the surface S determines the root lattice 3`, and we set V =3`/23`. The
natural symplectic pairing on V is nondegenerate, and the quadratic form q :V→F2

arising from the form on 3` agrees with the quadratic form on V arising from the
isomorphism V ∼= Pic0(C)[2] and the odd theta characteristic κ corresponding to `,
by Proposition 3.3. We then have the Heisenberg group H̃L:

1→ Gm→ H̃L→ Pic0(C)[2] → 1.

Pushing out by the isomorphism V ∼= Pic0(C)[2], we obtain an extension (isomor-
phic to H̃L)

1→ Gm→ Ẽ→ V → 1.
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We define a character χq : Ẽ → Gm by the formula ẽ 7→ (−1)q(e)ẽ2, and set
Ṽ = kerχq . Then Ṽ is an extension

1→ {±1} → Ṽ → V → 1.

We define W = H 0(Pic0(C),L); then Ṽ acts on W through the homomorphism
Ṽ → H̃L. Applying the constructions of Section 2 to the triple (3`, Ṽ ,W ), we
obtain an adjoint group H0 of type E6 equipped with a stable involution θ0, together
with an action of the Lie algebra g0= hθ0

0 on W. Since g0 is an inner form of sp8 and
has an 8-dimensional representation defined over k, it must be split. This implies
that H0 has split rank at least 4; by the classification of forms of E6 [Tits 1966,
pp. 58–59], we see that H0 must be quasisplit, and split by a quadratic extension.
This quadratic extension is the smallest extension splitting the Galois action on
3∨`3`. Since the geometric irreducible components e and f of π−1(`) are defined
over k, this action is trivial, and we see that H0 is also split.

Applying Proposition 1.9 once more, we see that there is an isomorphism
ϕe : H→ H0 such that ϕeθ = θ0ϕe. This isomorphism is determined up to H θ (k)=
G(k)-conjugacy (as H θ is connected in this case). Moreover, we can assume that,
under the isomorphism ϕe, the minuscule representation of H0 with weights in
3∨`/3` corresponding to e is identified with the “standard representation” of H.

The orbit G(k) ·ϕ−1
e (κC) is then well-defined: reversing the roles of e and f in

our construction replaces κC = κ(C, P, e) by κ(C, P, f )= κ(C, P, e)−1, and θ0 is
an outer automorphism, acting on 3∨`3` ∼= Z/3Z as multiplication by −1, so we
can take ϕf = ϕe ◦ θ0. Then we have

G(k) ·ϕ−1
f (κ(C, P, f ))= G(k) ·ϕ−1

f (θ0(κ(C, P, e)))= G(k) ·ϕ−1
e (κ(C, P, e)).

This shows that we have constructed a well-defined map S(k)→ G(k) \ X (k). The
rest of the theorem in this case follows from the discussion preceding the proof of
this theorem, and Theorem 3.4.

The arguments in the Lie algebra cases are very similar, with maximal tori
replaced by Cartan subalgebras. We omit the details. �

Fix x = (C, P, . . . ) ∈ S(k). Let π : X→ X//G denote the natural quotient map,
and let Xx = π

−1π(x). Then we know that Xx ⊂ X s consists of a single G-orbit
(see Section 1D), but Xx(k)may break up into several G(k)-orbits which all become
conjugate over ks. Let Jx denote the Jacobian of C . We now state our second main
theorem, which shows how to construct elements of G(k) \ Xx(k) from Jx(k):

Theorem 3.6. With notation as above, there is a canonical map

Jx(k)/2Jx(k) ↪→ G(k) \ Xx(k). (3-2)

It is functorial in k in the obvious sense.
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The map (3-2) will extend the map of Theorem 3.5, in the sense that the image
of the identity element of Jx(k)/2Jx(k) under (3-2) equals the image of x ∈ S(k)
under (3-1).

Proof. The proof is a twist of the proof of Theorem 3.5, using the ideas of Section 1C.
We treat first the E7 case. Let A ∈ Jx(k) be a rational point. Choose B ∈ Jx(ks)

such that [2](B)= A. Then the field of definition of the line bundle t∗BL is equal to k,
and we choose a bundle LB over k which becomes isomorphic to t∗BL over ks. We
continue to denote 3= Pic(Sks), V =3/23, and associate to LB the Heisenberg
group H̃LB , which fits into an exact sequence

1→ Gm→ H̃LB → Jx [2] → 1.

Arguing exactly as in the proof of Theorem 3.5, we obtain an extension

1→ {±1} → ṼB→ V → 1,

together with a homomorphism ṼB→ H̃LB through which the group ṼB acts on the
space WB = H 0(Jx ,LB), an 8-dimensional k-vector space. Over ks, this defines an
irreducible representation of the abstract group ṼB(ks).

Using the constructions of Section 2, we associate to the triple (3, ṼB,WB) a
group HB with involution θB , maximal torus TB ∼= Hom(3,Gm), and an action of
the Lie algebra gB = hθB

B on WB . Just as in the proof of Theorem 3.5, the existence
of WB implies that the groups HB and GB are split, and TB(k) has a point κC ,
well-defined up to inversion. By Proposition 1.9, we can find an isomorphism
ϕB : H → HB which intertwines θ and θB , and under which WB corresponds to
the “standard representation” of g∼= sl8. The choice of ϕB is then unique up to the
action of G(k), and we associate to the point B the orbit G(k) ·ϕ−1

B (κC)⊂ Yx(k).
We observe that if A = B = 0, the identity of Jx(k), then the above construc-

tion reduces to that of Theorem 3.5. In general, we must show that the orbit
G(k) ·ϕ−1

B (κC)⊂ Px(k) depends only on the image of A in Jx(k)/2Jx(k) (and not
on the choice of B), and that distinct elements of Jx(k)/2Jx(k) give rise to distinct
orbits. Let ϕ−1

0 (κC) ∈ Yx(k) be the point constructed in the proof of Theorem 3.5.
Since G(ks) acts transitively on Px(ks), a well-known principle asserts that there is
a canonical bijection

G(k) \ Yx(k)∼= ker
(
H 1(k, ZG(ϕ

−1
0 (κC)))→ H 1(k,G)

)
, (3-3)

under which the base orbit G(k) · ϕ−1
0 (κC) corresponds to the marked element;

see, for example, [Bhargava and Gross 2014, Proposition 1]. By [Thorne 2013,
Corollary 2.10] and Proposition 3.2, there is a canonical isomorphism

ZG(ϕ
−1
0 (κC))∼= ZG0(κC)∼= image (V → V∨)∼= Jx [2].
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We will show that under the composite

G(k) \ Yx(k) ↪→ H 1(k, ZG(ϕ
−1
0 (κC)))∼= H 1(k, Jx [2]),

the orbit G(k) · ϕ−1
B (κC) is mapped to the image of A under the 2-descent homo-

morphism of Section 1C.
The pullback t∗B defines a canonical isomorphism Ṽ ∼= ṼB over ks by the formula

(1-2). This gives rise to an isomorphism of triples F : (H0, θ0, T0)∼= (HB, θB, TB)

which induces the identity on Hom(3,Gm) under the identification of this torus
with T0 and TB . According to Lemma 2.4, we can identify F−1 σF with an element
of V∨. Lemma 1.8 now implies that this element in fact lies in the image of the
homomorphism V → V∨ and, under the identification of this image with Jx [2],
is identified with the cocycle σ 7→ σB − B. This identity of cocycles implies the
desired identity of cohomology classes, and completes the proof in this case.

