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We describe a categorification of the cluster algebra structure of multihomoge-
neous coordinate rings of partial flag varieties of arbitrary Dynkin type using
Cohen–Macaulay modules over orders. This completes the categorification of
Geiss, Leclerc and Schröer by adding the missing coefficients. To achieve this,
for an order A and an idempotent e ∈ A, we introduce a subcategory CMe A of
CMA and study its properties. In particular, under some mild assumptions, we
construct an equivalence of exact categories (CMe A)/[Ae] ∼= SubQ for an injective
B-module Q, where B := A/(e). These results generalize work by Jensen, King
and Su concerning the cluster algebra structure of the Grassmannian Grm(C

n).
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1. Introduction

Geiss, Leclerc and Schröer [Geiss et al. 2008] introduced a cluster algebra structure
on some subalgebra Ã of the multihomogeneous coordinate ring C[F] of the partial
flag variety F = F(1, J ) corresponding to a Dynkin diagram 1 and a set J of
vertices of 1. They proved that Ã = C[F] in type A, and conjectured that the
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equality holds after an appropriate localization for any Dynkin type (see Section 6 for
more details). This structure generalizes previously known cases of Grassmannians,
introduced for Gr2(Cn) by Fomin and Zelevinsky [2003] (see also [Berenstein et al.
2005]) and generalized by Scott [2006] for Grk(Cn).

In the same paper, Geiss, Leclerc and Schröer introduced a partial categorification
of this cluster algebra structure on Ã . A crucial role is played by the preprojective
algebra 5 of type 1 and a certain full subcategory Sub QJ of mod5 which is
Frobenius and stably 2-Calabi–Yau. More precisely, they introduced a cluster
character ϕ̃ : Sub QJ → Ã which gives a bijection

{reachable indecomposable rigid objects in Sub QJ } /∼=
1–1
←→{cluster variables and coefficients of Ã} \ {1j | j ∈ J },

where 1 j is the prinicipal generalized minor corresponding to j ∈ J .
One of the aim of this paper is to look for a stably 2-Calabi–Yau category

extending Sub QJ whose reachable indecomposable rigid objects correspond to
cluster variables and all coefficients of Ã . Jensen, King and Su [Jensen et al. 2016]
achieved this in the case of classical Grassmannians (i.e., 1 = An for n ≥ 0 and
#J = 1) by using orders (see also [Baur et al. 2016] for an interpretation in terms
of dimer models). In this article, we extend their method to any arbitrary Dynkin
diagram 1 and arbitrary set of vertices J.

Throughout the introduction, for simplicity, let R := k[[t]] be the formal power
series ring over an arbitrary field k. For an R-order A (i.e., an R-algebra that is free of
finite rank as an R-module), we denote by CM A the category of Cohen–Macaulay
modules over A (i.e., A-modules that are free of finite rank over R). For an
idempotent e ∈ A, we define

CMe A := {X ∈ CM A | eX ∈ proj(eAe)}.

We prove the following result:

Theorem A (Theorems 6.10 and 6.12). Let 1 be a Dynkin diagram, and J be
a set of vertices of 1. Then, there exist a C[[t]]-order A, an idempotent e ∈ A
such that CMe A is Frobenius and stably 2-Calabi–Yau, and a cluster character
ψ : CMe A→ Ã such that
(a) ψ induces a bijection between

• isomorphism classes of reachable indecomposable rigid objects of CMe A,
• cluster variables and coefficients of Ã ,

(b) ψ induces a bijection between
• isomorphism classes of reachable basic cluster tilting objects of CMe A,
• clusters of Ã .

Moreover, it commutes with mutation of cluster tilting objects and mutation of
clusters.



Lifting preprojective algebras to orders and categorifying partial flag varieties 1529

To prove Theorem A, we generalize techniques introduced by Jensen, King and
Su [Jensen et al. 2016] for Grassmannians in type A (see also [Demonet and Luo
2016b] for Grassmannians of 2-dimensional planes in type A). Meanwhile, we
need to prove general results on orders.

The study of Cohen–Macaulay modules (also known as lattices) over orders is
a classical subject in representation theory. We refer to [Auslander 1978; Curtis
and Reiner 1981; Leuschke and Wiegand 2012; Simson 1992; Yoshino 1990] for
a general background on this subject. We also refer to [Amiot et al. 2015; Araya
1999; Demonet and Luo 2016a; 2016b; Herschend et al. 2014; de Thanhoffer de
Völcsey and Van den Bergh 2010; Iyama and Takahashi 2013; Kajiura et al. 2007;
2009; Keller and Reiten 2008] for recent results about connections with tilting
theory and cluster categories.

We consider an R-order A and an idempotent e ∈ A such that B := A/(e)
is finite-dimensional over k. Let K := k((t)) be the fraction field of R, let U :=
HomA(B, Ae⊗R (K/R)) and let SubU be the category of B-submodules of objects
U n for n ≥ 0. We consider the exact full subcategory

mode A := {X ∈mod A | eX ∈ proj(eAe)}

of mod A. Under this setting, we prove the following generalization of a result of
[Jensen et al. 2016].

Theorem B (Theorem 2.2). Assume that Ae is injective in CMe A and has injective
dimension at most 1 in mode A. Then U is injective in mod B and there is an
equivalence of exact categories

B⊗A− : (CMe A)/[Ae] −→∼ SubU.

In particular, if e and g are idempotents of an R-order A such that B = A/(e) is
finite-dimensional and Ae∼=HomR(g A, R) as left A-modules, then the hypotheses
of Theorem B are satisfied and U is the injective B-module corresponding to the
idempotent g (see Theorem 2.1). Let us give a motivating example:

Example. For n ≥ 1, we consider the pair (A, e) defined as

A :=
[

R R
(tn) R

]
and e :=

[
1 0
0 0

]
.

We have Ae ∼= HomR((1− e)A, R) and B = A/(e) ∼= k[t]/(tn). So according to
Theorem B,

(CMe A)/[Ae] ∼= SubU =mod B.

Notice that here CM(eAe)= proj(eAe), so CMe A = CM A. We can illustrate this
fact by drawing the Auslander–Reiten quivers of CM A and mod B:
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CMe A :

B⊗A−
��

modB :

[
R
(tn)

]
//

[
R

(tn−1)

]
t
oo

//

[
R

(tn−2)

]
t
oo

//
···

t
oo

//

[
R
(t)

]
t

oo
//

[
R
R

]
t

oo

k[t]/(t)
t
// k[t]/(t2)oo

t
//
···oo

t
// k[t]/(tn−1)oo

t
// k[t]/(tn)oo

where projective-injective objects are leftmost and rightmost in the first row and
only rightmost in the second row. On the other objects, the Auslander–Reiten
translation acts as the identity.

As an application of Theorem B, we get the following, which is fundamental for
Theorem A:

Corollary C (Corollary of Theorem 2.1). Let B be a finite-dimensional self-
injective k-algebra. We define a Gorenstein order A over R = k[[t]] and an
idempotent e of A by

A := B⊗k

[
R R

t R R

]
and e :=

[
1 0
0 0

]
.

Then we have an equivalence of exact categories (CMe A)/[Ae] ∼= mod B, which
induces a triangle equivalence CMe A ∼=modB between stable categories.

Additionally, we prove a categorical version of Theorem B in the context of
exact categories:

Theorem D (Theorem 4.7). Let E be an exact category which is Hom-finite over a
field k. We suppose that

• (A,B) and (B, C) are torsion pairs in E ;

• E has enough projective objects, which belong to C;

• there exists a projective object P in E which is injective in C and satisfies
A= add P;

• B is an abelian category whose exact structure is compatible with that of E .

Then, there is an equivalence of exact categories

C/[A] −→∼ SubU,

where U is an (explicitly constructed) injective object of B.

Notice that we need and we prove more general versions of Theorems B and D,
with more technical hypotheses and more precise conclusions.

The structure of this paper is as follows. In Section 2, we explain main results
about orders over an arbitrary complete discrete valuation ring R, and provide more
general and more detailed versions of Theorem B. We also give a systematic way
to construct pairs (A, e) satisfying the hypotheses of Theorem B for a prescribed
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algebra B. The results of Section 2 are proven in Section 5. In Section 3, we recall
the basics of exact categories and we give sufficient conditions for an ideal quotient
category E/[F] of an exact category E by a subcategory F of projective-injective
objects to inherit the exact structure of E . In Section 4, we give extended versions
of Theorem D. Finally, in Section 6, we prove Theorem A.

2. Main results

2A. Orders. Let R be a complete discrete valuation ring and K be its field of
fractions. Let A be an R-order, i.e., an R-algebra which is free of finite rank
as an R-module. We denote by f.l. A the full subcategory of mod A consisting
of finite-length A-modules, or equivalently A-modules which are of finite length
over R. Recall that, in this context, a finitely generated A-module X is (maximal)
Cohen–Macaulay if the following equivalent conditions are satisfied:

(i) X is free (of finite rank) as an R-module;

(ii) HomA(f.l. A, X)= 0, or equivalently soc X = 0;

(iii) Ext1A(X,HomR(A, R)) = 0, or equivalently, ExtiA(X,HomR(A, R)) = 0 for
any i > 0.

We denote by CM A the exact full subcategory of mod A consisting of Cohen–
Macaulay A-modules. Since A is an R-order, both A and HomR(A, R) are in CM A.
It is clear from (ii) that (f.l. A,CM A) is a torsion pair in mod A, which can be seen
as coming from the cotilting A-module HomR(A, R).

For an idempotent e of A, we consider a full subcategory of CM A:

CMe A := {X ∈ CM A | eX ∈ proj(eAe)}.

This is clearly closed under extensions, and hence forms an exact category naturally.
If eAe is a hereditary order (i.e., gl.dim eAe = 1), then CMe A = CM A holds
because CM(eAe)= proj(eAe).

Our first main theorem, generalizing [Jensen et al. 2016], is the following one:

Theorem 2.1. Let A be an R-order, and e be an idempotent of A. Assume that the
following conditions are satisfied:

• B := A/(e) satisfies lengthR B <∞.

• There is an idempotent g ∈ A such that add Ae = addHomR(g A, R) as
A-modules.

Then the following assertions hold:

(a) We have an equivalence of exact categories

F = B⊗A− : (CMe A)/[Ae] −→∼ Sub Qg,



1532 Laurent Demonet and Osamu Iyama

where Qg is the injective B-module associated with the image of the idempotent
g in B.

(b) A quasi-inverse of F is HomR(�A HomR(−, K/R), R), where �A is the
syzygy over A.

We assume in addition that the following hypotheses hold:

• There exists an idempotent f ∈ A such that add A f = addHomR(eA, R) as
A-modules.

• eAe is a Gorenstein order.

Then the following conclusions hold:

(c) The module Qg is a projective B-module satisfying add Qg = add B f .

(d) If A ∈ CMe A, then Sub Qg = Sub B.

We suppose in addition that A and HomR(A, R) are in CMe A.

(e) The order A is Gorenstein if and only if B is Iwanaga–Gorenstein of dimension
at most 1, i.e., inj.dim B B ≤ 1 and inj.dim BB ≤ 1.

(f) If the conditions in (e) are satisfied, then we have triangle equivalences

CMe A ∼= SubQg = SubB,

where CMe A := (CMe A)/[A] and SubB = (Sub B)/[B].

Corollary C presented in the introduction is an immediate consequence of
Theorem 2.1 as it is immediate that Ae∼=HomR(g A, R) for g := 1− e in that case.
In this paper, a more general version of Theorem 2.1 plays an important role. Again
let A be an R-order and e an idempotent of A. Let

mode A := {X ∈mod A | eX ∈ proj(eAe)}.

We consider the following conditions:

(E1) Ae is injective in CMe A, or equivalently, Ext1A(CMe A, Ae)= 0;

(E2) Ext2mode A(mode A, Ae)= 0;

(E2)+ Ext2A(mode A, Ae)= 0.

We recall the definition of the ExtiE in Section 3 for exact categories E . For a
subcategory E of mod A, notice that ExtiE is not necessarily the restriction of ExtiA,
except for i = 1. In Lemma 5.7, we prove the following implications:

• We have (E2)+
⇒ (E2).

• If Ae = HomR(g A, R) for some idempotent g ∈ A, then (E1) and (E2)+ are
satisfied.

• If (E1) is satisfied and A ∈ CMe A, then (E2)+ is satisfied.
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Theorem 2.1 follows from the next result:

Theorem 2.2. Let A be an R-order and e an idempotent of A such that B := A/(e)
satisfies lengthR B <∞. Then:

(a) (add Ae,mod B) and (mod B,CMe A) are torsion pairs in mode A.

(b) Let E1 := {X ∈mode A | Ext1A(X, Ae)= 0}. We have an equivalence

B⊗A− : E1/[Ae] −→∼ mod B. (2-1)

If (E1) is satisfied, then the following assertion holds:

(c) Let U :=HomA(B, Ae⊗R (K/R))∈mod B, where K is the fraction field of R.
The equivalence (2-1) restricts to an equivalence

B⊗A− : (CMe A)/[Ae] −→∼ SubU. (2-2)

If (E1) and (E2) are satisfied, then the following assertions hold:

(d) U is an injective B-module.

(e) (2-1) and (2-2) are equivalences of exact categories, where E1/[Ae] and
(CMe A)/[Ae] inherit canonically the exact structure of E1 and CMe A (see
Section 3).

(f) The exact categories E1, CMe A, mode A and SubU have enough projective
objects and enough injective objects.

(g) Let P be a projective cover of soc U as a B-module. Then, we have the equality
E1 = {X ∈mode A | HomA(P, X)= 0}.

2B. Change of orders. We give a systematic method to construct pairs of orders
and their idempotents which satisfy the conditions (E1) and (E2).

Let A be an R-order, e an idempotent of A and B a factor algebra of A/(e). We
suppose that the following two conditions are satisfied:

(C1) lengthR B <∞;

(C2) B ∈ Sub(Ae⊗R (K/R)).

Let modB
e A be the category of all X ∈ mod A such that there exists an exact

sequence
0→ P→ X→ Y → 0

with P ∈ add Ae and Y ∈mod B. Let CMB
e A := CM A∩modB

e A and consider the
condition:

(C3) Ext1A(CM
B
e A, Ae)= 0.
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We will construct a new order A′ under this setting. Thanks to (C2), there is
a monomorphism ι : B ↪→ (Ae⊗R (K/R))⊕`. Applying Ae⊕`⊗R − to the exact
sequence 0→ R→ K → K/R→ 0 and taking a pullback via ι, we get a short
exact sequence

0→ P→ B̃→ B→ 0

with P ∈ add Ae and B̃ ∈ CM A. We clearly have B̃ ∈ CMB
e A. Using (C3), one can

check B̃ is independent of the choice of ι up to a direct summand in add Ae (see
Theorem 4.1(a)). Let

W := Ae⊕ B̃ and A′ := EndA(W ).

