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Chambert-Loir and Ducros have recently introduced a theory of real valued
differential forms and currents on Berkovich spaces. In analogy to the theory of
forms with logarithmic singularities, we enlarge the space of differential forms by
so called δ-forms on the nonarchimedean analytification of an algebraic variety.
This extension is based on an intersection theory for tropical cycles with smooth
weights. We prove a generalization of the Poincaré–Lelong formula which allows
us to represent the first Chern current of a formally metrized line bundle by a
δ-form. We introduce the associated Monge–Ampère measure µ as a wedge-
power of this first Chern δ-form and we show that µ is equal to the corresponding
Chambert-Loir measure. The ∗-product of Green currents is a crucial ingredient
in the construction of the arithmetic intersection product. Using the formalism
of δ-forms, we obtain a nonarchimedean analogue at least in the case of divisors.
We use it to compute nonarchimedean local heights of proper varieties.
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0. Introduction

Weil’s adelic point of view was to compactify the ring of integers OK of a number
field K by the archimedean primes. Arakelov’s brilliant idea was to add metrics on
the “fibre at infinity” of a surface over OK which gave a good intersection theory
for arithmetic divisors. This Arakelov theory became popular after Faltings used it
to prove Mordell’s conjecture. A higher dimensional arithmetic intersection theory
was developed by Gillet and Soulé. Their theory combines algebraic intersection
theory on a regular model X over OK with differential geometry on the associated
complex manifold X an of the generic fibre X of X . Roughly speaking, an arithmetic
cycle on X is given by a pair (Z , gZ ), where Z is a cycle on X with generic fibre
Z and gZ is a current on X an satisfying the equation

ddcgZ = [ωZ ] − δZ

for a smooth differential form ωZ and the current of integration δZ over Z an. The
arithmetic intersection product uses the algebraic intersection product for algebraic
cycles in the first component and the ∗-product of Green currents in the second
component. This arithmetic intersection theory is nowadays called Arakelov theory.
It found many nice applications such as Faltings’s proof of the Mordell–Lang
conjecture for abelian varieties and the proof of Ullmo and Zhang of the Bogomolov
conjecture for abelian varieties.

It is an old dream to handle archimedean and nonarchimedean places in a
similar way. This means that we are looking for a description in terms of currents
for the contributions of the nonarchimedean places to Arakelov theory. Such a
nonarchimedean Arakelov theory at finite places was developed by Bloch–Gillet–
Soulé relying strongly on the conjectured existence of resolution of singularities for
models in mixed characteristics. The use of models also has another disadvantage
since they are not suitable to describe canonical metrics as for line bundles on
abelian varieties with bad reduction. A more analytic nonarchimedean Arakelov
theory was developed by Chinburg and Rumely, and Zhang in the case of curves. A
crucial role is played here by the reduction graph of the curve. Without any doubt,
the latter should be replaced by the Berkovich analytic space associated to the curve
and this was done by Thuillier in his thesis introducing a nonarchimedean potential
theory. Chambert-Loir and Ducros [2012] recently introduced differential forms
and currents on Berkovich spaces. These provide us with a new tool to give an
analytic description of nonarchimedean Arakelov theory in higher dimensions.

We recall the definition of differential forms given in [loc. cit.]. We restrict here
to the algebraic case. Let U be an n-dimensional very affine open variety which
means that U has a closed embedding into a multiplicative torus T = Gr

m over a
nonarchimedean field K . By definition, such a field K is endowed with a complete
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nonarchimedean absolute value | · |. Let t1, . . . , tr be the torus coordinates. Then
we have the tropicalization map

trop : T an
→ Rr , t 7→ (−log|t1|, . . . ,−log|tr |).

By the Bieri–Groves theorem, the tropical variety Trop(U ) := trop(U an) is a finite
union of n-dimensional polyhedra. More precisely, Trop(U ) is an n-dimensional
tropical cycle which means that Trop(U ) is a polyhedral complex endowed with
canonical weights satisfying a balancing condition. Let x1, . . . , xr be the coordinates
on Rr . Then Lagerberg’s superforms on Rr are formally given by

α =
∑
|I |=p,
|J |=q

αIJ d ′xi1 ∧ · · · ∧ d ′xi p ∧ d ′′x j1 ∧ · · · ∧ d ′′x jq ,

where I (resp. J ) consists of i1 < · · · < i p (resp. j1 < · · · < jq), αIJ ∈ C∞(Rr ).
We have differential operators d ′ and d ′′ on the space of superforms given by

d ′α :=
∑
|I |=p,
|J |=q

r∑
i=1

∂αIJ

∂xi
d ′xi ∧ d ′xi1 ∧ · · · ∧ d ′xi p ∧ d ′′x j1 ∧ · · · ∧ d ′′x jq

and

d ′′α :=
∑
|I |=p,
|J |=q

r∑
j=1

∂αIJ

∂x j
d ′′x j ∧ d ′xi1 ∧ · · · ∧ d ′xi p ∧ d ′′x j1 ∧ · · · ∧ d ′′x jq .

