

Structure of Hecke algebras of modular forms modulo p

Shaunak V. Deo

Abstract

Generalizing the recent results of Bellaïche and Khare for the level-1 case, we study the structure of the local components of the shallow Hecke algebras (i.e., Hecke algebras without U_{p} and U_{ℓ} for all primes ℓ dividing the level N) acting on the space of modular forms modulo p for $\Gamma_{0}(N)$ and $\Gamma_{1}(N)$. We relate them to pseudodeformation rings and prove that in many cases, the local components are regular complete local algebras of dimension 2.

1. Introduction

The p-adic Hecke algebra acting on modular forms of level N of all weights, which is generated by the Hecke operators away from $N p$, has been well studied in the past due to its connection with p-adic families of modular forms and deformation rings of Galois representations (see [Emerton 2011] for the precise definition and more details). One can similarly define a mod p Hecke algebra acting on modular forms modulo p of level N (in the sense of Serre and Swinnerton-Dyer) of all weights. The main aim of this paper is to study the structure of these Hecke algebras acting on modular forms modulo p and their relation with suitable deformation rings in characteristic p. These objects were previously studied by Jochnowitz [1982], Khare [1998], Nicolas and Serre [2012a; 2012b], and Bellaïche and Khare [2015]. In this article, we generalize, with minor changes, the results Bellaïche and Khare [2015] proved for $p \geq 5$ and $N=1$.

Before proceeding further, we fix some notation. In all of this paper, we fix a prime number $p>3$ and a positive integer $N \geq 1$ not divisible by p. We shall denote by K a finite extension of \mathbb{Q}_{p}, by \mathcal{O} the ring of integers of K, by \mathfrak{p} the maximal ideal of \mathcal{O}, by π the generator of \mathfrak{p} and by \mathbb{F} the finite residue field of \mathcal{O}. We call $G_{\mathbb{Q}, N p}$ the Galois group of a maximal algebraic extension of \mathbb{Q} unramified outside $\{\ell$ s.t. $\ell \mid N p\} \cup\{\infty\}$ over \mathbb{Q}. For a prime q not dividing $N p$, we denote by $\operatorname{Frob}_{q} \in G_{\mathbb{Q}, N p}$ a Frobenius element at q. We denote by c a complex conjugation in $G_{\mathbb{Q}, N p}$. We write $G_{\mathbb{Q}_{\ell}}$ for $\operatorname{Gal}\left(\overline{\mathbb{Q}_{\ell}} / \mathbb{Q}_{\ell}\right)$ for every prime

[^0]ℓ dividing $N p$. There are natural maps $i_{\ell}: G_{\mathbb{Q}_{\ell}} \rightarrow G_{\mathbb{Q}, N p}$, well defined up to conjugacy. For every prime ℓ dividing $N p$, we write I_{ℓ} for the inertia subgroup of $G_{\mathbb{Q}_{\ell}}$. For a representation ρ of $G_{\mathbb{Q}, N p}$, we shall denote by $\left.\rho\right|_{G_{Q_{\ell}}}$ the composition of i_{ℓ} with ρ : this is a representation of $G_{\mathbb{Q}_{\ell}}$, well defined up to an isomorphism. We denote by $\omega_{p}: G_{\mathbb{Q}, N p} \rightarrow \mathbb{F}^{*}$ the cyclotomic character modulo p.

We will now define the Hecke algebra that we want to study and the space of modular forms on which it acts. For the rest of the introduction, Γ means either $\Gamma_{1}(N)$ or $\Gamma_{0}(N)$ and $\Gamma(M)$ means either $\Gamma_{1}(M)$ or $\Gamma_{0}(M)$ accordingly. Following [Bellaïche and Khare 2015] (henceforth abbreviated as [BK]), we shall denote by $S_{k}^{\Gamma}(\mathcal{O})$ the module of cuspidal modular forms of weight k for Γ with Fourier coefficients in \mathcal{O}. We see it as a submodule of $\mathcal{O} \llbracket q \rrbracket$ by the q-expansion. We denote by $S_{\leq k}^{\Gamma}(\mathcal{O})$ the submodule $\sum_{i=0}^{i=k} S_{i}^{\Gamma}(\mathcal{O})$ of $\mathcal{O} \llbracket q \rrbracket$. Note that this sum is direct (see [BK, Section 1.2]). We denote by $S_{\leq k}^{\Gamma}(\mathbb{F})$ the image of $S_{\leq k}^{\Gamma}(\mathcal{O})$ under the reduction map $\mathcal{O} \llbracket q \rrbracket \rightarrow \mathbb{F} \llbracket q \rrbracket$, which reduces each coefficient of a power series in $\mathcal{O} \llbracket q \rrbracket$ modulo \mathfrak{p}. Thus, $S_{\leq k}^{\Gamma}(\mathbb{F})=\sum_{i=0}^{i=k} S_{i}^{\Gamma}(\mathbb{F})$, where $S_{i}^{\Gamma}(\mathbb{F})$ is the space of cuspidal modular forms of weight i for Γ over \mathbb{F} in the sense of Serre and Swinnerton-Dyer, i.e., it is the image of $S_{i}^{\Gamma}(\mathcal{O})$ under the reduction map considered above. The map $S_{\leq k}^{\Gamma}(\mathcal{O}) / \mathfrak{p} S_{\leq k}^{\Gamma}(\mathcal{O}) \rightarrow S_{\leq k}^{\Gamma}(\mathbb{F})$ is surjective but not an isomorphism in general. Let

$$
S^{\Gamma}(\mathcal{O})=\bigcup_{k=0}^{\infty} S_{\leq k}^{\Gamma}(\mathcal{O}) \quad \text { and } \quad S^{\Gamma}(\mathbb{F})=\bigcup_{k=0}^{\infty} S_{\leq k}^{\Gamma}(\mathbb{F}) .
$$

All the modules considered above have a natural action of the Hecke operators T_{n} for $(n, N p)=1$. We denote by \mathbb{T}_{k}^{Γ} the \mathcal{O}-subalgebra of $\operatorname{End}_{\mathcal{O}}\left(S_{\leq k}^{\Gamma}(\mathcal{O})\right)$ generated by the T_{n} 's with $(n, N p)=1$. We denote by A_{k}^{Γ} the \mathbb{F}-subalgebra of $\operatorname{End}_{\mathbb{F}}\left(S_{\leq k}^{\Gamma}(\mathbb{F})\right)$ generated by the T_{n} 's with $(n, N p)=1$. From the relations between the Hecke operators, we see that \mathbb{T}_{k}^{Γ} or A_{k}^{Γ} is generated by the Hecke operators T_{q} and S_{q} for primes q not dividing $N p$ (see [BK, Section 1.2] for more details). Here, S_{q} is the operator acting on forms of weight k as the multiplication by $\langle q\rangle q^{k-2}$, where $\langle q\rangle$ is the diamond operator corresponding to q.

We have a natural morphism of \mathbb{F}-algebras $\mathbb{T}_{k}^{\Gamma} / \mathfrak{p} \mathbb{T}_{k}^{\Gamma} \rightarrow A_{k}^{\Gamma}$, which is surjective, but in general not an isomorphism. We set

Thus, the Hecke algebras \mathbb{T}^{Γ} and A^{Γ} act on $S^{\Gamma}(\mathcal{O})$ and $S^{\Gamma}(\mathbb{F})$, respectively. We obtain a surjective map $\mathbb{T}^{\Gamma} / \mathfrak{p} \mathbb{T}^{\Gamma} \rightarrow A^{\Gamma}$ from the surjective maps considered above. We call A^{Γ} the Hecke algebra modulo p of level Γ and this is the central object of our study.

The rings \mathbb{T}^{Γ} and A^{Γ} are complete and semilocal. Actually, if \mathbb{F} is large enough, then, by the existence of Galois representations attached to eigenforms and by the Deligne-Serre lifting lemma, the maximal ideals, and hence the local components of
both \mathbb{T}^{Γ} and A^{Γ}, are in bijection with the set of isomorphism classes of Γ-modular Galois representations $\bar{\rho}: G_{\mathbb{Q}, N p} \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ (see [BK, Section 1.2] for more details). Here and below, Γ-modular means that $\bar{\rho}$ is the semisimplified reduction of a stable lattice for the Galois representation $\rho: G_{\mathbb{Q}, N p} \rightarrow \mathrm{GL}_{2}(K)$ attached by Deligne to an eigenform in $S^{\Gamma}(\mathcal{O})$. Observe that, since $\bar{\rho}$ is odd, if $\bar{\rho}$ is irreducible, then it is absolutely irreducible. We define $\mathbb{T}_{\bar{\rho}}^{\Gamma}$ and $A_{\bar{\rho}}^{\Gamma}$ to be the local components of \mathbb{T}^{Γ} and A^{Γ} corresponding to a Γ-modular representation $\bar{\rho}$. These rings are complete local rings. The surjective map $\mathbb{T}^{\Gamma} / \mathfrak{p} \mathbb{T}^{\Gamma} \rightarrow A^{\Gamma}$ sends $\mathbb{T}_{\bar{\rho}}^{\Gamma} / \mathfrak{p} \mathbb{T}_{\bar{\rho}}^{\Gamma}$ onto $A_{\bar{\rho}}^{\Gamma}$. As A^{Γ} (resp. \mathbb{T}^{Γ}) is semilocal and an inverse limit of artinian rings, A^{Γ} (resp. \mathbb{T}^{Γ}) splits into the product of its local components. Thus, it is enough to study the structure of each local component to understand the structure of A^{Γ}, once we determine the number of its local components.

The advantage of working with the local components is that one can relate them to suitable deformation rings. By gluing pseudorepresentations attached to modular eigenforms of level Γ lifting the system of eigenvalues corresponding to a Γ-modular representation $\bar{\rho}$, one gets a pseudorepresentation of $G_{\mathbb{Q}, N p}$ taking values in $A_{\bar{\rho}}^{\Gamma}$ and deforming $(\operatorname{tr} \bar{\rho}, \operatorname{det} \bar{\rho})$. Let $\tilde{R}_{\bar{\rho}}^{0}$ be the universal deformation ring with constant determinant of the pseudorepresentation $(\operatorname{tr} \bar{\rho}, \operatorname{det} \bar{\rho})$ in the category of local, profinite \mathbb{F}-algebras with residue field \mathbb{F}. The pseudorepresentation obtained above induces a local, surjective morphism $\tilde{R}_{\bar{\rho}}^{0} \rightarrow A_{\bar{\rho}}^{\Gamma}$ when either $\Gamma=\Gamma_{0}(N)$ or $p \nmid \phi(N)$ and $\Gamma=\Gamma_{1}(N)$. Otherwise, it induces a local, surjective map $\tilde{R}_{\bar{\rho}}^{0} \rightarrow$ $\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$. See Section 2 for more details.

We define a Γ-modular representation $\bar{\rho}$ to be unobstructed if the tangent space of $\tilde{R}_{\bar{\rho}}^{0}$ has dimension 2. If $\bar{\rho}$ is irreducible and $p \nmid \phi(N)$, then $\bar{\rho}$ is unobstructed in our sense if and only if it is unobstructed in the sense of Mazur [1989, Section 1.6]. But our notion is weaker than Mazur's notion if $p \mid \phi(N)$. See Section 10, where the notion of unobstructedness is studied in detail.

We prove the following results concerning the Hecke algebra $A_{\bar{\rho}}^{\Gamma}$ and its relation with the deformation ring $\tilde{R}_{\bar{\rho}}^{0}$:

Theorem 1. Let $\Gamma=\Gamma_{1}(N)$ or $\Gamma_{0}(N)$. If $\bar{\rho}$ is a Γ-modular representation, then both $\tilde{R}_{\bar{\rho}}^{0}$ and $A_{\bar{\rho}}^{\Gamma}$ have Krull dimension at least 2.
Theorem 2. Suppose either $\Gamma=\Gamma_{0}(N)$ or $p \nmid \phi(N)$ and $\Gamma=\Gamma_{1}(N)$. If $\bar{\rho}$ is a Γ-modular representation which is unobstructed, then the morphism $\tilde{R}_{\bar{\rho}}^{0} \rightarrow A_{\bar{\rho}}^{\Gamma}$ is an isomorphism, and $A_{\bar{\rho}}^{\Gamma}$ is isomorphic to a power series ring in two variables $\mathbb{F} \llbracket x, y \rrbracket$. If $p \mid \phi(N)$ and $\bar{\rho}$ is an unobstructed $\Gamma_{1}(N)$-modular representation, then the morphism $\tilde{R}_{\bar{\rho}}^{0} \rightarrow\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$ is an isomorphism, and $\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$ is isomorphic to a power series ring in two variables $\mathbb{F} \llbracket x, y \rrbracket$.

In the last section, we shall give some conditions under which a $\Gamma_{1}(N)$-modular representation $\bar{\rho}$ is unobstructed and the corresponding local component $A_{\bar{\rho}}^{\Gamma_{1}(N)}$
is not reduced: see Proposition 27 and Proposition 28. We shall also give some examples of nonreduced Hecke algebras: see the remarks and discussion after Proposition 28.

Remark. (1) Our approach to prove Theorem 1 and Theorem 2 does not depend on whether $\bar{\rho}$ is irreducible or not. This is mainly because the results that we use from deformation theory of Galois representations are available for both reducible and irreducible $\bar{\rho}$'s. So, the proof does not become simpler when $\bar{\rho}$ is irreducible.
(2) Note that from Theorem 2 , it follows that if $\bar{\rho}$ is a $\Gamma_{0}(N)$-modular representation which is unobstructed and if $p \nmid \phi(N)$, then the natural restriction morphism $A_{\bar{\rho}}^{\Gamma_{1}(N)} \rightarrow A_{\bar{\rho}}^{\Gamma_{0}(N)}$ is an isomorphism. In fact, if $p \nmid \phi(N)$, then this happens for any $\Gamma_{0}(N)$-modular representation $\bar{\rho}$. Indeed, fixing such a $\bar{\rho}$, we see that the corresponding system of eigenvalues for the diamond operators is trivial. As $p \nmid \phi(N)$, by Hensel's lemma, any system of eigenvalues lifting $\bar{\rho}$ is trivial for the diamond operators. Hence, the diamond operators act trivially on $S^{\Gamma_{1}(N)}(\mathcal{O})_{\bar{\rho}}$. Therefore, $S^{\Gamma_{1}(N)}(\mathcal{O})_{\bar{\rho}}=S^{\Gamma_{0}(N)}(\mathcal{O})_{\bar{\rho}}$. So, $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)}$ and $\mathbb{T}_{\bar{\rho}}^{\Gamma_{0}(N)}$ are isomorphic. Thus, $A_{\bar{\rho}}^{\Gamma_{1}(N)}$ and $A_{\bar{\rho}}^{\Gamma_{0}(N)}$ are isomorphic for all the $\Gamma_{0}(N)-$ modular representations $\bar{\rho}$ if p does not divide $\phi(N)$. However, this argument breaks down if p divides $\phi(N)$.

Theorem 3. Assume that $\bar{\rho}$ is a $\Gamma_{1}(N)$-modular representation coming from a newform of level N and is absolutely irreducible after restriction to the Galois group of $\mathbb{Q}\left(\zeta_{p}\right)$. If $\ell|N, p| \ell^{2}-1$ and $\left.\bar{\rho}\right|_{G_{\mathbb{Q}}}$ is unramified, then assume $\ell^{2} \mid N$. If $\ell|N, p| \ell-1$, and $\left.\bar{\rho}\right|_{G_{Q_{\ell}}}$ is reducible, ramified and not a sum of two ramified characters, then assume that the highest power of ℓ dividing N is greater than the highest power of ℓ dividing the Artin conductor of $\bar{\rho}$. If $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{p}}}$ is reducible, assume, in addition, that $\left.\bar{\rho}\right|_{G_{Q_{p}}}$ is not isomorphic to $\chi \otimes\left(\begin{array}{cc}1 & * \\ 0 & 1\end{array}\right)$ nor to $\chi \otimes\left(\begin{array}{cc}1 & * \\ 0 & \omega_{p}\end{array}\right)$, where χ is any character $G_{\mathbb{Q}_{p}} \rightarrow \mathbb{F}^{*}$. Then $A_{\bar{\rho}}^{\Gamma_{1}(N)}$ has Krull dimension 2. Moreover, $\left(\tilde{R}_{\bar{\rho}}^{0}\right)^{\text {red }}$ is isomorphic to $\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$.

Similarly, if $\bar{\rho}$ is a $\Gamma_{0}(N)$-modular representation satisfying the hypotheses as above, then $A_{\bar{\rho}}^{\Gamma_{0}(N)}$ has Krull dimension 2. Moreover, if p does not divide $\phi(N)$, then $\left(\tilde{R}_{\bar{\rho}}^{0}\right)^{\text {red }}$ is isomorphic to $\left(A_{\bar{\rho}}^{\Gamma_{0}(N)}\right)^{\text {red }}$.

These results are generalizations of Theorem III, Theorem I and Theorem II of $[\mathrm{BK}]$, respectively. Note that, it is possible to have $\bmod p$ deformation rings with constant determinant which are nonreduced, but we do not know of any such examples.

Remark. If $p \nmid N$, then we know that the module of mod p modular forms for $\Gamma_{1}(N)$ is the same as the module of $\bmod p$ modular forms for $\Gamma_{1}\left(N p^{e}\right)$ for $e \geq 1$ (see the remark after Corollary I.3.6 on page 23 of [Gouvêa 1988] for more details).

Hence, the corresponding mod p Hecke algebras are also the same. So, even though we are assuming that $p \nmid N$, all the theorems that we prove for $\bmod p$ Hecke algebras for $\Gamma_{1}(N)$ above will still be true without this assumption on N.

Note that, Theorem 2 easily follows from Theorem 1 and the definition of unobstructed.

The idea of the proof of Theorem 1 is similar to the idea used in proving Theorem III in [BK]. So, we try to find a relation between the characteristic-0 Hecke algebra $\mathbb{T}_{\bar{\rho}}^{\Gamma}$ with the characteristic- p Hecke algebra $A_{\bar{\rho}}^{\Gamma}$. However, there are some difficulties, such as $S^{\Gamma}(\mathcal{O}) \otimes_{\mathcal{O}} \mathbb{F}$ not being isomorphic to $S^{\Gamma}(\mathbb{F})$, in comparing them directly. To overcome this problem, like Bellaïche and Khare [2015], we also work with the divided congruence modules of Katz. Using the results of Katz and the methods of [BK], we get the relation between characteristic- 0 and characteristic- p full Hecke algebras, i.e., the relation between the characteristic-0 and characteristic- p Hecke algebras generated by the Hecke operators $T_{q}, q S_{q}$ for primes q not dividing $N p, U_{\ell}$ for primes ℓ dividing N and U_{p}.

Now, we need to analyze how the addition of the U_{ℓ} and U_{p} operators changes our Hecke algebras in characteristic 0 and p. We can control the change caused by the U_{p} operator in a similar way to that done in the level-1 case in [BK]. This allows us to get a relation between Hecke algebras in characteristic 0 and p generated by Hecke operators away from p. Note that, the proof for the $N=1$ case finishes at this step. However, for $N>1$, we still need to study the effect of adding the extra operators U_{ℓ} for primes ℓ dividing N to our original Hecke algebras. This differentiates the case of $N>1$ from $N=1$. In this direction, we prove that in characteristic 0 , if $\bar{\rho}$ is new, i.e., if $\bar{\rho}$ is not $\Gamma\left(N^{\prime}\right)$-modular for any proper divisor N^{\prime} of N, then the operator U_{ℓ} acting on $S^{\Gamma}(\mathcal{O})_{\bar{\rho}}$ is integral over $\mathbb{T}_{\bar{\rho}}$ for every prime ℓ dividing N. This gives us the finiteness of the U_{ℓ} 's over the $\bmod p$ Hecke algebra automatically for a new $\bar{\rho}$ and, along with the Gouvêa-Mazur infinite fern argument, leads us to Theorem 1 in those cases. Finally, we prove that if $\bar{\rho}$ is also a $\Gamma(M)$-modular representation for some M dividing N, then the natural map $A_{\bar{\rho}}^{\Gamma} \rightarrow A_{\bar{\rho}}^{\Gamma(M)}$ is surjective using the pseudorepresentation attached to it and the Chebotarev density theorem. Theorem 1 in the case where $\bar{\rho}$ is new, along with the surjectivity established above, leads us to Theorem 1 for all the local components of the $\bmod p$ Hecke algebra. We would like to point out that, in contrast with [BK], our method does not give the precise kernel of the map $\mathbb{\Pi} \bar{\Gamma}_{\bar{\rho}} \rightarrow A_{\bar{\rho}}^{\Gamma}$ in all the cases while proving Theorem 1. However, in many cases, we can find the kernel up to some nilpotence.

To prove Theorem 3, we need to use a result of Böckle and flatness of $\mathbb{\Gamma}_{\bar{\rho}}(N)$ over the Iwasawa algebra $\mathcal{O} \llbracket T \rrbracket$ which is proved in the same way as in [BK]. This, along with Theorem 1, would imply the first part of Theorem 3. We prove, using techniques and results similar to the ones sketched in the previous paragraph, that
the map $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)} /(\mathfrak{p}, T) \rightarrow A_{\bar{\rho}}^{\Gamma_{1}(N)}$ has nilpotent kernel if $\bar{\rho}$ satisfies the hypotheses of Theorem 3. We use it, along with the results of Böckle, to conclude the second part of Theorem 3 for the $\Gamma_{1}(N)$ case. The theorem for the $\Gamma_{0}(N)$ case then follows easily from the theorem for the $\Gamma_{1}(N)$ case.

Finally, we would like to remark on a possible generalization of these results to the case of Hilbert modular forms. A well behaved theory for mod p Hilbert modular forms with arbitrary weights, which includes a lot of tools and facts for $\bmod p$ modular forms that we use, is available (see the works of Andreatta and Goren [2005] for more details). Moreover, an analogue of the Gouvêa-Mazur infinite fern argument is also true for certain local components of the p-adic Hecke algebra acting on the space of Hilbert modular forms due to work of Chenevier [2011, Theorem 5.9]. However, contrary to the case of modular forms, the theory of divided congruence modules of Katz, and properties of Hecke operators acting on them, is not known for Hilbert modular forms. We expect results similar to what we have proved above to hold for Hilbert modular forms once we know the theory of divided congruence modules of Hilbert modular forms and the infinite fern argument for all the local components. The results will depend on the space of $\bmod p$ Hilbert modular forms we consider. For instance, we expect the lower bound on the Krull dimension of the mod p Hecke algebra for Hilbert modular forms of parallel weights to be 2 , while the corresponding lower bound for the mod p Hecke algebra for Hilbert modular forms of arbitrary weights to be $2 n$, where n is the degree of extension of the totally real field over \mathbb{Q}.

2. Deformation rings and Hecke algebras

The goal of this section is to relate mod p Hecke algebras with appropriate deformation rings.

Using [Bellaïche 2012b, Step 1 of the proof of Theorem 1], which is essentially an argument of gluing pseudorepresentations attached to modular eigenforms of a fixed level and all weights, we get the following lemma (see also [BK, Proposition 2]):

Lemma 4. Let Γ be either $\Gamma_{0}(N)$ or $\Gamma_{1}(N)$. For a Γ-modular representation $\bar{\rho}$, there exists a unique continuous pseudorepresentation

$$
\left(\tau^{\Gamma}, \delta^{\Gamma}\right): G_{\mathbb{Q}, N p} \rightarrow \mathbb{T}_{\bar{\rho}}^{\Gamma}
$$

such that $\tau^{\Gamma}(c)=0, \tau^{\Gamma}\left(\operatorname{Frob}_{q}\right)=T_{q}$ and $\delta^{\Gamma}\left(\operatorname{Frob}_{q}\right)=q S_{q}$ for all the primes q not dividing $N p$. We have

$$
\tau^{\Gamma}\left(\bmod m_{\mathbb{T}}\right)=\operatorname{tr} \bar{\rho} \quad \text { and } \quad \delta^{\Gamma}\left(\bmod m_{\mathbb{\Gamma}}\right)=\operatorname{det} \bar{\rho} .
$$

By composing $\left(\tau^{\Gamma}, \delta^{\Gamma}\right)$ with the natural morphism $\mathbb{T}_{\bar{\rho}}^{\Gamma} \rightarrow A_{\bar{\rho}}^{\Gamma}$, we get a pseudorepresentation $\left(\tilde{\tau}^{\Gamma}, \tilde{\delta}^{\Gamma}\right): G_{\mathbb{Q}, N p} \rightarrow A_{\bar{\rho}}^{\Gamma}$ lifting $(\operatorname{tr} \bar{\rho}, \operatorname{det} \bar{\rho})$.