We can regard naturally e as an idempotent of A′. Notice that A′ is uniquely defined
up to Morita equivalence.

Theorem 2.3. We assume that (C1), (C2) and (C3) hold. Then the following
assertions hold:

(a) We have a canonical isomorphism B ∼= A′/(e) of R-algebras.

(b) We have (E1) holds, that is, Ext1A′(CMe A′, A′e)= 0, and (E2)+ holds, that is,
Ext2A′(mode A′, A′e)= 0.

(c) Let U :=HomA′(B, A′e⊗R (K/R))∈mod B. Then U is an injective B-module
and we have an equivalence of exact categories

B⊗A′ − : (CMe A′)/[A′e] −→∼ SubU.

(d) The class of short exact sequences of mod A with three terms in modB
e A gives

the structure of an exact category on modB
e A. The same holds for CMB

e A. For
these structures, the functors

HomA(W,−) :mod A→mod A′ and W ⊗A′ − :mod A′→mod A

induce quasi-inverse equivalences of exact categories between modB
e A and

mode A′ on the one hand, and between CMB
e A and CMe A′ on the other hand.

(e) We have a commutative diagram

CMe A′
B⊗A′−

//

W⊗A′− o
��

SubU� _

��

CMB
e A

B⊗A−
// mod B

where all functors induce isomorphisms of Ext1 and the left side is an equiva-
lence of exact categories for the exact structure on CMB

e A given in (d).

Let us finally introduce a simple criterion for (C1), (C2) and (C3) to be satisfied:



Lifting preprojective algebras to orders and categorifying partial flag varieties 1535

Lemma 2.4. Let A be an R-order, e an idempotent of A and B a factor algebra
of A/(e). Let us assume that there exists an idempotent g ∈ A such that Ae ∼=
HomR(g A, R). Then (C3) holds. Moreover, if (C1) holds, then (C2) holds if and
only if (1− g) soc B = 0.

We will prove Lemma 2.4 at the end of Section 5C.
In the rest of this subsection we give an example illustrating Theorem 2.3. Let

B =5 be the preprojective algebra of type A3 over a field k. In other terms

5= k
(

1
α1
(( 2

α2
((

β1

hh 3
β2

hh

)/
(α1β1, α2β2−β1α1, β2α2).

This algebra can also be realized as the following subquotient of the matrix algebra
M3(k[ε]):

5=

k[ε]/(ε) k[ε]/(ε) k[ε]/(ε)
(ε)/(ε2) k[ε]/(ε2) k[ε]/(ε)
(ε2)/(ε3) (ε)/(ε2) k[ε]/(ε)

.
Let us define R := k[[t]] and S := R[ε]. The R-order considered in Corollary C is

A :=



S/(ε) S/(ε) S/(ε) S/(ε) S/(ε) S/(ε)
(ε)/(ε2) S/(ε2) S/(ε) (ε)/(ε2) S/(ε2) S/(ε)
(ε2)/(ε3) (ε)/(ε2) S/(ε) (ε2)/(ε3) (ε)/(ε2) S/(ε)
(t)/(tε) (t)/(tε) (t)/(tε) S/(ε) S/(ε) S/(ε)
(tε)/(tε2) (t)/(tε2) (t)/(tε) (ε)/(ε2) S/(ε2) S/(ε)
(tε2)/(tε3) (tε)/(tε2) (t)/(tε) (ε2)/(ε3) (ε)/(ε2) S/(ε)


.

In Figure 1, we draw the Auslander–Reiten quiver of CMe A, with notations

i j := (t iε j )/(t iε j+1),

i j := (t iε j )/(t iε j+2),

i j — i j :=
{
(p, q) ∈ i j × i j

∣∣ p− q ∈ t · i j
}
.

Thus, the identity of S induces a map i j→ i ′ j ′ if and only if ( j, i)≥ ( j ′, i ′) for the
lexicographic order and analogous rules can be computed for i j . All arrows are
induced by multiplications by an element of S, which is ±1 when it is not specified.

Let e3, e2, e1, g1, g2 and g3 be the idempotents corresponding, in this order, to
the rows of the matrix. They satisfy

Aei ∼= HomR(gi A, R) and Agi ∼= HomR(ei A, R)
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02
02
02
02
02
02

��

tε−1
//

01
01
01
11
11
11

��
01
02
03
11
12
03

��

02
02
02
02
02
12

??

��

oo

01
01
02
11

11 + 02
02

��

??

oo

01
01
01
01
11
11

oo

02
02
03
02
02
03

//

ε−1

;;

02 01
02 02
02 03
02 11
02 02
12 03

??

��

//

01
01
02
11
11
12

//

01
01
02
11

11 + 02
12

??

��

zz
01
01
02
01

11 + 02
02

??

��

//oo

01
01
02
01
01
02

gg

02
02
02
02
12
12

??

01
02
03
11
02
03

??

��

oo

01
01
02
01

11 + 02
12

??

oo

��

00
01
02
10
11
02

oo

01
02
03
01
02
03

??

tε−1
//

00
01
02
10
11
12

??

Figure 1. Auslander–Reiten quiver of CMe A.

3
2

1

��

// Ae1

��

3

��

2
1

??

��

oo 3
2

��

??

oo 1oo

2
1 3
2

//
77

2
1 3

??

��

// Ae2 // 2

??

��

vv

1 3
2

??

��

//oo 2
1 3
2gg

1

??

2
3

??

��

oo 1
2

??

oo

��

3oo

1
2
3

??

// Ae3

??

Figure 2. Auslander–Reiten quiver of CMe A. Objects are repre-
sented by their image by F except objects of add Ae.
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as A-modules. We fix the idempotent e = e1+ e2+ e3. According to Corollary C,
we have an equivalence of exact categories

(CMe A)/[Ae] ∼=mod5.

In Figure 2, we draw the Auslander–Reiten quiver of CMe A, replacing objects
which are not in add Ae by their image by F in SubU =mod5 (here U =5). We
obtain the Auslander–Reiten quiver of mod5 by removing framed objects. The
general relation between Auslander–Reiten quivers of CMe A and SubU will be
discussed in [Demonet and Iyama ≥ 2016].

We explain the way to compute the minimal preimage of an object of SubU
by F in this example. First, we know that preimages of simple modules Si are
coradicals of indecomposable direct summands of Ae. Thus, we find

F(S◦1)∼= S1, F(S◦2)∼= S2, F(S◦3)∼= S3,

where

S◦1 =



S/(ε)
S/(ε)
S/(ε)
S/(ε)
(t)/(tε)
(t)/(tε)


, S◦2 =



S/(ε)
S/(ε2)

(ε)/(ε2)

(t)/(tε)
(t, ε)/(ε2)

(tε)/(tε2)


, S◦3 =



S/(ε)
(ε)/(ε2)

(ε2)/(ε3)

(t)/(tε)
(tε)/(tε2)

(ε2)/(ε3)


.

Let us calculate the preimage X◦ of 2
1 3 by F . There exists a pullback diagram

0 // Ae1⊕ Ae3 // S◦1 ⊕ S◦3� _

��

// S1⊕ S3� _

��

// 0

0 // Ae1⊕ Ae3 // X◦

����

// 2
1 3

//

����

0

S2 S2

which permits us to get

X◦ =



S/(ε) S/(ε)
S/(ε) (ε)/(ε2)

S/(ε) (ε2)/(ε3)

S/(ε) (t)/(tε)
S/(ε) (ε)/(ε2)

(t)/(tε) (ε2)/(ε3)


,
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3
2

1

��

��

3

��

2
1

AA

//oo A′e′3 // 3
gg

2
1 3

AA

��

1

AA

2
3

��

oo // A′e′1 // 1
ww

1
2
3

AA

YY

01
03
03
03
01
01

&&

tε−1

��

02
02
12
12
02
02 ��

01
03
03
03
01
11

AA

**

oo

01
01
11
11
01
01

rr 01
01
11
11
01
11

88

02 01
02 03
12 03
02 03
02 01
02 11

AA

��

00
02
12
02
10
10

**

01
03
03
03
11
11

AA 02
02
12
02
02
02

&&

oo

88
00
02
02
02
10
10

ll

02
02
02
02
02
02

AA

tε−1

OO

Figure 3. Auslander–Reiten quiver of CMe′ A′. In the left diagram,
objects are represented by their image by F except objects of add A′e′.

where

[S/(ε) — (ε)/(ε2)] :=
{
(x, εy) ∈ S/(ε)× (ε)/(ε2)

∣∣ x − y ∈ t · S/(ε)
}
.

Now, we apply Theorem 2.3. Let e′ := e1 + e3 and B ′ := 5/(β1α1). As a
B-module,

B ′ ∼= 1
2
3
⊕ 2

1 3 ⊕
3

2
1

.

Thanks to Lemma 2.4, B ′ and e′ satisfy the hypotheses of Theorem 2.3. Then,
keeping notations of this subsection, we have

W = Ae1⊕ Ae3⊕ Ag1⊕ X◦⊕ Ag3.

Then, A′ := EndA(W ) is easy to compute:

A′ =



S/(ε) S/(ε) S/(ε) S/(ε) S/(ε) S/(ε)
(ε2)/(ε3) S/(ε) S/(ε) S/(ε) (ε2)/(ε3) (ε2)/(ε3)

(tε2)/(tε3) (t)/(tε) S/(ε) (t)/(tε) (ε2)/(ε3) (ε2)/(ε3)

(ε2)/(ε3) (t)/(tε) S/(ε) S/(ε) (ε2)/(ε3) (ε2)/(ε3)

(t)/(tε) S/(ε) S/(ε) S/(ε) S/(ε) S/(ε)
(t)/(tε) (t)/(tε) S/(ε) S/(ε) (t)/(tε) S/(ε)


,
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where

[S/(ε) — S/(ε)] :=
{
(x, y) ∈ S/(ε)× S/(ε)

∣∣ x − y ∈ t · S/(ε)
}
.

Thanks to Theorem 2.3, we have (CMe′ A′)/[Ae′] is equivalent to the subcategory
of mod5 consisting of modules whose socle is supported at vertices 1 and 3. To
illustrate this fact, we give two representations of the Auslander–Reiten quiver of
CMe′ A′ in Figure 3.

2C. Notations. In this paper, if f : X→ Y and g : Y → Z are two morphisms in
a category, we write f g : X→ Z for the composed morphism.

Let Ab be the category of abelian groups. For an additive category A, an
A-module is a contravariant additive functor F : A → Ab. We say that an
A-module F is finitely generated if there exists an epimorphism of A-modules
HomA(A, X)→ F for some X ∈A.

3. Results on exact categories

The aim of this section is to study ideal quotient categories E/[F] of an exact
category E by a full subcategory F consisting of projective-injective objects. More
precisely, we study conditions for E/[F] to inherit the exact structure of E . In
particular, we prove that it is the case if and only if admissible monomorphisms
and epimorphisms are mapped to categorical monomorphisms and epimorphisms
by the canonical projection E→ E/[F]. This is a particular case of Theorem 3.6.

3A. Preliminaries about exact categories. We recall here main definitions and
elementary results about exact categories. We consider an additive category E
endowed with a family S of pairs of morphisms ( f, g) of E , where f is a kernel
of g and g is a cokernel of f . We denote such a pair by

0→ X f
−→ Y g

−→ Z→ 0,

and for ( f, g)∈S, we call ( f, g) an admissible short exact sequence, f an admissible
monomorphism and g an admissible epimorphism. We call (E,S) an exact category
if it satisfies the following axioms due to Quillen [1973] and modified by Keller
[1990, Appendix A]:

(Ex0) S is stable under isomorphisms and contains split short exact sequences of
the form

0→ X
[idX 0]
−−−−→ X ⊕ Z

[
0

idZ

]
−−−−→ Z→ 0.

(Ex1) The composition of two admissible epimorphisms is an admissible epimor-
phism.
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(Ex1)op The composition of two admissible monomorphisms is an admissible
monomorphism.

(Ex2) For any admissible short exact sequence

0→ X f
−→ Y g

−→ Z→ 0

and morphism v : Z ′→ Z , we can form a pullback diagram, i.e., a commutative
diagram of the form

0 // X
f ′
// Y ′

v′
��

g′
// Z ′

v
��

// 0

0 // X
f
// Y g

// Z // 0

where the first row is an admissible short exact sequence.

(Ex2)op For any admissible short exact sequence

0→ X f
−→ Y g

−→ Z→ 0

and morphism u : X → X ′, we can form a pushout diagram, i.e., a commutative
diagram of the form

0 // X
f
//

u
��

Y
u′
��

g
// Z ′ // 0

0 // X ′
f ′
// Y ′

g′
// Z // 0

where the second row is an admissible short exact sequence.

We often write E instead of (E,S) when we consider only one exact structure
on E . When not specified, we use the terms short exact sequence, monomorphism
and epimorphism for admissible short exact sequence, admissible monomorphism,
admissible epimorphism, respectively. In contrast, we use categorical monomor-
phism or categorical epimorphism for a monomorphism or epimorphism which is
not necessarily admissible.

We will use freely the following easy facts about exact categories:

• In (Ex2), we have the admissible short exact sequence

0→ Y ′
[v′ g′]
−−−→ Y ⊕ Z ′

[ g
−v

]
−−−→ Z→ 0.

• In (Ex2), if v is an admissible epimorphism, then so is v′ and Ker v= (Ker v′)g′.

• In (Ex2), if v is an admissible monomorphism, then so is v′ and Coker v′ =
g(Coker v).
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• In (Ex2)op, we have the admissible short exact sequence

0→ X
[u f ]
−−−→ X ′⊕ Y

[ f ′
−u′
]

−−−−→ Y ′→ 0.

• In (Ex2)op, if u is an admissible epimorphism, then so is u′ and Ker u′= (Ker u) f .

• In (Ex2)op, if u is an admissible monomorphism, then so is u′ and Coker u =
f ′(Coker u′).

• If a morphism is an admissible monomorphism and an admissible epimorphism,
then it is an isomorphism.

• If, in a morphism of short exact sequences, the left and right components are
both admissible monomorphisms or epimorphisms, then the middle one is as
well.

• In (Ex2) and (Ex2)op, the diagrams are uniquely determined up to unique iso-
morphisms.

Let us recall the following definition:

Definition 3.1. A functor F between exact categories (E,S) and (E ′,S ′) is exact
if F(S)⊂ S ′. An object X ∈ E is projective if HomE(X,−) is exact, and injective if
HomE(−, X) is exact. We say that E has enough injective objects if for any X ∈ E
there exists a short exact sequence 0→ X → I → Y → 0 in S such that I is
injective. We say that E has enough projective objects if for any X ∈ E there exists
a short exact sequence 0→ Y → P→ X→ 0 in S such that P is projective.