They are the analogues of the differential operators ∂ and ∂̄ in complex analysis. The
space of superforms on Rr with the usual wedge product is a differential bigraded
R-algebra with respect to d ′ and d ′′. The space of supercurrents on Rr is given as
the topological dual of the space of superforms.

Every superform α induces a differential form on U an and two superforms α, α′

induce the same form if and only if they restrict to the same superform on Trop(U ).
In general, a differential form on an n-dimensional variety X is given locally for the
Berkovich analytic topology on very affine open subsets by Lagerberg’s superforms
which agree on common intersections (see [Gubler 2016] for more details). The
wedge product and the differential operators can be carried over to X an leading to a
sheaf A·,· of differential forms on X an. Integration of superforms leads to integration
of compactly supported (n, n)-forms on X an. The space of currents D·,·(X an) is
defined as the topological dual of the space of compactly supported forms.

A major result of Chambert-Loir and Ducros is the Poincaré–Lelong formula for
the meromorphic section of a line bundle endowed with a continuous metric ‖·‖.
Note that in this situation, c1(L , ‖·‖) is only a current, while a smooth metric allows
one to define the first Chern form in A1,1(X an). For a smooth metric, c1(L , ‖·‖)n
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is a form of top degree and hence defines a signed measure called the Monge–
Ampère measure of (L , ‖·‖). In arithmetic, metrics are often induced by proper
algebraic models over the valuation ring. Such metrics are called algebraic. They
are continuous on X an, but not smooth. This makes it difficult to define the Monge–
Ampère measure as a wedge product of currents. In the complex situation, one needs
Bedford–Taylor theory to define such a wedge product. In the nonarchimedean
situation, Chambert-Loir and Ducros use an approximation process by smooth
metrics to define this top-dimensional wedge product of first Chern currents.

The main theorem in [Chambert-Loir and Ducros 2012] shows that the Monge–
Ampère measure of a line bundle endowed with a formal metric is equal to the
Chambert-Loir measure. The latter was introduced in [Chambert-Loir 2006] before
a definition of first Chern current was available. It is defined as a discrete measure on
the Berkovich space using degrees of the irreducible components of the special fibre.
Chambert-Loir measures play a prominent role in nonarchimedean equidistribution
results. For example, they occur in the nonarchimedean version of Yuan’s equidis-
tribution theorem, which has applications to the geometric Bogomolov conjecture.

In the thesis of Christensen [2013] a different approach to a first Chern form was
given. Christensen studied the example E2 for a Tate elliptic curve E and he defined
the first Chern form as a tropical divisor on the skeleton of E2. Then he showed that
the 2-fold tropical self-intersection of this divisor gives the Chambert-Loir measure.

In this paper, we combine both approaches. We enrich the theory of differential
forms given in [Chambert-Loir and Ducros 2012] by enlarging the space of smooth
forms to the space of δ-forms. They behave as forms and they have the advantage
that we can define a first Chern δ-form for a line bundle endowed with a formal
metric. This leads to a direct definition of the Monge–Ampère measure as a wedge
product of δ-forms and to an approach to nonarchimedean Arakelov theory.

This will be explained in more detail now. Throughout this paper K denotes
an algebraically closed field endowed with a nontrivial nonarchimedean complete
absolute value. Note that this is no restriction of generality as for many problems
including the ones discussed in this paper such a setup can always be achieved
by base change. This is similar to the archimedean case where analysis is usually
performed over the complex numbers. For sake of simplicity, we assume in the
introduction that tropical cycles have constant weights as usual in tropical geometry
(see Section 1 for details and for a generalization to smooth weights). A δ-preform
on Rr is a supercurrent α on Rr of the form

α =
∑
i∈I

αi ∧ δCi (0.0.1)

for finitely many superforms αi and tropical cycles Ci on Rr . Using the wedge
product of superforms and the stable intersection product of tropical cycles, we
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get a wedge product of δ-preforms. Since the supercurrents of integration δCi

are d ′-closed and d ′′-closed, we can extend the differential operators d ′ and d ′′ to
δ-preforms leading to a differential bigraded R-algebra. We refer to Section 2 for
precise definitions and generalizations allowing smooth tropical weights.