A deformation (t, d) of a pseudorepresentation (\bar{t}, \bar{d}) is called a deformation with constant determinant if $d=\bar{d}$.

Lemma 5. If $\Gamma=\Gamma_{0}(N)$ or if $p \nmid \phi(N)$ and $\Gamma=\Gamma_{1}(N)$, then for a Γ-modular representation $\bar{\rho},\left(\tilde{\tau}^{\Gamma}, \tilde{\delta}^{\Gamma}\right)$ is a deformation of $(\operatorname{tr} \bar{\rho}, \operatorname{det} \bar{\rho})$ with constant determinant.

Proof. Let q be a prime not dividing $N p$. Note that, in the $\Gamma_{0}(N)$ case, S_{q} acts as multiplication by q^{k-2} on a weight k modular form with Fourier coefficients in \mathcal{O}. If two modular forms of level N are congruent modulo \mathfrak{p}, then their weights are congruent modulo $p-1$. So, S_{q} acts like a constant on $S^{\Gamma_{0}(N)}(\mathbb{F})_{\bar{\rho}}$ for every $\bar{\rho}$. Since $\tilde{\delta}^{\Gamma}\left(\mathrm{Frob}_{q}\right)=q S_{q}$ and the set of Frob_{q} for primes q not dividing $N p$ is dense in $G_{\mathbb{Q}, N p}$, we get that $\tilde{\delta}^{\Gamma}$ is constant and we are done in the $\Gamma_{0}(N)$ case.

Applying the same reasoning to the $\Gamma_{1}(N)$ case, we get that, for every prime q not dividing $N p, S_{q}$ acts like $c_{q}\langle q\rangle$ on $S^{\Gamma_{1}(N)}(\mathbb{F})_{\bar{\rho}}$, where c_{q} is an invertible constant. Since $S_{q} \in A_{\bar{\rho}}^{\Gamma_{1}(N)}$, it follows that $\langle q\rangle \in A_{\bar{\rho}}^{\Gamma_{1}(N)}$ for every prime q not dividing $N p$. If p does not divide $\phi(N)$, then the order of every diamond operator $\langle q\rangle$ is coprime to p. We have chosen \mathbb{F} to be large enough so that it contains all the $\bmod p$ system of eigenvalues. Thus, by Hensel's lemma, $\langle q\rangle$, and hence S_{q}, will be constant in $A_{\bar{\rho}}^{\Gamma_{1}(N)}$ for every $\bar{\rho}$ and every prime q not dividing $N p$. Therefore, $\tilde{\delta}^{\Gamma}$ is constant in the $\Gamma_{1}(N)$ case if p does not divide $\phi(N)$, by the same argument as in the $\Gamma_{0}(N)$ case.

If $p \mid \phi(N)$, then the determinant $\tilde{\delta}^{\Gamma}$ may not be constant. See Section 10 for more details. If the order of $\langle q\rangle$ is p^{e}, then $(\langle q\rangle-1)^{p^{e}}=0$ in $A_{\bar{\rho}}^{\Gamma_{1}(N)}$. Therefore, in ($\left.A_{\bar{p}}^{\Gamma_{1}(N)}\right)^{\text {red }}$, we have $\langle q\rangle=1$ for all such $\langle q\rangle$. Thus, from the proof of the lemma above, it follows that if $p \mid \phi(N)$, then the determinant

$$
\left(\tilde{\delta}^{\Gamma_{1}(N)}\right)^{\mathrm{red}}: G_{\mathbb{Q}, N p} \rightarrow\left(\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\mathrm{red}}\right)^{*}
$$

is constant.
Let $R_{\bar{\rho}}$ be the universal deformation ring of the pseudorepresentation $(\operatorname{tr} \bar{\rho}, \operatorname{det} \bar{\rho})$ in the category of local profinite \mathcal{O}-algebras with residue field $\mathbb{F}, \tilde{R}_{\bar{\rho}}$ be the corresponding universal deformation ring $\bmod \mathfrak{p}$ and $\tilde{R}_{\bar{\rho}}^{0}$ be the corresponding universal deformation ring mod \mathfrak{p} with constant determinant (see [Chenevier 2014; BK, Section 1.4] for more details regarding the existence and properties of these rings). For a Γ-modular representation $\bar{\rho}$, the pseudorepresentation $\left(\tau^{\Gamma}, \delta^{\Gamma}\right)$ defines a local morphism $R_{\bar{\rho}} \rightarrow \mathbb{T}_{\bar{\rho}}^{\Gamma}$ which is the identity, modulo their maximal ideals. Similarly, we get a local morphism $\tilde{R}_{\bar{\rho}} \rightarrow A_{\bar{\rho}}^{\Gamma}$. From the previous paragraphs, we see that the morphism $\tilde{R}_{\bar{\rho}} \rightarrow A_{\bar{\rho}}^{\Gamma}$ factors through $\tilde{R}_{\bar{\rho}}^{0}$ if $\Gamma=\Gamma_{0}(N)$ or if $p \nmid \phi(N)$ and $\Gamma=\Gamma_{1}(N)$. However, this is not true in general. But, from the above discussion, we see that for a $\Gamma_{1}(N)$-modular representation $\bar{\rho}$, the map $\tilde{R}_{\bar{\rho}} \rightarrow\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$ factors through $\tilde{R}_{\bar{\rho}}^{0}$. All the morphisms considered above are surjective. Indeed, for a prime q not dividing $N p$, the images of the trace and the determinant, coming from the universal pseudorepresentation of Frob_{q}, under the morphisms above are T_{q} and $q S_{q}$, respectively.

3. Relation between the full Hecke algebras in characteristic $\mathbf{0}$ and \boldsymbol{p}

The goal of this section is to obtain a relation, similar to [BK, Proposition 16], between the full Hecke algebras, but for both the cases, $\Gamma_{1}(N)$ and $\Gamma_{0}(N)$. We follow the approach of $[\mathrm{BK}]$. We briefly recall, without proofs, some important results of the theory of divided congruences of Katz needed for our purpose. Then, we state some results about the comparisons of various Hecke algebras; these are similar to the results given in Sections 3-6 of [BK], and since their proofs are more or less the same, we do not give them in full detail here. Instead, we mostly refer readers to the proofs of corresponding results in [BK] and provide some additional details when required. In this section, we follow the notation of $[\mathrm{BK}]$ for the divided congruence modules and the Hecke algebras along with an additional index representing the level. For instance, $D^{\Gamma_{1}(N)}(\mathcal{O})$ will represent the divided congruence module of cuspidal forms for $\Gamma_{1}(N)$ over \mathcal{O}. These modules and the Hecke algebras acting on them are defined in exactly the same way as their level- 1 counterparts in [BK] after making appropriate level changes. The main references for this section are [Katz 1975; Hida 1986; BK]. Throughout this section, Γ means either $\Gamma_{1}(N)$ or $\Gamma_{0}(N)$.
3.1. The divided congruence modules of Katz. In this and the following subsection, we quickly list all the results that are needed from the theory of divided congruence modules. These results are the level- N counterparts of the results that appear in [BK].

We now define the divided congruence modules of Katz. Let $S_{<k}^{\Gamma}(K)$ be the subspace of $K \llbracket q \rrbracket$ given by $\sum_{i=0}^{i=k} S_{i}^{\Gamma}(K)$, where $S_{i}^{\Gamma}(K)$ is the space of cusp forms of weight i and level Γ with Fourier coefficients in K, which is identified as a subspace of $K \llbracket q \rrbracket$ via q-expansions. Let $D_{\leq k}^{\Gamma}(\mathcal{O})$ be the \mathcal{O}-submodule of $\mathcal{O} \llbracket q \rrbracket$ given by the intersection of $S_{\leq k}^{\Gamma}(K)$ with $\mathcal{O} \llbracket q \rrbracket$. These modules are called divided congruence modules because they capture congruences between cusp forms of different weights (see Remark 3 of Section 2 of [BK] for more details). We define $D_{\leq k}^{\Gamma}(\mathbb{F})$ as the image of $D_{\leq k}^{\Gamma}(\mathcal{O})$ under the reduction map $\mathcal{O} \llbracket q \rrbracket \rightarrow \mathbb{F} \llbracket q \rrbracket$. Let

$$
D^{\Gamma}(\mathcal{O})=\bigcup_{k=0}^{\infty} D_{\leq k}^{\Gamma}(\mathcal{O}) \quad \text { and } \quad D^{\Gamma}(\mathbb{F})=\bigcup_{k=0}^{\infty} D_{\leq k}^{\Gamma}(\mathbb{F}) .
$$

We call $D^{\Gamma}(\mathcal{O})$ the divided congruence module of cuspidal forms of level Γ and $D^{\Gamma}(\mathbb{F})$ the divided congruence module of cuspidal forms modulo p of level Γ. See Section 2 of [BK] for more details.

Lemma 6. The natural map $D_{\leq k}^{\Gamma}(\mathcal{O}) \otimes_{\mathcal{O}} \mathbb{F} \rightarrow D_{\leq k}^{\Gamma}(\mathbb{F})$ is an isomorphism.
Proof. If $f \in D_{\leq k}^{\Gamma}(\mathcal{O})$ lies in the kernel of the natural surjective map

$$
D_{\leq k}^{\Gamma}(\mathcal{O}) \rightarrow D_{\leq k}^{\Gamma}(\mathbb{F}),
$$

then f / π lies in both $S_{\leq k}^{\Gamma}(K)$ and $\mathcal{O} \llbracket q \rrbracket$. Hence, it lies in $D_{\leq k}^{\Gamma}(\mathcal{O})$ which implies the lemma. See the proof of Lemma 5 of [BK].

We now recall, without proof, two theorems of Katz which relate the divided congruence module of cuspidal forms $\bmod p$ of level Γ with the space of $\bmod p$ cuspforms of level Γ :

Proposition 7 [Katz 1975, Corollary 1.7]. (1) There exists a unique action of $\mathbb{Z}_{p}^{*} \times(\mathbb{Z} / N \mathbb{Z})^{*}$ on $D^{\Gamma_{1}(N)}(\mathcal{O})$, denoted by $((x, y), f) \mapsto(x, y) . f$, such that for $(x, y) \in \mathbb{Z}_{p}^{*} \times(\mathbb{Z} / N \mathbb{Z})^{*}$, and $f \in S_{k}^{\Gamma_{1}(N)}(\mathcal{O}) \subset D^{\Gamma_{1}(N)}(\mathcal{O})$,

$$
(x, y) . f=x^{k}\langle y\rangle f .
$$

(2) There exists a unique action of \mathbb{Z}_{p}^{*} on $D^{\Gamma_{0}(N)}(\mathcal{O})$ denoted by $(x, f) \mapsto x . f$ such that for $x \in \mathbb{Z}_{p}^{*}$, and $f \in S_{k}^{\Gamma_{0}(N)}(\mathcal{O}) \subset D^{\Gamma_{0}(N)}(\mathcal{O})$,

$$
x \cdot f=x^{k} f
$$

Theorem 8 [Katz 1975, Section 4]. The space $S^{\Gamma}(\mathbb{F})$ is the space of invariants of $1+p \mathbb{Z}_{p}$ acting on $D^{\Gamma}(\mathbb{F})$.

See also [Hida 1986, Theorem 1.1].
The two results of Katz recalled in this subsection are proved only for $p>3$. We do not know whether they also hold for $p=2,3$.
3.2. Hecke operators on the divided congruence modules. On $D^{\Gamma}(\mathcal{O})$ we can define the Hecke operators T_{q} and S_{q}, for primes q not dividing $N p$, and U_{ℓ}, for primes ℓ dividing N. Their action on the q-expansions is given in the same way as it is given on the q-expansions of the classical modular forms. See the proof of Corollary-and-Definition 7 of [BK] and [Hida 1986, page 243] for more details.

Now we introduce partially full Hecke algebras which are generated by the U_{ℓ} 's for every prime ℓ dividing N along with the T_{n} 's for $(n, N p)=1$. We denote these Hecke algebras by supplementing the index with pf. Thus, \mathbb{T}_{k}^{Γ},pf is the \mathcal{O}-subalgebra of $\operatorname{End}_{\mathcal{O}}\left(S_{\leq k}^{\Gamma}(\mathcal{O})\right)$ generated by the T_{n} 's with $(n, N p)=1$ and U_{ℓ} 's with prime ℓ dividing N, while A_{k}^{Γ},pf is the \mathbb{F}-subalgebra of $\operatorname{End}_{\mathbb{F}}\left(S_{\leq k}^{\Gamma}(\mathbb{F})\right)$ generated by the T_{n} 's with $(n, N p)=1$ and U_{ℓ} 's with prime ℓ dividing N. We can consider the projective limits

Lemma 9. (1) The subalgebra of $\operatorname{End}_{\mathcal{O}}\left(D_{\leq k}^{\Gamma}(\mathcal{O})\right)$ generated by the Hecke operators T_{q}, S_{q} for primes q not dividing $N p$ and U_{ℓ} for primes ℓ dividing N is naturally isomorphic to $\mathbb{T}_{k}^{\Gamma, p f}$.
(2) The subalgebra of $\operatorname{End}_{\mathcal{O}}\left(D_{\leq k}^{\Gamma}(\mathcal{O})\right)$ generated by the Hecke operators T_{q}, S_{q} for primes q not dividing $N p$ is naturally isomorphic to \mathbb{T}_{k}^{Γ}.

Proof. Both parts of the lemma follow from the observations that $S_{\leq k}^{\Gamma}(\mathcal{O})$ is a cotorsion submodule of $D_{\leq k}^{\Gamma}(\mathcal{O})$ and that the action of Hecke operators on $D_{\leq k}^{\Gamma}(\mathcal{O})$ extends their action on $S_{\leq k}^{\Gamma}(\mathcal{O})$. Indeed, as $S_{\leq k}^{\Gamma}(\mathcal{O})$ is a cotorsion submodule of $D_{\leq k}^{\Gamma}(\mathcal{O})$, if $f \in D_{\leq k}^{\Gamma}(\mathcal{O})$, then $\pi^{n} f \in S_{\leq k}^{\Gamma}(\mathcal{O})$ for some n which implies that a Hecke operator vanishing on $S_{\leq k}^{\Gamma}(\mathcal{O})$ also vanishes on $D_{\leq k}^{\Gamma}(\mathcal{O})$. See the proof of Lemma 8 of [BK] for more details.
Lemma 10. (1) The homomorphism $\phi: \mathbb{Z}_{p}^{*} \rightarrow \operatorname{End}_{\mathcal{O}}\left(D^{\Gamma_{1}(N)}(\mathcal{O})\right)$, defined by $\phi(x) f=(x, 1) . f$ for $f \in D^{\Gamma_{1}(N)}(\mathcal{O})$, takes values in the subalgebra $\mathbb{T}^{\Gamma_{1}(N)}$ and hence, in $\mathbb{T}^{\Gamma_{1}(N), \mathrm{pf}}$.
(2) The homomorphism $\phi: \mathbb{Z}_{p}^{*} \rightarrow \operatorname{End}_{\mathcal{O}}\left(D^{\Gamma_{0}(N)}(\mathcal{O})\right)$, defined by $\phi(x) f=x$.f for $f \in D^{\Gamma_{0}(N)}(\mathcal{O})$, takes values in the subalgebra $\mathbb{T}^{\Gamma_{0}(N)}$ and hence, in $\mathbb{T}^{\Gamma_{0}(N), \mathrm{pf}}$.
Proof. The proof of part (1) is almost the same as the proof of Lemma 9 of [BK]. We only need to change the last step of the proof slightly, so we sketch it briefly here. Following the same proof, we see that $\mathbb{T}^{\Gamma_{1}(N)}$ is a closed subset of $\operatorname{End}_{\mathcal{O}}\left(D^{\Gamma_{1}(N)}(\mathcal{O})\right)$ under the weak topology, and the map $\phi: \mathbb{Z}_{p}^{*} \rightarrow \operatorname{End}_{\mathcal{O}}\left(D^{\Gamma_{1}(N)}(\mathcal{O})\right)$ is continuous for the weak topology. For a prime q which does not divide $N p$ and is $1(\bmod N)$, one has $\phi(q)=q^{2} S_{q} \in \mathbb{T}^{\Gamma_{1}(N)}$, since $\langle q\rangle$ is the trivial operator as q is $1(\bmod N)$. If $x \in \mathbb{Z}_{p}^{*}$, there exists, by the Chinese remainder theorem and Dirichlet's theorem on primes in arithmetic progressions, a sequence of primes q_{n}, (different from primes dividing $N p)$ that are $1(\bmod N)$, that converges to $x p$-adically. Hence, $\phi\left(q_{n}\right)$ converges to $\phi(x)$ in $\operatorname{End}_{\mathcal{O}}\left(D^{\Gamma_{1}(N)}(\mathcal{O})\right)$. Therefore, $\phi(x) \in \mathbb{T}^{\Gamma_{1}(N)}$. The proof of part (2) is the same as the proof of Lemma 9 of [BK].

Let Λ be the Iwasawa algebra $\mathcal{O} \llbracket 1+p \mathbb{Z}_{p} \rrbracket$. By choosing a topological generator of $1+p \mathbb{Z}_{p}$, say $1+p$, one gets an isomorphism $\Lambda \simeq \mathcal{O} \llbracket T \rrbracket$. Under this isomorphism, the maximal ideal m_{Λ} of Λ gets mapped to (π, T). We get a morphism $\psi: \Lambda \rightarrow \mathbb{T}^{\Gamma}$ of \mathcal{O}-algebras from the group homomorphism $\phi: 1+p \mathbb{Z}_{p} \rightarrow\left(\mathbb{T}^{\Gamma}\right)^{*}$. Using the morphism ψ, we can consider \mathbb{T}^{Γ} as a Λ-algebra.
3.3. Divided congruence modules of level $\Gamma_{0}(N p)$ and $\Gamma_{1}(N p)$. In this subsection, we consider the divided congruence modules of cuspidal forms for levels $\Gamma_{0}(N p)$ and $\Gamma_{1}(N p)$. They are defined in the same way as in the level- N case after just changing the level. For the rest of this section, Γ still means $\Gamma_{0}(N)$ or $\Gamma_{1}(N)$ and $\Gamma(p)$ means either $\Gamma_{0}(N p)$ or $\Gamma_{1}(N p)$ accordingly.
Proposition 11. The closures of $D^{\Gamma}(\mathcal{O})$ and $D^{\Gamma(p)}(\mathcal{O})$ in $\mathcal{O} \llbracket q \rrbracket$ provided with the topology of uniform convergence, are equal.
Proof. See [Gouvêa 1988, Proposition I.3.9] and Section 1 of [Hida 1986].
Corollary 12. There is an isomorphism preserving q-expansions of

$$
D^{\Gamma(p)}(\mathcal{O}) \otimes_{\mathcal{O}} \mathbb{F} \simeq D^{\Gamma}(\mathbb{F})
$$

Corollary 13. The algebras $\mathbb{T}^{\Gamma(p), \mathrm{pf}}$ and $\mathbb{T}^{\Gamma, \mathrm{pf}}$ are naturally isomorphic, as are also the algebras $\mathbb{T}^{\Gamma(p)}$ and \mathbb{T}^{Γ}.

Proof. The natural restriction maps between the Hecke algebras of level $N p$ and N are isomorphisms because their action is continuous and the modules on which they act have the same closure. See the proof of Corollary 13 of [BK] for more details.
3.4. Full Hecke algebras. In this subsection, we consider full Hecke algebras, i.e., the Hecke algebras generated by all the operators T_{q}, S_{q} for primes q with $(q, N p)=1, U_{\ell}$ for primes ℓ dividing N and U_{p}. So, $\mathbb{T}_{k}^{\Gamma}(p)$,full,$D A_{k}^{\Gamma \text {,full }}$ and $A_{k}^{\Gamma \text {,full }}$ are the Hecke algebras generated by the Hecke operators T_{q}, S_{q} for primes q with $(q, N p)=1, U_{\ell}$ for primes ℓ dividing N and U_{p} acting on $D_{\leq k}^{\Gamma(p)}(\mathcal{O}), D_{\leq k}^{\Gamma}(\mathbb{F})$ and $S_{\leq k}^{\Gamma}(\mathbb{F})$, respectively. We denote by $\mathbb{T}^{\Gamma(p) \text {,full }} D A^{\Gamma \text {,full }}$ and $A^{\Gamma \text {, full }}$ the full Hecke algebras acting on $D^{\Gamma(p)}(\mathcal{O}), D^{\Gamma}(\mathbb{F})$ and $S^{\Gamma}(\mathbb{F})$, respectively, which are obtained by taking the inverse limits over the weights k of appropriate Hecke algebras, as before.

Proposition 14 (perfect duality). The pairings

$$
\mathbb{T}_{k}^{\Gamma(p), \text { full }} \times D_{\leq k}^{\Gamma(p)}(\mathcal{O}) \rightarrow \mathcal{O}, \quad D A_{k}^{\Gamma, \text { full }} \times D_{\leq k}^{\Gamma}(\mathbb{F}) \rightarrow \mathbb{F}, \quad A_{k}^{\Gamma, \text { full }} \times S_{\leq k}^{\Gamma}(\mathbb{F}) \rightarrow \mathbb{F},
$$

given by $(t, f) \mapsto a_{1}(t f)$, are perfect.
Proof. This is well known but we recall the proof here. Suppose $f \in D_{\leq k}^{\Gamma(p)}(\mathcal{O})$ is such that $a_{1}(t f)=0$ for all $t \in \mathbb{T}_{k}^{\Gamma}(p)$,full. This means $a_{1}\left(T_{n} f\right)=a_{n}(f)=0$ for all n coprime to $N p, a_{1}\left(U_{\ell} f\right)=a_{\ell}(f)=0$ for all primes ℓ dividing N and $a_{1}\left(U_{p} f\right)=a_{p}(f)=0$. Thus, we have $a_{n}(f)=0$ for all n which implies $f=0$. Now, suppose $t \in \mathbb{T}_{k}^{\Gamma(p) \text {, full }}$ is such that $a_{1}(t f)=0$ for all $f \in D_{\leq k}^{\Gamma(p)}(\mathcal{O})$. This means $a_{1}(s(t f))=a_{1}(t(s f))=0$ for all $s \in \mathbb{T}_{k}^{\Gamma}(p)$,full. Thus, from the previous part, we get that $t f=0$ for all $f \in D_{\leq k}^{\Gamma(p)}(\mathcal{O})$ which means $t=0$. The proof for other cases goes in the exact same way.
Corollary 15. The map $\mathbb{T}_{k}^{\Gamma(p), \text { full }} \rightarrow D A_{k}^{\Gamma \text {,full }}$ induces an isomorphism

$$
\mathbb{T}_{k}^{\Gamma(p), \text { full }} \otimes_{\mathcal{O}} \mathbb{F} \xrightarrow{\sim} D A_{k}^{\Gamma, \text { full }} .
$$

Hence, we get an isomorphism $\mathbb{T}^{\Gamma(p) \text {,full } \otimes_{\mathcal{O}} \mathbb{F} \simeq D A^{\Gamma \text {,full }} ~ . ~}$
Proof. By the perfect duality above and Lemma 6, we see that the rank of the torsion-free \mathcal{O}-module $\mathbb{T}_{k}^{\Gamma}(p)$,full and the dimension of $D A_{k}^{\Gamma}$,full as an \mathbb{F}-vector space are the same, which implies the result. See the proof of Corollary 15 of [BK] for more details.

Proposition 16.

$$
\mathbb{T}^{\Gamma(p), \text { full }} / m_{\Lambda} \mathbb{T}^{\Gamma(p), \text { full }} \simeq A^{\Gamma, \text { full }} .
$$

Proof. The proposition follows from Theorem 8 (a theorem of Katz that we recalled in Section 3.1), the perfect duality and its corollary above. See the proof of Proposition 16 of [BK] for more details.

