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We prove that the moduli space R15 of Prym curves of genus 15 is of general
type. To this end we exhibit a virtual divisor D15 on R15 as the degeneracy locus
of a globalized multiplication map of sections of line bundles. We then proceed
to show that this locus is indeed of codimension one and calculate its class. Using
this class, we can conclude that KR15

is big. This complements a 2010 result
of Farkas and Ludwig: now the spaces Rg are known to be of general type for
g ≥ 14.

1. Introduction

The study of Prym varieties has a long history, going back to work of Riemann,
Wirtinger, Schottky and Jung in the late 19th and early 20th century. Of particular
interest is the correspondence between moduli of étale double covers of curves
of genus g and abelian varieties of dimension g − 1, given by the Prym map
Pg : Rg→ Ag−1. Here we denote by Rg the moduli space of pairs [C, η] where
[C] ∈ Mg is a smooth genus g curve and η ∈ Pic0(C) is a 2-torsion point (or
equivalently an étale double cover of C).

It turns out that every principally polarized abelian variety (ppav) up to dimension
5 is a Prym variety. This generalizes the well-known fact that the general ppav of
dimension at most 3 is the Jacobian of a curve. In dimension greater than 5, Prym
varieties are no longer dense in the moduli space of ppavs, but their locus is still of
geometric interest.

It is natural to ask for a modular compactification of Rg in order to study degen-
erations of Prym varieties and the birational geometry of their families. Explicit
constructions were put forward in [Beauville 1977; Bernstein 1999] and in [Ballico
et al. 2004], where the compactification is given in terms of admissible covers and
Prym curves, respectively.

Much is already known about the birational geometry of Rg. It is a rational
variety for g≤ 4, unirational for g≤ 7 and uniruled for g≤ 8 (see [Farkas and Verra
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2016] for a discussion). The availability of a modular compactification has sparked
interest in the Kodaira dimension of Rg for higher g. Farkas and Ludwig [2010]
prove that Rg is of general type for g ≥ 14 and g 6= 15. The Kodaira dimension of
R12 is shown to be nonnegative.

In this note we close the gap at g = 15.

Theorem 1.1. The moduli space R15 is of general type.

We briefly outline the strategy of the proof. In order to show that the canonical
class of R15 is big, we construct an effective divisor D15 such that KR15

can be
written as a positive linear combination of the Hodge class, the class of D15 and other
effective divisor classes.

To motivate the construction of D15, consider first the case of genus 6. A general
curve [C] ∈M6 possesses a finite number of complete g2

6. Any such L ∈ W 2
6 (C)

induces a birational map to a plane sextic curve 0 with 4 nodes. If there is a plane
conic Q totally tangent to 0, i.e., Q ·0= 2D where D is effective of degree 6, then
η = O0(−1)⊗O0(D) is 2-torsion.

Q

0

The existence of such a totally tangent conic is equivalent to the failure of the
map

Sym2 H 0(C, L ⊗ η)→
H 0(C, L⊗2)

Sym2 H 0(C, L)

to be injective. It turns out that the closure of the locus of pairs [C, η] ∈ R6 where
this injectivity fails is a divisor, i.e., the condition to possess a totally tangent conic
to a plane sextic model gives a divisorial condition on R6. This divisor can also be
identified with the closure of the ramification divisor of the Prym map R6→A5.
For details, see [Farkas et al. 2014].

We generalize this condition and adapt it to genus 15. A general genus 15 curve
C carries a finite number of complete g4

16 linear series. For any such L ∈W 4
16(C)

we can consider the multiplication map

µ[C,L] : Sym2 H 0(C, L)→ H 0(C, L⊗2).
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The vector spaces on the left- and right-hand sides are of dimensions 15 and 18,
respectively, and the map is injective for the general pair [C, L]. We can make use
of a torsion bundle η to get the remaining three sections:

µ[C,η,L] : Sym2 H 0(C, L)⊕Sym2 H 0(C, L ⊗ η)→ H 0(C, L⊗2). (1)

We consider the locus of Prym curves carrying a g4
16 such that this map fails to be

an isomorphism. Unlike in genus 6, such curves are not directly characterized by
having a totally tangent quadric hypersurface, although on those that have, the map
(1) certainly fails to be injective.

It turns out that µ[C,η,L] is bijective for all L on the general pair [C, η] ∈ R15

and the failure locus is in codimension one. We may therefore consider the divisor

D15 = {[C, η] ∈ R15 | ∃L ∈W 4
16(C) such that µ[C,η,L] is not an isomorphism}.