In Section 3, we extend all these notions from Rr to a fixed tropical cycle C
of Rr . The balancing condition is equivalent to closedness of the supercurrent
δC , which means that C is boundaryless in the sense that no boundary integral
shows up in the theorem of Stokes over C . Therefore we may view a tropical
cycle as a combinatorial analogue of a complex analytic space. Using integration
over C , we will see that a piecewise smooth form η on the support of C induces a
supercurrent [η] on C . We apply this to a piecewise smooth function φ on C . In
tropical geometry, φ plays the role of a Cartier divisor on C and has an associated
tropical Weil divisor φ ·C . The latter is also called the corner locus of φ as it is a
tropical cycle of codimension 1 with support equal to the singular locus of φ. We
show in Corollary 3.19 the following tropical Poincaré–Lelong formula:

Theorem 0.1. Let φ be a piecewise smooth function on C and let δφ·C be the
supercurrent of integration over the corner locus φ ·C. Then we have

d ′d ′′[φ] − [d ′d ′′φ] = δφ·C
as supercurrents on C.

This is a statement about integration of superforms on tropical currents and its
proof relies on Stokes theorem. In fact, we prove a more general statement in
Theorem 3.16 involving integration of δ-preforms on C .

Let X be an n-dimensional algebraic variety over K . We now define δ-forms on
X an similarly as differential forms, but replacing superforms by the more general
δ-preforms. This means that a δ-form is given locally with respect to the Berkovich
analytic topology on very affine open subsets by pull-backs of δ-preforms with
respect to the tropicalization maps. The δ-preforms have to agree on overlaps which
involves a quite complicated restriction process which is explained in Section 4.
Moreover, we will show that δ-forms are bigraded, have a wedge product and
differential operators d ′, d ′′ extending the corresponding structures for differential
forms on X an. There is also a pull-back with respect to morphisms and so we see
that δ-forms behave as differential forms on complex manifolds.

In Section 5, we study integration of compactly supported δ-forms of bidegree
(n, n) on X an. To define the integral of such a δ-form α, we choose a dense open
subset U of X with a closed embedding U ↪→ Gr

m such that α is given on U an

by the pull-back of a δ-preform αU on Rr with respect to the tropicalization map
tropU :U

an
→ Rr . Using the corresponding tropical variety Trop(U ), we set∫

X an
α :=

∫
|Trop(U )|

αU .
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In Section 6, we introduce δ-currents as continuous linear functionals on the space
of compactly supported δ-forms. By integration, every δ-form α induces a δ-
current [α]. Similarly, we get a current of integration δZ for every cycle Z on X .
As a major result, we show in Corollary 6.15 that [α] is a signed Radon measure
on X an for every α of bidegree (n, n). We deduce in Proposition 6.16 that every
continuous real function g on X an induces a δ-current [g] on X an which is defined
at a compactly supported δ-form α of bidegree (n, n) by integrating g with respect
to the corresponding Radon measure.

Now let f be a rational function on X which is not identically zero. By integration
again, we will get a δ-current [−log| f |] on X an.

Theorem 0.2. Let cyc( f ) be the Weil divisor associated to f . Then we have the
Poincaré–Lelong equation

δcyc( f ) = d ′d ′′[log| f |]

of δ-currents on X an.

This is demonstrated as Theorem 7.2. The Poincaré–Lelong equation of Chambert-
Loir and Ducros is the special case of our formula where one evaluates the δ-currents
at differential forms. The generalization to δ-forms is not obvious and needs a more
tropical adaptation of their beautiful arguments. In Section 7, we introduce the first
Chern δ-current [c1(L , ‖·‖)] of a continuously metrized line bundle (L , ‖·‖) on X .
As usual, we mean here continuity with respect to the Berkovich topology on X an.
In Corollary 7.8, we deduce from Theorem 0.2 that a nonzero meromorphic section
s of L satisfies the Poincaré–Lelong equation

d ′d ′′[−log‖s‖] = [c1(L , ‖·‖)] − δcyc(s) (0.2.1)

for δ-currents on X an.
In Section 8, we define piecewise smooth and piecewise linear metrics on L . We

show in Proposition 8.11 that a metric is piecewise linear if and only if it is induced
by a formal model of the line bundle. In Section 9, we introduce piecewise smooth
forms on X an. For a piecewise smooth metric ‖·‖ on L , the first Chern δ-current
[c1(L , ‖·‖)] has a canonical decomposition into a sum of a piecewise smooth form
and a residual current. If ‖·‖ is smooth, then c1(L , ‖·‖) is a differential form
on X an. We say that a piecewise smooth metric ‖·‖ is a δ-metric if the first Chern
δ-current [c1(L , ‖·‖)] is induced by a δ-form c1(L , ‖·‖) (see Definition 9.9 for
a more precise definition). In this situation, we call c1(L , ‖·‖) the first Chern
δ-form of (L , ‖·‖). We will see in Remark 9.16 that every piecewise linear metric
is a δ-metric. Canonical metrics on line bundles exist on line bundles on abelian
varieties, on line bundles which are algebraically equivalent to zero and on line
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bundles on toric varieties. It follows from our considerations in Section 8 that all
these canonical metrics are δ-metrics (see Example 9.17).