Recall that these notions permit the definition of extension functors ExtiE which
satisfy the expected properties, either from Yoneda’s structure of long exact se-
quences, or using projective resolutions if E has enough projective objects, or using
injective resolutions if E has enough injective objects, or more generally using the
derived category of E .

Throughout this paper, we will use the following definition:

Definition 3.2. Let E and E ′ be exact categories and F :E→E ′ an exact functor. We
say that F is exact bijective if the induced morphism Ext1E(−,−)→Ext1E ′(F−, F−)
is an isomorphism. We say that F is an equivalence of exact categories if it is an
exact bijective equivalence of categories (or, equivalently, an exact equivalence of
categories with an exact quasi-inverse).

A typical example of exact bijective functor arises when E is a full exact subcat-
egory of E ′ (i.e., a full subcategory which is closed under extensions).

Remark 3.3. Assume F : E→ E ′ is a dense and exact bijective functor. Then:

(a) For any X ∈ E , we have X is projective if and only if FX is projective, and
the dual statement holds for injectivity.
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(b) E has enough projective objects if and only if E ′ has enough projective objects,
and the dual statement holds for injectivity.

(c) E is Frobenius if and only if E ′ is Frobenius.

We give an elementary result about second extension groups:

Proposition 3.4. Let F : E→ E ′ be an exact bijective functor. Then, it induces a
canonical natural monomorphism Ext2E(−,−) ↪→ Ext2E ′(F−, F−).

Proof. The existence of a map ϕ : Ext2E(−,−)→ Ext2E ′(F−, F−) is immediate.
We consider an admissible 4-term exact sequence ξ : 0→ X→ Y1→ Y2→ Z→ 0
which, by definition, comes from two short exact sequences

ξ1 : 0→ X→ Y1→ Y → 0 and ξ2 : 0→ Y → Y2
u
−→ Z→ 0.

Suppose that ξ ∈ KerϕZ ,X . Applying HomE(−, X) and HomE ′(F−, FX) to ξ2

gives a commutative diagram of exact sequences:

Ext1E(Y2, X) // Ext1E(Y, X) // Ext2E(Z , X)
ϕZ ,X
��

Ext2E (u,X)
// Ext2E(Y2, X)

��

Ext1E ′(FY2,FX) // Ext1E ′(FY,FX) // Ext2E ′(FZ ,FX) // Ext2E ′(FY2,FX)

By the definition of Yoneda product, ξ ∈Ker Ext2E(u, X), so an easy diagram chase
gives ξ = 0. �

Let us define important concepts:

Definition 3.5. Let E be a Krull–Schmidt additive category and E ′ ⊂ E an additive
subcategory. Then:

(a) We say that f : X → Y in E is left minimal if for any g ∈ EndE(Y ) such
that f g = f , the map g is invertible, or equivalently, if for any idempotent
e ∈ EndE(Y ), we have f e = f implies e = idY.

(b) We say that g : Y → X in E is right minimal if for any f ∈ EndE(Y ) such
that f g = g, the map f is invertible, or equivalently, if for any idempotent
e ∈ EndE(Y ), we have eg = g implies e = idY.

(c) We say that f : X→ X ′ in E is a left E ′-approximation (of X ) if X ′ ∈ E ′ and
any morphism from X to any object of E ′ factors through f .

(d) We say that g : X ′→ X in E is a right E ′-approximation (of X ) if X ′ ∈ E ′ and
any morphism from any object of E ′ to X factors through g.

Notice that, in the situation of the previous definition, if an object X ∈ E
admits a left E ′-approximation, then it admits a left minimal E ′-approximation
which is unique up to isomorphism, and an analogous statement holds for right
E ′-approximations.



Lifting preprojective algebras to orders and categorifying partial flag varieties 1543

3B. Exact ideal quotients of an exact category. Let (E,S) be an exact category
and E ′ a full subcategory of E which is closed under extensions. Then (E ′,S ′) forms
an exact category for the family S ′ of all admissible exact sequences in S whose
terms belong to E ′.

We denote by F a subcategory of E satisfying Ext1E(F, E ′) = Ext1E(E ′,F) = 0.
Let S ′F be the class of pairs of morphisms in E ′/[F] which are isomorphic to a pair
in π(S ′), where π : E ′→ E ′/[F] is the canonical functor.

Theorem 3.6. The following are equivalent:

(i) (E ′/[F],S ′F ) is exact.

(ii) For any admissible monomorphism f of (E ′,S ′), the map π( f ) is a categorical
monomorphism in E ′/[F], and the dual statement holds for epimorphisms.

In this case, π : E ′→ E ′/[F] is automatically exact bijective.

Proof. (i)⇒ (ii) is trivial. Let us prove the converse. Let us first check that any
( f̄ , ḡ) ∈ S ′F is a kernel-cokernel pair. By (ii), f̄ is a monomorphism and ḡ is an
epimorphism. By definition, we can lift ( f̄ , ḡ) to ( f, g) ∈ S ′. Suppose that f̄ h̄ = 0
for some morphism h̄ of E ′/[F]. By definition, it means that there is a commutative
diagram in E of the form

0 // X
f
//

h′
��

Y
g
//

h
��

Z // 0

F
f ′
// Z ′

with F ∈ F . As Ext1E(Z , F)= 0, there exists u : Y → F such that h′ = f u. Thus,
h = u f ′ + gv for some v : Z → Z ′ and h̄ = ḡv̄ holds. This proves that ḡ is a
cokernel of f̄ . Dually, we prove that f̄ is a kernel of ḡ.

Let us check axioms of exact categories one by one:

(Ex0): This is obvious.

(Ex1): Suppose that ḡ : X→ X ′ and ḡ′ : X ′→ X ′′ are epimorphisms in S ′F . It is easy
to check that we can lift them to admissible epimorphisms g : X⊕F1→ X ′⊕F2 and
g′ : X ′⊕ F3→ X ′′⊕ F4 of E ′. Thus ḡḡ′ can be lifted to an admissible epimorphism
X ⊕ F1⊕ F3→ X ′′⊕ F2⊕ F4 in E ′ using (Ex1) in (E ′,S ′). By definition, ḡḡ′ is
then an epimorphism in S ′F .

(Ex1)op: This is the dual of the previous item.

(Ex2): Let ḡ : Y → Z be an epimorphism in S ′F and v̄ : Z ′→ Z be a morphism
in E ′/[F]. Without loss of generality, we can suppose that they come from lifts
g : Y → Z and v : Z ′→ Z in E ′, where g is an admissible epimorphism. Thus, we
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can complete the pair to a pullback diagram

Y ′
g′
//

v′
��

Z ′

v
��

Y g
// Z

in E ′, where g′ is an admissible epimorphism. Then 0→ Y ′→ Z ′⊕ Y → Z→ 0
is in S ′, and its projection to E ′/[F] is in S ′F . Thus the diagram is also a pullback
diagram in E ′/[F], and ḡ′ is an epimorphism in S ′F .

(Ex2)op: This is the dual of the previous item.

We have finished proving the equivalence. Let us check that the projection
π : E ′ → E ′/[F] is exact bijective. First of all, for X, Z ∈ E ′, the induced map
Ext1E ′(Z , X)→Ext1E ′/[F](π Z , πX) is clearly surjective. To prove that it is injective,
let us consider a short exact sequence

0→ X f
−→ Y g

−→ Z→ 0, (3-1)

which splits in E ′/[F]. By definition, it means that there is g′ : Z → Y and two
morphisms u : Z → F and v : F→ Z with F ∈ F such that idZ = g′g+ uv. As
Ext1E(F, X) = 0, there exists v′ : F → Y such that v = v′g. Thus idZ = (g′ +
uv′)g holds, and (3-1) splits in E ′. Therefore Ext1E ′(Z , X)→ Ext1E ′/[F](π Z , πX) is
injective. �

In the rest of this section we give sufficient conditions for Theorem 3.6(ii) to
hold. For two subcategories B and C of E , we denote by C↘ B the full subcategory
of E consisting of X such that for any complex Y g

−→ B f
−→ X with B ∈ B and

Y ∈ E ′, there exists a morphism of complexes

Y
g
//

��

B
f
//

��

X

C
g′
// B ′

f ′
// X

with B ′ ∈ B and C ∈ C. Notice that, if X ∈ E has a right B-approximation whose
pseudo-kernel is in C, then X ∈ [C↘ B]. Also notice that [E ′↘ B] = E holds since
we can choose f ′ = f and g′ = g. Dually, we denote by B↗ C the full subcategory
of E consisting of X such that for any complex X f

−→ B g
−→ Y with B ∈ B and

Y ∈ E ′, there exists a morphism of complexes

X // B ′ //

��

C

��

X
f
// B g

// Y



Lifting preprojective algebras to orders and categorifying partial flag varieties 1545

with B ′ ∈ B and C ∈ C. As before, if X ∈ E has a left B-approximation whose
pseudo-cokernel is in C, then X ∈ [B↗ C]. Also, we get [B↗ E ′] = E . We get the
following corollary:

Corollary 3.7. Let P and I be the full subcategories of E consisting of objects X
satisfying Ext1E(X, E ′)= 0 and Ext1E(E ′, X)= 0 respectively. If

E ′ ⊂ (F ↗ [I↘ F])∩ ([F ↗ P] ↘ F)

then (E ′/[F],S ′F ) is an exact category.

Proof. We need to prove Theorem 3.6(ii). We do it for admissible monomorphisms.
Let 0→ X f

−→ Y g
−→ Z→ 0 be a short exact sequence in S ′, and let u : X ′→ X be

a morphism such that ū f̄ =0 in E/[F]. Then u f = f ′u′ holds for some f ′ : X ′→ F ′

and u′ : F ′→ Y with F ′ ∈ F .
Suppose first that X ′ ∈ [F ↗ P]. By definition, we can complete a commutative

diagram

X ′ α
// F

β
//

v′
��

P
v′′
��

X ′

u
��

f ′
// F ′

u′
��

u′g
// Z

0 // X
f
// Y g

// Z // 0

with αβ= 0 and F ∈F and P ∈P . As Ext1E(P, X)= 0, we know v′′= g′′g for some
g′′ : P→Y and we easily get v′u′=βg′′+ f ′′ f for some f ′′ : F→ X. We deduce that
α f ′′ f =αv′u′−αβg′′=u f . As f is a monomorphism, α f ′′=u and therefore ū= 0.

Let us now suppose that X ′ ∈ E ′. As Z ∈ ([F ↗ P] ↘ F), we can complete the
following commutative diagram

A α
// F

β
// Z

X ′

u
��

f ′
//

v

OO

F ′

u′
��

u′g
//

v′

OO

Z

0 // X
f
// Y g

// Z // 0

with αβ= 0 and F ∈F and A∈ [F↗P]. Then, as Ext1E(F, X)= 0, we get β=β ′g
with β ′ : F→ Y and, as f is the kernel of g, there exists α′ : A→ X such that αβ ′=
α′ f . As A ∈ [F↗P] and ᾱ′ f̄ = 0, by the first part of the argument, ᾱ′ = 0. On the
other hand, by an easy diagram chase, there exists w : F ′→ X such that u′= v′β ′+
w f . So we get u f = f ′u′= f ′v′β ′+ f ′w f = vαβ ′+ f ′w f = vα′ f + f ′w f . As f is
a monomorphism, we deduce that u= vα′+ f ′w. Thus ū= 0 holds since ᾱ′= 0. �
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In the rest of this section, we give three special cases as an application. Notice
that the first case recovers Chen’s result [2012, Theorem 3.1] for E ′ = E .

Corollary 3.8. (a) If , for any X ∈E ′, there exist left and right F-approximations f
and f ′ and pseudo-cokernel g and pseudo-kernel g′

X f
−→ F X g

−→ P X and IX
g′
−→ FX

f ′
−→ X

such that P X
∈ P and IX ∈ I then (E ′/[F],S ′F ) is an exact category.

(b) If , for any X ∈ E ′, there exists a left F-approximation X → F X which is a
categorical epimorphism, then (E ′/[F],S ′F ) is an exact category.

(c) If , for any X ∈ E ′, there exists a right F-approximation FX → X which is a
categorical monomorphism, then (E ′/[F],S ′F ) is an exact category.

Proof. (a) Let X→ F→ Y be a complex where X, Y ∈ E ′ and F ∈ F . It is easy to
complete the following commutative diagram

X // F X //

��

P X

��

X // F // Y

so E ′ ⊂ [F ↗ P]. Thus we have E = [E ′↘ F] ⊂ ([F ↗ P] ↘ F). Dually we have
E = (F ↗ [I↘ F]).

(b) By the same argument as the beginning of (a), we get E ′ ⊂ [F ↗ 0]. So

E ′⊂[F↗0]⊂(F↗[I↘F]) and E=[E ′↘F]⊂([F↗0]↘F)⊂([F↗P]↘F).

(c) This is the dual of (b). �

3C. On some Frobenius subcategories of exact categories. When we have an
admissible monomorphism f : X → Y in an exact category, we say X is an
admissible subobject of Y. Dually we define an admissible factor object. For
a full subcategory E ′ of an exact category E , we denote by Sub E ′ the smallest
full subcategory of E which is closed under admissible subobjects and contains
add E ′.

We recall that an exact category is Frobenius if it has enough injective objects,
enough projective objects and they coincide. This subsection is devoted to proving
the following result.

Proposition 3.9. Let E be an exact category which has enough projective objects
and enough injective objects. Let U be a subcategory of injective objects in E
satisfying U = addU, and let D := SubU . Assume that projective objects of E and
those of D coincide. Then the following assertions hold:

(a) D is closed under extensions.
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(b) D is Frobenius if and only if the following conditions are satisfied:

• U is projective-injective in E for any U ∈ U .
• Each projective object of E has injective dimension at most 1 and each

injective object of E has projective dimension at most 1.

(c) If the conditions in (b) are satisfied, then U is the category of projective-
injective objects in E .

Part (a) is an easy consequence of the horseshoe lemma. Let us start with the
following lemma:

Lemma 3.10. Assume any object in U is projective in E . Let 0→ E→ E ′ f
−→ I→0

be an exact sequence in E with I injective. Then

HomE(D, f ) : HomE(D, E ′)→ HomE(D, I )

is an epimorphism.

Proof. Take a morphism g : D→ I with D ∈ D. Then there exists an admissible
monomorphism i : D → U with U ∈ U . Since I is injective in E , there exists
s :U→ I such that g = is. Since U is projective in E , there exists t :U→ E ′ such
that s = t f :

0 // E // E ′
f
// I // 0

D
g

;;

i
// U

s
OO

t

cc

Since g = i t f , we have the assertion. �

Let us now prove the proposition.

Proof of Proposition 3.9(b). “⇒” Suppose that D is Frobenius. Note that our
assumptions imply that projective objects in E , projective objects in D and injective
objects in D coincide.

Fix any U ∈ U . Then U is injective in E by our assumption, and hence U is
injective also in D. Therefore U is projective in E by the remark above.