In order to show that (1) is indeed bijective for all η and L on a general curve C ,
we first construct in Section 3A a single example, using a curve that carries a theta
characteristic with a large number of sections. Afterwards we prove that the moduli
space G4,(2)

16 of triples [C, η, L] is irreducible, allowing us to specialize the general
triple to the constructed example. More generally, we obtain the following result:

Proposition 1.2. Assume g ≥ 3 and the Brill–Noether number ρ(g, r, d) = 0. If
either r ≤ 2 or g− d + r − 1≤ 2 then Gr,(2)

d is irreducible.

Taking the closure D15 of D15 in an appropriate partial compactification R0
15

of R15, we can calculate the class of D15 using a determinantal description coming
from globalizing the map (1) to a morphism of vector bundles.

Theorem 1.3. The locus D15 is a divisor in R0
15 and we have the expression

[D15] + E ≡ 31020
(3127

470
λ− (δ′0+ δ

′′

0 )−
3487
1880

δram
0

)
,

where E is an effective class on R0
15.

A suitable positive linear combination of D15 and another divisor D15:2, which
was described in [Farkas and Ludwig 2010], then shows that the canonical class of
R15 is big.

To be able to calculate the class of D15, various technical difficulties have to be
overcome. In Section 2 we closely follow the setup of [Farkas 2009; Farkas and
Ludwig 2010] to construct partial compactifications of suitable open subsets of Mg

and Rg and to extend the moduli stacks of linear series there. We also make use of
a result in [Farkas and Ludwig 2010] showing that all pluricanonical forms defined
on the smooth part of Rg extend to any resolution of singularities.
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2. The moduli space of Prym curves

We follow the techniques and notations introduced in [Farkas and Ludwig 2010,
Section 1]. First we recall the basic definitions.

A smooth Prym curve is a pair [C, η] where [C] ∈Mg is a smooth curve and
η ∈ Pic0(C)\{OC} is such that η⊗2∼=OC . To such a pair we can naturally associate
an étale double cover f : C ′→ C , where C ′ is given as Spec(OC ⊕ η). Conversely,
every étale double cover determines a unique 2-torsion bundle η on C .

We denote by Rg the moduli space of smooth Prym curves of genus g and
by π : Rg →Mg the forgetful morphism [C, η] 7→ [C] of degree 22g

− 1. The
corresponding morphism on stacks is étale and denoted by π : Rg→Mg as well.

2A. Compactifying the space of Prym curves. In order to compactify Rg, we
make the following definitions. We say that a smooth rational component of a nodal
curve is exceptional if it meets the other components in exactly two points. A nodal
curve is called quasistable if every smooth rational component meets the rest of the
curve in at least two points, and the exceptional components are pairwise disjoint.

Definition 2.1. A Prym curve of genus g is a triple (C, η, β) consisting of a quasi-
stable curve C of genus g, a line bundle η ∈ Pic0(C) and a sheaf homomorphism
β : η⊗2

→ OC , subject to the following conditions:

(1) For each exceptional component E of C we have η|E = OE(1).

(2) For each nonexceptional component the morphism β is not the zero morphism.

A family of Prym curves over a scheme S is a triple (C→ S, η, β), where C→ S is
a flat family of quasistable curves, η is a line bundle on C and β : η⊗2

→ OC is a
sheaf homomorphism such that for each fiber Cs = C(s) the triple (Cs, η|Cs , β|Cs )

is a Prym curve.

If there is no danger of confusion, we usually omit the morphism β from the data
to describe a Prym curve. We denote by Rg the (nonsingular Deligne–Mumford)
stack of Prym curves of genus g and its coarsening by Rg. The locus Rg of smooth
Prym curves is contained in Rg as an open subset and the forgetful map π extends
to a ramified covering Rg→Mg, which we also denote by π . Note that by blowing
down all exceptional components of a quasistable curve we obtain a stable curve. It
should also be remarked that there is a close relationship between the Prym curves
discussed here and admissible covers in the sense of Beauville [1977]. For a detailed
treatment of the previous statements, see [Ballico et al. 2004; Bernstein 1999].

