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We show that the logarithmic version of the syntomic cohomology of Fontaine
and Messing for semistable varieties over p-adic rings extends uniquely to a co-
homology theory for varieties over p-adic fields that satisfies h-descent. This new
cohomology — syntomic cohomology — is a Bloch–Ogus cohomology theory,
admits a period map to étale cohomology, and has a syntomic descent spectral
sequence (from an algebraic closure of the given field to the field itself) that is
compatible with the Hochschild–Serre spectral sequence on the étale side and is
related to the Bloch–Kato exponential map. In relative dimension zero we recover
the potentially semistable Selmer groups and, as an application, we prove that
Soulé’s étale regulators land in the potentially semistable Selmer groups.

Our construction of syntomic cohomology is based on new ideas and tech-
niques developed by Beilinson and Bhatt in their recent work on p-adic compari-
son theorems.
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1. Introduction

In this article we define syntomic cohomology for varieties over p-adic fields, relate
it to the Bloch–Kato exponential map, and use it to study the images of Soulé’s
étale regulators. Contrary to all the previous constructions of syntomic cohomology
(see below for a brief review), we do not restrict ourselves to varieties coming with
a nice model over the integers. Hence our syntomic regulators make no integrality
assumptions on the K-theory classes in the domain.

1A. Statement of the main result. Recall that, for varieties proper and smooth
over a p-adic ring of mixed characteristic, syntomic cohomology (or its nonproper
variant: syntomic-étale cohomology) was introduced by Fontaine and Messing
[1987] in their proof of the crystalline comparison theorem as a natural bridge
between crystalline cohomology and étale cohomology. It was generalized to log-
syntomic cohomology for semistable varieties by Kato [1994]. For a log-smooth
scheme X over a complete discrete valuation ring V of mixed characteristic (0, p)
and a perfect residue field, and for any r ≥ 0, rational log-syntomic cohomology
of X can be defined as the “filtered Frobenius eigenspace” in log-crystalline
cohomology, i.e., as the mapping fiber

R0syn(X , r) := Cone
(
R0cr(X ,J [r ])

1−ϕr
−−→R0cr(X )

)
[−1], (1)

where R0cr( · ,J
[r ]) denotes the absolute rational log-crystalline cohomology (i.e.,

over Zp) of the r -th Hodge filtration sheaf J [r ] and ϕr is the crystalline Frobenius
divided by pr. This definition suggested that the log-syntomic cohomology could
be the sought-for p-adic analog of Deligne–Beilinson cohomology. Recall that, for
a complex manifold X , the latter can be defined as the cohomology R0(X,Z(r)D)
of Deligne complex Z(r)D :

0→ Z(r)→�1
X →�2

X → · · · →�r−1
X → 0.

And, indeed, since its introduction, log-syntomic cohomology has been used with
some success in the study of special values of p-adic L-functions and in formulating
p-adic Beilinson conjectures (see [Besser et al. 2009] for a review).

The syntomic cohomology theory with Qp-coefficients R0syn(Xh, r) (r ≥ 0)
for arbitrary varieties — more generally, for arbitrary essentially finite diagrams of
varieties — over the p-adic field K (the fraction field of V ) that we construct in this
article is a generalization of Fontaine–Messing(–Kato) log-syntomic cohomology.
That is, for a semistable scheme1 X over V , we have R0syn(X , r)'R0syn(Xh, r),
where X is the largest subvariety of XK with trivial log-structure. An analogous
theory R0syn(XK ,h, r) (r ≥ 0) exists for (diagrams of) varieties over K, where K is
an algebraic closure of K.

1Throughout the Introduction, the divisors at infinity of semistable schemes have no multiplicities.
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Our main result can be stated as follows.

Theorem A. For any variety X over K , there is a canonical graded commutative
dg Qp-algebra R0syn(Xh, ∗) such that:

(1) It is the unique extension of log-syntomic cohomology to varieties over K that
satisfies h-descent; i.e., for any hypercovering π : Y•→ X in the h-topology,
we have a quasi-isomorphism

π∗ : R0syn(Xh, ∗)−→
∼ R0syn(Y•,h, ∗).

(2) It is a Bloch–Ogus cohomology theory [1974].

(3) For X = Spec(K ), we have

H∗syn(Xh, r)' H∗st(GK ,Qp(r)),

where H i
st(GK ,−) denotes the Ext-group Exti (Qp,−) in the category of (po-

tentially) semistable representations of GK = Gal(K/K ).

(4) There are functorial syntomic period morphisms

ρsyn : R0syn(Xh, r)→ R0(Xét,Qp(r)),

ρsyn : R0syn(XK ,h, r)→ R0(XK ,ét,Qp(r))

compatible with products which induce quasi-isomorphisms

τ≤r R0syn(Xh, r)−→∼ τ≤r R0(Xét,Qp(r)),

τ≤r R0syn(XK ,h, r)−→
∼ τ≤r R0(XK ,ét,Qp(r)).

(5) The Hochschild–Serre spectral sequence for étale cohomology

étE i, j
2 = H i (GK , H j (XK ,ét,Qp(r)))⇒ H i+ j (Xét,Qp(r))

has a syntomic analog

synE i, j
2 = H i

st(GK , H j (XK ,ét,Qp(r)))⇒ H i+ j
syn (Xh, r).

(6) There is a canonical morphism of spectral sequences synEt →
étEt compatible

with the syntomic period map.

(7) There are syntomic Chern classes

csyn
i, j : K j (X)→ H 2i− j

syn (Xh, i)

compatible with étale Chern classes via the syntomic period map.

As is shown in [Déglise and Nizioł 2015], syntomic cohomology R0syn(Xh, ∗)

can be interpreted as an absolute p-adic Hodge cohomology. That is, it is a derived
Hom in the category of admissible (ϕ, N ,GK )-modules between the trivial module
and a complex of such modules canonically associated to a variety. Alternatively,
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it is a derived Hom in the category of potentially semistable representations be-
tween the trivial representation and a complex of such representations canonically
associated to a variety. A particularly simple construction of such a complex,
using Beilinson’s basic lemma, was proposed by Beilinson (and is presented in
[Déglise and Nizioł 2015]). The category of modules over the syntomic cohomology
algebra R0syn(Xh, ∗) (taken in a motivic sense) yields a category of p-adic Galois
representations that better approximates the category of geometric representations
than the category of potentially semistable representations [Déglise and Nizioł
2015]. For further applications of the syntomic cohomology algebra, we refer the
interested reader to [loc. cit.].

Similarly, as is shown in [Nizioł 2016a], geometric syntomic cohomology
R0syn(XK ,h, ∗) is a derived Hom in the category of effective ϕ-gauges (with one
paw) [Fargues 2015] between the trivial gauge and a complex of such gauges
canonically associated to a variety. In particular, geometric syntomic cohomology
group is a finite-dimensional Banach–Colmez space [Colmez 2002], and hence has
a very rigid structure.

The syntomic descent spectral sequence and its compatibility with the Hochschild–
Serre spectral sequence in étale cohomology imply the following proposition.

Proposition 1.1. Let i ≥ 0. The composition

H i−1
dR (X)/Fr ∂

−→ H i
syn(Xh, r)

ρsyn
−→ H i

ét(X,Qp(r))−→ H i
ét(XK ,Qp(r))

is the zero map. The induced (from the syntomic descent spectral sequence) map

H i−1
dR (X)/Fr

→ H 1(GK , H i−1
ét (XK ,Qp(r)))

is equal to the Bloch–Kato exponential associated with the Galois representation
H i−1

ét (XK ,Qp(r)).

This yields a comparison between p-adic étale regulators, syntomic regulators,
and the Bloch–Kato exponential (which was proved in the good reduction case in
[Nekovář 1998] and [Nizioł 2001, Theorem 5.2]2) that is of fundamental importance
for the theory of special values of L-functions, both complex valued and p-adic. The
point is that syntomic regulators can be thought of as an abstract p-adic integration
theory. The comparison results stated above then relate certain p-adic integrals to
the values of the p-adic étale regulator via the Bloch–Kato exponential map. A mod-
ification of syntomic cohomology developed in [Besser 2000] in the good reduction
case (resp. in [Besser et al. 2016] — using the techniques of the present article — in
the case of arbitrary reduction) can be used to perform explicit computations. For
example, the formulas from [Besser et al. 2016, §3] were applied to a calculation
of certain p-adic regulators in [Bertolini et al. 2015; Darmon and Rotger 2016].

2The Bloch–Kato exponential is called l there.
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1B. Construction of syntomic cohomology. We will now sketch the proof of
Theorem A. Recall first that a little bit after log-syntomic cohomology had appeared
on the scene, Selmer groups of Galois representations — describing extensions in
certain categories of Galois representations — were introduced by Bloch and Kato
[1990] and linked to special values of L-functions. And a syntomic cohomology
(in the good reduction case), a priori different than that of Fontaine and Messing,
was defined in [Nizioł 2001] and by Besser [2000] as a higher-dimensional analog
of the complexes computing these groups. The guiding idea here was that just
as Selmer groups classify extensions in certain categories of “geometric” Galois
representations, their higher-dimensional analogs — syntomic cohomology groups —
should classify extensions in a category of “p-adic motivic sheaves”. This was
shown to be the case for H 1 by Bannai [2002], who has also shown that Besser’s
(rigid) syntomic cohomology is a p-adic analog of Beilinson’s absolute Hodge
cohomology [1986].

Complexes computing the semistable and potentially semistable Selmer groups
were introduced in [Nekovář 1993; Fontaine and Perrin-Riou 1994]. For a semistable
scheme X over V, their higher-dimensional analog can be written as the homotopy
limit3

R0′syn(X , r) :=


R0HK(X0)

N

��

(1−ϕr ,ιdR)
// R0HK(X0)⊕R0dR(XK )/Fr

(N ,0)

��

R0HK(X0)
1−ϕr−1

// R0HK(X0)

, (2)

where X0 is the special fiber of X , R0HK( · ) is the Hyodo–Kato cohomology,
N denotes the Hyodo–Kato monodromy, and R0dR( · ) is the logarithmic de Rham
cohomology. The map ιdR is the Hyodo–Kato morphism that induces a quasi-
isomorphism ιdR : R0HK(X0)⊗K0 K −→∼ R0dR(XK ) for K0 — the fraction field of
Witt vectors of the residue field of V.

Using Dwork’s trick, we prove (see Proposition 3.8) that the two definitions of
log-syntomic cohomology are the same, i.e., that there is a quasi-isomorphism

αsyn : R0syn(X , r)−→∼ R0′syn(X , r).

It follows that log-syntomic cohomology groups vanish in degrees strictly higher
than 2 dim X K+2 and that, if X =Spec(V ), then H i R0syn(X ,r)'H i

st(GK ,Qp(r)).
The syntomic cohomology for varieties over p-adic fields that we introduce in

this article is a generalization of the log-syntomic cohomology of Fontaine and
Messing. Observe that it is clear how one can try to use log-syntomic cohomology

3See Section 1E for an explanation of the notation we use for certain homotopy limits.
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to define syntomic cohomology for varieties over fields that satisfies h-descent.
Namely, for a variety X over K , consider the h-topology of X and recall that
(using alterations) one can show that it has a basis consisting of semistable models
over finite extensions of V [Beilinson 2012]. By h-sheafifying the complexes
Y 7→R0syn(Y, r) (for a semistable model Y ) we get syntomic complexes S (r). We
define the (arithmetic) syntomic cohomology as

R0syn(Xh, r) := R0(Xh,S (r)).

A priori it is not clear that the so-defined syntomic cohomology behaves well: the
finite ramified field extensions introduced by alterations are in general a problem for
log-crystalline cohomology. For example, the related complexes R0cr(Xh,J

[r ])

are huge. However, taking Frobenius eigenspaces cuts off the “noise” and the
resulting syntomic complexes do indeed behave well. To get an idea why this is
the case, h-sheafify the complexes Y 7→ R0′syn(Y, r) and imagine that you can
sheafify the maps αsyn as well. We get sheaves S ′(r) and quasi-isomorphisms
αsyn :S (r)−→∼ S ′(r). Setting R0′syn(Xh, r) := R0(Xh,S

′(r)), we obtain the
quasi-isomorphisms

R0syn(Xh, r)' R0′syn(Xh, r)

'


R0HK(Xh)

N

��

(1−ϕr ,ιdR)
// R0HK(Xh)⊕R0dR(X K )/Fr

(N ,0)

��

R0HK(Xh)
1−ϕr−1

// R0HK(Xh)

, (3)

where R0HK(Xh) denotes the Hyodo–Kato cohomology (defined as h-cohomology
of the presheaf: Y 7→ R0HK(Y0)) and R0dR( · ) is Deligne’s de Rham cohomology
[1974]. The Hyodo–Kato map ιdR is the h-sheafification of the logarithmic Hyodo–
Kato map. It is well-known that Deligne’s de Rham cohomology groups are
finite-rank K-vector spaces; it turns out that the Hyodo–Kato cohomology groups
are finite-rank K0-vector spaces: we have a quasi-isomorphism R0HK(Xh) −→

∼

R0HK(XK ,h)
GK, and the geometric Hyodo–Kato groups H∗R0HK(XK ,h) are finite-

rank K nr
0 -vector spaces, where K nr

0 is the maximal unramified extension of K0 (see
(4) below).

It follows that syntomic cohomology groups vanish in degrees higher than
2 dim X K + 2 and that syntomic cohomology is, in fact, a generalization of the
classical log-syntomic cohomology; i.e., for a semistable scheme X over V , we
have R0syn(X , r)' R0syn(Xh, r), where X is the largest subvariety of XK with
trivial log-structure. This follows from the quasi-isomorphism αsyn: logarithmic
Hyodo–Kato and de Rham cohomologies (over a fixed base) satisfy proper descent
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and the finite field extensions that appear as the “noise” in alterations do not destroy
anything since logarithmic Hyodo–Kato and de Rham cohomologies satisfy finite
Galois descent.

Alas, we were not able to sheafify the map αsyn. The reason for that is that the
construction of αsyn uses a twist by a high power of Frobenius — a power depending
on the field K. And alterations are going to introduce a finite extension of K —
hence a need for higher and higher powers of Frobenius. So instead we construct
directly the map

αsyn : R0syn(Xh, r)→ R0′syn(Xh, r).

To do that, we show first that the syntomic cohomological dimension of X is finite.
Then we take a semistable h-hypercovering of X , truncate it at an appropriate level,
extend the base field K to K ′, and base-change everything to K ′. There we can
work with one field and use the map αsyn defined earlier. Finally, we show that we
can descend.

1C. Syntomic period maps. We pass now to the construction of the period maps
from syntomic to étale cohomology that appear in Theorem A. They are easier
to define over K, i.e., from the geometric syntomic cohomology. In this setting,
things go smoother with h-sheafification since going all the way up to K before
completing kills a lot of “noise” in log-crystalline cohomology. More precisely,
for a semistable scheme X over V, we have the canonical quasi-isomorphisms
[Beilinson 2013]

ιcr : R0HK(XV )
τ

B+cr
−→∼ R0cr(XV ), ιdR : R0HK(XV )

τ

K −→
∼ R0dR(XK ), (4)

where V is the integral closure of V in K, B+cr is the crystalline period ring, and τ
denotes certain twist. These quasi-isomorphisms h-sheafify well: for a variety X
over K , they induce the quasi-isomorphisms [Beilinson 2013]

ιcr : R0HK(XK ,h)
τ

B+cr
−→∼ R0cr(XK ,h), ιdR : R0HK(XK ,h)

τ

K −→
∼ R0dR(XK ), (5)

where the terms have obvious meaning. Since Deligne’s de Rham cohomology
has proper descent (by definition), it follows that h-crystalline cohomology be-
haves well. That is, if we define crystalline sheaves J [r ]

cr and Acr on XK ,h by
h-sheafifying the complexes Y 7→ R0cr(Y,J [r ]) and Y 7→ R0cr(Y ), respectively,
for Y which are a base change to V of a semistable scheme over a finite extension
of V (such schemes Y form a basis of XK ,h) then the complexes R0(XK ,h,J

[r ])

and R0cr(XV ,h) := R0(XK ,h,Acr) generalize log-crystalline cohomology (in the
sense described above) and the latter one is a perfect complex of B+cr -modules.

We obtain syntomic complexes S (r) on XK ,h by h-sheafifying the complexes
Y 7→R0syn(Y,r) and (geometric) syntomic cohomology by setting R0syn(XK ,h,r):=
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R0(XK ,h,S (r)). They fit into an analog of the exact sequence (1) and, by the
above, generalize log-syntomic cohomology.

To construct the syntomic period maps

ρsyn : R0syn(XK ,h, r)→ R0(XK ,ét,Qp(r)),

ρsyn : R0syn(Xh, r)→ R0(Xét,Qp(r)),
(6)

consider the syntomic complexes Sn(r): the mod-pn version of the syntomic
complexes S (r) on XK ,h . We have the distinguished triangle

Sn(r)→J [r ]
cr,n

pr
−ϕ
−−→Acr,n.

Recall that the filtered Poincaré lemma of Beilinson [2013] and Bhatt [2012] yields
a quasi-isomorphism ρcr : J [r ]cr,n −→

∼ J [r ]
cr,n , where J [r ]cr ⊂ Acr is the r -th filtration level

of the period ring Acr. Using the fundamental sequence of p-adic Hodge theory,

0→ Z/pn(r)′→ J 〈r〉cr,n
1−ϕr
−−→ Acr,n→ 0,

where Z/pn(r)′ := (1/(paa!)Zp(r)) ⊗ Z/pn and a denotes the largest integer
≤ r/(p− 1), we obtain the syntomic period map ρsyn :Sn(r)→ Z/pn(r)′. It is a
quasi-isomorphism modulo a universal constant. It induces the geometric syntomic
period map in (6), and, by Galois descent, its arithmetic analog.

To study the descent spectral sequences from Theorem A, we need to consider
the other version of syntomic cohomology, i.e., the complexes

R0′syn(XK ,h, r) :=
R0HK(XK ,h)⊗K nr

0
B+st

(1−ϕr ,ιdR)
//

N

��

R0HK(XK ,h)⊗K nr
0

B+st

⊕(R0dR(XK )⊗K B+dR)/Fr

(N ,0)

��

R0HK(XK ,h)⊗K nr
0

B+st
1−ϕr−1

// R0HK(XK ,h)⊗K nr
0

B+st

, (7)

where B+st and B+dR are the semistable and de Rham p-adic period rings, respectively.
We deduce a quasi-isomorphism R0syn(XK ,h, r)−→

∼ R0′syn(XK ,h, r).

Remark 1.2. This quasi-isomorphism yields, for a semistable scheme X over V,
the exact sequence

· · · → H i
syn(XK , r)→ (H i

HK(X )Q⊗K0 B+st )
ϕ=pr,N=0

→ (H i
dR(XK )⊗K B+dR)/Fr

→ H i+1
syn (XK , r)→ · · · .

It is a sequence of finite-dimensional Banach–Colmez Spaces [Colmez 2002] and as
such is a key in the proof of the semistable comparison theorem for formal schemes
in [Colmez and Niziol 2015].
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We also have a syntomic period map

ρ ′syn : R0
′

syn(XK ,h, r)→ R0(XK ,ét,Qp(r)) (8)

that is compatible with the map ρsyn via αsyn. To describe how it is constructed, recall
that the crystalline period map of Beilinson [2013] induces compatible Hyodo–Kato
and de Rham period maps

ρHK : R0HK(XK ,h)⊗K nr
0

B+st→R0(XK ,ét,Qp)⊗ B+st ,

ρdR : R0dR(X K )⊗K B+dR→R0(XK ,ét,Qp)⊗ B+dR.
(9)

Applying them to the above homotopy limit, removing all the pluses from the
period rings, reduces the homotopy limit to the complex

R0(XK ,ét,Qp(r))⊗ Bst
(1−ϕr ,ιdR)

//

N

��

R0(XK ,ét,Qp(r))⊗ Bst

⊕(R0(XK ,ét,Qp(r))⊗ BdR)/Fr

(N ,0)

��

R0(XK ,ét,Qp(r))⊗ Bst
1−ϕr−1

// R0(XK ,ét,Qp(r))⊗ Bst

. (10)

By the familiar fundamental exact sequence

0→Qp(r)→ Bst
(N ,1−ϕr ,ι)
−−−−−→ Bst⊕ Bst⊕ BdR/Fr (1−ϕr−1)−N

−−−−−−→ Bst→ 0,

the above complex is quasi-isomorphic to R0(XK ,ét,Qp(r)). This yields the
syntomic period morphism from (8). We like to think of geometric syntomic
cohomology as being represented by the complex from (7) and of geometric étale
cohomology as represented by the complex (10).

From the above constructions we derive several of the properties mentioned in
Theorem A. The quasi-isomorphisms (9) give that

H i
HK(XK ,h)' Dpst(H i (XK ,ét,Qp(r))),

H i
HK(Xh)' Dst(H i (XK ,ét,Qp(r))),

where Dpst and Dst are the functors from [Fontaine and Perrin-Riou 1994]. This
combined with the diagram (3) immediately yields the spectral sequence synEt since
the cohomology groups of the total complex of

H j
HK(Xh)

N

��

(1−ϕr ,ιdR)
// H j

HK(Xh)⊕ H j
dR(X K )/Fr

(N ,0)

��

H j
HK(Xh)

1−ϕr−1
// H j

HK(Xh)
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are equal to H∗st(GK , H j (XK ,ét,Qp(r))). Moreover, the sequence of natural maps
of diagrams (3)→ (7) ρsyn

−→ (10) yields a compatibility of the syntomic descent
spectral sequence with the Hochschild–Serre spectral sequence in étale cohomology
(via the period maps). We remark that, in the case of proper varieties with semistable
reduction, this fact was announced in [Nekovář 2000].

Looking again at the period map ρsyn : (7)→(10) we see that truncating all the
complexes at level r will allow us to drop + from the first diagram. Hence we have

ρsyn : τ≤r R0syn(XK ,h, r)−→
∼ τ≤r R0(XK ,ét,Qp(r)).

To conclude that we have

ρsyn : τ≤r R0syn(Xh, r)−→∼ τ≤r R0(Xét,Qp(r))

as well, we look at the map of spectral sequences synE→ étE and observe that, in
the stated ranges of the Hodge–Tate filtration we have H∗st(GK , · )= H∗(GK , · ) (a
fact that follows, for example, from the work of Berger [2002]).

1D. p-adic regulators. As an application of Theorem A, we look at the question
of the image of Soulé’s étale regulators

r ét
r,i : K2r−i−1(X)0→ H 1(GK , H i (XK ,ét,Qp(r))),

where K2r−i−1(X)0 := ker
(
cét

r,i+1 : K2r−i−1(X)→ H i+1(XK ,ét,Qp(r))
)
, inside the

Galois cohomology group. We prove:

Theorem B. The regulators r ét
r,i factor through the group H 1

st(GK,H i(XK ,ét,Qp(r))).

As we explain in the article, this fact is known to follow from the work of Scholl
[1993] on “geometric” extensions associated to K-theory classes. In our approach,
this is a simple consequence of good properties of syntomic cohomology and the
existence of the syntomic descent spectral sequence. Namely, as can be easily
derived from the presentation (3), syntomic cohomology has a projective space
theorem and homotopy property,4 and hence admits Chern classes from higher
K-theory. It can be easily shown that they are compatible with the étale Chern
classes via the syntomic period maps. The factorization we want in the above
theorem follows then from the compatibility of the two descent spectral sequences.

1E. Notation and conventions. Let V be a complete discrete valuation ring with
fraction field K of characteristic 0, with perfect residue field k of characteristic p,
and with maximal ideal mK . Let v be the valuation on K normalized so that v(p)=1.
Let K be an algebraic closure of K and let V denote the integral closure of V in K .
Let W (k) be the ring of Witt vectors of k with fraction field K0 and denote by K nr

0
the maximal unramified extension of K0. Denote by eK the absolute ramification

4As explained in Appendix B, it follows that it is a Bloch–Ogus cohomology theory.
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index of K , i.e., the degree of K over K0. Set GK = Gal(K/K ) and let IK denote
its inertia subgroup. Let ϕ be the absolute Frobenius on W (k̄). We will denote by
V, V×, and V 0 the scheme Spec(V ) with the trivial, canonical (i.e., associated to the
closed point), and (N→ V, 1 7→ 0) log-structure respectively. For a log-scheme X
over OK , denote its reduction mod pn by Xn and its special fiber by X0.

Unless otherwise stated, we work in the category of integral quasi-coherent
log-schemes. In general, we will not distinguish between simplicial abelian groups
and complexes of abelian groups.

Let A be an abelian category with enough projective objects. In this paper A will
be the category of abelian groups or Zp-, Z/pn-, or Qp-modules. Unless otherwise
stated, we work in the (stable)∞-category D(A), i.e., the stable∞-category whose
objects are (left-bounded) chain complexes of projective objects of A. For a readable
introduction to such categories, the reader may consult [Groth 2010; Lurie 2016,
Chapter 1]. The ∞-derived category is essential to us for two reasons: first, it
allows us to work simply with the Beilinson–Hyodo–Kato complexes; second, it
supplies functorial homotopy limits.

Many of our constructions will involve sheaves of objects from D(A). The reader
may consult the notes of Illusie [2013] and Zheng [2013] for a brief introduction to
the subject and [Lurie 2009; 2016] for a thorough treatment.

We will use a shorthand for certain homotopy limits. Namely, if f : C→ C ′ is a
map in the dg derived category of abelian groups, we set

[C
f
// C ′ ] := holim(C→ C ′← 0).

We also set 
C1

��

f
// C2

��

C3
g
// C4

 := [[C1
f
−→C2] → [C3

g
−→C4]

]
,

where the diagram in the brackets is a commutative diagram in the dg derived
category.

2. Preliminaries

In this section we will do some preparation. In the first part, we will collect
some relevant facts from the literature concerning period rings, derived log de
Rham complexes and the h-topology. In the second part, we will prove vanishing
results in Galois cohomology and a criterion comparing two spectral sequences
that we will need to compare the syntomic descent spectral sequence with the étale
Hochschild–Serre spectral sequence.
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2A. The rings of periods. Let us recall briefly the definitions of the rings of periods
Bcr, BdR, Bst of [Fontaine 1994a]. As in 2.2 and 2.3 of that work, let Acr denote
Fontaine’s ring of crystalline periods. This is a p-adically complete ring such that
Acr,n := Acr/pn is a universal PD-thickening of V n over Wn(k). Let Jcr,n denote
its PD-ideal, Acr,n/Jcr,n = V n . We have

Acr,n = H 0
cr(Spec(V n)/Wn(k)), B+cr := Acr[1/p], Bcr := B+cr [t

−1
],

where t is a certain element of B+cr (see [Fontaine 1994a] for a precise definition
of t). The ring B+cr is a topological K0-module equipped with a Frobenius ϕ coming
from the crystalline cohomology and a natural GK -action. We have that ϕ(t)= pt
and that GK acts on t via the cyclotomic character.

Let
B+dR := lim

←−r
(Q⊗ lim

←−n
Acr,n/J [r ]cr,n), BdR := B+dR[t

−1
].

The ring B+dR has a discrete valuation given by the powers of t . Its quotient field
is BdR. We set Fn BdR = tn B+dR. This defines a descending filtration on BdR.

The period ring Bst lies between Bcr and BdR [Fontaine 1994a, 3.1]. To define it,
choose a sequence of elements s = (sn)n≥0 of V such that s0 = p and s p

n+1 = sn .
Fontaine associates to it an element us of B+dR that is transcendental over B+cr . Let B+st
denote the subring of BdR generated by B+cr and us . It is a polynomial algebra in
one variable over B+cr . The ring B+st does not depend on the choice of s (because for
another sequence s ′ = (s ′n)n≥0 we have us−us′ ∈ Zpt ⊂ B+cr ). The action of GK on
B+dR restricts well to B+st . The Frobenius ϕ extends to B+st by ϕ(us)= pus and one
defines the monodromy operator N : B+st → B+st as the unique B+cr -derivation such
that Nus =−1. We have Nϕ = pϕN and the short exact sequence

0→ B+cr → B+st
N
−→ B+st → 0. (11)

Let Bst = Bcr[us]. We denote by ι the injection ι : B+st ↪→ B+dR. The topology on
Bst is the one induced by Bcr and the inductive topology; the map ι is continuous
(though the topology on Bst is not the one induced from BdR).

2B. Derived log de Rham complex. In this subsection we collect a few facts about
the relationship between crystalline cohomology and de Rham cohomology.

Let S be a log-PD-scheme on which p is nilpotent. For a log-scheme Z over S,
let L�•Z/S denote the derived log de Rham complex (see [Beilinson 2012, 3.1] for
a review). This is a commutative dg OS-algebra on Zét equipped with a Hodge
filtration Fm. There is a natural morphism of filtered commutative dg OS-algebras

κ : L�•Z/S→ RuZ/S∗(OZ/S), (12)

where uZ/S : Zcr→ Zét is the projection from the log-crystalline to the étale topos
[Beilinson 2013, (1.9.1)]. The following theorem was proved by Beilinson [2013,
Theorem on p. 13] by direct computations of both sides.
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Theorem 2.1. Suppose that Z , S are fine and f : Z → S is an integral, locally
complete intersection morphism. Then (12) yields quasi-isomorphisms

κm : L�•Z/S/Fm
−→∼ RuZ/S∗(OZ/S/J

[m]
Z/S).

Recall [Bhatt 2012, Definition 7.20] that a log-scheme is called G-log-syntomic
if it is log-syntomic and the local log-smooth models can be chosen to be of Cartier
type. The next theorem, finer than Theorem 2.1, was proved by Bhatt [2012,
Theorem 7.22] by looking at the conjugate filtration of the left-hand side.

Theorem 2.2. Suppose that f : Z→ S is G-log-syntomic. Then we have a quasi-
isomorphism

κ : L�•Z/S −→
∼ RuZ/S∗(OZ/S).

Combining the two theorems above, we get a filtered version:

Corollary 2.3. Suppose that f : Z→ S is G-log-syntomic. Then we have a quasi-
isomorphism

FmL�•Z/S −→
∼ RuZ/S∗(J

[m]
Z/S).

