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The local lifting problem forA4
Andrew Obus

We solve the local lifting problem for the alternating group A4, thus showing
that it is a local Oort group. Specifically, if k is an algebraically closed field of
characteristic 2, we prove that every A4-extension of k[[s]] lifts to characteristic
zero.

1. Introduction

This paper concerns lifting Galois extensions of power series rings from character-
istic p to characteristic zero, the so-called local lifting problem:

Problem 1.1. (The local lifting problem) Let k be an algebraically closed field of
characteristic p and G a finite group. Let k[[z]]/k[[s]] be a G-Galois extension (that
is, G acts on k[[z]] by k-automorphisms with fixed ring k[[s]]). Does this extension
lift to characteristic zero? That is, does there exist a DVR R of characteristic
zero with residue field k and a G-Galois extension R[[Z ]]/R[[S]], that reduces
to k[[z]]/k[[s]]?

We will refer to a G-Galois extension k[[z]]/k[[s]] as a local G-extension. Basic
ramification theory shows that any group G that occurs as the Galois group of a
local extension is of the form P o Z/m, with P a p-group and p - m. Chinburg
et al. [2011] ask, given a prime p, for which groups G (of the form P oZ/m) is it
true that all local G-actions (over all algebraically closed fields of characteristic p)
lift to characteristic zero? Such a group is called a local Oort group (for p). Due to
various obstructions (the Bertin obstruction of [Bertin 1998], the KGB obstruction
of [Chinburg et al. 2011], and the Hurwitz tree obstruction of [Brewis and Wewers
2009]), the list of possible local Oort groups is quite limited. In particular, due
to [Chinburg et al. 2011, Theorem 1.2; Brewis and Wewers 2009], if a group G
is a local Oort group for p, then G is either cyclic, dihedral of order 2pn , or the
alternating group A4 (p = 2). Cyclic groups are known to be local Oort — this is
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the so-called Oort conjecture, proven by Obus–Wewers [2014] and Pop [2014].
Dihedral groups of order 2p are known to be local Oort for odd p due to Bouw
and Wewers [2006] and for p = 2 due to Pagot [2002]. The group D9 is local Oort
by [Obus 2015]. Our main theorem is:

Theorem 1.2. If k is an algebraically closed field of characteristic 2, then every
A4-extension of k[[s]] lifts to characteristic zero. That is, the group A4 is a local
Oort group for p = 2.

This result was announced by Bouw (see the beginning of [Bouw and Wewers
2006]), but the proof has not been written down. Our proof uses a simple idea that
avoids the “Hurwitz tree” machinery of [Bouw and Wewers 2006]. Namely, one first
classifies local A4-extensions by what we call their “break” (this is a jump in the
higher ramification filtration). One then uses the following strategy of Pop [2014],
sometimes known as the “Mumford method”: First, make an equicharacteristic
deformation of a local A4-extension such that, generically, the break of the extension
goes down. If one can lift the local extensions arising from the generic fiber of
this deformation, Pop’s work shows that one can lift the original extension. On the
other hand, we show explicitly that local A4-extensions with small break lift. An
induction finishes the proof.

We remark that Florian Pop has his own similar proof of Theorem 1.2, which
was communicated to the author after the first draft of this paper was written (see
Remark 5.3).

The main motivation for the local lifting problem is the following global lifting
problem, about deformation of curves with an action of a finite group (or equivalently,
deformation of Galois branched covers of curves).

Problem 1.3. (The global lifting problem) Let X/k be a smooth, connected, pro-
jective curve over an algebraically closed field of characteristic p. Suppose a finite
group 0 acts on X . Does (X, 0) lift to characteristic zero? That is, does there exist
a DVR R of characteristic zero with residue field k and a relative projective curve
X R/R with 0-action, such that X R , along with its 0-action, reduces to X?