4. Relation between the components of Partial and Full Hecke algebras

Throughout this section Γ means either $\Gamma_{1}(N)$ or $\Gamma_{0}(N)$ and $\Gamma(p)$ means either $\Gamma_{1}(N p)$ or $\Gamma_{0}(N p)$ accordingly. Recall that we have a direct product decomposition $\mathbb{T}^{\Gamma}=\prod \mathbb{T}_{\bar{\rho}}^{\Gamma}$ and a direct sum decomposition $S^{\Gamma}(\mathcal{O})=\bigoplus S^{\Gamma}(\mathcal{O})_{\bar{\rho}}$, where the product and sum are taken over all the Γ-modular representations. Note that, $S^{\Gamma}(\mathcal{O})_{\bar{\rho}}$ is the intersection of the subspace of $S^{\Gamma}\left(\overline{\mathbb{Q}}_{p}\right)$ generated by the eigenforms lifting the system of eigenvalues corresponding to $\bar{\rho}$ with $S^{\Gamma}(\mathcal{O})$. The decompositions above are such that $\mathbb{T}_{\bar{\rho}}^{\Gamma}$ is also the largest quotient of \mathbb{T}^{Γ} which acts faithfully on $S^{\Gamma}(\mathcal{O})_{\bar{\rho}}$. Let $\mathbb{T}_{\bar{\rho}}^{\Gamma, \text { pf }}$ be the largest quotient of $\mathbb{T}^{\Gamma, p f}$ which acts faithfully on $S^{\Gamma}(\mathcal{O})_{\bar{\rho}}$. Define $A_{\bar{\rho}}^{\Gamma, \mathrm{pf}}$ in a similar way.

Note that, since $D^{\Gamma}(\mathcal{O})$ contains $S^{\Gamma}(\mathcal{O})$ as a cotorsion submodule, we have a direct sum decomposition $D^{\Gamma}(\mathcal{O})=\bigoplus D^{\Gamma}(\mathcal{O})_{\bar{\rho}}$ similar to that of $S^{\Gamma}(\mathcal{O})$. Moreover, $\mathbb{T}_{\bar{\rho}}^{\Gamma}$,pf and $\mathbb{T}_{\bar{\rho}}^{\Gamma}$ are the largest of quotients of $\mathbb{T}^{\Gamma, p f}$ and \mathbb{T}^{Γ} respectively, acting faithfully on $D^{\Gamma}(\mathcal{O})_{\bar{\rho}}$.

By a result of Serre and Tate (see [Jochnowitz 1982, Lemma 4.4]), the subalgebras of $\mathbb{T}^{\Gamma(p) \text {,full }}$ and $A^{\Gamma \text {, full }}$ generated by the Hecke operators T_{q}, S_{q} for primes q not dividing $N p$ and U_{p} are semilocal and the local components of both of them are in bijection with the set of \mathbb{F}-valued systems of eigenvalues of the Hecke operators T_{q}, S_{q} for primes q not dividing $N p$ and U_{p} appearing in $S^{\Gamma}(\mathbb{F})$. Hence, they are in bijection with the pairs $(\bar{\rho}, \lambda)$, where $\bar{\rho}: G_{\mathbb{Q}, N p} \rightarrow \mathrm{GL}_{2}(\mathbb{F})$ is a Γ-modular representation attached to some eigenform $f \in S^{\Gamma}(\mathbb{F})$ and λ is the eigenvalue of U_{p} on f (see [Jochnowitz 1982]).

So, we get a direct sum decomposition $D^{\Gamma(p)}(\mathcal{O})=\bigoplus D^{\Gamma(p)}(\mathcal{O})_{\bar{\rho}, \lambda}$ similar to that of $S^{\Gamma}(\mathcal{O})$ seen above. Now, let us define $\mathbb{T}_{\bar{\rho}, \lambda}^{\Gamma(p) \text {, full }}$ to be the largest quotient of $\mathbb{T}^{\Gamma(p) \text {,full }}$ acting faithfully on $D^{\Gamma(p)}(\mathcal{O})_{\bar{\rho}, \lambda}$ and $A_{\bar{\rho}, \lambda}^{\Gamma, \text { full }}$ to be the largest quotient of $A^{\Gamma \text {,full }}$ acting faithfully on $S^{\Gamma}(\mathbb{F})_{\bar{\rho}, \lambda}$.

We get, using the Chinese remainder theorem and the definitions above, the product decompositions $\mathbb{T}^{\Gamma(p) \text {,full }}=\prod_{\Gamma} \mathbb{T}_{\bar{\rho}, \lambda}^{\Gamma(p), \text { full }}$, and $\mathbb{T}^{\Gamma, \mathrm{pf}}=\prod_{\bar{\rho}}^{\Gamma, \mathrm{pf}}$. Similarly, we get product decompositions of $A^{\Gamma, \text { full }}$ and $A^{\Gamma, \mathrm{pf}}$. Here, the products are finite products as the pairs $(\bar{\rho}, \lambda)$ are finitely many.

Proposition 17. (1) For a Γ-modular representation $\bar{\rho}$, one has a natural isomorphism of $A_{\bar{\rho}}^{\Gamma, \text { pf }}-$ algebras $A_{\bar{\rho}}^{\Gamma, \mathrm{pf}} \llbracket U_{p} \rrbracket \simeq A_{\bar{\rho}, 0}^{\Gamma, \text { full }}$.
(2) For a Γ-modular representation $\bar{\rho}$, one has a natural isomorphism of $\mathbb{T}_{\bar{\rho}}^{\Gamma}, \mathrm{pf}$ algebras $\mathbb{T}_{\bar{\rho}}^{\Gamma}, \mathrm{pf} \llbracket U_{p} \rrbracket \simeq \mathbb{T}_{\bar{\rho}, 0}^{\Gamma(p), \text { full }}$.

Proof. The first part of this proposition is proved by Jochnowitz [1982, Theorem 6.3]. The proof of the second part of the proposition is the same as that of Proposition 17 of [BK], where they adapt the proof of Jochnowitz in characteristic 0 , which relies on the interplay between the operators U_{p} and V. Here, V is the operator which sends $\sum a_{n} q^{n}$ to $\sum a_{n} q^{p n}$. The same argument works here.

5. Finiteness of $\mathbb{T} \bar{\Gamma}$, pf over $\mathbb{\Gamma} \bar{\rho}$ for new $\bar{\rho}$

Throughout this section, Γ means either $\Gamma_{1}(N)$ or $\Gamma_{0}(N)$ and $\Gamma(M)$ means either $\Gamma_{1}(M)$ or $\Gamma_{0}(M)$ accordingly. Let us call a Γ-modular representation $\bar{\rho}$ new if it is not $\Gamma(M)$-modular for any proper divisor M of N. Thus, the system of eigenvalues of the Hecke operators corresponding to $\bar{\rho}$ does not have a nontrivial eigenspace in $S^{\Gamma(M)}(\mathbb{F})$ for any proper divisor M of N. Let $S_{k}^{\Gamma, \text { new }}\left(\overline{\mathbb{Q}}_{p}\right)$ be the \mathcal{O}-submodule of $S_{k}^{\Gamma}\left(\overline{\mathbb{Q}}_{p}\right)$ consisting of new modular forms of weight k and level Γ. Let

$$
S_{\leq k}^{\Gamma, \text { new }}\left(\overline{\mathbb{Q}}_{p}\right)=\sum_{i=0}^{k} S_{i}^{\Gamma, \text { new }}\left(\overline{\mathbb{Q}}_{p}\right) \quad \text { and } \quad S^{\Gamma, \text { new }}\left(\overline{\mathbb{Q}}_{p}\right)=\bigcup_{k=0}^{\infty} S_{\leq k}^{\Gamma, \text { new }}\left(\overline{\mathbb{Q}}_{p}\right) .
$$

The following lemma follows directly from the discussion above and the description of $S^{\Gamma}(\mathcal{O})_{\bar{\rho}}$ given in the previous section:

Lemma 18. If $\bar{\rho}$ is a new Γ-modular representation, then $S^{\Gamma}(\mathcal{O})_{\bar{\rho}}$ is an \mathcal{O}-submodule of $S^{\Gamma, \text { new }}\left(\overline{\mathbb{Q}}_{p}\right)$.

Now we recall a well-known result regarding the Galois representations attached to level- N newforms:

Lemma 19 [Emerton et al. 2006, Lemma 2.6.1]. Let f be a classical newform of tame level N over $\overline{\mathbb{Q}}_{p}$. Let ρ_{f} be the p-adic Galois representation attached to f and let V_{f} denote its underlying space. Let ℓ be a prime dividing N and let $a_{\ell}(f)$ be the U_{ℓ} eigenvalue of f. Let $\left(V_{f}\right)_{I_{\ell}}$ be the vector space of I_{ℓ} coinvariants of V_{f}. Then the following are equivalent:
(1) $a_{\ell}(f)$ is a nonunit,
(2) $a_{\ell}(f)=0$,
(3) $\left(V_{f}\right)_{I_{\ell}}=0$.

If these equivalent conditions do not hold, then we have that $\left(V_{f}\right)_{I_{\ell}}$ is one dimensional and $a_{\ell}(f)$ is equal to the eigenvalue of Frob_{ℓ} acting on this line.
Proposition 20. If $\bar{\rho}$ is a new Γ-modular representation, then $\mathbb{T}_{\bar{\rho}}^{\Gamma}$,pf is finite over $\mathbb{T} \bar{\Gamma}$. More precisely, $U_{\ell}($ for every $\ell \mid N)$ is integral over $\mathbb{\Gamma} \Gamma_{\bar{\rho}}$ of degree at most 2 . If one of the following condition holds:
(1) $\Gamma=\Gamma_{0}(N)$ and there does not exist a prime ℓ such that $\ell \| N$ and $p \mid \ell+1$.
(2) $\Gamma=\Gamma_{1}(N)$ and if there exists a prime ℓ such that $p \mid \ell^{2}-1$ and $\ell \| N$, then $p \mid \ell+1$ and $\operatorname{det} \bar{\rho}\left(I_{\ell}\right) \neq 1$.
then $\mathbb{T}_{\bar{\rho}}^{\Gamma, \mathrm{pf}}=\mathbb{T}_{\bar{\rho}}^{\Gamma}$.
Proof. Let $\Gamma=\Gamma_{0}(N)$. Since $\bar{\rho}$ is new, we know, from Lemma 18, that

$$
S^{\Gamma}(\mathcal{O})_{\bar{\rho}} \subset S^{\Gamma, \text { new }}\left(\overline{\mathbb{Q}}_{p}\right) .
$$

Now, $\mathbb{T}_{\bar{\rho}}^{\Gamma}$,pf is the largest quotient of $\mathbb{T}^{\Gamma, p f}$ which acts faithfully on $S^{\Gamma}(\mathcal{O})_{\bar{\rho}}$. Let ℓ be a prime dividing N. By Theorem 5 of [Atkin and Lehner 1970], if ℓ^{2} divides N, then U_{ℓ} acts like 0 on $S_{k}^{\Gamma \text {,new }}\left(\overline{\mathbb{Q}}_{p}\right)$ and if $\ell \| N$, then U_{ℓ}^{2} acts like ℓ^{k-2} on $S_{k}^{\Gamma, \text { new }}\left(\overline{\mathbb{Q}}_{p}\right)$. Hence, if ℓ^{2} divides N, then U_{ℓ} acts like 0 on $S^{\Gamma}(\mathcal{O})_{\bar{\rho}}$ and if $\ell \| N$, then U_{ℓ}^{2} acts like $\ell^{-2} \phi(\ell)$ on $S^{\Gamma}(\mathcal{O})_{\bar{\rho}}$, where $\phi: \mathbb{Z}_{p}^{*} \rightarrow \mathbb{T}_{\bar{\rho}}$ is the map considered in Lemma 10. Thus, if $\ell^{2} \mid N$, then $U_{\ell}=0$, and if $\ell \| N$, then $U_{\ell}^{2}-\ell^{-2} \phi(\ell)=0$ in $\mathbb{T}_{\bar{\rho}}^{\Gamma}$ pf .

Suppose $\ell \| N$ and let f be a newform of level $\Gamma_{0}(N)$ lifting the system of eigenvalues corresponding to $\bar{\rho}$. Let π_{ℓ} be the ℓ-component of the automorphic representation corresponding to f and ρ_{f} be the p-adic Galois representation attached to f. As $\ell^{2} \nmid N$, π_{ℓ} is either principal series or special (see [Carayol 1989, Section 1.2]). So, it follows from the local Langlands correspondence, that $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is either a direct sum of two characters or a nontrivial extension of a character by its cyclotomic twist (see Sections 3 and 5 of [Weston 2004]). As f is a newform of level Γ, the Artin conductor of ρ_{f} is N (the level of f). Since $\ell \| N$, the exponent of ℓ appearing in the Artin conductor of ρ_{f} is exactly 1 which means $\left(\rho_{f}\right)^{I_{\ell}}$, the subspace of ρ_{f} on which I_{ℓ} acts trivially, is one dimensional. So, if $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is a direct sum of two characters, then one of them is unramified and the other is tamely ramified. Otherwise, $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is a nontrivial extension of an unramified character by its cyclotomic twist. As f is a modular form of level $\Gamma_{0}(N)$, its nebentypus is trivial, which means $\operatorname{det} \rho_{f}\left(I_{\ell}\right)=1$. This implies that $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is not a direct sum of two characters and hence, $\left.\rho_{f}\right|_{G_{\ell}} \simeq\left(\begin{array}{cc}\epsilon_{p} \chi & * \\ 0 & \chi\end{array}\right)$, where $*$ is nonzero and ramified, χ is an unramified character and ϵ_{p} is the p-adic cyclotomic character of $G_{\mathbb{Q}_{\ell}}$.

As $a_{\ell}(f)$, the U_{ℓ} eigenvalue of f, is nonzero, by Lemma 19 above, it is the eigenvalue of Frob $\ell \ell$ acting on $\left(\rho_{f}\right)_{I_{\ell}}$. Thus, $a_{\ell}(f)=\chi\left(\operatorname{Frob}_{\ell}\right)$. Let x be a lift of Frob $_{\ell}$ in $G_{\mathbb{Q}_{\ell}}$. Note that

$$
\operatorname{tr}\left(\rho_{f} \circ i_{\ell}(x)\right)=\epsilon_{p} \chi\left(\operatorname{Frob}_{\ell}\right)+\chi\left(\operatorname{Frob}_{\ell}\right)=(\ell+1) \chi\left(\operatorname{Frob}_{\ell}\right)=(\ell+1) a_{\ell}(f),
$$

which means $a_{\ell}(f)=\operatorname{tr}\left(\rho_{f} \circ i_{\ell}(x)\right) /(\ell+1)$. Suppose $p \nmid \ell+1$, which implies that $\ell+1$ is a unit in $\mathbb{T}_{\bar{\rho}}^{\Gamma}$. Then on every newform f of level Γ lifting $\bar{\rho}$, the action of U_{ℓ} coincides with the action of $\left(\tau^{\Gamma} \circ i_{\ell}\right)(x) /(\ell+1)$, which lies in $\mathbb{T}_{\bar{\rho}}^{\Gamma}$ as $\ell+1$ is a unit in $\mathbb{T}_{\bar{\rho}}^{\Gamma}$. As $\bar{\rho}$ is new, every eigenform of level Γ lifting $\bar{\rho}$ is a newform. This implies that $U_{\ell}-\left(\tau^{\Gamma} \circ i_{\ell}\right)(x) /(\ell+1)$ acts like 0 on $S^{\Gamma}(\mathcal{O})_{\bar{\rho}}$ and hence, $U_{\ell}=\left(\tau^{\Gamma} \circ i_{\ell}\right)(x) /(\ell+1)$ in $\mathbb{T}_{\bar{\rho}}^{\Gamma}$ pf . Therefore, $U_{\ell} \in \mathbb{T}_{\bar{\rho}}^{\Gamma}$ if $\ell \| N$ and $p \nmid \ell+1$.

Note that, $\mathbb{T}_{\bar{\rho}}^{\Gamma}$ pf is generated by the Hecke operators U_{ℓ} over $\mathbb{I}_{\bar{\rho}}^{\Gamma}$. So, by combining the discussion of the last two paragraphs, we get that $\mathbb{T}_{\bar{\rho}}^{\Gamma, \mathrm{pf}}=\mathbb{T}_{\bar{\rho}}^{\Gamma}$ if there does not exist a prime ℓ such that $\ell \| N$ and $p \mid \ell+1$. Otherwise, we have $U_{\ell} \in \mathbb{T}_{\bar{\rho}}^{\Gamma}$ if either $\ell^{2} \mid N$ or $p \nmid \ell+1$ and $U_{\ell}^{2}-\ell^{-2} \phi(\ell)=0$ if $\ell \| N$. Therefore, we conclude that $\mathbb{T}_{\bar{\rho}}^{\Gamma} \mathrm{pf}$ is a finite extension of $\mathbb{\widetilde { \rho }} \overline{\bar{\rho}}$.

Let $\Gamma=\Gamma_{1}(N)$. There is a continuous pseudorepresentation

$$
\left(\tau^{\Gamma}, \delta^{\Gamma}\right): G_{\mathbb{Q}, N p} \rightarrow \mathbb{T}_{\bar{\rho}}^{\Gamma}
$$

such that $\tau^{\Gamma}\left(\operatorname{Frob}_{q}\right)=T_{q}, \delta^{\Gamma}\left(\operatorname{Frob}_{q}\right)=q S_{q}$ for primes q not dividing $N p$. Hence, we get a continuous pseudorepresentation $(t, d): G_{\mathbb{Q}, N p} \rightarrow \mathbb{T}_{\bar{\rho}}^{\Gamma}$,pf since $\mathbb{T}_{\bar{\rho}}^{\Gamma} \subset \mathbb{T}_{\bar{\rho}}^{\Gamma}$,pf . For every prime ℓ dividing N, let us choose an element g_{ℓ} of $G_{\mathbb{Q}_{\ell}}$ which gets mapped to Frob_{ℓ} under the quotient map $G_{\mathbb{Q}_{\ell}} \rightarrow G_{\mathbb{Q}_{\ell}} / I_{\ell}$. We have already fixed a natural map $i_{\ell}: G_{\mathbb{Q}_{\ell}} \rightarrow G_{\mathbb{Q}, N p}$. Hence, we get a pseudorepresentation

$$
\left(t \circ i_{\ell}, d \circ i_{\ell}\right): G_{\mathbb{Q}_{\ell}} \rightarrow \mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N), \mathrm{pf}} .
$$

Now, consider the characteristic polynomial $Q_{\ell}(x)$ of g_{ℓ} which is defined by

$$
Q_{\ell}(x)=x^{2}-\left(t \circ i_{\ell}\right)\left(g_{\ell}\right) x+\left(d \circ i_{\ell}\right)\left(g_{\ell}\right) .
$$

Let f be a newform of level N lifting the system of eigenvalues corresponding to $\bar{\rho}$. Denote by ρ_{f} the p-adic Galois representation attached to f and by $a_{\ell}(f)$ its U_{ℓ} eigenvalue. By Lemma 19, if $a_{\ell}(f)=0$, then U_{ℓ} kills f. If $a_{\ell}(f) \neq 0$, then $a_{\ell}(f)$ is the root of the characteristic polynomial $P_{f}(x)$ of $\rho_{f} \circ i_{\ell}\left(g_{\ell}\right)$. But $Q_{\ell}\left(U_{\ell}\right) f=P_{f}\left(a_{\ell}(f)\right) f=0$. Thus, in this case, $Q_{\ell}\left(U_{\ell}\right)$ kills f. We will now determine if it is possible to have two newforms f and g of level N lifting $\bar{\rho}$ such that $a_{\ell}(f) \neq 0$ but $a_{\ell}(g)=0$ or equivalently (by Lemma 19), $\left(\rho_{f}\right)_{I_{\ell}}$ is one dimensional but $\left(\rho_{g}\right)_{I_{\ell}}=0$.

Let f be a newform of level Γ lifting $\bar{\rho}$ as above and π_{ℓ} be the ℓ-component of the automorphic representation corresponding to f. So, π_{ℓ} is one of the following: principal series, special and supercuspidal (see [Weston 2004, Section 3]). As f is a newform, the Artin conductor of ρ_{f} is N (the level of f). Suppose $\ell \mid N$ but $\ell^{2} \nmid N$. Then, from the analysis carried out in the $\Gamma_{0}(N)$ case above, we see that $\left.\rho_{f}\right|_{G_{\mathbb{Q}_{\ell}}}$ is either a sum of an unramified character and a tamely ramified character or a nontrivial extension of an unramified character by its cyclotomic twist. Hence, the space $\left(\rho_{f}\right)_{I_{\ell}}$ of I_{ℓ} coinvariants is also one dimensional. Therefore, if $\ell \| N$, then for every newform f of level Γ lifting $\bar{\rho},\left(\rho_{f}\right)_{I_{\ell}}$ is one dimensional and hence, $a_{\ell}(f) \neq 0$.

Now suppose $\ell^{2} \mid N$, and moreover, the space of I_{ℓ} coinvariants of ρ_{f} is one dimensional. So, the exponent of ℓ appearing in the Artin conductor of ρ_{f} is at least 2. This means that π_{ℓ} is not special, as otherwise $\left(\rho_{f}\right)_{I_{\ell}}$ being one dimensional will imply that $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is a nontrivial extension of an unramified character by its
cyclotomic twist, and hence, the exponent of ℓ appearing in the Artin conductor of ρ_{f} is 1 . The nontriviality of $\left(\rho_{f}\right)_{I_{\ell}}$ also implies that π_{ℓ} is not extraordinary supercuspidal (see the proof of [Weston 2004, Proposition 3.2] for more details). Suppose π_{ℓ} is supercuspidal but not extraordinary. Then, by the local Langlands correspondence,

$$
\left.\rho_{f}\right|_{G_{Q_{\ell}}}=\operatorname{Ind}_{G_{K}}^{G_{Q_{\ell}}} \chi,
$$

where K is a quadratic extension of \mathbb{Q}_{ℓ}, G_{K} is the absolute Galois group of K, χ is a character of G_{K} taking values in $\overline{\mathbb{Q}}_{p}$ and moreover, ρ_{f} is irreducible (see Section 3 of [Weston 2004]). But as $\left(\rho_{f}\right)_{I_{\ell}}$ is one dimensional, we get that χ is an unramified character of G_{K}. However, since the maximal unramified extension of K is an abelian extension of \mathbb{Q}_{ℓ}, this implies that $\left.\rho_{f}\right|_{G_{\mathbb{Q}_{\ell}}}$ is a sum of two characters, contradicting the hypothesis that $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is irreducible. Hence, π_{ℓ} is not supercuspidal. Therefore, π_{ℓ} is principal series which means that $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is a sum of two characters χ_{1} and χ_{2}. Moreover, $\left(\rho_{f}\right)_{I_{\ell}} \neq 0$ implies that one of them is unramified, while $\ell^{2} \mid N$ implies that the other is wildly ramified. Without loss of generality, suppose χ_{1} is wildly ramified and χ_{2} is unramified.

Thus, $\left.\bar{\rho}\right|_{Q_{Q_{\ell}}}=\overline{\chi_{1}} \oplus \overline{\chi_{2}}$, where $\overline{\chi_{1}}$ and $\overline{\chi_{2}}$ are the reductions of χ_{1} and χ_{2} in characteristic p, respectively. Note that, $\overline{\chi_{2}}$ is unramified while $\overline{\chi_{1}}$ is wildly ramified as $\ell \neq p$. Let g be another newform of level Γ lifting $\bar{\rho}$ and π_{ℓ}^{\prime} be the ℓ-component of the automorphic representation corresponding to g. If π_{ℓ}^{\prime} is special, then $\left.\rho_{g}\right|_{G_{Q_{\ell}}}$ is a nontrivial extension of a character by the cyclotomic twist of itself. This would imply that both $\overline{\chi_{1}}$ and $\overline{\chi_{2}}$ are either unramified or ramified, which is not the case. Hence, π_{ℓ}^{\prime} is not special. If π_{ℓ}^{\prime} is extraordinary supercuspidal, then $\left.\bar{\rho}\right|_{I_{\ell}}$ is irreducible as $p \geq 5$ (see proof of [Weston 2004, Proposition 3.2]). So, π_{ℓ}^{\prime} is not extraordinary supercuspidal. If π_{ℓ}^{\prime} is supercuspidal but not extraordinary, then $\left.\rho_{g}\right|_{G_{Q_{\ell}}}$ is induced from a character of the absolute Galois group of a quadratic extension of \mathbb{Q}_{ℓ}. Moreover, the subspace of ρ_{g} fixed by I_{ℓ} is trivial. But the subspace of $\bar{\rho}$ fixed by I_{ℓ} is one dimensional. Thus, the exponent of ℓ in the Artin conductor of ρ_{g} is greater than the exponent of ℓ in the Artin conductor of $\bar{\rho}$ (see [Carayol 1989, Section 1.1]). But [Carayol 1989, Proposition 2], along with the assumption that π_{ℓ}^{\prime} is supercuspidal, implies that $\bar{\rho}$ is unramified at ℓ which gives us a contradiction. Therefore, π_{ℓ}^{\prime} is not supercuspidal.