The proof of the theorem in the remaining cases, E6, e7, and e6, simply requires
analogous modifications to the proof of Theorem 3.5. We work out the E6 case
here. Let us take x = (C, P) ∈ S(k), so that P is a point such that TPC = ` is a
bitangent in the canonical embedding of the curve C . The root lattice 3` is defined,
and we define V =3`/23`. The natural symplectic pairing on V is nondegenerate,
and the quadratic form q : V → F2 arising from the form on 3` agrees with the
quadratic form on V arising from the isomorphism V ∼= Jx [2] and the odd theta
characteristic κ corresponding to `, by Proposition 3.3. Let A ∈ Jx(k), and choose
a point B ∈ Jx(ks) with [2](B) = A. Let LB be a descent of the line bundle t∗BL
to k. We then have the Heisenberg group H̃LB :

1→ Gm→ H̃LB → Jx [2] → 1.

Arguing exactly as in the proof of Theorem 3.5, we obtain an extension

1→ {±1} → ṼB→ V → 1,

and ṼB acts on the 8-dimensional k-vector space WB = H 0(Jx ,LB) through a
homomorphism ṼB → H̃LB . We can apply the constructions of Section 2 to
the triple (3`, ṼB,WB) to obtain a group HB with involution θB , maximal torus
TB ∼= Hom(3,Gm), and an action of the Lie algebra gB = hθB

B on WB . The exis-
tence of WB implies that the groups HB and GB are split, and TB(k) has a point
κC = κ(C, P, e) which depends on a choice of component e of π−1(`)= e∪ f . By
Proposition 1.9, we can find an isomorphism ϕB,e : H → HB which intertwines
θ and θB , and under which the “standard representation” of h corresponds to the
minuscule representation of hB corresponding to the class of e in 3∨` ∨ /3`. The
choice of ϕB,e is then unique up to the action of G(k), and we associate to the
point B the orbit G(k) · ϕ−1

B,e(κ(C, P, e)) ⊂ Yx(k). Just as in the E7 case, we
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can check that the map B 7→ G(k) · ϕ−1
B,e(κ(C, P, e)) descends to an injection

Jx(k)/2Jx(k) ↪→ G(k) \ Yx(k). This completes the proof. �

3B. An example. To illustrate our theorem, we describe explicitly what happens
in the e6 case, when k = R. Then the reference group H is a split adjoint group
of type E6 over R, H θ

= G is isomorphic to PSp8, a projective symplectic group
in 8 variables, and V = hdθ=−1 is a 42-dimensional irreducible subrepresentation
of ∧4(8). The corresponding family of curves is the family (C, P, t) of smooth
nonhyperelliptic genus-3 curves, equipped with a point P which is a hyperflex in
the canonical embedding, and a nonzero Zariski tangent vector t ∈ TPC . It consists
of the smooth members in the family

y3
= x4
+ y(p2x2

+ p5x + p8)+ p6x2
+ p9x + p12

(here we are using the affine chart which makes P the unique point at infinity). For
each tuple

(p2, p5, p8, p6, p9, p12) ∈ R6

for which this curve is smooth, we can write down the following data:

• Topological invariants of the curve C(R)⊂P2(R): following [Gross and Harris
1981], we write n(C) for the number of connected components of C(R), and
a(C)= 0 or 1 depending on whether or not C(C)−C(R) is disconnected.

• A stable G-orbit Vx ⊂ V s, and an H(R)-conjugacy class of maximal tori
T ⊂ H (T is the stabilizer in H of the base orbit in Vx(R), which is regular
semisimple).

• An injection J (R)/2J (R) ↪→ G(R) \ Vx(R), where J is the Jacobian of the
curve C .

The isomorphism classes of tori in H are in bijection with the conjugacy class of
elements in the Weyl group W of order 2 [Reeder 2011, §6]. It turns out that these
correspond to the possible topological types of the curve C(R) in P2(R), as shown
in Table 1. The table should be interpreted as follows: suppose that a curve C has
the given invariants. (It follows from the table on [Gross and Harris 1981, p. 174]
that the only possible values for the pair (n(C), a(C)) are the ones listed in Table 1.)
Then the real structure on the torus T is the one determined by the Weyl element in
the left-hand column, and the data in the remaining three columns is as given. Here
s1, s2, s3 ∈ W are commuting simple reflections, and τ ∈ W may be constructed
as follows: choose a D4 root system inside 3. Then −1 ∈ W (D4), and τ is the
element that acts as −1 on the span of the D4 roots, and as +1 on their orthogonal
complement. The elements 1, s1, s1s2, s1s2s3, and τ are pairwise nonconjugate
in W and every involution in W is conjugate to one of these. (For the classification
of conjugacy classes of involutions in Weyl groups, see [Richardson 1982a].)
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conjugacy number of
class n(C) a(C) real bitangents #J (R)/2J (R) #G(R) \ Vx (R)

1 4 0 28 23 36
s1 3 1 16 22 10

s1s2 2 1 8 2 3
s1s2s3 1 1 4 1 1
τ 2 0 4 2 3

Table 1. Correspondence between conjugacy class of elements in
the Weyl group of order 2 and possible topological types of the
curve C(R) in P2(R).

One can check explicitly that each of the above combinations of (n(C), a(C))
does indeed occur. Table 1 can be verified as follows. It follows from our theory that
there is an isomorphism J [2](C)∼=3`/23` under which the action σ of complex
conjugation corresponds to the action of an involution w ∈W (3`)=W and which
identifies the Weil pairing on the left-hand side with the natural symplectic pairing
on the right. On the other hand, [Gross and Harris 1981, Proposition 4.4] shows that
the data of the pair (J [2](C), σ ) (as a symplectic F2-vector space with involution) is
sufficient to recover n(C) and a(C). A calculation shows that the Weyl involutions
biject with the possible choices for the pair (n(C), a(C)). This determines the
number of real bitangents and the quantity #J (R)/2J (R).

We justify the final column using the results in the Appendix. The set G(R)\Vx(R)

is in canonical bijection with the set ker(H 1(R, J [2])→ H 1(R,G)), the marked
element corresponding to the trivial element of J (R)/2J (R). We analyze this
kernel using the following diagram of R-groups with exact rows, whose existence
is asserted by the main result in the Appendix:

1 // µ2 // Sp8
// PSp8

// 1

1 // µ2 //

OO

Ṽ //

OO

J [2] //

OO

1

Here Ṽ is the extension used in the proof of Theorem 3.5; it is a subgroup of
the Heisenberg group H̃L. Using the triviality of the set H 1(R,Sp8), we get an
identification

G(R)\Vx(R)∼=ker(H 1(R, J [2])→H 1(R,G))∼=ker(H 1(R, J [2])→H 2(R, µ2)),

where the arrow
q : H 1(R, J [2])→ H 2(R, µ2)∼= Z/2Z

is the connecting map arising from the bottom row of the above commutative
diagram. (Note that we are working here with nonabelian Galois cohomology; the
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connecting map is defined, becauseµ2 is central, but it need not be a homomorphism
of groups.)

Tate duality gives a perfect pairing on H 1(R, J [2]), with respect to which
J (R)/2J (R) is a maximal isotropic subspace. The map q is a quadratic refinement
of this pairing, in the sense of Section 1A, which is identically zero on the subspace
J (R)/2J (R) (see [Poonen and Rains 2012, Corollary 4.7]). It follows that a(q)= 0,
and the set q−1(0) has 2g−1(2g

+ 1) elements, where g = dimF2 J (R)/2J (R). This
leads to the final column in Table 1.