It is a major result of Grothendieck [SGA 1 1971, XIII, Corollaire 2.12] that the
global lifting problem can be solved whenever 0 acts with tame (prime-to-p) inertia
groups, and R can be taken to be the Witt ring W (k). More generally, the local-
global principle states that (X, 0) lifts to characteristic zero over R, a complete
DVR, if and only if the local lifting problem holds (over R) for each point of X with
nontrivial stabilizer in 0. Specifically, if x is such a point, then its complete local
ring is isomorphic to k[[z]]. The stabilizer Ix ⊆0 acts on k[[z]] by k-automorphisms,
and we check the local lifting problem for the local Ix -extension k[[z]]/k[[z]]Ix .
Thus, the global lifting problem is reduced to the local lifting problem. Proofs of
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the local-global principle have been given by Bertin and Mézard [2000], Green and
Matignon [1998], and Garuti [1996].

One consequence of the local-global principle and Theorem 1.2 is the following:

Corollary 1.4. The groups A4 and A5 are so-called Oort groups for every prime.
That is, if 0 ∈ {A4, A5} acts on a smooth projective curve X over an algebraically
closed field of positive characteristic p, then (X, 0) lifts to characteristic zero.

Proof. By the local-global principle (see also [Chinburg et al. 2008, Theorem 2.4]),
it suffices to show that every cyclic-by-p subgroup of A4 or A5 is a local Oort
group for p. The only subgroups of A4 of this form for any p are isomorphic to the
trivial group, Z/2, Z/2×Z/2, Z/3, or A4. The subgroups of A5 of this form are
isomorphic to the trivial group, Z/2, Z/2×Z/2, Z/3, Z/5, D3, A4, and D5. All of
these are local Oort groups for the relevant primes, as has been noted above. �

Conventions and notation. Throughout, k is an algebraically closed field of char-
acteristic 2. The ring R is a large enough complete discrete valuation ring of
characteristic zero with residue field k, maximal ideal m, and uniformizer π . We
normalize the valuation v on R so that v(2)= 1. In any polynomial or power series
ring with coefficients in R, the expression o(x) for x ∈ R means a polynomial or
power series with coefficients in xm.

The ring k[[t]] is always a Z/3-extension of k[[s]] with t3
= s. Likewise, R[[T ]] is

always a Z/3-extension of R[[S]] with T 3
= S. If k[[z]]/k[[s]] is an extension, it is

always assumed to contain k[[t]]. Our convention for variables is that lowercase let-
ters represent the reduction of capital letters from characteristic 0 to characteristic 2
(e.g., t is the reduction of T ).

We write ζ3 for a primitive third root of unity in any ring.

2. A4-extensions

We start with the basic structure theory of A4-extensions.

A4-extensions in characteristic 2.

Lemma 2.1. Let K ⊆ L ⊆ M be a tower of field extensions of characteristic 2
such that L/K is Z/3-Galois and M/L is Z/2-Galois. Let σ be a generator of
Gal(L/K ). For ` ∈ L , let ` denote the image of ` in L/(F − 1)L , where F is
Frobenius. Suppose M ∼= L[x]/(x2

− x − a), and let d be the dimension of the
F2-vector space generated by a, σ (a), and σ 2(a). If N is the Galois closure of M
over L , then Gal(N/K ) can be expressed as a semidirect product

Gal(N/K )∼= (Z/2)d oZ/3.
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Proof. By the Schur–Zassenhaus theorem, it suffices to prove Gal(N/L)∼= (Z/2)d .
But N/L is clearly generated by Artin–Schreier roots of a, σ(a), and σ 2(a). Thus
the result follows from Artin–Schreier theory. �

Corollary 2.2. If d = 2 in Lemma 2.1, then Gal(N/K )∼= A4.

Proof. The group Gal(N/K ) must be a semidirect product (Z/2)2 o Z/3 that is
nonabelian (as there exists a non-Galois subextension). The only such group is A4.

�

If K = k((s)) in Lemma 2.1 above, then after a change of variable, we may
assume that L = k((t)) with t3

= s. Then, it is easy to see that an Artin–Schreier
representative a of M/L may be chosen uniquely such that a ∈ t−1k[t−1

] and a has
only odd-degree terms. We say that such an a is in standard form. In this case, a
standard exercise shows that the break in the higher ramification filtration of M/L
(i.e., the largest i such that the higher ramification group Gi is nontrivial) occurs at
deg(a), thought of as a polynomial in t−1.