This means that π_{ℓ}^{\prime} is principal series and hence, $\left.\rho_{g}\right|_{G_{Q_{\ell}}}$ is a sum of two characters, say χ_{1}^{\prime} and χ_{2}^{\prime}. Without loss of generality, suppose χ_{1}^{\prime} is a lift of $\overline{\chi_{1}}$ and χ_{2}^{\prime} is a lift of $\overline{\chi_{2}}$. As $\overline{\chi_{1}}$ is wildly ramified, the Artin conductor of $\overline{\chi_{1}}$ is same as the Artin conductor of χ_{1}^{\prime} and the Artin conductor of χ_{1} (see [Carayol 1989, Section 1.2]). As the exponent of ℓ in the Artin conductor of ρ_{f} is the sum of the exponents of ℓ in the Artin conductors of χ_{1} and χ_{2} and its exponent in the Artin conductor of ρ_{g} is the sum of its exponents in the Artin conductors of χ_{1}^{\prime} and χ_{2}^{\prime}. As both f
and g are newforms of level N, the exponents of ℓ in the Artin conductors of ρ_{f} and ρ_{g} are same. This implies that the Artin conductors of χ_{2} and χ_{2}^{\prime} are same, which means that χ_{2}^{\prime} is also unramified. In particular, we see that $\left(\rho_{g}\right)_{I_{\ell}}$ is one dimensional. As a consequence, we see that if f is a newform of level Γ lifting $\bar{\rho}$ and $\left(\rho_{f}\right)_{I_{\ell}}$ is one dimensional, then, for every newform g of level Γ lifting $\bar{\rho}$, $\left(\rho_{g}\right)_{I_{\ell}}$ is one dimensional.

Let us continue with the assumption that there is a newform f_{0} of level Γ lifting $\bar{\rho}$ such that $\left(\rho_{f_{0}}\right)_{I_{\ell}}$ is one dimensional. Observe that in this case, from the discussion so far, we get that for every newform g of level Γ lifting $\bar{\rho},\left.\rho_{g}\right|_{G_{Q_{\ell}}}$ is reducible and moreover, at least one character appearing in the semisimplification of $\left.\rho_{g}\right|_{G_{Q_{\ell}}}$ is unramified. Thus, $\left(\left.\bar{\rho}\right|_{G_{Q_{\ell}}}\right)^{\text {ss }}=\alpha \oplus \beta$, where $\left(\left.\bar{\rho}\right|_{G_{Q_{\ell}}}\right)^{\text {ss }}$ is the semisimplification of $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{\ell}}}$ and α and β are characters of $G_{\mathbb{Q}_{\ell}}$ such that at least one of them is unramified. Note that, both α and β are defined over \mathbb{F}. Indeed, both $\left.\alpha\right|_{I_{\ell}}$ and $\left.\beta\right|_{I_{\ell}}$ take values in \mathbb{F} as one of them is unramified and $\operatorname{det}(\bar{\rho})$ is defined over \mathbb{F}. So it follows from the previous discussion that the image of I_{ℓ} under $\bar{\rho}$ in $\mathrm{GL}_{2}(\mathbb{F})$ is abelian and hence, is upper-triangular under a suitable basis. Therefore, since I_{ℓ} is normal in $G_{\mathbb{Q}_{\ell}}$, it follows that if $\bar{\rho}$ is ramified at ℓ, then under the same basis, the image of $G_{\mathbb{Q}_{\ell}}$ under $\bar{\rho}$ in $\mathrm{GL}_{2}(\mathbb{F})$ is also upper-triangular, which implies that both α and β are defined over \mathbb{F}. If $\bar{\rho}$ is unramified at ℓ, then $\bar{\rho}$ is reducible as it is new. As $\bar{\rho}$ is semisimple, it follows that both α and β are defined over \mathbb{F}.

Suppose $\alpha \neq \beta$. Then, by [Bellaïche and Chenevier 2009, Theorem 1.4.4, Chapter 1], $\mathbb{T} \Gamma_{\bar{\rho}}^{\Gamma}\left[G_{\mathbb{Q}_{\ell}}\right] /\left(\operatorname{ker}\left(\tau^{\Gamma} \circ i_{\ell}\left(G_{\mathbb{Q}_{\ell}}\right)\right)\right)$ is a generalized matrix algebra (GMA) of the form

$$
\left(\begin{array}{cc}
\mathbb{T} & B \tag{1}\\
\bar{D} & \mathbb{T}_{\bar{\rho}}^{\Gamma}
\end{array}\right),
$$

where B and C are finitely generated $\mathbb{T}_{\bar{\rho}}^{\Gamma}$-modules contained in the total fraction ring of $\mathbb{T}_{\bar{\rho}}^{\Gamma}$, and the diagonal entries reduce to α and β modulo the maximal ideal of $\mathbb{T}_{\bar{\rho}}^{\Gamma}$. Moreover, $B C \subset \mathbb{T}_{\bar{\rho}}^{\Gamma}$ and it is an ideal of $\mathbb{T}_{\bar{\rho}}$. Let us call it I.

For a newform f of level Γ lifting $\bar{\rho}$, let $\phi_{f}: \mathbb{\Gamma} \Gamma \rightarrow \overline{\mathbb{Q}}_{p}$ be the map which sends a Hecke operator to its f-eigenvalue and denote its kernel by P_{f}. From the previous paragraph, we see that the 2 dimensional pseudocharacter $\tau^{\Gamma} \circ i_{\ell}$ of $G_{\mathbb{Q}_{\ell}}$ is a sum of two characters modulo P_{f} and hence, is reducible modulo P_{f} for every newform f of level Γ lifting $\bar{\rho}$. Therefore, by [Bellaïche and Chenevier 2009, Proposition 1.5.1, Chapter 1], it follows that $I \subset P_{f}$ for every newform f of level Γ lifting $\bar{\rho}$. This means that if $x \in I$, then $x(f)=0$ for every newform f of level Γ lifting $\bar{\rho}$. As every eigenform of level Γ lifting $\bar{\rho}$ is a newform, we see that $I=0$. Thus, the projection on the diagonal entries of the GMA (1) above gives two characters $\tilde{\alpha}$ and $\tilde{\beta}$ of $G_{\mathbb{Q}_{\ell}}$ taking values in $\mathbb{T}_{\bar{\rho}}$ such that, $\tilde{\alpha}$ is a deformation of α, while $\tilde{\beta}$ is a deformation of β.

As at least one of α and β is unramified; without loss of generality, assume that β is unramified. Suppose α is ramified. Then, it follows, from the analysis above, that for a newform f of level Γ lifting $\bar{\rho},\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is a direct sum of an unramified character and a ramified character. As α is ramified, the unramified character appearing in $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is a lift of β and hence, it is the image of $\tilde{\beta}$ modulo P_{f}. This means that the reduction of $\tilde{\beta}$ modulo P_{f} gives an unramified character for every newform f of level Γ lifting $\bar{\rho}$. Hence, by the reasoning used in the previous paragraph, we see that $\tilde{\beta}$ is an unramified character of $G_{\mathbb{Q}_{\ell}}$. By Lemma 19 , it follows that for every newform f of level Γ lifting $\bar{\rho}$, the U_{ℓ} eigenvalue of f is the reduction of $\tilde{\beta}\left(\mathrm{Frob}_{\ell}\right)$ modulo P_{f}. Thus, $U_{\ell}-\tilde{\beta}\left(\mathrm{Frob}_{\ell}\right)$ annihilates every newform $\underset{\tilde{\beta}}{f}$ of level Γ lifting $\bar{\rho}$. Therefore, $U_{\ell}=\tilde{\beta}\left(\mathrm{Frob}_{\ell}\right)$ in $\mathbb{T}_{\bar{\rho}}^{\Gamma}$,pf and hence, $U_{\ell} \in \mathbb{T}_{\bar{\rho}}^{\Gamma}$ as $\tilde{\beta}\left(\mathrm{Frob}_{\ell}\right) \in \mathbb{T}_{\bar{\rho}}^{\Gamma}$.

Now, suppose α is also unramified. This means that for a newform f of level Γ lifting $\bar{\rho},\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is either a nontrivial extension of an unramified character by its cyclotomic twist or a direct sum of an unramified character and a tamely ramified character and in both cases, $\ell \| N$ (see [Carayol 1989, Proposition 2]). Moreover, in the second case, $p \mid \ell-1$. Suppose $\rho_{f} \mid G_{\mathbb{Q}_{\ell}}$ is a direct sum of an unramified character and a tamely ramified character. Let ϵ be the nebentypus of f. Note that,

$$
\operatorname{det}\left(\rho_{f}\left(I_{\ell}\right)\right)=\epsilon\left((\mathbb{Z} / \ell \mathbb{Z})^{*}\right) \neq 1,
$$

but its reduction is 1 in characteristic p. So, by [Carayol 1989, Proposition 3], there exists a newform g of level Γ lifting $\bar{\rho}$ such that $\epsilon^{\prime}\left((\mathbb{Z} / \ell \mathbb{Z})^{*}\right)=1$, where ϵ^{\prime} is the nebentypus of g. Thus, $\left.\rho_{g}\right|_{G_{Q_{\ell}}}$ is a nontrivial extension of an unramified character by its cyclotomic twist. This means that either α / β or β / α is the cyclotomic character ω_{p}. But as $p \mid \ell-1, \omega_{p}\left(\mathrm{Frob}_{\ell}\right)=1$ and hence, ω_{p} is the trivial character. However, this means that $\alpha=\beta$, which contradicts our assumption that $\alpha \neq \beta$. Therefore, we get that, if α is unramified, then $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is a nontrivial extension of an unramified character by the cyclotomic twist of itself for every newform f of level Γ lifting $\bar{\rho}$. By [Carayol 1989, Proposition 3] and the discussion above, it follows that $p \nmid \ell-1$, for otherwise there would exist a newform g lifting $\bar{\rho}$ such that $\operatorname{det}\left(\rho_{g}\left(I_{\ell}\right)\right) \neq 1$, which gives a contradiction.

As α is also unramified, we saw above that either α / β or β / α is ω_{p}. If both of them are ω_{p}, then $\omega_{p}^{2}=1$, which means $p \mid \ell^{2}-1$. As $p \nmid \ell-1$, we get that $p \mid \ell+1$ if both of them are ω_{p}. Suppose $p \nmid \ell+1$, which implies that exactly one of them is ω_{p}. Without loss of generality, assume α / β is ω_{p}. Now in this case, the image of $\tilde{\alpha}$ is the cyclotomic twist of the image of $\tilde{\beta}$ modulo P_{f} for every newform f of level Γ lifting $\bar{\rho}$. Thus, for every such newform $f, G_{\mathbb{Q}_{\ell}}$ acts by the image of $\tilde{\beta}$ modulo P_{f} on $\left(\rho_{f}\right)_{I_{\ell}}$. Hence, the U_{ℓ} eigenvalue of f is the reduction of $\tilde{\beta}\left(\mathrm{Frob}_{\ell}\right)$ modulo P_{f} for every newform f of level Γ lifting $\bar{\rho}$. Therefore, by the reasoning used in the previous case, we see that $U_{\ell}=\tilde{\beta}\left(\mathrm{Frob}_{\ell}\right)$ in $\mathbb{T}_{\bar{\rho}}^{\Gamma}$,pf which means that $U_{\ell} \in \mathbb{T}_{\bar{\rho}}^{\Gamma}$.

Now suppose that there exists a newform f_{0} of level Γ lifting $\bar{\rho}$ such that $\left(\rho_{f_{0}}\right)_{I_{\ell}}=0$, which means $U_{\ell} f_{0}=0$. Then, by our analysis above, it follows that $\ell^{2} \mid N$ and $U_{\ell} f=0$ for all newforms f of level Γ lifting $\bar{\rho}$. As $\bar{\rho}$ is new of level Γ, we get, by the reasoning used above, that $U_{\ell}=0$ in $\mathbb{T}_{\bar{\rho}}^{\Gamma} \mathrm{pf}$.

From the discussion so far, we see that for a prime ℓ dividing $N, U_{\ell} \in \mathbb{T}_{\bar{\rho}}^{\Gamma}$ if one of the following conditions hold:
(1) $\ell^{2} \mid N$,
(2) $\ell \| N$ and $p \nmid \ell^{2}-1$,
(3) $\ell \| N, p \mid \ell+1$ and $\operatorname{det} \bar{\rho}\left(I_{\ell}\right) \neq 1$.

Otherwise, $Q_{\ell}\left(U_{\ell}\right)$ kills every newform f of level N lifting $\bar{\rho}$. Since $\bar{\rho}$ is new, every eigenform of level N lifting $\bar{\rho}$ is a newform. This implies that either $U_{\ell} \in \mathbb{T}_{\bar{\rho}}^{\Gamma}$ or $Q_{\ell}\left(U_{\ell}\right)=0$ for every prime ℓ dividing N. Since the pseudorepresentation (t, d) takes values in $\mathbb{T}_{\bar{\rho}}^{\Gamma}$, it follows that for every prime ℓ dividing $N, Q_{\ell}(x)$ is a monic polynomial with coefficients in $\mathbb{T}_{\bar{\rho}}^{\Gamma}$. Hence, U_{ℓ} is integral over $\mathbb{T}_{\bar{\rho}}$ for every prime ℓ dividing N of degree at most 2 . Therefore, $\mathbb{T}_{\bar{\rho}}^{\Gamma}, \mathrm{pf}$ is finite over $\mathbb{T}_{\bar{\rho}}^{\Gamma}$ and moreover, $\mathbb{T}_{\bar{\rho}}^{\Gamma}, \mathrm{pf}=\mathbb{T}_{\bar{\rho}}^{\Gamma}$ if $\ell \| N$ and $p \mid \ell^{2}-1$ implies that $p \mid \ell+1$ and $\operatorname{det} \bar{\rho}\left(I_{\ell}\right) \neq 1$ as $\mathbb{T}_{\bar{\rho}}^{\Gamma}$,pf is generated by these U_{ℓ} 's over $\mathbb{T}_{\bar{\rho}}^{\Gamma}$.
Remark. (1) Note that, the proof given above for the $\Gamma_{1}(N)$ case works for the $\Gamma_{0}(N)$ case as well. But we give a different proof because it gives us a more precise result in the $\Gamma_{0}(N)$ case and it is also simpler than the proof in the $\Gamma_{1}(N)$ case.
(2) Even though we do a detailed analysis in the $\Gamma_{1}(N)$ case above, it is not really necessary just to prove that U_{ℓ} is integral over $\mathbb{T}_{\bar{\rho}}(N)$. Indeed, by the reasoning used in the last paragraph of the proof above, we can easily prove that $U_{\ell} Q_{\ell}\left(U_{\ell}\right)=0$, which proves that U_{ℓ} is integral over $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)}$. For most of our purposes, we only need the result that U_{ℓ} is integral over $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)}$. But we give this detailed analysis to obtain a more precise result which is helpful in getting a more precise version of Theorem 3 in some cases (see the remark after the proof of Theorem 3).

6. The case of $\bar{\rho}$ which is not new

Throughout this section Γ means either $\Gamma_{1}(N)$ or $\Gamma_{0}(N)$ and $\Gamma(M)$ means either $\Gamma_{1}(M)$ or $\Gamma_{0}(M)$ accordingly. Let $\bar{\rho}$ be a Γ-modular representation which is not new. Thus, the system of \mathbb{F}-valued eigenvalues corresponding to $\bar{\rho}$ has a nontrivial eigenspace in $S^{\Gamma(M)}(\mathbb{F})$ for some proper divisor M of N. Let us denote by $M_{\bar{\rho}}$ the smallest divisor of N such that the system of \mathbb{F}-valued eigenvalues corresponding to $\bar{\rho}$ has a nontrivial eigenspace in $S^{\Gamma\left(M_{\bar{\rho}}\right)}(\mathbb{F})$. Note that, $\bar{\rho}$ is then a new $\Gamma\left(M_{\bar{\rho}}\right)$ modular representation.

Lemma 21. If $\bar{\rho}$ is a Γ-modular representation which is not new, then the natural map of local algebras $r: A_{\bar{\rho}}^{\Gamma} \rightarrow A_{\bar{\rho}}^{\Gamma} M_{\bar{p})}$ obtained by restriction is surjective.
Proof. First note that $S^{\Gamma\left(M_{\bar{\rho}}\right)}(\mathbb{F})_{\bar{\rho}} \subset S^{\Gamma}(\mathbb{F})_{\bar{\rho}}$. Hence, using this inclusion, we obtain a natural map $r: A_{\bar{\rho}}^{\Gamma} \rightarrow A_{\bar{\rho}}^{\Gamma\left(M_{\bar{\rho}}\right)}$ by restriction. Its image $\operatorname{Im}(r)$ is complete and hence, closed. It contains all the Hecke operators T_{q} and $q S_{q}$ (considered as operators on $\left.S^{\Gamma\left(M_{\bar{p}}\right)}(\mathbb{F})_{\bar{\rho}}\right)$ for all the primes q not dividing $N p$. There is a continuous pseudorepresentation $\left(\tilde{\tau}^{\Gamma\left(M_{\bar{\rho}}\right)}, \tilde{\delta}^{\Gamma\left(M_{\bar{\rho}}\right)}\right): G_{\mathbb{Q}, M_{\bar{\rho}} p} \rightarrow A_{\bar{\rho}}^{\Gamma\left(M_{\bar{\rho}}\right)}$ and $\operatorname{Im}(r)$ contains the Hecke operators $T_{q}=\tilde{\tau}^{\Gamma\left(M_{\bar{p}}\right)}\left(\right.$ Frob $\left._{q}\right)$ for primes q not dividing $N p$. By the Chebotarev density theorem, the set of Frob_{q} for primes q not dividing $N p$ is dense in $G_{\mathbb{Q}, M_{\bar{p}} p}$. Since $\tilde{\tau}^{\Gamma\left(M_{\bar{p}}\right)}$ is continuous and $\operatorname{Im}(r)$ is closed, it contains $\tilde{\tau}^{\Gamma\left(M_{\bar{p}}\right)}(g)$ for every $g \in G_{\mathbb{Q}, M_{\bar{p}}}$. It also contains $q S_{q}=\tilde{\delta}^{\Gamma\left(M_{\bar{p}}\right)}\left(\right.$ Frob $\left._{q}\right)$ for all the primes q not dividing $N p$. As $\tilde{\delta}^{\Gamma\left(M_{\bar{p}}\right)}$ is continuous and $\operatorname{Im}(r)$ is closed, by the Chebotarev density theorem, we see that it contains $\tilde{\delta}^{\Gamma\left(M_{\bar{p}}\right)}(g)$ for every $g \in G_{\mathbb{Q}, M_{\bar{\rho}} p}$. For every prime q not dividing $M_{\bar{\rho}}$, we have $\tilde{\tau}^{\Gamma\left(M_{\bar{p}}\right)}\left(\operatorname{Frob}_{q}\right)=T_{q}$ and $\tilde{\delta}^{\Gamma\left(M_{\bar{p}}\right)}\left(\mathrm{Frob}_{q}\right)=q S_{q}$. Hence, we see that $\operatorname{Im}(r)$ contains $T_{q}, q S_{q}$ for all the primes q not dividing $M_{\bar{\rho}} p$. Thus, $\operatorname{Im}(r)$ is a closed subalgebra of $A_{\bar{\rho}}^{\Gamma\left(M_{\bar{\rho}}\right)}$ containing all of its generators. Hence, $\operatorname{Im}(r)=A_{\bar{\rho}}^{\Gamma\left(M_{\bar{\rho}}\right)}$.

7. Proof of Theorem 1

Throughout this section Γ means either $\Gamma_{1}(N)$ or $\Gamma_{0}(N), \Gamma(p)$ means either $\Gamma_{1}(N p)$ or $\Gamma_{0}(N p)$ accordingly and $\Gamma(M)$ means $\Gamma_{1}(M)$ or $\Gamma_{0}(M)$ accordingly. As we noted before, the natural map $\mathbb{T}^{\Gamma, p f} \rightarrow \prod \mathbb{T}_{\vec{\rho}}^{\Gamma, p f}$ is an isomorphism and it lifts the natural map $\mathbb{T}^{\Gamma} \rightarrow \prod \mathbb{T}_{\bar{\rho}}^{\Gamma}$. The corresponding statement for $A^{\Gamma, p f}$ and A^{Γ} is also true. The natural surjective map $\mathbb{T}^{\Gamma, \mathrm{pf}} \rightarrow A^{\Gamma, \mathrm{pf}}$ sends $\mathbb{T}_{\bar{\rho}}^{\Gamma, \mathrm{pf}}$ onto $A_{\bar{\rho}}^{\Gamma, \mathrm{pf}}$. The natural surjective map $\mathbb{T}^{\Gamma(p), \text { full }} \rightarrow A^{\Gamma, \text { full }}$ takes $\mathbb{T}_{\bar{\rho}, \lambda}^{\Gamma(p), \text { full }}$ onto $A_{\bar{\rho}, \lambda}^{\Gamma}{ }_{\bar{\rho}}$ f.fll .

Thus, from Proposition 16 and the discussion above, it follows that $A_{\bar{\rho}, 0}^{\Gamma, \text { full }}$ is isomorphic to $\mathbb{T}_{\bar{\rho}, 0}^{\Gamma(p), \text { full }} / m_{\Lambda} \mathbb{T}_{\bar{\rho}, 0}^{\Gamma(p) \text { full }}$. By Proposition 17, $\mathbb{T}_{\bar{\rho}, 0}^{\Gamma(p), \text { full }}=\mathbb{T}_{\bar{\rho}}^{\Gamma, p f} \pi U_{p} \rrbracket$ and $A_{\bar{\rho}, 0}^{\Gamma, \text { full }}=A_{\bar{\rho}}^{\Gamma} \llbracket U_{p} \rrbracket$. Thus, $A_{\bar{\rho}}^{\Gamma, p f}$ is isomorphic to $\mathbb{T}_{\bar{\rho}}^{\Gamma, \mathrm{pf}} / m_{\Lambda} \mathbb{T}_{\bar{\rho}}^{\Gamma, \mathrm{pf}}$. As the ideal m_{Λ} is generated by two elements, the Hauptidealsatz implies that

$$
\operatorname{dim} A_{\bar{\rho}}^{\Gamma, \mathrm{pf}} \geq \operatorname{dim} \mathbb{T}_{\bar{\rho}}^{\Gamma}(p), \mathrm{pf}-2
$$

Suppose $\bar{\rho}$ is a new Γ-modular representation. Then, we have proved so far that $\mathbb{T}_{\bar{\rho}}^{\Gamma}, \mathrm{pf}$ is a finite extension of $\mathbb{T}_{\bar{\rho}}^{\Gamma}$. Observe that $\mathbb{T}_{\bar{\rho}}^{\Gamma}$ is mapped onto $A_{\bar{\rho}}^{\Gamma}$ under the surjective map $\mathbb{T}_{\bar{\rho}}^{\Gamma} \mathrm{pf} \rightarrow A_{\bar{\rho}}^{\Gamma, \mathrm{pf}}$. This follows from the fact that the map between the partially full Hecke algebras is obtained by first reducing the partially full Hecke algebra in characteristic 0 modulo \mathfrak{p} to get an action on $D^{\Gamma}(\mathbb{F})_{\bar{p}}$ and then restricting it to the subspace $S^{\Gamma}(\mathbb{F})_{\bar{\rho}}$. Hence, we see that $A_{\bar{\rho}}^{\Gamma, \text { pf }}$ is finite over $A_{\bar{\rho}}^{\Gamma}$.