Appendix: A converse to Lurie’s functorial construction
of simply laced Lie algebras

by Tasho Kaletha

In Section 2 a construction due to Lurie was recalled, which associates in a functorial
way a semisimple Lie algebra h to a simply laced root lattice 3 equipped with
an extension Ṽ of V = 3/23 by {±1}. In fact, the construction produces not
just h, but also some additional structure, including a Cartan subalgebra t. This
construction was, moreover, refined in several ways. It was shown that an action of
the Galois group of a field k on Ṽ is translated to a k-structure on h; it was shown
that h comes equipped with a stable involution θ (i.e., an involution satisfying the
first condition of Proposition 1.9); and finally a construction was described that
produces from a rational representation ρ of the finite algebraic k-group Ṽ with
ρ(−1)=−1 a rational representation dπ of the Lie algebra g= hθ.

The purpose of this appendix is to provide a converse to this refinement of Lurie’s
construction. The basic question is: given h, t, and θ , is it possible to recover the
extension Ṽ in a concrete way? That this should be the case, and in fact where the
extension is to be found, was suggested to us by Jack Thorne. His idea was that
the extension Ṽ should be the preimage in Gsc of the 2-torsion subgroup of Tsc,
where Tsc is the maximal torus of the simply connected group Hsc with Lie algebra
h given by the Cartan subalgebra t, and Gsc is the simply connected group with
Lie algebra g. In this appendix, we will show that this preimage is indeed an
extension of V by {±1} and we will, moreover, construct an isomorphism from this
extension to Ṽ that preserves the action of the Galois group of k and intertwines
the representations ρ and π .

We thank Jack Thorne for sharing with us this interesting question and for
including our results in his paper.

A1. Statement of two propositions. Let k be a field of characteristic 0 and ks a
fixed separable closure, and let 0k = Gal(ks/k). Let 3 be a finite free Z-module
equipped with a symmetric bilinear form 〈 · , · 〉 : 3⊗3→ Z and satisfying the
following conditions:
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• rk3> 1.

• For any nonzero λ ∈3, the value 〈λ, λ〉 is a positive even integer.

• The set 0 = {λ ∈3 | 〈λ, λ〉 = 2} generates 3.

As discussed in [Lurie 2001], these are precisely the root lattices of simply laced
root systems. Here we are excluding the system A1. The subset 0 ⊂ 3 is the
set of roots. We shall place the additional assumption that 0 is irreducible. This
assumption is made just for convenience and can easily be removed.

Write q(λ)= 1
2〈λ, λ〉, this is a quadratic form. Let V =3/23 and let

1→ {±1} → Ṽ → V → 0

be an extension of groups (we write the group law of Ṽ multiplicatively) with the
property that, for each ṽ ∈ Ṽ and its image v ∈ V, the equality ṽ2

= (−1)q(v) holds.
This equation characterizes the isomorphism class of this extension.

Assume we are given an action of 0k on 3 that preserves 〈 · , · 〉, as well as an
action of 0k on Ṽ that preserves the subgroup {±1}, such that the two actions on V
induced from these coincide. Let 3̃=3×V Ṽ and let 0̃ ⊂ 3̃ be the preimage of 0.
The extension 3̃ of 3 by {±1} inherits an action of 0k and this action preserves 0̃.

Let h be the Lie algebra associated to this data as described in Section 2. It
comes equipped with a Cartan subalgebra t and a map 0̃→ h sending each γ̃ to a
nonzero root vector X γ̃ ∈ hγ and having the properties:

• X−γ̃ =−X γ̃ .

• [X γ̃ , X γ̃ ′] = X γ̃ γ̃ ′ if γ + γ ′ ∈ 0 (by assumption γ̃ γ̃ ′ ∈ 0̃).

• [X γ̃ , X γ̃ ′] = (γ̃ γ̃ ′)Hγ if γ ′ = −γ , where Hγ ∈ t is the coroot for γ (by
assumption γ̃ γ̃ ′ ∈ {±1}).

Let H = Aut(h)◦ be the corresponding adjoint group, Hsc its simply connected
cover, and θ the involution of h which acts by −1 on t and by θ(X γ̃ ) = −X γ̃−1

on the root subspaces. It induces an involution on H and Hsc as well and this
involution acts by inversion of the maximal tori T and Tsc whose Lie algebra is t.
Let g= hθ be the fixed Lie subalgebra and G = H θ,◦ the connected component of
the fixed subgroup. Let G ′ = H θ

sc. According to [Steinberg 1968, Theorem 8.1]
G ′ is connected. Its image in H is equal to G. Since θ commutes with the action
of 0k , the groups G and G ′ are defined over k.

Proposition A.1. The group G ′ is semisimple and its fundamental group has order 2.

Let Gsc be the simply connected cover of G. We will from now on denote
the fundamental group of G ′ by {±1} ⊂ Gsc. For a root γ ∈ 0, let γ∨ be the
corresponding coroot. The map

V → Tsc, [γ ] 7→ γ∨(−1)
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identifies V with the 2-torsion subgroup of Tsc and this subgroup belongs to G ′. We
form the pullback extension

1 // {±1} // Gsc // G ′ // 1

1 // {±1} // X //

OO

V //

OO

1

This extension inherits an action of 0k .
Finally, given a rational representation ρ : Ṽ→GL(W ) of the algebraic k-group Ṽ

on a finite-dimensional k-vector space W such that ρ(−1)=−1, we define a repre-
sentation dπ : g→ gl(W ) by dπ(X γ̃ − X γ̃−1)= 1

2ρ(γ̃ ), and let π : Gsc→GL(W )

be the corresponding rational representation of Gsc. Recall that Proposition 2.3
asserts that dπ is indeed a Lie algebra representation.

Proposition A.2. There exists an isomorphism of extensions 8 : Ṽ → X which is
0k-equivariant and intertwines ρ with π |X for all representations ρ as above.

A2. Proof of Proposition A.1. According to [Reeder et al. 2012, §5.3], the involu-
tion θ is stable and hence its conjugacy class is uniquely determined. A description
of this conjugacy class for each Dynkin type is given in [Reeder et al. 2012, §8]
in terms of Kac diagrams. The normalized Kac diagram of the stable involution
contains a unique node with label 1, and all other nodes have label 0. According to
[Reeder 2010, §3.7], this implies that the center of G is finite. Thus G, and hence
also G ′, is semisimple. Its Dynkin diagram is obtained by removing the unique
node with label 1 from the Kac diagram of the stable involution. In order to prove
that the fundamental group of G ′ has order 2, we argue as follows. According to
[Reeder 2010, §3.7], the order of the center of G is given by bι, where ι is the index
of the unique node with label 1 in the Kac diagram, and bι is an integer defined in
[Reeder 2010, §3.3], which according to Theorem 3.7 in [loc. cit.] is equal to 2 if θ
is inner and to 1 if θ is outer. Since θ acts by −1 on the Cartan subalgebra t, it is
inner if and only if −1 belongs to the Weyl group of (t, h).

The kernel of the map G ′→ G is equal to Z(Hsc)
θ. Thus the center of G ′ has

size |Z(Hsc)
θ
| · bι. The proof will be complete once we show that this number is

equal to one half of the connection index of the Dynkin diagram of G. This can be
done by inspection of the individual cases An (n > 1), Dn , E6, E7, E8. We give
the examples of the exceptional types, E6, E7, and E8, and leave the discussion of
the classical types, An and Dn , to the reader.

For type E6, the Kac diagram of θ is given by the last row of Table 3 of [Reeder
et al. 2012, §8.1] and has the form 0 0 0⇐ 0 1, so G has type C4. Since θ is outer,
G is adjoint. There are no θ -fixed points in the center of Hsc, thus G ′ ∼= PSp4.

For type E7, the Kac diagram of θ is given by the last row of Table 4 and has
the form 0 0 0 0 0 0 0

1 , so G is of type A7. The center of G now has order 2, because
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θ is inner, and, moreover, the fixed points of θ in Z(Hsc) also have order 2, so the
center of G ′ has order 4.