Corollary 2.3. Suppose K = k((s)) and L = k((t)). Suppose a ∈ t−1k[t−1
] ⊆ L

is in standard form. Using the notation of Lemma 2.1, we have Gal(N/K ) ∼= A4

if and only if a has no nonzero terms of degree divisible by 3.

Proof. Since linear combinations of elements of L in standard form are also in
standard form, Lemma 2.1 and Corollary 2.2 imply that Gal(N/K ) = A4 if and
only if the F2-subspace V of L generated by a, σ(a), and σ 2(a) has dimension 2.
If a has no nonzero terms of degree divisible by 3, then a+σ(a)+σ 2(a)= 0 is the
only F2-linear relation that holds among the conjugates of a, so dim V = 2 (note
that a 6= 0 since it is an Artin–Schreier representative of M/L). Conversely, if a
has a nonzero term of degree divisible by 3, then either no F2-linear relation holds,
or a ∈ k((s)) (in which case a = σ(a)= σ 2(a)). In either case, dim V 6= 2. �

If d = 2 in the context of Lemma 2.1, then we say that a ∈ L gives rise to the A4-
extension N/K . By abuse of notation, if K ∼= k((s)), we say that the break of N/K
is the ramification break of M/L . This is the same as the unique ramification break
of N/L in either the upper or lower numbering. Furthermore, if K = k((s)) and
N = k((z)), we also say that a gives rise to the extension k[[z]]/k[[s]].

Proposition 2.4. If K = k((s)) and N/K is an A4-extension with break= ν, then
ν ≡ 1 or 5 (mod 6).

Proof. If a gives rise to N/K and is in standard form, we know that ν is the degree
of a in t−1. This must be odd, and by Corollary 2.3, it cannot be divisible by 3. �
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A4-extensions in characteristic zero. The story in characteristic zero (or odd char-
acteristic) is completely analogous. We state the result for reference and omit the
proof, which is the same as in Lemma 2.1 with Kummer theory substituted for
Artin–Schreier theory.

Proposition 2.5. Let K ⊆ L ⊆ M be a tower of separable field extensions of
characteristic 6= 2 such that L/K is Z/3-Galois and M/L is Z/2-Galois. Let σ be
a generator of Gal(L/K ). For ` ∈ L×, let ` denote the image of ` in L×/(L×)2.
Suppose M ∼= L[x]/(x2

− a), and let d be the dimension of the F2-subspace of
L×/(L×)2 generated by a, σ (a), and σ 2(a). If N is the Galois closure of M
over L , then Gal(N/K ) can be expressed as a semidirect product: Gal(N/K ) ∼=
(Z/2)d oZ/3. In particular, if d = 2, then Gal(N/K )∼= A4.

In the context of Proposition 2.5, we again say that a ∈ L gives rise to N/K .

3. Characteristic 2 deformations

For this section, let K , L , M , N be as in Lemma 2.1, with K =k((s)), L=k((t)), and
N = k((z)). Suppose Gal(N/K )∼= A4, and N/K is given rise to by a ∈ t−1k[t−1

]

in standard form. Let ν be the break of N/K . Our goal is to prove the following
proposition.

Proposition 3.1. Suppose that ν >6 and all A4-extensions N ′/K with break≤ν−6
lift to characteristic zero. Then N/K lifts to characteristic zero.

Our proof follows an idea of Pop [2014]. As in [Pop 2014; Obus 2015], we make
a deformation in characteristic 2 so that the generic fiber has “milder” ramification
than the special fiber.

Proposition 3.2. Let A= k[[$, s]] ⊇ k[[s]], and let K= Frac(A). There exists an
A4-extension N/K, with N⊇ N , having the following properties:

(1) The unique Z/3-subextension L/K of N/K is given by L= K[t] ⊆ N.

(2) If C is the integral closure of A in N, we have C ∼= k[[$, z]]. In particular,
(C/($))/(A/($)) is A4-isomorphic to the original extension k[[z]]/k[[s]].