Let P be a projective object in E . Then P is projective-injective in D. Since our
assumptions imply �E(E)⊂ D, we have

Ext2E(E, P)= Ext1E(�E(E), P)= 0.

Thus P has injective dimension at most 1 in E .
Let I be an injective object in E . We take an exact sequence

0→�E(I )→ P f
−→ I → 0 (3-2)
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with a projective object P in E . Our assumptions imply P ∈D and �E(I ) ∈D. We
apply HomE(D,−) to (3-2) to get the exact sequence

HomE(D, P)→ HomE(D, I )→ Ext1E(D, �E(I ))→ Ext1E(D, P)= 0.

By Lemma 3.10, we have Ext1E(D, �E(I ))= 0. Thus �E(I ) is projective-injective
in D so projective in E , and the assertion follows.

“⇐” Let P be a projective object in D. By our assumptions, P is projective in E ,
and there exists an exact sequence 0→ P→ I 0

→ I 1
→ 0 with injective objects

I 0, I 1 in E . Applying HomE(D,−), we have an exact sequence

HomE(D, I 0)→ HomE(D, I 1)→ Ext1E(D, P)→ Ext1E(D, I 0)= 0.

By Lemma 3.10, we have Ext1E(D, P)= 0. Thus P is injective in D.
Let I be an injective object in D. Since �E(E) ⊂ D, we have Ext2E(E, I ) =

Ext1E(�E(E), I )= 0. Thus I has injective dimension at most 1 in E . Now we take
an exact sequence

0→ I →U → E→ 0 (3-3)

with U ∈ U and E ∈ E . Since U is injective in E , so is E . Thus E has projective
dimension at most 1 in E . Since U is projective in E , so is I. Thus I is projective
in D.

Since E has enough projective objects and �E(E)⊂ D holds, D also has enough
projective objects. It remains to prove that D has enough injective objects. Fix
D ∈ D and take an exact sequence 0→ D→U → E→ 0 with U ∈ U and E ∈ E .
Since E has enough injective objects by our assumption, there exists an exact
sequence 0→ E→ I → E ′→ 0 with an injective object I in E and E ′ ∈ E . Let
0→ P1→ P0→ I→ 0 be a projective resolution of I in E . We have a commutative
diagram of exact sequences:

0

��

0

��

0 // P1 // X //

��

E

��

// 0

0 // P1 // P0

��

// I //

��

0

E ′

��

E ′

��

0 0
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Since P0 ∈ D, the middle column shows X ∈ D. On the other hand, we have the
following commutative diagram of exact sequences:

0

��

0

��

P1

��

P1

��

0 // D // Y //

��

X

��

// 0

0 // D // U //

��

E //

��

0

0 0

As P1 is projective-injective in D, the middle column splits and Y ∼= U ⊕ P1 is
injective in D. The middle row gives an injective hull of D in D. �

Proof of Proposition 3.9(c). Let P be a projective-injective object in E . Then it
belongs to D, and there is a short exact sequence 0→ P → U → E → 0 with
U ∈ U and E ∈ E . Since P is injective in E , this sequence splits. Thus P belongs
to U . �

4. Equivalences arising from torsion pairs on exact categories

Throughout this section, we assume the following:

• E is an exact category which is Krull–Schmidt.

• (A,B) is a torsion pair of E ; that is, the following conditions are satisfied:
– A and B are full subcategories of E such that HomE(A,B)= 0.
– For any E ∈ E , there exists an exact sequence 0→ A→ E→ B→ 0 with

A ∈A and B ∈ B.

Then A is closed under taking extensions and admissible factor objects, and B is
closed under taking extensions and admissible subobjects. On the other hand, the
natural inclusion functor B→ E has a left adjoint functor F : E→ B. This is dense
and induces a dense functor

F : E/[A] → B.

4A. Basic properties of F : E/[A] → B. We consider the full subcategories of E
defined by

E1 = {X ∈ E | Ext1E(X,A)= 0},

E2 = {X ∈ E | Ext1E(X,A)= 0, Ext2E(X,A)= 0}.

The subsection is devoted to proving the following result:
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Theorem 4.1. We have the following assertions:

(a) The functor F : E1/[A] → B is fully faithful.

(b) The essential image of F : E1/[A] → B is the subcategory consisting of B ∈ B
such that Ext1E(B,A) is a finitely generated Aop-module.

(c) If Ext1E(A,B)= 0, then F : E2→ B is exact bijective.

(d) If any object in A is projective in E , then E2/[A] inherits canonically the exact
structure of E2 and F : E2/[A] → B is exact bijective.

We denote by T : E→A the right adjoint functor of the inclusion functor A→ E .
Then for any E ∈ E , there exists a short exact sequence

0→ T E f
−→ E g

−→ F E→ 0

in E with T E ∈ A and F E ∈ B. Clearly f is a right A-approximation and g is a
left B-approximation.

The proof of Theorem 4.1 is divided into Lemmas 4.2, 4.3, 4.5 and 4.6.

Lemma 4.2. The functor F :E1→B induces a fully faithful functor F :E1/[A]→B.

Proof. Fix X, Y ∈ E1. By applying HomE(X,−) to the short exact sequence
0→ T Y → Y → FY → 0, we obtain the short exact sequence

0→ HomE(X, T Y )→ HomE(X, Y )→ HomE(X, FY )→ Ext1E(X, T Y )= 0,

where the last equality follows from X ∈ E1. So

HomE(X, FY )∼=
HomE(X, Y )

HomE(X, T Y )
= HomE/[A](X, Y ),

where we use the fact that the first arrow of T Y → Y is a right A-approximation.
On the other hand, using adjunction we have an isomorphism

HomE(FX, FY )∼= HomE(X, FY ).

Thus the assertion follows. �

Next we prove the following observation.

Proposition 4.3. The following conditions are equivalent for B ∈ B:

(i) B belongs to the essential image of F : E1→ B.

(ii) Ext1E(B,A) is a finitely generated Aop-module.

This follows immediately from the following result for Krull–Schmidt exact cat-
egories, which is a generalization of [Auslander and Reiten 1991, Proposition 1.4].

Lemma 4.4. Let X be a Krull–Schmidt exact category, and Y a subcategory of X
which is closed under extensions and direct summands. For X ∈ X , the following
conditions are equivalent:
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(i) There exists an exact sequence 0 → Y → Z → X → 0 with Y ∈ Y and
Ext1X (Z ,Y)= 0.

(ii) Ext1X (X,Y) is finitely generated Yop-module.

We include a proof for the convenience of the reader.

Proof. (i)⇒ (ii): Applying HomX (−,Y) to the short exact sequence 0→ Y →
Z→ X→ 0, we obtain the exact sequence

HomX (Y,Y)→ Ext1X (X,Y)→ Ext1X (Z ,Y)= 0.

Thus Ext1X (X,Y) is a finitely generated Yop-module.

(ii)⇒ (i): There exists a projective cover ϕ :HomX (Y,Y)→ Ext1X (X,Y) since Y
is Krull–Schmidt. Let

0→ Y f
−→ Z g

−→ X→ 0

be a short exact sequence represented by ϕ(idY ) ∈ Ext1X (X, Y ). Since ϕ is right
minimal, f belongs to radX , and hence g is right minimal. To prove Ext1X (Z ,Y)=0,
it suffices to show that any exact sequence

0→ Y ′→W s
−→ Z→ 0 (4-1)

with Y ′ ∈ Y splits. We have the following commutative diagram of exact sequences:

0

��

0

��

Y ′

��

Y ′

��

0 // Y ′′ //

��

W //

s
��

X // 0

0 // Y
f
//

��

Z
g
//

��

X // 0

0 0

where Y ′′ ∈ Y because Y is extension-closed. As ϕ is an epimorphism, we have the
following commutative diagram of exact sequences:

0 // Y
f
//

��

Z
g
//

t
��

X // 0

0 // Y ′′ // W // X // 0

As g is right minimal, ts : Z→ Z is invertible. Therefore the sequence (4-1) splits. �

Lemma 4.5. Suppose that Ext1E(A,B)= 0. Then the functor F : E2→ B is exact
bijective.
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Proof. Let X, Y ∈ E2. By applying HomE(X,−) to the short exact sequence
0→ T Y → Y → FY → 0, we have the isomorphism

Ext1E(X, Y )∼= Ext1E(X, FY ),

as ExtiE(X, T Y )= 0 holds for i = 1, 2. Applying HomE(−, FY ) to the short exact
sequence 0→ TX→ X→ FX→ 0, we have an isomorphism

Ext1E(FX, FY )∼= Ext1E(X, FY )

as ExtiE(TX, FY )= 0 holds for i = 0, 1. Thus we have

Ext1B(FX, FY )= Ext1E(FX, FY )∼= Ext1E(X, Y ). �

Lemma 4.6. Suppose that any object in A is projective in E . Then E2/[A] inherits
canonically the exact structure of E2, and the functor F : E2/[A] → B is exact
bijective.

Proof. Any object X ∈E has a right A-approximation TX→ X which is a categorical
monomorphism, and we have

Ext1E(A, E2)= Ext1E(E2,A)= 0

by our assumptions. Therefore Corollary 3.8(c) gives an exact structure on E2/[A].
Applying Lemma 4.5, we have

Ext1B(FX, FY )∼= Ext1E2
(X, Y )= Ext1E2/[A](X, Y ),

which shows the assertion. �

4B. When there is a torsion pair (B,C). In this subsection, we further assume
(B, C) is a torsion pair in E for

C := {X ∈ E | HomE(B, X)= 0}.

The following result gives a description of the image of the functor F : C→ B.

Theorem 4.7. Assume that the following conditions are satisfied:

• B is an abelian category whose exact structure is compatible with that of E .

• Ext1E(B, A) is a finitely generated B-module for any A ∈A∩ C.

Then we have the following assertions.

(a) For any A ∈A∩ C, there exists a short exact sequence

0→ A→ C A
→U A

→ 0

with U A
∈ B, C A

∈ C and Ext1E(B,C A) = 0. Moreover, it is unique up to
isomorphism.
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(b) Let D := Sub{U A
| A ∈ A ∩ C}. Then F : E → B induces a dense functor

F : C→ D.

Assume Ext2E(B,A∩ C)= 0.

(c) U A is an injective object in B for any A ∈A∩ C.

(d) D is closed under taking extensions in E , and therefore forms an exact category.

(e) Assume C ⊂ E2 and that any object in A is projective in E . Then C/[A] inherits
canonically the exact structure of C and F : C/[A] → D is an equivalence of
exact categories.

Proof. (a) By the dual of Lemma 4.4, we get a short exact sequence

0→ A f
−→ X g

−→U A
→ 0

for some U A
∈ B such that Ext1E(B, X)= 0 and with f left minimal. We only have

to prove X ∈ C. Since (B, C) is a torsion pair, there exists an exact sequence

0→ B i
−→ X→ C→ 0

with B ∈B and C ∈ C. Now we consider the following commutative diagram, where
Ker ig exists in B by our assumption:

0 // A // X
g
// U A // 0

0 // Ker ig //

OO

B
ig
//

i

OO

U A

Since A ∈ C, we have Ker ig = 0. Thus ig is a monomorphism, and we can form
the following commutative diagram with Coker ig ∈ B by our assumption:

0

��

0

��

B
i
��

B
ig
��

0 // A
f
// X

g
//

��

U A //

p
��

0

0 // A // C //

��

Coker ig //

��

0

0 0

The upper horizontal sequence gives a projective cover ϕ : HomE(B,U A) →

Ext1E(B, A) (see the proof of Lemma 4.4). The lower horizontal sequence gives a
morphism ψ : HomE(B,Coker ig)→ Ext1E(B, A), which is an epimorphism since
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ϕ = HomE(B, p)ψ . Since Coker ig ∈ B and ϕ is a projective cover, p has to be an
isomorphism. Thus we have B = 0 and X ∼= C ∈ C.

As B∩ C = 0, the morphism A→ C A is left minimal and it implies easily the
uniqueness.

(b) First we prove F(C) ⊂ D. For any C ∈ C, there exists an exact sequence
0→ A→ C → B → 0 with B = FC ∈ B and A = T C ∈ A. Clearly we have
A ∈A∩ C. Let 0→ A→ C A

→U A
→ 0 be the exact sequence in (a). Then we

have a commutative diagram

0 // A // C //

��

B //

f
��

0

0 // A // C A // U A // 0

By our assumption, f has a kernel g : Ker f → B in E with Ker f ∈ B. Since the
above diagram is pullback, g factors through C ∈ C. Thus g= 0 holds, and hence f
is a monomorphism. Therefore 0→ B f

−→U A
→ Coker f → 0 is a short exact

sequence in E by our assumption, and B ∈ D holds.
Next we prove that the functor F : B→ D is dense. For any D ∈ D, there exist

exact sequences

0→ D→U A
→ X→ 0 and 0→ A→ C A

→U A
→ 0

with A∈A∩C, U A
∈B, C A

∈C and Ext1E(B,C A)=0. Then we have a commutative
diagram

0

��

0

��

0 // A // Y //

��

D //

��

0

0 // A // C A //

��

U A //

��

0

X

��

X

��

0 0

of exact sequences. Since C A
∈ C, we have Y ∈ C by the middle vertical sequence.

Therefore D = FY belongs to F(C).

(c) Applying HomE(B,−) to the short exact sequence 0→ A→ C A
→U A

→ 0,
we have an exact sequence

0= Ext1E(B,C A)→ Ext1E(B,U
A)→ Ext2E(B, A)= 0.

Therefore Ext1E(B,U A)= 0; that is, U A is injective in B.
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(d) This is an immediate consequence of (c) and the horseshoe lemma.

(e) By Theorem 4.1(a) and (d), the functor F : E2/[A]→B is fully faithful and exact
bijective. By C ⊂ E2, using (b) and (d), we have an equivalence F : C/[A] → D of
exact categories. �

4C. Frobenius properties. As in Section 4B, we suppose that (B, C) is a torsion
pair. We define U := add{U A

| A ∈ A ∩ C} and as in Theorem 4.7, D := SubU .
The following result gives a sufficient condition for the categories C and D to be
Frobenius.

Theorem 4.8. Assume that the following conditions are satisfied:

• B is an abelian category whose exact structure is compatible with that of E
and has enough projective objects and enough injective objects.

• A⊂ C holds, and any object in A is projective in E and injective in C.

• Ext1E(B, A) is a finitely generated B-module for any A ∈A.

• Ext1E(P,A) is a finitely generated Aop-module for any projective object P in B.

Then we have the following assertions:

(a) E has enough projective objects and enough injective objects. Moreover, the
following conditions are equivalent:
(i) Projective objects of B and D coincide.

(ii) Projective objects of C and E coincide.

Suppose that the equivalent conditions in (a) are satisfied. Then the following
assertions hold:

(b) C and D have enough projective objects.

(c) Any object in A has injective dimension at most 1 in E . Therefore all assertions
in Theorem 4.7 hold.