Therefore, $\operatorname{dim} A_{\bar{\rho}}^{\Gamma}$,pf $=\operatorname{dim} A_{\bar{\rho}}^{\Gamma}$ and $\operatorname{dim} \mathbb{T}_{\bar{\rho}}^{\Gamma, p f}=\operatorname{dim} \mathbb{T}_{\bar{\rho}}^{\Gamma}$. By the Gouvêa-Mazur infinite fern argument, we see that $\operatorname{dim} \mathbb{T}_{\bar{\rho}}^{\Gamma} \geq 4$ (see [Emerton 2011, Corollary 2.28; Gouvêa and Mazur 1998, Theorem 1]). Hence, $\operatorname{dim} A_{\bar{\rho}}^{\Gamma} \geq \operatorname{dim} \mathbb{T}_{\bar{\rho}}^{\Gamma}-2 \geq 2$.

Now suppose that $\bar{\rho}$ is not a new Γ-modular representation. Thus, as remarked before, there exists a proper divisor $M_{\bar{\rho}}$ of N such that $\bar{\rho}$ is a new $\Gamma\left(M_{\bar{\rho}}\right)$-modular representation (we can take it to be the smallest divisor of N such that the eigenspace corresponding to the system of eigenvalues corresponding to $\bar{\rho}$ is nonzero in $\left.S^{\Gamma_{1}\left(M_{\bar{\rho}}\right)}(\mathbb{F})\right)$. If $M_{\bar{\rho}}=1$, then we know that $\operatorname{dim} A_{\bar{\rho}}^{\Gamma\left(M_{\bar{\rho}}\right)}=2$ by Theorem III of [BK]. If $M_{\bar{\rho}}>1$, then since $\bar{\rho}$ is a new $\Gamma\left(M_{\bar{\rho}}\right)$-modular representation, repeating the argument given in the previous paragraph for $A_{\bar{\rho}}^{\Gamma\left(M_{\bar{\rho}}\right)}$ and $\mathbb{T}_{\bar{\rho}}^{\Gamma}\left(M_{\bar{\rho}}\right)$ gives $\operatorname{dim} A_{\bar{\rho}}^{\Gamma\left(M_{\bar{p}}\right)} \geq 2$. (We can do this since, all the results till the previous section are valid for any level not divisible by p. This condition is satisfied by $M_{\bar{\rho}}$ as it divides N which is coprime to p.) Thus, in any case, we see that $\operatorname{dim} A_{\bar{\rho}}^{\Gamma}\left(M_{\bar{\rho}}\right) \geq 2$. By Lemma 21, we have a surjective map $A_{\bar{\rho}}^{\Gamma} \rightarrow A_{\bar{\rho}}^{\Gamma\left(M_{\bar{\rho}}\right)}$. Hence, $\operatorname{dim} A_{\bar{\rho}}^{\Gamma} \geq 2$ when $\bar{\rho}$ is not a new Γ-modular representation. Thus, Theorem 1 is proved for all the Γ-modular representations $\bar{\rho}$.

8. Proof of Theorem 3

Theorem 22 (Böckle, Diamond-Flach-Guo, Gouvêa-Mazur, Kisin). Under the hypotheses of Theorem 3, the natural map $R_{\bar{\rho}} \rightarrow \mathbb{\Gamma}_{\bar{\rho}}(N)$ is an isomorphism between local rings of dimension 4.

Proof. If $\bar{\rho}$ is a $\Gamma_{1}(N)$-modular representation which also satisfies the hypotheses of Theorem 3, then mimicking the proof of Theorem 18 of [BK] gives the result of the theorem. We can mimic the argument since, under all these assumptions, the infinite fern argument of Gouvêa-Mazur and [Böckle 2001, Theorems 2.8, 3.1 and 3.9; Diamond 1996, Theorem 1.1; Diamond et al. 2004, Theorem 3.6; Kisin 2004, Main Theorem], which are the key ingredients of the proof of Theorem 18 of [BK], hold. Note that the Hecke algebra appearing in [Böckle 2001, Theorem 3.9] is of a higher level N^{\prime} such that $N \mid N^{\prime}$ and N and N^{\prime} have the same prime factors (see the discussion after [Böckle 2001, Theorem 2.7] for more details). But the hypotheses of Theorem 3, along with [Carayol 1989, Proposition 2], ensure that all eigenforms of level N^{\prime} lifting $\bar{\rho}$ arise from newforms of level dividing N, which means that the natural restriction map $\mathbb{\Gamma}_{\bar{\rho}}^{\Gamma_{1}\left(N^{\prime}\right)} \rightarrow \mathbb{\Gamma}_{\bar{\rho}}(N)$ is an isomorphism.
Lemma 23. Under the hypotheses of Theorem 3, the algebra $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)}$ is flat over Λ for the structure of Λ-algebra on $\mathbb{\Gamma}_{\bar{\rho}}^{(N)}$ defined at the end of Section 3.2.
Proof. The proof is similar to that of Lemma 19 of [BK], but we need to make a few changes. Let $\bar{\rho}$ be a $\Gamma_{1}(N)$-modular representation. If the p-primary part of $(\mathbb{Z} / N \mathbb{Z})^{*}$ is $\prod_{i=1}^{i=n} \mathbb{Z} / p^{e_{i}} \mathbb{Z}$, then the universal deformation ring of $\operatorname{det} \bar{\rho}$ is

$$
\begin{equation*}
R_{\operatorname{det} \bar{\rho}}=\Lambda\left[Y_{1}, \ldots, Y_{n}\right] /\left(Y_{1}^{p_{1}^{e_{1}}}-1, \ldots, Y_{n}^{p_{n}^{e_{n}}}-1\right) . \tag{2}
\end{equation*}
$$

Thus, if p does not divide $\phi(N)$, then $R_{\operatorname{det} \bar{\rho}}=\Lambda$. Using the same arguments as used in the proof of [BK, Lemma 19], we get that $R_{\bar{\rho}}$ is flat over $R_{\operatorname{det} \bar{\rho}}$. Since $R_{\operatorname{det} \bar{\rho}}$
is finite and free over Λ, it is also flat over Λ. So, we get that $R_{\bar{\rho}}$ is flat over Λ. To verify that the map $\Lambda \rightarrow R_{\bar{\rho}} \rightarrow \mathbb{\Gamma}_{\bar{\rho}}^{1}(N)$ is the same as the map $\Lambda \rightarrow \mathbb{T}_{\bar{\rho}}^{\Gamma_{1}}(N)$ given at the end of Section 3.2, we first show that it is true for all the primes $q \in 1+p \mathbb{Z}_{p}$ which are $1(\bmod N)$. This is shown in exactly the same way as it is showed for all the primes $q \in 1+p \mathbb{Z}_{p}$ in the proof of [BK, Lemma 19]. Since we are choosing the primes which are $1(\bmod N)$, the nebentypus is trivial at those primes and hence, we can use the argument used in the proof of [BK, Lemma 19] without modifications. By Dirichlet's theorem on primes in arithmetic progressions, we know that the set of all such primes is dense in $1+p \mathbb{Z}_{p}$. Thus, by continuity, we see that the two maps considered above are the same. Under the hypotheses of Theorem 3, the map $R_{\bar{\rho}} \rightarrow \mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)}$ is an isomorphism. Hence, we conclude that $\mathbb{T}_{\bar{\rho}}(N)$ is flat over Λ for the Λ-algebra structure defined on $\mathbb{\Gamma}_{\bar{\rho}}(N)$ at the end of Section 3.2.

There is a surjective map $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)} \rightarrow A_{\bar{\rho}}^{\Gamma_{\bar{\rho}}(N)}$ whose kernel contains $m_{\Lambda} \mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)}$ by Proposition 16. Hence, we get a surjective map $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)} / m_{\Lambda} \mathbb{\Gamma}_{\bar{\rho}}(N) \rightarrow A_{\bar{\rho}}^{\Gamma_{1}(N)}$. Since $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}}(N)$ is flat over Λ by Lemma 23, it follows, from [Eisenbud 1995, Theorem 10.10], that the Krull dimension of $\mathbb{\Gamma}_{\bar{\rho}}^{1}(N) / m_{\Lambda} \mathbb{\Gamma}_{\bar{\rho}}(N)$ is equal to $\operatorname{dim} \mathbb{\Gamma}_{\bar{\rho}}(N)-2=4-2=2$. Thus, the Krull dimension of $A_{\bar{\rho}}^{\Gamma_{1}(N)}$ is at most 2. But, by Theorem 1, the dimension of $A_{\bar{\rho}}^{\Gamma_{1}(N)}$ is at least 2. Hence, the dimension of $A_{\bar{\rho}}^{\Gamma_{1}(N)}$ is exactly 2 . This concludes the proof of first part of Theorem 3 for the $\Gamma_{1}(N)$ case.

Let us assume that $\bar{\rho}$ satisfies the hypothesis of Theorem 3 and is also new. Then we have proved that $\mathbb{T}_{\bar{\rho}}(N)$,pf is an integral extension of $\mathbb{\Gamma}_{\bar{\rho}}(N)$ and $A_{\bar{\rho}}^{\Gamma_{1}(N), p f}$ is an integral extension of $A_{\bar{\rho}}^{\Gamma_{1}}(N)$. By Proposition 16, we see that the kernel of the natural map $\mathbb{T}^{\Gamma_{1}(N) \text {,pf }} \rightarrow A^{\Gamma_{1}(N) \text {,pf }}$ is $m_{\Lambda} \mathbb{T}^{\Gamma_{1}(N) \text {,pf }}$. Thus, the kernel of the natural map $\mathbb{\Gamma}_{\bar{\rho}}^{\Gamma_{1}(N)} \rightarrow A_{\bar{\rho}}^{\Gamma_{1}(N)}$ is contained in every prime ideal of $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N), \mathrm{pf}}$ containing $m_{\Lambda} \rrbracket_{\bar{\rho}} \Gamma_{1}(N)$,pf. Hence, by the going-up theorem, the kernel is contained in every prime ideal of $\mathbb{\Gamma}_{\bar{\rho}}(N)$ containing $m_{\Lambda} \mathbb{\Gamma}_{\bar{\rho}}(N)$. Therefore, the natural surjective map $\left(\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)} / m_{\Lambda} \mathbb{\Gamma}_{\bar{\rho}}(N)\right)^{\text {red }} \rightarrow\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$ is an isomorphism. Under the hypothesis of Theorem 3, the surjective map $R_{\bar{\rho}} \rightarrow \mathbb{T}_{\bar{\rho}}^{1}(N)$ is an isomorphism. Thus, from the proof of Lemma 23, it follows that ($\tilde{R}_{\bar{\rho}}^{0}$ red is isomorphic to $\left(R_{\bar{\rho}} / m_{\Lambda} R_{\bar{\rho}}\right)^{\text {red }}$ (this follows from the fact that the universal deformation ring of $\operatorname{det} \bar{\rho}$ is given by Equation (2) and hence, its maximal ideal is $\operatorname{Rad}\left(m_{\Lambda}\right)$) and the map $R_{\bar{\rho}} \rightarrow \mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)}$ considered above induces an isomorphism $\left(\tilde{R}_{\rho}^{0}\right){ }^{\text {red }} \rightarrow\left(\mathbb{T}_{\rho}(N) / m_{\Lambda} \mathbb{\Gamma _ { \rho } ^ { 1 }}(N)\right)^{\text {red }}$. As seen before, we have a surjective map $\left(\tilde{R}_{\bar{\rho}}^{0}\right)^{\text {red }} \rightarrow\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$ and this map factors through $\left(\mathbb{T} \Gamma_{\rho}(N) / m_{\Lambda} \mathbb{\Gamma}_{\rho_{1}}(N)\right)^{\text {red }}$. Since both the maps $\left(\tilde{R}_{\tilde{\rho}}^{0}\right)^{\text {red }} \rightarrow\left(\mathbb{\Gamma _ { \rho } ^ { 1 }}(N) / m_{\Lambda} \mathbb{\Gamma}_{\Gamma_{1}}(N)\right)^{\text {red }}$ and $\left(\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)} / m_{\Lambda} \mathbb{I}_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }} \rightarrow\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$ are isomorphisms, we see that $\left(\tilde{R}_{\bar{\rho}}^{0}\right)^{\text {red }}$ is isomorphic to ($\left.A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$ under the map mentioned above.

Now suppose $\bar{\rho}$ satisfies the hypotheses of Theorem 3 but is not new. Note that, while proving the theorem for a new $\bar{\rho}$ of level N, we use the result that $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}}(N), \mathrm{pf}$ is an integral extension of $\mathbb{T}_{\bar{\rho}}(N)$ to prove that the kernel of the surjective map $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)} \rightarrow A_{\bar{\rho}}^{\Gamma_{1}(N)}$ is nilpotent modulo $m_{\Lambda} \mathbb{\Gamma}_{\bar{\rho}}(N)$, which in turn implies the
isomorphism between $\left(\mathbb{T} \Gamma_{\rho}(N) / m_{\Lambda} \mathbb{\Gamma}_{\bar{\rho}}^{1}(N)\right)^{\text {red }}$ and $\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$. This, along with the isomorphism between $R_{\bar{\rho}}$ and $\mathbb{\Gamma}_{\bar{\rho}}{ }^{1}(N)$, gives us the isomorphism between ($\tilde{R}_{\bar{\rho}}^{0}$) ${ }^{\text {red }}$ and $\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$. In the present situation, we know that $R_{\bar{\rho}}$ and $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)}$ are isomorphic. So, to prove the theorem in the current case, it suffices to prove that $\mathbb{\Gamma}_{\bar{\rho}}^{\Gamma_{1}}(N), \mathrm{pf}$ is an integral extension of $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}}(N)$. To prove this, we will first compare the Artin conductor of $\bar{\rho}$ with the level N and then do a case by case analysis using the technique used in the proof of Proposition 20. Let C be the Artin conductor of $\bar{\rho}$. Recall that we assume $\bar{\rho}$ to be semisimple. As there exists a newform of level N giving rise to $\bar{\rho}$, we see that $N=C \prod^{v(r)}$, where the product is over finitely many primes r and $v(r) \leq 2$ for every r (see [Carayol 1989, Proposition 2] and the discussion before it). Note that the product may include some divisors of C.

Let ℓ be a prime dividing N. So, if f is an eigenform of level N lifting the system of eigenvalues associated to $\bar{\rho}$, then f comes from a newform g of level M such that the highest power of ℓ dividing N / M is at most 2 . Thus, $f(z)=\sum_{i=1}^{i=r} g\left(d_{i} z\right)$, where the d_{i} 's are some divisors of N / M. Now we will analyze the action of U_{ℓ} on f case by case to find a monic polynomial with coefficients in $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)}$ satisfied by U_{ℓ}. Case 1. $\ell \mid M$ but $\ell \nmid N / M$: In this case, $\ell \nmid d_{i}$ for all i and hence, f is new at ℓ. Therefore, from the proof of Proposition 20, we see that $U_{\ell} Q_{\ell}\left(U_{\ell}\right)(f)=0$, where $Q_{\ell}(x)$ is the characteristic polynomial of a lift of Frob_{ℓ} in $G_{\mathbb{Q}, N p}$, as considered in the proof of Proposition 20.

Case 2. $\ell \mid M$ and $\ell \| N / M$: In this case, for every i either $\ell \| d_{i}$ or $\ell \nmid d_{i}$ and g is an eigenform for U_{ℓ}. So, $U_{\ell} f$ is an eigenform of level N / ℓ, which is also new at ℓ if it is nonzero. So, by the same logic as in the previous case, $U_{\ell} Q_{\ell}\left(U_{\ell}\right)\left(U_{\ell} f\right)=0$.
Case 3. $\ell \mid M$ and $\ell^{2} \mid N / M$: In this case, for every i either $\ell \nmid d_{i}$ or ℓ divides d_{i} with multiplicity at most 2 and g is an eigenform for U_{ℓ}. So, $U_{\ell}^{2} f$ is an eigenform of level N / ℓ^{2} and it is new at ℓ when it is nonzero. Thus, we get $U_{\ell} Q_{\ell}\left(U_{\ell}\right)\left(U_{\ell}^{2} f\right)=0$.
Case 4. $\ell \nmid M$ and $\ell \nmid d_{i}$ for all i : If $\ell \nmid M$ and $\ell \nmid d$, then it follows directly from the description of the action of T_{ℓ} and U_{ℓ} on the q-expansions of modular forms, along with the assumption that g is an eigenform of level M, that U_{ℓ} stabilizes the subspace of modular forms of level $M d \ell$ generated by $g(d z)$ and $g(\ell d z)$ (see [Bellaïche 2010, Lemma III.7.2] and the discussion around it). Moreover, the characteristic polynomial of U_{ℓ} over this subspace is $\left(U_{\ell}^{2}-\operatorname{tr} \rho_{g}\left(\operatorname{Frob}_{\ell}\right) U_{\ell}+\operatorname{det} \rho_{g}\left(\right.\right.$ Frob $\left.\left._{\ell}\right)\right)$, where ρ_{g} is the p-adic Galois representation of $G_{\mathbb{Q}, M p}$ attached to g. Thus, in this case, we get that $Q_{\ell}\left(U_{\ell}\right)(f)=0$.

Case 5. $\ell \nmid M$ and ℓ divides at least one of the d_{i} 's: Note that, $U_{\ell} g\left(d_{i} z\right)$ is an eigenform of level N / ℓ if $\ell \| d_{i}$ and $U_{\ell}^{2} g\left(d_{i} z\right)$ is an eigenform of level N / ℓ^{2} if $\ell^{2} \mid d_{i}$. This means that for all i, one of $g\left(d_{i} z\right), U_{\ell} g\left(d_{i} z\right)$ or $U_{\ell}^{2} g\left(d_{i} z\right)$ is an eigenform of level coprime to ℓ. So, by case 4 , we have $Q_{\ell}\left(U_{\ell}\right)\left(U_{\ell}^{2} g\left(d_{i} z\right)\right)=0$ for all i as
both $Q_{\ell}\left(U_{\ell}\right)\left(U_{\ell} g\left(d_{i} z\right)\right)=0$ and $Q_{\ell}\left(U_{\ell}\right)\left(g\left(d_{i} z\right)\right)=0$ imply $Q_{\ell}\left(U_{\ell}\right)\left(U_{\ell}^{2} g\left(d_{i} z\right)\right)=0$. Hence, we have $Q_{\ell}\left(U_{\ell}\right)\left(U_{\ell}^{2} f\right)=0$.

From the previous paragraphs, we conclude that, if f is an eigenform of level N lifting $\bar{\rho}$, then $\left(U_{\ell}^{3} Q_{\ell}\left(U_{\ell}\right)\right) f=0$, which means $U_{\ell}^{3} Q_{\ell}\left(U_{\ell}\right)=0$. As $Q_{\ell}(x)$ is a monic polynomial with coefficients in $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)}, U_{\ell}$ is integral over $\mathbb{T}_{\bar{\rho}}^{\Gamma_{1}(N)}$ for all primes ℓ dividing N. Therefore, $\mathbb{\Gamma}_{\bar{\rho}}(N)$,pf ${ }^{\bar{\rho}}$ is an integral extension of $\mathbb{T}_{\bar{\rho}}(N)$ and $A_{\bar{\rho}}^{\Gamma_{1}(N), \mathrm{pf}}$ is an integral extension of $A_{\bar{\rho}}^{\Gamma_{1}(N)}$. Now using the argument used for the new case above, we get that ($\tilde{R}_{\bar{\rho}}^{0}$) red is isomorphic to $\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$. This concludes the proof of the second part of Theorem 3 for the $\Gamma_{1}(N)$ case.

Let $\bar{\rho}$ be a $\Gamma_{0}(N)$-modular representation which satisfies the hypothesis of Theorem 3. Then, by the arguments above, it follows that $A_{\bar{\rho}}^{\Gamma_{1}(N)}$ has Krull dimension 2 and $\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$ is isomorphic to $\left(\tilde{R}_{\bar{\rho}}^{0}\right)^{\text {red }}$. We have a natural surjective map $A_{\bar{\rho}}^{\Gamma_{1}(N)} \rightarrow A_{\bar{\rho}}^{\Gamma_{0}(N)}$. By Theorem 1, the Krull dimension of $A_{\bar{\rho}}^{\Gamma_{0}(N)}$ is at least 2 . Hence, we conclude that the Krull dimension of $A_{\bar{\rho}}^{\Gamma_{0}(N)}$ is exactly 2. If p does not divide $\phi(N)$, then as observed in the introduction, the natural surjective map $A_{\bar{\rho}}^{\Gamma_{1}(N)} \rightarrow A_{\bar{\rho}}^{\Gamma_{0}(N)}$ is an isomorphism. Hence, we get that $\left(A_{\bar{\rho}}^{\Gamma_{0}(N)}\right)^{\text {red }}$ is isomorphic to ($\tilde{R}_{\tilde{\rho}}^{0}$) ${ }^{\text {red }}$. Thus, Theorem 3 is proved in the $\Gamma_{0}(N)$ case.

Remark. Let $\bar{\rho}$ be a $\Gamma_{1}(N)$-modular representation satisfying the hypothesis of Theorem 3 and assume $p \nmid \phi(N)$. Moreover, assume that if $\ell \| N$ and $p \mid \ell+1$, then $\operatorname{det} \bar{\rho}\left(I_{\ell}\right) \neq 1$. Hence, from the proof of Proposition 20 and the proof of Theorem 1, we see that the kernel of the map $\mathbb{T}_{\bar{\rho}_{1}}^{\Gamma_{2}(N)} \rightarrow A_{\bar{\rho}}^{\Gamma_{1}(N)}$ is $m_{\Lambda} \mathbb{T}_{\bar{\rho}_{1}(N)}^{\Gamma_{1}}$. As $p \nmid \phi(N)$, the kernel of the surjective map $R_{\bar{\rho}} \rightarrow \tilde{R}_{\bar{\rho}}^{0}$ is $m_{\Lambda} R_{\bar{\rho}}$. As $\bar{\rho}$ satisfies the hypotheses of Theorem 3, we get that $R_{\bar{\rho}} \simeq \mathbb{\Gamma}_{\bar{\rho}}(N)$. Hence, by combining all the observations above, we see that the natural surjective map $\tilde{R}_{\bar{\rho}}^{0} \rightarrow A_{\bar{\rho}}^{\Gamma_{1}(N)}$ is an isomorphism. Thus, for this case, we get a stronger statement than Theorem 3.

9. Proof of Theorem 2

Throughout this section Γ means either $\Gamma_{0}(N)$ or $\Gamma_{1}(N)$ with $p \nmid \phi(N)$. Assume that $\bar{\rho}$ is an unobstructed Γ-modular representation. So, by assumption, the cotangent space of $\tilde{R}_{\bar{\rho}}^{0}$ has dimension 2 and this implies that its Krull dimension is at most 2. We have a surjective morphism $\tilde{R}_{\bar{\rho}}^{0} \rightarrow A_{\bar{\rho}}^{\Gamma}$. The Krull dimension of $A_{\bar{\rho}}^{\Gamma}$ is at least 2 by Theorem 1. Hence, the Krull dimension of $\tilde{R}_{\bar{\rho}}^{0}$ is exactly 2 and it is a regular local ring of dimension 2. Therefore, by [Eisenbud 1995, Proposition 10.16], it is isomorphic to $\mathbb{F} \llbracket x, y \rrbracket$. Hence, the surjective map $\tilde{R}_{\bar{\rho}}^{0} \rightarrow A_{\bar{\rho}}^{\Gamma}$ is an isomorphism. This proves Theorem 2 for the cases considered above.

If $\bar{\rho}$ is an unobstructed $\Gamma_{1}(N)$-modular representation and $p \mid \phi(N)$, then we have a surjective morphism $\tilde{R}_{\bar{\rho}}^{0} \rightarrow\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$. By Theorem 1, the Krull dimension of $A_{\bar{\rho}}^{\Gamma_{1}(N)}$, and hence also of $\left(A_{\bar{\rho}}^{\Gamma_{1}(N)}\right)^{\text {red }}$, is at least 2 . Therefore, the argument used
in the previous paragraph proves Theorem 2 in this case as well. This completes the proof of Theorem 2 in all the cases.