In Section 10, we consider a proper algebraic variety X over K of dimension n
with a line bundle L endowed with an algebraic metric ‖·‖. This means that the
metric is induced by an algebraic model of L . Based on the formal GAGA principle,
we show in Proposition 8.13 that an algebraic metric is the same as a formal metric
and hence this is also the same as a piecewise linear metric. As a consequence,
we note that ‖·‖ is a δ-metric and hence c1(L , ‖·‖) is a well-defined δ-form. We
deduce that c1(L , ‖·‖)n is a δ-form of bidegree (n, n) on X an, which we may view
as a signed Radon measure on X an by the above. We call it the Monge–Ampère
measure associated to (L , ‖·‖). Our Theorem 10.5 can be expressed as follows:

Theorem 0.3. Under the assumptions above, the Monge–Ampère measure associ-
ated to (L , ‖·‖) is equal to the Chambert-Loir measure associated to (L , ‖·‖).

As mentioned before, this theorem was first proved by Chambert-Loir and Ducros
in a slightly different setting (for discrete valuations, but their method works also
for algebraically closed fields). However, they have a different construction of the
Monge–Ampère measure. Since algebraic metrics are usually not smooth, they
have only a first Chern current c1(L , ‖·‖) available. In general, the wedge product
of currents is not well defined. In the present situation, they can use a rather
complicated approximation process by smooth metrics to make sense of the wedge
product c1(L1, ‖·‖1)

n as a current leading to their Monge–Ampère measure. Our
Monge–Ampère measure is defined directly as a wedge product of δ-forms based
on tropical intersection theory instead of the approximation process. This means
that our proof is more influenced by tropical methods.

In Section 11, we define a Green current for a cycle Z on the algebraic variety
X over K as a δ-current gZ such that

d ′d ′′gZ = [ωZ ] − δZ

for a δ-form ωZ on X an. By the Poincaré–Lelong equation (0.2.1), a nonzero
meromorphic section s of L induces a Green current gY := −log‖s‖ for the Weil
divisor Y of s. Here, we assume that ‖·‖ is a δ-metric on the line bundle L of X .
In case of proper intersection, we define gY ∗ gZ := gY ∧ δZ + ωY ∧ gZ as in the
archimedean theory of Gillet–Soulé. It is an easy consequence of the Poincaré–
Lelong equation that gY ∗ gZ is a Green current for the cycle Y · Z . We show the
usual properties for such ∗-products. Most difficult is the proof of the commutativity
of the ∗-product of two Green currents for properly intersecting divisors. It relies
on the study of piecewise smooth forms and the tropical Poincaré–Lelong formula
in Theorem 0.1.
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In Section 12, we define the local height of a proper n-dimensional variety X
over K with respect to properly intersecting Cartier divisors D0, . . . , Dn endowed
with δ-metrics on O(D0), . . . , O(Dn) as follows: Let gYj be the Green current for
the Weil divisor Yj associated to D j as above; then the local height is given by

λD̂0,...,D̂n
(X) := gY0 ∗ · · · ∗ gYn (1).

We show that these local heights are multilinear and symmetric in the metrized
Cartier divisors D̂0, . . . , D̂n , functorial with respect to morphisms and satisfy an
induction formula useful to decrease the dimension of X . For algebraic metrics,
local heights of proper varieties are also defined using intersection theory on a
suitable proper model (see [Gubler 1998, §9]).

Theorem 0.4. Suppose that the metrics on O(D0), . . . , O(Dn) are all algebraic.
Then the local height λD̂0,...,D̂n

(X) based on the ∗-product of Green currents is
equal to the local height of X given by intersection theory of divisors on K ◦-models.

The proof uses the observation that the induction formula holds for both defini-
tions of local heights and then Theorem 0.3 gives the claim (see Remark 12.7 for
more details and the proof).

In the introduction, we have presented the whole theory of δ-forms based on
δ-preforms as in (0.0.1) using tropical cycles with constant weights. However, the
theory can be extended to δ-forms locally given by δ-preforms allowing tropical
cycles with smooth weights. This will be done throughout the whole paper which
leads to slightly more complications, but it increases the class of δ-metrics at
the end which makes it worthwhile. Observe that tropical cycles which arise as
tropicalizations from varieties always have integer weights. Therefore tropical
cycles are always considered with constant weights when they serve, as in Section 3,
as underlying spaces for supercurrents and δ-preforms.