(d) The following conditions are equivalent:
(i) C is a Frobenius category whose exact structure is compatible with that

of E .
(ii) D is a Frobenius category whose exact structure is compatible with that

of E .
(iii) Any object in U is projective-injective in B. Moreover, each projective

object of B has injective dimension at most 1 and each injective object of
B has projective dimension at most 1.

(e) If the conditions in (d) are satisfied, then the category of projective-injective
objects in B is U .

We start with preparing the following:
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Lemma 4.9. For any projective object P in B, there exists a projective object X
in E such that P = FX.

Proof. By Lemma 4.4, there exists a short exact sequence 0→ A→ X→ P→ 0
with A∈A and Ext1E(X,A)= 0. Applying HomE(−,B), we have an exact sequence

0= Ext1E(P,B)→ Ext1E(X,B)→ Ext1E(A,B)= 0.

Thus Ext1E(X,B) = 0 holds. Since Ext1E(X,A) = 0, we have Ext1E(X, E) = 0.
Thus X is a projective object in E satisfying P = FX. �

Now we are ready to prove Theorem 4.8.

Proof of Theorem 4.8. (a) For any X ∈ E , there exists a short exact sequence
0→ A→ X→ B→ 0 with A = TX ∈A and B = FX ∈ B. Then A is projective
in E by our assumption. Thanks to the horseshoe lemma, to show that X has a
projective cover in E , it suffices to show that any B ∈ B has a projective cover in E .

By our assumption, there exists a projective cover f : P→ B in B. By Lemma 4.9,
there exists a projective cover g : P ′→ P in E . Then the composition g f : P ′→ B
gives a projective cover of B in E .

In the same way, to prove that E has enough injective objects, it is enough to
prove that any A ∈ A and any B ∈ B admits an injective hull in E . For B ∈ B, it
admits an injective hull I in B. As (A,B) is a torsion pair in E and Ext1E(A, E)= 0,
we know I is injective in E . For A ∈A, the object C A defined in Theorem 4.7(a)
is an injective hull of A by the same argument. So we proved that E has enough
injective objects.

(ii)⇒ (i): Suppose that projective objects of C and E coincide.
Let P be a projective object in B. By Lemma 4.9, there exists a projective

object X in E such that P = FX. Since X belongs to C by our assumption, we have
P ∈ F(C)⊂ D. Thus P is a projective object in D.

Let P be a projective object in D. Since B has enough projective objects by our
assumption, there exists a projective cover f : X→ P in B. Since X belongs to D
by the above argument, f splits. Thus P is projective in B.

(i)⇒ (ii): Suppose that projective objects of B and D coincide.
Let P be a projective object in E . Let 0→ X → P ′ f

−→ FP→ 0 be an exact
sequence with a projective object P ′ in B. Then P ′ ∈ D by our assumption. By
Theorem 4.7(b), there exists an exact sequence 0→ A i

−→C p
−→ P ′→ 0 with

A ∈ A and C ∈ C. Since Ext1E(C,A) = 0 holds by our assumption, we have a
commutative diagram:

0 // A⊕ T P[
α

1T P

]
��

[
i
0

0
1T P

]
// C ⊕ T P[

β
u
]

��

[ p
0

]
// P ′

f
��

// 0

0 // T P u
// P

v
// FP // 0
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As
[
α

1T P

]
and f are (admissible) epimorphisms,

[
β
u

]
is also one. Since P is projective

in E , we know
[
β
u

]
splits. Thus P is a direct summand of C ⊕ T P , which belongs

to C by our assumption T P ∈A⊂ C.
Conversely, let Q be a projective object in C. Let us consider its projective

cover P in E . We get the short exact sequence

0→�E Q→ P→ Q→ 0.

According to the previous discussion, P ∈ C. Thus, we get that �E Q ∈ C. Hence,
as Q is projective in C, the short exact sequence splits and Q is projective in E .

(b) We now suppose that the conditions in (a) are satisfied. Since E has enough
projective objects which belong to C, we get that C has enough projective objects.
By a similar argument, D has enough projective objects.

(c) All projective objects of E belong to C by our assumption. Therefore �E(E)⊂ C
holds. Since any object in A is injective in C by our assumption, we have

Ext2E(E,A)= Ext1E(�E(E),A)= 0.

Thus the first assertion follows. In particular we have Ext2E(B,A∩ C)= 0, and the
second assertion follows.

(d)–(e) Thanks to Theorems 3.6 and 4.7(e), F : C→ C/[A] → D is exact bijective.
So C is Frobenius if and only if D is Frobenius by Remark 3.3. Hence (i)⇔(ii) in
(d) is proven. The remaining assertions follow by applying Proposition 3.9 to B. �

5. Equivalences arising from orders and their idempotents

As in Section 2A, let R be a complete discrete valuation ring and K be its field of
fractions. Fix an R-order A. Consider functors

Di := Ext1−i
R (−, R) :mod A↔mod Aop

for i = 0, 1. They restrict to dualities

D1=HomR(−, R) :CM A←−→∼ CM Aop and D0=Ext1R(−, R) : f.l. A←−→∼ f.l. Aop

and satisfy D0(CM A)= D1(f.l. A)= 0. In view of the characterizations of CM A
given at the beginning of Section 2, it is immediate that CM A admits the projective
generator A and the injective cogenerator D1 A. Since the injective resolution of
the R-module R is given by 0→ R→ K → K/R→ 0, we get an isomorphism
D0 ∼= HomR(−, K/R) on f.l. A. Recall the following useful lemma:

Lemma 5.1. If X ∈ CM A, then we have a monomorphism X ↪→ X ⊗R K and
Ext1A(f.l. A, X ⊗R K )= 0.
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Proof. For Y ∈ f.l. A, let E := Ext1A(Y, X ⊗R K ). Since X ⊗R K is a K -vector
space, so is E . Since Y is annihilated by some nonzero element in R, so is E .
These imply E = 0. �

For an object X ∈CM A, let corad X ∈CM A be maximal among A-submodules Y
of X ⊗R K such that X ⊂ Y and Y/X is semisimple. We define cotop X :=
(corad X)/X. Notice that X ⊗R K is not finitely generated as an A-module (so
X ⊗R K /∈ CM A) if X ∈ CM A is nonzero. Notice also that D1(X ⊗R K )= 0.

We often use the following lemma:

Lemma 5.2. Let X ∈ CM A. The following hold:

(a) We have cotop X = soc(X ⊗R (K/R)).

(b) The functor D1 induces an order-reversing bijection

{X ⊂ Y ⊂ X ⊗R K | Y/X ∈ f.l. A} 1–1
←→{Y ′ ⊂ D1 X | (D1 X)/Y ′ ∈ f.l. Aop

}.

(c) There are isomorphisms corad X ∼= D1 rad D1 X and cotop X ∼= D0 top D1 X of
A-modules.

(d) If 0→ X → Y → S → 0 is a short exact sequence with Y ∈ CM A and a
semisimple A-module S, then there is a unique canonical commutative diagram

0 // X // Y //
� _

��

S //
� _

��

0

0 // X // corad X // cotop X // 0.

(e) For a simple A-module S, we have Ext1A(S, X) 6= 0 if and only if S is a direct
summand of cotop X.

Proof. Parts (a) and (b) are immediate and the first isomorphism of (c) is a conse-
quence of (b). The second isomorphism of (c) is obtained by applying HomR(−, R)
to the short exact sequence 0 → rad D1 X → D1 X → top D1 X → 0. For (d),
applying the functor −⊗R K to the short exact sequence, we get X⊗R K ∼= Y⊗R K.
Therefore X ⊂ Y ⊂ X ⊗R K. By the maximality of corad X, we have Y ⊂ corad X
and the result follows.

(e) The implication “⇐” is immediate. Let us show “⇒”. Consider a nonsplit exact
sequence 0→ X→ Y→ S→ 0. For any simple module S′, applying HomA(S′,−),
we get an exact sequence 0→ HomA(S′, Y )→ HomA(S′, S)→ Ext1A(S

′, X). It is
easy to conclude in any case that HomA(S′, Y )= 0, so Y ∈ CM A. Therefore, we
can apply (d) so S is a summand of cotop X. �

For logical reasons, we give the proof of Theorem 2.1 after that of Theorem 2.2.
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5A. Proof of Theorem 2.2. As in Theorem 2.2, we consider an idempotent e of
an R-order A such that B := A/(e) has finite length over R. As mod B ⊂ f.l. A,
D0 restricts to a duality mod B←−→∼ mod Bop. We will separate the proof in five
statements.

Proposition 5.3. We have a torsion pair (add Ae,mod B) in mode A.

Proof. Since B= A/(e), we have HomA(add Ae,mod B)= 0. For any X ∈mode A,
we have an exact sequence

Ae⊗eAe eX f
−→ X→ B⊗A X→ 0 (5-1)

in mode A. Since eX ∈ proj(eAe), we have Ae⊗eAe eX ∈ add Ae. Multiplying the
sequence (5-1) by e on the left, we see that e Ker f = 0 so Ker f is in mod B. On
the other hand, Ker f is a submodule of Ae⊗eAe eX ∈ add Ae, so Ker f ∈ CM A.
Consequently we have Ker f = 0. Now the sequence (5-1) shows the desired
assertion. �

Thanks to Proposition 5.3, we have two functors T : mode A → add Ae and
F :mode A→mod B and a functorial exact sequence 0→ TX→ X→ FX→ 0
for X ∈mode A. We prove the following easy statement:

Lemma 5.4. If X ∈CMe A, then FX ⊂HomA(B, TX⊗R (K/R))⊂ TX⊗R (K/R)
and soc FX ⊂ cotop TX.

Proof. The inclusion HomA(B, TX ⊗R (K/R))⊂ TX ⊗R (K/R) is obvious. Ap-
plying −⊗R K on the short exact sequence 0→ TX→ X→ FX→ 0, we get that
TX ⊗R K ∼= X ⊗R K so X ⊂ TX ⊗R K canonically. Thus we get a commutative
diagram of short exact sequences

0 // TX // X //
� _

��

FX //
� _

��

0

0 // TX // TX ⊗R K // TX ⊗R (K/R) // 0

where the second line is obtained by applying TX ⊗R − to 0 → R → K →
K/R→ 0. Thus FX ⊂ TX ⊗R (K/R). As FX ∈ mod B, we deduce that FX ⊂
HomA(B, TX ⊗R (K/R)). The latter assertion follows from Lemma 5.2(a). �

Proposition 5.5. We have a torsion pair (mod B,CMe A) in mode A.

Proof. Since any X ∈mod B has finite length, we have HomA(mod B,CMe A)= 0.
For any X ∈mode A, there exists an exact sequence

0→ T → X→ F→ 0

in mod A such that lengthR T <∞ and F ∈ CM A. Multiplying e from the left, we
have an exact sequence

0→ eT → eX→ eF→ 0
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with lengthR(eT ) < ∞ and eX ∈ proj(eAe). Thus eT = 0 holds, and we have
T ∈mod B. On the other hand, eF = eX ∈ proj(eAe) shows F ∈ CMe A. Thus the
assertion follows. �

Now we can apply Theorems 4.1, 4.7 and 4.8 to

E :=mode A, A := add Ae, B :=mod B and C := CMe A.

In this context, it is possible to compute explicitly the short exact sequence given
in Theorem 4.7(a). For P ∈ add Ae, let

U P
:= HomA(B, P ⊗R (K/R)) ∈mod B

and define U :=U Ae. For any X ∈ CM A, we define

B-cotop X := HomA(B, cotop X).

In other terms, B-cotop X is the biggest B-module included in cotop X. We also
define B-corad X as the A-module satisfying

X ⊂ B-corad X ⊂ corad X and B-cotop X ∼= (B-corad X)/X.

Lemma 5.6. Let P ∈ add Ae. The following hold:

(a) There is a short exact sequence 0→ P → C P
→ U P

→ 0 in mod A with
C P
∈ CMe A and Ext1A(mod B,C P)= 0.

Conversely, if 0→ P → C ′ → U ′ → 0 is a short exact sequence with
C ′ ∈ CMe A, U ′ ∈ mod B and Ext1A(mod B,C ′) = 0, then it is isomorphic to
the above short exact sequence.

(b) We have an isomorphism soc U P ∼= B-cotop P of B-modules.

Proof. (a) Applying P⊗R− to the short exact sequence 0→ R→ K→ K/R→ 0,
we obtain the short exact sequence 0→ P→ P ⊗R K → P ⊗R (K/R)→ 0 with
Ext1A(f.l. A, P⊗R K )= 0 thanks to Lemma 5.1. Taking the pullback by the natural
inclusion U P

⊂ P ⊗R (K/R), we get the following commutative diagram of short
exact sequences:

0

��

0

��

0 // P // C P //

��

U P //

��

0

0 // P // P ⊗R K //

��

P ⊗R (K/R) //

��

0

Y

��

Y

��

0 0
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Since U P is the maximal B-module included in P ⊗R (K/R), and mod B is
closed under extensions in mod A, we get HomA(mod B, Y ) = 0. Then applying
HomA(mod B,−) to the second column, we find the exact sequence

0= HomA(mod B, Y )→ Ext1A(mod B,C P)→ Ext1A(mod B, P ⊗R K )= 0.

Thus Ext1A(mod B,C P)= 0 holds.
Now we prove the converse part. Applying HomA(U ′,−) to the former sequence,

we get a surjection HomA(U ′,U P) � Ext1A(U
′, P) so there is a commutative

diagram:
0 // P // C ′

f
��

// U ′

g
��

// 0

0 // P // C P // U P // 0

In the same way, there are f ′ : C P
→ C ′ and g′ :U P

→U ′ making a commutative
diagram in the converse direction. Then f f ′ − idC ′ factors through U ′, hence
f f ′ = idC ′ . Similarly, f ′ f = idC P . Hence, f and g are isomorphisms.

(b) By Lemma 5.2, cotop P = soc(P ⊗R (K/R)). Applying HomA(B,−) to both
sides, we obtain HomA(B, cotop P)=HomA(B, soc(P⊗R (K/R)))= soc U P. �

We are ready to prove Theorem 2.2.

Proof of Theorem 2.2. (a) This follows from Propositions 5.3 and 5.5.

(b) This follows from Theorem 4.1(a) and (b) as Ext1A(Y, Ae) is a finitely generated
right (eAe)-module for any Y ∈mod B.

(c) Our assumption (E1) implies CMe A⊂E1. Thus the functor F : (CMe A)/[Ae]→
mod B is fully faithful by (a). It gives an equivalence F : (CMe A)/[Ae] → SubU
by Theorem 4.7(b) and Lemma 5.6.

(d) This follows from (E2) and Theorem 4.7(c).

(e) Thanks to (E2), E1 = E2 so, using Theorem 4.1(d), (2-1) and (2-2) are equiva-
lences of exact categories.