(3) Let B = A[t] ⊆ L, let R = A[$−1
], let S = B[$−1

], and let T = C[$−1
].

Then T/R is an A4-extension of Dedekind rings, branched at 2 maximal ideals.
Above the ideal (s), the inertia group is A4, and the break is ν− 6. The other
branched ideal has inertia group Z/2×Z/2, unique ramification break = 1,
and can be chosen to be of the form (s − µ3), where µ ∈ $ 2k[[$ 2

]]\{0} is
arbitrary.

Proof. Define L by adjoining t to K. We proceed by deforming a to an element of L.
Let µ ∈ $ 2k[[$ 2

]]\{0}. Let a′ = a/t−6
= a/s−2, and deform a to the element

ã := a′(s − µ3)−2
= a′

∏3
α=1(ζ

α
3 t − µ)−2

∈ B($) ⊆ L. Note that ã reduces to
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a (mod$). Observe also that Gal(L/K)∼=Z/3, and the F2-vector space generated
by the images of a′ (and thus ã) under this Galois action has dimension 2. By
Corollary 2.2, ã ∈L gives rise to an A4-extension N/K. We claim that this is the
extension we seek.

Property (1) is obvious. To show property (3), first note that S/R is branched
exactly above the ideal (s). The Z/2-subextensions of N/L are the Artin–Schreier
extensions corresponding to ã, σ(ã), and σ 2(ã), where σ generates Gal(L/K). Each
of these is ramified at most above the ideals (t) and (ζ α3 t−µ), for α ∈ {1, 2, 3}. We
will see in the next paragraph that all of these ideals ramify in each Z/2-subextension.
Thus the ramification groups of T/S above these ideals are all Z/2×Z/2. Since the
three Z/2-subextensions are Galois conjugate over K, there can only be one higher
ramification jump for each ideal, and it is determined, say, by the Artin–Schreier
subextension corresponding to ã.

To determine the ramification, we consider the Artin–Schreier extension of
the complete discrete valuation field k(($))((t)) (resp. k(($))((ζ α3 t −µ)) for α ∈
{1, 2, 3}) given by ã. Since t is a unit in k(($))[[ζ α3 t −µ]] for any α and ζ α3 t −µ
is a unit in k(($))[[t]] and in k(($))[[ζ α

′

3 t − µ]] for any α′ 6= α in {1, 2, 3}, the
degree of the pole of ã with respect to t (resp. ζ α3 t −µ) is ν − 6 (resp. 2). Since
ν− 6 is odd, we have that the Artin–Schreier extension of k(($))((t)) given by ã
ramifies and has ramification break= ν−6. To calculate the ramification break for
the corresponding extension of k(($))((ζ α3 t −µ)), we assume α = 3 for simplicity
and we write ã as a Laurent series in (t −µ). Note that ã = t−1(t −µ)−2x2 for
some x ∈ k(($))[[t −µ]]×, and that

t−1
= µ−1

+µ−2(t −µ)+ higher order terms in (t −µ).

So

ã = cµ−1(t −µ)−2
+ cµ−2(t −µ)−1

+ θ,

where θ ∈ k(($))[[t −µ]] and c ∈ k(($)) is the “constant” term of x2 (in fact, it is
easy to see that c ∈ k((µ2))= k(($ 4))). Let b =

√
cµ−1(t −µ)−1. After replacing

ã with ã + b2
− b, which does not change the Artin–Schreier extension, we see

that ã has a simple pole (since c 6= µ3, the principal part does not vanish). So this
extension ramifies with ramification break= 1. This shows property (3).

For property (2), it suffices by [Green and Matignon 1998, I, Theorem 3.4] to
show that the total degree of the different of T/R is equal to the degree of the
different of N/K . Clearly, we may replace R by S and K by L . Call these degrees
δT/S and δN/L , respectively.