2B. Boundary divisors. We study the boundary components of Rg. They lie
over the boundary of Mg, so we can study the components lying over 1i for
i = 0, . . . , bg/2c. As is customary, we denote by δi the corresponding divisor
classes.
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The divisors1i ,1g−i ,1g:i for i ≥ 1. First consider i ≥ 1 and let X ∈1i be general,
i.e., X =C∪D is the union of two curves of genera i and g−i meeting transversally
in a single node. The line bundle η ∈ Pic0(X) on the corresponding Prym curve
is determined by its restrictions ηC = η|C and ηD = η|D satisfying η⊗2

C = OC and
η⊗2

D = OD .
Either one of ηC and ηD (but not both) can be trivial, so π∗(1i ) splits into three

irreducible components
π∗(1i )=1i +1g−i +1i :g−i ,

where the general element in 1i is [C ∪ D, ηC 6= OC ,OD], the generic point of
1g−i is of the form [C ∪ D,OC , ηD 6= OD] and the generic point of 1i :g−i looks
like [C ∪ D, ηC 6= OC , ηD 6= OD].

The divisor 1′′0. Now let i = 0. The generic point of 10 in Mg is a one-nodal
irreducible curve C of geometric genus g− 1. We first consider points of the form
[C, η] lying over C , i.e., without an exceptional component. Denote by ν : C̃→ C
the normalization and by p, q the preimages of the node. Then we have an exact
sequence

0→ C∗→ Pic0(C)
ν∗

−→ Pic0(C̃)→ 0,

which restricts to

0→ Z/2Z→ Pic0(C)[2]
ν∗

−→ Pic0(C̃)[2] → 0

on the 2-torsion part. The group Z/2Z represents the two possible choices of gluing
of the fibers at p and q for each line bundle in Pic0(C̃)[2]. For the case ν∗η = OC̃
there is exactly one possible choice of η 6= OC . These curves [C, η] correspond to
the classical Wirtinger covers

C̃1q C̃2/(p1 ∼ q2, p2 ∼ q1)
2:1
−→ C̃/(p ∼ q)= C.

We denote by 1′′0 the closure of the locus of Wirtinger covers.

The divisor 1′0. On the other hand, there are 22(g−1)
− 1 nontrivial elements in the

group Pic0(C̃)[2]. For each of them there are two choices of gluing, so we have a
total of 2 · (22g−2

− 1) choices for η such that ν∗η 6= OC̃ . We let 1′0 be the closure
of the locus of pairs [C, η] such that ν∗η 6= OC̃ .

The divisor 1ram
0 . Let us turn to the case of curves of the form [X = C̃ ∪p,q E, η],

where E is an exceptional component. The stabilization of such a curve is again a
one-nodal curve C . Denote by β the morphism η⊗2

→OX . Since η|E =OE(1), we
must have βE\{p,q}= 0 and deg(η⊗2

|C̃)=−2. It follows that η⊗2
|C̃ =OC̃(−p−q).

There are 22(g−1) choices of square roots ofOC̃(−p−q) and each of these determines
uniquely a Prym curve [X, η] of this form. We denote the closure of the locus of
such curves by 1ram

0 .
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As a result of the local analysis carried out for instance in [Chiodo et al. 2013],
we see that π is simply ramified over 1ram

0 and unramified everywhere else. This
gives the relation

π∗(δ0)= δ
′

0+ δ
′′

0 + 2δram
0 .

2C. The canonical class. In order to show that Rg is of general type, we need to
show the canonical class is big for some desingularization R̂g of Rg. Using the
following extension result we see that all pluricanonical differentials on the smooth
part of Rg extend to R̂g.

Theorem 2.2 [Farkas and Ludwig 2010, Theorem 6.1]. Let g ≥ 4 and R̂g→ Rg

be any desingularization. Then every pluricanonical form defined on the smooth
locus Rreg

g of Rg extends holomorphically to R̂g; that is, for all integers l ≥ 0 we
have isomorphisms

H 0(Rreg
g , K⊗l

Rg

)
∼= H 0(R̂g, K⊗l

R̂g

)
.

Furthermore, one has the expression

KRg
= 13λ−2(δ′0+ δ

′′

0 )−3δram
0 −2

bg/2c∑
i=1

(δi + δg−i + δi :g−i )− (δ1+ δg−1+ δ1:g−1)

for the canonical class KRg
in terms of the divisor classes introduced before (see for

example [Farkas and Ludwig 2010, Theorem 1.5]). Here we have abused notation
and set λ= π∗(λ), the pullback of the Hodge class from Mg. It is therefore enough
to exhibit an effective divisor D of the form

D = aλ− (b′0δ
′

0+ b′′0δ
′′

0 )− bram
0 δram

0 −

bg/2c∑
i=1

(biδi + bg−iδg−i + bi :g−iδi :g−i )

such that

a
γ
<

13
2

for all γ ∈ {b′0, b′′0} ∪ {bi , bg−i , bi :g−i | i = 1, . . . , bg/2c}

as well as
a
γ
<

13
3

for all γ ∈ {bram
0 , b1, bg−1, b1:g−1}.