(f) It is classical that SubU has enough projective objects and enough injective
objects (see [Demonet and Iyama ≥ 2016] for a detailed argument). Using (e) and
Remark 3.3(b), it immediately implies that CMe A has enough projective objects
and enough injective objects. In the same way, as mod B has enough injective
objects and enough projective objects, E1 has the same property. Then mode A has
enough projective objects and enough injective objects by Theorem 4.8(a).

(g) For any X ∈mode A, as (mod B,CMe A) is a torsion pair, there is a short exact
sequence

0→ Z→ X→ Y → 0,
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where Z ∈ mod B and Y ∈ CMe A. Applying HomA(−, Ae) to this sequence, we
find the exact sequence

0= Ext1A(Y, Ae)→ Ext1A(X, Ae)→ Ext1A(Z , Ae)→ Ext2A(Y, Ae)= 0.

So X ∈ E1 if and only if Ext1A(Z , Ae)= 0. There is a short exact sequence

0→ soc Z→ Z→ Z/ soc Z→ 0,

and applying HomA(−, Ae) to it, we find the exact sequence

0→ Ext1A(Z/ soc Z , Ae)→ Ext1A(Z , Ae)→ Ext1A(soc Z , Ae)→ 0,

so Ext1A(Z , Ae)= 0 if and only if Ext1A(Z/ soc Z , Ae)= Ext1A(soc Z , Ae)= 0. By
Lemma 5.2(e), for a simple B-module S, we have Ext1A(S, Ae)= 0 if and only if
S is not a direct summand of B-cotop Ae if and only if S /∈ SubU if and only if
HomA(P, S)= 0, where P is the projective cover of soc U in mod B. As Z is of
finite length over R, an easy induction gives that Ext1A(Z , Ae) = 0 if and only if
HomA(P, Z)= 0 if and only if HomA(P, X)= 0. �

In the following lemma, we give sufficient conditions for (E1) and (E2):

Lemma 5.7. (a) We have the implication (E2)+
⇒ (E2).

(b) If Ae = HomR(g A, R) for some idempotent g ∈ A, then (E1) and (E2)+ are
satisfied.

(c) If (E1) is satisfied and A ∈ CMe A, then (E2)+ is satisfied.

Proof. (a) This directly follows from Proposition 3.4.

(b) In this case, Ext1A(CM A, Ae)= 0, so (E1) is clearly satisfied. If X ∈mod A, it
is immediate that its syzygy �X is in CM A so Ext2A(X, Ae)= Ext1A(�X, Ae)= 0.
Therefore, (E2)+ holds.

(c) For X ∈ mode A, consider the projective cover 0→ �X → P→ X → 0. As
eX ∈ proj(eAe), the short exact sequence 0→ e�X → eP → eX → 0 splits.
Moreover, as A ∈ CMe A, we have eP ∈ proj(eAe) so �X ∈ CMe A. So, by (E1),
Ext2A(X, Ae)= Ext1A(�X, Ae)= 0 and (E2)+ holds. �

We complete this subsection by giving basic relations between indecomposable
injective objects of CMe A and their B-cotops. Let

O := {P ∈ ind Ae | B-cotop P 6= 0}.

Notice that part (a) of Lemma 5.8 is a generalization of a well-known property of
cotops in CM A.

Lemma 5.8. Let I ∈ CMe A satisfying Ext1A(CMe A, I ) = 0. Then the following
hold:

(a) If I is indecomposable, then B-cotop I is either 0 or simple.
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(b) B-cotop I = 0 if and only if Ext1A(mod B, I )= 0.

(c) For any short exact sequence 0→ I i
−→ X

p
−→ Y → 0, where i is a radical

map, X ∈ CMe A and Y ∈ mode A, the map i factors as I ⊂ B-corad I ↪→ X
and soc Y ∼= B-cotop I.

(d) If (E1) is satisfied, there are commuting bijections

O

B-cotop ++

HomA(B,−⊗R(K/R))
// indU

soc
��

ind(soc U )

Proof. (a) Thanks to Lemma 5.2(c), cotop I ∼= D0 top D1 I, so we only have to
show that the Aop-module HomAop(B, top D1 I ) is 0 or simple. Suppose that
HomAop(B, top D1 I ) is not 0 or simple. We have two distinct maximal sub-
modules X1, X2 ⊂ D1 I such that S1 := (D1 I )/X1 and S2 := (D1 I )/X2 are
simple Bop-modules. By applying HomR(−, R) on the short exact sequence
0→ X1→ D1 I → S1→ 0, we get the short exact sequence

0→ I ι1
−→ D1 X1→ D0S1→ 0,

and therefore eι1 : eI → e(D1 X1) is an isomorphism and D1 X1 ∈ CMe A. In the
same way, eι2 : eI→ e(D1 X2) is an isomorphism and D1 X2 ∈ CMe A. We also get
a nonsplit short exact sequence 0→ Y → X1⊕ X2→ D1 I→ 0. Applying D1 to it,
we get a short exact sequence 0→ I → D1(X1⊕ X2)→ D1Y → 0. Multiplying
by e, we get the short exact sequence

0→ eI
[eι1 eι2]
−−−−→ e(D1 X1)⊕ e(D1 X1)→ e(D1Y )→ 0,

which splits as eι1 and eι2 are isomorphisms. Thus 0→ I → D1(X1 ⊕ X2)→

D1Y → 0 is a nonsplit short exact sequence in CMe A. It is a contradiction as
Ext1A(CMe A, I )= 0.

(b) Thanks to Lemma 5.2(e), a simple B-module S is a direct summand of B-cotop I
if and only if Ext1A(S, I ) 6= 0. Thus B-cotop I = 0 if and only if Ext1A(S, I )= 0 for
any simple B-module S if and only if Ext1A(mod B, I )= 0.

(c) Thanks to Proposition 5.3, soc Y ∈ mod B. Consider the sequence 0→ I →
p−1(soc Y )→ soc Y → 0. Thanks to Lemma 5.2(d), we have soc Y ↪→ B-cotop I.

We will prove, for each direct summand I ′ of I, that B-corad I ′ (⊂ X ⊗R K ) is
included in X. Consider the short exact sequence 0→ I ′→ X→ Y ′→ 0 induced
by the inclusion I ′ ⊂ I. As i is radical, this short exact sequence does not split and
we get Y ′ /∈ CMe A and soc Y ′ 6= 0. Pulling back 0→ I ′→ X → Y ′→ 0 along
soc Y ′⊂ Y ′, we get a short exact sequence 0→ I ′→ X ′→ soc Y ′→ 0 with X ′⊂ X
so X ′ ∈ CMe A. Using (a) and Lemma 5.2(d), we obtain soc Y ′ ∼= B-cotop I ′ and
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therefore X ′= B-corad I ′⊂ X. Finally B-corad I ⊂ X and therefore B-cotop I ↪→Y.
As B-cotop I is semisimple, B-cotop I ↪→ soc Y. So B-cotop I ∼= soc Y.

(d) First of all, thanks to (a) and Lemma 5.6(b), B-cotop induces a surjection
from O to ind(soc U ). Let us prove that it is injective. Suppose that P, P ′ ∈ O
satisfy S := B-cotop P = B-cotop P ′ and consider the short exact sequences

0→ P f
−→ B-corad P g

−→ S→ 0 and 0→ P ′
f ′
−→ B-corad P ′

g′
−→ S→ 0.

Multiplying them by e, we get B-corad P, B-corad P ′ ∈ CMe A. So, applying
HomA(B-corad P,−) to the second short exact sequence, we get a morphism
u : B-corad P→ B-corad P ′ such that g = ug′. Symmetrically, we get a morphism
u′ : B-corad P ′→ B-corad P such that g′ = u′g. So g = uu′g and, as g is right
minimal, uu′ is an isomorphism. Similarly, u′u is an isomorphism so B-corad P ∼=
B-corad P ′ and P ∼= P ′. We proved that B-cotop is injective on O.

That HomA(B,−⊗R (K/R)) : O → addU is well-defined is a direct conse-
quence of the definition of U . The commutativity of the diagram is immediate by
Lemma 5.2(a). As U is injective, soc : indU → ind(soc U ) is bijective. �

The following proposition is used to categorify cluster algebras in Section 6.

Proposition 5.9. If (E1) is satisfied, then the following assertions hold:

(a) If X ∈ CMe A does not have nonzero direct summands in add Ae, then TX ∈
addO. Moreover, B-corad TX ⊂ X and B-cotop TX ∼= soc FX.

(b) Let 0→ X→Y→ Z→0 be a short exact sequence with X, Z ∈CMe A without
nonzero direct summands in add Ae. Then the maximal direct summand Y1

of Y in add Ae is the module satisfying Y1 ∈ addO and soc FX ⊕ soc F Z ∼=
soc FY ⊕ B-cotop Y1.

Proof. (a) Since TX→ X is radical, the result follows from Lemma 5.8(c).

(b) Decompose Y = Y0⊕ Y1. Recall that T = Ae⊗eAe e− is exact on mode A. As
TX is projective, we get

T Y0⊕ Y1 = T Y ∼= TX ⊕ T Z ∈ addO

by (a). Again by (a), we get

soc F X ⊕ soc F Z ∼= B-cotop TX ⊕ B-cotop T Z ∼= B-cotop T Y0⊕ B-cotop Y1

∼= soc FY0⊕ B-cotop Y1 ∼= soc FY ⊕ B-cotop Y1. �

5B. Proof of Theorem 2.1. (a) Since Ae ∈ addHomR(g A, R), the conditions (E1)
and (E2) are satisfied by Lemma 5.7 and cotop Ae = top Ag by Lemma 5.2(c). By
Theorem 2.2, we have an equivalence of exact categories

B⊗A− : (CMe A)/[Ae] ∼= SubU
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and U is an injective B-module. Thanks to Lemma 5.6(b), we have soc U ∼=
B-cotop Ae ∼= HomA(B, top Ag). Thus U ∼= Qg.

(b) For M ∈ Sub Qg, let us consider a projective cover of D0 M in mod Aop:

0→�A D0 M→ P→ D0 M→ 0.

We have P ∈ add g A. Applying HomR(−, R), we get the short exact sequence

0→ D1 P→ D1�A D0 M→ M→ 0.

We have D1 P ∈ add Ae so D1�A D0 M ∈ CMe A and F(D1�A D0 M)∼= M thanks
to this sequence.

(c) Let us assume first that Ae, A f and Ag are basic. In particular Ae ∼= D1(g A),
A f ∼= D1(eA) as A-modules and eAe ∼= D1(eAe) as left (eAe)-modules. We
have eA f ∼= eD1(eA)= D1(eAe)∼= eAe as left (eAe)-modules. So A f ∈ CMe A
and T (A f ) = Ae ⊗eAe eA f ∼= Ae. Moreover, using the short exact sequence
0→ T (A f )→ A f → F(A f )→ 0 and Lemma 5.4, we get

soc B f = soc F(A f )⊂ B-cotop T (A f )∼= B-cotop Ae ∼= top Bg,

so B f ⊂ D0(gB). Dually, we get an inclusion gB ⊂ D0(B f ) by exchanging the
role of f and g. By comparing lengths over R of gB and B f , we deduce that
B f ∼= D0(gB)= Qg.

If Ae, A f or Ag are not basic, we take basic parts e′, f ′ and g′ of e, f and g
and we get B f ′ ∼= Qg′ . Thus add B f = add B f ′ = add Qg′ = add Qg.

(d) Since A ∈ CMe A, we have B = F A ∈ Sub Qg. Thus Sub Qg = Sub B holds
by (c).

(e) All assumptions in Theorem 4.8 are satisfied. Moreover, since A ∈ C, the
projective objects in E =mode A and C = CMe A are projective A-modules, and the
equivalent conditions of Theorem 4.8 (a) are satisfied. Thus applying Theorem 4.8(d)
(i)⇔ (iii), B is Iwanaga–Gorenstein of dimension at most 1 if and only if CMe A
is Frobenius. As A and D1 A are in CMe A, we get that A is Gorenstein if and
only if add A = add D1 A if and only if CMe A is Frobenius, and the result fol-
lows.

(f) In this case, (CMe A)/[Ae] ∼= Sub B is an equivalence of Frobenius categories.
Thus, since CMe A coincides with the stable category of (CMe A)/[Ae], we have a
triangle equivalence CMe A ∼= SubB. �

5C. Proof of Theorem 2.3. By construction, we have an exact sequence

0→ PW →W → B→ 0 (5-2)

with W = Ae⊕ B̃ ∈CM A and PW = Ae⊕P ∈ add Ae. Clearly we have W ∈CMB
e A

and PW = Ae⊗eAeeW. We set A′ :=EndA(W ) and we identify e with the idempotent
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of A′ which is the projection on the summand Ae of W. Thus, we can identify
eAe and eA′e. We shall prove (a) in Proposition 5.11, (b) in Proposition 5.15 and
(d) in Proposition 5.12. Then all hypotheses of Theorem 2.2 are satisfied and the
assertion (c) follows. Finally, (e) is an easy consequence of Proposition 5.12.

Lemma 5.10. (a) We have W e = Ae and W (1− e)= B̃ as A-modules.

(b) We have W eA′ = PW . Thus PW and B have a structure of A′ op-modules such
that (5-2) is an exact sequence of (A, A′)-bimodules.

(c) We have W/W eA′ ∼= B as (A, A′)-bimodules.

(d) We have eA′ = eW , and this is a projective (eAe)-module and a projective
A′op-module.

(e) We have B⊗A W ∼= B as (B, A′)-bimodules.

Proof. (a) This is clear from the definition.

(b) Since W e = Ae, we have W eA′ =
∑

f ∈EndA(W ) f (Ae) = Ae⊗eAe eW = PW .
The map PW →W is clearly a morphism of (A, A′)-bimodules.

(c) This is a clear consequence of (b).

(d) We have eA′ = HomA(Ae,W )= eW . Clearly eA′ is a projective A′op-module.
Moreover eW = ePW is a projective (eAe)-module since PW ∈ add Ae.

(e) Applying B⊗A− to the short exact sequence (5-2), we get the exact sequence
of (B, A′)-bimodules

B⊗A PW → B⊗A W → B⊗A B→ 0.

Since B ⊗A PW ∈ add(B ⊗A Ae) = add(Be) = {0} and B ⊗A B ∼= B, we get the
result. �

Proposition 5.11. We have an isomorphism A′/(e) ∼= B of R-algebras and an
isomorphism W ⊗A′ B ∼= B of (A, B)-bimodules.

Proof. Applying HomA(W,−) to (5-2), we have an exact sequence

0→ HomA(W, PW )→ A′→ HomA(W, B)→ Ext1A(W, PW ),

where Ext1A(W, PW ) = 0 by PW ∈ add Ae, W ∈ CMB
e A and our assumption

Ext1A(CM
B
e , Ae) = 0. Since HomA(Ae, B) = 0, applying HomA(−, B) to (5-2),

we have HomA(W, B)= EndA(B)= B and (e)= HomA(W, PW ). Thus A′/(e)=
A′/HomA(W, PW )= HomA(W, B)= B.