For type E8, the Kac diagram of θ is given by the last row in Table 5 and has
the form 1 0 0 0 0 0 0 0

0 , so G is of type D8. The center of G has order 2, because θ is
inner. Since Z(Hsc)= 1, the center of G ′ also has order 2.

For the classical types, the relevant diagrams are those in row 2 of Table 10 (H is
of type A2n and G is of type Bn), row 3 of Table 11 with k = n− 1 (H is of type
A2n−1 and G is of type Dn), row 3 of Table 14 for k = n even (H is of type Dn

and G is of type D n
2
× D n

2
), and row 3 of Table 15 with l = n odd (H is of type

Dn and G is of type B n−1
2
× B n−1

2
). Note that θ is inner for Deven and outer for An

and Dodd.

A3. Proof of Proposition A.2.

A3.1. The group SOn . We define the group SOn to be the subgroup of SLn fixed
by the transpose-inverse automorphism. This group is semisimple when n > 2.
For n = 2, it is noncanonically isomorphic to Gm over ks. One can specify an
isomorphism by fixing a 4-th root of unity i ∈ ks. Then we have

Gm→ SO2, x 7→ 1
2

[
x + x−1 i(x − x−1)

−i(x − x−1) x + x−1

]
.

For future reference, we record the formula[
a b
−b a

]2

=

[
a2
− b2 2ab

−2ab a2
− b2

]
for the squaring map SO2

( )2
−→ SO2.

A3.2. Construction of the isomorphism Ṽ → X. Choose a set of simple roots
1 ⊂ 0. The image 1V of 1 in V is a set of generators for this group, and the
relations on this set are 2v = 0 for all v ∈1V . Let 1̃ be the preimage of 1 in 3̃,
and let 1̃V be the image of 1̃ in Ṽ. Then 1̃V is a set of generators for Ṽ, and the
relations on this set are ṽ2

= (−1) and ṽw̃ = (−1)〈v,w〉w̃ṽ.
We now define a map φ : 1̃→ X. Given γ̃ ∈ 1̃ we obtain a monomorphism

ηγ̃ : SL2→ Hsc with θ-stable image that translates the action of θ on its image
to the action of transpose-inverse on SL2. The fixed subgroup SO2 of this action
therefore lands in G ′.

Lemma A.3. The preimage of ηγ̃ (SO2) in Gsc is connected.

The proof of this lemma will be given in Section A3.6. Granting this lemma, it fol-
lows from Proposition A.1 that there exists a unique homomorphism φγ̃ :SO2→Gsc
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making the following diagram commute:

SO2
φγ̃
//

( )2

��

Gsc

��

SO2
ηγ̃
// G ′

This homomorphism is injective. We let

φ(γ̃ )= φγ̃

([
1

−1

])
.

By the above diagram, the image of φ(γ̃ ) in G ′ is equal to γ∨(−1), which shows
that φ(γ̃ ) ∈ X. Moreover, φ(γ̃ )2 = φγ̃ (−1) is a nontrivial element of Gsc whose
image in G ′ is trivial, hence φ(γ̃ )2 =−1.

We thus obtain a map φ : 1̃→ X which descends to a map 8 : 1̃V → X and
whose image contains a set of generators for X. We claim that 8 is 0k-equivariant.
Given σ ∈ 0k , we have ησ γ̃ = σ ◦ ηγ̃ , and hence φσ γ̃ = σ ◦φγ̃ , where on the right
sides of these equations σ denotes the action of σ on G ′ and Gsc, respectively. Thus
φ(σ γ̃ )= σφ(γ̃ ) for all γ̃ ∈ 0̃ and this establishes the 0k-equivariance of 8.

Our task is to show that 8 respects the relation ṽw̃ = (−1)〈v,w〉w̃ṽ. Once this
is done, it will extend to a surjective homomorphism 8 : Ṽ → X, which will then
have to be bijective because its source and target have the same cardinality. It will
furthermore be 0k-equivariant.

A3.3. The isomorphism PGL2 → SO3. Consider the adjoint action of PGL2 on
its Lie algebra sl2. Fix a 4-th root of unity i ∈ ks as well as an element

√
2 ∈ ks.

The basis

√
2
−1
[

1
−1

]
, (i

√
2)−1

[
1

−1

]
,

√
2
−1
[

1
1

]
is an orthonormal basis for the symmetric bilinear form tr(AB) and provides an
isomorphism PGL2→ SO3 defined over ks, which is explicitly given by

[
a b
c d

]
7→ (ad−bc)−1

 ad + bc i(ac+ bd) bd − ac

−i(ab+ cd) 1
2(a

2
+ b2
+ c2
+ d2) i

2(a
2
− b2
+ c2
− d2)

−(ab− cd) i
2(c

2
+ d2
− a2
− b2) 1

2(a
2
− b2
− c2
+ d2)

.
Its derivative, sl2→ so3, is given by

[
a b
c d

]
7→

 0 i(b+ c) b− c
−i(b+ c) 0 2ia

c− b −2ia 0

.
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A3.4. The relation ṽw̃ = (−1)〈v,w〉w̃ṽ. In Section A3.2 we constructed a map
8 : 1̃V → X. In order to show that it extends to an isomorphism Ṽ → X, it remains
to check that, for ṽ, w̃ ∈ 1̃V with images v,w ∈1V , we have

8(ṽ)8(w̃)= (−1)〈v,w〉8(w̃)8(ṽ). (A-1)

Let γ̃ , δ̃ ∈ 0̃ be preimages of ṽ, w̃, and let γ, δ ∈1 be their images. We have either
〈γ, δ〉 = 0 or 〈γ, δ〉 =−1. In the first case, the cocharacters ηγ̃ and ηδ̃ commute and
hence their images are contained in a common maximal torus of G ′. The preimage
in Gsc of this maximal torus is a maximal torus of Gsc and contains the images of
φγ̃ and φδ̃ , and we conclude that these two cocharacters also commute. This proves
(A-1) in the case 〈γ, δ〉 = 0 and we are left with the case 〈γ, δ〉 = −1. Then the
elements {X γ̃±1, X δ̃±1, X(γ̃ δ̃)±1} generate a subalgebra of h isomorphic to sl3. Even
more, there is a preferred embedding µγ̃ ,δ̃ : sl3→ h given by0 1

0
0

 7→ X γ̃ ,

0
0 1

0

 7→ X δ̃,

0 1
0

0

 7→ X γ̃ δ̃.

It integrates to an embedding µγ̃ ,δ̃ :SL3→ Hsc. The embeddings ηγ̃ , ηδ̃ :SL2→ Hsc

factor through µγ̃ ,δ̃ and give embeddings

SO2→ SO3,

[
a b
−b a

]
7→

 a b
−b a

1

,
and

SO2→ SO3,

[
a b
−b a

]
7→

1
a b
−b a

.
We compose these with the isomorphism SO3→ PGL2 of Section A3.3, for which
we fix the elements i,

√
2 ∈ ks as discussed there. This gives two embeddings

SO2→ PGL2.
The first one is characterized by[

a b
−b a

]
7→

[
α β

β α

]
,

where α2
+β2

= a and 2iαβ = b. The composition of this with the squaring map
on SO2 lifts to the map

SO2→ SL2,

[
a b
−b a

]
7→

[
a b/ i

b/ i a

]
.

The image of
[ 0
−1

1
0

]
under this map is equal to

[ 0
−i
−i

0

]
.
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The second embedding SO2→ PGL2 is given by[
a b
−b a

]
7→

[√
a− ib

√
a− ib

−1

]
.