Notation and terminology. Throughout this paper K denotes an algebraically
closed field endowed with a complete nontrivial nonarchimedean absolute value | · |,
valuation ring K ◦, and corresponding valuation v =−log| · |. Let 0 := v(K×) be
the value group.

In A ⊂ B, A is strictly smaller than B. The complement of A in B is denoted
by B \ A. The zero is included in N and in R+.

The group of multiplicative units in a ring A with 1 is denoted by A×. An
(algebraic) variety over a field is an irreducible separated reduced scheme of finite
type. The terminology from convex geometry is explained in the Appendix.

1. Tropical intersection theory with smooth weights

In tropical geometry, a tropical cycle is given by a polyhedral complex whose
maximal faces are weighted by integers satisfying a balancing condition along the
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faces of codimension 1. In this section, we generalize the notion of a tropical cycle
allowing smooth real functions on the maximal faces as weights. This is similar
to the tropical fans with polynomial weights introduced by Esterov [2012] and
François [2013]. We generalize basic facts from stable tropical intersection theory
and introduce the corner locus of a piecewise smooth function.

Throughout this section N and N ′ denote free Z-modules of finite rank r and r ′.
We write NR = N ⊗Z R and N ′R = N ′⊗Z R. Every integral R-affine polyhedron σ
of dimension n in the R-vector space NR = N ⊗Z R determines an affine subspace
Aσ with underlying vector space Lσ and a lattice Nσ = Lσ ∩ N in Lσ (see A.2
in the Appendix). A smooth function f : σ → R on a polyhedron σ in NR is the
restriction of a smooth function on some open neighbourhood of σ in Aσ . For
further notation borrowed from convex geometry, we refer to the Appendix.

Definition 1.1. (i) A polyhedral complex C of pure dimension n is called weighted
(with smooth weights) if each polyhedron σ ∈ Cn is endowed with a smooth weight
function mσ : σ → R. If all mσ are constant functions, then we call them constant
weights. The support |(C ,m)| of a weighted polyhedral complex (C ,m) of pure
dimension n is the closed set

|(C ,m)| =
⋃
σ∈Cn

supp(mσ ).

The support |C | of a polyhedral complex C is the support of (C ,m), where m = 1
is the trivial weight function. We have |(C ,m)| ⊆ |C |.

(ii) Let C = (C ,m) be an integral R-affine polyhedral complex of pure dimension n
with smooth weights in NR. For each codimension-one face τ of a polyhedron σ ∈Cn

we choose a representative ωσ,τ ∈ Nσ of the generator of the one-dimensional lattice
Nσ/Nτ pointing in the direction of σ. Then we say that the weighted polyhedral
complex C satisfies the balancing condition if we have∑

σ∈Cn
σ�τ

mσ (ω)ωσ,τ ∈ Lτ (1.1.1)

for all τ ∈ Cn−1 and all ω ∈ τ , where σ � τ means that τ is a face of σ. This is a
straightforward generalization of the balancing condition for polyhedral complexes
with integer weights [Gubler 2013, 13.9].

(iii) A tropical cycle C = (C ,m) of dimension n in NR is a weighted integral
R-affine polyhedral complex of pure dimension n which satisfies the balancing
condition (1.1.1). In the following, we identify two tropical cycles (C ,m) and
(C ′,m′) of dimension n if |(C ,m)| = |(C ′,m′)| and if mσ =mσ ′ on the intersection
of the relative interiors of σ and σ ′ for all σ ∈ Cn and σ ′ ∈ C ′n . A tropical cycle
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(C ,m) whose underlying polyhedral complex is a rational polyhedral fan in the
vector space NR is called a tropical fan.

(iv) Let C = (C ,m) be a tropical cycle of dimension n. Given an integral R-affine
subdivision C ′ of C , there is a unique family of weight functions m′ such that
(C ′,m′) is a tropical cycle and mσ |σ ′ = m′σ ′ holds for all σ ′ ∈ C ′n and σ ∈ Cn such
that σ ′ ⊆ σ . If a tropical cycle C in NR is defined by a weighted integral R-affine
polyhedral complex (C ,m), we call C a polyhedral complex of definition for the
tropical cycle C .

(v) The set of tropical cycles with smooth weights of pure dimension n in NR

defines an abelian group TZn(NR) where the group law is given by the addition of
multiplicity functions on a common refinement of the integral R-affine polyhedral
complexes. We denote by TZk(NR)= TZr−k(NR) the group of tropical cycles of
codimension k.