We have W ⊗A′ B =W/W eA′ = B by Lemma 5.10(c). �

In particular, we can regard mod B as full subcategory of both mod A′ and mod A.
Now we consider the adjoint pair (G, H) given by

H :=HomA(W,−) :mod A→mod A′ and G :=W⊗A′− :mod A′→mod A.
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The main result about these functors is:

Proposition 5.12. The class of short exact sequences of mod A with three terms
in modB

e A gives the structure of an exact category on modB
e A. The same holds

for CMB
e A. For these structures, the adjoint pair (G, H) gives quasi-inverse

equivalences of exact categories between modB
e A and mode A′, which restrict to

quasi-inverse equivalences of exact categories between CMB
e A and CMe A′.

The first step of the proof consists of the following lemma.

Lemma 5.13. (a) H and G give quasi-inverse equivalences between add Ae and
add A′e.

(b) We have commutative diagrams

mod A H
// mod A′ mod A mod A′G

oo

mod B

ff 88

mod B

ff 88

Proof. (a) This is clear: H(Ae) = HomA(W, Ae) = A′e and G(A′e) ∼= W e = Ae
by Lemma 5.10(a).

(b) Fix X ∈mod B. Applying HomA(−, X) to (5-2), we have an exact sequence

0→ HomA(B, X)→ H X→ HomA(PW , X),

where HomA(PW , X)= 0 by PW ∈ add Ae and X ∈mod B. Thus we have

H X ∼= HomA(B, X)∼= X.

On the other hand, we have

G(X)=W ⊗A′ X =W ⊗A′ (B⊗A′ X)
Proposition 5.11
= B⊗A′ X = X. �

Lemma 5.14. (a) We have TorA′
1 (Y, X)= TorB

1 (Y ⊗A′ B, X) for any X ∈ mod B
and Y ∈ CM A′op.

(b) We have TorA′
1 (W, X)= 0 for any X ∈mode A′.

Proof. For Y ∈ CM A′op, take an exact sequence

0→�Y i
−→ P→ Y → 0 (5-3)

of A′op-modules with P ∈ proj A′op. We will show that

0→�Y ⊗A′ B
i⊗1B
−−−→ P ⊗A′ B→ Y ⊗A′ B→ 0 (5-4)

is exact. Consider the exact sequence

A′e⊗eA′e eA′ j
−→ A′→ B→ 0

of (A′, A′)-bimodules. Applying Y ⊗A′ −, we have an exact sequence

0→ K → Y e⊗eA′e eA′
1Y⊗ j
−−−→ Y → Y ⊗A′ B→ 0.



1568 Laurent Demonet and Osamu Iyama

Since (1Y ⊗ j)e : (Y e ⊗eA′e eA′)e → Y e is an isomorphism, we have K e = 0.
Thus K is a Bop-module. Since eA′ ∈ proj(eA′e) by Lemma 5.10(d), we get
Y e⊗eA′e eA′ ∈ CM A′op. Therefore K = 0.

Applying the same argument to P ∈ CM A′op and �Y ∈ CM A′op, we have the
following commutative diagram of exact sequences:

0

��

0 // �Y e⊗eA′e eA //

��

�Y //

��

�Y ⊗A′ B //

i⊗1B
��

0

0 // Pe⊗eA′e eA //

��

P //

��

P ⊗A′ B //

��

0

0 // Y e⊗eA′e eA //

��

Y //

��

Y ⊗A′ B //

��

0

0 0 0

By the snake lemma, i ⊗ 1B is injective. Thus (5-4) is exact.

(a) For X ∈mod B, applying −⊗A′ X to (5-3) and −⊗B X to (5-4) and comparing
them, we have a commutative diagram of exact sequences:

0 // TorA′
1 (Y, X) // �Y ⊗A′ X // P ⊗A′ X

0 // TorB
1 (Y ⊗A′ B, X) // (�Y ⊗A′ B)⊗B X // (P ⊗A′ B)⊗B X

Thus the assertion follows.

(b) First, we assume X ∈mod B. Since W ∈ CM A′op, by (a) and Proposition 5.11,
we have

TorA′
1 (W, X)∼= TorB

1 (W ⊗A′ B, X)∼= TorB
1 (B, X)= 0.

Now we assume X ∈mode A′. Then there exists an exact sequence 0→ P→ X→
Y → 0 with P ∈ add A′e and Y ∈ mod B. Applying W ⊗A′ −, we have an exact
sequence

0= TorA′
1 (W, P)→ TorA′

1 (W, X)→ TorA′
1 (W, Y )= 0.

Thus the assertion follows. �

Proof of Proposition 5.12. (i) First we show H(mode A)⊂mode A′.
For X ∈mode A, we get, using Lemma 5.10(a),

eH(X)= HomA(W e, X)= HomA(Ae, X)= eX ∈ proj(eAe)= proj(eA′e).

(ii) Next we show G(mode A′) ∈modB
e A.
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For X ∈mode A′, take an exact sequence

0→ P→ X→ Y → 0 (5-5)

with P ∈ add A′e and Y ∈mod B. Applying G, we have a short exact sequence

0→ G P→ G X→ GY → 0 (5-6)

by Lemma 5.14(b). Since G P ∈add Ae and GY =Y ∈mod B thanks to Lemma 5.13,
we have G X ∈modB

e A′.

(iii) We now show H G ∼= idmode A′ and G H ∼= idmodB
e A.

Applying H to (5-6) and comparing with (5-5), we have a commutative diagram
of exact sequences

0 // P //

��

X //

��

Y //

��

0

0 // H G P // H G X // H GY

where vertical arrows are of the form x 7→ (w 7→ w⊗ x). Since the left and the
right vertical maps are isomorphisms, so is the middle one.

By a similar argument, one can show G H ∼= idmodB
e A.

(iv) Next we show that H :modB
e A→mode A′ and G :mode A′→modB

e A preserve
short exact sequences. In particular, modB

e A has the desired exact structure.
The functor G is exact thanks to Lemma 5.14(b). Consider a short exact sequence

0→ X → Y → Z → 0 in mod A with three terms in modB
e A. We get an exact

sequence 0→ H X→ HY → H Z→C→ 0 with C ∈mod A′. As G is right exact
and by (iii), we deduce W⊗A′C=GC=0, so eC=eW⊗A′C=0 by Lemma 5.10(d),
so C ∈mod B. Hence by Lemma 5.13(b), C = 0 so 0→ H X→ HY → H Z→ 0
is exact in mode A′.

(v) We now show that the equivalences restrict to CMB
e A ∼= CMe A′.

Clearly H(CMB
e A)⊂ CMe A′ holds. It is enough to show that, if X ∈modB

e A
satisfies H X ∈ CMe A′, then X ∈ CM A. Let Y be a finite-length submodule of X.
Then the inclusion Y ⊂ X gives an injection HY ⊂ H X. Since HY has finite length
and H X ∈ CMe A′, we have HY = 0.

Let 0→ P i
−→X→ Z→0 be an exact sequence with P ∈add Ae and Z ∈mod B.

Since Y ∩ P = 0, we have that Y is a submodule of Z . In particular Y ∈ mod B.
Since HY = 0, we have Y = 0 by (iii). Thus X ∈ CM A. �

Proposition 5.15. We have (E1), that is, Ext1A′(CMe A′, A′e) = 0, and (E2)+, that
is, Ext2A′(mode A′, A′e)= 0.

Proof. (E1): Let 0→ A′e→ X→ Y → 0 be an exact sequence with Y ∈ CMe A′.
Applying G and using Lemma 5.14(b), we have an exact sequence 0→ G(A′e)→
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G X → GY → 0. It splits since Ext1A(GY, Ae) = 0 by our assumption. Since
G : CMe A′→ CMB

e A is an equivalence, the original sequence splits. Thus the
assertion follows.

(E2)+: Since we have A′ ∈ CMe A′ by Lemma 5.10(d), syzygies of modules in
mode A′ belong to CMe A′. Thus the assertion follows from (E1). �

We finish this subsection by proving Lemma 2.4.

Proof of Lemma 2.4. As Ae ∼= D1(g A) is injective in CM A and CMB
e A ⊂ CM A,

we get (C3).
To prove the second part of the statement, let us prove that if (C1) holds, then

for a finite-length A-module M , we have M ∈ Sub(Ae ⊗R (K/R)) if and only
if (1− g) soc M = 0. As Ae is injective in CM A and syzygies of all modules
are Cohen–Macaulay, we have Ext2A(mod A, Ae) = 0. By Lemma 5.1, we have
Ext1A(f.l. A, Ae⊗R K )=0. So applying HomA(f.l. A,−) to the short exact sequence

0→ Ae→ Ae⊗R K → Ae⊗R (K/R)→ 0,

we get Ext1A(f.l. A, Ae⊗R (K/R))= 0. Moreover, by Lemma 5.2(a), we get that
soc(Ae⊗R (K/R)) is the semisimple module corresponding to g.

If M ∈ Sub(Ae⊗R (K/R)) then soc M ∈ add soc(Ae⊗R (K/R)) follows imme-
diately, and thus the first implication is satisfied. Conversely, if (1− g) soc M = 0,
then there exists an injection soc M ↪→ (Ae ⊗R (K/R))⊕`. Then, by applying
HomA(−, (Ae⊗R (K/R))⊕`) to the short exact sequence

0→ soc M→ M→ M/ soc M→ 0
and using Ext1A(M/ soc M, Ae⊗R (K/R))= 0, there is an injection M ↪→ (Ae⊗R

(K/R))⊕`, and so we have proved the converse implication. �

6. Cluster algebra structure on coordinate rings of partial flag varieties

The aim of this section is to apply results in previous sections to categorify the
cluster algebra structure of the multihomogeneous coordinate rings C[F] of the
partial flag variety F = F(1, J ) corresponding to a Dynkin diagram 1 and a
set J of vertices of 1 by using the category of Cohen–Macaulay modules. To be
more precise, recall that Geiss, Leclerc and Schröer [2008] introduced a cluster
algebra Ã ⊂ C[F]. They proved that Ã = C[F] in type An . In general, they
conjecture that Ã[6−1

J ] = C[F][6−1
J ], where 6J is the set of principal generalized

minors corresponding to nonminuscule weights (see Definition 6.3 of principal
generalized minors), and they prove the conjecture in type D4.

The main result of this section (Theorem 6.12) consists of completing Geiss,
Leclerc and Schröer’s partial categorification of Ã . Their categorification, given
in Theorem 6.6, uses the preprojective algebra 5 = 5(1) over C and the full
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subcategory Sub QJ of mod5, where QJ is the direct sum of indecomposable
injective 5-modules corresponding to vertices in J. Recall that a Frobenius cat-
egory E is said to be stably 2-Calabi–Yau if there is a bifunctorial isomorphism
Ext1E(X, Y ) ∼= D Ext1E(Y, X) and that Sub QJ is stably 2-Calabi–Yau. Moreover,
an object X in E is called rigid if Ext1E(X, X)= 0 and it is called cluster tilting if
add X = {Y ∈ E | Ext1E(Y, X)= 0}.

6A. The categorification of Geiss, Leclerc and Schröer. We recall briefly the
results of [Geiss et al. 2008] concerning the categorification of cluster algebra
structures on multihomogeneous coordinate rings of partial flag varieties. We start by
fixing a simple simply connected complex algebraic group G with Dynkin diagram
1. We fix a maximal torus H ⊂ G and two opposite Borel subgroups B, B− ⊂ G
satisfying B ∩ B− = H (for more details about Lie theoretical background, see
[Borel 1991; Lakshmibai and Gonciulea 2001]). For a vertex i of 1, we fix

xi (t) := exp(tei ) and yi (t) := exp(t fi ),

the one-parameter subgroups of B and B− corresponding to the Chevalley genera-
tors ei and fi of the Lie algebra of G. Following notations of [Geiss et al. 2008], we
define K to be the complement of J. The parabolic subgroup BK of G is the sub-
group generated by B and yi for i ∈K, and the opposite parabolic subgroup B−K of G
is the subgroup generated by B− and xi for i ∈K. The partial flag variety F can be re-
alized as F = B−K \G. Let NK be the unipotent radical of BK , that is, the subgroup of
unipotent elements of the maximal solvable normal subgroup of BK. Then, it is a clas-
sical result that NK ⊂G induces an embedding NK ⊂F as a dense affine open subset.

Example 6.1. If 1= A4 and J = {1, 3}, we have K = {2, 4}, G = SL5(C) and

B−K =


∗ 0 0 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ 0 0
∗ ∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗

⊂ G and NK =


1 ∗ ∗ ∗ ∗
0 1 0 ∗ ∗
0 0 1 ∗ ∗
0 0 0 1 0
0 0 0 0 1

,
and it is immediate that B−K \G parametrizes naturally flags of C5 of type (1, 3).

Let i = (i1, i2, . . . , i`) be a sequence of vertices of 1, let k = (k1, k2, . . . , k`)
be a sequence of nonnegative integers and let t = (t1, t2, . . . , t`) be a sequence of
variables. We define
• i k, the sequence of indices obtained from i by repeating kj times i j ;

• tk
:= tk1

1 tk2
2 · · · t

k`
` ;

• k! := k1!k2! · · · k`!;

• xi (t) := xi1(t1)xi2(t2) · · · xi`(t`).



1572 Laurent Demonet and Osamu Iyama

For a vertex i of 1, we denote by Si the simple 5-module corresponding to i .
Then, for M ∈mod5, we denote by 8M,i the variety of composition series of M
of type i , that is,

8M,i :=
{
0= M0 ⊂ M1 ⊂ · · · ⊂ M` = M

∣∣ ∀ j,Mj/M j−1 ∼= Si j

}
,

realized within the appropriate product of Grassmannians. Finally χ is the Euler
characteristic.

Using Lusztig’s semicanonical basis [2000], Geiss, Leclerc and Schröer [Geiss
et al. 2005] define functions in the coordinate ring C[N ] = C[N∅] by the following
result:

Theorem 6.2 ([Lusztig 2000; Geiss et al. 2005]). Let M ∈mod5. There exists a
unique function ϕM in C[N ] satisfying

ϕM(xi (t))=
∑
k∈N`

χ(8M,i k)
tk

k!

for any reduced word i of an element of the Weyl group of type 1.

In [Geiss et al. 2005], they also prove that

• ϕY⊕Z = ϕYϕZ for any Y, Z ∈mod5;

• if Y and Z are indecomposable such that dim Ext15(Y, Z)= 1 and

0→ Y →U → Z→ 0 and 0→ Z→U ′→ Y → 0

are two nonsplit short exact sequences, then ϕYϕZ = ϕU +ϕU ′ .