Remark 2.3. Actually, the situation turns out to be simpler. Proposition 1.9 of
[Farkas and Ludwig 2010] shows that for g ≤ 23 it is enough to consider the
coefficients of λ, δ′0, δ′′0 and δram

0 . If they satisfy the inequalities above, the other
boundary divisor coefficients are automatically suitably bounded. We will make
full use of the fact that we do not have to consider singular curves of compact type.
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2D. The universal Prym curve. Since we are only concerned with the boundary
divisors1′0, 1′′0 and1ram

0 , we partially compactify Mg by adding the open sublocus
1̃0 ⊂10 of one-nodal irreducible curves. Set

M̃g =Mg ∪ 1̃0

and let R̃g = π
−1(M̃g). We also set

Z= R̃g ×M̃g
M̃g,1.

This is not yet the universal Prym curve over R̃g, since the points on exceptional
components of curves in 1ram

0 are not present. We have to blow up Z along the
locus V of points

(X, ηX , p = q) ∈1ram
0 ×M̃g

M̃g,1, X = C ∪{p,q} E→ C/p ∼ q, ηE = OE(1).

Set Xg=BlV (Z) and let f :Xg→ R̃g be the induced universal family of Prym curves.
The family Xg comes equipped with a Poincaré bundle P such that P| f −1([X,η,β])=η.
We need the following result from [Farkas and Ludwig 2010, Proposition 1.6]:

Lemma 2.4. In Pic(R̃g) we have f∗(c2
1(P))=−δ

ram
0 /2 and f∗(c1(P)c1(ωχ ))= 0.

2E. Moduli spaces of linear series over the Prym moduli space. To compute the
classes of divisors on Rg, a viable method is to give them a determinantal description,
i.e., exhibit them as degeneracy loci of morphisms of vector bundles. To obtain
these vector bundles, we consider the stack Gr,(2)

d parametrizing triples [C, η, L]
where [C, η] ∈Rg and L ∈Gr

d(C). Note that in the case ρ(g, r, d)= 0 in which we
are interested, the forgetful map Gr,(2)

d → Rg is a generically finite cover of degree

N = g! 1! 2! · · · r !
(g−d+r)! · · · (g−d+2r)!

.

We want to first restrict this construction to an open subset of Rg such that various
pushforwards of the Poincaré bundles on the universal curve are indeed vector bun-
dles on Gr,(2)

d . Then we shall extend the stack over a suitable partial compactification
to be able to also determine the behavior on the boundary.

Let M0
g be the open substack of Mg classifying curves C with W r+1

d (C)=∅ and
W r

d−1(C)=∅. A general such curve indeed has a finite amount of gr
d linear series

and all of them are very ample. Observe that both

ρ(g, r + 1, d)=−(g− d + 2(r + 1))≤−2, ρ(g, r, d − 1)=−(r + 1)≤−2,

so the codimension of the complement of M0
g in Mg is at least 2, for instance by

results in [Eisenbud and Harris 1989]. Therefore, restricting to M0
g does not change

divisor class calculations.
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To partially compactify M0
g, add the locus10

0 of Brill–Noether general irreducible
one-nodal curves, i.e., [C/p ∼ q] with [C] ∈Mg−1 satisfying the Brill–Noether
theorem. Denote by M0

g = M0
g ∪1

0
0 the resulting partial compactification. Over

M0
g we consider the stack of pairs [C, L] where L ∈ Gr

d(C). We denote this stack
by Gr

d . Pulling back the universal curve M0
g,1 to Gr

d , we get a universal family

f r
d : C

r
d =Gr

d ×M0
g
M0

g,1→Gr
d

and we choose a Poincaré bundle, i.e., an L ∈ Pic(Cr
d) such that L|( f r

d )
−1([C,L]) = L

for every [C, L] ∈Gr
d .

We are now ready to pull these constructions back to Prym curves. We let
R0

g = π
−1(M0

g) and
σ :Gr,(2)

d =Gr
d ×M0

g
R0

g→ R0
g

be the stack parametrizing triples [C, η, L] for [C, η] ∈ R0
g and L ∈ W r

d (C). We
also have the universal curve

χ : Cr,(2)
d = Xg ×R0

g
Gr,(2)

d →Gr,(2)
d .

By pulling back from R0
g and Gr,(2)

d , respectively, this comes equipped with two
Poincaré bundles P and L. We can also use σ to pull back the boundary classes
1′0, 1′′0 and 1ram

0 from R0
g to Gr,(2)

d . Slightly abusing notation, the pullbacks will
be denoted by the same symbols.