Remark 1.2 (reduction from smooth to constant weight functions). In tropical
geometry, one usually considers tropical cycles with integer weights. However
it causes no problems to work instead with tropical cycles with constant but not
necessarily integer weights.

Many properties of these tropical cycles with integer or constant weights extend
even to tropical cycles with smooth weights by the following local argument in
ω ∈ |C |. We replace C by the rational polyhedral fan of local cones in ω (see A.6)
and we endow the local cone of σ ∈Cn by the constant weight mσ (ω). By definition,
these constant weights on the rational cones satisfy the balancing condition. We
illustrate the use of this reduction process in Remark 1.4(ii).

1.3. In tropical geometry, there is a stable tropical intersection product of tropical
cycles with integer weights. The astonishing fact is that this product is well-defined
as a tropical cycle in contrast to algebraic intersection theory or homology, where
an equivalence relation is needed. Constructions of a stable tropical intersection
product of tropical cycles with integer weights have been given by Mikhalkin [2006]
and Allermann and Rau [2010]. In both cases the construction is reduced to the
case of tropical fans. For tropical fans with integer weights, Mikhalkin uses the fan
displacement rule from [Fulton and Sturmfels 1997], whereas Allermann and Rau
use reduction to the diagonal and intersections with tropical Cartier divisors. It is
shown in [Katz 2012, §5; Rau 2009, Theorem 1.5.17] that both definitions agree.
This is based on a result of Fulton and Sturmfels [1997, Theorem 3.1] which shows
that the space of tropical fans, with integer weights and with a given complete
rational polyhedral fan 6 as a polyhedral complex of definition, is canonically
isomorphic to the Chow cohomology ring of the complete toric variety Y6 associated
to6. Then the product in Chow cohomology leads to the stable intersection product
of tropical fans with integer weights and the usual properties in Chow cohomology
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lead to corresponding properties in stable tropical intersection theory. By passing
to a smooth rational polyhedral fan subdividing 6, which means that Y6 is smooth,
we may use the usual Chow groups instead of the Chow cohomology groups from
[Fulton 1984, Chapter 17].

Remark 1.4 (stable tropical intersection theory). As an application of the reduction
principle described in Remark 1.2, we get a stable tropical intersection theory for
tropical cycles with smooth weights. The reduction process leads to tropical fans
with constant weight functions. These weights are not necessarily integers, but it is
still possible to apply 1.3 by using Chow cohomology with real coefficients. We
list here the main properties:

(i) There exists a natural bilinear pairing

TZk(NR)×TZl(NR)→ TZk+l(NR), (C1,C2) 7→ C1 ·C2

which is called the stable intersection product for tropical cycles. It is associative and
commutative and respects supports in the sense that we have |C1 ·C2| ⊆ |C1|∩ |C2|.

(ii) The concrete construction of the stable intersection product for tropical cycles
C1 and C2 of codimension l1 and l2 in NR is based on the fan displacement rule (see
[Fulton and Sturmfels 1997, §4]). We choose a common polyhedral complex of
definition C for C1 and C2 and write Ci = (C ,mi ) (i = 1, 2) for suitable families
of weight functions mi = (mi,σ )σ∈C li . Let D denote the polyhedral subcomplex of
C which is generated by C l1+l2 . We choose a generic vector v ∈ NR for D , a small
ε > 0, and equip D with the family of weight functions m = (mτ )τ∈C l1+l2 , where
mτ : τ → R is given by

mτ (ω)=
∑

(σ1,σ2)∈C
l1×C l2

τ=σ1∩σ2
σ1∩(σ2+εv) 6=∅

[N : Nσ1 + Nσ2]m1,σ1(ω)m2,σ2(ω). (1.4.1)

We will show that D= (D,m) is a tropical cycle whose construction is independent
of the choice of the generic vector v and a sufficiently small ε > 0. We use D as
the definition of the stable intersection product C1 ·C2.

The proof illustrates the reduction to constant weights given in Remark 1.2. For
ω ∈ |C |, let Cω be the rational polyhedral fan of local cones in ω of the polyhedra
in C . First, we note that σ 7→ ρ := LCσ (ω) is a bijective map from the set of
polyhedra in C containing ω onto Cω. For i = 1, 2 and σ ∈ Cn with ω ∈ σ , we
endow the local cone ρ = LCσ (ω) with the constant weight mi,ρ(ω) := mi,σ (ω).
Since the weight functions mi,σ pointwise satisfy the balancing condition, we get a
tropical fan (Cω,mi (ω)) with real weights.