Note that this is well-defined with an arbitrary choice of
√

a− ib. Its composition
with the squaring map on SO2 lifts to the map

SO2→ SL2,

[
a b
−b a

]
7→

[
(a− ib)

(a− ib)−1

]
.

The image of
[ 0
−1

1
0

]
under this map is equal to

[
−i

i

]
. The claim now follows from[

0 −i
−i 0

]
·

[
−i

i

]
=−

[
−i

i

]
·

[
0 −i
−i 0

]
.

A3.5. Intertwining property of 8 : Ṽ → X. Let ρ : Ṽ → GL(W ) be a rational
representation of the finite algebraic k-group Ṽ on a finite-dimensional k-vector
space W, having the property that ρ(−1) = −1. Let π : Gsc → GL(W ) be the
rational representation obtained from it. We want to show that 8 intertwines ρ
with π |X . It is enough to show that, for γ̃ ∈ 1̃ with image ṽ ∈ Ṽ, we have the
following equality in GL(W )(ks):

π(8(ṽ))= ρ(ṽ).

Let γ ∈1 be the image of γ̃ . Choose δ ∈1 with 〈γ, δ〉 = −1 and let δ̃ ∈ 1̃ be a
preimage. Let w̃ ∈ Ṽ be the image of δ̃. Let Q ⊂ Ṽ be the subgroup generated
by ṽ, w̃. It is isomorphic to the quaternion group.

Let µγ̃ ,δ̃ : sl3→ h be the embedding determined by γ̃ and δ̃ as in Section A3.4.
It determines an embedding µγ̃ ,δ̃ : SL3→ Hsc.

Decompose W =
⊕n

i=1 Wi under ρ|Q into irreducible representations over ks. The
condition ρ(−1)=−1 forces all Wi to be isomorphic to the unique 2-dimensional
representation of Q. Moreover, by construction of dπ , each subspace Wi of W is
preserved by the action of dπ(µγ̃ ,δ̃(so3)), hence also by the action of π(µγ̃ ,δ̃(SO3)).
We can thus focus on a single Wi . Choosing a suitable basis for Wi over ks, we
obtain from ρ|Q the embedding Q→ SL2(ks) given by

ṽ 7→

[
−i

−i

]
, w̃ 7→

[
−i

i

]
, ṽw̃ 7→

[
1

−1

]
.

Reviewing the construction of dπ , we see that the restriction to Wi of dπ ◦µγ̃ ,δ̃
provides the isomorphism so3→ sl2 given by 0 1
−1 0

0

 7→ 1
2

[
−i

−i

]
,

0
0 1
−1 0

 7→ 1
2

[
−i

i

]
,

 0 1
0

−1 0

 7→ 1
2

[
1

−1

]
,
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which one easily checks to be the inverse of the isomorphism of Section A3.3.
Thus, the composition of the isomorphism SL2→ Spin3 of Section A3.3 with the
embedding µγ̃ ,δ̃ : Spin3→ Gsc provides a representation of SL2 on Wi which in
the chosen basis of Wi is given by the identity map SL2 → SL2. However, the
discussion of Section A3.4 shows that 8(ṽ) ∈ Gsc is the image of the element[
−i
−i ] under the composition of the isomorphism SL2→ Spin3 of Section A3.3

with the embedding µγ̃ ,δ̃ : Spin3→ Gsc. We conclude that ρ(ṽ) and π(8(ṽ)) are
represented by the same matrix in SL2(ks)⊂ GL(Wi )(ks).

A3.6. Proof of Lemma A.3. We note first that the statement of the lemma is equiv-
alent to the claim that the preimage of γ∨(−1) in Gsc has order 4. Indeed, if
the preimage of ηγ̃ (SO2) in Gsc is connected, then identifying SO2 with Gm we
obtain via pullback along ηγ̃ the nonsplit extension 1→ {±1} →Gm→ Gm→ 1,
and the element γ∨(−1) corresponds to the element −1 of the right copy of Gm ,
which evidently has two preimages of order 4. On the other hand, if the preimage
of ηγ̃ (SO2) in Gsc is disconnected, then the corresponding extension is the split
extension 1→ {±1} → {±1}×Gm→ Gm→ 1 and the element −1 ∈ Gm has two
lifts of order 2.

We have the element γ̃ ∈ 0̃ and the corresponding element γ ∈ 0. The chosen
base 1 of 0 in the discussion of Section A3.2 will be unimportant. We first claim
that there exists a maximal torus Ssc ⊂ Hsc, a Borel subgroup C containing Ssc,
and a root α of Hsc with respect to Ssc such that θ preserves the pair (Ssc,C) as
well as the root α and γ∨(−1)= α∨(−1). Indeed, choose a base 1 for 0 such that
the corresponding Kostant cascade M (see [Kostant 2012]) contains γ . For each
β ∈ M, choose a preimage β̃ ∈ 0̃. Let

g =
∏
β∈M

ηβ̃

[
i
2 1

−
1
2 −i

]
∈ Hsc.

Then one checks that Ssc :=Ad(g)Tsc is normalized by θ . If we transport the action
of θ on Ssc back to Tsc via the isomorphism Ad(g), we obtain the automorphism
Ad(g−1θ(g)) ◦ θ and one computes that Ad(g−1θ(g)) acts as the product of reflec-
tions

∏
β∈M sβ , which according to [Kostant 2012, Proposition 1.10] represents

the longest element of the Weyl group with respect to the basis 1. This shows
that Ad(g−1θ(g)) ◦ θ preserves the basis 1. It also evidently fixes the root γ . Let
α = Ad(g)γ , and let C be the Borel subgroup corresponding to the basis Ad(g)1.
Finally, α∨(−1)= γ∨(−1) follows from the fact that the element g ∈ Hsc centralizes
γ∨(−1) ∈ Hsc. Indeed, the image of ηβ̃ for β ∈ M \{γ } centralizes the image of γ∨,
while the image of ηγ̃ centralizes the element γ∨(−1). The claim is proved.

We are now interested in showing that the preimage of α∨(−1) in Gsc has
order 4. For this it is convenient to use again the equivalent formulation that the
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preimage of α∨(Gm) in Gsc is connected. By passing from γ to α we are now in
the more advantageous situation that this preimage belongs to the preimage in Gsc

of G ′ ∩ Ssc = Sθsc, which is a maximal torus. Call this maximal torus S̃ ⊂ Gsc. We
form the pullback diagram

1 // {±1} // S̃ // Sθsc
// 1

1 // {±1} // ? //

OO

Gm

α∨

OO

// 1

and would like to show that the bottom extension is not split. Passing to character
modules we obtain the pushout diagram

0 // X∗(Ssc)θ //

α∨

��

X∗(S̃)

��

// Z/2Z // 0

0 // Z // X∗(?) // Z/2Z // 0

and would still like to show that the bottom extension is not split. This is equivalent
to showing that for one, hence any, lift 1̇ ∈ X∗(?) of 1 ∈ Z/2Z, we have 21̇ ∈ Z\2Z.
This in turn is equivalent to showing that for one, hence any, lift 1̇ ∈ X∗(S̃) of
1 ∈ Z/2Z, we have α∨(21̇) /∈ α∨(2X∗(Ssc)θ ). Now X∗(Ssc) is the weight lattice
of the group Hsc with respect to the torus Ssc. Since α∨ is a coroot, we have
α∨(X∗(Ssc)θ )=Z. Our task is then to show that the image in Q of X∗(S̃) under α∨

is not contained in Z. But X∗(S̃) is equal to the weight lattice of the group Gsc

relative to the maximal torus S̃. We thus have to show that α∨∈ X∗(Ssc)
θ does not

belong to the coroot lattice of G ′.
To that end, we need to describe the root and coroot systems of G ′. Let