Since the ramification break of M/L is ν, and N/L is the compositum of Galois
conjugates of M/L , we have that N/L has ν as its single ramification break in
the upper numbering, and all nontrivial higher ramification groups of N/L have
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order 4. Using Serre’s different formula [Serre 1968, IV, Proposition 4], we obtain
δN/L = 3(ν+ 1).

For δT/S, we add up the contributions from the different branched ideals sepa-
rately. For the ideal (t), arguing as in the previous paragraph, we have a Z/2×Z/2-
extension with single ramification break = ν − 6. This gives a contribution of
3(ν − 5) to δT/S. For each of the branched ideals (ζ αt − µ) (α ∈ {1, 2, 3}), we
have ramification group Z/2× Z/2 with ramification break = 1. Using Serre’s
different formula again, we get a contribution of 3 · 3 · 2 = 18 to δT/S. Thus
δT/S = 3(ν− 5)+ 18= δN/L , and we are done. �

We omit the proof of the next proposition, which follows from Proposition 3.2
exactly as Theorem 3.6 follows from Key Lemma 3.2 in [Pop 2014].

Proposition 3.3. Let Y → W be a branched A4-cover of projective smooth k-
curves. Suppose that the local inertia at each totally ramified point is an extension
k[[z]]/k[[s]] having break ≤ ν and given rise to by an Artin–Schreier generator in
standard form divisible by t−6 in k[t−1

]. Set W = W ×k k[[$ ]]. Then there is an
A4-cover of projective smooth k[[$ ]]-curves Y→W with special fiber Y→W such
that the totally ramified points on the generic fiber Yη→Wη have break≤ ν− 6.

Before we prove Proposition 3.1, we recall Harbater–Katz–Gabber covers (or
HKG-covers) from [Katz 1986]. Let G ∼= P oZ/m, with P a p-group and p - m.
If k[[z]]/k[[s]] is a local G-extension, then the associated HKG-cover is the unique
branched G-cover X → P1

k tamely ramified of index m above s =∞ and totally
ramified above s=0 (where s is a coordinate on P1

k), such that the formal completion
of X→ P1

k above 0 yields k[[z]]/k[[s]].

Proof of Proposition 3.1. The proof is essentially the same as the proof of [Obus
2015, Proposition 1.11], which itself is adapted from [Pop 2014]. We include it
here for completeness.

Let Y →W = P1 be the Harbater–Katz–Gabber cover associated to k[[z]]/k[[s]],
let Y→W be the A4-cover over k[[$ ]] guaranteed by Proposition 3.3, let Y→W

be its base change to the integral closure of k[[$ ]] in k(($)), and let Yη→Wη be
the generic fiber of Y→W. Recall that we assume that every local A4-extension
with break ≤ ν − 6 lifts to characteristic zero. Furthermore, by [Pagot 2002]
and the theory of tame ramification, every abelian extension of k[[s]] (and thus of
k(($))((s))) with Galois group a proper subgroup of A4 lifts to characteristic zero.
So the local-global principle tells us that Yη →Wη lifts to a cover YO1 →WO1

over some characteristic zero complete discrete valuation ring O1 with residue field
k(($)). Then, [Pop 2014, Lemma 4.3] shows that we can “glue” the covers Y→W

and YO1 →WO1 along the generic fiber of the former and the special fiber of the
latter, in order to get a cover defined over a rank two characteristic zero valuation
ring O with residue field k lifting Y → W (compare [Pop 2014, p. 319, second
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paragraph]). Note that this process works starting with any A4-extension of k[[s]]
with break= ν, and that such extensions can be parametrized by some affine space
AN (with one coordinate corresponding to each possible coefficient in an entry of
an Artin–Schreier generator in standard form).

To conclude, we remark that [Pop 2014, Proposition 4.7] and its setup carry
through exactly in our situation, with our AN playing the role of A|ι| in [Pop 2014].
Indeed, we have that the analog of 6ι in that proposition contains all closed points,
by the paragraph above. Thus we can in fact lift Y→W over a discrete characteristic
zero valuation ring. Applying the easy direction of the local-global principle, we
obtain a lift of k[[z]]/k[[s]]. This concludes the proof of Proposition 3.1. �

4. The form of a lift

We start by reviewing lifts of Z/2-extensions of k[[t]]. The following lemma is
well-known, but difficult to cite directly from the literature. We provide a proof.