Proof. Consider the following commutative diagram with exact rows

FmL�•Z/S
//

��

L�•Z/S
//

o

��

L�•Z/S/Fm

o

��

RuZ/S∗(J
[m]
Z/S)

// RuZ/S∗(OZ/S) // RuZ/S∗(OZ/S/J
[m]
Z/S)

and use the above theorems of Bhatt and Beilinson. �

Let X be a fine, proper, log-smooth scheme over V×. Set

R0(Xét,L�•,∧X/W (k))⊗̂Qp :=
(
holimn R0(Xét,L�•,∧Xn/Wn(k))

)
⊗Q

and similarly for complexes over V×. Here the hat over the derived log de Rham
complex refers to the completion with respect to the Hodge filtration (in the sense
of prosystems). For r ≥ 0, consider the sequence of maps

R0dR(X K )/Fr
←−∼ R0(X,L�•X/V×/Fr )Q−→

∼ R0(Xét,L�•X/V×/Fr )⊗̂Qp

−→∼ R0cr(X,OX/V×/J
[r ]
X/V×)Q←R0cr(X,OX/W (k)/J

[r ]
X/W (k))Q.

(13)
The first quasi-isomorphism follows from the fact that since X K is log-smooth
over K0, the natural map L�•X K /K0

/Fr
−→∼ �•X K /K0

/Fr is a quasi-isomorphism. The
second quasi-isomorphism follows from X being proper and log-smooth over V×,
and the third one from Theorem 2.1. Define the map

γ−1
r : R0cr(X,OX/W (k)/J

[r ]
X/W (k))Q→ R0dR(X K )/Fr

as the composition (13).
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Corollary 2.4. Let X be a fine, proper, log-smooth scheme over V×. Let r ≥ 0.
There exists a canonical quasi-isomorphism

γr : R0dR(X K )/Fr
−→∼ R0cr(X,OX/W (k)/J

[r ]
X/W (k))Q.

Proof. It suffices to show that the last map in the composition (13) is also a
quasi-isomorphism. By Theorem 2.1, this map is quasi-isomorphic to the map

(R0(Xét,L�•,∧X/W (k))⊗̂Qp)/Fr
→ (R0(Xét,L�•,∧X/V×)⊗̂Qp)/Fr.

Hence it suffices to show that the natural map

gri
F R0(Xét,L�•,∧X/W (k))⊗̂Qp→ gri

F R0(Xét,L�•,∧X/V×)⊗̂Qp

is a quasi-isomorphism for all i ≥ 0.
Fix n ≥ 1 and i ≥ 0 and recall [Beilinson 2012, 1.2] that we have a natural

identification

gri
F L�•Xn/Wn(k) −→

∼ L3i
X (L Xn/Wn(k))[−i],

gri
F L�•Xn/V×n

−→∼ L3i
X (L Xn/V×n )[−i],

where LY/S denotes the relative log cotangent complex [Beilinson 2012, 3.1] and
L3X ( • ) is the nonabelian left derived functor of the exterior power functor. The
distinguished triangle

OX ⊗V LV×n /Wn(k)→ L Xn/Wn(k)→ L Xn/V×n

yields a distinguished triangle

L3i
X (OX ⊗V LV×n /Wn(k))[−i] → gri

F L�•Xn/Wn(k)→ gri
F L�•Xn/V×n

.

Hence we have a distinguished triangle

holimn R0(Xét, L3i
X (OX ⊗V LV×n /Wn(k)))⊗Q[−i]

→ gri
F R0(Xét,L�•,∧X/W (k))⊗̂Qp→ gri

F R0(Xét,L�•,∧X/V×)⊗̂Qp.

It suffices to show that the term on the left is zero. But this will follow as soon as
we show that the cohomology groups of LV×n /Wn(k) are annihilated by pc, where c is
a constant independent of n. To show this, recall that V is a log complete intersection
over W (k). If π is a generator of V/W (k), and f (t) is its minimal polynomial,
then (see [Olsson 2005, 6.9]) LV×/W (k) is quasi-isomorphic to the cone of the
multiplication by f ′(π) map on V. Hence LV×/W (k) is acyclic in nonzero degrees,
H 0LV×/W (k) =�V×/W (k) is a cyclic V -module and we have a short exact sequence

0→�V/W (k)→�V×/W (k)→ V/mK → 0.

Since �V/W (k) ' V/DK/K0 , where DK/K0 is the different, pc H 0LV×/W (k) = 0 for
a constant c independent of n. Since LV×/W (k) ' LV×/W (k)⊗

L
V Vn , we are done. �
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Remark 2.5. Versions of the above corollary appear in various degrees of generality
in the proofs of the p-adic comparison theorems (see [Kato and Messing 1992,
Lemma 4.5; Langer 1999, Lemma 2.7]). They are proved using computations
in crystalline cohomology. We find the above argument based on the Beilinson
comparison theorem, Theorem 2.1, particularly conceptual and pleasing.

2C. The h-topology. In this subsection we review terminology connected with the
h-topology from [Beilinson 2013; 2012; Bhatt 2012]; we will use it freely. Let
V arK be the category of varieties (i.e., reduced and separated schemes of finite type)
over a field K. An arithmetic pair over K is an open embedding j :U ↪→U with
dense image of a K-variety U into a reduced proper flat V -scheme U. A morphism
(U,U )→ (T, T ) of pairs is a map U→ T which sends U to T. In the case that the
pairs represent log-regular schemes, this is the same as a map of log-schemes. For
a pair (U,U ), we set VU := 0(U,OU ) and KU := 0(UK ,OU ). KU is a product of
several finite extensions of K (labeled by the connected components of U ) and,
if U is normal, VU is the product of the corresponding rings of integers. We will
denote by Par

K the category of arithmetic pairs over K. A semistable pair (ss-pair)
over K [Beilinson 2012, 2.2] is a pair of schemes (U,U ) over (K , V ) such that

(i) U is regular and proper over V,

(ii) U \U is a divisor with normal crossings on U ,

(iii) the closed fiber U 0 of U is reduced.

The closed fiber is taken over the closed points of VU . We will think of ss-pairs as
log-schemes equipped with log-structure given by the divisor U \U . The closed
fiber U 0 has the induced log-structure. We will say that the log-scheme (U,U ) is
split over VU . We will denote by Pss

K the category of ss-pairs over K. A semistable
pair is called strict if the irreducible components of the closed fiber are regular.
We will often work with the larger category P

log
K of log-schemes (U,U ) ∈Par

K
log-smooth over V×U .

A semistable pair (ss-pair) over K [Beilinson 2012, 2.2] is a pair of connected
schemes (T, T ) over (K , V ) such that there exists an ss-pair (U,U ) over K and a
K-point α : KU → K such that (T, T ) is isomorphic to the base change (UK ,U V ).
We will denote by Pss

K
the category of ss-pairs over K .

A geometric pair over K is a pair (U,U ) of varieties over K such that U is
proper and U ⊂ U is open and dense. We say that the pair (U,U ) is an nc-pair
if U is regular and U \U is a divisor with normal crossings in U ; it is a strict
nc-pair if the irreducible components of U \U are regular. A morphism of pairs
f : (U1,U 1)→ (U,U ) is a map U 1 → U that sends U1 to U. We denote the
category of nc-pairs over K by Pnc

K .
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For a field K , the h-topology (see [Suslin and Voevodsky 2000; Beilinson 2012,
2.3]) on V arK is the coarsest topology finer than the Zariski and proper topologies.5

It is stronger than the étale and proper topologies. It is generated by the pretopology
whose coverings are finite families of maps {Yi → X} such that Y :=

∐
Yi → X

is a universal topological epimorphism (i.e., a subset of X is Zariski open if and
only if its preimage in Y is open). We denote by V arK ,h and Xh the corresponding
h-sites. For any of the categories P mentioned above, let γ : (U,U )→U denote
the forgetful functor. Beilinson [2012, 2.5] proved that the categories Pnc, (Par

K , γ )

and (Pss
K , γ ) form a base for V arK ,h . One can easily modify his argument to

conclude the same about the categories (P log
K , γ ).

2D. Galois cohomology. In this subsection we review the definition of (higher)
semistable Selmer groups and prove that in stable ranges they are the same as Galois
cohomology groups. Our main references are [Fontaine 1994b; 1994c; Colmez and
Fontaine 2000; Bloch and Kato 1990; Fontaine and Perrin-Riou 1994; Nekovář
1993]. Recall [Fontaine 1994b, 1994c] that a p-adic representation V of GK (i.e., a
finite-dimensional continuous Qp-vector space representation) is called semistable
(over K ) if dimK0(Bst⊗Qp V )GK = dimQp(V ).

It is called potentially semistable if there exists a finite extension K ′ of K such
that V |G K ′ is semistable over K ′. We denote by Repst(GK ) and Reppst(GK ) the cat-
egories of semistable and potentially semistable representations of GK , respectively.

As in [Fontaine 1994c, 4.2], a ϕ-module over K0 is a pair (D, ϕ), where D is a
finite-dimensional K0-vector space and ϕ = ϕD is a ϕ-semilinear automorphism
of D; a (ϕ, N )-module is a triple (D, ϕ, N ), where (D, ϕ) is a ϕ-module and
N = NV is a K0-linear endomorphism of D such that Nϕ = pϕN (hence N is
nilpotent). A filtered (ϕ, N )-module is a tuple (D, ϕ, N , F •), where (D, ϕ, N )
is a (ϕ, N )-module and F • is a decreasing finite filtration of DK by K-vector
spaces. There is a notion of a (weakly) admissible filtered (ϕ, N )-module [Colmez
and Fontaine 2000]. Denote by MFad

K (ϕ, N ) ⊂ MFK (ϕ, N ) the categories of
admissible filtered (ϕ, N )-modules and filtered (ϕ, N )-modules, respectively. We
know [Colmez and Fontaine 2000] that the pair of functors

Dst(V )= (Bst⊗Qp V )GK, Vst(D)= (Bst⊗K0 D)ϕ=Id,N=0
∩ F0(BdR⊗K DK )

defines an equivalence of categories MFad
K (ϕ, N )' Repst(GK ).

For D ∈ MFK (ϕ, N ), set

Cst(D) :=

D

N
��

(1−ϕ,can)
// D⊕ DK /F0

(N ,0)
��

D
1−pϕ

// D

.
5The latter is generated by a pretopology whose coverings are proper surjective maps.
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Here the brackets denote the total complex of the double complex inside the brackets.
Consider also the complex

C+(D) :=


D⊗K0 B+st

N
��

(1−ϕ,can⊗ι)
// D⊗K0 B+st ⊕ (DK ⊗K B+dR)/F0

(N ,0)
��

D⊗K0 B+st
1−pϕ

// D⊗K0 B+st

.
Define C(D) by omitting the superscript+ in the above diagram. We have Cst(D)=
C(D)GK.

Remark 2.6. Recall [Nekovář 1993, 1.19; Fontaine and Perrin-Riou 1994, 3.3]
that to every p-adic representation V of GK we can associate a complex

Cst(V ) : Dst(V )
(N ,1−ϕ,ι)
−−−−−→ Dst(V )⊕ Dst(V )⊕ tV

(1−pϕ)−N
−−−−−−→ Dst(V )→ 0,

where tV := (V ⊗Qp (BdR/B+dR))
GK [Fontaine and Perrin-Riou 1994, I.2.2.1].

The cohomology of this complex is called H∗st(GK , V ). If V is semistable then
Cst(V )= Cst(Dst(V )); hence H∗(Cst(Dst(V )))= H∗st(GK , V ). If V is potentially
semistable, the groups H∗st(GK , V ) compute Yoneda extensions of Qp by V in the
category of potentially semistable representations [ibid., I.3.3.8]. In general [ibid.,
I.3.3.7], H 0

st(GK , V ) −→∼ H 0(GK , V ) and H 1
st(GK , V ) ↪→ H 1(GK , V ) computes

st-extensions6 of Qp by V.

Remark 2.7. Let D ∈ MFK (ϕ, N ). Note that:

(1) H 0(C(D))= Vst(D).

(2) For i ≥ 2, we have H i (C+(D))= H i (C(D))= 0 (because N is surjective on
B+st and Bst).

(3) If F1 DK = 0 then F0(DK ⊗K B+dR)= F0(DK ⊗K BdR) (in particular, the map
of complexes C+(D)→ C(D) is an injection).

(4) If D = Dst(V ) is admissible then we have quasi-isomorphisms

C(D)←−∼ V ⊗Qp [Bcr
(1−ϕ,can)
−−−−−→ Bcr⊕ BdR/F0

]←−∼ V ⊗Qp (B
ϕ=1
cr ∩ F0)= V

and the map of complexes Cst(D) → C(D) represents the canonical map
H i

st(GK , V )→ H i (GK , V ).

Lemma 2.8 [Fontaine 1994a, Theorem II.5.3]. If X ⊂ Bcr ∩ B+dR and ϕ(X) ⊂ X
then ϕ2(X)⊂ B+cr .

Proposition 2.9. If D ∈ MFK (ϕ, N ) and F1 DK = 0 then H 0(C(D)/C+(D))= 0.

6An extension 0→ V1→ V2→ V3→ 0 is called st if the sequence 0→ Dst(V1)→ Dst(V2)→
Dst(V3)→ 0 is exact.
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Proof. We will argue by induction on m such that N m
= 0. Assume first that m = 1

(hence N = 0). We have

C(D)/C+(D)

=


D⊗K0 (Bst/B+st )

(1−ϕ,can⊗ι)
//

1⊗N
��

D⊗K0 (Bst/B+st )⊕ DK ⊗K (BdR/B+dR)

(1⊗N ,0)
��

D⊗K0 (Bst/B+st )
1−pϕ

// D⊗K0 (Bst/B+st )


←−∼

[
D⊗K0 (Bcr/B+cr )

(1−ϕ,can)
−−−−−→ D⊗K0 (Bcr/B+cr )⊕ DK ⊗K (BdR/B+dR)

]
Write D =

⊕r
i=1 K0di and, for 1≤ i ≤ r , consider the maps

pi : H 0(C(D)/C+(D))= (D⊗K0 ((Bcr ∩ B+dR)/B+cr ))
ϕ=1

⊂

r⊕
i=1

di ⊗ ((Bcr ∩ B+dR)/B+cr )
pri
−→ (Bcr ∩ B+dR)/B+cr .

Let Ya , where a ∈ H 0(C(D)/C+(D)), denote the K0-subspace of (Bcr∩ B+dR)/B+cr
spanned by p1(a), . . . , pr (a). For M ∈ GLr (K0), we have (p1(a), . . . , pr (a))T =
Mϕ(p1(a), . . . , pr (a))T. Hence ϕ(Ya) ⊂ Ya . Let Xa ⊂ Bcr ∩ B+dR be the in-
verse image of Ya under the projection Bcr ∩ B+dR → (Bcr ∩ B+dR)/B+cr (naturally
B+cr ⊂ Xa). Then ϕ(Xa) ⊂ Xa + B+cr = Xa . By the above lemma, ϕ2(Xa) ⊂ B+cr .
Hence ϕ2(Ya)= 0 and (applying M−2) Ya = 0. This implies that a = 0 and
H 0(C(D)/C+(D))= 0, as wanted.

For general m > 0, consider the filtration D1 ⊂ D, where D1 := ker(N ) with
induced structures. Set D2 := D/D1 with induced structures. Then D1, D2 ∈

MFK (ϕ, N ); N i is trivial on D1 for i = 1 and on D2 for i = m − 1. Clearly
F1 D1,K = F1 D2,K = 0. Hence, by Remark 2.7.3, we have a short exact sequence

0→ C(D1)/C+(D1)→ C(D)/C+(D)→ C(D2)/C+(D2)→ 0.

By the inductive assumption, H 0(C(D1)/C+(D1)) = H 0(C(D2)/C+(D2)) = 0.
Hence H 0(C(D)/C+(D))= 0, as wanted. �

Corollary 2.10. If D ∈ MFK (ϕ, N ) and F1 DK = 0 then

H 0(C+(D))= H 0(C(D))= Vst(D) (⊂ D⊗K0 B+st )

and H 1(C+(D)) ↪→ H 1(C(D)).

Corollary 2.11. If D ∈ MFad
K (ϕ, N ) and F1 DK = 0 then

H i (C+(D))= H i (C(D))=
{

Vst(D) if i = 0,
0 if i 6= 0

(i.e., C+(D)−→∼ C(D)).
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A filtered (ϕ, N ,GK )-module is a tuple (D, ϕ, N , ρ, F •), where

(1) D is a finite-dimensional K nr
0 -vector space;

(2) ϕ : D→ D is a Frobenius map;

(3) N : D→ D is a K nr
0 -linear monodromy map such that Nϕ = pϕN ;

(4) ρ is a K nr
0 -semilinear GK -action on D (hence ρ|IK is linear) that is smooth,

i.e., all vectors have open stabilizers, and that commutes with ϕ and N ;

(5) F • is a decreasing finite filtration of DK := (D⊗K nr
0

K )GK by K-vector spaces.

Morphisms between filtered (ϕ, N ,GK )-modules are K nr
0 -linear maps preserving all

structures. There is a notion of a (weakly) admissible filtered (ϕ, N ,GK )-module
[Colmez and Fontaine 2000; Fontaine 1994b]. Denote by MFad

K (ϕ, N ,GK ) ⊂

MFK (ϕ, N ,GK ) the categories of admissible filtered (ϕ, N ,GK )-modules and
filtered (ϕ, N ,GK )-modules, respectively. We know [Colmez and Fontaine 2000]
that the pair of functors Dpst(V ) = inj limH (Bst ⊗Qp V )H , where H ⊂ GK is an
open subgroup, and Vpst(D)= (Bst⊗K nr

0
D)ϕ=Id,N=0

∩ F0(BdR⊗K DK ) define an
equivalence of categories MFad

K (ϕ, N ,GK )' Reppst(GK ).
For D ∈ MFK (ϕ, N ,GK ), set7

Cpst(D) :=


Dst

N
��

(1−ϕ,can)
// Dst⊕ DK /F0

(N ,0)
��

Dst
1−pϕ

// Dst

.
Here Dst := DGK. Consider also the following complex (we set DK := D⊗K nr

0
K ):

C+(D) :=


D⊗K nr

0
B+st

N
��

(1−ϕ,can⊗ι)
// (D⊗K nr

0
B+st )⊕ (DK ⊗K B+dR)/F0

(N ,0)
��

D⊗K nr
0

B+st
1−pϕ

// D⊗K nr
0

B+st

.
Define C(D) by omitting the superscript + in the above diagram. We have
Cpst(D)= C(D)GK .

Remark 2.12. If V is potentially semistable then Cst(V )= Cpst(Dpst(V )); hence
H∗(Cpst(Dpst(V )))= H∗st(GK , V ).

Remark 2.13. If D = Dpst(V ) is admissible then we have quasi-isomorphisms

C(D)←−∼ V ⊗Qp [Bcr
(1−ϕ,can)
−−−−−→ Bcr⊕ BdR/F0

]←−∼ V ⊗Qp (B
ϕ=1
cr ∩ F0)= V

7We hope that the notation below will not lead to confusion with the semistable case in general,
but if in doubt we will add the data of the field K in the latter case.
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and the map of complexes Cpst(D)→ C(D) represents the canonical map

H i
st(GK , V )→ H i (GK , V ).

Remark 2.14. Let D = Dpst(V ) be admissible. The Bloch–Kato exponential

(Z1C(D))GK → H 1(GK , V )

is given by the coboundary map arising from the exact sequence

0→ V → C0(D)→ Z1C(D)→ 0.

Its restriction to the de Rham part of Z1C(D) is the Bloch–Kato exponential

expBK : DK /F0
→ H 1(GK , V ).

It is also obtained by applying R f , where f (−)= (−)GK, to the coboundary map
∂ : Z1C(D) → V [1] arising from the above exact sequence (see the proof of
Theorem 4.8 for an appropriate formalism of continuous cohomology). Note that
the composition of the canonical maps

Z1C(D)→ (σ≥1C(D))[1] → C(D)[1]←−∼ V [1]

is not equal to ∂ , but to −∂ , by (18).

Corollary 2.15. If D ∈ MFad
K (ϕ, N ,GK ) and F1 DK = 0 then

H i (C+(D))−→∼ H i (C(D))=
{

Vpst(D) if i = 0,
0 if i 6= 0

(i.e., C+(D)−→∼ C(D)).

Proof. By Remark 2.13 we have C(D) ' Vpst(D)[0]. To prove the isomorphism
H i (C+(D))−→∼ H i (C(D)), i ≥ 0, take a finite Galois extension K ′/K such that D
becomes semistable over K ′, i.e., IK ′ acts trivially on D. We have (D′, ϕ, N ) ∈
MFad

K ′(ϕ, N ), where D′ := DG K ′ and (compatibly) D ' D′⊗K ′0 K nr
0 and F •D′K ′ '

F •DK ⊗K K ′. It easily follows that C+(D)= C+(K ′, D′) and C(D)= C(K ′, D′).
Since F1 D′K ′ = 0, our corollary is now a consequence of Corollary 2.11. �

Proposition 2.16. If D ∈ MFad
K (ϕ, N ,GK ) and F1 DK = 0 then, for i ≥ 0, the

natural map
H i

st(GK , Vpst(D))−→∼ H i (GK , Vpst(D))

is an isomorphism.

Proof. Both sides satisfy Galois descent for finite Galois extensions. We can assume,
therefore, that D = Dst(V ) for a semistable representation V of GK . For i = 0, we
have (even without assuming F1 DK = 0)

H 0(Cst(D))= H 0(C(D)GK )= H 0(C(D))GK = V GK.



Syntomic cohomology and p -adic regulators for varieties over p -adic fields 1715

For i = 1, the statement is proved in [Berger 2002, Théorème 6.2, Lemme 6.5].
For i = 2, it follows from the assumption F1 DK = 0 (by weak admissibility of D)
that there is a W (k)-lattice M ⊂ D such that ϕ−1(M)⊂ p2 M , which implies that
1− pϕ=−pϕ(1− p−1ϕ−1) : D→ D is surjective, and hence H 2(Cst(D))= 0 (see
the proof of [Berger 2002, Lemme 6.7]). The proof of the fact that H 2(GK , V )= 0
if F1 DK = 0 was kindly communicated to us by L. Berger; it is reproduced in
Appendix A (see Theorem A.1). For i > 2, both terms vanish. �

2E. Comparison of spectral sequences. The purpose of this subsection is to prove
a derived category theorem (Theorem 2.18) that will be used later to relate the
syntomic descent spectral sequence with the étale Hochschild–Serre spectral se-
quence (see Theorem 4.8). Let D be a triangulated category and H : D→ A a
cohomological functor to an abelian category A. A finite collection of adjacent
exact triangles (a “Postnikov system” in the language of [Gelfand and Manin 2003,
IV.2, Exercise 2])

Y 0

��

Y 1

��

Y n

$$

X = X0

;;

X1

@@

[1]
oo X2

[1]
oo · · · Xn

@@

Xn+1
= 0

[1]
oo

(14)

gives rise to an exact couple

D p,q
1 = Hq(X p)= H(X p

[q]), E p,q
1 = Hq(Y p)⇒ H p+q(X).

The induced filtration on the abutment is given by

F p H p+q(X)= Im
(
D p,q

1 = Hq(X p)→ H p+q(X)
)
.

Remark 2.17. In the special case when A is the heart of a nondegenerate t-structure
(D≤n, D≥n) on D and H = τ≤0τ≥0, the following conditions are equivalent:

(1) E p,q
2 = 0 for p 6= 0.

(2) D p,q
2 = 0 for all p, q .

(3) D p,q
r = 0 for all p, q and r > 1.

(4) The sequence 0→Hq(X p)→Hq(Y p)→Hq(X p+1)→0 is exact for all p, q .

(5) The sequence 0→ Hq(X)→ Hq(Y 0)→ Hq(Y 1)→··· is exact for all q.

(6) The canonical map Hq(X)→ E •,q1 is a quasi-isomorphism for all q .

(7) The triangle τ≤q X p
→ τ≤qY p

→ τ≤q X p+1 is exact for all p, q .

From now on until the end of Section 2E assume that D = D(A) is the derived
category of A with the standard t-structure and that X i , Y i

∈ D+(A) for all i .
Furthermore, assume that f : A→ A′ is a left exact functor to an abelian category A′
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and that A admits a class of f -adapted objects (hence the derived functor R f :
D+(A)→ D+(A′) exists).

Applying R f to (14), we obtain another Postnikov system, this time in D+(A′).
The corresponding exact couple

ID p,q
1 = (Rq f )(X p), IE p,q

1 = (Rq f )(Y p)⇒ (Rp+q f )(X) (15)

induces the filtration

IF p(Rp+q f )(X)= Im
(ID p,q

1 = (Rq f )(X p)→ (Rp+q f )(X)
)
.

Our goal is to compare (15), under the equivalent conditions in Remark 2.17, to the
hypercohomology exact couple

IID p,q
2 = (Rp+q f )(τ≤q−1 X), IIE p,q

2 = (Rp f )(Hq(X))⇒ (Rp+q f )(X) (16)

for which

IIF p(Rp+q f )(X)= Im
(IID p−1,q+1

2 = (Rp+q f )(τ≤q X)→ (Rp+q f )(X)
)
.

Theorem 2.18. Under the conditions in Remark 2.17, there is a natural morphism
of exact couples

(u, v) : (ID2,
IE2)→ (IID2,

IIE2).

Consequently, we have IF p
⊆

IIF p for all p and there is a natural morphism of
spectral sequences IE∗,∗r →

IIE∗,∗r (r > 1) compatible with the identity map on the
common abutment.

Proof. Step 1: We begin by constructing a natural map u : ID2→
IID2.

For each p > 0, there is a commutative diagram in D+(A′)

(Rp+q f )((τ≤qY p−1)[−p]) //

o

��

(Rp+q f )((τ≤q X p)[−p]) //

o

��

(Rp+q f )(τ≤q X)

αII

��IE p−1,q
1 =

(Rp+q f )(Y p−1
[−p])

k1
//

ID p,q
1 =

(Rp+q f )(X p
[−p])

u′
66

αI
// (Rp+q f )(X)

both of whose rows are complexes. This defines a map u′ : ID p,q
1 →

IID p−1,q+1
2

such that u′k1 = 0 and αII u′ = αI (hence IF p
= Im(αI ) ⊆ Im(αII ) =

IIF p). By
construction, the diagram (with exact top row)

IE p,q−1
1

k1
//

0

%%

ID p+1,q−1
1

i1
//

u′

��

ID p,q
1

u′
��

IID p,q
2

i2
// IID p−1,q+1

2
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is commutative for each p ≥ 0, which implies that the map

u = u′i−1
1 :

ID p,q
2 = i1(

ID p+1,q−1
1 )→ IID p,q

2

is well-defined and satisfies ui2 = i2u.

Step 2: For all q , the canonical quasi-isomorphism Hq(X)→ E •,q1 induces natural
morphisms

v′ : IE p,q
2 = H p(i 7→ (Rq f )(Y i ))→ H p(i 7→ f (Hq(Y i )))→ (Rp f )(i 7→ Hq(Y i ))

= (Rp f )(E •,q1 )←−∼ (Rp f )(Hq(X))= IIE p,q
2 ;

set v = (−1)pv′ : IE p,q
2 →

IIE p,q
2 .

It remains to show that u and v are compatible with the maps

?D p−1,q+1
2

j2
−→

?E p,q
2

k2
−→

?D p+1,q
2 (?= I, I I ).

Step 3: For any complex M • over A, denote by Z i (M •) = Ker(δi
: M i
→ M i+1)

the subobject of cycles in degree i .
If M • is a resolution of an object M of A, then each exact sequence

0−→ Z p(M •)−→ M p δ p
−→ Z p+1(M •)−→ 0 (p ≥ 0) (17)

can be completed to an exact sequence of resolutions

0 // Z p(M •) //

can
��

M p //

can
��

Z p+1(M •) //

−can
��

0

0 // (σ≥p(M •))[p] // (σ≥pCone(M • id
−→M •))[p] // (σ≥p+1(M •))[p+1] // 0

By induction, we obtain that the following diagram, whose top arrow is the com-
position of the natural maps Z i

→ Z i−1
[1] induced by (17), commutes in D+(A):

Z p(M •) //

can
��

Z0(M •)[p] = M[p]
(−1)p can
��

(σ≥p(M •))[p] can
// M •
[p]

(18)

We are going to apply this statement to M=Hq(X) and M •
= E •,q1 , when Z p(M •)=

D p,q
1 = Hq(X p) and Z0(M •)= Hq(X).

Step 4: We are going to investigate IE p,q
2 .

Complete the morphism Y p
→ Y p+1 to an exact triangle U p

→ Y p
→ Y p+1 in

D+(A) and fix a lift X p
→U p of the morphism X p

→ Y p.
There are canonical epimorphisms

(Rq f )(U p)� Ker((Rq f )(Y p)
j1k1
−−→ (Rq f )(Y p+1))= Z p(IE •,q1 )� IE p,q

2 , (19)
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and the map

k2 :
IE p,q

2 →
ID p+1,q

2 = Ker(ID p+1,q
1

j1
−→

IE p+1,q
1 )

is induced by the restriction of k1 :
IE p,q

1 →
ID p+1,q

1 to Z p(IE •,q1 ).
The octahedron (in which we have drawn only the four exact faces)

X p+2

[1] $$

Y p+1oo

X p+1

::

zz

X p
[1]

[1]
// Y p

dd

X p+2

[1]

��

Y p+1

zz

U p
[1]

ee

[1]

$$

X p
[1]

99

Y p

OO

shows that the triangle X p
→U p

→ X p+2
[−1] is exact and the diagrams

U p
[1] //

��

Y p
[1]

��

X p+2 // X p+1
[1]

(Rq f )(U p) //

��

Z p(IE •,q1 )

k1
��

(Rq f )(X p+2
[−1])= ID p+2,q−1

2
i1
// ID p+1,q

2

commute. The previous discussion implies that the composite map

(Rq f )(U p)� Z p(IE •,q1 )� IE p,q
2

k2
−→

ID p+1,q
2

u
−→

IID p+1,q
2 = (Rq f )((τ≤q−1 X)[p+ 1])

is obtained by applying Rq f to

τ≤q U p
→ τ≤q(X p+2

[−1])= (τ≤q−1 X p+2)[−1] → (τ≤q−1 X)[p+ 1]. (20)

Step 5: All boundary maps Hq(X p+2
[−1])→ Hq(X p) vanish by Remark 2.17,

which means that the following triangles are exact:

τ≤q X p
→ τ≤q U p

→ τ≤q(X p+2
[−1])= (τ≤q−1 X p+2)[−1].