We claim that mτ (ω) from (1.4.1) is the same as the weight of the stable in-
tersection product (Cω,m1(ω)) · (Cω,m2(ω)) in τ ∈ C l1+l2 obtained from Chow
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cohomology as in 1.3. To see this, note that for a generic vector v ∈ NR , we choose
ε>0 so small that the condition σ1∩(σ2+εv) 6=∅ is equivalent to ρ1∩(ρ2+v) 6=∅
for the corresponding cones ρ1, ρ2. Then (1.4.1) agrees with the formula in [Fulton
and Sturmfels 1997, Theorem on p. 336] for the product in Chow cohomology
of proper toric varieties. By definition, the same formula is used for the stable
intersection product of tropical fans with constant weights, proving our local claim.
It is well known in tropical geometry, and follows from the comparison with Chow
cohomology in [Fulton and Sturmfels 1997], that the definition of the stable tropical
intersection product of tropical fans with real weights is independent of the choice
of generic vector v, and hence the definition of D = (D,m) is independent of the
choice of generic vector v ∈ NR and sufficiently small ε > 0.

It is easily seen that the definition of D is compatible with subdivisions and
hence C1 ·C2 is a well-defined tropical cycle. The properties in (i) follow from the
corresponding properties of the stable tropical intersection product of tropical fans
with real weights.

(iii) Let F : N ′R→ NR be an integral R-affine map. Let C ′= (C ′,m′) be a weighted
integral R-affine polyhedral complex in N ′R of pure dimension n. After a suitable
refinement we can assume that

F∗C ′ := {F(τ ′) | ∃σ ′ ∈ C ′n such that τ ′ 4 σ ′ and F |σ ′ is injective} (1.4.2)

is a polyhedral complex in NR. We equip F∗C ′ with the family of weight functions

mν : ν→ R, mν(ω)=
∑
σ ′∈C ′n

F(σ ′)=ν

[Nν : LF (N ′σ ′)]m
′

σ ′((F |σ ′)
−1(ω)) (1.4.3)

for ν in (F∗C ′)n , where LF denotes the linear morphism defined by the affine
morphism F . The weighted integral R-affine polyhedral complex

F∗C ′ = (F∗C ′,m)

in NR of pure dimension n is called the direct image of C ′ under F .

(iv) Let F : N ′R→ NR be an integral R-affine map. There is a natural push-forward
morphism

F∗ : TZn(N ′R)→ TZn(NR), C ′ 7→ F∗C ′,

which satisfies |F∗C ′| ⊆ F
(
|C ′|

)
. Given a tropical cycle C ′ in TZn(N ′R), we write

C ′= (C ′,m′) for a polyhedral complex of definition C ′ such that F∗C ′ from (1.4.2)
is a polyhedral complex in NR. One defines the direct image F∗C ′ = (F∗C ′,m)
as in (iii) and verifies that F∗C ′ is again a tropical cycle. The formation of F∗ is
functorial in F . For further details see [Allermann and Rau 2010, §7] or [Gubler
2013, 13.16].
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(v) Let F : N ′R→ NR be an integral R-affine map. There is a natural pull-back

F∗ : TZl(NR)→ TZl(N ′R), C 7→ F∗(C)

which satisfies |F∗C | ⊆ F−1(|C |). The formation of F∗ is functorial in F . For a
tropical cycle C in TZl(NR), there is a complete polyhedral complex of definition
C and we write C = (C ,m). After passing to a subdivision, there is a complete,
integral R-affine polyhedral complex C ′ of N ′R such that for every γ ′ ∈ C ′, there
is a σ ∈ C with F(γ ′)⊆ σ. We choose a generic vector v ∈ NR and a sufficiently
small ε > 0. For γ ′ ∈ (C ′)l , σ ∈ C l with F(γ ′)⊆ σ and σ ′ ∈ (C ′)0 with γ ′ ⊆ σ ′,
we define

mγ ′

σ ′,σ :=

{
[N : LF (N ′)+ Nσ ] if F(σ ′) meets σ + εv,
0 otherwise.

These coefficients may depend on the choice of the generic vector v, but the
following smooth weight function mγ ′ on γ ′ ∈ (C ′)l does not:

mγ ′(ω
′) :=

∑
σ ′,σ

mγ ′

σ ′,σmσ (F(ω′)), (1.4.4)

where (σ ′, σ ) ranges over all pairs in (C ′)0 × C l with γ ′ ⊆ σ ′, F(γ ′) ⊆ σ and
where ω′ ∈ γ ′. By [Fulton and Sturmfels 1997, 4.5–4.7], (C ′)≥l equipped with
the smooth weight functions mγ ′ is a tropical cycle in TZl(N ′R), which we define
as F∗(C).