10. Unobstructed modular representations

In this section, we study $\Gamma_{1}(N)$-modular representations to determine if and when they can be unobstructed. If $\bar{\rho}$ is irreducible, then $\bar{\rho}$ is unobstructed in our sense if and only if $H^{1}\left(G_{\mathbb{Q}, N p}, \operatorname{ad}^{0} \bar{\rho}\right)$ has dimension 2 (see [BK, Section 1.4]). By Tate's global Euler characteristic formula, we see that $\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \operatorname{ad}^{0} \bar{\rho}\right) \geq 2$ with equality if and only if $H^{2}\left(G_{\mathbb{Q}, N p}, \operatorname{ad}^{0} \bar{\rho}\right)=0$. If p does not divide $\phi(N)$, then this is equivalent to $H^{2}\left(G_{\mathbb{Q}, N p}, \operatorname{ad} \bar{\rho}\right)=0$, as ad $\bar{\rho}=1 \oplus \operatorname{ad}^{0} \bar{\rho}$ and, by the global Euler characteristic formula, $H^{2}\left(G_{\mathbb{Q}, N p}, 1\right)=0$. Thus, in this case, $\bar{\rho}$ is unobstructed in our sense if and only if it is unobstructed in the sense of Mazur [1989, Section 1.6]. The study of such unobstructed representations is carried out in [Weston 2004; 2005] when p does not divide $\phi(N)$.

However, if $\bar{\rho}$ is irreducible and p divides $\phi(N)$, then the global Euler characteristic formula tells us that $H^{2}\left(G_{\mathbb{Q}, N p}, 1\right) \neq 0$ and hence, $H^{2}\left(G_{\mathbb{Q}, N p}\right.$, ad $\left.\bar{\rho}\right) \neq 0$. Thus, we see that $\bar{\rho}$ is always obstructed in the sense of Mazur if $p \mid \phi(N)$ (see [Weston 2004, Theorem 4.5]). However, it is not clear a priori if $\bar{\rho}$ can be unobstructed in our sense when $p \mid \phi(N)$. We devote most of this section to study the unobstructedness of reducible and irreducible $\bar{\rho}$'s when $p \mid \phi(N)$.

Throughout this section, we assume that $p \mid \phi(N)$ unless otherwise stated. Note that, as $p \nmid N$ and $p \mid \phi(N)$, there exists at least one prime divisor ℓ of N such that $p \mid \ell-1$, i.e., $\ell \equiv 1(\bmod p)$. Let \mathcal{C} be the category of local profinite \mathbb{F}-algebras. Let $D_{\bar{\rho}}$ be the functor from \mathcal{C} to $\mathcal{S e t}$ of deformations of the pseudorepresentation ($\operatorname{tr} \bar{\rho}, \operatorname{det} \bar{\rho}$) and $D_{\bar{\rho}}^{0}$ be its subfunctor of deformations with constant determinant.
Proposition 24. If $p \mid \phi(N)$, then every reducible $\Gamma_{1}(N)$-modular representation is obstructed.

Proof. Let $\bar{\rho}$ be a reducible $\Gamma_{1}(N)$-modular representation. Up to a twist, $\bar{\rho}$ is of the form $1 \oplus \chi$ where χ is an odd character of $G_{\mathbb{Q}, N p}$ taking values in \mathbb{F}. The character χ is odd because $\bar{\rho}$ is odd. By the main theorem of [Bellaïche 2012a], we have the following exact sequence involving the tangent space of $D_{\bar{\rho}}$:
$0 \rightarrow \operatorname{Tan}\left(D_{1} \oplus D_{\chi}\right) \xrightarrow{i} \operatorname{Tan}\left(D_{\bar{\rho}}\right) \rightarrow H^{1}\left(G_{Q, N_{p}}, \chi\right) \otimes H^{1}\left(G_{Q, N_{p}}, \chi^{-1}\right) \rightarrow H^{2}\left(G_{Q, N_{p}}, 1\right)^{2}$.
Here, D_{χ} and D_{1} are the deformation functors of χ and 1 as characters of $G_{\mathbb{Q}, N p}$, and i is the map which sends a pair of deformations (α, β) of $(\chi, 1)$ on $\mathbb{F}[\epsilon] /\left(\epsilon^{2}\right)$ to the deformation $\alpha+\beta$ of $\operatorname{tr} \bar{\rho}=1+\chi$.

Let γ be an element of $H^{1}\left(G_{\mathbb{Q}, N p}, \chi\right) \otimes H^{1}\left(G_{\mathbb{Q}, N p}, \chi^{-1}\right)$ which is the image of some deformation (t, d) of $(\operatorname{tr} \bar{\rho}, \operatorname{det} \bar{\rho})$ to $\mathbb{F}[\epsilon] /\left(\epsilon^{2}\right)$. Thus, d is a deformation of $\operatorname{det} \bar{\rho}=\chi$ and hence, an element of $\operatorname{Tan}\left(D_{\chi}\right) \subset \operatorname{Tan}\left(D_{1} \oplus D_{\chi}\right)$. Thus, subtracting the
image of this element under the map i from (t, d) gives us an element of $\operatorname{Tan}\left(D_{\bar{\rho}}^{0}\right)$ whose image in $H^{1}\left(G_{\mathbb{Q}, N p}, \chi\right) \otimes H^{1}\left(G_{\mathbb{Q}, N p}, \chi^{-1}\right)$ is still γ. Therefore, we have an exact sequence:
$0 \rightarrow \operatorname{Tan}\left(\left(D_{1} \oplus D_{\chi}\right)^{0}\right) \xrightarrow{i} \operatorname{Tan}\left(D_{\bar{\rho}}^{0}\right) \rightarrow H^{1}\left(G_{\mathbb{Q}, N p}, \chi\right) \otimes H^{1}\left(G_{\mathbb{Q}, N p}, \chi^{-1}\right) \rightarrow H^{2}\left(G_{\mathbb{Q}, N p}, 1\right)^{2}$.
Here, $\left(D_{1} \oplus D_{\chi}\right)^{0}$ is the subfunctor of $D_{1} \oplus D_{\chi}$ parameterizing the deformations (α, β) of $(1, \chi)$ such that $\alpha \beta$ is constant.

Observe that, $\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, 1\right)=n+1$, where n is the number of prime divisors of N which are $1 \bmod p$. Hence, $\operatorname{dim} \operatorname{Tan}\left(\left(D_{1} \oplus D_{\chi}\right)^{0}\right)=n+1$. Since, i is an injective map, we get $\operatorname{dim} \operatorname{Tan}\left(D_{\bar{\rho}}^{0}\right) \geq n+1$. Thus, if $n \geq 2$, then $\operatorname{dim} \operatorname{Tan}\left(D_{\bar{\rho}}^{0}\right) \geq 3$. Hence, $\bar{\rho}$ is obstructed when $n \geq 2$, i.e., when there are at least two primes dividing N which are $1 \bmod p$.

Let us now assume that $n=1$. Thus, there is a unique prime ℓ which divides N and which is $1 \bmod p$. In this case, $\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, 1\right)=2$ and by Tate's global Euler characteristic formula, $\operatorname{dim} H^{2}\left(G_{\mathbb{Q}, N p}, 1\right)=1$. From the exact sequence above, we get that

$$
\operatorname{dim} \operatorname{Tan}\left(D_{\bar{\rho}}^{0}\right) \geq 2+\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \chi\right) \operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \chi^{-1}\right)-2 \operatorname{dim} H^{2}\left(G_{\mathbb{Q}, N p}, 1\right)
$$

We shall distinguish between two cases:
$\left.\underline{\text { First case. }} \chi\right|_{G_{\mathbb{Q}_{\ell}}}=1$: Note that $\left.\omega_{p}\right|_{G_{\mathbb{Q}_{\ell}}}=1$, since $\ell \equiv 1(\bmod p)$.
If $\chi \neq \omega_{p}$, then, by the Greenberg-Wiles version of Poitou-Tate duality [Washington 1997, Theorem 2], we get that
$\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \chi\right) \geq \operatorname{dim} H^{1}\left(G_{\mathbb{Q}_{\ell}},\left.\chi\right|_{G_{\mathbb{Q}_{\ell}}}\right)-\operatorname{dim} H^{0}\left(G_{\mathbb{Q}_{\ell}},\left.\chi\right|_{G_{\mathbb{Q}_{\ell}}}\right)$

$$
+\operatorname{dim} H^{1}\left(G_{\mathbb{Q}_{p}},\left.\chi\right|_{G_{\mathbb{Q}_{p}}}\right)-\operatorname{dim} H^{0}\left(G_{\mathbb{Q}_{p}},\left.\chi\right|_{G_{\mathbb{Q}_{p}}}\right)
$$

As $\ell \equiv 1(\bmod p), \operatorname{dim} H^{1}\left(G_{\mathbb{Q}_{\ell}}, 1\right)=2$. By the local Euler characteristic formula,
$\operatorname{dim} H^{1}\left(G_{\mathbb{Q}_{p}},\left.\chi\right|_{G_{\mathbb{Q}_{p}}}\right)-\operatorname{dim} H^{0}\left(G_{\mathbb{Q}_{p}},\left.\chi\right|_{G_{\mathbb{Q}_{p}}}\right)=1+\operatorname{dim} H^{2}\left(G_{\mathbb{Q}_{p}},\left.\chi\right|_{G_{\mathbb{Q}_{p}}}\right) \geq 1$.
Since, $\left.\chi\right|_{G_{\mathbb{Q}_{\ell}}}=1$, we see that $\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \chi\right) \geq 2-1+1=2$.
If $\chi=\omega_{p}$, then, using the Kummer exact sequence, we get that a class in $H^{1}\left(G_{\mathbb{Q}, N p}, \omega_{p}\right)$ is represented by a cocycle of the form $g \mapsto g(\alpha) / \alpha$, with $\alpha \in \overline{\mathbb{Q}}$, $\alpha^{p} \in \mathbb{Q}$ and $v_{q}\left(\alpha^{p}\right)=0$ for all primes $q \nmid N p$ (See [Washington 1997, Section 1] for more details). Hence, $\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \omega_{p}\right)=n^{\prime}$, where $n^{\prime}=$ number of distinct prime factors of $N p$. Hence, $\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \omega_{p}\right) \geq 2$. Since, $\left.\chi^{-1}\right|_{G_{\mathbb{Q}_{\ell}}}=1$ as well, the same argument gives us $\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \chi^{-1}\right) \geq 2$.

Combining all the above calculations yields $\operatorname{dim} \operatorname{Tan}\left(D_{\bar{\rho}}^{0}\right) \geq 2+(2)(2)-2(1)=4$. Hence, if $n=1$ and $\left.\chi\right|_{G_{Q_{\ell}}}=1$, then $\bar{\rho}$ is obstructed.
Second case. $\left.\chi\right|_{G_{\mathbb{Q}_{\ell}}} \neq 1$: As $\left.\chi\right|_{G_{\mathbb{Q}_{\ell}}} \neq 1, \omega_{p} \otimes \chi \neq 1$. Thus, $H^{0}\left(G_{\mathbb{Q}_{\ell}},\left.\chi\right|_{G_{\mathbb{Q}_{\ell}}}\right)=0$, $H^{2}\left(G_{\mathbb{Q}_{\ell}},\left.\chi\right|_{G_{\mathbb{Q}_{\ell}}}\right)=H^{0}\left(G_{\mathbb{Q}_{\ell}},\left.\omega_{p} \otimes \chi\right|_{G_{\mathbb{Q}_{\ell}}}\right)=0$ and hence, $H^{1}\left(G_{\mathbb{Q}_{\ell}},\left.\chi\right|_{G_{\mathbb{Q}_{\ell}}}\right)=0$.

Similarly, we get that $H^{1}\left(G_{\mathbb{Q}_{\ell}},\left.\chi^{-1}\right|_{G_{Q_{\ell}}}\right)=0$. Thus, the calculations done in the first case do not imply that $\operatorname{dim} \operatorname{Tan}\left(D_{\bar{\rho}}^{0}\right)>2$ which is required to prove that $\bar{\rho}$ is obstructed.

Assume that $\bar{\rho}$ is unobstructed. So, the dimension of the tangent space of $\tilde{R}_{\bar{\rho}}^{0}$ is 2 . By Theorem 1 , its Krull dimension is at least 2. Hence, $\tilde{R}_{\bar{\rho}}^{0}$ is isomorphic to $\mathbb{F} \llbracket x, y \rrbracket$, the power series ring in two variables. Let ($\left.t^{\text {univ }}, d^{\text {univ }}\right)$ be the universal pseudorepresentation with constant determinant in characteristic p deforming $(\operatorname{tr} \bar{\rho}, \operatorname{det} \bar{\rho})$.

By [Bellaïche and Chenevier 2009, Theorem 1.4.4, Chapter 1],

$$
\tilde{R}_{\bar{\rho}}^{0}\left[G_{\mathbb{Q}_{\ell}}\right] /\left(\operatorname{ker}\left(t^{\mathrm{univ}} \circ i_{\ell}\left(G_{\mathbb{Q}_{\ell}}\right)\right) \text { is a GMA of the form }\left(\begin{array}{cc}
\tilde{R}_{\bar{\rho}}^{0} & B \\
C & \tilde{R}_{\bar{\rho}}^{0}
\end{array}\right),\right.
$$

where B and C are finitely generated $\tilde{R}_{\bar{\rho}}^{0}$-modules and the diagonal entries reduce to 1 and χ modulo the maximal ideal of $\tilde{R}_{\bar{\rho}}^{0}$. By [Bellaïche and Chenevier 2009, Theorem 1.5.5, Chapter 1], we get injective maps $\left(B / m_{\tilde{R}_{\rho}^{0}} B\right)^{*} \hookrightarrow \operatorname{Ext}_{G_{Q_{\ell}}}^{1}(\chi, 1)$ and $\left(C / m_{\tilde{R}_{\rho}^{0}} C\right)^{*} \hookrightarrow \operatorname{Ext}_{G_{Q_{\ell}}}^{1}(1, \chi)$. Since we have

$$
H^{1}\left(G_{\mathbb{Q}_{\ell}},\left.\chi\right|_{G_{Q_{\ell}}}\right)=H^{1}\left(G_{\mathbb{Q}_{\ell}},\left.\chi^{-1}\right|_{G_{Q_{\ell}}}\right)=0,
$$

it implies that $\operatorname{Ext}_{G_{Q_{\ell}}}^{1}(\chi, 1)=\operatorname{Ext}_{G_{Q_{\ell}}}^{1}(1, \chi)=0$ and hence, $B=C=0$. Thus, $t^{\text {univ }} \circ i_{\ell}\left(G_{\mathbb{Q}_{\ell}}\right)=\kappa_{1}+\kappa_{2}$, where κ_{1} and κ_{2} are characters of $G_{\mathbb{Q}_{\ell}}$ taking values in $\left(\tilde{R}_{\bar{\rho}}^{0}\right)^{*}$ and are deformations of 1 and χ, respectively. Therefore, $t^{\text {univ }} \circ i_{\ell}$ factors through $G_{\mathbb{Q}_{\ell}}^{\mathrm{ab}}$, the abelianization of $G_{\mathbb{Q}_{\ell}}$.

By local class field theory, $G_{\mathbb{Q}_{\ell}}^{\mathrm{ab}}=\mathbb{Z}_{\ell}^{*} \times \hat{\mathbb{Z}}$. Let p^{e} be the highest power of p dividing $\ell-1$. Let $a \in G_{\mathbb{Q}_{\ell}}^{\mathrm{ab}}$ be the unique element of order p^{e}. Since, a has order p^{e} and $\mathbb{F} \llbracket x, y \rrbracket$ does not have any nontrivial element of order p, it follows that $\kappa_{1}(a)=\kappa_{2}(a)=1$. Let b be a lift of a in $G_{\mathbb{Q}_{\ell}}$. Hence, $t^{\text {univ }} \circ i_{\ell}(b)=2$, i.e., it is constant. Hence, $t \circ i_{\ell}(b)=2$ for any deformation t of $\operatorname{tr} \bar{\rho}$ as a pseudocharacter of $G_{\mathbb{Q}, N_{p}}$ with constant determinant in characteristic p. But it is easy to construct an explicit such deformation t with $t \circ i_{\ell}(b) \neq 2$.

Indeed, to construct such a deformation, first observe that the maximal pro- p subgroup $G_{\mathbb{Q}, N p}^{\mathrm{ab}, p}$ of $G_{\mathbb{Q}, N p}^{\mathrm{ab}}$ is $\mathbb{Z} / p^{e} \mathbb{Z} \times \mathbb{Z}_{p}$. Consider a deformation $\tilde{1}$ of 1 as a character of $G_{\mathbb{Q}, N p}$ to $R=\mathbb{F} \llbracket x \rrbracket[y] /\left(y^{p^{c}}-1\right)$ which maps $G_{\mathbb{Q}, N p}^{\mathrm{ab}, p} \rightarrow 1+m_{R}$ in the following way: the topological generator of \mathbb{Z}_{p} is mapped to $1+x$ and the generator of $\mathbb{Z} / p^{e} \mathbb{Z}$ is mapped to y. The character $\chi / \tilde{1}$, which we will denote by $\tilde{\chi}$, is a deformation of χ. Let $\tilde{\rho}=\tilde{1} \oplus \tilde{\chi}$. Thus, $(\operatorname{tr} \tilde{\rho}$, $\operatorname{det} \tilde{\rho})$ is a deformation of $(\operatorname{tr} \bar{\rho}, \operatorname{det} \bar{\rho})$ to R with constant determinant. We claim that $\operatorname{tr}\left(\tilde{\rho} \circ i_{\ell}(b)\right) \neq 2$.

To prove the claim, first consider the map $i_{\ell}^{\mathrm{ab}}: G_{\mathbb{Q}_{\ell}}^{\mathrm{ab}} \rightarrow G_{\mathbb{Q}, N p}^{\mathrm{ab}}$ induced from i_{ℓ} by passing to the abelianizations of both the groups. By class field theory, $G_{\mathbb{Q}, N p}^{\mathrm{ab}}=\prod \mathbb{Z}_{q}^{*}$, where the product is taken over primes q which divide $N p$. By the local-global compatibility of class field theory, the \mathbb{Z}_{ℓ}^{*} component of $G_{\mathbb{Q}, N p}^{\text {ab }}$, lies in the image of $\mathbb{Z}_{\ell}^{*} \subset G_{\mathbb{Q}_{\ell}}^{\mathrm{ab}}$ under the map i_{ℓ}^{ab}. Thus, the unique element of $G_{\mathbb{Q}, N p}^{\mathrm{ab}}$
of order p^{e} is $i_{\ell}^{\mathrm{ab}}(a)$. Therefore,

$$
\operatorname{tr}\left(\tilde{\rho} \circ i_{\ell}(b)\right)=\tilde{1}\left(i_{\ell}^{\mathrm{ab}}(a)\right)+\tilde{\chi}\left(i_{\ell}^{\mathrm{ab}}(a)\right)=y+y^{-1}
$$

If $y+y^{-1}=2$, then it would imply $(y-1)^{2}=0$. But this relation does not hold in R. Hence, $\operatorname{tr}\left(\tilde{\rho} \circ i_{\ell}(b)\right) \neq 2$ and our claim is proved.

Thus, we get a contradiction to our hypothesis that $\bar{\rho}$ is unobstructed. Therefore, in this case as well, $\bar{\rho}$ is obstructed.

Therefore, combining all the results above, we get that if $\bar{\rho}$ is a reducible $\Gamma_{1}(N)$ modular representation and if $p \mid \phi(N)$, then $\bar{\rho}$ is obstructed.

Remark. Now suppose that $\bar{\rho}$ is a reducible $\Gamma_{1}(N)$-modular representation and p does not divide $\phi(N)$. Up to a twist, $\bar{\rho}=1 \oplus \chi$. If $p \nmid \phi(N)$, then

$$
\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, 1\right)=1
$$

and Tate's global Euler characteristic formula implies that $H^{2}\left(G_{\mathbb{Q}, N p}, 1\right)=0$. The exact sequence of [Bellaïche 2012a] considered on page 25 implies

$$
\operatorname{dim} \operatorname{Tan}\left(D_{\bar{\rho}}^{0}\right)=1+\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \chi\right) \operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \chi^{-1}\right)
$$

If $\chi=\omega_{p}$, then by the Kummer theory argument above, it follows that the number of distinct prime divisors of $N p$ is $\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \omega_{p}\right)$ and hence, greater than 1 . Hence, if $\chi=\omega_{p}, \omega_{p}{ }^{-1}$, then $\operatorname{dim} \operatorname{Tan}\left(D_{\bar{\rho}}^{0}\right)>2$, so in this case $\bar{\rho}$ is obstructed. If $\chi \neq \omega_{p}, \omega_{p}^{-1}$, then by the Greenberg-Wiles version of Poitou-Tate duality, we get that

$$
k+1 \leq \operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \chi\right) \leq k+1+\operatorname{dim} A\left(\chi^{-1} \omega_{p}\right)
$$

and

$$
k^{\prime}+1 \leq \operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \chi^{-1}\right) \leq k^{\prime}+1+\operatorname{dim} A^{\prime}\left(\chi \omega_{p}\right)
$$

where k is the number of prime divisors ℓ of N such that $\left.\chi\right|_{G_{\mathbb{Q}_{\ell}}}=\left.\omega_{p}\right|_{G_{\mathbb{Q}_{\ell}}}, k^{\prime}$ is the number of prime divisors ℓ of N such that $\left.\chi^{-1}\right|_{G_{\mathbb{Q}_{\ell}}}=\left.\omega_{p}\right|_{G_{Q_{\ell}}}, A\left(\chi^{-1} \omega_{p}\right)$ is the part of the p-torsion subgroup of the class group of the totally real abelian extension F of \mathbb{Q} fixed by $\operatorname{Ker}\left(\chi^{-1} \omega_{p}\right)$ on which $\operatorname{Gal}(F / \mathbb{Q})$ acts by $\chi^{-1} \omega_{p}$ and $A^{\prime}\left(\chi \omega_{p}\right)$ is the part of the p-torsion subgroup of the class group of the totally real abelian extension F^{\prime} of \mathbb{Q} fixed by $\operatorname{Ker}\left(\chi \omega_{p}\right)$ on which $\operatorname{Gal}\left(F^{\prime} / \mathbb{Q}\right)$ acts by $\chi \omega_{p}$.
Proposition 25. Suppose $p \mid \phi(N)$. Let $\bar{\rho}$ be an absolutely irreducible $\Gamma_{1}(N)$ modular representation such that $\left.\bar{\rho}\right|_{G_{Q_{\ell}}}$ is reducible for at least one prime ℓ dividing N which is $1 \bmod p$. Then, $\bar{\rho}$ is obstructed.
Proof. Let $\bar{\rho}$ be an absolutely irreducible $\Gamma_{1}(N)$-modular representation. By [Weston 2005, Lemma 2.5], we have
$\operatorname{dim}_{\mathbb{F}} H^{2}\left(G_{\mathbb{Q}, N p}, \operatorname{ad} \bar{\rho}\right)=\operatorname{dim}_{\mathbb{F}} \Pi^{1}\left(G_{\mathbb{Q}, N p}, \omega_{p} \otimes \operatorname{ad} \bar{\rho}\right)+\Sigma_{q \mid N p} \operatorname{dim}_{\mathscr{F}} H^{0}\left(G_{\mathbb{Q}_{q}}, \omega_{p} \otimes \operatorname{ad} \bar{\rho}\right)$.