3. A new divisor on R15

As before, we denote by χ : C4,(2)
16 → G4,(2)

16 the universal curve and let L be a
Poincaré bundle on C4,(2)

16 . Furthermore, let ωχ be the relative dualizing sheaf of χ
and σ :G4,(2)

16 → R0
15 be the generically finite cover of degree N = 6006.

By construction of our moduli stacks and Grauert’s theorem, the pushforwards of
L and L⊗2 by χ are vector bundles on G4,(2)

16 of ranks 5 and 18, respectively. The
sheaf χ∗(L⊗P) is possibly not a vector bundle, but at least it is torsion-free. By
excluding the subvariety (of codimension at least two) where it fails to be locally
free we can assume it is in fact a vector bundle of rank 2. Divisor class calculations
will not be affected.

We may then consider the following morphism of vector bundles of the same
rank:

φ : Sym2 χ∗(L)⊕Sym2 χ∗(L⊗P)→ χ∗(L
⊗2).

On the fiber over the class of a triple [C, η, L] it is given by the multiplication map
of sections

µ[C,η,L] : Sym2 H 0(C, L)⊕Sym2 H 0(C, L ⊗ η)→ H 0(C, L⊗2). (2)



R15 is of general type 1957

The closure of the locus

D15 = {[C, η] ∈ R15 | ∃L ∈W 4
16(C) such that µ[C,η,L] is not an isomorphism}

therefore has a determinantal description as the pushforward of the first degeneracy
locus of the map φ. Its expected codimension is one and we obtain a virtual divisor.
Note that while the vector bundles involved in defining φ clearly depend on the
choice of the Poincaré bundle L, the resulting morphism φ does not (cf. the remark
before Theorem 2.1 in [Farkas 2009]).

3A. Proof of divisoriality of D15. We now prove that D15 is a genuine divisor,
that is, µ[C,η,L] is an isomorphism for every L ∈ W 4

16(C) on the general Prym
curve [C, η]. We will prove in Section 3B that G4,(2)

16 over the whole space R15 is
irreducible. Hence it will be enough to exhibit a single smooth curve C and two
line bundles L ∈W 4

16(C) and η ∈ Pic0(C)[2] such that the multiplication map (2)
is bijective. We can then specialize the general element of G4,(2)

16 to this particular
example and conclude by semicontinuity.

We start with a smooth nonhyperelliptic curve C ∈M15 possessing a theta charac-
teristic ϑ with an exactly 5-dimensional space of global sections, i.e., |ϑ | ∈ G4

14(C)
and ϑ⊗2 ∼= ωC . In order to construct an L such that µ[C,η,L] is bijective, C should
in fact be half-canonically embedded by ϑ such that the image does not lie on any
quadric hypersurface in P4.

Explicit models of such curves can be obtained as hyperplane sections of smooth
canonical surfaces S ⊆ P5 with pg = 6 and K 2

S = 14. To construct such a surface,
one can employ the method described by Catanese [1997].

Lemma 3.1. There exists a smooth projective surface S of general type with in-
variants (K 2

S, pg, q) = (14, 6, 0), canonically embedded in P5, not lying on any
quadric hypersurface.

Proof. The surfaces S arise from Pfaffian resolutions

0→ OP5(−7)→ OP5(−4)⊕7 α
−→ OP5(−3)⊕7 p

−→ IS→ 0 (3)

of the ideal sheaf IS , where α is a 7× 7 antisymmetric matrix with linear entries
and p is the map given by the Pfaffians of 6× 6 principal submatrices of α.

Using the projective resolution (3) and Serre duality for Ext sheaves, we see that
S is canonically embedded. We also see that S is a regular surface (i.e., q = 0)
and pg = 6, which combines to give χ(OS) = 7. Again using (3), the Hilbert
polynomial of OS is PS(t)= 7t2

− 7t + 7, which tells us deg(S)= 14, and because
S is canonically embedded we have K 2

S = 14. �

A general hyperplane section C = H ∩ S of S has, by the adjunction formula,

ωC ∼= (OS(1)⊗ωS)|C ∼= ω
⊗2
S |C , 2g− 2= 2KS · KS = 28,
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so C ↪→ P4 is half-canonically embedded of degree 14 and genus 15. Using the
exact sequence

0→ IS(2)→ OP5(2)→ OS(2)→ 0

and h0(S, ω⊗2
S )= 21 by Riemann–Roch, we get H 0(P5, IS(2))= 0, so S does not

lie on a quadric hypersurface of P5. The same then applies for C in P4. A moduli
count shows that hyperplane sections of such S form a 32-dimensional family.