The commutative diagram

τ≤q U p // Hq(U p)[−q] // Ker
(
Hq(Y p)→ Hq(Y p+1)

)
[−q]

τ≤q X p //

OO

Hq(X p)[−q]

OO
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gives rise to an octahedron

V p

[1] &&

Hq(X p)[−q]oo

τ≤q U p

99

xx

τ≤q(X p+2
[−1])

[1]
// τ≤q X p

ee

V p

[1]

��

Hq(X p)[−q]

ww

(τ≤q−1 X p)[1]

ee

[1]

((
X p
[1]

99

Y p

OO

In particular, the following diagram commutes:

τ≤q U p //

��

Hq(X p)[−q]

��

τ≤q(X p+2
[−1]) // (τ≤q−1 X p)[1]

(21)

Step 6: The diagram (18) implies that the composition of v : IE p,q
2 →

IIE p,q
2 with

the second epimorphism in (19) is equal to the composite map

Z p(IE •,q1 )=Ker
(
(Rq f )(τ≤q Y p)→ (Rq f )(τ≤q Y p+1)

)
→Ker

(
(Rq f )(Hq(Y p)[−q])→ (Rq f )(Hq(Y p+1)[−q])

)
= (Rq f )(Z p(E •,q1 )[−q])→ (Rq f )(Z0(E •,q1 )[−q+p])

= (Rp f )(Hq(X))= IIE p,q
2 .

As a result, the composition of v with (19) is obtained by applying Rq f to

τ≤q U p
→ Hq(X p)[q] → Hq(X)[−q + p]. (22)

Consequently, the composite map

ID p,q
1 = (Rq f )(τ≤q X p)

j1
−→ Z p(IE •,q1 )� IE p,q

2
v
−→

IIE p,q
2

is given by applying Rq f to

τ≤q X p
→ Hq(X p)[q] → Hq(X)[−q + p],

and hence is equal to j2u′. It follows that v j2 = v j1i−1
1 = j2u′i−1

1 = j2u.

Step 7: The diagram (21) implies that the map (20) coincides with the composition
of (22) with the canonical map Hq(X)[−q + p] → (τ≤q−1 X)[p + 1]; hence
uk2 = k2v. Thus the theorem is proved. �

Example 2.19. If K • is a bounded-below filtered complex over A (with a finite
filtration)

K • = F0K • ⊃ F1K • ⊃ · · · ⊃ Fn K • ⊃ Fn+1K • = 0,
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then the objects

X p
= F p K •[p], Y p

= (F p K •/F p+1K •)[p] = grp
F (K

•)[p] ∈ D+(A)

form a Postnikov system of the kind considered in (14). The corresponding spectral
sequences are equal to

E p,q
1 = H p+q(grp

F (K
•))⇒ H p+q(K •),

IE p,q
1 = (Rp+q f )(grp

F (K
•))⇒ (Rp+q f )(K •).

In the special case when K • is the total complex associated to a first quadrant
bicomplex C •,• and the filtration F p is induced by the column filtration on C •,•, then
the complex f (K •) over A′ is equipped with a canonical filtration ( f F p)( f (K •))=
f (F p K •) satisfying

grp
f (F)( f (K •))= f (grp

F (K
•)).

Under the conditions in Remark 2.17, the corresponding exact couple

f D p,q
1 = H p+q( f (F p K •)),

f E p,q
1 = H p+q(grp

f (F)( f (K •)))= H p+q( f (grp
F (K

•)))⇒ H p+q( f (K •))

then naturally maps to the exact couple (15), hence (beginning from (D2, E2)) to
the exact couple (16), by Theorem 2.18.

3. Syntomic cohomology

In this section we will define the arithmetic and geometric syntomic cohomologies
of varieties over K and K, respectively, and study their basic properties.

3A. Hyodo–Kato morphism revisited. We will need to use the Hyodo–Kato mor-
phism on the level of derived categories and vary it in the h-topology. Recall that
the original morphism depends on the choice of a uniformizer and a change of such
is encoded in a transition function involving the exponential of the monodromy.
Since the fields of definition of semistable models in the bases for the h-topology
change, we will need to use these transition functions. The problem though is that
in the most obvious (i.e., crystalline) definition of the Hyodo–Kato complexes the
monodromy is (at best) homotopically nilpotent — making the exponential in the
transition functions impossible to define. Beilinson [2013] solves this problem by
representing Hyodo–Kato complexes using modules with nilpotent monodromy. In
this subsection we will summarize what we need from his approach.

We begin with a quick reminder. Let (U,U ) be a log-scheme, log-smooth
over V×. For any r ≥ 0, consider its absolute (meaning over W (k)) log-crystalline
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cohomology complexes

R0cr(U,U,J [r ])n := R0(U ét,RuU×n /Wn(k)∗J
[r ]

U×n /Wn(k)
),

R0cr(U,U,J [r ]) := holimn R0cr(U,U,J [r ])n,

R0cr(U,U,J [r ])Q := R0cr(U,U,J [r ])⊗Qp,

where U× denotes the log-scheme (U,U ) and uU×n /Wn(k) : (U
×
n /Wn(k))cr→ U ét

is the projection from the log-crystalline to the étale topos. For r ≥ 0, we write
J
[r ]

U×n /Wn(k)
for the r-th divided power of the canonical PD-ideal JU×n /Wn(k); for

r ≤ 0, we set

J
[r ]

U×n /Wn(k)
:= OU×n /Wn(k)

and we will often omit it from the notation. The absolute log-crystalline cohomol-
ogy complexes are filtered E∞ algebras over Wn(k), W (k), or K0, respectively.
Moreover, the rational ones are filtered commutative dg algebras.

Remark 3.1. The canonical pullback map

R0(U ét,RuU×n /Wn(k)∗J
[r ]

U×n /Wn(k)
)−→∼ RuU×n /Z/pn∗J

[r ]
U×n /Z/pn

is a quasi-isomorphism. In what follows we will often call both the “absolute
crystalline cohomology”.

Let W (k)〈tl〉 be the divided-powers polynomial algebra generated by elements tl ,
l ∈mK /m

2
K \ {0}, subject to the relations tal = [ā]tl for a ∈ V ∗, where [ā] ∈W (k)

is the Teichmüller lift of ā — the reduction mod mK of a. Let RV (or simply R) be
the p-adic completion of the subalgebra of W (k)〈tl〉 generated by tl and t ieK

l / i !,
i ≥ 1. For a fixed l, the ring R is the following W (k)-subalgebra of K0[[tl]]:

R =
{ ∞∑

i=0

ai
t i
l

bi/eK c!

∣∣∣∣ ai ∈W (k), lim
i→∞

ai = 0
}
.

One extends the Frobenius ϕR (semilinearly) to R by setting ϕR(tl)= t p
l and defines

a monodromy operator NR as a W (k)-derivation by setting NR(tl) = −tl . Let
E := Spec(R) equipped with the log-structure generated by the tl .

We have two exact closed embeddings

i0 :W (k)0 ↪→ E, iπ : V× ↪→ E .

The first one is canonical and induced by tl 7→ 0. The second one depends on the
choice of the class of the uniformizing parameter π ∈mK /pmK up to multiplication
by Teichmüller elements. It is induced by tl 7→ [l/π ]π .
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Assume (U,U ) is of Cartier type (i.e., the special fiber U 0 is of Cartier type). Con-
sider the log-crystalline and the Hyodo–Kato complexes (see [Beilinson 2013, 1.16])

R0cr((U,U )/R,J [r ])n := R0cr((U,U )n/Rn,J
[r ]

U n/Rn
),

R0HK(U,U )n := R0cr((U,U )0/Wn(k)0).

Let R0cr((U,U )/R,J [r ]) and R0HK(U,U ) be their homotopy inverse limits. The
last complex is called the Hyodo–Kato complex. The complex R0cr((U,U )/R) is
R-perfect and

R0cr((U,U )/R)n ' R0cr((U,U )/R)⊗L
R Rn ' R0cr((U,U )/R)⊗L Z/pn.

In general, we have R0cr((U,U )/R,J [r ])n ' R0cr((U,U )/R,J [r ]) ⊗L Z/pn.
The complex R0HK(U,U ) is W (k)-perfect and

R0HK(U,U )n ' R0HK(U,U )⊗L
W (k) Wn(k)' R0HK(U,U )⊗L Z/pn.

We normalize the monodromy operators N on the rational complexes R0HK(U,U )Q
and R0cr((U,U )/R)Q by replacing the standard N [Hyodo and Kato 1994, 3.6]
by NR := e−1

K N. This makes them compatible with base change. The embedding
i0 : (U,U )0 ↪→ (U,U ) over i0 : Wn(k)0 ↪→ En yields compatible morphisms
i∗0,n : R0cr((U,U )/R)n→ R0HK(U,U )n . Completing, we get a morphism

i∗0 : R0cr((U,U )/R)→ R0HK(U,U ),

which induces a quasi-isomorphism i∗0 :R0cr((U,U )/R)⊗L
R W (k)−→∼ R0HK(U,U ).

All the above objects have an action of Frobenius and these morphisms are com-
patible with Frobenius. The Frobenius action is invertible on R0HK(U,U )Q.

The map i∗0 : R0cr((U,U )/R)Q→ R0HK(U,U )Q admits a unique (in the clas-
sical derived category) W (k)-linear section ιπ [Beilinson 2013, 1.16; Tsuji 1999,
Proposition 4.4.6] that commutes with ϕ and N. The map ιπ is functorial and its
R-linear extension is a quasi-isomorphism

ιπ : R⊗W (k) R0HK(U,U )Q −→∼ R0cr((U,U )/R)Q.

The composition (the Hyodo–Kato map)

ιdR,π := γ
−1
r i∗π · ιπ : R0HK(U,U )Q→ R0dR(U,U K ),

where
γ−1

r : R0cr(U,U,O/J [r ])Q −→
∼ R0dR(U,U K )/Fr

is the quasi-isomorphism from Corollary 2.4, induces a K-linear functorial quasi-
isomorphism (the Hyodo–Kato quasi-isomorphism) [Tsuji 1999, Theorem 4.4.8,
Corollary 4.4.13]

ιdR,π : R0HK(U,U )⊗W (k) K −→∼ R0dR(U,U K ). (23)
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We now describe the Beilinson–Hyodo–Kato morphism and provide a few
examples. Let Sn = Spec(Z/pn) equipped with the trivial log-structure and let
S = Spf(Zp) be the induced formal log-scheme. For any log-scheme Y → S1, let
Dϕ((Y/S)cr,OY/S) denote the derived category of Frobenius OY/S-modules and
Dpcr
ϕ (Y/S) its thick subcategory of perfect F-crystals, i.e., those Frobenius modules

that are perfect crystals [Beilinson 2013, 1.11]. We call a perfect F-crystal (F , ϕ)
nondegenerate if the map Lϕ∗(F )→F is an isogeny. The corresponding derived
category is denoted by Dpcr

ϕ (Y/S)nd. It has a dg category structure [Beilinson 2013,
1.14] that we denote by D

pcr
ϕ (Y/S)nd. We will omit S if understood.

Suppose now that Y is a fine log-scheme that is affine. Assume also that there is
a PD-thickening P = Spf R of Y that is formally smooth over S and such that R is
a p-adically complete ring with no p-torsion. Let f : Z→ Y be a log-smooth map
of Cartier type with Z fine and proper over Y. Beilinson [2013, 1.11, 1.14] proves
the following theorem.

Theorem 3.2. The complex F := R fcr ∗(OZ/S) is a nondegenerate perfect F-crystal.

Let Dϕ,N (K0) denote the bounded derived category of (ϕ, N )-modules. By
[Beilinson 2013, 1.15], it has a dg category structure that we will denote by
Dϕ,N (K0). We call a (ϕ, N )-module effective if it contains a W (k)-lattice preserved
by ϕ and N. Denote by Dϕ,N (K0)

eff
⊂ Dϕ,N (K0) the bounded derived category of

the abelian category of effective modules.
Let f : Y → k0 be a log-scheme. We think of k0 as W (k)×1 . Then the map f

is given by a k-structure on Y plus a section l = f ∗( p̄) ∈ 0(Y,MY ) such that its
image in 0(Y,OY ) equals 0. We will often write f = fl , l = l f .

Beilinson [2013, 1.15] proves the following theorem.

Theorem 3.3. (1) There is a natural functor

ε f = εl : Dϕ,N (K0)
eff
→ Dpcr

ϕ (Y )nd
⊗Q. (24)

(2) ε f is compatible with base change; i.e., for any θ :Y ′→Y , one has a canonical
identification ε f θ −→

∼ Lθ∗crε f . For any a ∈ k∗,m ∈ Z>0, there is a canonical
identification εalm (V, ϕ, N )−→∼ εl(V, ϕ,m N ).

(3) Suppose that Y is a local scheme with residue field k and nilpotent maximal
ideal, MY /O

∗

Y = Z>0, and the map f ∗ : Mk0/k∗→ MY /O
∗

Y is injective. Then
(24) is an equivalence of dg categories.

In particular, we have an equivalence of dg categories

ε := ε p̄ : Dϕ,N (K0)
eff
−→∼ Dpcr

ϕ (k0)nd
⊗Q

and a canonical identification ε f = L f ∗crε.
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On the level of sections, the functor (24) has a simple description [Beilinson
2013, 1.15.3]. Assume that Y = Spec(A/J ), where A is a p-adic algebra and J
is a PD-ideal in A, and that we have a PD-thickening i : Y ↪→ T = Spf(A). Let
λl,n be the preimage of l under the map 0(Tn,MTn )→ i∗0(Y,MY ). It is a trivial
(1+ Jn)

×-torsor. Set
λA := lim

←−n
0(Tn, λl,n).

It is a (1+ J )×-torsor. Let τAQ
be the Fontaine–Hyodo–Kato torsor, i.e., the AQ-

torsor obtained from λA by the pushout by (1+ J )× log
−→ J → AQ. We call the

Ga-torsor Spec Aτ
Q

over Spec AQ with sections τAQ
the same name. Denote by Nτ

the AQ-derivation of Aτ
Q

given by the action of the generator of LieGa .
Let M be an (ϕ, N )-module. Integrating the action of the monodromy NM , we get

an action of the group Ga on M . Denote by Mτ
AQ

the τAQ
-twist of MAQ

:=M⊗K0 AQ.
It can be represented as the module of maps v : τAQ

→MAQ
that are AQ-equivariant,

i.e., such that v(τ+a)= exp(aN )(v(τ )), where τ ∈ τAQ
, a ∈ AQ. We can also write

Mτ
AQ
= (M ⊗K0 AτQ)

Ga = (M ⊗K0 AτQ)
N=0,

where N := NM ⊗ 1+ 1⊗ Nτ . Now, by definition,

ε f (M)(Y, T )= Mτ
AQ
. (25)

The algebra Aτ
Q

has a concrete description. Take the natural map a : τAQ
→ Aτ

Q
of

AQ-torsors which maps τ ∈ τAQ
to a function a(τ )∈ Aτ

Q
whose value on any τ ′∈ τAQ

is τ − τ ′ ∈ AQ. This map is compatible with the logarithm log : (1+ J )×→ A.
The algebra AτAQ

is freely generated over AQ by a(τ ) for any τ ∈ τAQ
; the

AQ-derivation Nτ is defined by Nτ (a(τ )) = −1. That is, for chosen τ ∈ τAQ
,

we can write
AτQ = AQ[a(τ )], Nτ (a(τ ))=−1.

For every lifting ϕT of Frobenius to T, we have ϕ∗TλA = λ
p
A. Hence ϕT extends

canonically to a Frobenius ϕτ on Aτ
Q

in such a way that Nτϕτ = pϕτ Nτ . The
isomorphism (25) is compatible with Frobenius.

Example 3.4. As an example, consider the case when the pullback map

f ∗ :Q= (Mk0/k∗)gp
⊗Q−→∼ (0(Y,MY )/k∗)gp

⊗Q

is an isomorphism. We have a surjection v : (0(T,MT )/k∗)gp
⊗Q→Q with the

kernel log : (1+ J )×
Q
−→∼ JQ= AQ. We obtain an identification of AQ-torsors τAQ

'

v−1(1). Hence every noninvertible t ∈ 0(T,MT ) yields an element t1/v(t)
∈ v−1(1)

and a trivialization of τAQ
.

For a fixed element t1/v(t)
∈ v−1(1), we can write

AτAQ
= AQ[a(t1/v(t))

], Nτ (a(t1/v(t)))=−1.
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For an (ϕ, N )-module M , the twist Mτ
AQ

can be trivialized:

βt : M ⊗K0 AQ −→
∼ Mτ

AQ
= (M ⊗K0 AQ[a(t1/v(t))])N=0,

m 7→ exp(NM(m)a(t1/v(t))).

For a different choice t1/v(t1)
1 ∈ v−1(1), the two trivializations βt , βt1 are related by

the formula

βt1 = βt exp(NM(m)a(t1, t)), a(t1, t)= a(t1)/v(t1)− a(t)/v(t).

Consider the map f : V×1 → k0. By Theorem 3.3, we have the equivalences of
dg categories

ε : Dϕ,N (K0)
eff
−→∼ Dpcr

ϕ (k0)nd
⊗Q,

ε f = L f ∗crε : Dϕ,N (K0)
eff
−→∼ Dpcr

ϕ (V×1 )
nd
⊗Q.

Let Z1 → V×1 be a log-smooth map of Cartier type with Z1 fine and proper
over V1. By Theorem 3.2, R fcr ∗(OZ1/Zp) is a nondegenerate perfect F-crystal
on V1,cr. Set

R0B
HK(Z1) := ε

−1
f R fcr ∗(OZ1/Zp)Q ∈ Dϕ,N (K0).

We will call it the Beilinson–Hyodo–Kato complex [Beilinson 2013, 1.16.1].

Example 3.5. To get familiar with the Beilinson–Hyodo–Kato complexes we will
work out some examples.

(1) Let g : X → V× be a log-smooth log-scheme, proper, and of Cartier type.
Adjunction yields a quasi-isomorphism

ε f R0B
HK(X1)= ε f ε

−1
f Rgcr ∗(OX1/Zp)Q −→

∼ Rgcr ∗(OX1/Zp)Q. (26)

Evaluating it on the PD-thickening V×1 ↪→ V× (here A = V, J = pV, l = p̄,
λV = p(1+ J )×, and τK = p(1+ J )××(1+J )× K ), we get a map

R0B
HK(X1)

τ
K = ε f R0B

HK(X1)(V×1 ↪→ V×)−→∼ Rgcr ∗(OX1/Zp)(V
×

1 ↪→ V×)Q

= R0cr(X1/V×)Q ' R0cr(X/V×)Q ' R0dR(X K ).

We will call it the Beilinson–Hyodo–Kato map [Beilinson 2013, 1.16.3]

ιBdR : R0
B
HK(X1)

τ
K −→
∼ R0dR(X K ). (27)

Recall that

R0B
HK(X1)

τ
K = (R0

B
HK(X1)⊗K0 K [a(τ )])N=0, τ ∈ τK .

This makes it clear that the Beilinson–Hyodo–Kato map is not only functorial for
log-schemes over V× but, by Theorem 3.3, it is also compatible with base change
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of V×. Moreover, if we use the canonical trivialization by p

β = βp : R0B
HK(X1)K −→

∼ R0B
HK(X)

τ
K = (R0

B
HK(X1)⊗K0 K [a(p)])N=0,

x 7→ exp(N (x)a(p)),

we get that the composition (which we also call the Beilinson–Hyodo–Kato map
and denote by ιBdR)

ιBdR = ι
B
dRβ : R0

B
HK(X1)→ R0dR(X K )

is functorial and compatible with base change.

(2) Evaluating the map (26) on the PD-thickening V×1 ↪→ E associated to a uni-
formizer π (here A = R, l = p̄), we get a map

κR : R0B
HK(X1)

τ
RQ
−→∼ R0cr(X/R)Q (28)

as the composition

R0B
HK(X1)

τ
RQ
= ε f R0B

HK(X1)(V×1 ↪→ E)−→∼ Rgcr ∗(OX1/Zp)(V
×

1 ↪→ E)Q

= R0cr(X1/R)Q ' R0cr(X/R)Q.

We have

R0B
HK(X1)

τ
RQ
= (R0B

HK(X1)⊗K0 RQ[a(τ )])N=0, τ ∈ τRQ
.

Since the map κR is compatible with the log-connection on R it is also compatible
with the normalized monodromy operators. Specifically, if we define the monodromy
on the left-hand side of (28) as

N : R0B
HK(X1)

τ
RQ
→ R0B

HK(X1)
τ
RQ
,∑

I

mτI ⊗ rτI a
kI (τI ) 7→

∑
I

(NM(mτI )⊗ rτI a
kI (τI )+mτI ⊗ NR(rτI )a

kI (τI )),

the two operators will correspond under the map κR .
The exact immersion iπ : V× ↪→ E yields a commutative diagram

R0B
HK(X1)

τ
RQ

∼
//

i∗π
��

R0cr(X/R)Q

i∗π
��

R0B
HK(X1)

τ
K

∼
// R0cr(X/V×)Q

If p= uπ eK , u ∈ V×, we have λR = ũteK
π (1+ J )×, where ũ ∈ R is such that ũ lifts u.

Alternatively, λR = [ū]teK
π (1+ J )×. We have the associated trivialization

βπ :R0B
HK(X1)⊗K0 RQ−→

∼ R0B
HK(X1)

τ
RQ
= (R0B

HK(X1)⊗K0 RQ[a(τπ )])N=0,

x 7→ exp(N (x)a(τπ )),
where τπ := [ū]teK

π .
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(3) Consider the log-scheme k0
1 : the scheme Spec(k) with the log-structure induced

by the exact closed immersion i : k0
1 ↪→ V×1 . We have the commutative diagram

X0
� � i

//

g0
��

X1

g
��

k0
1

f0   

� � i
// V×1

f
��

k0

The morphisms f, f0 map p̄ to p̄. By log-smooth base change we have a canonical
quasi-isomorphism Li∗Rgcr ∗(OX1/Zp)' Rg0 cr ∗(OX1/Zp). By Theorem 3.3 we have
the equivalence of dg categories

ε f0 : Dϕ,N (K0)
eff
−→∼ Dpcr

ϕ (k0
1)

nd
⊗Q, ε f0 = Li∗ε f .

This implies the natural quasi-isomorphisms

R0B
HK(X1)= ε

−1
f Rgcr ∗(OX1/Zp)Q ' ε

−1
f0

Li∗Rgcr ∗(OX1/Zp)Q

' ε−1
f0

Rg0 cr ∗(OX0/Zp)Q.

Hence, by adjunction,

ε f0R0B
HK(X1)= ε f0ε

−1
f0

Rg0 cr ∗(OX0/Zp)Q ' Rg0 cr ∗(OX0/Zp)Q.

We will evaluate both sides on the PD-thickening k0
1 ↪→ W (k)0. Here we write

the log-structure on W (k)0 as associated to the map 0(V×,MV×)→ k→ W (k),
a 7→ ā. We take A = W (k), l = p, J = pW (k), λW (k) = p̄(1+ pW (k))× and
τK0 = p̄(1+ pW (k))××(1+pW (k))× K0. We get a quasi-isomorphism

κ : R0B
HK(X1)

τ
K0
−→∼ R0HK(X)Q

as the composition

R0B
HK(X1)

τ
K0
= ε f0R0B

HK(X1)(k0
1 ↪→W (k)0)' Rg0 cr ∗(OX0/Zp)(k

0
1 ↪→W (k)0)Q

= R0cr(X0/W (k)0)Q = R0HK(X)Q.

To compare the monodromy operators on both sides of the map κ , note that by
Theorem 3.3, we have the canonical identification

Rg0 cr ∗(OX0/Zp)Q ' ε f0(R0
B
HK(X1), N )' ε p̄(R0B

HK(X1), eK N ).
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Hence, from the description of the Hyodo–Kato monodromy [1994, 3.6], it follows
easily that the map κ pairs the operator N on R0B

HK(X1)
τ
K0

defined by

N
(∑

I

mτI ⊗ rτI a
kI (τI )

)
=

∑
I

(
NM(mτI )⊗ rτI a

kI (τI )+mτI ⊗ NR(rτI )a
kI (τI )

)
,

with the normalized Hyodo–Kato monodromy on R0HK(X)Q.
Composing the map κ with the trivialization

β = βp : R0B
HK(X1)−→

∼ R0B
HK(X1)

τ
K0
= (R0B

HK(X1)[a( p̄)])N=0,

x 7→ exp(N (x)a( p̄)),

we get a quasi-isomorphism between Beilinson–Hyodo–Kato complexes and the
(classical) Hyodo–Kato complexes:

κ = βκ : R0B
HK(X1)−→

∼ R0HK(X)Q. (29)

The trivialization above is compatible with Frobenius and the normalized mon-
odromy; hence so is the quasi-isomorphism (29). It is clearly functorial and, by
Theorem 3.3, compatible with base change.

By functoriality (Theorem 3.3), the morphism of PD-thickenings (exact closed
immersion) i0 : (k0

1 ↪→W (k)0) ↪→ (V×1 ↪→ R) yields the right square in the diagram

R0HK(X)Q
ιπ
// R0cr(X1/R)Q

i∗0
// R0HK(X)Q

R0B
HK(X1)

τ
K0

o κ

OO

ιπ
// R0B

HK(X1)
τ
RQ

o κR

OO

i∗0
// R0B

HK(X1)
τ
K0

o κ

OO

(30)

In the left square, the bottom map ιπ is induced by the natural map K0→ R and by
sending a( p̄) 7→ a(τπ ). It is a (right) section to i∗0 and it (together with the vertical
maps) commutes with Frobenius. By uniqueness of the top map ιπ this makes the
left square commute in the classical derived category (of abelian groups).

It is easy to check that we have the commutative diagram

R0B
HK(X1)

τ
K0

ιπ
// R0B

HK(X1)
τ
RQ

i∗π
// R0B

HK(X1)
τ
K

R0B
HK(X1)

βp o

OO

can
// R0B

HK(X1)K

βp o

OO

and that the composition of maps on the top of it is equal to the map induced by
the canonical map K0→ K and the map λW (k)0 → λ×V , p̄→ p.
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Combining the commutative diagrams in parts (2) and (3) of this example, we
get the commutative diagram

R0HK(X)
ιπ
// R0cr(X1/R)Q

i∗π
// R0cr(X1/V×)Q

R0B
HK(X1)

τ
K0

o κ

OO

ιπ
// R0B

HK(X1)
τ
RQ

i∗π
//

o κR

OO

R0B
HK(X1)

τ
K

o ιBdR

OO

R0B
HK(X1)

βp o

OO

can
// R0B

HK(X1)K

βp o

OO

Since the composition of the top maps is equal to the Hyodo–Kato map ιdR and
the bottom map is just the canonical map R0HK(X1)→ R0HK(X1)K , we obtain
that the Hyodo–Kato and the Beilinson–Hyodo–Kato maps are related by a natural
quasi-isomorphism; i.e., the following diagram commutes:

R0HK(X)
ιdR,π
// R0dR(X K )

R0B
HK(X1)

ιBdR

88

o κ

OO

(31)

The above examples can be generalized [Beilinson 2013, 1.16]. It turns out that
the relative crystalline cohomology of all the base changes of the map f can be
described using the Beilinson–Hyodo–Kato complexes [loc. cit., 1.16.2]. Namely,
let θ : Y → V×1 be an affine log-scheme and let T be a p-adic PD-thickening of Y ,
that is, T = Spf(A), Y = Spec(A/J ). Denote by fY : Z1Y → Y the θ -pullback of f .
Beilinson [2013, 1.16.2] proved the following theorem.

Theorem 3.6. (1) The A-complex R0cr(Z1Y /T,OZ1Y/T ) is perfect, and one has

R0cr(Z1Y /Tn,OZ1Y/Tn
)= R0cr(Z1Y /T,OZ1Y/T )⊗

L Z/pn.

(2) There exists a canonical Beilinson–Hyodo–Kato quasi-isomorphism of AQ-
complexes:

κ B
AQ
: R0B

HK(Z1)
τ
AQ
−→∼ R0cr(Z1Y /T,OZ1Y/T )Q.

If there is a Frobenius lifting ϕT , then κ B
AQ

commutes with its action.

3B. Log-syntomic cohomology. We will study now (rational) log-syntomic co-
homology. Let (U,U ) be log-smooth over V×. For r ≥ 0, define the mod pn ,
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completed, and rational log-syntomic complexes

R0syn(U,U, r)n := Cone(R0cr(U,U,J [r ])n
pr
−ϕ
−−→R0cr(U,U )n)[−1],

R0syn(U,U, r) := holimn R0syn(U,U, r)n,

R0syn(U,U, r)Q := Cone(R0cr(U,U,J [r ])Q
1−ϕr
−−→R0cr(U,U )Q)[−1].

(32)

Here the Frobenius ϕ is defined by the composition

ϕ :R0cr(U,U,J [r ])n→R0cr(U,U )n −→∼ R0cr((U,U )1/W (k))n
ϕ
−→R0cr((U,U )1/W (k))n←−∼ R0cr(U,U )n

and ϕr := ϕ/pr. The mapping fibers are taken in the∞-derived category of abelian
groups. The direct sums⊕

r≥0

R0syn(U,U, r)n,
⊕
r≥0

R0syn(U,U, r),
⊕
r≥0

R0syn(U,U, r)Q

are graded E∞ algebras over Z/pn , Zp, and Qp, respectively [Hinich and Schecht-
man 1987, Theorem 1.6]. The rational log-syntomic complexes are moreover graded
commutative dg algebras over Qp [Hinich and Schechtman 1987, Theorem 4.1;
Groth 2010, Perspective 3.22; Lurie 2016]. An explicit definition of syntomic
product structure can be found in [Tsuji 1999, Section 2.2].