Lemma 4.1. Let k((u))/k((t)) be a Z/2-extension with Artin–Schreier generator
a ∈ t−1k[t−1

] in standard form and ramification break= ν. Let A be a lift of a to
T−1 R[T−1

] of degree ν. If 8 ∈ 1+ T−1m[T−1
] has degree ν or ν + 1 and there

exists H ∈ 1+ T−1m[T−1
] such that

8= H 2
+ 4A+ o(4),

then the normalization of R[[T ]] in M := Frac(R[[T ]])[
√
8] is a lift of k[[u]]/k[[t]]

to characteristic zero. Furthermore, 8 has simple roots.

Proof. The extension k((u))/k((t)) is given by adjoining an element y such that
y2
− y = a. Making a substitution

√
8= H + 2Y , the expression for 8 given in

the lemma yields

H 2
+ 4HY + 4Y 2

= H 2
+ 4A+ o(4),

or Y 2
− Y = A+ o(1). Thus we see that the normalization of R[[T ]](π) in M gives

k((u))/k((t)) upon reduction modulo π . By Serre’s different formula [Serre 1968,
IV, Proposition 4], the degree of the different of k[[u]]/k[[t]] is ν+ 1. On the other
hand, the normalization of R[[T ]] ⊗R Frac(R) in M is branched at at most ν + 1
maximal ideals, corresponding to the roots of 8 and also 0 if 8 has degree ν. Since
this is a tamely ramified Z/2-extension, the degree of its different is at most ν+ 1.
By [Green and Matignon 1998, I, 3.4], the degree of the different is exactly ν+ 1
and the normalization of R[[T ]] in M is a lift of k[[u]]/k[[t]]. This also shows that
the roots of 8 are all simple. �

For Proposition 4.2 below, recall that s = t3 and S = T 3.
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Proposition 4.2. Let k[[z]]/k[[s]] be a local A4-extension with break= ν given rise
to by a ∈ t−1k[t−1

] in standard form. If F(T−1) and H(T−1) are in 1+T−1m[T−1
]

such that F has degree (ν+ 1)/2 and

F(ζ3T−1)F(ζ 2
3 T−1)= H 2

+ 4A+ o(4),

where A is a lift of a to T−1 R[T−1
] of degree ν, then the normalization of R[[S]]

in the A4-extension of Frac(R[[S]]) given rise to by F(ζ3T−1)F(ζ 2
3 T−1) is a lift of

k[[z]]/k[[s]] to characteristic zero.

Proof. Let the local Z/2-extension k[[u]]/k[[t]] be given by normalizing k[[t]] in
the Artin–Schreier Z/2-extension of k((t)) given by a. Let L = Frac(R[[T ]]). By
Lemma 4.1, normalizing R[[T ]] in the degree 2 Kummer extension M/L given
by some polynomial 8 ∈ 1+ T−1m[T−1

] of degree ν + 1 in T−1 such that 8 =
H 2
+4A+o(4)with A as in the proposition gives a lift of k[[u]]/k[[t]] to characteristic

zero, and such a 8 has simple roots.
Let σ generate Gal(L/Frac(R[[S]])) and, by abuse of notation, Gal(k((t))/k((s))).

Write 8 = F(ζ3T−1)F(ζ 2
3 T−1) for some polynomial F ∈ 1 + T−1m[T−1

] of
degree (ν+ 1)/2 as in the proposition. Then 8 has simple roots, and thus F(T−1),
F(ζ3T−1), and F(ζ 2

3 T−1) have pairwise disjoint simple roots. Consequently, the
F2-subspace of L×/(L×)2 generated by 8, σ(8), and σ 2(8) has dimension 2. By
Proposition 2.5, this is equivalent to the Galois closure N (over Frac(R[[S]])) of M
having Galois group A4.