Note that ad $\bar{\rho}=1 \oplus \operatorname{ad}^{0} \bar{\rho}$. By Tate's global Euler characteristic formula, we get that $\operatorname{dim}_{\mathbb{F}} H^{2}\left(G_{\mathbb{Q}, N p}, 1\right)=n$, where $n=$ number of prime divisors of N which are $1 \bmod p$. For a prime $q, \operatorname{dim}_{\mathbb{F}} H^{0}\left(G_{\mathbb{Q}_{q}}, \omega_{p}\right)$ is 1 if q is $1 \bmod p$ and 0 , otherwise. By removing the contributions of the trivial representation from both sides of the formula above, we get
$\operatorname{dim}_{\mathbb{F}} H^{2}\left(G_{\mathbb{Q}, N_{p}}, \operatorname{ad}^{0} \bar{\rho}\right)=\operatorname{dim}_{\mathbb{F}} \Psi^{1}\left(G_{\mathbb{Q}, N_{p}}, \omega_{p} \otimes \operatorname{ad}^{0} \bar{\rho}\right)+\Sigma_{q \mid N_{p}} \operatorname{dim}_{\mathbb{F}} H^{0}\left(G_{\mathbb{Q}_{q}}, \omega_{p} \otimes \operatorname{ad}^{0} \bar{\rho}\right)$.
Now, let ℓ be a prime dividing N such that $\ell-1$ is divisible by p. Suppose that $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{\ell}}}$ is reducible. Thus, $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{\ell}}}$ is an extension of a character χ_{1} by a character χ_{2}. If $\chi_{1} \neq \chi_{2}$, then, by Tate's local Euler characteristic formula, $\operatorname{Ext}_{G_{Q_{\ell}}}\left(\chi_{1}, \chi_{2}\right)=0$. So, $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{\ell}}}=\chi_{1} \oplus \chi_{2}$ and $\left.\operatorname{ad}^{0} \bar{\rho}\right|_{G_{Q_{\ell}}}=1 \oplus \chi_{1} \chi_{2}^{-1} \oplus \chi_{1}^{-1} \chi_{2}$. As $p \mid \ell-1, \omega_{p}\left(G_{\mathbb{Q}_{\ell}}\right)=1$ and $H^{0}\left(G_{\mathbb{Q}_{\ell}}, \omega_{p} \otimes \operatorname{ad}^{0} \bar{\rho}\right)=H^{0}\left(G_{\mathbb{Q}_{\ell}}, \operatorname{ad}^{0} \bar{\rho}\right)$ and in this case, both of them are nonzero. Hence, if $\chi_{1} \neq \chi_{2}$, then, by the formula above, $H^{2}\left(G_{\mathbb{Q}, N p}, \operatorname{ad}^{0} \bar{\rho}\right) \neq 0$ and $\bar{\rho}$ is obstructed.

If $\chi_{1}=\chi_{2}=\chi$, then $\left.\rho\right|_{G_{Q_{\ell}}}$ is either $\chi \oplus \chi$ or a nontrivial extension of χ by itself. If $\left.\rho\right|_{G_{\mathbb{Q}_{\ell}}}=\chi \oplus \chi$, then clearly $1 \subset \operatorname{ad}^{0} \bar{\rho}$. If $\left.\rho\right|_{G_{\mathbb{Q}_{\ell}}}$ is a nontrivial extension of χ by itself, then choose a basis of $\bar{\rho}$ such that $\bar{\rho}\left(G_{\mathbb{Q}_{\ell}}\right)$ is upper triangular and identify $\mathrm{ad}^{0} \bar{\rho}$ with the subspace of trace 0 matrices of $M_{2}(\mathbb{F})$. Then, $G_{\mathbb{Q}_{\ell}}$ acts trivially on the subspace of $\mathrm{ad}^{0} \bar{\rho}$ generated by the element $\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)$. Thus, $1 \subset \mathrm{ad}^{0} \bar{\rho}$ in this case also. Therefore, if $\chi_{1}=\chi_{2}$, then

$$
H^{0}\left(G_{\mathbb{Q}_{\ell}}, \omega_{p} \otimes \operatorname{ad}^{0} \bar{\rho}\right)=H^{0}\left(G_{\mathbb{Q}_{\ell}}, a d^{0} \bar{\rho}\right) \neq 0
$$

and hence, by the formula above, $H^{2}\left(G_{\mathbb{Q}, N p}, \operatorname{ad}^{0} \bar{\rho}\right) \neq 0$, which implies that $\bar{\rho}$ is obstructed. This concludes the proof of Proposition 25.

We would like to determine the cases when the situation considered as above would arise, i.e., when $\left.\bar{\rho}\right|_{G_{Q_{\ell}}}$ would be reducible. Note that, if f is an eigenform of level N and ρ_{f} is the Galois representation attached to it, then we know all the possible descriptions of $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ for a prime ℓ dividing N. So, we will now analyze all the possible descriptions of $\left.\rho_{f}\right|_{G_{\mathbb{Q}_{\ell}}}$ for an eigenform f lifting $\bar{\rho}$ to determine which of them will make $\bar{\rho}$ obstructed and when can they arise. This will give us some conditions on $\bar{\rho}$ which will force it to be obstructed.

Let f be an eigenform of level N lifting $\bar{\rho}, \ell$ be a prime dividing N which is $1 \bmod p, \rho_{f}$ be the p-adic Galois representation attached to f and π_{ℓ} be the ℓ-component of the automorphic representation associated to f. If π_{ℓ} is either principal series or special, then by the local Langlands correspondence, we see that $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$, and hence $\left.\bar{\rho}\right|_{G_{Q_{\ell}}}$, is reducible (see Sections 3 and 5 of [Weston 2004] for a similar analysis). This implies that $\bar{\rho}$ is obstructed. In particular, if $\ell \mid N$ but $\ell^{2} \nmid N$, then we know that π_{ℓ} is either special or principal series (see [Carayol 1989, Section 1.2]). If ($\bar{\rho})^{I_{\ell}}$, the subspace of $\bar{\rho}$ on which I_{ℓ} acts trivially, is nonzero, then
clearly $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{\ell}}}$ is reducible. If there exists an eigenform f of level M which lifts $\bar{\rho}$ such that there exists at least one prime divisor ℓ of N which is $1 \bmod p$ and which does not divide M, then $\bar{\rho}$ is unramified at ℓ and hence, $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{\ell}}}$ is reducible. Therefore, in these cases, $\bar{\rho}$ is obstructed.

On the other hand, if π_{ℓ} is supercuspidal, then, as $\ell \neq 2$, it follows, from the local Langlands correspondence, that $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is induced from a character χ of $G_{K}=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{\ell} / K\right)$, where K is a quadratic extension of \mathbb{Q}_{ℓ} and moreover, $\left.\rho_{f}\right|_{G_{Q_{\ell}}}$ is irreducible (see the proof of Proposition 3.2 of [Weston 2004]). Let χ^{σ} be the $\operatorname{Gal}\left(K / \mathbb{Q}_{\ell}\right)$-conjugate character of χ. So, $\left.\rho_{f}\right|_{G_{K}} \simeq \chi \oplus \chi^{\sigma}$. If $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{\ell}}}$ is reducible, then clearly $\bar{\chi}=\overline{\chi^{\sigma}}$, where $\bar{\chi}$ and $\overline{\chi^{\sigma}}$ are the reductions of χ and χ^{σ} in characteristic p, respectively. This means that χ / χ^{σ} factors through the maximal abelian pro- p quotient of G_{K}. But it follows, from local class field theory and the assumption that $p \mid \ell-1$, that the maximal abelian pro- p extension of K is also abelian over \mathbb{Q}_{ℓ}. So, if χ / χ^{σ} factors through the maximal abelian pro- p quotient of G_{K}, then it implies that $\left.\rho_{f}\right|_{G_{Q_{\ell}}}=\operatorname{Ind}_{G_{K}}^{G_{\mathbb{Q}_{\ell}}} \chi$ is reducible, contradicting the hypothesis that it is irreducible. Thus, we see that if π_{ℓ} is supercuspidal and $p \mid \ell-1$, then $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{\ell}}}$ is not reducible. In summary we have:
Corollary 26. Suppose $p \mid \phi(N)$. Let $\bar{\rho}$ be an absolutely irreducible $\Gamma_{1}(N)$-modular representation satisfying one of the following conditions:
(1) There exists at least one prime ℓ which is $1 \bmod p$ such that $\ell \mid N$ and $\ell^{2} \nmid N$.
(2) There exists an eigenform f of level M which lifts $\bar{\rho}$ such that there is at least one prime divisor ℓ of N which is $1 \bmod p$ and which either does not divide M or divides M with multiplicity 1.
(3) The subspace $(\bar{\rho})^{I_{\ell}}$ is nontrivial.

Then, $\bar{\rho}$ is obstructed.
The only case which remains to be considered is when $\left.\bar{\rho}\right|_{G_{Q_{\ell}}}$ is irreducible for all the prime divisors ℓ of N which are $1 \bmod p$. Let $\bar{\rho}$ be such a $\Gamma_{1}(N)$-modular representation. In this case, $H^{0}\left(G_{\mathbb{Q}_{\ell}}, \omega_{p} \otimes \operatorname{ad}^{0} \bar{\rho}\right)=H^{0}\left(G_{\mathbb{Q}_{\ell}}, \operatorname{ad}^{0} \bar{\rho}\right)=0$ for all such primes ℓ. Note that, if f is any eigenform which lifts $\bar{\rho}$, then the local component π_{ℓ} of the automorphic representation associated to f is supercuspidal at all such primes. The analysis of contributions coming from p and other prime divisors of N in the formula above, which are not $1 \bmod p$, is done in [Weston 2004, Sections 3-5; 2005, Section 3] to give conditions for vanishing of corresponding H^{0} 's. We can assume that those conditions hold as well so that we can ignore those primes. Note that these conditions neither depend on each other nor put any restrictions on each other. So assuming them together does not yield any immediate contradiction. Now, moreover assume that $\bar{\rho}$ does not come from a weight 1 modular form. We need this hypothesis to use the results of Section 3 of [Diamond et al. 2004]. We will
analyze the only remaining group $\amalg^{1}\left(G_{\mathbb{Q}, N p}, \omega_{p} \otimes \operatorname{ad}^{0} \bar{\rho}\right)$ in this case following the approach of Weston [2004; 2005].

Let g be an eigenform such that ρ_{g} is a minimally ramified lift of $\bar{\rho}$ (such a lift does exist; see [Diamond et al. 2004, Section 3.2]). Hence, it is an eigenform of level N and its weight k lies between 2 and $p-1$. Let K be a finite extension of \mathbb{Q}_{p} generated by the eigenvalues of g, \mathcal{O} be its ring of integers and \mathfrak{m} be its maximal ideal. Denote by $A_{\rho_{g}}$ the module $(K / \mathcal{O})^{3}$ on which $G_{\mathbb{Q}, N p}$ acts via $\operatorname{ad}^{0} \rho_{g}$. We define $H_{\varnothing}^{1}\left(G_{\mathbb{Q}}, A_{\rho_{g}}\right)$ as in [Diamond et al. 2004, Section 2.1] (see also [Weston 2005, Section 2.2]).

By [Diamond et al. 2004, Theorem 2.15], we get that

$$
H_{f}^{1}\left(G_{\mathbb{Q}}, \rho_{g}\right)=H_{f}^{1}\left(G_{\mathbb{Q}}, \rho_{g}(1)\right)=0
$$

where $\rho_{g}(1)$ is the Tate twist of ρ_{g} and $H_{f}^{1}\left(G_{\mathbb{Q}}, \rho_{g}\right), H_{f}^{1}\left(G_{\mathbb{Q}}, \rho_{g}(1)\right)$ are the BlochKato Selmer groups defined as in Section 2.1 of [Diamond et al. 2004]. It follows, from [Weston 2005, Lemma 2.6], that

$$
\operatorname{dim}_{\mathbb{F}} Ш^{1}\left(G_{\mathbb{Q}, N p}, \omega_{p} \otimes \operatorname{ad}^{0} \bar{\rho}\right) \leq \operatorname{dim}_{\mathbb{F}} H_{\varnothing}^{1}\left(G_{\mathbb{Q}}, A_{\rho_{g}}\right)[\mathfrak{m}],
$$

where $H_{\varnothing}^{1}\left(G_{\mathbb{Q}}, A_{\rho_{g}}\right)[\mathfrak{m}]$ is the \mathfrak{m}-torsion of $H_{\varnothing}^{1}\left(G_{\mathbb{Q}}, A_{\rho_{g}}\right)$. Now, [Diamond et al. 2004, Theorem 3.7] implies that the length of $H_{\varnothing}^{1}\left(G_{\mathbb{Q}}, A_{\rho_{g}}\right)$ is $v_{\mathfrak{m}}\left(\eta_{g}^{\varnothing}\right)$. Here, $v_{\mathfrak{m}}$ is the \mathfrak{m}-adic valuation and η_{g}^{\varnothing} is the congruence ideal of g defined in [Diamond et al. 2004, Section 1.7]. From the proof of [Weston 2005, Proposition 4.2], we see that $v_{\mathfrak{m}}\left(\eta_{g}^{\varnothing}\right)>0$ if and only if \mathfrak{m} is a congruence prime for g, i.e., if there exists an eigenform h which lifts $\bar{\rho}$ and which is not a Galois conjugate of g.

Let ϵ be the nebentypus of g. Let ψ be a character of $(\mathbb{Z} / N \mathbb{Z})^{*}$ whose order is a power of p (there exists such a character as $p \mid \phi(N)$). Thus, ϵ and $\psi \epsilon$ have the same reduction modulo \mathfrak{m}. Hence, from [Carayol 1989, Proposition 3], it follows that there exists an eigenform h of level N and nebentypus $\psi \epsilon$ which lifts $\bar{\rho}$. If h is a Galois conjugate of g, then $\epsilon\left((\mathbb{Z} / N \mathbb{Z})^{*}\right)$ and $\psi \epsilon\left((\mathbb{Z} / N \mathbb{Z})^{*}\right)$ will be Galois conjugates of each other. Since, g is a minimal lift of $\bar{\rho}$, the p-part of $\epsilon\left((\mathbb{Z} / N \mathbb{Z})^{*}\right)$ is trivial. But the p-part of $\psi \in\left((\mathbb{Z} / N \mathbb{Z})^{*}\right)$ is nontrivial as ψ is a character of p-power order. So, they can't be Galois conjugates of each other. Therefore, g and h are not Galois conjugates of each other. Thus, \mathfrak{m} is a congruence prime for g and $H_{\varnothing}^{1}\left(G_{\mathbb{Q}}, A_{\rho_{g}}\right) \neq 0$. However, this does not ensure that $\amalg^{1}\left(G_{\mathbb{Q}, N p}, \omega_{p} \otimes \operatorname{ad}^{0} \bar{\rho}\right)$ is nonzero because we do not know whether the injection $\amalg^{1}\left(G_{\mathbb{Q}, N p}, \omega_{p} \otimes \operatorname{ad}^{0} \bar{\rho}\right) \rightarrow H_{\varnothing}^{1}\left(G_{\mathbb{Q}}, A_{\rho_{g}}\right)[\mathfrak{m}]$ given in the proof of Lemma 2.6 of [Weston 2005], which we used in the last paragraph, is an isomorphism, and in general it is very difficult to prove such a result (see [Weston 2005, Lemma 2.6, Remark 2.7] and the discussion preceding them for more details). But, based on the calculations above, we do expect that $Ш^{1}\left(G_{\mathbb{Q}, N p}, \omega_{p} \otimes \operatorname{ad}^{0} \bar{\rho}\right)$ is nonzero.

Let us consider the modular representations coming from a weight- 1 modular form. In the proposition below, we do not put the condition $p \mid \phi(N)$. For a number field L with ring of integers \mathcal{O}_{L}, we denote by $A(L)[p]$ the p-torsion subgroup of the class group of L and we let

$$
U(L)=\operatorname{ker}\left(\frac{\mathcal{O}_{L}^{*}}{\left(\mathcal{O}_{L}^{*}\right)^{p}} \rightarrow\left(\prod_{v \mid p} \frac{\mathcal{O}_{L_{v}}^{*}}{\left(\mathcal{O}_{L_{v}}^{*}\right)^{p}}\right)\right) .
$$

Proposition 27. Let $\bar{\rho}$ be a $\Gamma_{1}(N)$-modular representation coming from a regular modular form f of weight 1 which has either RM or CM by F (see [Bellaïche and Dimitrov 2016] for the definition of regular). Let H be the extension of \mathbb{Q} which is fixed by $\operatorname{Ker}\left(\operatorname{ad}^{0} \bar{\rho}\right)$. Moreover, assume the following conditions:
(1) If $\ell \mid N$ and $p \mid \ell+1$, then ℓ does not stay inert in F.
(2) If ℓ is a prime divisor of N, then $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{\ell}}}$ is irreducible.
(3) $A(F)[p]=0$ and $\operatorname{Hom}_{G}\left(A(H)[p], \operatorname{ad}^{0} \bar{\rho}\right)=0$.
(4) $\operatorname{Hom}_{G}\left(U(F), \operatorname{ad}^{0} \bar{\rho}\right)=0$ and if F is imaginary, then $\operatorname{Hom}_{G}\left(U(H), \operatorname{ad}^{0} \bar{\rho}\right)=0$.

Then, $\bar{\rho}$ is unobstructed.
Proof. Note that, $\bar{\rho}=\operatorname{Ind}_{G_{F}}^{G_{Q}} \delta$, where F is a quadratic extension of \mathbb{Q} which is either real or imaginary and $\delta: G_{F} \rightarrow \mathbb{F}^{*}$ is a character, as it comes from a weight-1 form which has RM or CM . Let $\operatorname{Gal}(F / \mathbb{Q})=G^{\prime}=\{1, \sigma\}$. As f is a regular weight- 1 eigenform, $\left.\rho_{f}\right|_{\underline{Q_{\mathbb{Q}}^{p}}}=\chi_{1} \oplus \chi_{2}$, where χ_{1} and χ_{2} are distinct, unramified characters from $G_{\mathbb{Q}_{p}} \rightarrow\left(\overline{\mathbb{Q}}_{p}\right)^{*}$. So, F and the fixed field H of $\operatorname{Ker}\left(\operatorname{ad}^{0} \bar{\rho}\right)$ are unramified at p. From the hypothesis (2) above, we see that all prime divisors ℓ of N are either inert or ramified in F.

Thus, from above, it follows that $\operatorname{ad}^{0} \bar{\rho}=\epsilon \oplus \operatorname{Ind}_{G_{F}}^{G_{Q}} \chi$, where ϵ is the character of $G_{\mathbb{Q}}$ of order 2 corresponding to F and $\chi=\delta / \delta^{\sigma}$. So

$$
H^{1}\left(G_{\mathbb{Q}, N p}, \operatorname{ad}^{0} \bar{\rho}\right)=H^{1}\left(G_{\mathbb{Q}, N p}, \epsilon\right) \oplus H^{1}\left(G_{\mathbb{Q}, N p}, \operatorname{Ind}_{G_{F}}^{G_{\mathbb{Q}}} \chi\right)
$$

We will analyze each part of this sum separately. We mostly follow the notation of [Bellaïche and Dimitrov 2016].

First, we will look at the group $H^{1}\left(G_{\mathbb{Q}, N p}, \epsilon\right)$ appearing above. From the inflation-restriction sequence, we see that $H^{1}\left(G_{\mathbb{Q}, N p}, \epsilon\right)=\left(\operatorname{Hom}\left(G_{F, S}, \mathbb{F}\right) \otimes \epsilon\right)^{G^{\prime}}$, where S is the set of the places of F dividing $N p$. From class field theory and the hypothesis (3) above, we have the following exact sequence of G^{\prime}-modules:

$$
0 \rightarrow \operatorname{Hom}\left(G_{F, S}^{\mathrm{ab}}, \mathbb{F}\right) \rightarrow \operatorname{Hom}\left(\prod_{v \mid N p} \mathcal{O}_{F_{v}}^{*}, \mathbb{F}\right) \rightarrow \operatorname{Hom}\left(\mathcal{O}_{F}^{*}, \mathbb{F}\right)
$$

Now, by hypothesis (1), we have:

$$
\operatorname{Hom}\left(\prod_{v \mid N p} \mathcal{O}_{F_{v}}^{*}, \mathbb{F}\right)=\operatorname{Hom}\left(\prod_{v \mid p} \mathcal{O}_{F_{v}} \prod_{\substack{\ell|N \\ p| \ell-1}} \prod_{v \mid \ell} \mathbb{Z} /(\ell-1) \mathbb{Z}, \mathbb{F}\right)
$$

as F is unramified at p. The factors in the second product come from places of F dividing such primes and, since ℓ is either inert or ramified in F, each factor appears only once. Observe that G^{\prime} acts trivially on each of them. Thus,

$$
\left(\operatorname{Hom}\left(\prod_{\substack{\ell|N \\ p| \ell-1}} \prod_{v \mid \ell} \mathbb{Z} /(\ell-1) \mathbb{Z}, \mathbb{F}\right) \otimes \epsilon\right)^{G^{\prime}}=0 .
$$

If F is imaginary, then \mathcal{O}_{F}^{*} is a finite group and its order is not divisible by p, as p is unramified in F. Thus, $U(F)=\mathcal{O}_{F}^{*} /\left(\mathcal{O}_{F}^{*}\right)^{p}=0$. Hence, in this case, it follows that $\left(\operatorname{Hom}\left(\prod_{v \mid p} \mathcal{O}_{F_{v}}, \mathbb{F}\right) \otimes \epsilon\right)^{G^{\prime}}$ has dimension 1. Therefore, $H^{1}\left(G_{\mathbb{Q}, N p}, \epsilon\right)$ has dimension 1. If F is real, then the free part of \mathcal{O}_{F}^{*} has rank 1 and the torsion part is $\{1,-1\}$. Suppose p is not split in F. Then, it is inert in F and the fundamental unit of F generates the residue field of $\mathcal{O}_{F_{p}}$ over \mathbb{F}_{p}. Suppose p is split in F. Then $\prod_{v \mid p} \mathcal{O}_{F_{v}}=\mathbb{Z}_{p} \times \mathbb{Z}_{p}$ and the action of G^{\prime} switches them. Moreover, under the G^{\prime}-equivariant diagonal embedding $\mathcal{O}_{F}^{*} \rightarrow \prod_{v \mid p} \mathcal{O}_{F_{v}}^{*}=\mathbb{Z}_{p}^{*} \times \mathbb{Z}_{p}^{*}$, the fundamental unit of F gets mapped to an element of the form $(a,-a)$ as the nontrivial element of G^{\prime} sends the unit to its inverse. So, it follows, from the discussion above and hypothesis (4), that in both the cases, G^{\prime} acts trivially on the subspace of elements of $\operatorname{Hom}\left(\prod_{v \mid p} \mathcal{O}_{F_{v}}, \mathbb{F}\right)$ which vanish on \mathcal{O}_{F}^{*}. An element of $\operatorname{Hom}\left(G_{F, S}^{\mathrm{ab}}, \mathbb{F}\right)$ vanishes on the fundamental unit. Thus, combining this and the previous paragraph, we see that G^{\prime} acts trivially on $\operatorname{Hom}\left(G_{F, S}^{\text {ab }}, \mathbb{F}\right)$, when F is totally real. It follows that, in this case, $H^{1}\left(G_{\mathbb{Q}, N p}, \epsilon\right)=\left(\operatorname{Hom}\left(G_{F, S}^{\mathrm{ab}}, \mathbb{F}\right) \otimes \epsilon\right)^{G^{\prime}}=0$.

We shall now analyze the second factor appearing in the sum above. Let H be the extension of \mathbb{Q} which is fixed by $\operatorname{Ker}\left(\operatorname{ad}^{0} \bar{\rho}\right)$. Thus, $G=\operatorname{Gal}(H / \mathbb{Q})$ is a dihedral group $D_{2 n}$ which is nonabelian and $\operatorname{Ind}_{G_{F}}^{G_{Q}} \chi$ is an irreducible representation of G. By the arguments used above, we get that

$$
H^{1}\left(G_{\mathbb{Q}, N p}, \operatorname{Ind}_{G_{F}}^{G Q} \chi\right)=\left(H^{1}\left(G_{H, S}, \mathbb{F}\right) \otimes \operatorname{Ind}_{G_{F}}^{G Q} \chi\right)^{G} .
$$

By hypothesis (3), $H^{1}\left(G_{H, S}, \mathbb{F}\right)$ is the subspace of $\operatorname{Hom}\left(\prod_{v \mid N_{p}} \mathcal{O}_{H_{v}}^{*}, \mathbb{F}\right)$ vanishing on \mathcal{O}_{H}^{*}. Since H is unramified at p, we get

$$
\operatorname{Hom}\left(\prod_{v \mid N p} \mathcal{O}_{H_{v}}^{*}, \mathbb{F}\right)=\operatorname{Hom}\left(\prod_{v \mid p} \mathcal{O}_{H_{v}} \prod \mathbb{Z} / p \mathbb{Z}, \mathbb{F}\right),
$$

where the last product is taken over all places v of H which divide N and whose residue fields have p-th roots of unity. If ℓ is a such a prime, then the G-submodule
$\operatorname{Hom}\left(\prod_{v \mid \ell} \mathbb{Z} / p \mathbb{Z}, \mathbb{F}\right)$ of the module above is isomorphic to $\operatorname{Ind}_{D_{\ell}}^{G} \alpha$, where D_{ℓ} is the image of $G_{\mathbb{Q}_{\ell}}$ under $\operatorname{ad}^{0} \bar{\rho}$ and α is the character by which it acts on the p-th roots of unity. Note that, by hypothesis (2) above, $\operatorname{Ind}_{G_{F}}^{G_{\Phi}} \chi$ is an irreducible representation of D_{ℓ} for every $\ell \mid N$. So, $\left(\operatorname{Hom}(\Pi \mathbb{Z} / p \mathbb{Z}, \mathbb{F}) \otimes \operatorname{Ind}_{G_{F}}^{G_{\mathbb{Q}}} \chi\right)^{G}=0$.