We have R0syn(U,U, r)n ' R0syn(U,U, r)⊗L Z/pn. There is a canonical quasi-
isomorphism of graded E∞ algebras

R0syn(U,U, r)n −→∼ Cone(R0cr(U,U )n
(pr
−ϕ,can)

−−−−−→R0cr(U,U )n ⊕R0cr(U,U,O/J [r ])n)[−1].

The completed and rational cases are similar.
Since, by Corollary 2.4, there is a quasi-isomorphism

γ−1
r : R0cr(U,U,O/J [r ])Q −→

∼ R0dR(U,U K )/Fr,

we have a very nice canonical description of rational log-syntomic cohomology:

R0syn(U,U, r)Q
−→∼

[
R0cr(U,U )Q

(1−ϕr ,γ
−1
r )

−−−−−−→R0cr(U,U )Q⊕R0dR(U,U K )/Fr )
]
,

where square brackets stand for mapping fiber.

Remark 3.7. In the above definition, one can replace the map 1− ϕr with any
polynomial map P ∈ 1+ X K [X ] to obtain the analog of Besser’s finite polynomial
cohomology. This was studied in [Besser et al. 2016].
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For arithmetic pairs (U,U ) that are log-smooth over V× and of Cartier type,
this can be simplified further by using Hyodo–Kato complexes (see Proposition 3.8
below). To do that, consider the following sequence of maps of homotopy limits.
Homotopy limits are taken in the ∞-derived category (to do that we define the
maps ιπ by the zigzag from diagram (30)). We will describe the coherence data
only if they are nonobvious:

R0syn(U,U, r)Q

−→∼
[
R0cr(U,U )Q

(1−ϕr ,γ
−1
r )
// R0cr(U,U )Q⊕R0dR(U,U K )/Fr

]

−→∼


R0cr((U,U )/R)Q

(1−ϕr ,i∗πγ
−1
r )
//

N
��

R0cr((U,U )/R)Q⊕R0dR(U,U K )/Fr

(N ,0)
��

R0cr((U,U )/R)Q
1−ϕr−1

// R0cr((U,U )/R)Q



ιπ
←−


R0HK(U,U )Q

(1−ϕr ,ιdR,π )
//

N
��

R0HK(U,U )Q⊕R0dR(U,U K )/Fr

(N ,0)
��

R0HK(U,U )Q
1−ϕr−1

// R0HK(U,U )Q

.
The first map was described above. The second one is induced by the distinguished
triangle

R0cr(U,U )→ R0cr((U,U )/R) N
−→R0cr((U,U )/R).

The third one is induced by the section ιπ : R0HK(U,U )Q→ R0cr((U,U )/R)Q
(notice that ιdR,π = γ

−1
r i∗π ιπ ). We will show below that the third map is a quasi-

isomorphism.
Set Cst(R0HK(U,U ){r}) equal to the last homotopy limit in the above diagram.

Proposition 3.8. Let (U,U ) be an arithmetic pair that is log-smooth over V×

and of Cartier type. Let r ≥ 0. Then the above diagram defines a canonical
quasi-isomorphism:

αsyn,π : R0syn(U,U, r)Q −→∼ Cst(R0HK(U,U ){r}).

Proof. We need to show that the map ιπ in the above diagram is a quasi-isomorphism.
Define complexes (r ≥−1)

R0cr((U,U )/R, r) := Cone
(
R0cr((U,U )/R)Q

1−ϕr
−−→R0cr((U,U )/R)Q

)
[−1],

R0HK(U,U, r) := Cone
(
R0HK(U,U )Q

1−ϕr
−−→R0HK(U,U )Q

)
[−1].
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It suffices to prove that the maps

i∗0 : R0cr((U,U )/R, r)−→∼ R0HK(U,U, r),

ιπ : R0HK(U,U, r)−→∼ R0cr((U,U )/R, r)
(33)

are quasi-isomorphisms. Since i∗0 ιπ = Id, it suffices to show that the map i∗0 is a
quasi-isomorphism. Base-changing to W (k̄), we may assume that the residue field
of V is algebraically closed. It suffices to show that, for i ≥ 0 and t ≥−1, in the
commutative diagram

H i
HK(U,U )Q

pt
−ϕ

// H i
HK(U,U )Q

H i
cr((U,U )/R)Q

i∗0

OO

pt
−ϕ
// H i

cr((U,U )/R)Q

i∗0

OO

the vertical maps induce isomorphisms between the kernels and cokernels of the
horizontal maps.

Since the W (k)-linear map ιπ commutes with ϕ and its R-linear extension is a
quasi-isomorphism

ιπ : R⊗W (k) R0HK(U,U )Q −→∼ R0cr((U,U )/R)Q,

it suffices to show that in the commutative diagram

H i
HK(U,U )Q

pt
−ϕ

// H i
HK(U,U )Q

R⊗W (k) H i
HK(U,U )Q

pt
−ϕ
//

i0⊗Id

OO

R⊗W (k) H i
HK(U,U )Q

i0⊗Id

OO

the vertical maps induce isomorphisms between the kernels and cokernels of the
horizontal maps. This will follow if we show that the map

I ⊗W (k) H i
HK(U,U )Q

pt
−ϕ
−−→ I ⊗W (k) H i

HK(U,U )Q,

for I ⊂ R, where I is the kernel of the projection i0 : RQ → K0, tl 7→ 0, is an
isomorphism. We argue as in [Langer 1999, p. 210]. Let M := H i

HK(U,U )/tor.
It is a lattice in H i

HK(U,U )Q that is stable under Frobenius. Consider the formal
inverse ψ :=

∑
n≥0(p

−tϕ)n of 1− p−tϕ. It suffices to show that, for y ∈ I⊗W (k) M ,
ψ(y) ∈ I ⊗W (k) M . Fix l and let T {k} := tk

l /bk/eK c!. We will show that, for any
m ∈M , we haveψ(T {k}⊗m)∈ I⊗W (k)M and the infinite series converges uniformly
in k. We have

(p−tϕ)n(T {k}⊗m)=
bkpn/eK c!

bk/eK c!ptn T {kpn
}
⊗m′



Syntomic cohomology and p -adic regulators for varieties over p -adic fields 1733

and ordp(bkpn/eK c!/bk/eK c!)≥ pn−1. Hence bkpn/eK c!/(bk/eK c!ptn) converges
p-adically to zero, uniformly in k, as wanted. �

Remark 3.9. It was Langer [1999, p. 193] (see [Nekovář 1998, Lemma 2.13] in the
good reduction case) who observed the fact that while, in general, the crystalline co-
homology R0cr(U,U ) behaves badly (it is “huge”), after taking “filtered Frobenius
eigenspaces” we obtain syntomic cohomology R0syn(U,U, r)Q that behaves well
(it is “small”). In [Nekovář 2000, 3.5] this phenomenon is explained by relating
syntomic cohomology to the complex Cst(R0HK(U,U ){r}).

Remark 3.10. The construction of the map αsyn,π depends on the choice of the
uniformizer π , which makes the h-sheafification impossible. We will show now
that there is a functorial and compatible-with-base-change quasi-isomorphism α′syn
between rational syntomic cohomology and certain complexes built from Hyodo–
Kato cohomology and de Rham cohomology that h-sheafify well.

Set

α′syn : R0syn(U,U, r)Q −→∼ [R0cr(U,U, r)
γ−1

r
−→R0dR(U,U K )/Fr

]

β
−→[R0HK(U,U, r)N=0 ι′dR

−→R0dR(U,U K )/Fr
].

Here the two morphisms β and ι′dR are defined as the following compositions

β : R0cr(U,U, r)−→∼ R0cr(U0,U 0, r)−→∼ R0HK(U,U, r)N=0,

ι′dR : R0HK(U,U, r)N=0 β
←−R0cr(U,U, r)

γ−1
r
−−→R0dR(U,U K ),

where (· · ·)N=0 denotes the mapping fiber of the monodromy. The map β is a
quasi-isomorphism because so is each of the intermediate maps. To see this, for the
map i∗0 : R0cr(U,U, r)→ R0cr(U0,U 0, r), consider the factorization

Fm
: R0cr(U,U, r)

i∗0−→R0cr(U0,U 0, r)
ψm
−→R0cr(U,U, r)

of the m-th power of the Frobenius, where m is large enough. We also have
i∗0ψm = Fm. Because Frobenius is a quasi-isomorphism on R0cr(U,U, r) and
R0cr(U0,U 0, r), both i∗0 and ψm are quasi-isomorphisms as well. The second
morphism in the sequence defining β is a quasi-isomorphism by an argument
similar to the one we used in the proof of Proposition 3.8.

Define the complex

C ′st(R0HK(U,U ){r}) := [R0HK(U,U, r)N=0 ι′dR
−→R0dR(U,U K )/Fr

].

We have obtained a quasi-isomorphism

α′syn : R0syn(U,U, r)Q −→∼ C ′st(R0HK(U,U ){r}).
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It is clearly functorial but it is also easy to check that it is compatible with base
change (of the base V ).

Define the complex

Cst(R0B
HK(U,U ){r}) :=

[
R0B

HK(U1,U 1, r)N=0 ιBdR
−→R0dR(U,U K )/Fr ].

From the commutative diagram (31) we obtain the natural quasi-isomorphisms

γ : Cst(R0B
HK(U,U ){r})−→∼ Cst(R0HK(U,U ){r}),

αB
syn,π := γ

−1αsyn,π : R0syn(U,U, r)Q −→∼ Cst(R0B
HK(U,U ){r}).

We will show now that log-syntomic cohomology satisfies finite Galois descent.
Let (U,U ) be a fine log-scheme, log-smooth over V×, and of Cartier type. Let
r ≥ 0. Let K ′ be a finite Galois extension of K and let G = Gal(K ′/K ). Let
(T, T ) = (U ×V V ′,U ×V V ′), where V ′ is the ring of integers in K ′, be the
base change of (U,U ) to (K ′, V ′), and let f : (T, T )→ (U,U ) be the canonical
projection. Take R = RV , N , e, π associated to V. Similarly, we define R′ := RV ′ ,
N ′, e′, π ′. Write the map αB

syn,π as

R0syn(U,U, r)Q

αB
syn,πo

��

∼

h
//
[
R0B,τ

HK ((U,U )R, r)N=0 i∗π
// R0dR(U,U K )/Fr

]

Cst(R0B
HK(U,U ){r})

∼
//
[
R0B

HK(U,U, r)
N=0

ιBdR
//

oιπβ

OO

R0dR(U,U K )/Fr
]

Here we defined the map h as the composition

R0syn(U,U, r)Q→ R0cr((U,U )/R)Q←−∼ R0B
HK(U1,U 1)

τ
RQ
. (34)

From the construction of the Beilinson–Hyodo–Kato map

ιBdR : R0
B
HK(T1, T 1)→ R0dR(T, T K ′),

it follows that it is G-equivariant; hence the complex Cst(R0B
HK(T, T ){r}) is

equipped with a natural G-action. We claim the map αB
syn,π ′ induces a natural map

α̃B
syn,π ′ : R0(G,R0syn(T, T , r)Q)→ R0(G,Cst(R0B

HK(T, T ){r})),

α̃B
syn,π ′ := (1/|G|)

∑
g∈G

αB
syn,g(π ′).

To see this it suffices to show that, for every g ∈G, we have a commutative diagram

R0syn(T, T , r)Q
αB

syn,π ′
//

g∗

��

Cst(R0B
HK(T, T ){r})

g∗

��

R0syn(T, T , r)Q
αB

syn,g(π ′)
// Cst(R0B

HK(T, T ){r})
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We accomplish this by constructing natural morphisms

g∗ : R0cr((T, T )/R′π ′)→ R0cr((T, T )/R′g(π ′)),

g∗ : R0B
HK(T1, T 1)

τ
R′
π ′
→ R0B

HK(T1, T 1)
τ
R′g(π ′)

that are compatible with the maps in (34) that define h, the maps ι? and i∗? , and
the trivialization β. We define the pullbacks g∗ from a map g : R′π ′ → R′g(π ′)
constructed by lifting the action of g from V ′1 to R′ by setting g(t ′π ′)= t ′g(π ′) and
taking the induced action of g on W (k ′). This map is compatible with Frobenius
and monodromy. The induced pullbacks g∗ are clearly compatible with the map i∗0
and the maps ι?, the maps i∗π ′ , i∗g(π ′), and the trivialization β. From the construction
of the Beilinson–Hyodo–Kato map, the pullbacks g∗ are also compatible with the
maps κR′? , and hence with the map h, as wanted.

Proposition 3.11. (1) The following diagram commutes in the (classical) derived
category:

R0syn(U,U, r)Q
f ∗

//

αB
syn,π
��

R0(G,R0syn(T, T , r)Q)

α̃B
syn,π ′
��

Cst(R0B
HK(U,U ){r})

f ∗
// R0(G,Cst(R0B

HK(T, T ){r}))

(2) The natural map

f ∗ : R0syn(U,U, r)Q −→∼ R0(G,R0syn(T, T , r)Q)

is a quasi-isomorphism.

Proof. The second claim of the proposition follows from the first one and the fact
that the Hyodo–Kato and de Rham cohomologies satisfy finite Galois decent.

Since everything in sight is functorial and satisfies finite unramified Galois
descent, we may assume that the extension K ′/K is totally ramified. First, we will
construct a G-equivariant (for the trivial action of G on R) map

f ∗ : R0cr((U,U )/R, r)N=0
→ R0cr((T, T )/R′, r)N ′=0

such that the following diagram commutes:

R0cr(U,U, r)
f ∗

//

o

��

R0cr(T, T , r)

o

��

R0cr((U,U )/R, r)N=0 f ∗
// R0cr((T, T )/R′, r)N ′=0

R0HK(U,U, r)N=0 f ∗

∼
//

o ιπ

OO

R0HK(T, T , r)N ′=0

o ιπ ′

OO

(35)
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Remark 3.12. Note that the bottom map is an isomorphism because f ∗ acts trivially
on the Hyodo–Kato complexes. The commutativity of the above diagram and the
quasi-isomorphisms (33) will imply that a totally ramified Galois extension does
not change the log-crystalline complexes R0cr(U,U, r) and R0cr((U,U )/R, r)N=0.

Let e1 be the ramification index of V ′/V. Set v = (π ′)e1π−1, and choose an
integer s such that (π ′)ps

∈ pV ′. Set T := tπ , T ′ := tπ ′ and define the morphism
a : R→ R′ by T 7→ (T ′)e1[v̄]−1. Since V ′1 and V1 are defined by pR+ T e R and
by pR′ + (T ′)e

′

R′, respectively, a induces a morphism a1 : V1 → V ′1. We have
F sa1= F s f1, where F is the absolute Frobenius on Spec(V1). Notice that in general
f1 6= a1 if v[v̄]−1 � 1 mod pV ′. The morphism ϕs

Ra : Spec(R′)→ Spec(R) is
compatible with F s f1 :Spec(V ′1)→Spec(V1) and it commutes with the operators N
and ps N ′. We have the following commutative diagram:

(T, T )1
F s f1

//

��

(U,U )1

��

Spec(V ′1)
F sa1=F s f1

//

��

Spec(V1)

��

Spec(R′)
ϕs

Ra
// Spec(R)

Hence we also have the commutative diagram of distinguished triangles

R0cr(U,U )Q //

f ∗F s

��

R0cr((U,U )/R)Q
eN
//

f ∗F s

��

R0cr((U,U )/R)Q

pse1 f ∗F s

��

R0cr(T, T )Q // R0cr((T, T )/R′)Q
e′N ′
// R0cr((T, T )/R′)Q

(36)

To see how this diagram arises, we may assume (by the usual Čech argument)
that we have a fine affine log-scheme Xn/V×n that is log-smooth over V×n . We can
also assume that we have a lifting of Xn ↪→ Zn over Spec(Wn(k)[T ]) (with the log-
structure coming from T ) and a lifting of Frobenius ϕZ on Zn that is compatible with
the Frobenius ϕR . Recall [Kato 1994, Lemma 4.2] that the horizontal distinguished
triangles in the above diagram arise from an exact sequence of complexes of sheaves
on Xn,ét

0→ C ′V [−1] ∧ dlog T
−−−−→CV → C ′V → 0, (37)

where CV := Rn ⊗Wn(k)[T ] �
•

Zn/Wn(k) and C ′V := Rn ⊗Wn(k)[T ] �
•

Zn/Wn(k)[T ]. Now
consider the base change of Zn/Wn(k)[T ] by the map F sa : Spec(Wn(k)[T ′])→
Spec(Wn(k)[T ]) and the related complexes (37). We get a commutative diagram
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of complexes of sheaves on Xn,ét (note that XV ′,n,ét = Xn,ét)

0 // C ′V ′[−1]
∧ dlog T ′

// CV ′ // C ′V ′ // 0

0 // C ′V [−1]
∧ dlog T

//

pse1a∗ϕs
Z

OO

CV //

a∗ϕs
Z

OO

C ′V //

a∗ϕs
Z

OO

0

Hence diagram (36) follows.
Combining diagram (36) with Frobenius, we obtain the commutative diagram

R0cr(U,U,r)

o

��

R0cr(U,U,r) f ∗F sFs
oo //

o

��

R0cr(T,T ,r)

o

��

R0cr((U,U )/R,r)N=0

oi∗0
��

R0cr((U,U )/R,r)N=0(Fs,ps Fs )
oo

(a∗Fs,ps a∗Fs )
//

o i∗0
��

R0cr((T,T )/R′,r)N ′=0

o i∗0
��

R0HK(U,U,r)N=0 R0HK(U,U,r)N=0(Fs,ps Fs )

∼

oo
(Fs,ps Fs )

∼

// R0HK(T,T ,r)N ′=0

It follows that all the maps in the above diagram are quasi-isomorphisms. We define
the map

f ∗ : R0cr((U,U )/R, r)N=0
→ R0cr((T, T )/R′, r)N ′=0

by the middle row. Since, for any g ∈ G, we have vg(π ′) = g(vπ ′), the map f ∗ is
G-equivariant. In the (classical) derived category, this definition is independent of
the constant s we have chosen. Since i∗0 is a quasi-isomorphism and i∗0 ι?∗ = Id, the
diagram (35) commutes as well, as wanted.

We define the map

f ∗ : R0B,τ
HK ((U,U )/R, r)N=0

→ R0B,τ
HK ((T, T )/R′, r)N ′=0 (38)

in an analogous way. By the above diagram and by the compatibility of the Beilinson–
Hyodo–Kato constructions with base change and with Frobenius, the two pullback
maps f ∗ are compatible via the morphism h, i.e., the following diagram commutes:

R0cr(U,U, r) //

f ∗

��

R0cr((U,U )/R, r)N=0

f ∗

��

R0B,τ
HK ((U,U )/R, r)N=0κR

oo

f ∗

��

R0cr(T, T , r) // R0cr((T, T )/R′, r)N ′=0 R0B,τ
HK ((T, T )/R′, r)N ′=0κR′

oo

From the analog of diagram (35) for the Beilinson–Hyodo–Kato complexes and by
the universal nature of the trivialization at p̄, we obtain that the pullback map f ∗

is compatible with the maps βι?. It remains to show that we have a commutative



1738 Jan Nekovář and Wiesława Nizioł

diagram

R0B
HK(U,U, r)

N=0 f ∗

∼
//

ιBdR
��

R0B
HK(T, T , r)N ′=0

ιBdR
��

R0dR(U,U K )/Fr f ∗
// R0dR(T, T K ′)/Fr

But this follows since the Beilinson–Hyodo–Kato map is compatible with base
change. �

3C. Arithmetic syntomic cohomology. We are now ready to introduce and study
arithmetic syntomic cohomology, i.e., syntomic cohomology over K. Let J [r ]

cr , Acr,
and S (r) for r ≥ 0 be the h-sheafifications on V arK of the presheaves sending
(U,U ) ∈ Pss

K to R0cr(U,U, J [r ]), R0cr(U,U ), and R0syn(U,U, r), respectively.
Let J [r ]

cr,n , Acr,n , and Sn(r) denote the h-sheafifications of the mod-pn versions of
the respective presheaves. We have

Sn(r)' Cone
(
J [r ]

cr,n
pr
−ϕ
−−→Acr,n

)
[−1], S (r)' Cone

(
J [r ]

cr
pr
−ϕ
−−→Acr

)
[−1].

For r ≥ 0, define S (r)Q as the h-sheafification of the presheaf sending ss-pairs
(U,U ) to R0syn(U,U, r)Q. We have

S (r)Q ' Cone(J [r ]
cr,Q

1−ϕr
−−→Acr,Q)[−1].

For X ∈ V arK , set

R0syn(Xh, r)n = R0(Xh,Sn(r)), R0syn(Xh, r) := R0(Xh,S (r)Q).
We have

R0syn(Xh, r)n ' Cone(R0(Xh,J
[r ]
cr,n)

pr
−ϕ
−−→R0(Xh,Acr,n))[−1],

R0syn(Xh, r)' Cone(R0(Xh,J
[r ]
cr,Q)

1−ϕr
−−→R0(Xh,Acr,Q))[−1].

We will often write R0cr(Xh) for R0(Xh,Acr) if this does not cause confusion.
Let AHK be the h-sheafification of the presheaf (U,U ) 7→R0HK(U,U )Q on Pss

K ;
this is an h-sheaf of E∞ K0-algebras on V arK equipped with a ϕ-action and a
derivation N such that Nϕ= pϕN. For X ∈V arK , set R0HK(Xh) :=R0(Xh,AHK).
Similarly, we define h-sheaves A B

HK and the complexes R0B
HK(Xh) :=R0(Xh,A

B
HK).

The maps κ : R0B
HK(U1,U 1)→ R0HK(U,U )Q h-sheafify and we obtain functorial

quasi-isomorphisms

κ : A B
HK −→

∼ AHK, κ : R0B
HK(Xh)−→

∼ R0HK(Xh).

Remark 3.13. The complexes J [r ]
cr,n and Sn(r) (and their completions) have a

concrete description. For the complexes J [r ]
cr,n , we can represent the presheaves

(U,U ) 7→ R0cr(U,U,J [r ]
n ) by Godement resolutions (on the crystalline site),
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sheafify them for the h-topology on Pss
K , and then move them to V arK . For the

complexes Sn(r), the maps pr
−ϕ can be lifted to the Godement resolutions and

their mapping fiber (defining Sn(r)(U,U )) can be computed in the abelian category
of complexes of abelian groups. To get Sn(r), we h-sheafify on Pss

K and pass to V ar.

Let, for a moment, K be any field of characteristic zero. Consider the presheaf
(U,U ) 7→R0dR(U,U ) :=R0(U, �•

(U,U )
) of filtered dg K-algebras on Pnc

K . Let AdR

be its h-sheafification. It is a sheaf of filtered K-algebras on V arK . For X ∈ V arK ,
we have Deligne’s de Rham complex of X equipped with Deligne’s Hodge filtration:
R0dR(Xh) := R0(Xh,AdR). Beilinson proves the following comparison statement.

Proposition 3.14 [Beilinson 2012, 2.4]. (1) For (U,U )∈Pnc
K , the canonical map

R0dR(U,U )−→∼ R0dR(Uh) is a filtered quasi-isomorphism.

(2) The cohomology groups H i
dR(Xh) := H i R0dR(Xh) are K-vector spaces of

dimension equal to the rank of H i (XK ,ét,Qp).

Corollary 3.15. For a geometric pair (U,U ) over K that is saturated and log-
smooth, the canonical map

R0dR(U,U )−→∼ R0dR(Uh)

is a filtered quasi-isomorphism.

Proof. Recall [Nizioł 2006, Theorem 5.10] that there is a log-blow-up (U, T )→
(U,U ) that resolves singularities of (U,U ), i.e., such that (U, T ) ∈Pnc

K . We have
a commutative diagram

R0dR(U, T ) ∼
// R0dR(Uh)

R0dR(U,U )

o

OO 77

The vertical map is a filtered quasi-isomorphism; the horizontal map is a filtered
quasi-isomorphism by the above proposition. Our corollary follows. �

Remark 3.16. Another proof of the above result (and a mild generalization) that
does not use resolution of singularities can be found in [Beilinson 2013, 1.19]
(where it is attributed to A. Ogus).

Return now to our p-adic field K.

Remark 3.17. By construction, we know the complexes R0dR(Xh), R0HK(Xh),
R0B

HK(Xh), R0(Xh,J
[r ]
cr,Q), and R0syn(Xh, r) satisfy h-descent. In particular, since

the h-topology is finer than the étale topology, they satisfy Galois descent for finite
extensions. Hence, for any finite Galois extension K1/K , the natural maps

R0∗? (Xh)−→
∼ R0(G,R0∗? (X K1,h)), ?= cr, syn,HK, dR, ∗ = B,∅,
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where G = Gal(K1/K ), are (filtered) quasi-isomorphisms. Since G is finite, it
follows that the natural maps

R0∗HK(Xh)⊗K0 K1,0 −→
∼ R0∗HK(X K1,h), R0dR(Xh)⊗K K1 −→

∼ R0dR(X K1,h)

are (filtered) quasi-isomorphisms as well.

Recall from [Beilinson 2013, 2.5] and Proposition 3.21, that for a fine, log-
scheme X , log-smooth over V×, and of Cartier type we have a quasi-isomorphism

R0cr(XV ,J
[r ]
XV /W (k))Q ' R0(XK ,h,J

[r ]
cr )Q.

We can descend this result to K but on the level of rational log-syntomic coho-
mology; the key observation being that the field extensions introduced by the
alterations are harmless since, by Proposition 3.11, log-syntomic cohomology
satisfies finite Galois descent. Along the way we will get an analogous comparison
quasi-isomorphism for the Hyodo–Kato cohomology.

Proposition 3.18. For any arithmetic pair (U,U ) that is fine, log-smooth over V×,
and of Cartier type, and r ≥ 0, the canonical maps

R0∗HK(U,U )Q −→∼ R0∗HK(Uh), R0syn(U,U, r)Q −→∼ R0syn(Uh, r)

are quasi-isomorphisms.

Proof. It suffices to show that for any h-hypercovering (U•,U•)→ (U,U ) by pairs
from P

log
K , the natural maps

R0HK(U,U )Q→ R0HK(U•,U•)Q, R0syn(U,U, r)Q→ R0syn(U•,U•, r)Q

are (modulo taking a refinement of (U•,U•)) quasi-isomorphisms. For the second
map, since we have a canonical quasi-isomorphism

R0syn(U,U, r)Q −→∼ Cone
(
R0cr(U,U, r)Q→ R0cr(U,U,O/J [r ])Q

)
[−1],

it suffices to show that, up to a refinement of the hypercovering, we have quasi-
isomorphisms

R0cr(U,U,O/J [r ])Q −→
∼ R0cr(U•,U•,O/J [r ])Q,

R0cr(U,U, r)Q −→∼ R0cr(U•,U•, r)Q.

For the first of these maps, by Corollary 2.4 this amounts to showing that the
following map is a quasi-isomorphism:

R0(UK , �
•

(U,UK )
)/Fr

−→∼ R0(U •,K , �
•

(U•,U •,K )
)/Fr.

But, by Corollary 3.15 this map is quasi-isomorphic to the map

R0dR(Uh)/Fr
→ R0dR(U•,h)/Fr,

which is clearly a quasi-isomorphism.
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Hence it suffices to show that, up to a refinement of the hypercovering, we have
quasi-isomorphisms

R0HK(U,U )Q −→∼ R0HK(U•,U•)Q, R0cr(U,U, r)Q −→∼ R0cr(U•,U•, r)Q.

Fix t ≥ 0. To show that H t R0cr(U,U, r)Q −→∼ H t R0cr(U•,U•, r)Q is a quasi-
isomorphism, we will often work with (t+1)-truncated h-hypercovers. This is
because τ≤t R0cr(U•,U•, r)' τ≤t R0cr((U•,U•)≤t+1, r), where (U•,U•)≤t+1 denotes
the (t+1)-truncation. Assume first that we have an h-hypercovering (U•,U•)→
(U,U ) of arithmetic pairs over K , where each pair (Ui ,U i ), i ≤ t+1, is log-smooth
over V× and of Cartier type. We claim that then already the maps

τ≤t R0HK(U,U )Q −→∼ τ≤t R0HK((U•,U•)≤t+1)Q,

τ≤t R0cr(U,U )Q −→∼ τ≤t R0cr((U•,U•)≤t+1)Q
(39)

are quasi-isomorphisms. To see the second quasi-isomorphism, consider the fol-
lowing commutative diagram of distinguished triangles (R = RV ):

R0cr(U,U ) //

��

R0cr((U,U )/R)
N

//

��

R0cr((U,U )/R)

��

R0cr((U•,U•)≤t+1) // R0cr((U•,U•)≤t+1/R)
N
// R0cr((U•,U•)≤t+1/R)

It suffices to show that the two right vertical arrows are rational quasi-isomorphisms
in degrees less than or equal to t . But we have the R-linear quasi-isomorphisms

ι : R⊗W (k) R0HK(U,U )Q −→∼ R0((U,U )/R)Q,

ι : R⊗W (k) R0HK((U•,U•)≤t+1)Q −→
∼ R0((U•,U•)≤t+1/R)Q.