Remark 3.2. This is not the only way in which such curves arise. Iliev and
Markushevich [2000] also obtain a 32-dimensional family (i.e., an irreducible
component of the expected dimension of the locus T4

15 of curves of genus 15
having a theta-characteristic with 5 independent global sections) as vanishing loci
of sections of rank 2 ACM bundles on quartic 3-folds in P4.

Lemma 3.3. For a half-canonically embedded curve C in P4 not lying on a quadric
hypersurface, the multiplication map µ[C,η,L] is bijective.

Proof. Set ϑ = OC(1). Of course OC(2) = ωC . The fact that C does not lie on a
quadric hypersurface is equivalent to the bijectivity of the multiplication map

µϑ : Sym2 H 0(C, ϑ)→ H 0(C, ωC).

We now choose any closed point x ∈ C . Using that ϑ is very ample we get

h0(C, ϑ(−2x))= h0(C, ϑ)− 2.

By Serre duality this implies h0(C, ϑ(2x))= h0(C, ϑ). Let L = ϑ(2x), so L is a
complete g4

16 and 2x is contained in the base locus of L . In particular, we have
H 0(C, L)∼= H 0(C, ϑ) and |L| = |ϑ | + 2x . Taking symmetric powers, we get

Sym2 H 0(C, L)∼= Sym2 H 0(C, ϑ)∼= H 0(C, ωC).

The space H 0(C, L⊗2) is 18-dimensional, and it decomposes via the inclusion
H 0(C, ϑ⊗2) ↪→ H 0(C, L⊗2) as

H 0(C, L⊗2)∼= H 0(C, ωC)⊕ V ∼= Sym2 H 0(C, L)⊕ V,

where dim V = 3. The sections in Sym2 H 0(C, L) vanish to orders at least 4 at x .
By Riemann–Roch, the space H 0(C, L⊗2) does contain sections vanishing to orders
0, 1 and 2 at x . By the previous analysis, they must span V .

Choose a two-torsion bundle η ∈ Pic0(C)[2] such that H 0(C, ϑ ⊗ η)= 0. Since
Pic0(C)[2] acts transitively on the theta-characteristics, such an η always exists by
a result of Mumford [1966]. Then we have

h0(C, L ⊗ η)= h0(C, ϑ(2x)⊗ η)≤ h0(C, ϑ ⊗ η)+ 2= 2.
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By Riemann–Roch we must in fact have h0(C, L ⊗ η)= 2. By construction,

H 0(C, (L ⊗ η)(−2x))= H 0(C, ϑ ⊗ η)= 0,

so the two sections of L ⊗ η vanish to orders 0 and 1 at x . We conclude that the
map

Sym2 H 0(C, L ⊗ η)→ H 0(C, L⊗2)

is injective and its image is precisely V . �

3B. Irreducibility of some spaces of linear series. We now want to prove the
irreducibility of G4,(2)

16 , i.e., the moduli space of triples [C, η, L] where [C, η] ∈R15

and L ∈ W 4
16(C). This will show that for the general triple [C, η, L], the map

µ[C,η,L] is an isomorphism. Notice that the pair [C, L] constructed in Section 3A
is not Petri general, so we need more than the existence of a unique component
of G4,(2)

16 dominating M15. Nonetheless, this fact is what we are going to establish
first in greater generality:

Proposition 3.4. Let g ≥ 3 and ρ(g, r, d) = 0. Then there is a unique irre-
ducible component of Gr,(2)

d dominating Mg, i.e., containing the Petri general
triple [C, η, L].

Proof. If r = g− 1, the only gr
d on a curve is the canonical bundle, so Gr,(2)

d
∼= Rg

is irreducible. Otherwise, set k = g− d + r + 1 ≥ 3. We recall that the locus of
Petri general pairs [C, L] is a connected smooth open subset U of one irreducible
component of Gr

d [Eisenbud and Harris 1987]. The restriction of Gr,(2)
d to the

preimage U (2) of U is smooth, so in order to show U (2) is irreducible we only have
to show it is connected.