In other terms, ϕ is a so-called cluster character.
In [Geiss et al. 2008], the authors prove that Sub QJ categorifies via ϕ and the

canonical projection C[N ]� C[NK ] a cluster algebra A⊂ C[NK ]. They prove in
type An and D4 that A= C[NK ] and they conjecture it to be true in any case.

Let us introduced generalized principal minors (see [Fomin and Zelevinsky
1999]):

Definition 6.3. For a vertex i of 1, the corresponding principal generalized minor
is defined on G as the unique function 1i satisfying

1i (x−x0 x+)=1i (x0)

for x− ∈ B−, x0 ∈ H and x+ ∈ B, and1i |H : H→C∗ is the multiplicative character
corresponding to the fundamental weight indexed by i .

It is known that F = B−K \G is embedded in a product of projective spaces
indexed by J (in type An , a product of usual Grassmannians). Thus, we can define
the multihomogeneous coordinate ring C[F], graded by NJ. Each of the 1j is
homogeneous of degree (0, . . . , 0, 1, 0, . . . , 0), where 1 is at position j and NK is
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the open dense affine subset of F defined by NK = {x ∈ F | ∀ j ∈ J,1j (x) 6= 0},
so there is a dehomogenization map C[F]� C[NK ] defined by mapping 1j to 1.
For any f ∈ C[NK ], there is a unique homogeneous f̃ ∈ C[F] such that π( f̃ )= f
and the multidegree of f̃ is minimal for the order induced by fundamental weights
[Geiss et al. 2008, Lemma 2.4].

Example 6.4. We continue Example 6.1. In this case, 11 corresponds to the
upper-left coefficient and 13 corresponds to the determinant of the upper-left
(3× 3)-submatrix. Then B−K \G is a closed subset of Gr1(C5)×Gr3(C

5), by mapping
M ∈ B−K to the subspaces generated by the first row on the one hand and the first
three rows on the second hand. So, as usual, thanks to Plücker coordinates, we have

F ⊂ Gr1(C
5)×Gr3(C

5)⊂ P(C(
5
1))×P(C(

5
3)).

Then, we have two affine subspaces N{1}c of Gr1(C5) and N{3}c of Gr3(C5) defined
by the nonvanishing of the leftmost determinants, which are Plücker coordinates and
correspond to 11 and 13 as functions over G. Moreover, NK = (N{1}c×N{3}c)∩F .

In order to extend the cluster algebra A⊂ C[NK ] to a cluster algebra Ã⊂ C[F]
by adding coefficients1j corresponding to the multihomogenization, Geiss, Leclerc
and Schröer prove the following theorem.

Theorem 6.5 [Geiss et al. 2008, 10.1]. If Y, Z ∈ Sub QJ , then ϕ̃Y⊕Z = ϕ̃Y ϕ̃Z . If
Y, Z ∈ Sub QJ satisfy dim Ext15(Y, Z)= 1, and

0→ Y →U → Z→ 0 and 0→ Z→U ′→ Y → 0

are nonsplit short exact sequences, then

ϕ̃Y ϕ̃Z = ϕ̃U

∏
j∈J

1
αj
j + ϕ̃U ′

∏
j∈J

1
βj
j ,

where
αj =max

(
0, dim Hom5(S j ,U ′)− dim Hom5(S j ,U )

)
,

βj =max
(
0, dim Hom5(S j ,U )− dim Hom5(S j ,U ′)

)
.

To construct Ã using Theorem 6.5, Geiss, Leclerc and Schröer constructed an
explicit cluster tilting object in Sub QJ that they call initial. A cluster tilting object
in Sub QJ is called reachable if it is obtained from the initial one by successive
mutations. An indecomposable rigid object is called reachable if it is a direct
summand of a reachable cluster tilting object. Their result can be stated as follows.

Theorem 6.6 [Geiss et al. 2008, Theorem 10.2]. (a) There is a cluster algebra
Ã⊂ C[F] such that

• coefficients of Ã are c̃ for each coefficient c of A and 1j for each j ∈ J ;
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• clusters of Ã are

{x̃1, x̃2, . . . , x̃`} t {1j | j ∈ J }

for each cluster {x1, x2, . . . , x`} of A.

(b) There is a bijection X 7→ ϕ̃X between
• isomorphism classes of reachable indecomposable rigid objects of Sub QJ ;
• cluster variables and coefficients of Ã except 1j for j ∈ J.

(c) There is a bijection
⊕`

k=1 Tk 7→ {ϕ̃T1, ϕ̃T2, . . . , ϕ̃T`} t {1j | j ∈ J } between
• isomorphism classes of reachable basic cluster tilting objects of Sub QJ ;
• clusters of Ã .

Moreover, it commutes with mutation of cluster tilting objects and mutation of
clusters.

6B. Categorification of the cluster algebra structure of C[F] using CMe A. We
keep the setting of the beginning of this section, and we fix R := C[[t]]. Our aim is
to categorify C[F(1, J )] by a category CMe A, where A is an R-order and e ∈ A
is an idempotent. We denote by g = gJ the idempotent of 5 corresponding to
the set J. We also define IJ := Hom5(5/(g),5), which is the biggest ideal of 5
satisfying gIJ = 0. We observe that

• injective modules corresponding to j ∈ J in mod5 and mod5/IJ coincide;

• 5/IJ ∈ Sub QJ ⊂mod5/IJ ⊂mod5.

We define pairs (A, e) permitting the categorification.

Definition 6.7. A pair (A, e), where A is an R-order and e ∈ A is an idempotent
models (1, J ) if

• B := A/(e)∼=5(1)/IJ as C-algebras;

• Ext1A(CMe A, Ae)=0, that is, (E1) holds, and Ext2mode A(mode A, Ae)=0, that
is, (E2) holds;

• B-cotop induces a bijection from ind Ae to ind(soc QJ ).

Using the last condition of Definition 6.7, if (A, e) models (1, J ), we can
decompose e as sum of primitive orthogonal idempotents e =

∑
j∈J ej in such a

way that for every j ∈ J,
B-cotop Aej ∼= Sj , (6-1)

where, as before, Sj is soc Q j (not top Aej ).
In this context, we have the following equivalence of categories:

Lemma 6.8. If (A, e) models (1, J ), then B ⊗A − restricts to an exact bijective
functor F : CMe A→ Sub QJ , which induces an equivalence of exact categories
(CMe A)/[Ae] → Sub QJ .
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Proof. Thanks to Theorem 2.2(d) and (e), F := B⊗A− : CMe A→ SubU induces
an equivalence of exact categories (CMe A)/[Ae] → SubU for some injective
B-module U, so F is exact bijective. By Lemma 5.8(d), we have U ∼= QJ ; hence
the statement holds. �

We start by proving the following proposition by applying the method of change
of orders given in Theorem 2.3.

Proposition 6.9. Assume that (A, e) models (1, J ). Then, for any subset J ′of J,
there exists an order A′, explicitly constructed from A, and an idempotent e′ of A′

such that (A′, e′) models (1, J ′).

Proof. First of all, using indices of (6-1), let e′ =
∑

j∈J ′ ej . Define B := 5/IJ

and B ′ :=5/IJ ′ . Then B ′ is a quotient of A/(e′). Let us check that (A, e′) and B ′

satisfy the hypotheses of Theorem 2.3. First of all, (C1) is clear. By Lemma 6.8,
Q J ′ ∼= FX for some X ∈ CMe A without nonzero direct summands in add Ae.
Moreover, according to Proposition 5.9(a), B-cotop TX ∼= soc Q J ′ so TX ∼= Ae′.
Therefore, thanks to Lemma 5.4, we get

B ′ ∈ Sub Q J ′ ⊂ Sub(Ae′⊗R (K/R));

hence (C2) is satisfied. It is immediate that CMB ′
e′ A ⊂ CMe A so, thanks to (E1),

we get (C3) Ext1A(CM
B ′
e′ A, Ae′)= 0.

We apply Theorem 2.3 to the pair (A, e′) and B ′ to get an explicit order A′. Let
us show that (A′, e′) models (1, J ′). We have B ′ ∼= A′/(e′) by Theorem 2.3(a).
Moreover, (A′, e′) satisfies (E1) and (E2)+ by Theorem 2.3(b), so it also satisfies (E2).
It remains to check for j ∈ J ′ that B ′-cotop(A′ej )∼= Sj . Thanks to Proposition 5.12
and Lemma 5.13, applying H to 0→ Aej→ B-corad(Aej )→ Sj→ 0 gives a short
exact sequence 0→ A′ej → H(B-corad(Aej ))→ Sj → 0 which does not split.
Moreover, H(B-corad(Aej )) ∈ CMe′ A′ so Sj is a summand of B ′-cotop(A′ej ). So,
thanks to Lemma 5.8, B ′-cotop(A′ej )∼= Sj . �

As a consequence, we obtain the following important result of this paper:

Theorem 6.10. For any Dynkin diagram 1 and any set J of vertices of 1, there
exists a pair (A, e) which models (1, J ).

Proof. As 5 is self-injective, thanks to Corollary C, there exist an order A and an
idempotent e of A such that A/(e)∼=5 as C-algebras and D1(Ae)∼= (1− e)A as
right A-modules. So it is immediate that (A, e) models (1,10), where 10 is the
set of vertices of 1. Then, Proposition 6.9 allows us to conclude immediately. �

Notice that the pair (A, e) in Theorem 6.10 is not unique. We will construct in
[Demonet and Iyama ≥ 2016] other possibilities than the one considered in this
paper.
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We now fix a pair (1, J ) and a pair (A, e) modeling it. We will prove that
CMe A categorifies the cluster algebra structure of Ã . From now on, we consider
F : CMe A → Sub QJ as in Lemma 6.8. Since the category Sub QJ is stably
2-Calabi–Yau, CMe A is also stably 2-Calabi–Yau. We now extend the character ϕ̃
to CMe A:

Definition 6.11. For Y ∈ CMe A, we define ψY ∈ Ã as follows. If Y does not
have nonzero direct summands in add Ae, then ψY := ϕ̃FY . For j ∈ J, we define
ψAej :=1j , and we extend the definition to CMe A by the property ψY⊕Z =ψYψZ .

The following main result of this subsection improves Theorem 6.6 of Geiss,
Leclerc and Schröer:

Theorem 6.12. (a) ψ induces a bijection between
• isomorphism classes of reachable indecomposable rigid objects of CMe A;
• cluster variables and coefficients of Ã .

(b) ψ induces a bijection between
• isomorphism classes of reachable basic cluster tilting objects of CMe A;
• clusters of Ã .

Moreover, it commutes with mutation of cluster tilting objects and mutation of
clusters.

We start by proving that ψ is a cluster character, extending Theorem 6.5:

Proposition 6.13. (a) If Y, Z ∈ CMe A, then ψY⊕Z = ψYψZ .

(b) If Y, Z ∈ CMe A are indecomposable and dim Ext1A(Y, Z)= 1 (or equivalently
dim Ext1A(Z , Y )= 1), we have ψYψZ = ψU +ψU ′ , where

ξ1 : 0→ Y →U → Z→ 0 and ξ2 : 0→ Z→U ′→ Y → 0

are two nonsplit short exact sequences.

We need the following lemma, stated without proof in [Geiss et al. 2008], which
can also be seen as a corollary of the much more general [Geiss et al. 2011,
Proposition 12.4]. For the sake of convenience, we give a direct proof.

Lemma 6.14. For any j ∈ J, at least one of the following complexes is exact:

Hom5(Sj ,Fξ1) : 0→Hom5(Sj ,FY )→Hom5(Sj ,FU )→Hom5(Sj ,F Z)→ 0,

Hom5(Sj ,Fξ2) : 0→Hom5(Sj ,F Z)→Hom5(Sj ,FU ′)→Hom5(Sj ,FY )→ 0.

Proof. Applying F to ξ1 and ξ2, we get short exact sequences Fξ1 and Fξ2.
Applying Hom5(Sj ,−) to Fξ1 and Fξ2, it is enough to show that at least one of
the induced morphisms

Hom5(Sj , F Z)→ Ext15(Sj , FY ) and Hom5(Sj , FY )→ Ext15(Sj , F Z)
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vanishes. Without loss of generality, suppose that there exists f : Sj ↪→ F Z such
that the induced extension in Ext15(Sj , FY ) is nonzero. We deduce that

Ext15( f, FY ) : Ext15(F Z , FY )→ Ext15(Sj , FY )

is nonzero, so injective as dim Ext15(F Z , FY )= 1. As 5 is stably 2-Calabi–Yau,
we get that

Ext15(FY, f ) : Ext15(FY, Sj )→ Ext15(FY, F Z)

is surjective, so there is a pushout diagram

0 // Sj

f
��

// M //

��

FY // 0

0 // F Z // FU ′ // FY // 0

the second row of which is the image by F of the short exact sequence given in
Proposition 6.13(b). So, as Ext15(Sj , Sj )= 0, any g : Sj → FY factors through M ,
and hence through FU ′. Therefore, the map Hom5(Sj , FY ) → Ext15(Sj , F Z)
vanishes. �

Proof of Proposition 6.13. (a) It is an obvious consequence of the property for ϕ̃
and our definition of ψ .

(b) Consider decompositions U ∼= U0⊕U1 and U ′ ∼= U ′0⊕U ′1, where U1 and U ′1
are maximal direct summands contained in add Ae. Thanks to Proposition 5.9(b),
we have

U1 =
⊕
j∈J

(Aej )
aj+bj−cj and U ′1 =

⊕
j∈J

(Aej )
aj+bj−c′j ,

where, for j ∈ J,

• aj = dim Hom5/Ij (Sj , FY )= dim Hom5(Sj , FY );

• bj = dim Hom5/Ij (Sj , F Z)= dim Hom5(Sj , F Z);

• ci = dim Hom5/Ij (Sj , FU )= dim Hom5(Sj , FU );

• c′i = dim Hom5/Ij (Sj , FU ′)= dim Hom5(Sj , FU ′).

By Lemma 6.14, using the αj and βj of Theorem 6.5, we have aj + bj − cj =

max(0, c′j − cj )= αj and aj + bj − c′j = βj . Thus, Theorem 6.5 implies

ψYψZ = ϕ̃FY ϕ̃F Z = ϕ̃FU

∏
j∈J

1
αj
j + ϕ̃FU ′

∏
j∈J

1
βj
j

= ψU0ψU1 +ψU ′0ψU ′1 = ψU +ψU ′ . �

Now, we can deduce the proof of Theorem 6.12:
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Proof of Theorem 6.12. By Theorem 6.6, it is enough to note that F :CMe A→SubU
induces a bijection between isomorphism classes of basic cluster tilting objects. This
is immediate as F induces a triangle equivalence CMe A ∼= SubU. More precisely,
basic cluster tilting objects of CMe A are of the form Ae⊕T , where T has no direct
summand in add Ae, and the indecomposable direct summands of T correspond
bijectively to the indecomposable direct summands of FT . �
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