Hence to show both quasi-isomorphisms (39), it suffices to show that the map

τ≤t R0HK(U,U )Q→ τ≤t R0HK((U•,U•)≤t+1)Q

is a quasi-isomorphism.
Tensoring over K0 with K and using the Hyodo–Kato quasi-isomorphism (23),

we reduce to showing that the map

τ≤t R0(UK , �
•

(U,UK )
)→ τ≤t R0(U •K ,≤t+1, �

•

(U•,U •,K )≤t+1
)

is a quasi-isomorphism, and this we have done above.
To treat the general case, set X = (U,U ), Y• = (U•,U•). We will do a base

change to reduce to the case discussed above. We may assume that all the fields Kn,i ,
KUn '

∏
Kn,i are Galois over K. Choose a finite Galois extension (V ′, K ′)/(V, K )

for K ′ Galois over all the fields Kn,i , n≤ t+1. Write NX (XV ′) for the “Čech nerve”
of XV ′/X . The term NX (XV ′)n is defined as the (n+1)-fold fiber product of XV ′

over X : NX (XV ′)n = (U ×K K ′,n+1, (U ×V V ′,n+1)norm), where V ′,n+1, K ′,n+1 are
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defined as the (n+1)-fold product of V ′ over V and of K ′ over K , respectively.
Normalization is taken with respect to the open regular subscheme U ×K K ′,n+1.
Note that NX (XV ′)n ' (U ×K K ′×Gn,U ×V V ′×Gn), where G = Gal(K ′/K ).
Hence it is a log-smooth scheme over V ′,× of Cartier type. The augmentation
NX (XV ′)→ X is an h-hypercovering.

Consider the bisimplicial scheme Y•×X NX (XV ′)•,

(Y•×X NX (XV ′)•)n,m := Yn×X NX (XV ′)m

'
(
Un×U U×K K ′,m+1, (U n×U (U×V V ′,m+1)norm)norm)

'

∐
i

(
Un×Kn,i Kn,i×K K ′,m+1,U n×Vn,i (Vn,i×V V ′,m+1)norm).

Hence (Y•×X NX (XV ′)•)n,m ∈P
log
K . For n,m ≤ t + 1, we have

(Y•×X NX (XV ′)•)n,m '
∐

i

(Un ×Kn,i K ′×Gn,i ×Gm,U n ×Vn,i V ′×Gn,i ×Gm),

where Gn,i =Gal(Kn,i/K ). It is a log-scheme log-smooth over V ′,× of Cartier type.
Consider now its diagonal Y• ×X NX (XV ′) := 1(Y• ×X NX (XV ′)•). It is an

h-hypercovering of X refining Y• such that (Y•×X NX (XV ′))n is log-smooth over
V ′,×, of Cartier type, for n ≤ t + 1. It suffices to show that the compositions

R0HK(X)Q→ R0HK(Y•)Q
pr∗1
−→R0HK(Y•×X NX (XV ′))Q,

R0cr(X, r)Q→ R0cr(Y•, r)Q
pr∗1
−→R0cr(Y•×X NX (XV ′), r)Q

(40)

are quasi-isomorphisms in degrees less than or equal to t . Using the commutative
diagram of bisimplicial schemes

Y•×X NX (XV ′)
1
// Y•×X NX (XV ′)•

pr2

��

pr1
// Y•

��

NX (XV ′)
f

// X

we can write the second composition as

R0cr(X, r)Q
f ∗
−→R0cr(NX (XV ′), r)Q

pr∗2
−→R0cr(Y•×X NX (XV ′)•, r)Q
1∗
−→R0cr(Y•×X NX (XV ′), r)Q.

We claim that all of these maps are quasi-isomorphisms in degrees less than or
equal to t . The map 1∗ is a quasi-isomorphism (in all degrees) by [Friedlander
1982, Proposition 2.5]. For the second map, fix n ≤ t + 1 and consider the induced
map pr2 : (Y• ×X NX (XV ′)•)•,n → NX (XV ′)n . It is an h-hypercovering whose
(t+1)-truncation is built from log-schemes, log-smooth over (V ′, K ′), of Cartier
type. It suffices to show that the induced map

τ≤t R0cr(NX (XV ′)n, r)Q
pr∗2
−→ τ≤t R0cr((Y•×X NX (XV ′))•,n, r)Q
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is a quasi-isomorphism. Since all maps are defined over K ′, this follows from the
case considered at the beginning of the proof.

To prove that f ∗ : R0cr(X, r)Q→ R0cr(NX (XV ′), r)Q is a quasi-isomorphism,
consider first the case when the extension V ′/V is unramified. Then R0cr(XV ′)'

R0cr(X)⊗W (k)W (k ′) and the map f ∗ is a quasi-isomorphism by finite étale descent
for crystalline cohomology.

Assume now that the extension V ′/V is totally ramified and let π and π ′ be
uniformizers of V and V ′, respectively. Consider the target of f ∗ as a double
complex. To show that f ∗ is a quasi-isomorphism, it suffices to show that, for each
s ≥ 0, the sequence

0→H sR0cr(X,r)Q
f ∗
−→H sR0cr(NX (XV ′)0,r)Q

d∗0
−→H sR0cr(NX (XV ′)1,r)Q

d∗1
−→H sR0cr(NX (XV ′)2,r)Q→···

is exact. Embed it into the diagram

0 //H sR0cr(X,r)Q

oαB
syn,π
��

f ∗
// H sR0cr(NX (XV ′)0,r)Q

oα̃B
syn,π ′

��

d∗0 // H sR0cr(NX (XV ′)1,r)Q

oα̃B
syn,π ′

��

//

0 //H sR0B
HK(X,r)

N=0
Q

f ∗
// H sR0B

HK(NX (XV ′)0,r)N ′=0
Q

d∗0 // H sR0B
HK(NX (XV ′)1,r)N ′=0

Q
//

Note that, since all the maps d∗i are induced from automorphisms of V ′/V, by the
proof of Proposition 3.11 (take the map f used there to be a given automorphism
g ∈ G = Gal(K ′/K ) and π ′, g(π ′) for the uniformizers of V ′) and the proof of
Proposition 3.8, we get the vertical maps above that make all the squares commute.

Hence it suffices to show that the following sequence of Hyodo–Kato cohomology
groups is exact:

0→ H sR0HK(X)Q
f ∗
−→H sR0HK(NX (XV ′)0)Q

d∗0
−→H sR0HK(NX (XV ′)1)Q

d∗1
−→H sR0HK(NX (XV ′)2)Q→··· .

But this sequence is isomorphic to the sequence

0→ H sR0HK(X)Q
f ∗
−→H sR0HK(XV ′)Q

d∗0
−→H sR0HK(XV ′)Q×G

d∗1
−→H sR0HK(XV ′)Q×G2

→···

representing the (augmented) G-cohomology of H sR0HK(X)Q. Since G is finite,
this complex is exact in degrees at least 1. It remains to show that

H 0(G, H sR0HK(XV ′)Q)' H sR0HK(X)Q.

Since K ′/K is totally ramified, we have H sR0HK(XV ′)' H sR0HK(X). Hence the
action of G on H sR0HK(XV ′) is trivial and we get the right H 0 as well. We have
proved the second quasi-isomorphism from (40). Notice that along the way we
have actually proved the first quasi-isomorphism. �
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For X ∈ V arK , we define a canonical K0-linear map (the Beilinson–Hyodo–Kato
morphism)

ιBdR : R0
B
HK(Xh)→R0dR(Xh)

as the sheafification of the map ιBdR : R0
B
HK(U1,U 1)→R0dR(U,UK ). It follows

from Proposition 3.22, which we prove in the next section, that the cohomology
groups H i

HK(Xh) := H i R0B
HK(Xh) are finite-rank K0-vector spaces and that they

vanish for i > 2 dim X . This implies the following lemma.

Lemma 3.19. The syntomic cohomology groups H i
syn(Xh, r) := H i R0syn(Xh, r)

vanish for i > 2 dim X + 2.

Proof. The map ι′dR : R0HK(U,U, r)N=0
→ R0dR(U,U K )/Fr from Remark 3.10

sheafifies. The quasi-isomorphism α′syn : R0syn(U,U, r)Q −→∼ C ′st(R0HK(U,U ){r})
does as well. Hence R0syn(Xh, r) is quasi-isomorphic via α′syn to the mapping fiber

C ′st(R0HK(Xh){r}) := [R0HK(Xh, r)N=0 ι′dR
−→R0dR(Xh)/Fr

].

The statement of the lemma follows. �

For X ∈ V arK and r ≥ 0, define the complex

Cst(R0B
HK(Xh){r}) :=


R0B

HK(Xh)
(1−ϕr ,ι

B
dR)
//

N
��

R0B
HK(Xh)⊕R0dR(Xh)/Fr

(N ,0)
��

R0B
HK(Xh)

1−ϕr−1
// R0B

HK(Xh)

.
Proposition 3.20. For X ∈V arK and r ≥0, there exists a canonical (in the classical
derived category) quasi-isomorphism

αsyn : R0syn(Xh, r)−→∼ Cst(R0B
HK(Xh){r}).

Moreover, this morphism is compatible with finite base change (of the field K ).

Proof. To construct the map αsyn, take a number t ≥ 2 dim X + 2 and let Y•→ X ,
Y• = (U•,U•), be an h-hypercovering of X by ss-pairs over K. Choose a finite
Galois extension (V ′, K ′)/(V, K ) and a uniformizer π ′ of V ′ as in the proof of
Proposition 3.18. Keeping the notation from that proof, refine our hypercovering to
the h-hypercovering Y•×V V ′→ X K ′ . Then the truncation (Y•×V V ′)≤t+1 is built
from log-schemes log-smooth over V ′,× and of Cartier type. We have the sequence
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of quasi-isomorphisms

γπ ′ : R0syn(X K ′,h)←−
∼ τ≤t R0syn(X K ′,h)−→

∼ τ≤t R0syn((U•×K K ′)≤t+1,h)

←−∼ τ≤t R0syn((Y•×V V ′)≤t+1)Q

−→∼ Cst(τ≤t R0B
HK((Y•×V V ′)≤t+1){r})

−→∼ Cst(τ≤t R0B
HK((U•×K K ′)≤t+1,h){r})

←−∼ Cst(τ≤t R0B
HK(X K ′,h){r})−→∼ Cst(R0B

HK(X K ′,h){r}).

The first quasi-isomorphism follows from Lemma 3.19. The third and fifth quasi-
isomorphisms follow from Proposition 3.18. The fourth quasi-isomorphism (the
map α̃B

syn,π ′), since all the log-schemes involved are log-smooth over V ′,× and of
Cartier type, follows from Proposition 3.8.

Now, set G := Gal(K ′/K ). Passing from γπ ′ to its G-fixed points, we obtain
the map

αsyn := αsyn,π ′ : R0syn(Xh)→ Cst(R0B
HK(Xh){r})

as the composition

R0syn(Xh)→R0syn(X K ′,h)
G γπ ′
−→Cst(R0B

HK(X K ′,h){r})G←−∼ Cst(R0B
HK(X K ,h){r}).

It remains to check that the so-defined map is independent of all choices. For
that, it suffices to check that, in the above construction, for a finite Galois extension
(V1, K1) of (V ′, K ′), H = Gal(K1/K ′), the corresponding maps

αsyn,? : R0syn(Xh)→ Cst(R0B
HK(Xh){r})

are the same in the classical derived category (note that this includes trivial ex-
tensions). An easy diagram chase shows that this amounts to checking that the
following diagram commutes:

R0syn((Y•×V V ′)≤t+1)Q
∼

αsyn,π ′

//

��

Cst(R0B
HK((Y•×V V ′)≤t+1){r})

��

R0syn((Y•×V V1)≤t+1)
H
Q

∼

αsyn,π1

// Cst(R0B
HK((Y•×V V1)≤t+1){r})H

But this we have shown in Proposition 3.11.
For the compatibility with finite base change, consider a finite field exten-

sion L/K . We can choose in the above a Galois extension K ′/K that works
for both fields. We get the same maps γπ ′ for both L and K. Consider now the
following commutative diagram. The top and bottom rows define the maps αL

syn,π ′
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and αK
syn,π ′ , respectively.

R0syn(X L ,h) // R0syn(X K ′,h)
GL

γπ ′ // Cst(R0B
HK(X K ′,h){r})GL Cst(R0B

HK(X L ,h){r})
∼oo

R0syn(Xh)

OO

// R0syn(X K ′,h)
G

OO

γπ ′ // Cst(R0B
HK(X K ′,h){r})G

OO

Cst(R0B
HK(X K ,h){r})

∼oo

OO

This proves the last claim of our proposition. �

3D. Geometric syntomic cohomology. We will now study geometric syntomic
cohomology, i.e., syntomic cohomology over K . Most of the constructions related
to syntomic cohomology over K have their analogs over K . We will summarize
them briefly. For details, the reader should consult [Tsuji 1999; Beilinson 2013].

For (U,U )∈Pss
K

, r ≥ 0, we have the absolute crystalline cohomology complexes
and their completions

R0cr(U,U,J [r ])n := R0cr(U ét,RuU n/Wn(k)∗J
[r ]

U n/Wn(k)
),

R0cr(U,U,J [r ]) := holimn R0cr(U,U,J [r ])n,

R0cr(U,U,J [r ])Q := R0cr(U,U,J [r ])⊗Qp.

By [Beilinson 2013, Theorem 1.18], the complex R0cr(U,U ) is a perfect Acr-complex
and

R0cr(U,U )n ' R0cr(U,U )⊗L
Acr

Acr/pn
' R0cr(U,U )⊗L Z/pn.

In general, we have R0cr(U,U,J [r ])n ' R0cr(U,U,J [r ])⊗L Z/pn . Moreover,
J [r ]cr = R0cr(Spec(K ),Spec(V ),J [r ]) [Tsuji 1999, Lemmas 1.6.3 and 1.6.4]. The
absolute log-crystalline cohomology complexes are filtered E∞ algebras over
Acr,n , Acr, or Acr,Q, respectively. Moreover, the rational ones are filtered com-
mutative dg algebras.

For r ≥ 0, the mod-pn , completed, and rational log-syntomic complexes
R0syn(U,U, r)n , R0syn(U,U, r), and R0syn(U,U, r)Q are defined by analogs of
formulas (32). We have R0syn(U,U, r)n 'R0syn(U,U, r)⊗L Z/pn . Let J [r ]

cr , Acr,
and S (r) be the h-sheafifications on V arK of the presheaves sending (U,U )∈Pss

K
to R0cr(U,U,J [r ]), R0cr(U,U ), and R0syn(U,U, r), respectively. Let J [r ]

cr,n ,
Acr,n , and Sn(r) denote the h-sheafifications of the mod-pn versions of the respec-
tive presheaves, and let J

[r ]
cr,Q, Acr,Q, S (r)Q be the h-sheafification of the rational

versions of the same presheaves.
For X ∈ V arK , set R0cr(Xh) := R0(Xh,Acr). It is a filtered (by R0(Xh,J

[r ]
cr ),

r ≥ 0) E∞ Acr-algebra equipped with the Frobenius action ϕ. The Galois group GK

acts on V arK and it acts on X 7→R0cr(Xh) by transport of structure. If X is defined
over K then GK acts naturally on R0cr(Xh).
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For r ≥ 0, set R0syn(Xh, r)n = R0(Xh,Sn(r)) and define R0syn(Xh, r) :=
R0(Xh,S (r)Q). We have

R0syn(Xh, r)n ' Cone
(
R0(Xh,J

[r ]
cr,n)

pr
−ϕ
−−→R0(Xh,Acr,n)

)
[−1],

R0syn(Xh, r)' Cone
(
R0(Xh,J

[r ]
cr,Q)

1−ϕr
−−→R0(Xh,Acr,Q)

)
[−1].

The direct sum
⊕

r≥0 R0syn(Xh, r) is a graded E∞ algebra over Zp.
Let f̄ : Z1→ Spec(V 1)

× be an integral, quasi-coherent log-scheme. Suppose f̄
is the base change of f̄L : ZL ,1→Spec(OL ,1)

× by θ1 :Spec(OL ,1)
×
→Spec(OL ,1)

×

for a finite extension L/K . That is, we have a map θL ,1 : Z1→ ZL ,1 such that the
square ( f̄ , f̄L , θ1, θL ,1) is Cartesian. Assume that f̄L is log-smooth of Cartier type
and that the underlying map of schemes is proper. Such data (L , Z1, θL ,1) form
a directed set 61 and, for a morphism (L ′, Z ′1, θ

′

L ′,1)→ (L , Z1, θL ,1), we have a
canonical base change identification compatible with ϕ-action [Beilinson 2013, 1.18]

R0B
HK(ZL ,1)⊗L0 L ′0 −→∼ R0B

HK(Z
′

L ′,1).

These identifications can be made compatible with respect to L , so we can set

R0B
HK(Z1) := lim

−→
61

R0B
HK(ZL ,1).

It is a complex of (ϕ, N )-modules over K nr
0 , functorial with respect to morphisms

of Z1.
Consider the scheme Ecr := Spec(Acr). We have Ecr,1 = Spec(V 1) and we

equip Ecr,1 with the induced log-structure. This log-structure extends uniquely to a
log-structure on Ecr,n and the PD-thickening Spec(V )×1 ↪→ Ecr,n is universal over
Z/pn. Set Ecr := Spec(Acr) with the limit log-structure. Since we have [Beilinson
2013, 1.18.1]

R0cr(Z1)−→
∼ R0cr(Z1/Ecr),

Theorem 3.6 yields a canonical quasi-isomorphism of B+cr -complexes (called the
crystalline Beilinson–Hyodo–Kato quasi-isomorphism)

ιBcr : R0
B
HK(Z1)

τ

B+cr
−→∼ R0cr(Z1)Q

compatible with the action of Frobenius. But we have

R0B
HK(Z1)

τ

B+cr
= (R0B

HK(Z1)⊗K nr
0

Aτcr,Q)
N=0

and there is a canonical isomorphism Aτcr,Q−→
∼ B+st that is compatible with Frobenius

and monodromy. This implies that the above quasi-isomorphism amounts to a quasi-
isomorphism of B+cr -complexes

ιBcr : R0
B
HK(Z1)B+st

−→∼ R0cr(Z1)⊗
L
Acr

B+st
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compatible with the action of ϕ and N. The crystalline Beilinson–Hyodo–Kato map
can be canonically trivialized at [ p̃], where p̃ is a sequence of pn-th roots of p:

β = β[ p̃] : R0B
HK(Z1)⊗K nr

0
B+cr −→

∼ (R0B
HK(Z1)⊗K nr

0
B+cr [a([ p̃])])

N=0,

x 7→ exp(N (x)a([ p̃])).

This trivialization is compatible with Frobenius and monodromy.
Suppose now that f̄1 : Z1→ Spec(V 1)

× is a reduction mod p of a log-scheme
f̄ : Z→ Spec(V )×. Suppose that f̄ is the base change of f̄L : ZL→ Spec(OL)

× by
θ : Spec(OL)

×
→ Spec(OL)

× for a finite extension L/K . That is, we have a map
θL : Z → ZL such that the square ( f̄ , f̄L , θ, θL) is Cartesian. Assume that f̄L is
log-smooth of Cartier type and that the underlying map of schemes is proper. Such
data (L , Z , θL) form a directed set 6 and the reduction mod p map 6→ 61 is
cofinal. The Beilinson–Hyodo–Kato quasi-isomorphisms (27) are compatible with
morphisms in 6 and their colimit yields a natural quasi-isomorphism (called again
the Beilinson–Hyodo–Kato quasi-isomorphism)

ιBdR : R0
B
HK(Z1)

τ

K −→
∼ R0(Z K , �

•

Z/K ).

The trivializations by p are also compatible with the maps in 6; hence we obtain
the Beilinson–Hyodo–Kato maps

ιBdR := ι
B
dRβp : R0B

HK(Z1)→ R0(Z K , �
•

Z/K ).

For an ss-pair (U,U ) over K, set R0B
HK(U,U ) := R0B

HK((U,U )1). Let A B
HK

be the h-sheafification of the presheaf (U,U ) 7→ R0B
HK(U,U ) on Pss

K
. This is

an h-sheaf of E∞ K nr
0 -algebras equipped with a ϕ-action and locally nilpotent

derivation N such that Nϕ= pϕN. For X ∈V arK , set R0B
HK(Xh) :=R0(Xh,A

B
HK).

Proposition 3.21. (1) For any (U,U ) ∈Pss
K

, the canonical maps

R0cr(U,U,J [r ])Q −→
∼ R0(Uh,J

[r ]
cr )Q, R0B

HK(U,U )−→∼ R0B
HK(Uh) (41)

are quasi-isomorphisms.

(2) For every X ∈ V arK , the cohomology groups H n
cr(Xh) := H nR0cr(Xh)Q and

H n
HK(Xh) := H nR0B

HK(Xh), are free B+cr -modules, resp. K nr
0 -modules, of rank

equal to the rank of H n(Xét,Qp).

Proof. Only the filtered statement in part (1) for r > 0 requires argument since the
rest has been proven by Beilinson [2013, 2.4]. Take r > 0. To prove that we have a
quasi-isomorphism R0cr(U,U,J [r ])Q−→

∼ R0(Uh,J
[r ]
cr )Q, it suffices to show that

the map R0cr(U,U,O/J [r ])Q → R0(Uh,Acr/J
[r ]
cr )Q is a quasi-isomorphism.

Since, for an ss-pair (T, T ) over K , by Corollary 2.4 R0cr(T, T ,O/J [r ])Q '

R0(T K , �
•

(T,T K )
/Fr ), this is equivalent to showing that R0(UK , �

•

(U,UK )
/Fr )→

R0(Uh,AdR/Fr ) is a quasi-isomorphism, which follows from Proposition 3.14. �
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Proposition 3.22. Let X ∈ V arK . The natural projection ε : XK ,h → Xh defines
pullback maps

ε∗ : R0B
HK(Xh)→ R0B

HK(XK ,h)
GK, ε∗ : R0dR(Xh)→ R0dR(XK ,h)

GK. (42)

These are (filtered) quasi-isomorphisms.

Proof. Notice that the action of GK on R0B
HK(XK ,h){r} and R0dR(XK ,h) is smooth,

i.e., the stabilizer of every element is an open subgroup of GK . We will prove only
the first quasi-isomorphism — the proof of the second one being analogous. By
Proposition 3.18, it suffices to show that for any ss-pair over K , the natural map

R0B
HK(U1,U 1)→ R0B

HK((U,U )⊗K K )GK

is a quasi-isomorphism. Passing to a finite extension of KU , if necessary, we may
assume that (U,U ) is log-smooth of Cartier type over a finite Galois extension KU

of K. Then

R0B
HK((U,U )⊗K K )' R0B

HK(U1,U 1)⊗KU,0 K nr
0 × H, H = Gal(KU/K ).

Taking GK -fixed points of this quasi-isomorphism, we get the first quasi-isomorphism
of (42), as wanted. �

Let (U,U ) be an ss-pair over K . Set

R0\dR(U,U ) := R0(U ét,L�•,∧
(U,U )/W (k)

),

R0\dR(U,U )n := R0\dR(U,U )⊗
L Z/pn

' R0(U ét,L�•,∧
(U,U )n/Wn(k)

),

R0\dR(U,U ) ⊗̂Zp := holimn R0\dR(U,U )n,

R0\dR(U,U ) ⊗̂Qp := (R0
\

dR(U,U ) ⊗̂Zp)⊗Q.

These are F-filtered E∞ algebras. Take the associated presheaves on Pss
K

. Denote by
A
\

dR, A
\

dR,n , A
\

dR ⊗̂Zp, A
\

dR ⊗̂Qp their sheafifications in the h-topology of V arK .
These are sheaves of F-filtered E∞ algebras (viewed as the projective system
of quotients modulo F i ). Set AdR := L�•,∧

V /V
. By [Beilinson 2012, Lemma 3.2],

AdR=A
\

dR(Spec(K ))=R0\dR(K , V ). The corresponding F-filtered algebras AdR,n ,
AdR ⊗̂Zp, AdR ⊗̂Qp are acyclic in nonzero degrees and the projections ·/Fm+1

→

·/Fm are surjective. Thus (we set limF := holimF )

A�dR,n := lim
F

AdR,n = lim
←−m

H 0(AdR,n/Fm),

A�dR := lim
F
(AdR ⊗̂Zp)= lim

←−m
H 0(AdR ⊗̂Zp/Fm),

lim
F

AdR ⊗̂Qp = lim
←−m

H 0(AdR ⊗̂Qp/Fm)= B+dR,

AdR ⊗̂Qp/Fm
= B+dR/Fm.
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For any (U,U ) over K, the complex R0\dR(U,U ) is an F-filtered E∞ filtered
AdR-algebra; hence limF R0\dR(U,U )n is an A�dR,n-algebra, limF (R0

\

dR(U,U ) ⊗̂
Qp) is a B+dR-algebra, etc. We have canonical morphisms

κ ′r,n : R0cr(U,U )n→ R0cr(U,U )n/Fr
−→∼ R0\dR(U,U )n/Fr.

In the case of (K , V ), from Theorem 2.1, we get isomorphisms

κ ′r,n = κ
−1
r : Acr,n/J [r ] −→∼ AdR,n/Fr.

Hence A�dR is the completion of Acr with respect to the J [r ]-topology.
For X ∈ V arK , set R0\dR(Xh) := R0(Xh,A

\

dR). Since AdR,Q = K, for any
variety X over K, we have a filtered quasi-isomorphism of K-algebras [Beilinson
2012, 3.2] R0\dR(Xh)Q −→

∼ R0dR(Xh) obtained by h-sheafification of the quasi-
isomorphism

R0\dR(U,U )Q −→
∼ R0dR(U,U Q). (43)

Concerning the p-adic coefficients, we have a quasi-isomorphism

γr : (R0dR(Xh)⊗K B+dR)/Fr
−→∼ R0(Xh,A

\

dR ⊗̂Qp)/Fr. (44)

To define it, consider, for any ss-pair (U,U ) over K, the natural map R0\dR(U,U )→
R0\dR(U,U )⊗̂Zp. It yields, by extension to AdR⊗̂Qp and by the quasi-isomorphism
(43), a quasi-isomorphism of F-filtered K-algebras [Beilinson 2013, 3.5]

γ : R0dR(U,U )Q⊗K (AdR ⊗̂Qp)−→
∼ R0\dR(U,U ) ⊗̂Qp.

Its (mod Fr )-version γr after h-sheafification yields the quasi-isomorphism

γr : (AdR⊗K B+dR)/Fr
−→∼ A

\

dR ⊗̂Qp/Fr.

Passing to R0(Xh, • ) we get the quasi-isomorphism (44).
For X ∈ V arK , we have canonical quasi-isomorphisms

ιBcr : R0
B
HK(Xh)

τ

B+cr
−→∼ R0cr(Xh)Q, ιBdR : R0

B
HK(Xh)

τ

K −→
∼ R0dR(Xh)

compatible with the Gal(K/K )-action. Here τ

B+cr
and τ

K
denote the h-sheafification

of the crystalline and de Rham Beilinson–Hyodo–Kato twists [Beilinson 2013,
2.5.1]. Trivializing the first map at [ p̃] and the second map at p, we get the
Beilinson–Hyodo–Kato maps

ιBcr := ι
B
crβ[ p̃] : R0

B
HK(Xh)⊗K nr

0
B+cr → R0cr(Xh)Q,

ιdR := ιdRβp : R0B
HK(Xh)→ R0dR(Xh).

Using the quasi-isomorphism

κ−1
r : Acr,Q/J

[r ]
cr,Q −→

∼ (A
\

dR ⊗̂Qp)/Fr
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from Theorem 2.1, we get the quasi-isomorphisms of complexes of sheaves on XK ,h

S (r)Q−→∼ [J
[r ]
cr,Q

1−ϕr
// Acr,Q] −→

∼ [Acr,Q
(1−ϕr ,can)

// Acr,Q⊕Acr,Q/J
[r ]
cr,Q]

←−∼ [Acr,Q
(1−ϕr ,κ

−1
r )
// Acr,Q⊕(A

\

dR⊗̂Qp)/Fr
] .

Applying R0(Xh, • ) and the quasi-isomorphism γ−1
r : R0(Xh,A

\

dR ⊗̂Qp)/Fr
−→∼

(R0dR(Xh)⊗K B+dR)/Fr from (44), we obtain the quasi-isomorphisms

R0syn(Xh, r)

−→∼
[
R0cr(Xh)Q

(1−ϕr ,κ
−1
r )
// R0cr(Xh)Q⊕R0(Xh,A

\

dR ⊗̂Qp)/Fr
]

−→∼
[
R0cr(Xh)Q

(1−ϕr ,γ
−1
r κ−1

r )
// R0cr(Xh)Q⊕ (R0dR(Xh)⊗K B+dR)/Fr

]
. (45)

Corollary 3.23. For any (U,U ) ∈Pss
K

, the canonical map

R0syn(U,U, r)Q −→∼ R0syn(Uh, r)

is a quasi-isomorphism.

Proof. Arguing as above, we find quasi-isomorphisms

R0syn(U,U, r)Q

−→∼
[
R0cr(U,U )Q

(1−ϕr ,κ
−1
r )
// R0cr(U,U )Q⊕ (R0\(U,U ) ⊗̂Qp)/Fr

]
−→∼

[
R0cr(U,U )Q

(1−ϕr ,γ
−1
r κ−1

r )
// R0cr(U,U )Q⊕ (R0dR(U,U )⊗K B+dR)/Fr

]
.

Comparing them with quasi-isomorphisms (45), we see that it suffices to check that
the natural maps

R0cr(U,U )Q −→∼ R0cr(Uh)Q, R0dR(U,U )−→∼ R0dR(Uh)

are (filtered) quasi-isomorphisms, but this follows by Propositions 3.21 and 3.14. �

Consider the composition of morphisms

R0syn(Xh,r)

−→∼
[

R0cr(Xh)Q
(1−ϕr ,γ

−1
r κ−1

r )
// R0cr(Xh)Q⊕(R0dR(Xh)⊗K B+dR)/Fr

]

←−∼


R0B

HK(Xh)⊗K nr
0

B+st
(1−ϕr ,ι

B
dR⊗ι)

//

N

��

R0B
HK(Xh)⊗K nr

0
B+st

⊕(R0dR(Xh)⊗K B+dR)/Fr

(N ,0)

��

R0B
HK(Xh)⊗K nr

0
B+st

1−ϕr−1
// R0B

HK(Xh)⊗K nr
0

B+st

. (46)
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The second quasi-isomorphism uses the map

(R0B
HK(Xh)⊗K nr

0
B+st )

N=0
= R0B

HK(Xh)
τ

B+cr

ιBcr
−→R0cr(Xh)Q

(that is compatible with the action of N and ϕ) and the following lemma.