R ⊂ X∗(Ssc) and R∨⊂ X∗(Ssc) be the root and coroot systems of Hsc, and let
1⊂ R be the base given by the Borel subgroup C . We choose a nonzero root vector
Xβ ∈ hβ for each β ∈ 1, subject to the condition Xθβ = θXβ provided θβ 6= β.
For β ∈ 1 satisfying θβ = β, we have θXβ = εXβ with ε ∈ {1,−1}. Letting
{ω̌β | β ∈1} be the system of fundamental coweights, we set s ∈ S to be the product
of ω̌β(−1) for all β ∈1 with θβ=β and θXβ =−Xβ . Then s ∈ Sθ is of order 2 and
θ =Ad(s)θ0, with θ0 an automorphism of Hsc preserving the splitting (Ssc,C, {Xβ}).
The root system of G ′ is a subset R′⊂ X∗(Sθsc)= X∗(Ssc)θ . The duality between
X∗(Ssc) and X∗(Ssc) induces a duality between X∗(Ssc)θ and X∗(Ssc)

θ. The coroot
system of G ′ is a subset R′∨⊂ X∗(Ssc)

θ. The system R′⊂ X∗(Ssc)θ and its dual
system R′∨⊂ X∗(Ssc)

θ can be described using the results of [Steinberg 1968], which
are summarized in [Kottwitz and Shelstad 1999, §§1.1, 1.3]. As evident from the
discussion there, the root system A2n behaves differently from all other root systems,
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a phenomenon that manifests itself in the occurrence of restricted roots of type
R2 and R3. It is therefore convenient to treat the special case of A2n separately.
Fortunately, this special case is rather easy.

Assuming that R is of type A2n , we enumerate 1= {α1, . . . , α2n} with θ(αi )=

α2n+1−i . Since θ has no fixed points in1, we have θ0= θ . Thus the projection of1
to X∗(Ssc)θ forms a set of simple roots for R′. Let α′i ∈ R′ denote the projection
of αi . Then α′1, . . . , α

′

n−1 are of type R1, and the corresponding coroots are given
by α′∨i = α

∨

i +α
∨

2n+1−i . On the other hand, α′n is of type R2 and its coroot is given
by 2(α∨n +α

∨

n+1). It follows that the coroot lattice of G ′ is the sublattice of X∗(Ssc)
θ

spanned by the points {α∨1 + α
∨

2n, . . . , α
∨

n−1+ α
∨

n+2, 2(α∨n + α
∨

n+1)}. On the other
hand, we may assume without loss of generality that α is the highest root of R (by
making the same assumption on the root γ , bearing in mind that the highest root is
always part of the Kostant cascade). Then α∨ = α∨1 + · · ·+α

∨

2n evidently does not
belong to the coroot lattice of G ′. This completes the discussion of the case A2n .

The remaining root systems can now be treated uniformly, because all occurring
restricted roots are of type R1. According to the discussion in [Kottwitz and Shelstad
1999, §1.3], the root system R′ is given by the image of the set

Ṙ′ = {β ∈ R | θβ = β⇒ β(s)= 1}

under the natural projection X∗(Ssc)→ X∗(Ssc)θ . For the description of R′∨, we
have the following lemma.

Lemma A.4. For any element of β ′ ∈ R′ represented by β ∈ Ṙ′, the coroot β ′∨∈
X∗(Ssc)

θ is given by {
β∨ if θβ = β,
β∨+ θβ∨ if θβ 6= β.

(A-2)

Proof. Since β ′ is of type R1, we know that if θβ 6= β then θβ ⊥ β. According
to [Bourbaki 2002, Chapter VI, §1, No. 1], β ′∨ is the unique element of the dual
space of X∗(Ssc)θ ⊗Q with the properties 〈β ′∨, β ′〉 = 2 and sβ ′,β ′∨(R′)⊂ R′, where
sβ ′,β ′∨(x)= x−〈β ′∨, x〉β ′ is the reflection determined by β ′, β ′∨. We need to check
that the elements given in the statement of the lemma satisfy these properties. The
first property is immediate. For the second property we take β1, β2 ∈ Ṙ′ and let
β ′1, β

′

2 ∈ R′ be their images. Let β ′∨1 ∈ X∗(Ssc)
θ be given by (A-2). We need to

show that sβ ′1,β ′∨1 (β
′

2)∈ R′. If β2 is perpendicular to both β1 and θβ1, or if β ′1=±β
′

2,
then the claim is clear. We thus assume that this is not the case.

If β1 is fixed by θ , then sβ ′1,β ′∨1 (β
′

2) is the image of sβ1,β
∨

1
(β2). This element of R

belongs to Ṙ′, because it is fixed by θ precisely when β2 is, and in this case it kills s,
since both β1 and β2 do.

If β1 is not fixed by θ , but β2 is, then we have 〈β∨1 +θβ
∨

1 , β2〉=2〈β∨1 , β2〉=2ε 6=0
and conclude that sβ ′1,β ′∨1 (β

′

2) is the image of β2− 2εβ1, which coincides with the
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image of β2− εβ1− εθβ1. The latter element belongs to R, because β1 ⊥ θβ1. It is
furthermore fixed by θ and kills s, so belongs to Ṙ′.

Now assume that both β1, β2 are not fixed by θ . If 〈β∨1 , β2〉 and 〈θβ∨1 , β2〉 are both
nonzero and have opposite signs, then sβ ′1,β ′∨1 (β

′

2)= β
′

2. If 〈β∨1 , β2〉 and 〈θβ∨1 , β2〉

are both nonzero and have the same sign ε ∈ {1,−1}, then sβ ′1,β ′∨1 (β
′

2) is equal to the
image of β2− 2εβ1, which coincides with the image of β2− εβ1− εθβ1. As above,
this element belongs to R. It is, moreover, not θ -fixed, thus belongs to Ṙ′. It remains
to consider the cases where exactly one of 〈β∨1 , β2〉 and 〈θβ∨1 , β2〉 is nonzero. We
will give the computation only in the case 〈β∨1 , β2〉 = 0, 〈θβ∨1 , β2〉 = −1, the other
cases being analogous. The element sβ ′1,β ′∨1 (β

′

2) ∈ X∗(Ssc)θ is equal to the image of
β2+ β1 ∈ R and we claim that this element is not θ-fixed. If it were, we’d have
β2 = θβ2+ θβ1−β1 and applying 〈θβ∨1 ,−〉 we would obtain −1= 0+ 2− 0. �

Armed with this lemma we complete the proof of Lemma A.3 as follows. We
have the element α∨∈ X∗(Ssc)

θ, which is a coroot for the group Hsc. We wish to
show that it does not belong to the coroot lattice for the group G ′. Assume the
contrary. Then inside of the lattice X∗(Ssc)

θ we have the equation α∨=
∑

niβ
′∨

i for
some integers ni and some roots β ′i ∈ R′. We choose for each β ′i a lift βi ∈ Ṙ′

and apply Lemma A.4, thereby obtaining

α∨ =
∑

niβ
∨

i +
∑

ni (β
∨

i + θβ
∨

i ),

where we have subdivided the set of {βi } into the cases corresponding to (A-2).
This equation holds inside the coroot lattice of Hsc. Since R is a simply laced root
system, the bijection R→ R∨, β 7→ β∨ extends to a Z-linear bijection from the
root lattice to the coroot lattice. This tells us that we have the equation

α =
∑

niβi +
∑

ni (βi + θβi )

in the root lattice of Hsc, i.e., in X∗(S). However, the right-hand side is a character
of S which kills the element s ∈ S. This would imply that α ∈ Ṙ′, which would then
imply that θ acts trivially on the root space hα . This is, however, false, because for
X = Ad(g)X γ̃ ∈ hα we have

θ(X)= Ad(g)Ad(g−1θ(g))θ(X γ̃ )= Ad(g)Ad ηγ̃

[
−i

−i

]
(−X γ̃−1)=−X.