Take a general k-gonal curve [D, A]. We then have h0(D, A⊗l)= l + 1 for all
l ≤ r + 1 (see [Ballico 1989]). So there is a rational map

9 :G1,(2)
k Gr,(2)

d

defined by [D, η, A] 7→ [D, η, A⊗r
]. We claim A⊗r is Petri general, i.e., the map

µA⊗r : H 0(D, A⊗r )⊗ H 0(D, ωD ⊗ A⊗(−r))→ H 0(D, ωD)

is injective. The aforementioned result of Ballico implies

h0(D, ωD ⊗ A⊗(− j))= (k− 1)(r + 1− j)

for all j ≤ r + 1. Note also that g = (k − 1)(r + 1). By counting dimensions we
find that µA⊗r is injective if and only if it is surjective.
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We write down the beginning of the long exact sequence coming from the base
point free pencil trick:

0→ H 0(ωD⊗ A⊗(− j−1))→ H 0(A)⊗H 0(ωD⊗ A⊗(− j))→ H 0(ωD⊗ A⊗(− j+1)).

Comparing dimensions we find that the map on the right is surjective for all j ≤ r .
Now note that h0(D, A⊗r )= r+1 is equivalent to H 0(D, A⊗r )∼= Symr H 0(D, A).
The chain of surjective maps

H 0(A)⊗r
⊗ H 0(ωD ⊗ A⊗(−r))� H 0(A)⊗(r−1)

⊗ H 0(ωD ⊗ A⊗(−r+1))� · · ·

· · ·� H 0(A)⊗ H 0(ωD ⊗ A−1)

then implies that the Petri map

µA⊗r : Symr H 0(D, A)⊗ H 0(D, ωD ⊗ A⊗(−r))→ H 0(D, ωD)

is surjective as well. So [D, η, A⊗r
] lies in U (2).

In [Biggers and Fried 1986] it is shown that the Hurwitz space G1,(2)
k is irreducible

for k ≥ 3. Hence 9 maps to the smooth locus of a unique component Z of Gr,(2)
d

and its image is an irreducible subset consisting generically of Petri general curves.
Since the image is closed under monodromy of 2-torsion, it follows that U (2) must
be connected. �

We employ this result to prove irreducibility of Gr,(2)
d under special circumstances:

Corollary 3.5. Assume g ≥ 3 and ρ(g, r, d)= 0. If r ≤ 2 or r ′ = g−d+r−1≤ 2,
then Gr,(2)

d is irreducible.

Proof. Note that the Serre dual of a gr
d is a gr ′

2g−2−d , so the space Gr,(2)
d is irreducible

if and only if Gr ′,(2)
2g−2−d is. As mentioned above, if r = 0 or, equivalently, r ′ = g−1,

the unique gr
d on a curve is its canonical bundle, so Gr,(2)

d
∼= Rg is irreducible. The

case r = 1 is just the aforementioned result by Biggers and Fried [1986] about the
irreducibility of Hurwitz spaces.

In the remaining case r = 2 a general g2
d maps C birationally to a nodal curve

in P2. Thus we get a dominant rational map

V d,g G2
d

from the Severi variety V d,g of irreducible plane curves of degree d and arithmetic
genus g. The Severi varieties are irreducible, as proven in [Harris 1986], so G2

d is
irreducible as well.

Étale maps preserve dimension, so all components of G2,(2)
d have dimension

3g−3+ρ(g, r, d)= 3g−3. Each component is generically smooth, which implies
that the general element has injective Petri map. But by Proposition 3.4 there is
only one such component. �
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In particular, G4,(2)
16 is irreducible. We may therefore specialize a general triple

[C, η, L] ∈G4,(2)
16 to the previously constructed explicit example. This proves that

the locus D15 is a genuine divisor. We proceed to calculate its class.

3C. Calculation of the divisor class. Recall that we are considering the morphism

φ : Sym2 χ∗(L)⊕Sym2 χ∗(L⊗P)→ χ∗(L
⊗2)

between vector bundles of the same rank. To calculate the Chern classes of these
bundles we will employ Grothendieck–Riemann–Roch. For this we study the
contribution coming from R1χ∗(L⊗P).

Lemma 3.6. Let [C, η] ∈1′′0 be general and L ∈W 4
16(C). Then h0(C, L ⊗ η)= 4.

Proof. Let ν : C̃→C be the normalization of C and x be the node. Then ν∗η=OC̃
and ν∗L ∈W 4

16(C̃), since C̃ is Brill–Noether general. From the exact sequence

0→ OC → ν∗OC̃
e
−→ Cx → 0

we get

0→ L ⊗ η→ ν∗ν
∗L

e′
−→ L ⊗ η|x → 0,

and by the long exact sequence in cohomology we obtain

0→ H 0(C, L ⊗ η)→ H 0(C̃, ν∗L)
H0(e′)
−−−→ C.