Lemma 3.24. The following diagrams commute:

R0cr(Xh)Q⊗B+cr
B+st

γ−1
r κ−1

r ⊗ι
// (R0dR(Xh)⊗K B+dR)/Fr

R0B
HK(Xh)⊗K nr

0
B+st

ιBdR⊗ι

33

ιBcr o

OO

R0cr(Xh)Q⊗Acr BdR
γdR

∼
// R0dR(Xh)⊗K BdR

R0B
HK(Xh)⊗K nr

0
Bst

ιBcr⊗ι

OO

ιBdR⊗ι

55

(Here γdR is the map defined in [Beilinson 2013, 3.4.1].)

Proof. We will start with the top diagram. It suffices to show that it canonically
commutes with Xh replaced by any ss-pair Y = (U,U ) over K — a base change
of an ss-pair Y split over (V, K ). Proceeding as in Example 3.5, we obtain the
following diagram in which all squares but the one in the top right clearly commute:

R0B
HK(Y1)

τ
K Id⊗1

//

ιBK
��

R0B
HK(Y 1)

τ

K
⊗K B+dR

ιB
K
⊗κr

��

R0B
HK(Y 1)

τ

B+cr
⊗B+cr

B+st
δoo

ιBcr⊗κr ι

��

R0cr(Y1/V×)Q/Fr // R0cr(Y 1/V×)Q/Fr R0cr(Y 1/Acr)Q/Fr
∼

oo

R0(Yét,L�•,∧Y/V×)⊗̂Qp/Fr

κr o

OO

// R0(Y ét,L�•,∧
Y/V×

)⊗̂Qp/Fr

κr o

OO

(R0\dR(Y )⊗̂Qp)/Fr

κr o

OO

∼oo

R0dR(YK )/Fr

γr o

OO

// (R0dR(Y K )⊗K B+dR)/Fr

γr o

OO
γr

∼

55

Here we have B+dR/Fm
= (R0\dR(K , V )⊗̂Qp)/Fm and the map δ is defined as the

composition

δ : R0B
HK(Y 1)

τ

B+cr
⊗B+cr

B+st = (R0
B
HK(Y 1)⊗K nr

0
B+st )

N=0
⊗B+cr

B+st

−→∼ R0B
HK(Y 1)⊗K nr

0
B+st

βp⊗ι
−−→R0B

HK(Y 1)
τ

K ⊗K B+dR.
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Recall that for the map ιBdR :R0
B
HK(Y1)

τ
K→R0dR(YK )/Fr , we have ιBdR=γ

−1
r κ−1

r ιBK .
Everything in sight being compatible with change of the ss-pairs Y — more specifi-
cally with maps in the directed system 6— if this diagram commutes so does its
6 colimit and the top diagram in the lemma for the pair (U,U ).

It remains to show that the top right square in the above diagram commutes. To
do that, consider the ring Ân defined as the PD-envelope of the closed immersion

V×1 ↪→ Acr,n ×Wn(k) V×n .

That is, Ân is the product of the PD-thickenings (V×1 ↪→ Acr,n) and (V×1 ↪→ V×n )
over (W1(k) ↪→Wn(k)). By [Beilinson 2013, Lemma 1.17], this makes V×1 ↪→ Âcr,n

into the universal PD-thickening in the log-crystalline site of V×1 over V×n . Let
Â := inj limn Âcr,n with the limit log-structure. Set B̂+cr := Âcr[1/p].

Using Theorem 3.6, we obtain a canonical quasi-isomorphism

ιBB̂+cr
: R0B

HK(Y 1)
τ

B̂+cr
−→∼ R0cr(Y 1/ Âcr)Q.

By construction, we have the maps of PD-thickenings

(V×1 ↪→ V×) (V×1 ↪→ Âcr)
pr1
oo

pr2
// (V×1 ↪→ Acr).

Consider the diagram

R0B
HK(Y 1)

τ

B̂+cr

ιB
B̂+cr

��

R0B
HK(Y 1)

τ

K
⊗K B+dR/Fr

pr∗1 ⊗ pr∗1 κr
oo

ιB
K
⊗κr

��

R0B
HK(Y 1)

τ

B+cr

ιBcr
��

pr∗2

ii
δ

55

R0cr(Y 1/Acr)Q/Fr

pr∗2

∼uu

∼

**

R0cr(Y 1/ Âcr)Q/Fr R0cr(Y 1/V×)Q/Fr

pr∗1

∼
oo

The bottom triangle commutes since R0cr(Y 1/Acr)=R0cr(Y 1/W (k)). The pullback
maps

pr∗1 : R0cr(Y 1/V×)−→∼ R0cr(Y/ Âcr),

pr∗2 : R0cr(Y/Acr)Q/Fr
−→∼ R0cr(Y/ Âcr)Q/Fr

are quasi-isomorphisms. Indeed, in the case of the first pullback this follows
from the universal property of Âcr; in the case of the second one, it follows from
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the commutativity of the bottom triangle since the right slanted map is a quasi-
isomorphism as shown by the first diagram in our proof.

The left trapezoid and the big square commute by the definition of the Beilinson–
Bloch–Kato maps. To see that the top triangle commutes, it suffices to show that
for an element

x ∈ R0B
HK(Y 1)

τ

B+cr
= (R0B

HK(Y 1)⊗K nr
0

B+st )
N=0,

x = b
∑
i≥0

N i (m)a([ p̃])[i], m ∈ R0B
HK(Y 1), b ∈ B+cr ,

we have pr∗2(x)= pr∗1 δ(x). Since ι(a([ p̃]))= log([ p̃]/p) [Fontaine 1994a, 4.2.2],
we calculate

δ(x)= δ
(

b
∑
i≥0

N i (m)a([ p̃])[i]
)
= b

∑
i≥0

(∑
j≥0

N i+ j (m)a(p)[ j]
)

log([ p̃]/p)[i]

= b
∑
k≥0

N k(m)
(
a(p)+ log([ p̃]/p)

)[k]
.

Since in B̂+cr we have [ p̃] = ([ p̃]/p)p and [ p̃]/p ∈ 1+ JB̂+cr
, it follows that a([ p̃])=

log([ p̃]/p)+ a(p) and

pr∗1 δ(x)= pr∗1

(
b
∑
k≥0

N k(m)(a(p)+ log([ p̃]/p))[k]
)

= b
∑
k≥0

N k(m)a([ p̃])[k] = pr∗2

(
b
∑
k≥0

N k(m)a([ p̃])[k]
)
= pr∗2(x),

as wanted. It follows now that the right trapezoid in the above diagram commutes
as well and that so does the top diagram in our lemma.

To check the commutativity of the bottom diagram, consider the following map
obtained from the maps κ ′r,n by passing to F-limit:

κ ′n : R0cr(Y )n ⊗L
Acr,n

AdR,n −→
∼ lim
←−F

R0cr(Y )n/Fr.

By [Beilinson 2013, 3.6.2], this is a quasi-isomorphism. Beilinson [2013, 3.4.1]
defines the map

γdR : R0cr(Y )Q⊗Acr B+dR −→
∼ R0dR(Y K )⊗K B+dR

by B+dR-linearization of the composition lim
←−r
(γ−1

r κ−1
r ) holimn κ

′
n . We have

γdR = γ
−1
r κ−1

r : R0cr(Y )Q→ (R0dR(Y K )⊗K B+dR)/Fr.

Hence the commutativity of the bottom diagram follows from that of the top one. �
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Let C+(R0B
HK(Xh){r}) denote the second homotopy limit in the diagram (46);

denote by C(R0B
HK(Xh){r}) the complex C+(R0B

HK(Xh){r}) with all the pluses
removed. We have defined a map αsyn : R0syn(Xh, r)→ C+(R0B

HK(Xh){r}) and
proved the following proposition.

Proposition 3.25. There is a functorial GK -equivariant quasi-isomorphism

αsyn : R0syn(Xh, r)= R0(Xh,S (r)Q)' C+(R0B
HK(Xh){r}).

Corollary 3.26. For (U,U ) ∈Pss
K , we have a long exact sequence

· · ·→ H i
syn((U,U )K ,r)→ (H i

HK(U,U )Q⊗K0 B+st )
ϕ=pr ,N=0

→ (H i
dR(U,U )⊗K B+dR)/Fr

→ H i+1
syn ((U,U )K ,r)→··· .

Proof. By diagram (46), it suffices to show that

H i
[R0B

HK((U,U )1)⊗K0 B+st ]
ϕ=pr ,N=0

' (H i
HK(U,U )Q⊗K0 B+st )

ϕ=pr ,N=0,

H i (R0dR(U,U )⊗K B+dR)/Fr )' (H i
dR(U,U )⊗K B+dR)/Fr.

The second isomorphism is a consequence of the degeneration of the Hodge–
de Rham spectral sequence. Keeping in mind that the Beilinson–Hyodo–Kato
complexes R0B

HK((U,U )1) are built from (ϕ, N )-modules, the first isomorphism
follows from the short exact sequences (for a (ϕ, N )-module M)

0→ M ⊗K0 B+cr → M ⊗K0 B+st
N
−→M ⊗K0 B+st → 0,

0→ (M ⊗K0 B+cr )
ϕ=pr
→ M ⊗K0 B+cr

1−ϕr
−−→M ⊗K0 B+cr → 0.

The first one follows, by induction on m such that N m
= 0 on M , from the exact

sequence (11) and the fact that (M ⊗K0 B+st )
N=0
' M ⊗K0 B+cr . The second one

follows from [Colmez and Niziol 2015, Remark 2.30]. �

4. Relation between syntomic cohomology and étale cohomology

In this section we will study the relationship between syntomic and étale cohomology
in both the geometric and the arithmetic situation.

4A. Geometric case. We start with the geometric case. In this subsection, we
will construct the geometric syntomic period map from syntomic to étale coho-
mology. We will prove that in the torsion case, on the level of h-sheaves it is a
quasi-isomorphism modulo a universal constant; in the rational case it induces an
isomorphism on cohomology groups in a stable range. Finally, we will construct
the syntomic descent spectral sequence.

We will first recall the de Rham and crystalline Poincaré lemmas of Beilinson
[2013; 2012] and Bhatt [2012].
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Theorem 4.1 (de Rham Poincaré lemma [Beilinson 2012, 3.2]). The maps

AdR⊗
L Z/pn

→ A
\

dR⊗
L Z/pn

are filtered quasi-isomorphisms of h-sheaves on V arK .

Theorem 4.2 (filtered crystalline Poincaré lemma [Beilinson 2013, 2.3, Bhatt 2012,
Theorem 10.14]). The map J [r ]cr,n → J [r ]

cr,n is a quasi-isomorphism of h-sheaves
on V arK .

Proof. We have the map of distinguished triangles

J [r ]cr,n
//

��

Acr,n //

o

��

Acr,n/J [r ]cr,n

o

��

J [r ]
cr,n

// Acr,n // Acr,n/J
[r ]
cr,n

The middle map is a quasi-isomorphism by the crystalline Poincaré lemma proved
in [Beilinson 2013, 2.3]. Hence it suffices to show that so is the rightmost map. But,
by [Beilinson 2013, 1.9.2], this map is quasi-isomorphic to the map AdR,n/Fr

→

A
\

dR,n/Fr. Since the last map is a quasi-isomorphism by the de Rham Poincaré
lemma, Theorem 4.1, we are done. �

We will now recall the definitions of the crystalline, Beilinson–Hyodo–Kato, and
de Rham period maps [Beilinson 2013, 3.1; 2012, 3.5]. Let X ∈ V arK . To define
the crystalline period map

ρcr : R0cr(Xh)→ R0(Xét,Zp) ⊗̂ Acr,

consider the natural map αn : R0cr(Xh)→ R0(Xh,Acr,n) and the composition

βn : R0(Xét,Zp(r))⊗L
Zp

Acr,n −→
∼ R0(Xét, Acr,n)

−→∼ R0(Xh, Acr,n)−→
∼ R0(Xh,Acr,n).

Set ρcr,n := β
−1
n αn and ρcr := holimn ρcr,n . The Hyodo–Kato period map

ρHK : R0B
HK(Xh)

τ

B+cr
→ R0(Xét,Qp)⊗ B+cr , ρHK = ρcr,Qι

B
cr,

is obtained by composing the map ρcr,Q with the quasi-isomorphism

ιBcr : R0
B
HK(Xh)

τ

B+cr
−→∼ R0cr(Xh)Q.

The maps ρcr, ρHK are morphisms of E∞ Acr- and B+cr -algebras equipped with a
Frobenius action; they are compatible with the action of the Galois group GK .
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To define the de Rham period map ρdR :R0d R(Xh)⊗K B+dR→R0(Xét,Qp)⊗B+dR
consider the compositions

α : R0dR(Xh)−→
∼ R0\dR(Xh)⊗Q→ R0\dR(Xh) ⊗̂Qp,

β : R0(Xét,Z)⊗L AdR −→
∼ R0(Xét, AdR)→ R0(Xh, AdR)

→ R0(Xh,A
\

dR)= R0\dR(Xh).

After tensoring the map β with Z/pn and using the de Rham Poincaré lemma, we
get a quasi-isomorphism

βn : R0(Xét,Z/pn)⊗L AdR −→
∼ R0\dR(Xh)⊗

L Z/pn.

Set βQ := holimn βn ⊗Q and ρdR := β
−1α. This is a morphism of filtered E∞

B+dR-algebras, compatible with GK -action.

Theorem 4.3 [Beilinson 2013, 3.2, 2012, 3.6]. For X ∈ V arK , we have canonical
quasi-isomorphisms

ρcr : R0cr(Xh)⊗Acr Bcr −→
∼ R0(Xét,Qp)⊗ Bcr,

ρHK : R0B
HK(Xh)

τ
Bcr
−→∼ R0(Xét,Qp)⊗ Bcr,

ρdR : R0dR(Xh)⊗K BdR −→
∼ R0(Xét,Qp)⊗ BdR.

Pulling back ρHK to the Fontaine–Hyodo–Kato Ga-torsor Spec(Bst)/Spec(Bcr),
we get a canonical quasi-isomorphism of Bst-complexes

ρHK : R0B
HK(Xh)⊗K nr

0
Bst −→

∼ R0(Xét,Qp)⊗ Bst (47)

compatible with the (ϕ, N )-action and with the GK -action on V arK .

Corollary 4.4. The period morphisms are compatible; i.e., the following diagrams
commute:

R0B
HK(Xh)⊗K nr

0
Bst

ιBdR⊗ι
//

ρHK

��

R0dR(Xh)⊗K BdR

ρdR

��

R0(Xét,Qp)⊗ Bst
1⊗ι
// R0(Xét,Qp)⊗ BdR

R0cr(Xh)⊗Acr BdR

ρcr⊗IdBdR
��

R0dR(Xh)⊗K BdR

ρdR
uu

γdR

∼
oo

R0(Xét,Qp)⊗ BdR

Proof. The bottom diagram commutes by [Beilinson 2013, 3.4]. The commutativity
of the top one can be reduced, by the equality ρHK = ρcrι

B
cr and the bottom diagram

above, to the commutativity of the bottom diagram in Lemma 3.24. �
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We will now define the syntomic period map

ρsyn : R0syn(Xh, r)Q→ R0(Xét,Qp(r)), r ≥ 0.

Set Z/pn(r)′ := (1/(paa!)Zp(r))⊗Z/pn , where a is the largest integer≤ r/(p−1).
Recall that we have the fundamental exact sequence [Tsuji 1999, Theorem 1.2.4]

0→ Z/pn(r)′→ J 〈r〉cr,n
1−ϕr
−−→ Acr,n→ 0,

where
J 〈r〉n := {x ∈ J [r ]n+s | ϕ(x) ∈ pr Acr,n+s}/pn

for some s ≥ r . Set Sn(r) := Cone(J [r ]cr,n
pr
−ϕ
−−→ Acr,n)[−1]. There is a natural

morphism of complexes Sn(r)→Z/pn(r)′ (induced by pr on J [r ]cr,n and Id on Acr,n),
whose kernel and cokernel are annihilated by pr.

The filtered crystalline Poincaré lemma implies easily the following syntomic
Poincaré lemma.

Corollary 4.5. (1) For 0 ≤ r ≤ p − 2, there is a unique quasi-isomorphism
Z/pn(r)−→∼ Sn(r) of complexes of sheaves on V arK ,h that is compatible with
the crystalline Poincaré lemma.

(2) There is a unique quasi-isomorphism Sn(r)−→∼ Sn(r) of complexes of sheaves
on V arK ,h that is compatible with the crystalline Poincaré lemma.

Proof. We will prove the second claim — the first one is proved in an analogous
way. Consider the map of distinguished triangles

Sn(r) // J [r ]
cr,n

pr
−ϕ
// Acr,n

Sn(r) //

OO

J [r ]cr,n

o

OO

pr
−ϕ
// Acr,n

o

OO

The triangles are distinguished by definition. The vertical continuous arrows are
quasi-isomorphisms by the crystalline Poincaré lemma. They induce the dashed
arrow that is clearly a quasi-isomorphism. �

Consider the natural map αn :R0(Xh,S (r))→R0(Xh,Sn(r)) and the zig-zag

βn :R0(Xh,Sn(r))←R0(Xh, Sn(r))→R0(Xét,Z/pn(r)′)←−∼ R0(Xh,Z/pn(r)′).

Set β := (holimn βn)⊗Q; note that this is a quasi-isomorphism. Set

ρsyn := p−rβα : R0syn(Xh, r)→ R0(Xét,Qp(r)),

where α := (holimn αn)⊗Q. The period map ρsyn induces a map of graded E∞
algebras over Qp compatible with the action of the Galois group GK .
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The syntomic period map has a different, more global definition that we find
very useful. Define the map ρ ′syn by the diagram

R0syn(Xh, r)
∼ //

ρ′syn

��

[
R0cr(Xh)Q

(1−ϕr ,γ
−1
r κ−1

r )
//

ρcr
��

R0cr(Xh)Q⊕R0dR(Xh)/Fr
]

ρcr+ρdR

��

R0ét(X,Qp(r))
∼ //

[
R0ét(X,Qp(r))⊗ Bcr

(1−ϕr ,can)
//
R0ét(X,Qp(r))⊗ Bcr

⊕R0ét(X,Qp(r))⊗ BdR/Fr

]
This definition makes sense since the following diagram commutes:

R0cr(Xh)Q
γ−1

r κ−1
r

//

ρcr

��

R0dR(Xh)/Fr

ρdR

��

R0ét(X,Qp(r))⊗ Bcr
can
// R0ét(X,Qp(r))⊗ BdR/Fr

The syntomic period morphisms ρsyn and ρ ′syn are homotopic by a homotopy com-
patible with the GK -action (and, unless necessary, we will not distinguish them in
what follows). These two facts follow easily from the definitions.

For X ∈ V arK , we have a quasi-isomorphism

αét : R0(XK ,ét,Qp(r))−→∼ C(R0B
HK(XK ,h){r}) (48)

that we define as the inverse of the following composition of quasi-isomorphisms
(square brackets denote complex):

C(R0B
HK(XK ,h){r})
ρ
∼
−→R0(XK ,ét,Qp)⊗Qp

[
Bst

(N ,1−ϕr ,ι)
−−−−−→ Bst⊕ Bst⊕ BdR/Fr (1−ϕr−1)−N

−−−−−−→ Bst
]

←−∼ R0(XK ,ét,Qp)⊗Qp C(Dst(Qp(r)))←−∼ R0(XK ,ét,Qp(r)).

The last quasi-isomorphism is by Remark 2.7. The map ρ is defined using the
period morphisms ρHK and ρdR and their compatibility (Corollary 4.4). The map αét

is compatible with the action of GK .

Proposition 4.6. For a variety X ∈ V arK , we have a canonical, compatible with
the action of GK , quasi-isomorphism

ρsyn : τ≤r R0syn(XK ,h, r)−→
∼ τ≤r R0(XK ,ét,Qp(r)).

Proof. The Bousfield–Kan spectral sequences associated to the homotopy lim-
its defining the complexes C+(H j

HK(XK ,h){r}) and C(H j
HK(XK ,h){r}) form the
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commutative diagram

+E i, j
2 = H i (C+(H j

HK(XK ,h){r}))

can
��

+3 H i+ j (C+(R0B
HK(XK ,h){r}))

can
��

E i, j
2 = H i (C(H j

HK(XK ,h){r})) +3 H i+ j (C(R0B
HK(XK ,h){r}))

We have Dj = H j
HK(XK ,h){r} ∈ MFad

K (ϕ, N ,GK ). For j ≤ r ,

F1 Dj,K = F1−(r− j)H j
dR(Xh){r} = 0.

Hence, by Corollary 2.15, we have +E i, j
2 −→
∼ E i, j

2 . This implies

τ≤r C+(R0B
HK(XK ,h){r})−→

∼ τ≤r C(R0B
HK(XK ,h){r}).

Since ρHK = ρcrι
B
cr, we check easily that we have the commutative diagram

R0syn(XK ,h, r)
∼

αsyn

//

ρsyn

��

C+(R0B
HK(XK ,h){r})

can
��

R0(XK ,ét,Qp(r))
∼

αét

// C(R0B
HK(XK ,h){r})

(49)

It follows that

ρsyn : τ≤r R0syn(XK ,h, r)−→
∼ τ≤r R0(XK ,ét,Qp(r)),

as wanted. �

Let X ∈ V arK . The natural projection ε : XK ,h→ Xh defines pullback maps

ε∗ : R0B
HK(Xh)→ R0B

HK(XK ,h), ε∗ : R0dR(Xh)→ R0dR(XK ,h).

By construction they are compatible with the monodromy operator, Frobenius,
the action of the Galois group GK , and filtration. It is also clear that they are
compatible with the Beilinson–Hyodo–Kato morphisms, i.e., that the following
diagram commutes:

R0B
HK(Xh)

ιBdR
//

ε∗

��

R0dR(Xh)

ε∗

��

R0B
HK(XK ,h)

ιBdR
// R0dR(XK ,h)

It follows that we can define a canonical pullback map

ε∗ : Cst(R0B
HK(Xh){r})→ C+(R0B

HK(XK ,h){r}).
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Lemma 4.7. Let r ≥ 0. The following diagram commutes in the derived category:

R0syn(Xh, r)
αsyn

//

ε∗

��

Cst(R0B
HK(Xh){r})

ε∗

��

R0syn(XK ,h, r)
αsyn
// C+(R0B

HK(XK ,h){r})

Proof. Take a number t ≥ 2 dim X + 2 and choose a finite Galois extension
(V ′, K ′)/(V, K ) (see the proof of Proposition 3.18) such that we have an h-
hypercovering Z•→ X K ′ with (Z•)≤t+1 built from log-schemes log-smooth over
V ′,× and of Cartier type. Since the top map αsyn is compatible with base change
(see Proposition 3.20) it suffices to show that the diagram in the lemma commutes
with X replaced by (Z•)≤t+1. By Propositions 3.21, 3.18, and 3.14, this reduces to
showing that, for an ss-pair (U,U ) split over V, the following diagram commutes
canonically in the∞-derived category (we set Y := (U,U ), Y := YV , where π is a
fixed uniformizer of V ):

R0syn(Y, r)Q
αB

syn,π
//

ε∗

��

Cst(R0B
HK(Y ){r})

ε∗

��

R0syn(YK , r)Q
αsyn
// C+(R0B

HK(YK ){r})

From the uniqueness property of the homotopy fiber functor, it suffices to show
that the following diagram commutes canonically in the∞-derived category:

R0cr(Y )Q //

��

R0cr(Y/R)N=0
Q

R0B
HK(Y1)

τ,N=0
RQ

ιπ

∼
oo R0B

HK(Y1)
N=0β

∼
oo

vv

R0cr(Y )Q R0B
HK(Y 1)

τ,N=0
B+cr

ιBcr

∼
oo (R0B

HK(Y 1)⊗K nr
0

B+st )
N=0

To do that we will need the ring of periods Âst [Tsuji 1999, p. 253]. Set

Âst,n = H 0
cr(V

×

n /Rn), Âst = lim
←−n

H 0
cr(V

×

n /Rn).

The ring Âst,n has a natural action of GK , Frobenius ϕ, and a monodromy operator N.
It is also equipped with a PD-filtration F i Âst,n = H 0

cr(V
×
n /Rn,J

[i]
cr,n). We have a

morphism Acr,n→ Âst,n induced by the map H 0
cr(V n/Wn(k))→ H 0

cr(V
×
n /Rn). It

is compatible with the Galois action, the Frobenius, and the filtration. The natural
map Rn → Âst,n is compatible with all the structures. We can view Âst,n as the
PD-envelope of the closed immersion

V×n ↪→ Acr,n ×Wn(k) Wn(k)[X ]×
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defined by the map θ : Acr,n → V n and the projection Wn(k)[X ] → V n , X 7→ π .
This makes V×1 ↪→ Âst,n into a PD-thickening in the crystalline site of V 1. Set
B̂+st := Âst[1/p].

Commutativity of the last diagram will follow from the commutative diagram

R0cr(Y )Q

��

// R0cr(Y )Q

∼
vv

R0cr(Y/R)N=0
Q

// R0cr(Y/ Âst)
N=0
Q

R0B
HK(Y1)

τ,N=0
RQ

ιπ o

OO

// R0B
HK(Y1)

τ,N=0
B̂+st

ιB
B̂+st
o

OO

R0B
HK(Y1)

τ,N=0
B+cr

oo

ιBcr o

OO

R0B
HK(Y1)

N=0

66

β

∼

hh

as soon as we show that R0cr(Y )Q → R0cr(Y/ Âst)
N=0
Q

is a quasi-isomorphism.
Notice that the map ιB

B̂+st
is a quasi-isomorphism by Theorem 3.6. Hence using the

Beilinson–Hyodo–Kato maps ιB
B̂+st

and ιBcr this reduces to proving that the canonical
map

R0B
HK(Y1)

τ,N=0
B+cr

→ R0B
HK(Y1)

τ,N=0
B̂+st

is a quasi-isomorphism. In fact, we claim that for any (ϕ, N )-module M we have an
isomorphism Mτ,N=0

B+cr
−→∼ Mτ,N=0

B̂+st
. Indeed, assume first that the monodromy NM

is trivial. We calculate

Mτ

B+cr
= (M ⊗K0 B+,τcr )N ′=0

= M ⊗K0 (B
+,τ
cr )Nτ=0

= M ⊗K0 B+cr ,

Mτ

B̂+st
= (M ⊗K0 B̂+,τst )N ′=0

= M ⊗K0 (B̂
+,τ
cr )Nτ=0

= M ⊗K0 B̂+st ,

N ′ = NM ⊗ 1+ 1⊗ Nτ = 1⊗ Nτ .

Hence

Mτ,N=0
B+cr

= M ⊗K0 B+cr and Mτ,N=0
B̂+st

= M ⊗K0 (B̂
+

st )
N=0
= M ⊗K0 B+cr ,

where the last equality is proved in [Tsuji 1999, Lemma 1.6.5]. We are done in this
case.

In general, we can write M ⊗K0 B+st ←−
∼ M ′ ⊗K0 B+st for a (ϕ, N )-module

M ′ such that NM ′ = 0 (take for M ′ the image of the map M → M ⊗K0 B+st ,
m 7→ exp(NM(m)u) for u ∈ B+st such that B+st = B+cr [u], Nτ (u) = −1). Similarly,
using the fact that the ring B+st is canonically (and compatibly with all the structures)
isomorphic to the elements of B̂+st annihilated by a power of the monodromy operator
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[Kato 1994, 3.7], we can write in a compatible way M⊗K0 B+st←−
∼ M ′⊗K0 B̂+st for

the same module M ′. We obtain a commutative diagram

Mτ,N=0
B+cr

//

o

��

Mτ,N=0
B̂+st

o

��

M ′τ,N=0
B+cr

∼
// M ′τ,N=0

B̂+st

that reduces the general case to the case of trivial monodromy on M that we treated
above. �

Let X ∈ V arK , r ≥ 0. Set

Cpst(R0B
HK(XK ,h){r})

:=


R0B

HK(XK ,h)
GK

(1−ϕr ,ι
B
dR)
//

N
��

R0B
HK(XK ,h)

GK ⊕ (R0dR(XK ,h)/Fr )GK

(N ,0)
��

R0B
HK(XK ,h)

GK
1−ϕr−1

// R0B
HK(XK ,h)

GK

.
The above makes sense since the action of GK on R0B

HK(XK ,h){r} and R0dR(XK ,h)

is smooth. In particular, we have

H j (R0B
HK(XK ,h){r}

GK )' H j (R0B
HK(XK ,h){r})

GK,

H j (R0dR(XK ,h)
GK )' H j (R0dR(XK ,h))

GK.

Consider the canonical pullback map

ε∗ : Cst(R0B
HK(Xh){r})−→∼ Cpst(R0B

HK(XK ,h){r}).

By Proposition 3.22, this is a quasi-isomorphism. This allows us to construct a
canonical spectral sequence (the syntomic descent spectral sequence)

syn E i, j
2 = H i

st(GK , H j (XK ,ét,Qp(r))) +3 H i+ j
syn (Xh, r) . (50)

Indeed, the Bousfield–Kan spectral sequences associated to the homotopy lim-
its defining complexes Cpst(R0B

HK(XK ,h){r}) and Cst(R0B
HK(Xh){r}) give us the

commutative diagram

pst E i, j
2 = H i (Cpst(H

j
HK(XK ,h){r})) +3 H i+ j (Cpst(R0B

HK(XK ,h){r}))

syn E i, j
2 = H i (Cst(H

j
HK(Xh){r}))

o ε∗

OO

+3 H i+ j (Cst(R0B
HK(Xh){r}))

o ε∗

OO
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Since, by Proposition 3.20, we have αsyn:H
i+ j
syn (Xh,r)−→∼ H i+ j (Cst(R0B

HK(Xh){r})),
we have obtained a spectral sequence

E i, j
2 = H i (Cpst(H

j
HK(XK ,h){r})) +3 H i+ j

syn (Xh, r).