The proof of Lemma A.3 is now complete.

Acknowledgements

I am grateful to Manjul Bhargava, Dick Gross, and Tasho Kaletha for many inter-
esting conversations. I would like to thank Tasho again for writing the appendix to
this paper. Finally, I thank the anonymous referee for helpful comments.



1412 Jack A. Thorne

References

[Bhargava and Gross 2013] M. Bhargava and B. H. Gross, “The average size of the 2-Selmer group
of Jacobians of hyperelliptic curves having a rational Weierstrass point”, pp. 23–91 in Automorphic
representations and L-functions, edited by D. Prasad et al., Tata Inst. Fundam. Res. Stud. Math. 22,
Tata Inst. Fund. Res., Mumbai, 2013. MR 3156850 Zbl 1303.11072

[Bhargava and Gross 2014] M. Bhargava and B. H. Gross, “Arithmetic invariant theory”, pp. 33–54
in Symmetry: representation theory and its applications, edited by R. Howe et al., Progr. Math. 257,
Birkhäuser/Springer, New York, 2014. MR 3363006 Zbl 06436604

[Birch and Swinnerton-Dyer 1963] B. J. Birch and H. P. F. Swinnerton-Dyer, “Notes on elliptic
curves, I”, J. Reine Angew. Math. 212 (1963), 7–25. MR 0146143 Zbl 0118.27601

[Birkenhake and Lange 2004] C. Birkenhake and H. Lange, Complex abelian varieties, 2nd ed.,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sci-
ences] 302, Springer, Berlin, 2004. MR 2062673 Zbl 1056.14063

[Bourbaki 2002] N. Bourbaki, Lie groups and Lie algebras, Chapters 4–6, Springer, Berlin, 2002.
MR 1890629 Zbl 0983.17001

[Dolgachev 2012] I. V. Dolgachev, Classical algebraic geometry, a modern view, Cambridge Univer-
sity Press, 2012. MR 2964027 Zbl 1252.14001

[Dolgachev and Ortland 1988] I. Dolgachev and D. Ortland, Point sets in projective spaces and
theta functions, Astérisque 165, Société Mathématique de France, Paris, 1988. MR 1007155
Zbl 0685.14029

[de Graaf 2011] W. A. de Graaf, “Computing representatives of nilpotent orbits of θ-groups”,
J. Symbolic Comput. 46:4 (2011), 438–458. MR 2765379 Zbl 1222.17002

[Griffiths and Harris 1994] P. Griffiths and J. Harris, Principles of algebraic geometry, John Wiley &
Sons, New York, 1994. MR 1288523 Zbl 0836.14001

[Gross and Harris 1981] B. H. Gross and J. Harris, “Real algebraic curves”, Ann. Sci. École Norm.
Sup. (4) 14:2 (1981), 157–182. MR 631748 Zbl 0533.14011

[Gross and Harris 2004] B. H. Gross and J. Harris, “On some geometric constructions related to
theta characteristics”, pp. 279–311 in Contributions to automorphic forms, geometry, and number
theory, edited by H. Hida et al., Johns Hopkins Univ. Press, Baltimore, MD, 2004. MR 2058611
Zbl 1072.14032

[Kostant 2012] B. Kostant, “The cascade of orthogonal roots and the coadjoint structure of the
nilradical of a Borel subgroup of a semisimple Lie group”, Mosc. Math. J. 12:3 (2012), 605–620.
MR 3024825 Zbl 1260.14058

[Kottwitz and Shelstad 1999] R. E. Kottwitz and D. Shelstad, Foundations of twisted endoscopy,
Astérisque 255, Société Mathématique de France, Paris, 1999. MR 1687096 Zbl 0958.22013

[Looijenga 1993] E. Looijenga, “Cohomology of M3 and M1
3”, pp. 205–228 in Mapping class

groups and moduli spaces of Riemann surfaces (Göttingen, 1991/Seattle, WA, 1991), edited by
C.-F. Bödigheimer and R. M. Hain, Contemp. Math. 150, Amer. Math. Soc., Providence, RI, 1993.
MR 1234266 Zbl 0814.14029

[Lurie 2001] J. Lurie, “On simply laced Lie algebras and their minuscule representations”, Comment.
Math. Helv. 76:3 (2001), 515–575. MR 1854697 Zbl 1017.17011

[Panyushev 2005] D. I. Panyushev, “On invariant theory of θ-groups”, J. Algebra 283:2 (2005),
655–670. MR 2111215 Zbl 1071.17005

[Poonen and Rains 2012] B. Poonen and E. Rains, “Random maximal isotropic subspaces and Selmer
groups”, J. Amer. Math. Soc. 25:1 (2012), 245–269. MR 2833483 Zbl 1294.11097

http://msp.org/idx/mr/3156850
http://msp.org/idx/zbl/1303.11072
http://dx.doi.org/10.1007/978-1-4939-1590-3_3
http://msp.org/idx/mr/3363006
http://msp.org/idx/zbl/06436604
http://dx.doi.org/10.1515/crll.1963.212.7
http://dx.doi.org/10.1515/crll.1963.212.7
http://msp.org/idx/mr/0146143
http://msp.org/idx/zbl/0118.27601
http://dx.doi.org/10.1007/978-3-662-06307-1
http://msp.org/idx/mr/2062673
http://msp.org/idx/zbl/1056.14063
http://msp.org/idx/mr/1890629
http://msp.org/idx/zbl/0983.17001
http://dx.doi.org/10.1017/CBO9781139084437
http://msp.org/idx/mr/2964027
http://msp.org/idx/zbl/1252.14001
http://msp.org/idx/mr/1007155
http://msp.org/idx/zbl/0685.14029
http://dx.doi.org/10.1016/j.jsc.2010.10.015
http://msp.org/idx/mr/2765379
http://msp.org/idx/zbl/1222.17002
http://dx.doi.org/10.1002/9781118032527
http://msp.org/idx/mr/1288523
http://msp.org/idx/zbl/0836.14001
http://www.numdam.org/item?id=ASENS_1981_4_14_2_157_0
http://msp.org/idx/mr/631748
http://msp.org/idx/zbl/0533.14011
http://msp.org/idx/mr/2058611
http://msp.org/idx/zbl/1072.14032
http://ams.org/distribution/mmj/vol12-3-2012/kostant.pdf
http://ams.org/distribution/mmj/vol12-3-2012/kostant.pdf
http://msp.org/idx/mr/3024825
http://msp.org/idx/zbl/1260.14058
http://msp.org/idx/mr/1687096
http://msp.org/idx/zbl/0958.22013
http://dx.doi.org/10.1090/conm/150/01292
http://msp.org/idx/mr/1234266
http://msp.org/idx/zbl/0814.14029
http://dx.doi.org/10.1007/PL00013217
http://msp.org/idx/mr/1854697
http://msp.org/idx/zbl/1017.17011
http://dx.doi.org/10.1016/j.jalgebra.2004.03.032
http://msp.org/idx/mr/2111215
http://msp.org/idx/zbl/1071.17005
http://dx.doi.org/10.1090/S0894-0347-2011-00710-8
http://dx.doi.org/10.1090/S0894-0347-2011-00710-8
http://msp.org/idx/mr/2833483
http://msp.org/idx/zbl/1294.11097