Now H 0(e) is the zero map, hence H 0(e′) must be nonzero and we get

h0(C, L ⊗ η)= h0(C̃, ν∗L)− 1= 4. �

This implies that the dimension of h0(C, L ⊗ η) jumps by two on the boundary
component 1′′0 . Hence R1χ∗(L⊗P) is supported at least on 1′′0 , and there it is of
rank 2.

Remark 3.7. In fact, 1′′0 seems to be the only divisor where R1χ∗(L ⊗ P) is
supported. Since a proof of this would take long, and is not strictly necessary to
achieve the goal of the article, we do not assume this fact here and will discuss it in
greater generality in future work.

Denote d= c1(R1χ∗(L⊗P)).

Proposition 3.8. The pushforward to R0
15 of the class of the degeneracy locus

Z1(φ) is

[D15]
virt
≡ 31020

(3127
470

λ− (δ′0+ δ
′′

0 )−
3487
1880

δram
0

)
− 3σ∗(d),

and [D15]
virt
− n[D15] is an effective class supported on the boundary for some

n ≥ 1.
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Proof. We introduce the following classes in A1(G4,(2)
16 ):

a= χ∗(c2
1(L)), b= χ∗(c1(L) · c1(ωχ )), c= c1(χ∗(L)).

By Porteous’ formula, the class of the first degeneracy locus Z1(φ) of φ is given by

Z1(φ)= c1(χ∗(L
⊗2))− c1(Sym2 χ∗L)− c1(Sym2 χ∗(L⊗P)).

For a vector bundle G we have the elementary fact

c1(Sym2 G)= (rk(G)+ 1)c1(G).

Furthermore, for every [C, η] ∈R0
g and every L ∈W 4

16(C) we have H 1(C, L⊗2)= 0,
so R1χ∗(L

⊗2)= 0. We can then apply Grothendieck–Riemann–Roch and express
everything in terms of the classes a, b, c and d. For instance we have

c1(χ∗(L
⊗2))=

[
χ∗
(
1+ c1(L

⊗2)+ 1
2 c2

1(L
⊗2)
)

·
(
1− 1

2 c1(ωχ )+
1

12(c
2
1(ωχ )+ c2(�χ ))

)]
1

= λ+ 2a− b,

where [−]1 denotes the degree 1 part of an expression. We have used Mumford’s
formula to calculate χ∗(c2

1(ωχ )+ c2(�χ ))= 12λ. Similarly, also using Lemma 2.4,
we find

c1(χ∗(L⊗P))= λ+ 1
2a−

1
2b−

1
4δ

ram
0 + d.

Using the results of [Farkas 2009], in particular Lemmata 2.6 and 2.13 as well as
Proposition 2.12, we can calculate the pushforwards of a, b and c by σ :

σ∗(a)=−146784λ+ 20856(δ′0+ δ
′′

0 )+ 41712δram
0 ,

σ∗(b)= 4224+ 264(δ′0+ δ
′′

0 )+ 528δram
0 ,

σ∗(c)=−48279+ 6930(δ′0+ δ
′′

0 )+ 13860δram
0 ,

and of course σ∗(λ)= Nλ, σ∗(δram
0 )= Nδram

0 , where N = 6006 is the degree of σ .
Putting everything together, we obtain the result. The difference between [D15]

virt

and [D15] arises from the boundary components where φ is degenerate. �

Theorem 3.9. R15 is of general type.

Proof. The contribution of σ∗(d) to [D15] only improves the ratio between the
coefficients of λ and the boundary components. The same goes for the boundary
components where φ is degenerate. Hence we may as well work with the class
[D15]

virt
+ 3σ∗(d). Then we take an appropriate linear combination of D15 and the
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divisor D15:2 from [Farkas and Ludwig 2010] having class

[D15:2] = 5808λ− 924(δ′0+ δ
′′

0 )− 990δram
0

= 924
( 44

7 λ− (δ
′

0+ δ
′′

0 )−
15
14δ

ram
0
)
.

For instance we have

βD15:2+ γD15 = ελ− 2(δ′0+ δ
′′

0 )− 3δram
0 ,

where
β =

667
680394

, γ =
4

113399
, ε =

10288
793

.

Here ε < 13, hence the canonical class is big. �

Remark 3.10. The map

Sym2 H 0(C, L ⊗ η)→ H 0(C, L⊗2)/Sym2 H 0(C, L)

is identically zero along the boundary component 1′′0. Hence the morphism φ is
degenerate with order 3 along 1′′0 . It follows that we can subtract 3δ′′0 from Z1(φ)

and still obtain an effective class.
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