Let k((u′))/k((t)) be the Artin–Schreier extension given by σ(a). Clearly, the
normalization of R[[T ]] in Frac(R[[T ]])[

√
σ(8)] is a lift of k[[u′]]/k[[t]]. Note

that k[[z]] is the normalization of k[[t]] in the compositum of k((u)) and k((u′)).
Analogously, N := Frac(R[[T ]])(

√
8,
√
σ(8)) is the A4-extension given rise to

by 8. Now, 8 and σ(8) have exactly (ν+ 1)/2 zeroes in common. Thus [Green
and Matignon 1998, I, Theorem 5.1] shows that the normalization of R[[T ]] in N
is a lift of the Klein four extension k[[z]]/k[[t]] (and is isomorphic to R[[Z ]]/R[[T ]]
for Z reducing to z). We conclude that R[[Z ]]/R[[S]] is a lift of k[[z]]/k[[s]]. �

5. Proof of Theorem 1.2

In this section, let k[[z]]/k[[s]] be a local A4-extension given rise to by a ∈ t−1k[t−1
]

in standard form. Recall that deg(a)= ν, where ν is the break in k[[z]]/k[[s]]. We
will prove that k[[z]]/k[[s]] lifts to characteristic zero by strong induction on ν.

Proposition 5.1. If ν = 1, then k[[z]]/k[[s]] lifts to characteristic zero.

Proof. Since ν = 1, we have a = c1t−1, with c1 ∈ k. By Proposition 4.2, it suffices
to find F(T−1) and H(T−1) in 1+ T−1 R[T−1

] such that F has degree 1 and

F(ζ3T−1)F(ζ 2
3 T−1)= H 2

+ 4c1T−1
+ o(4),
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where c1 is a lift of c1 to R. This is done by taking H=1 and F = 1− 4c1T−1. �

Proposition 5.2. If ν = 5, then k[[z]]/k[[s]] lifts to characteristic zero.

Proof. Since ν=5, we have a= c1t−1
+c5t−5, with c1, c5∈ k. By Proposition 4.2, it

suffices to find F(T−1) and H(T−1) in 1+T−1 R[T−1
] such that F has degree 3 and

F(ζ3T−1)F(ζ 2
3 T−1)= H 2

+ 4c1T−1
+ 4c5T−5

+ o(4),

where each ci is a lift of ci to R.
Let b ∈ R be any element such that v(b)= 2

5 . Write

F(T−1)= 1+ a1T−1
+ a2T−2

+ a3T−3,

where
a1 =−2b− 4c1, a2 = b2, a3 =−4c5/b2.

Note that v(a1)=
7
5 , v(a2)=

4
5 , and v(a3)=

6
5 . Then

F(ζ3T−1)F(ζ 2
3 T−1)= 1− a1T−1

− a2T−2
+ a2

2 T−4
− a2a3T−5

+ o(4)

= 1+ (4c1+ 2b)T−1
− b2T−2

+ b4T−4
+ 4c5T−5

+ o(4)

= (1+ bT−1
+ b2T−2)2+ 4c1T−1

+ 4c5T−5
+ o(4).

We conclude by taking H = 1+ bT−1
+ b2T−2. �

Proof of Theorem 1.2. We use strong induction on the break = ν of k[[z]]/k[[s]],
which only takes values congruent to 1 or 5 modulo 6 (Proposition 2.4). The base
cases ν = 1 and ν = 5 are Propositions 5.1 and 5.2, respectively. The induction step
is Proposition 3.1. �

Remark 5.3. Florian Pop has informed the author of his own proof, which uses
much the same method. In place of the deformation in Proposition 3.2, he uses one
for which it is slightly more difficult to verify that it yields an A4-extension, but
which immediately reduces Theorem 1.2 to the case ν = 1 (eliminating the need
for Proposition 5.2).

Question 5.4. Given k, does there exist a particular DVR R in characteristic zero
such that all local A4-extensions over k lift over R? This is known for local G-
extensions in characteristic p where G is cyclic with vp(|G|)≤ 2 (see [Green and
Matignon 1998], where it is shown that W (k)[ζp2] works). Since our proof is rather
inexplicit, this question remains open for A4.
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