Arithmetic invariant theory and 2-descent for plane quartic curves 1413

[Reeder 2010] M. Reeder, “Torsion automorphisms of simple Lie algebras”, Enseign. Math. (2)
56:1-2 (2010), 3–47. MR 2674853 Zbl 1223.17020

[Reeder 2011] M. Reeder, “Elliptic centralizers in Weyl groups and their coinvariant representations”,
Represent. Theory 15 (2011), 63–111. MR 2765477 Zbl 1251.20042

[Reeder et al. 2012] M. Reeder, P. Levy, J.-K. Yu, and B. H. Gross, “Gradings of positive rank on
simple Lie algebras”, Transform. Groups 17:4 (2012), 1123–1190. MR 3000483 Zbl 1310.17017

[Richardson 1982a] R. W. Richardson, “Conjugacy classes of involutions in Coxeter groups”, Bull.
Austral. Math. Soc. 26:1 (1982), 1–15. MR 679916 Zbl 0531.20017

[Richardson 1982b] R. W. Richardson, “Orbits, invariants, and representations associated to involu-
tions of reductive groups”, Invent. Math. 66:2 (1982), 287–312. MR 656625 Zbl 0508.20021

[Steinberg 1968] R. Steinberg, Endomorphisms of linear algebraic groups, Memoirs of the American
Mathematical Society 80, Amer. Math. Soc., Providence, RI, 1968. MR 0230728 Zbl 0164.02902

[Thorne 2013] J. A. Thorne, “Vinberg’s representations and arithmetic invariant theory”, Algebra
Number Theory 7:9 (2013), 2331–2368. MR 3152016 Zbl 1321.11045

[Tits 1966] J. Tits, “Classification of algebraic semisimple groups”, pp. 33–62 in Algebraic Groups
and Discontinuous Subgroups (Boulder, Colo., 1965), edited by A. Borel and G. D. Mostow, Amer.
Math. Soc., Providence, RI, 1966. MR 0224710 Zbl 0238.20052

[Wang 2013] X. Wang, Pencils of quadrics and Jacobians of hyperelliptic curves, Ph.D. thesis,
Harvard University, 2013, available at http://nrs.harvard.edu/urn-3:HUL.InstRepos:11156784.

Communicated by Jean-Louis Colliot-Thélène
Received 2015-04-02 Revised 2016-04-29 Accepted 2016-07-18

thorne@dpmms.cam.ac.uk Department of Pure Mathematics and Mathematical Statistics,
University of Cambridge, Wilberforce Road,
Cambridge CB3 0WB, United Kingdom

kaletha@umich.edu Department of Mathematics, University of Michigan,
530 Church Street, Ann Arbor, MI 48109-1043, United States

mathematical sciences publishers msp

http://dx.doi.org/10.4171/LEM/56-1-1
http://msp.org/idx/mr/2674853
http://msp.org/idx/zbl/1223.17020
http://dx.doi.org/10.1090/S1088-4165-2011-00377-0
http://msp.org/idx/mr/2765477
http://msp.org/idx/zbl/1251.20042
http://dx.doi.org/10.1007/s00031-012-9196-3
http://dx.doi.org/10.1007/s00031-012-9196-3
http://msp.org/idx/mr/3000483
http://msp.org/idx/zbl/1310.17017
http://dx.doi.org/10.1017/S0004972700005554
http://msp.org/idx/mr/679916
http://msp.org/idx/zbl/0531.20017
http://dx.doi.org/10.1007/BF01389396
http://dx.doi.org/10.1007/BF01389396
http://msp.org/idx/mr/656625
http://msp.org/idx/zbl/0508.20021
http://msp.org/idx/mr/0230728
http://msp.org/idx/zbl/0164.02902
http://dx.doi.org/10.2140/ant.2013.7.2331
http://msp.org/idx/mr/3152016
http://msp.org/idx/zbl/1321.11045
http://msp.org/idx/mr/0224710
http://msp.org/idx/zbl/0238.20052
http://nrs.harvard.edu/urn-3:HUL.InstRepos:11156784
mailto:thorne@dpmms.cam.ac.uk
mailto:kaletha@umich.edu
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Bjorn Poonen
Massachusetts Institute of Technology

Cambridge, USA

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Dave Benson University of Aberdeen, Scotland

Richard E. Borcherds University of California, Berkeley, USA

John H. Coates University of Cambridge, UK

J-L. Colliot-Thélène CNRS, Université Paris-Sud, France

Brian D. Conrad Stanford University, USA

Hélène Esnault Freie Universität Berlin, Germany

Hubert Flenner Ruhr-Universität, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Andrew Granville Université de Montréal, Canada

Joseph Gubeladze San Francisco State University, USA

Roger Heath-Brown Oxford University, UK

Craig Huneke University of Virginia, USA

Kiran S. Kedlaya Univ. of California, San Diego, USA

János Kollár Princeton University, USA

Yuri Manin Northwestern University, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Susan Montgomery University of Southern California, USA

Shigefumi Mori RIMS, Kyoto University, Japan

Raman Parimala Emory University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Joseph H. Silverman Brown University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

J. Toby Stafford University of Michigan, USA

Ravi Vakil Stanford University, USA

Michel van den Bergh Hasselt University, Belgium

Marie-France Vignéras Université Paris VII, France

Kei-Ichi Watanabe Nihon University, Japan

Efim Zelmanov University of California, San Diego, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2016 is US $290/year for the electronic version, and $485/year (+$55, if shipping outside the US)
for print and electronic. Subscriptions, requests for back issues and changes of subscribers address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans
Hall #3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage
paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2016 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 10 No. 7 2016

1373Arithmetic invariant theory and 2-descent for plane quartic curves
JACK A. THORNE

1415Furstenberg sets and Furstenberg schemes over finite fields
JORDAN S. ELLENBERG and DANIEL ERMAN

1437Local deformation rings for GL2 and a Breuil–Mézard conjecture when l 6= p
JACK SHOTTON

1477Generalized Kuga–Satake theory and rigid local systems, II: rigid Hecke eigensheaves
STEFAN PATRIKIS

1527Lifting preprojective algebras to orders and categorifying partial flag varieties
LAURENT DEMONET and OSAMU IYAMA

1581A fibered power theorem for pairs of log general type
KENNETH ASCHER and AMOS TURCHET

A
lgebra

&
N

um
ber

Theory
2016

Vol.10,
N

o.7

http://dx.doi.org/10.2140/ant.2016.10.1415
http://dx.doi.org/10.2140/ant.2016.10.1437
http://dx.doi.org/10.2140/ant.2016.10.1477
http://dx.doi.org/10.2140/ant.2016.10.1527
http://dx.doi.org/10.2140/ant.2016.10.1581

	Introduction
	1. Background
	1A. Quadratic forms over F2
	1B. Theta characteristics
	1C. Heisenberg groups and descent
	1D. Invariant theory of reductive groups with involution

	2. A group with involution
	3. Plane quartic curves
	3A. Construction of orbits
	3B. An example

	Appendix by Tasho Kaletha: A converse to Lurie's functorial construction of simply laced Lie algebras
	A1. Statement of two propositions
	A2. Proof of 0=theorem.941=Proposition A.1
	A3. Proof of 0=theorem.951=Proposition A.2
	A3.1. The group `39`42`"613A``45`47`"603ASOn
	A3.2. Construction of the isomorphism V"0365VX
	A3.3. The isomorphism `39`42`"613A``45`47`"603APGL2 `39`42`"613A``45`47`"603ASO3
	A3.4. The relation =(-1)"426830A v,w"526930B 
	A3.5. Intertwining property of : V"0365VX
	A3.6. Proof of 0=theorem.1001=Lemma A.3


	Acknowledgements
	References
	
	