Assume F is imaginary. As H is unramified at p and $p \nmid|G|$, we see, using arguments from [Bellaïche and Dimitrov 2016, Section 3.2], that every irreducible representation of G occurs in $\operatorname{Hom}\left(G_{H, S}^{\mathrm{ab}}, \mathbb{F}\right)$ with multiplicity at least 1 . The additional multiplicities would only arise from $U(H)$. But, from hypothesis (4) above, we have $\operatorname{Hom}_{G}\left(U(H), \operatorname{Ind}_{G_{F}}^{G_{\mathbb{Q}}} \chi\right)=0$. Therefore, $\operatorname{Ind}_{G_{F}}^{G_{\mathbb{Q}}} \chi$ occurs in $\operatorname{Hom}\left(G_{H_{S}}^{\text {ab }}, \mathbb{F}\right)$ with multiplicity 1. Hence, $\left(\operatorname{Hom}\left(G_{H, S}, \mathbb{F}\right) \otimes \operatorname{Ind}_{G_{F}}^{G_{\odot}} \chi\right)^{G}=H^{1}\left(G_{\mathbb{Q}, N p}, \operatorname{Ind}_{G_{F}}^{G^{Q}} \chi\right)$ has dimension 1. If F is real, then $\operatorname{Ind}_{G_{F}}^{G_{Q}} \chi$ is totally odd. Thus, from the arguments in [Bellaïche and Dimitrov 2016, Section 3.2], we see that $\operatorname{Ind}_{G_{F}}^{G_{Q}} \chi$ occurs in the subspace of $\operatorname{Hom}\left(\prod_{v \mid p} \mathcal{O}_{H_{v}}^{*}, \mathbb{F}\right)$ vanishing on \mathcal{O}_{H}^{*} with multiplicity 2. Note that, we do not need to consider contribution from $U(H)$ as $\operatorname{Ind}_{G_{F}}^{G_{Q}} \chi$ does not occur in $\mathcal{O}_{H}^{*} /\left(\mathcal{O}_{H}^{*}\right)^{p}$. Therefore, combining this with the previous paragraph, we see that $\operatorname{Ind}_{G_{F}}^{G_{\mathbb{Q}}} \chi$ occurs in $\operatorname{Hom}\left(G_{H, S}^{\mathrm{ab}}, \mathbb{F}\right)$ with multiplicity 2. Hence, $H^{1}\left(G_{\mathbb{Q}, N p}, \operatorname{Ind}_{G_{F}}^{G_{\mathbb{Q}}} \chi\right)$ has dimension 2.

Combining these results we see that if $\bar{\rho}$ satisfies the conditions of the proposition, then $H^{1}\left(G_{\mathbb{Q}, N p}, \operatorname{ad}^{0} \bar{\rho}\right)$ has dimension 2. Hence, $\bar{\rho}$ is unobstructed in our sense. \square
Remark. (1) The hypotheses (3) and (4) are similar to those used by Mazur [1989, Sections 1.12 and 1.13], where he studies unobstructed representations unramified outside a single prime. Note that, for a number field $L, A\left(L\left(\zeta_{p}\right)\right)[p]=0$ implies that $U(L)=0$ (see the remark after Proposition 1 of [Boston 1990]).
(2) We know that $G^{\prime}=\operatorname{Gal}(F / \mathbb{Q})$ acts on $A(F)[p]$ by the character ϵ. So, if $A(F)[p] \neq 0$, then it would contribute to $H^{1}\left(G_{\mathbb{Q}, N p}, \epsilon\right)$ in addition to what we have calculated above. Hence, in this case, we have $\operatorname{dim} H^{1}\left(G_{Q, N p}, \epsilon\right)>1$. Thus, considering the above calculations, we see that $\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \operatorname{ad}^{0} \bar{\rho}\right)>2$. Hence, if $A(F)[p] \neq 0$, then $\bar{\rho}$ will be obstructed.
(3) Suppose f is a weight-1 form which has RM or CM by F, and there exists a prime ℓ such that $\ell \mid N$ and $p \mid \ell+1$. Moreover, assume that ℓ stays inert in F. Thus, using the notations of the proof above, we see that

$$
\operatorname{Hom}\left(\prod_{v \mid N p} \mathcal{O}_{F_{v}}^{*}, \mathbb{F}\right)=\operatorname{Hom}\left(\prod_{v \mid p} \mathcal{O}_{F_{v}} \prod_{\substack{\ell|N \\ p| \ell-1}} \prod_{v \mid \ell} \mathbb{Z} /(\ell-1) \mathbb{Z} \prod \mathbb{Z} / p \mathbb{Z}, \mathbb{F}\right),
$$

where the last product is taken over all the prime divisors ℓ of N which stay inert in F and which are $-1 \bmod p$. Observe that, they are isomorphic to ϵ as G^{\prime} representations. The projection of the image of \mathcal{O}_{F}^{*} in $\prod_{v \mid N p} \mathcal{O}_{F_{v}}^{*}$ onto this product is also trivial as F is unramified at p. Hence, this product also
contributes to $H^{1}\left(G_{\mathbb{Q}, N p}, \epsilon\right)$, making it bigger. All the other calculations at the places above p in the proof above still remain valid. As a result, we see that $\operatorname{dim} H^{1}\left(G_{\mathbb{Q}, N p}, \operatorname{ad}^{0} \bar{\rho}\right)>2$. Hence, in this case, $\bar{\rho}$ is obstructed.
Note that, the assumptions in the proposition above do not yield any immediate contradiction. Thus, we see that our notion of unobstructedness is weaker than Mazur's notion of unobstructedness.
Proposition 28. Let $\bar{\rho}$ be a modular representation satisfying the hypotheses of Proposition 27 and suppose $p \mid \phi(N)$. Let the p-primary part of $(\mathbb{Z} / N \mathbb{Z})^{*}$ be $\mathbb{Z} / p^{e_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p^{e_{n}} \mathbb{Z}$. Assume moreover that:
(1) $\bar{\rho}$ is a new $\Gamma_{1}(N)$-modular representation.
(2) For all primes ℓ dividing N such that $p \mid \ell^{2}-1, U_{\ell}$ acts like 0 on all newforms of level N which lift $\bar{\rho}$.
Then, the corresponding local component $A_{\bar{\rho}}$ of the mod p Hecke algebra is isomorphic to $\mathbb{F} \llbracket x, y \rrbracket\left[y_{1}, \ldots, y_{n}\right] /\left(y_{1}^{p^{e_{1}}}, \ldots, y_{n}^{p^{\rho_{n}}}\right)$ and thus, is not reduced.
Proof. As $\bar{\rho}$ satisfies the hypotheses of Proposition 27, it satisfies the hypotheses of Theorem 3 as well. Indeed, $\bar{\rho}$ comes from a regular, weight- 1 form and is unramified at p. So, $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{p}}}$ is of the required form. If ℓ is a prime divisor of N which is $1 \bmod p$, then it splits completely in $\mathbb{Q}\left(\zeta_{p}\right)$. As $\left.\bar{\rho}\right|_{G_{Q_{\ell}}}$ is irreducible, $\left.\bar{\rho}\right|_{G_{Q\left(\xi_{p}\right)}}$ is also irreducible. Therefore, from the results of Böckle [2001], Diamond [1996], Diamond et al. [2004], and Kisin [2004], it follows that the surjective map $R_{\bar{\rho}} \rightarrow \mathbb{\Gamma}_{\bar{\rho}}(N)$ is an isomorphism. The hypothesis (2) along with the proof of Proposition 20 and the proof of Theorem 1 implies that the kernel of the surjective map $\mathbb{\overline { \Gamma } _ { \overline { \rho } } (N)} \rightarrow A_{\bar{\rho}}^{\Gamma_{1}(N)}$ is $m_{\Lambda} \mathbb{\Gamma}_{\bar{\rho}}^{\Gamma_{1}(N)}$. By Proposition 27, we see that $R_{\bar{\rho}} \simeq \mathcal{O} \llbracket x, y, T \rrbracket\left[z_{1}, \ldots, z_{n}\right] /\left(z_{1}^{p_{1}}-1, \ldots, z_{n}^{p_{n}}-1\right)$. Combining all of the above gives us that $A_{\bar{\rho}} \simeq \mathbb{F} \llbracket x, y \rrbracket\left[y_{1}, \ldots, y_{n}\right] /\left(y_{1}^{p^{e_{1}}}, \ldots, y_{n}^{p^{e_{n}}}\right)$.
Remark. (1) If the first condition of Proposition 28 is satisfied, then to check the second condition, it is sufficient, by Lemma 19 , to check that $\left.\bar{\rho}\right|_{I_{\ell}}$ is irreducible.
(2) Suppose $\bar{\rho}$ is a $\Gamma_{1}(N)$-modular representation which satisfies the two assumptions of Proposition 28 and the assumptions of Theorem 3. Moreover, assume $p \mid \phi(N)$ and let the p-primary part of $(\mathbb{Z} / N \mathbb{Z})^{*}$ be $\mathbb{Z} / p^{e_{1}} \mathbb{Z} \times \cdots \times \mathbb{Z} / p^{e_{n}} \mathbb{Z}$. Then, from the proof above, we see that $A_{\bar{\rho}}^{\Gamma_{1}(N)} \simeq R_{\bar{\rho}} /(\pi, T)$. Now, as $p \neq 2$,

$$
R_{\bar{\rho}} \simeq R_{\bar{\rho}}^{0}\left[T, y_{1}, \ldots, y_{n}\right] /\left(y_{1}^{p_{1}}-1, \ldots, y_{n}^{p_{n}^{e_{n}}}-1\right)
$$

where $R_{\bar{\rho}}^{0}$ is the universal deformation ring of $\bar{\rho}$ with constant determinant (see the proof of [BK, Lemma 19] for more details). So, $A_{\bar{\rho}}^{\Gamma_{1}(N)}$ is isomorphic to $\tilde{R}_{\bar{\rho}}^{0}\left[z_{1}, \ldots, z_{n}\right] /\left(z_{1}^{p^{\rho_{1}}}, \ldots, z_{n}^{p^{\rho_{n}}}\right)$ and hence, is not reduced. So, the assumptions of Proposition 27 are not necessary to get nonreduced Hecke algebras but are necessary to find the precise structure of the Hecke algebra.

We now give some examples of nonreduced Hecke algebras following the previous remark. Let ℓ be a prime such that $p \mid \ell-1$ and ℓ is 3 modulo 4. Let $K=\mathbb{Q}(\sqrt{-\ell})$ and let h_{K} be its class number. If p splits in K, then define n to be the smallest integer such that p is not split in the anticyclotomic extension of degree ℓ^{n} of K and $\ell^{n} \nmid h_{K}$. Otherwise, define it to be the smallest integer such that $\ell^{n} \nmid h_{K}$. Let $\chi: G_{K} \rightarrow \mathbb{Z}_{\ell} \rightarrow \mathbb{Z} / \ell^{n} \mathbb{Z} \rightarrow \overline{\mathbb{F}}^{*}$, where the first map is given by the anticyclotomic \mathbb{Z}_{ℓ} extension of K, and the last map is the inclusion of the ℓ^{n}-th roots of unity into $\overline{\mathbb{F}}^{*}$. Now, we see, from a classical theorem of Hecke, that $\bar{\rho}=\operatorname{Ind}_{G_{K}}^{G \odot} \chi$ on $G_{\mathbb{Q}, p \ell}$ is an odd, irreducible representation coming from a weight-1 newform f of level $\ell^{2 n+3}$.

As $\chi^{\sigma}=\chi^{-1}$ and χ has odd order, they are distinct characters of G_{K} and they only coincide on $\operatorname{ker}(\chi)$. Now, ℓ ramifies in K and the prime v^{\prime} of K lying above ℓ ramifies in the anticyclotomic extension of K of degree ℓ^{n} as $\ell^{n} \nmid h_{K}$. As a consequence, we see that $\left.\bar{\rho}\right|_{I_{\ell}}$ and $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{\ell}}}$ are irreducible. As ℓ splits completely in $\mathbb{Q}\left(\zeta_{p}\right)$, it follows that $\left.\bar{\rho}\right|_{G_{Q(\zeta p)}}$ is also irreducible. If p is inert in K, then clearly $\left.\bar{\rho}\right|_{G_{\mathbb{Q}_{p}}}$ is a sum of distinct characters as p is unramified in K. If p is split in K, then for a place v of K above p, χ and χ^{σ} are distinct characters of $G_{K_{v}}$, as χ has odd order and p does not split completely in the anticyclotomic extension of K of degree ℓ^{n}. As the anticyclotomic extension of K is unramified at p, we see that $\left.\bar{\rho}\right|_{G_{Q_{p}}}$ is not a direct sum of characters which are cyclotomic twists of each other. Therefore, $\bar{\rho}$ is a new $\Gamma_{1}\left(\ell^{2 n+3}\right)$-modular representation satisfying the two conditions of Proposition 28 and the conditions of Theorem 3. Hence, from the remark above, it follows that $A_{\bar{\rho}}^{\Gamma_{1}\left(\ell^{2 n+3}\right)}$ is not reduced.

Acknowledgements

I would like to thank my Ph.D. advisor Joël Bellaïche for suggesting this problem to me and for his patience, guidance, encouragement and support during the completion of this paper. His suggestions have also played an instrumental role in making the exposition clearer and simplifying a lot of proofs. I would also like to thank Aditya Karnataki for numerous helpful mathematical discussions. I would like to thank the referee as well for a careful reading and helpful suggestions.

References

[Andreatta and Goren 2005] F. Andreatta and E. Z. Goren, Hilbert modular forms: mod p and p-adic aspects, Mem. Amer. Math. Soc. 819, 2005. MR Zbl
[Atkin and Lehner 1970] A. O. L. Atkin and J. Lehner, "Hecke operators on $\Gamma_{0}(m)$ ", Math. Ann. 185 (1970), 134-160. MR Zbl
[Bellaïche 2010] J. Bellaïche, "Eigenvarieties, families of Galois representations, p-adic L-functions", course notes, Brandeis University, 2010, Available at http://people.brandeis.edu/~jbellaic/preprint/ coursebook.pdf.
[Bellaïche 2012a] J. Bellaïche, "Pseudodeformations", Math. Z. 270:3-4 (2012), 1163-1180. MR Zbl
[Bellaïche 2012b] J. Bellaïche, "Une représentation galoisienne universelle attachée aux formes modulaires modulo 2", C. R. Math. Acad. Sci. Paris 350:9-10 (2012), 443-448. MR Zbl
[Bellaïche and Chenevier 2009] J. Bellaïche and G. Chenevier, Families of Galois representations and Selmer groups, Astérisque 324, 2009. MR Zbl
[Bellaïche and Dimitrov 2016] J. Bellaïche and M. Dimitrov, "On the eigencurve at classical weight 1 points", Duke Math. J. 165:2 (2016), 245-266. MR Zbl
[Bellaïche and Khare 2015] J. Bellaïche and C. Khare, "Level 1 Hecke algebras of modular forms modulo p", Compos. Math. 151:3 (2015), 397-415. MR
[Böckle 2001] G. Böckle, "On the density of modular points in universal deformation spaces", Amer. J. Math. 123:5 (2001), 985-1007. MR Zbl
[Boston 1990] N. Boston, "Deformations of Galois representations associated to the cusp form Δ ", pp. 51-62 in Séminaire de Théorie des Nombres (Paris 1987-88), edited by C. Goldstein, Progr. Math. 81, Birkhäuser, Boston, 1990. MR Zbl
[Carayol 1989] H. Carayol, "Sur les représentations galoisiennes modulo l attachés aux formes modulaires", Duke Math. J. 59:3 (1989), 785-801. MR Zbl
[Chenevier 2011] G. Chenevier, "On the infinite fern of Galois representations of unitary type", Ann. Sci. Éc. Norm. Supér. (4) 44:6 (2011), 963-1019. MR Zbl
[Chenevier 2014] G. Chenevier, "The p-adic analytic space of pseudocharacters of a profinite group and pseudorepresentations over arbitrary rings", pp. 221-285 in Automorphic forms and Galois representations, I, edited by F. Diamond et al., London Math. Soc. Lecture Note Ser. 414, Cambridge Univ. Press, 2014. MR Zbl
[Diamond 1996] F. Diamond, "On deformation rings and Hecke rings", Ann. of Math. (2) 144:1 (1996), 137-166. MR Zbl
[Diamond et al. 2004] F. Diamond, M. Flach, and L. Guo, "The Tamagawa number conjecture of adjoint motives of modular forms", Ann. Sci. Éc. Norm. Supér. (4) 37:5 (2004), 663-727. MR Zbl
[Eisenbud 1995] D. Eisenbud, Commutative algebra with a view toward algebraic geometry, Graduate Texts in Mathematics 150, Springer, New York, 1995. MR Zbl
[Emerton 2011] M. Emerton, " p-adic families of modular forms (after Hida, Coleman, and Mazur)", exposé no. 1013, vii, 31-61 in Séminaire Bourbaki 2009/2010, Astérisque 339, 2011. MR
[Emerton et al. 2006] M. Emerton, R. Pollack, and T. Weston, "Variation of Iwasawa invariants in Hida families", Invent. Math. 163:3 (2006), 523-580. MR Zbl
[Gouvêa 1988] F. Q. Gouvêa, Arithmetic of p-adic modular forms, Lecture Notes in Mathematics 1304, Springer, Berlin, 1988. MR Zbl
[Gouvêa and Mazur 1998] F. Q. Gouvêa and B. Mazur, "On the density of modular representations", pp. 127-142 in Computational perspectives on number theory (Chicago, 1995), edited by D. A. Buell and J. T. Teitelbaum, AMS/IP Stud. Adv. Math. 7, Amer. Math. Soc., Providence, RI, 1998. MR Zbl
[Hida 1986] H. Hida, "Iwasawa modules attached to congruences of cusp forms", Ann. Sci. Éc. Norm. Supér. (4) 19:2 (1986), 231-273. MR Zbl
[Jochnowitz 1982] N. Jochnowitz, "A study of the local components of the Hecke algebra mod l ", Trans. Amer. Math. Soc. 270:1 (1982), 253-267. MR Zbl
[Katz 1975] N. M. Katz, "Higher congruences between modular forms", Ann. of Math. (2) 101 (1975), 332-367. MR Zbl
[Khare 1998] C. Khare, "Mod p modular forms", pp. 135-149 in Number theory (Tiruchirapalli, India, 1996), edited by V. K. Murty and M. Waldschmidt, Contemp. Math. 210, Amer. Math. Soc., Providence, RI, 1998. MR Zbl
[Kisin 2004] M. Kisin, "Geometric deformations of modular Galois representations", Invent. Math. 157:2 (2004), 275-328. MR Zbl
[Mazur 1989] B. Mazur, "Deforming Galois representations", pp. 385-437 in Galois groups over \mathbb{Q} (Berkeley, 1987), Math. Sci. Res. Inst. Publ. 16, Springer, New York, 1989. MR Zbl
[Nicolas and Serre 2012a] J.-L. Nicolas and J.-P. Serre, "Formes modulaires modulo 2: l'ordre de nilpotence des opérateurs de Hecke", C. R. Math. Acad. Sci. Paris 350:7-8 (2012), 343-348. MR
[Nicolas and Serre 2012b] J.-L. Nicolas and J.-P. Serre, "Formes modulaires modulo 2: structure de l'algébre de Hecke", C. R. Math. Acad. Sci. Paris 350:9-10 (2012), 449-454. MR Zbl
[Washington 1997] L. C. Washington, "Galois cohomology", pp. 101-120 in Modular forms and Fermat's last theorem (Boston, 1995), edited by G. Cornell et al., Springer, New York, 1997. MR Zbl
[Weston 2004] T. Weston, "Unobstructed modular deformation problems", Amer. J. Math. 126:6 (2004), 1237-1252. MR Zbl
[Weston 2005] T. Weston, "Explicit unobstructed primes for modular deformation problems of squarefree level", J. Number Theory 110:1 (2005), 199-218. MR Zbl

Communicated by Marie-France Vignéras
Received 2015-07-31 Revised 2016-08-05 Accepted 2016-11-17
deoshaunak@gmail.com Department of Mathematics, MS 050, Brandeis University, 415 South Street, Waltham, MA 02453, United States

Current address: Mathematics Research Unit, Université du Luxembourg, Faculté des Sciences, de la Technologie et de la Communication, 6, rue Richard Coudenhove-Kalergi, L-1359 Luxembourg, Luxembourg

Algebra \& Number Theory

msp.org/ant

EDITORS

Managing Editor
Bjorn Poonen
Massachusetts Institute of Technology
Cambridge, USA

Editorial Board Chair
David Eisenbud
University of California
Berkeley, USA

Board of Editors

| Dave Benson | University of Aberdeen, Scotland | Susan Montgomery | University of Southern California, USA |
| ---: | :--- | ---: | ---: | ---: |
| Richard E. Borcherds | University of California, Berkeley, USA | Shigefumi Mori | RIMS, Kyoto University, Japan |
| John H. Coates | University of Cambridge, UK | Raman Parimala | Emory University, USA |
| J-L. Colliot-Thélène | CNRS, Université Paris-Sud, France | Jonathan Pila | University of Oxford, UK |
| Brian D. Conrad | Stanford University, USA | Anand Pillay | University of Notre Dame, USA |
| Hélène Esnault | Freie Universität Berlin, Germany | Victor Reiner | University of Minnesota, USA |
| Hubert Flenner | Ruhr-Universität, Germany | Peter Sarnak | Princeton University, USA |
| Sergey Fomin | University of Michigan, USA | Joseph H. Silverman | Brown University, USA |
| Edward Frenkel | University of California, Berkeley, USA | Michael Singer | North Carolina State University, USA |
| Andrew Granville | Université de Montréal, Canada | Vasudevan Srinivas | Tata Inst. of Fund. Research, India |
| Joseph Gubeladze | San Francisco State University, USA | J. Toby Stafford | University of Michigan, USA |
| Roger Heath-Brown | Oxford University, UK | Ravi Vakil | Stanford University, USA |
| Craig Huneke | University of Virginia, USA | Michel van den Bergh | Hasselt University, Belgium |
| Kiran S. Kedlaya | Univ. of California, San Diego, USA | Marie-France Vignéras | Université Paris VII, France |
| János Kollár | Princeton University, USA | Kei-Ichi Watanabe | Nihon University, Japan |
| Yuri Manin | Northwestern University, USA | Efim Zelmanov | University of California, San Diego, USA |
| Philippe Michel | École Polytechnique Fédérale de Lausanne | Shou-Wu Zhang | Princeton University, USA |

PRODUCTION

production@msp.org
Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.
The subscription price for 2017 is US $\$ 325 /$ year for the electronic version, and $\$ 520 /$ year $(+\$ 55$, if shipping outside the US) for print and electronic. Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra \& Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall \#3840, c/o University of California, Berkeley, CA 94720-3840 is published continuously online. Periodical rate postage paid at Berkeley, CA 94704, and additional mailing offices.

ANT peer review and production are managed by EditFLOw ${ }^{\circledR}$ from MSP.

PUBLISHED BY

- mathematical sciences publishers

nonprofit scientific publishing

http://msp.org/
© 2017 Mathematical Sciences Publishers

Algebra \& Number Theory

Volume 11 No. 12017
Structure of Hecke algebras of modular forms modulo p 1
Shaunak V. Deo
Split abelian surfaces over finite fields and reductions of genus-2 curves 39
Jeffrey D. Achter and Everett W. Howe
A tropical approach to nonarchimedean Arakelov geometry 77
Walter Gubler and Klaus Künnemann
Existence of compatible systems of lisse sheaves on arithmetic schemes 181
Koji Shimizu
Logarithmic good reduction, monodromy and the rational volume 213Arne Smeets
Finite phylogenetic complexity and combinatorics of tables 235
Mateusz MichaŁek and Emanuele Ventura

[^0]: MSC2010: primary 11F80; secondary 11F25, 11F33.
 Keywords: Modular forms modulo p, Hecke algebras, deformations of Galois representations.