It remains to show that there is a canonical isomorphism

H i (Cpst(H
j

HK(XK ,h){r}))' H i
st(GK , H j (XK ,ét,Qp(r))). (51)

But, we have Dj = H j
HK(XK ,h){r} ∈ MFad

K (ϕ, N ,GK ),

Vpst(Dj )' H j (XK ,ét,Q(r)) and Dpst(H j (XK ,ét,Q(r)))' Dj .

Hence isomorphism (51) follows from Remark 2.12 and we have obtained the
spectral sequence (50).

4B. Arithmetic case. In this subsection, we define the arithmetic syntomic period
map by Galois descent from the geometric case. Then we show that, via this period
map, the syntomic descent spectral sequence and the étale Hochschild–Serre spectral
sequence are compatible. Finally, we show that this implies that the arithmetic
syntomic cohomology and étale cohomology are isomorphic in a stable range.

Let X ∈ V arK . For r ≥ 0, we define the canonical syntomic period map

ρsyn : R0syn(Xh, r)→ R0(Xét,Qp(r))

as the composition

R0syn(Xh, r)= R0(Xh,S (r))Q→ holimn R0(Xh,Sn(r))Q
ε∗
−→ holimn R0(GK ,R0(XK ,h,Sn(r)))Q
p−rβ
−−→ holimn R0(GK ,R0(XK ,ét,Z/pn(r)′))Q

←−∼ holimn R0(Xét,Z/pn(r)′)Q = R0(Xét,Qp(r)).

It induces a morphism of graded E∞ algebras over Qp.
The syntomic period map ρsyn is compatible with the syntomic descent and the

Hochschild–Serre spectral sequences.

Theorem 4.8. For X ∈V arK , r ≥ 0, there is a canonical map of spectral sequences

syn E i, j
2 = H i

st(GK , H j (XK ,ét,Qp(r)))

can
��

+3 H i+ j
syn (Xh, r)

ρsyn

��

ét E i, j
2 = H i (GK , H j (XK ,ét,Qp(r))) +3 H i+ j (Xét,Qp(r))

Proof. We work in the (classical) derived category. The Bousfield–Kan spectral
sequences associated to the homotopy limits defining complexes C(R0B

HK(XK ,h){r})
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and Cpst(R0B
HK(XK ,h){r}), and Theorem 2.18 give us the commutative diagram of

spectral sequences

II E i, j
2 = H i (GK ,C(H j

HK(XK ,h){r})) +3 H i+ j (GK ,C(R0B
HK(XK ,h){r}))

pst E i, j
2 = H i (Cpst(H

j
HK(XK ,h){r}))

δ

OO

+3 H i+ j (Cpst(R0B
HK(XK ,h){r}))

δ

OO

More specifically, in the language of Section 2E, set X = C(R0B
HK(XK ,h){r})

(hopefully, the notation will not be too confusing). Filtering complex X in the
direction of the homotopy limit, we obtain a Postnikov system (14) with Y i

= 0,
i ≥ 3, and

Y 0
= R0B

HK(XK ,h){r}⊗K nr
0

Bst,

Y 1
= R0B

HK(XK ,h){r − 1}⊗K nr
0

Bst

⊕
(
R0B

HK(XK ,h){r}⊗K nr
0

Bst⊕ (R0dR(XK )⊗K BdR)/Fr),
Y 2
= R0B

HK(XK ,h){r − 1}⊗K nr
0

Bst.

Still in the setting of Section 2E, take for A the abelian category of sheaves of
abelian groups on the pro-étale site Spec(K )proét of Scholze [2013, Section 3].

Remark 4.9. We work with the pro-étale site to make sense of the continuous
cohomology R0(GK , · ). If the reader is willing to accept that this is possible then
he can skip the tedious parts of the proof involving passage to the pro-étale site
(and existence of continuous sections).

Recall that there is a projection map ν : Spec(K )proét→ Spec(K )ét such that, for
an étale sheaf F , we have the quasi-isomorphism ν∗ :F −→∼ Rν∗ν∗F [Bhatt and
Scholze 2015, Proposition 5.2.6]. More generally, for a topological GK -module
M , we get a sheaf νM on Spec(K )proét by setting νM(S)= Homcont,GK (S,M) for
a profinite GK -set S, and Scholze [2013, Proposition 3.7(iii); 2016] showed that
there is a canonical quasi-isomorphism

H∗(Spec(K )proét, νM)' H∗cont(GK ,M).

In this proof we will need this kind of quasi-isomorphism for complexes M as well
and this will require extra arguments. For that, observe that the functor ν is left
exact. To study right exactness, it suffices to look at the global sections on profinite
sets S with a free GK -action of the form S= S′×GK for a profinite set S′ with trivial
GK -action.8 Then, for any GK -module T , we have 0(S, νT ) = Homcont(S′, T ).
It follows that, for a surjective map T1→ T2 of GK -modules, the pullback map

8To see this, for a profinite GK -set S′, use the covering S′×GK → S′, where the first S′ has trivial
GK -action, induced from the GK -action on S′.
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νT1→ νT2 is also surjective if the original map had a continuous set-theoretical
section. This is a criterion familiar from continuous cohomology and we will use it
often.

We will see the complex X as a complex of sheaves on the site Spec(K )proét in
the following way: represent R0B

HK(XK ,h) and R0dR(XK ) by (filtered) perfect com-
plexes of K nr

0 - and K-modules respectively, think of X as νX , and work on the pro-
étale site. This makes sense, i.e., functor ν transfers (filtered) quasi-isomorphisms
of representatives of R0B

HK(XK ,h) and R0dR(XK ) to quasi-isomorphisms of the
corresponding sheaves νX . To see this, look at the Postnikov system of sheaves
on Spec(K )proét obtained by pulling back by ν the above Postnikov system. Now,
look at the global sections on profinite sets S = S′×GK as above and note that we
have 0(S, νY 0)=Homcont(S′, Y 0). Conclude that, by perfectness of the Beilinson–
Hyodo–Kato complexes, quasi-isomorphisms of representatives of R0B

HK(XK ,h)

yield quasi-isomorphisms of the sheaves νY 0. By a similar argument, we get
the analogous statement for Y 2. For Y 1, we just have to show that filtered quasi-
isomorphisms of representatives of R0dR(XK ) yield quasi-isomorphisms of the
sheaves ν((R0dR(XK )⊗K BdR)/Fr ). Again, we look at the global section on S =
S′×GK as above. By compactness of S′, we may replace (R0dR(XK )⊗K BdR)/Fr

by (t−i R0dR(XK )⊗K B+dR)/Fr for some i ≥ 0, where, using devissage, we can
again argue by (filtered) perfection of R0dR(XK ). Observe that the same argument
shows that H j (νY i )' νH j (Y i ) for i = 0, 1, 2.

The above Postnikov system gives rise to an exact couple

Di, j
1 =H j (X i ), E i, j

1 =H j (Y i )⇒H i+ j (X).

This is the Bousfield–Kan spectral sequence associated to X .
Consider now the complex Xpst := Cpst(R0B

HK(XK ,h){r}). We claim that the
canonical map

Cpst(R0B
HK(XK ,h){r})−→

∼ C(R0B
HK(XK ,h){r})

GK

is a quasi-isomorphism (recall that taking GK -fixed points corresponds to taking
global sections on the pro-étale site), and, in particular, that the term on the right-
hand side makes sense. To see this, it suffices to show that the canonical maps

(R0dR(XK ,h)/Fr )GK −→∼ ((R0dR(XK ,h)⊗K BdR)/Fr )GK,

R0B
HK(XK ,h)

GK −→∼ (R0B
HK(XK ,h)⊗K nr

0
Bst)

GK

are quasi-isomorphisms and to use the fact that the action of GK on R0B
HK(XK ,h) is

smooth. The fact that the first map is a quasi-isomorphism follows from the filtered
quasi-isomorphism R0dR(X)⊗K K −→∼ R0dR(XK ,h) and the fact that BGK

dR = K.
Similarly, the second map is a quasi-isomorphism because, by [Fontaine 1994a,
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4.2.4], R0B
HK(XK ,h) is the subcomplex of those elements of R0B

HK(XK ,h)⊗K nr
0

Bst

whose stabilizers in GK are open.
Taking the GK -fixed points of the above Postnikov system we get an exact couple

pst Di, j
1 = H j (X i

pst),

pst E i, j
1 = H j (Y i

pst)⇒ H i+ j (Xpst)

corresponding to the Bousfield–Kan filtration of the complex Xpst. On the other
hand, applying R0(Spec(K )proét, · ) to the same Postnikov system, we obtain an
exact couple

IDi, j
1 = H j (Spec(K )proét, X i ),

IE i, j
1 = H j (Spec(K )proét, Y i )⇒ H i+ j (Spec(K )proét, X)

together with a natural map of exact couples (pst Di, j
1 , pst E i, j

1 )→ (IDi, j
1 , IE i, j

1 ).
We also have the hypercohomology exact couple

IIDi, j
2 = H i+ j (Spec(K )proét, τ≤ j−1 X),

IIE i, j
2 = H i (Spec(K )proét,H

j (X))⇒ H i+ j (Spec(K )proét, X).

Theorem 2.18 gives us a natural morphism of exact couples (IDi, j
2 ,

IE i, j
2 ) →

(IIDi, j
2 ,

IIE i, j
2 )— hence a natural morphism of spectral sequences IE i, j

2 →
IIE i, j

2 com-
patible with the identity map on the common abutment — if our original Postnikov
system satisfies the equivalent conditions in Remark 2.17. We will check the
condition (4), i.e., that the following long sequence is exact for all j :

0→H j (X)→H j (Y 0)→H j (Y 1)→H j (Y 2)→ 0.

For that it is enough to show that

(1) H j (νY i )' νH j (Y i ) for i = 0, 1, 2;

(2) H j (νX)' νH j (X);

(3) the following long sequence of GK -modules

0→ H j (X)→ H j (Y 0)→ H j (Y 1)→ H j (Y 2)→ 0

is exact;

(4) the pullback ν preserves its exactness.

The assertion in (1) was shown above. The sequence in (3) is equal to the top
sequence in the following commutative diagram (where we set M = H j

HK(XK ,h),
MdR = H j

dR(XK ,h), and E = H j (XK ,ét,Qp)):
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H j (X)

α−1
éto

��

// M ⊗K nr
0

Bst
(N ,1−ϕr ,ι)

//

ρHKo

��

M ⊗K nr
0
(Bst⊕ Bst)

⊕(MdR⊗K BdR)/Fr

(1−ϕr−1)−N
//

ρHK+ρHK+ρdRo

��

M ⊗K nr
0

Bst

ρHKo

��

E(r) �
�

// E ⊗ Bst
(N ,1−ϕr ,ι)

//
E ⊗ (Bst⊕ Bst)

⊕E ⊗ BdR/Fr

(1−ϕr−1)−N
// // E ⊗ Bst

Since the bottom sequence is just a fundamental exact sequence of p-adic Hodge
theory, the top sequence is exact, as wanted.

To prove assertion (4), we pass to the bottom exact sequence above and apply ν
to it. It is easy to see that it enough now to show that the following surjections have
continuous Qp-linear sections:

Bst
N
−→ Bst, Bcr

(1−ϕr ,can)
−−−−−→ Bcr⊕ BdR/Fr.

For the monodromy, write Bst = Bcr[us] and take for a continuous section the
map induced by bui

s 7→ −(b/(i + 1))ui+1
s , b ∈ Bcr. For the second map, the

existence of continuous section was proved in [Bloch and Kato 1990, 1.18]. For a
different argument: observe that an analogous statement was proved in [Colmez
1998, Proposition II.3.1] with Bmax in place of Bcr as a consequence of the general
theory of p-adic Banach spaces. We will just modify it here. Write Ai = t−i B+cr
and Bi = t−i B+cr ⊕ t−i B+dR/tr for i ≥ 1. These are p-adic Banach spaces. Observe
that Bi ⊂ Bi+1 is closed. Indeed, it is enough to show that t B+cr ⊂ B+cr is closed.
But we have t B+cr =

⋂
n≥0 ker(θ ◦ϕn).

It follows [Colmez 1998, Proposition I.1.5] that we can find a closed complement
Ci+1 of Bi in Bi+1. Set f = (1−ϕr , can) : Bcr→ Bcr⊕ BdR/Fr. We know that f
maps Ai onto Bi . Write t−i B+cr ⊕ t−i B+dR/tr

= B1⊕
(⊕i−1

j=2 C j
)
. By [Colmez 1998,

Proposition I.1.5], we can find a continuous section s1 : B1→ A1 of f and, if i ≥ 2, a
continuous section si :Ci→ Ai of f . Define the map s : t−i B+cr⊕ t−i B+dR/tr

→ Bcr

by s1 on B1 and by si on Ci for i ≥ 2. Taking the inductive limit over i , we get our
section of f .

Finally, to prove assertion (2), take a perfect representative of the complex
R0(XK ,ét,Zp(r)). Consider the complex Z = R0(XK ,ét,Qp(r)) as a complex of
sheaves on Spec(K )proét. As before, we see that this makes sense and we easily find
that (canonically) H j (Z)' νH j (XK ,ét,Qp(r)). To prove (2), it is enough to show
that we can also pass with the map αét : R0(XK ,ét,Qp(r))−→∼ C(R0B

HK(XK ,h){r})
to the site Spec(K )proét. Looking at its definition (see (48)), we see that we need
to show that the period quasi-isomorphisms ρcr, ρHK, ρdR as well as the quasi-
isomorphism

Qp(r)−→∼
[
Bst

(N ,1−ϕr ,ι)
−−−−−→ Bst⊕ Bst⊕ BdR/Fr (1−ϕr−1)−N

−−−−−−→ Bst
]

can be lifted to the pro-étale site. The last fact we have just shown. For the crystalline
period map ρcr, this follows from the fact that it is defined integrally and all the
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relevant complexes are perfect. For the Hyodo–Kato period map ρHK, it follows
from the case of ρcr and from perfection of complexes involved in the definition of
the Beilinson–Hyodo–Kato map. For the de Rham period map ρdR, this follows from
perfection of the involved complexes as well as from the exactness of holimn (in
the definition of ρdR) on the pro-étale site of K (see [Scholze 2013, Lemma 3.18]).

We define the map of spectral sequences δ := (δD, δ) := (
pst Di, j

2 , pst E i, j
2 )→

(IIDi, j
2 ,

IIE i, j
2 )— which we stated at the beginning of the proof — as the composition

of the two maps constructed above:

δ : (pst Di, j
2 , pst E i, j

2 )→ (IDi, j
2 ,

IE i, j
2 )→ (IIDi, j

2 ,
IIE i, j

2 ).

To get the spectral sequence from the theorem, we need to pass from I IE2 to the
Hochschild–Serre spectral sequence. To do that, consider the hypercohomology
exact couple

étDi, j
2 = H i+ j (Spec(K )proét, τ≤ j−1 Z),

étE i, j
2 = H i (Spec(K )proét,H

j (Z))⇒ H i+ j (Spec(K )proét, Z)

and, via α−1
ét , a natural morphism of exact couples (IIDi, j

2 ,
IIE i, j

2 )→ (ét Di, j
2 ,

étE i, j
2 ),

and hence a natural morphism of spectral sequences IIE i, j
2 →

étE i, j
2 compatible

with the map α−1
ét on the abutment. We have a quasi-isomorphism

ψ : R0(Spec(K )proét, Z)−→∼ R0(Xét,Qp(r))

defined as the composition

ψ : R0(Spec(K )proét,R0(XK ,ét,Qp(r)))

−→∼ Q⊗ holimn R0(GK ,R0(XK ,ét,Z/pn(r)))

=Q⊗ holimn R0(Xét,Z/pn(r))= R0(Xét,Q(r)).

We have obtained the natural maps of spectral sequences

syn E i, j
2 = H i

st(GK , H j (XK ,ét,Qp(r)))

o

��

+3 H i+ j
syn (Xh, r)

αsyno

��

E i, j
2 = H i (Cst(H

j
HK(Xh){r}))

α−1
ét δε

∗

��

+3 H i+ j (Cst(R0B
HK(Xh){r}))

ψα−1
ét δε

∗

��

ét E i, j
2 = H i (GK , H j (XK ,ét,Qp(r))) +3 H i+ j (Xét,Qp(r))

It remains to show that the right vertical composition

γ : H i+ j
syn (Xh, r)→ H i+ j (Xét,Qp(r))
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is equal to the map ρsyn. Since we have the equality αsyn = ρsynαét (in the derived
category) from (49) and, by Lemma 4.7, ε∗αsyn = αsynε

∗, the map γ can be written
as the composition

ρ̃syn : H i+ j
syn (Xh, r) ε∗

−→ H i+ j (Spec(K )proét, νR0syn(XK ,h, r))
ρsyn
−→ H i+ j (Spec(K )proét, νR0(XK ,ét,Qp(r)))
ψ
−→ H i+ j (Xét,Qp(r)),

where the period map ρsyn is understood to be on sheaves on Spec(K )proét. There
is no problem with that since we care only about the induced map on cohomology
groups. It is easy now to see that ρ̃syn = ρsyn, as wanted. �

Remark 4.10. If X is proper and smooth, it is known that the étale Hochschild–
Serre spectral sequence degenerates, i.e., étE2 =

étE∞. It is very likely that so does
the syntomic descent spectral sequence in this case, i.e., synE2 =

synE∞.9

Corollary 4.11. For X ∈ V arK , we have a canonical quasi-isomorphism

ρsyn : τ≤r R0syn(Xh, r)Q −→∼ τ≤r R0(Xét,Qp(r)).

Proof. By Theorem 4.8, the syntomic descent and the Hochschild–Serre spectral
sequence are compatible. We have Dj = H j

HK(XK ,h){r} ∈ MFad
K (ϕ, N ,GK ). For

j ≤ r , we know F1 Dj,K = F1−(r− j)H j
dR(Xh)= 0. Hence, by Proposition 2.16, we

have syn E i, j
2 −→
∼ étE i, j

2 . This implies ρsyn : τ≤r R0syn(Xh, r)−→∼ τ≤r R0(Xét,Qp(r)),
as wanted. �

Remark 4.12. All of the above automatically extends to finite diagrams of K-
varieties, and hence to essentially finite diagrams of K-varieties (i.e., the diagrams
for which every truncation of their cohomology τ≤n is computed by truncating the
cohomology of some finite diagram). This includes, in particular, simplicial and
cubical varieties.

Proposition 4.13. Let X ∈ V arK and i ≥ 0. The composition

Hq
dR(X)/Fr ∂

−→ Hq+1
syn (Xh, r)

ρsyn
−→ Hq+1

ét (X,Qp(r))→ Hq+1
ét (XK ,Qp(r))

is the zero map. The map induced by the syntomic descent spectral sequence

Hq
dR(X)/Fr

→ H 1(GK , Hq
ét(XK ,Qp(r)))

is equal to the Bloch–Kato exponential associated with the Galois representation
V q(r)= Hq

ét(XK ,Qp(r)).

9This was, in fact, shown in [Déglise and Nizioł 2015].
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Proof. In what follows, we will omit the passage to the pro-étale site. Consider the
Postnikov system from the proof of Theorem 4.8, which arises from the complex
X = C(R0B

HK(XK ,h){r}); then Y p
= C p(R0B

HK(XK ,h){r}). The discussion from
Example 2.19 then applies to the functor f (−)= (−)GK and yields the following
four exact couples.

(1) D p,q
1 = Hq(X p) and E p,q

1 = Hq(Y p)= C p(Hq
HK(XK ,h){r}))= C p(Hq

HK{r}).
The corresponding quasi-isomorphism Hq(X)−→∼ E •,q1 is then identified, via
the various period maps, with

V q(r)−→∼ C(Hq
HK{r})= C(Dpst(V q(r))).

(2) f D p,q
1 =Hq( f (X p)) and fE p,q

1 =Hq( f (Y p))= f (Hq(Y p))=C p
st(H

q
HK{r})=

f (E p,q
1 ).

(3) ID p,q
1 = (Rq f )(X p) and IE p,q

1 = (Rq f )(Y p).

(4) IID p,q
2 = (Rp+q f )(τ≤q−1 X) and IIE p,q

2 = (Rp f )(Hq(X))= H p(GK , V q(r)).

There is a canonical morphism of exact couples (2)→ (3) and a morphism
(3)→ (4) given by the maps (u, v) from the proof of Theorem 2.18. As observed in
Remark 2.14, the Bloch–Kato exponential for V = V q(r) is obtained by applying
R0 f to

Z1C(Hq
HK{r})= Z1(E •,q1 )

can
−−→ (σ≥1C(Hq

HK{r}))[1] = (σ≥1C(E •,q1 ))[1]
− can
−−→C(Hq

HK{r})[1] = E •,q1 [1]

←−∼ V q(r)[1] = Hq(X)[1],

and hence is equal to the composite map

f (Z1(E •,q1 ))= Z1( fE •,q1 )→ fE1,q
2

can
−−→

IE1,q
2

−v′=v
−−−−→ (R1 f )(E •,q1 )= IIE p,q

2 ,

which coincides, in turn, with

Z1Cst(H
q
HK{r})

can
−−→ H 1

st(GK , V q(r))→ H 1(GK , V q(r)).

After restricting to the de Rham part of Z1C(Hq
HK{r}), we obtain the desired

statement about Hq
dR(X)/Fr. �

In more concrete terms, the above proposition says that the following diagram
commutes:

Hq+1
syn (Xh, r)0

ρsyn
// Hq+1

ét (X,Qp(r))0

��

Hq
dR(X)/Fr

∂

OO

expBK
// H 1(GK , Hq

ét(XK ,Qp(r)))

where the subscript 0 refers to the classes that vanish in Hq+1
syn (XK ,h, r) and

Hq+1
ét (XK ,Qp(r)), respectively.
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Remark 4.14. Assume that r > q. Then in the above diagram all the maps are
isomorphisms. Indeed, we have Fr Hq

dR(X)= 0. By [Berger 2002, Theorem 6.8],
the map expBK is an isomorphism. By Proposition 4.6 and Corollary 4.11, so is the
period map ρsyn. Since, by Theorem A.1,

H 2(GK , Hq
ét(XK ,Qp(r)))= H 2(GK , Hq−1

ét (XK ,Qp(r)))= 0,

the vertical map is an isomorphism as well. Hence so is the map ∂ .

5. Syntomic regulators

In this section, we prove that Soulé’s étale regulators land in the semistable Selmer
groups. This will be done by constructing syntomic regulators that are compatible
with the étale ones via the period map and by exploiting the syntomic descent
spectral sequence.

5A. Construction of syntomic Chern classes. We start with the construction of
syntomic Chern classes. This will be standard once we prove that syntomic coho-
mology satisfies the projective space theorem and homotopy property.

In this subsection we will work in the (classical) derived category. For a fine log-
scheme (X,M), log-smooth over V×, we have the log-crystalline and log-syntomic
first Chern class maps of complexes of sheaves on Xét [Tsuji 1999, (2.2.3)]

ccr
1 : j∗O∗X tr

−→∼ Mgp
→ Mgp

n → Rε∗J
[1]
Xn/Wn(k)[1],

cst
1 : j∗O∗X tr

−→∼ Mgp
→ Mgp

n → Rε∗J
[1]
Xn/Rn
[1],

cHK
1 : j∗O∗X tr

−→∼ Mgp
→ Mgp

0 → Rε∗J
[1]
X0/Wn(k)0

[1],

csyn
1 : j∗O∗X tr

−→∼ Mgp
→S (1)X,Q[1].

Here ε is the projection from the corresponding crystalline site to the étale site.
The maps ccr

1 , cst
1 , and csyn

1 are clearly compatible. So are the maps cst
1 and cHK

1 . For
ss-pairs (U,U ) over K , we get the induced functorial maps

ccr
1 : 0(U,O

∗

U )←−
∼ 0(U, j∗O∗U )→ R0cr(U,U,J [1])[1],

cst
1 : 0(U,O

∗

U )→ R0cr((U,U )/R,J [1])[1],

cHK
1 : 0(U,O

∗

U )→ R0cr((U,U )0/Wn(k)0,J [1])[1],

csyn
1 : 0(U,O

∗

U )→ R0syn(U,U, 1)Q[1].

For X ∈ V arK , we can glue the absolute log-crystalline and log-syntomic classes
to obtain the absolute crystalline and syntomic first Chern class maps

ccr
1 : O

∗

Xh
→Jcr,X [1], csyn

1 : O
∗

Xh
→S (1)X,Q[1].
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They induce (compatible) maps

ccr
1 : Pic(X)= H 1(Xét,O

∗

X )→ H 1(Xh,O
∗

X )
ccr

1−→ H 2(Xh,Jcr),

csyn
1 : Pic(X)= H 1(Xét,O

∗

X )→ H 1(Xh,O
∗

X )
csyn

1−→ H 2
syn(Xh, 1).

Recall that, for a log-scheme (X,M) as above, we also have the log de Rham first
Chern class map

cdR
1 : j∗O∗X tr

−→∼ Mgp
→ Mgp

n
dlog
−−→�•

(X,M)n/V×n
[1].

For ss-pairs (U,U ) over K , it induces maps

cdR
1 : 0(U,O

∗

U )←−
∼ 0(U, j∗O∗U )→ R0(U, �•

(U,U )/V×)[1].

By the map R0cr(U,U,J [1])→R0cr(U,U )→R0(U,�•
(U,U )/V×), they are compat-

ible with the absolute log-crystalline and log-syntomic classes [Tsuji 1999, (2.2.3)].

Lemma 5.1. For strict ss-pairs (U,U ) over K , the Hyodo–Kato map and the
Hyodo–Kato isomorphism

ι : H 2
HK(U,U )Q→ H 2

cr((U,U )/R)Q,

ιdR,π : H 2
HK(U,U )Q⊗K0 K −→∼ H 2(U K , �

•

(U,U K )/K )

are compatible with first Chern class maps.

Proof. Since ιdR,π = i∗π ι⊗Id and the map i∗π is compatible with first Chern classes, it
suffices to show the compatibility for the Hyodo–Kato map ι. Let L be a line bundle
on U . Since the map ι is a section of the map i∗0 : H

2
cr((U,U )/R)Q→ H 2

HK(U,U )Q
and the map i∗0 is compatible with first Chern classes, we have that the element
ζ ∈ H 2

cr((U,U )/R)Q defined as ζ = ι(cHK
1 (L ))−cst

1 (L ) lies in T H 2
cr((U,U )/R)Q.

Hence ζ = T γ . Since the map ι is compatible with Frobenius and ϕ(cHK
1 (L ))=

pcHK
1 (L ), ϕ(cst

1 (L )) = pcst
1 (L ), we have ϕ(ζ ) = pζ . Since ϕ(T γ ) = T pϕ(γ ),

this implies that γ ∈
⋂
∞

n=1 T n H 2
cr((U,U )/R)Q, which is not possible unless γ (and

hence ζ ) are zero. But this is what we wanted to show. �

We have the following projective space theorem for syntomic cohomology.

Proposition 5.2. Let E be a locally free sheaf of rank d + 1, d ≥ 0, on a scheme
X ∈ V arK . Consider the associated projective bundle π :P(E )→ X. Then we have
the quasi-isomorphism of complexes of sheaves on Xh

d⊕
i=0

csyn
1 (O(1))i ∪π∗ :

d⊕
i=0

S (r − i)X,Q[−2i] −→∼ Rπ∗S (r)P(E ),Q, 0≤ d ≤ r.

Here, the class csyn
1 (O(1)) ∈ H 2

syn(P(E )h, 1) refers to the class of the tautological
bundle on P(E ).
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Proof. By (tedious) checking of many compatibilities, we will reduce the above
projective space theorem to the projective space theorems for the Hyodo–Kato and
the filtered de Rham cohomologies.

To prove our proposition it suffices to show that for any ss-pair (U,U ) over K
and the projective space π : Pd

U
→U of dimension d over U we have a projective

space theorem for syntomic cohomology (a ≥ 0):
d⊕

i=0

csyn
1 (O(1))i ∪π∗ :

d⊕
i=0

Ha−2i
syn (Uh, r − i)−→∼ Ha

syn(P
d
U,h, r), 0≤ d ≤ r.

By Proposition 3.18 and the compatibility of the maps

H∗syn(U,U, j)Q −→∼ H∗syn(Uh, j)Q

with products and first Chern classes, this reduces to proving a projective space
theorem for log-syntomic cohomology, i.e., a quasi-isomorphism of complexes

d⊕
i=0

csyn
1 (O(1))i∪π∗ :

d⊕
i=0

Ha−2i
syn (U,U, r−i)Q−→∼ Ha

syn(P
d
U ,Pd

U
, r)Q, 0≤d≤ r,

where the class csyn
1 (O(1)) ∈ H 2

syn(P
d
U ,Pd

U
, 1) refers to the class of the tautological

bundle on Pd
U

.
By the distinguished triangle

R0syn(U,U, r)Q→ R0cr(U,U, r)Q→ R0dR(U,U K )/Fr

and its compatibility with the action of csyn
1 , it suffices to prove the following two

quasi-isomorphisms for the twisted absolute log-crystalline complexes and for the
filtered log de Rham complexes (0≤ d ≤ r ):

d⊕
i=0

ccr
1 (O(1))

i
∪π∗ :

d⊕
i=0

Ha−2i
cr (U,U, r − i)Q −→∼ Ha

cr(P
d
U ,Pd

U
, r)Q,

d⊕
i=0

cdR
1 (O(1))

i
∪π∗ :

d⊕
i=0

Fr−i Ha−2i
dR (U,UK )−→

∼ Fr Ha
dR(P

d
U ,Pd

UK
).

For the log de Rham cohomology, notice that the above map is quasi-isomorphic to
the map [Beilinson 2012, 3.2]

d⊕
i=0

cdR
1 (O(1))

i
∪π∗ :

d⊕
i=0

Fr−i Ha−2i
dR (U )−→∼ Fr Ha

dR(P
d
U ),

and hence well-known to be a quasi-isomorphism.
For the twisted log-crystalline cohomology, notice that since Frobenius behaves

well with respect to ccr
1 , it suffices to prove a projective space theorem for the
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absolute log-crystalline cohomology H∗cr(U,U )Q:
d⊕

i=0

ccr
1 (O(1))

i
∪π∗ :

d⊕
i=0

Ha−2i
cr (U,U )Q −→∼ Ha

cr(P
d
U ,Pd

U
)Q.

Without loss of generality, we may assume that the pair (U,U ) is split over K. By
the distinguished triangle

R0cr(U,U )→ R0cr((U,U )/R) N
−→R0cr((U,U )/R)

and its compatibility with the action of ccr
1 (O(1)) (see [Tsuji 1999, Lemma 4.3.7]),

it suffices to prove a projective space theorem for the log-crystalline cohomol-
ogy H∗cr((U,U )/R)Q. Since the R-linear isomorphism ι : H∗HK(U,U )Q⊗ RQ −→

∼

H∗cr((U,U )/R)Q is compatible with products [Tsuji 1999, Proposition 4.4.9] and
first Chern classes (see Lemma 5.1), we reduce the problem to showing the projective
space theorem for the Hyodo–Kato cohomology:

d⊕
i=0

cHK
1 (O(1))i ∪π∗ :

d⊕
i=0

Ha−2i
HK (U,U )Q −→∼ Ha

HK(P
d
U ,Pd

U
)Q.

Tensoring by K and using the isomorphism

ιdR,π : H∗HK(U,U )Q⊗K0 K −→∼ H∗dR(U,UK )

that is compatible with products [Tsuji 1999, Corollary 4.4.13] and first Chern
classes (see Lemma 5.1), we reduce to checking the projective space theorem for
the log de Rham cohomology H∗dR(U,UK ), and we have done this above. �

The above proof proves also the projective space theorem for the absolute
crystalline cohomology.

Corollary 5.3. Let E be a locally free sheaf of rank d + 1, d ≥ 0, on a scheme
X ∈ V arK . Consider the associated projective bundle π :P(E )→ X. Then we have
the following quasi-isomorphism of complexes of sheaves on Xh

d⊕
i=0

ccr
1 (O(1))

i
∪π∗ :

d⊕
i=0

J
[r−i]
X,Q [−2i] −→∼ Rπ∗J

[r ]
P(E ),Q, 0≤ d ≤ r.

Here, the class ccr
1 (O(1)) ∈ H 2(P(E )h,Jcr) refers to the class of the tautological

bundle on P(E ).

For X ∈ V arK , using the projective space theorem (see Proposition 5.2) and the
Chern classes

csyn
0 :Qp

can
−→S (0)XQ

, csyn
1 : O

∗

Xh
→S (1)XQ

[1],

we obtain syntomic Chern classes csyn
i (E ) for any locally free sheaf E on X .

Syntomic cohomology has the homotopy invariance property.
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Proposition 5.4. Let X ∈ V arK and f : A1
X → X be the natural projection from

the affine line over X to X. Then, for all r ≥ 0, the pullback map

f ∗ : R0syn(Xh, r)−→∼ ∼R0syn(A
1
X,h, r)

is a quasi-isomorphism.

Proof. Localizing in the h-topology of X , we may assume that X =U , the open
set of an ss-pair (U,U ) over K. Consider the commutative diagram

R0syn(U,U, r)Q
f ∗
//

o

��

R0syn(A
1
U ,P1

U
, r)Q

o

��

R0syn(Uh, r)
f ∗

// R0syn(A
1
U,h, r)

The vertical maps are quasi-isomorphisms by Proposition 3.18. It suffices thus to
show that the top horizontal map is a quasi-isomorphism. By Proposition 3.8, this
reduces to showing that the map

Cst(R0HK(U,U )Q{r})
f ∗
−→Cst(R0HK(A

1
U ,P1

U )Q{r})

is a quasi-isomorphism, or, that the map f : (A1
U ,P1

U
)→ (U,U ) induces a quasi-

isomorphism on the Hyodo–Kato cohomology and a filtered quasi-isomorphism on
the log de Rham cohomology:

R0HK(U,U )Q
f ∗
−→R0HK(A

1
U ,P1

U )Q, R0dR(U,UK )
f ∗
−→R0dR(A

1
U ,P1

UK
).

Without loss of generality, we may assume that the pair (U,U ) is split over K.
Tensoring with K and using the Hyodo–Kato quasi-isomorphism, we reduce the
Hyodo–Kato case to the log de Rham one. The latter follows easily from the
projective space theorem and the existence of the Gysin sequence in log de Rham
cohomology. �

Remark 5.5. The above implies that syntomic cohomology is a Bloch–Ogus theory.
A proof of this fact was kindly communicated to us by Frédéric Déglise and is
contained in Appendix B, Proposition B.4.

Proposition 5.6. For a scheme X , let K∗(X) denote Quillen’s higher K-theory
groups of X. For X ∈ V arK , i, j ≥ 0, there are functorial syntomic Chern class
maps

csyn
i, j : K j (X)→ H 2i− j

syn (Xh, i).

Proof. Recall the construction of the classes csyn
i, j . First, one constructs universal

classes C syn
i,l ∈ H 2i

syn(B•GLl,h, i). By a standard argument, the projective space



Syntomic cohomology and p -adic regulators for varieties over p -adic fields 1777

theorem and the homotopy property show that

H∗syn(B•GLl,h, ∗)' H∗syn(K , ∗)[x
syn
1 , . . . , x syn

l ],

where the classes x syn
i ∈ H 2i

syn(B•GLl,h, i) are the syntomic Chern classes of the
universal locally free sheaf on B•GLl (defined via a projective space theorem). For
l ≥ i , we define

C syn
i,l = x syn

i ∈ H 2i
syn(B•GLl,h, i).

The classes C syn
i,l ∈ H 2i

syn(B•GLl,h, i) yield compatible universal classes (see [Gillet
1981, p. 221]) C syn

i,l ∈ H 2i
syn(X,GLl(OX ), i), and hence a natural map of pointed

simplicial sheaves on XZAR, C syn
i : B•GL(OX )→ K (2i,S ′(i)X ), where K is

the Dold–Puppe functor of τ≥0S
′(i)X [2i] and S ′(i)X is an injective resolution

of S (i)X := Rε∗S (i)Q, ε : Xh→ XZAR. The characteristic classes csyn
i, j are now

defined [Gillet 1981, Definition 2.22] as the composition

K j (X)→ H− j (X,Z× B•GL(OX )
+)→ H− j (X, B•GL(OX )

+)

Csyn
i
−−→ H− j (X,K (2i,S ′(i)X ))

h j
−→ H 2i− j

syn (Xh, i),

where B•GL(OX )
+ is the (pointed) simplicial sheaf on X associated to the

+-construction [Soulé 1982, 4.2]. Here, for a (pointed) simplicial sheaf E• on XZAR,
we know H− j (X, E•) = πj (R0(XZAR, E•)) is the generalized sheaf cohomology
of E• [Gillet 1981, Definition 1.7]. The map h j is the Hurewicz map:

H− j (X,K (2i,S ′(i)X ))= πj (K (2i,S ′(i)(X))) h j
−→Hj (K (2i,S ′(i)(X)))

= Hj (S
′(i)(X)[2i])= H 2i− j

syn (Xh, i). �

Proposition 5.7. The syntomic and the étale Chern classes are compatible, i.e., for
X ∈ V arK , j ≥ 0, 2i − j ≥ 0, the following diagram commutes:

K j (X)
csyn

i, j

xx

cét
i, j

''

H 2i− j
syn (Xh, i)

ρsyn
// H 2i− j

ét (X,Qp(i))

Proof. We can pass to the universal case (X = B•GLl := B•GLl /K , l ≥ 1). We
have

H∗syn(B•GLl,h, ∗)' H∗syn(K , ∗)[x
syn
1 , . . . , x syn

l ],

H∗ét(B•GLl, ∗)' H∗ét(K , ∗)[x
ét
1 , . . . , xét

l ].

By the projective space theorem and the fact that the syntomic period map commutes
with products, it suffices to check that ρsyn(x

syn
1 )= xét

1 and that the syntomic period
map ρsyn commutes with the classes csyn

0 :Qp→S (0)Q and cét
0 :Qp→Qp(0). The
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statement about c0 is clear from the definition of ρcr; for c1, consider the canonical
map f : B•GLl→ B•GLl,K and the induced pullback map

f ∗ét : H
∗

ét(B•GLl, ∗)= H∗ét(K , ∗)[x1, . . . , xl]→ H∗ét(B•GLl,K , ∗)=Qp[x̄1, . . . , x̄l]

that sends the Chern classes xét
i of the universal vector bundle to the classes x̄ét

i
of its pullback. It suffices to show that f ∗étρsyn(C

syn
1,1 ) = Cét

1,1. But, by definition,
f ∗étρsyn = ρsyn f ∗syn and, by construction, we have the commutative diagram

H 2
syn(B•Gm,h, 1)

can
//

ρsyn

��

H 2
cr(B•Gm,K ,h)

ρcr

��

H 2
ét(B•Gm,K ,Qp(1)) // H 2

ét(B•Gm,K , B+cr )= H 2
ét(B•Gm,K ,Qp(1))⊗ B+cr

where the bottom map sends the generator of Qp(1) to the element t ∈ B+cr associated
to it. Since the syntomic and the crystalline Chern classes are compatible, it suffices
to show that, for a line bundle L , we have ρcr(ccr

1 (L )) = cét
1 (L )⊗ t . But this is

[Beilinson 2013, 3.2]. �

Remark 5.8. If X is a scheme over V and X =XK , we can consider the syntomic
Chern classes csyn

i, j : K j (X )→ H 2i− j
syn (Xh, i) defined as the composition

K j (X )→ K j (X)
csyn

i, j
−−→ H 2i− j

syn (Xh, i).

By the above proposition, these classes are compatible with the étale Chern classes.
Recall that analogous results were proved earlier for X smooth and projective
[Niziol 1997], for X a complement of a divisor with relative normal crossings in
such, and for X a semistable scheme over V [Niziol 2016b].

5B. Image of étale regulators. In this subsection we show that Soulé’s étale regu-
lators factor through the semistable Selmer groups.

Let X ∈ V arK . For 2r − i − 1≥ 0, set

K2r−i−1(X)0 := ker
(
K2r−i−1(X)

cét
r,i+1
−−→ H 0(GK , H i+1

ét (XK ,Qp(r)))
)
.

Write r ét
r,i for the map

r ét
r,i : K2r−i−1(X)0→ H 1(GK , H i

ét(XK ,Qp(r)))

induced by the Chern class map cét
r,i+1 and the Hochschild–Serre spectral sequence

map δ : H i+1
ét (X,Qp(r))0→ H 1(GK , H i

ét(XK ,Qp(r))), where we set

H i+1
ét (X,Qp(r))0 := ker(H i+1

ét (X,Qp(r))→H i+1
ét (XK ,Qp(r))).
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Theorem 5.9. The map r ét
r,i factors through the subgroup

H 1
st(GK , H i+1

ét (XK ,Qp(r)))⊂ H 1(GK , H i+1
ét (XK ,Qp(r))).

Proof. By Proposition 5.7, we have the commutative diagram

K2r−i−1(X)

csyn
r,i+1
��

cét
r,i+1

((

H i+1
syn (Xh, r)

ρsyn
// H i+1

ét (X,Qp(r)) // H i+1
ét (XK ,Qp(r))

Hence the Chern class map csyn
r,i+1 : K2r−i−1(X)0→ H i+1

syn (Xh, r) factors through
H i+1

syn (Xh, r)0 := ker(H i+1
syn (Xh, r)

ρsyn
−→ H i+1

ét (XK ,Qp(r))). Compatibility of the
syntomic descent and the Hochschild–Serre spectral sequences (see Theorem 4.8)
yields the commutative diagram

K2r−i−1(X)0

csyn
r,i+1
��

cét
r,i+1

**

H i+1
syn (Xh, r)0

δ

��

ρsyn
// H i+1

ét (X,Qp(r))0

δ

��

H 1
st(GK , H i

ét(XK ,Qp(r)))
can
// H 1(GK , H i

ét(XK ,Qp(r)))

Our theorem follows. �

Remark 5.10. The question of the image of Soulé’s regulators r ét
r,i was raised by

Bloch and Kato [1990] in connection with their Tamagawa number conjecture.
Theorem 5.9 is known to follow from the constructions of Scholl [1993]. The
argument goes as follows. Recall that for a class y ∈ K2r−i−1(X)0, he constructs an
explicit extension Ey ∈ Ext1MMK

(Q(−r), hi (X)) in the category of mixed motives
over K. The association y 7→ Ey is compatible with the étale cycle class and
realization maps. By the de Rham comparison theorem, the étale realization r ét

r,i (y)
of the extension class Ey in

Ext1GK
(Qp(−r), H i (XK ,Qp))= H 1(GK , H i

ét(XK ,Qp(r)))

is de Rham, hence potentially semistable by [Berger 2002], as wanted.

Appendix A: Vanishing of H2(GK , V )

by Laurent Berger

Let V be a Qp-linear representation of GK . In this appendix we prove the following
theorem.
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Theorem A.1. If V is semistable and all its Hodge–Tate weights are ≥ 2, then
H 2(GK , V )= 0.

Let D(V ) be Fontaine’s (ϕ, 0)-module [1990] attached to V. It comes with
a Frobenius map ϕ and an action of 0K . Let HK = Gal(K/K (µp∞)) and let
IK =Gal(K/K nr). The injectivity of the restriction map H 2(GK , V )→H 2(GL , V )
for L/K finite allows us to replace K by a finite extension, so that we can assume
that HK IK =GK and that 0K 'Zp. Let γ be a topological generator of 0K . Recall
[Cherbonnier and Colmez 1999, §I.5] that we have a map ψ : D(V )→ D(V ).

Ideally, our proof of this theorem would go as follows. We use the Hochschild–
Serre spectral sequence

H i (GK /IK , H j (IK , V |IK ))⇒ H i+ j (GK , V )

and, interpreting Galois cohomology in terms of (ϕ, 0)-modules, we compute
that H 2(IK , V |IK )= 0 and H 1(IK , V |IK )= K̂ nr

⊗K DdR(V ). We conclude since,
by Hilbert 90, H 1(GK /IK , H 1(IK , V |IK )) = 0. However, we do not, in general,
have Hochschild–Serre spectral sequences for continuous cohomology. We mimic
thus the above argument with direct computations on continuous cocycles (again
using (ϕ, 0)-modules). Laurent Berger is grateful to Kevin Buzzard for discussions
related to the above spectral sequence.

Lemma A.2. (1) If V is a representation of GK , then there is an exact sequence

0→ D(V )ψ=1/(γ − 1)→ H 1(GK , V )→ (D(V )/(ψ − 1))0K → 0.

(2) We have H 2(GK , V )= D(V )/(ψ − 1, γ − 1).

Proof. See I.5.5 and II.3.2 of [Cherbonnier and Colmez 1999]. �

Lemma A.3. We have D(V |IK )/(ψ − 1)= 0.

Proof. Since V |IK corresponds to the case when k is algebraically closed, see the
proof of Lemma VI.7 of [Berger 2001]. �

Let γI denote a generator of 0K̂ nr .

Lemma A.4. The natural map D(V |IK )
ψ=1/(γI −1)→ (D(V |IK )/(γI −1))ψ=1 is

an isomorphism if V IK = 0.

Proof. This map is part of the six-term exact sequence that comes from the map
γI − 1 applied to 0 → D(V |IK )

ψ=1
→ D(V |IK )

ψ−1
−−→D(V |IK ) → 0. Its kernel

is included in D(V |IK )
γI=1, which is 0 since V IK = 0 (note that the inclusion

(K̂ nr
⊗ V )GK ⊆ (Ênr

⊗ V )GK = D(V )GK is an isomorphism). �

Suppose that x ∈ D(V )/(ψ − 1, γ − 1). If x̃ ∈ D(V ) lifts x , then Lemma A.3
gives us an element y ∈ D(V |IK ) such that (ψ − 1)y = x̃ . Define a cocycle
δ(x) ∈ Z1(GK /IK ,D(V |IK )

ψ=1/(γI −1)) by δ(x) : ḡ 7→ (g−1)(y) if g ∈ GK lifts
ḡ ∈ GK /IK .
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Proposition A.5. If V IK = 0, then the map

δ : D(V )/(ψ − 1, γ − 1)→ H 1(GK /IK , (D(V |IK )/(γI − 1))ψ=1)
is well-defined and injective.

Proof. We first check that

δ(x)(g) ∈ (D(V |IK )/(γI − 1))ψ=1.

We have (ψ − 1)(g − 1)(y) = (g − 1)(x). If we write g = ih ∈ IK HK , then
(g− 1)x = (ih− 1)x = (i − 1)x ∈ (γI − 1)D(V |IK ) since γI − 1 divides the image
of i − 1 in Zp[[0K̂ nr]]. This implies δ(x)(g) ∈ (D(V |IK )/(γI − 1))ψ=1.

We now check that δ(x) does not depend on the choices. If we choose another
lift g′ ∈GK of ḡ ∈GK /IK , then g′= ig for some i ∈ IK and (g′−1)y− (g−1)y =
(i−1)gy∈ (γI−1)D(V |IK ) since γI−1 divides the image of i−1 in Zp[[0K̂ nr]]. If we
choose another y′ such that (ψ−1)y′= x̃ , then y− y′ ∈D(V |IK )

ψ=1 so that δ and δ′

are cohomologous. Finally, if x̃ ′ is another lift of x , then x̃ ′− x̃= (γ−1)a+(ψ−1)b
with a, b∈D(V ). We can then take y′= y+b+(γG−1)c, where (ψ−1)c= a. We
then have (g−1)y′ = (g−1)y+ (g−1)b+ (γG −1)(g−1)c. Since GK = IK HK ,
we can write g= ih and (g−1)b= (i−1)b. Using GK = IK HK once again, we see
that IK → GK /HK is surjective, so that we can identify γI and γG . The resulting
cocycle is then cohomologous to δ(x). This proves that δ is well-defined.

We now prove that δ is injective. If δ(x)= 0, then using Lemma A.4 there exists
z∈D(V |IK )

ψ=1 such that δ(x)(ḡ) is the image of (g−1)(z) in D(V |IK )
ψ=1/(γI−1).

This implies that (g − 1)(y − z) ∈ (γI − 1)D(V |IK )
ψ=1. Applying ψ − 1 gives

(g− 1)x̃ = 0 so that x̃ ∈ D(V )GK ⊂ V IK = 0. The map δ is therefore injective. �

Lemma A.6. If V is semistable and the weights of V are all ≥ 2, then

expV : DdR(V |IK )→ H 1(IK , V )

is an isomorphism.

Proof. Apply Theorem 6.8 of [Berger 2002] to V |IK . �

Proof of Theorem A.1. We can replace K by Kn for n� 0 and use the fact that if
H 2(G Kn , V ) = 0, then H 2(GK , V ) = 0 since the restriction map is injective. In
particular, we can assume that HK IK = GK and that 0K is isomorphic to Zp. By
item (2) of Lemma A.2, we have H 2(GK , V )= D(V )/(ψ − 1, γ − 1), and so by
Proposition A.5 above, it is enough to prove that

H 1(GK /IK , (D(V |IK )/(γI − 1))ψ=1)= 0.

Lemma A.4 tells us that (D(V |IK )/(γI − 1))ψ=1
= D(V |IK )

ψ=1/(γI − 1). Since
D(V |IK )/(ψ − 1) = 0 by Lemma A.3, item (1) of Lemma A.2 tells us that
D(V |IK )

ψ=1/(γ − 1)= H 1(IK , V ).
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The map expV : DdR(V |IK )→ H 1(IK , V ) is an isomorphism by Lemma A.6,
and this isomorphism commutes with the action of GK since it is a natural map.
We therefore have H 1(IK , V ) = K̂ nr

⊗K DdR(V ) as GK -modules. It remains to
observe that the cocycle δ(x)∈ Z1(GK /IK , K̂ nr

⊗K DdR(V )) is continuous and that
H 1(GK /IK , K̂ nr)= 0 by taking a lattice, reducing modulo a uniformizer of K , and
applying Hilbert 90. �

Appendix B: The syntomic ring spectrum
by Frédéric Déglise

In this appendix, we explain why syntomic cohomology as defined in this paper is
representable by a motivic ring spectrum in the sense of Morel and Voevodsky’s
homotopy theory. More precisely, we will exhibit a monoid object S of the
triangulated category of motives with Qp-coefficients (see below), DM , such that
for any variety X and any pair of integers (i, r),

H i
syn(Xh, r)= HomDM(M(X),S (r)[i]).

In fact, it is possible to apply directly [Déglise and Mazzari 2015, Theorem 1.4.10]
to the graded commutative dg-algebra R0syn(X, ∗) of Theorem A in view of the
existence of Chern classes established in Section 5A. However, the use of the
h-topology in this paper makes the construction of Esynt much more straightforward
and that is what we explain in this appendix. Reformulating slightly the original
definition of Voevodsky [1996], we introduce:

Definition B.1. Let PSh(K ,Qp) be the category of presheaves of Qp-modules over
the category of varieties.

Let C be a complex in PSh(K ,Qp). We say
(1) C is h-local if for any h-hypercovering π : Y•→ X , the induced map

C(X)→ π∗Tot⊕(C(Y•))
is a quasi-isomorphism;

(2) C is A1-local if for any variety X , the map induced by the projection

H i (Xh,C)→ H i (A1
X,h,C)

is an isomorphism.
We define the triangulated category DMeff

h (K ,Qp) of effective h-motives as the
full subcategory of the derived category D(PSh(K ,Qp)) made by the complexes
which are h-local and A1-local.

Equivalently, we can define this category as the A1-localization of the derived
category of h-sheaves on K-varieties (see Section 5.2 of [Cisinski and Déglise 2009],
and more precisely Proposition 5.2.10 and Example 5.2.17(2)). Recall also from
[loc. cit.] that there are derived tensor products and internal Hom on DMeff

h (K ,Qp).
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For any integer r ≥ 0, the syntomic sheaf S (r) is both h-local (by definition)
and A1-local (Proposition 5.4). Thus it defines an object of DMeff

h (K ,Qp) and for
any variety X , one has an isomorphism

HomDMeff
h (K ,Qp)

(Qp(X),S (r)[i])
= HomD(PSh(K ,Qp))(Qp(X),S (r)[i])= H i

syn(Xh, r),

where Qp(X) is the presheaf of Qp-vector spaces represented by X . Thus, the
representability assertion for syntomic cohomology is obvious in the effective
setting.

Recall that one defines the Tate motive in DMeff
h (K ,Qp) as the object Qp(1) :=

Qp(P
1
K )/Qp({∞})[−2]. Given any complex object C of DMeff

h (K ,Qp), we put
C(n) := C ⊗Qp(1)⊗,n. One should be careful that this notation is in conflict with
that of S (r) considered as an effective h-motive, as the natural twist on syntomic
cohomology is unrelated to the twist of h-motives. To solve this matter, we are
led to consider the following notion of Tate spectrum, borrowed from algebraic
topology according to Morel and Voevodsky.

Definition B.2. A Tate h-spectrum (over K with coefficients in Qp) is a sequence
E= (Ei , σi )i∈N such that:

• For each i ∈ N, Ei is a complex of PSh(K ,Qp) equipped with an action of
the symmetric group 6i of the set with i-element.

• For each i ∈ N, σi : Ei (1)→ Ei+1 is a morphism of complexes called the
suspension map in degree i .

• For any integers i ≥ 0, r > 0, the map induced by the morphisms σi , . . . , σi+r

Ei (r)→ Ei+r

is compatible with the action of 6i ×6r , given on the left by the structural
6i -action on Ei and the action of 6r via the permutation isomorphism of
the tensor structure on C(PSh(K ,Qp)), and on the right via the embedding
6i ×6r →6i+r .

A morphism of Tate h-spectra f : E→ F is a sequence of 6i -equivariant maps
( fi : Ei→ Fi )i∈N compatible with the suspension maps. The corresponding category
will be denoted by Sph(K ,Qp).

There is an adjunction of categories

6∞ : C
(

PSh(K ,Qp)
)
� Sph(K ,Qp) :�

∞ (52)

such that for any complex K of h-sheaves, 6∞C is the Tate spectrum equal in
degree n to C(n), equipped with the obvious action of 6n induced by the symmetric
structure on tensor product and with the obvious suspension maps.
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Definition B.3. A morphism of Tate spectra ( fi : Ei → Fi )i∈N is a level quasi-
isomorphism if for any i , we have fi is a quasi-isomorphism.

A Tate spectrum E is called a �-spectrum if for any i , we have Ei is h-local and
A1-local and the map of complexes

Ei → Hom(Qp(1), Ei+1)

is a quasi-isomorphism.
We define the triangulated category DMh(K ,Qp) of h-motives over K with

coefficients in Qp as the category of Tate �-spectra localized by the level quasi-
isomorphisms.

The category of h-motives notably enjoys the following properties:

(DM1) The adjunction of categories (52) induces an adjunction of triangulated
categories

6∞ : DMeff
h (K ,Qp)� DMh(K ,Qp) :�

∞

such that for a Tate �-spectrum E, and any integer r ≥ 0, we have �∞(E(r))= Er

(see [Cisinski and Déglise 2009, Section 5.3.d, and Example 5.3.31(2)]).
Given any variety X , we define the (stable) h-motive of X as M(X) :=6∞Qp(X).

(DM2) There exists a symmetric closed monoidal structure on DM(K ,Qp) such
that 6∞ is monoidal and such that 6∞Qp(1) admits a tensor inverse (see [Cisinski
and Déglise 2009, Section 5.3, Example 5.3.31(2)]). By abuse of notations, we put
Qp =6

∞Qp.

(DM3) The triangulated monoidal category DMh(K ,Qp) is equivalent to all known
versions of triangulated categories of mixed motives over Spec(K ) with coefficients
in Qp (see [Cisinski and Déglise 2009, Section 16, and Theorem 16.1.2]). In particu-
lar, it contains as a full subcategory the category DMgm(K )⊗Qp obtained from the
category of Voevodsky geometric motives ([Voevodsky et al. 2000, Chapter 5]) by
tensoring Hom-groups with Qp (see [Cisinski and Déglise 2009, Corollary 16.1.6,
15.2.5]).

With that definition, the construction of a Tate spectrum representing syntomic
cohomology is almost obvious. In fact, we consider the sequence of presheaves

S := (S (r), r ∈ N),

where each S (r) is equipped with with the trivial action of 6r . According to
the first paragraph of Section 5A, we can consider the first Chern class of the
canonical invertible sheaf P1: c̄ ∈ H 2

syn(P
1
K , 1) = H 2(P1

K ,h,S (1)). Take any lift
c :Qp(P

1
K )→S (1)[2] of this class. By the definition of the Tate twist, it defines

an element Qp(1)→S (1) still denoted by c. We define the suspension map

S (r)⊗Qp(1)
Id⊗c
−−→S (r)⊗S (1) µ

−→S (r + 1),



Syntomic cohomology and p-adic regulators for varieties over p-adic fields 1785

where µ is the multiplication coming from the graded dg-structure on S (∗). Be-
cause this dg-structure is commutative, we obtain that these suspension maps induce
structures of a Tate spectrum on S . Moreover, S is a Tate �-spectrum because
each S (r) is h-local and A1-local, and the map obtained by adjunction from σr is
a quasi-isomorphism because of the projective bundle theorem for P1 (an easy case
of Proposition 5.2).

Now, by definition of DMh(K ,Qp) and because of property (DM1) above, for
any variety X , and any integers (i, r), we get

HomDMh(K ,Qp)(M(X),S (r)[i])

= HomDMeff
h (K ,Qp)

(Qp(X),�∞(S (r))[i])= H i
syn(Xh, r).

Moreover, the commutative dg-structure on the complex S (∗) induces a monoid
structure on the associated Tate spectrum. In other words, S is a ring spectrum
(strict and commutative). This construction is completely analogous to the proof
of [Déglise and Mazzari 2015, Proposition 1.4.10]. In particular, we can apply all
the constructions of [Déglise and Mazzari 2015, Section 3] to the ring spectrum S .
Let us summarize this briefly:

Proposition B.4. (1) Syntomic cohomology is covariant with respect to projective
morphisms of smooth varieties (Gysin morphisms in the terminology of [Déglise
and Mazzari 2015]). More precisely, to a projective morphism of smooth K-varieties
f : Y → X one can associate a Gysin morphism in syntomic cohomology

f∗ : H n
syn(Yh, i)→ H n−2d

syn (Xh, i − d),

where d is the dimension of f .

(2) The syntomic regulator over Qp is induced by the unit η :Qp→S of the ring
spectrum S :

rsyn : H
r,i
M (X)⊗Qp = HomDMh(K ,Qp)(M(X),Qp(r)[i])

−→ HomDMh(K ,Qp)(M(X),S (r)[i])= H i
syn(Xh, r).

It is compatible with product, pullbacks and pushforwards.

(3) The syntomic cohomology has a natural extension to h-motives10

DMh(K ,Qp)
op
→ D(Qp), M 7→ HomDMh(K ,Qp)(M,S )

and the syntomic regulator rsyn can be extended to motives.

(4) There exists a canonical syntomic Borel-Moore homology H syn
∗ (−, ∗) such that

the pair of functors (H∗syn(−, ∗), H syn
∗ (−, ∗)) defines a Bloch–Ogus theory.

10And in particular to the usual Voevodsky geometrical motives by (DM3) above.
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(5) To the ring spectrum S there is associated a cohomology with compact support
satisfying the usual properties.

For points (1) and (2), we refer the reader to [Déglise and Mazzari 2015, Section
3.1] and for the remaining ones to Section 3.2 of the same paper.

Remark B.5. Note that the construction of the syntomic ring spectrum S in
DMh(K ,Qp) automatically yields the general projective bundle theorem (already
obtained in Proposition 5.2). More generally, the ring spectrum S is oriented
in the terminology of motivic homotopy theory. Thus, besides the theory of
Gysin morphisms, this gives various constructions — symbols, residue morphisms —
and yields various formulas — excess intersection formula, blow-up formulas (see
[Déglise 2008] for more details).
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