Let p1 (resp. p2) be the projection of N ′R× NR to N ′R (resp. NR) and let 0F be
the graph of F in N ′R× NR. Using the stable tropical intersection product from (ii)
and [Fulton and Sturmfels 1997, 4.5–4.7], we deduce

F∗(C)= (p1)∗(p∗2(C) ·0F ). (1.4.5)

Proposition 1.5. Let F : N ′R→ NR be an integral R-affine map.

(i) For tropical cycles C and D on NR we have

F∗(C · D)= F∗(C) · F∗(D).

(ii) For tropical cycles C on NR and C ′ on N ′R we have

F∗
(
F∗(C) ·C ′

)
= C · F∗(C ′).

Proof. We reduce as in Remark 1.2 to the case where our tropical cycles are tropical
fans with constant weight functions. Since both sides of the claims are linear in the
weights of the tropical fans, we may assume that the weights are integers. In this
situation, the claims were proven by L. Allermann [2012, Theorem 3.3]. �
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Definition 1.6. Let � be an open subset of an integral R-affine polyhedral set
P in NR. We call φ : �→ R piecewise smooth if there is an integral R-affine
polyhedral complex C with support P and smooth functions φσ : σ ∩�→ R for
every σ ∈ C such that φ|σ = φσ on σ ∩�. In this situation, we call C a polyhedral
complex of definition for the piecewise smooth function φ. We call φ piecewise
linear if each φσ extends to an integral R-affine function on Aσ .

Remark 1.7. The balancing condition (1.1.1) for smooth weights shows easily that
a tropical cycle of codimension 0 in NR is the same as a piecewise smooth function
defined on the whole space NR.

Proposition 1.8. Let φ be a piecewise smooth function on the open subset � of the
integral R-affine polyhedral set P in NR and let �̃ be any open subset of NR with
�̃∩ P = �. Then there is a piecewise smooth function on �̃ which restricts to φ
on �.

Proof. We first show the claim in the special case when �= P is the support of
a rational polyhedral fan C of definition for φ and �̃ = NR. After passing to a
subdivision of C , we can easily find a complete rational polyhedral fan C ′ in NR

which contains C . After suitable subdivisions of C ′ (and C ) we may furthermore
assume that all cones in C ′ are simplicial. Now we will extend φ inductively by
ascending dimension from the cones in C to the cones in C ′.

Let σ be a cone in C ′ of dimension m. We are looking for an extension φ̃ of
φ to σ . By our inductive procedure, we can assume that φ is defined already on
all faces of codimension one of σ . After a linear change of coordinates, we may
assume that σ is the standard cone Rm

+
in Rm . Let us assume that φ is given on

the face {xi = 0} of σ by the smooth function φi (x1, . . . , xi−1, xi+1, . . . , xm). For
any 1≤ i1 < · · ·< ik ≤ m, the restriction of φ to the face {xi1 = · · · = xik = 0} of
σ is given by a smooth function φi1···ik depending only on the coordinates x j with
j 6∈ {i1, . . . , ik} which agrees with the restrictions of the functions φi1, . . . , φik to
this face of codimension k. We consider all these functions φi1···ik as functions on σ
depending only on the coordinates x j . Then an elementary combinatorial argument
shows that

φ̃ :=
∑

i

φi −
∑
i< j

φi j + · · ·+ (−1)k+1
∑

i1<···<ik

φi1···ik ± · · ·+ (−1)n+1φ1···n

is a smooth extension of φ to σ .
Finally, we prove the claim in general. There is a finite open covering (�i )i∈I

of � such that �i = �i ∩ (LCωi (P)+ ωi ) for the local cone LCωi (P) of P at a
suitable ωi . Let us choose an open covering (�̃i )i∈I of �̃ such that �̃i ∩ P =�i .
There is a partition of unity (ρj ) j∈J on �̃ such that every ρj has compact support
in �̃i( j) for a suitable i( j) ∈ I . We choose νj ∈ C∞(NR) with compact support
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in �̃i( j) such that νj ≡ 1 on supp(ρj ). Then the special case above shows that the
piecewise smooth function νjφ on P has a piecewise smooth extension φ̃j to NR.
Even if J is infinite, we note that only finitely many rational fans of definition
occur and the above construction gives piecewise smooth extensions φ̃j with finitely
many integral R-affine polyhedral complexes of definition. By passing to a common
refinement, we may assume that they are all equal to a complete integral R-affine
polyhedral complex D . We conclude that φ̃ =

∑
j∈J ρ̃j φ̃j is a piecewise smooth

extension of φ to �̃ with D as a polyhedral complex of definition. �

Remark 1.9. Let 6 be a rational polyhedral fan of NR and let φ : |6| → R be
a piecewise linear function with polyhedral complex of definition 6. Then φ
is the restriction of a piecewise linear function on NR with a complete rational
polyhedral fan of definition. The argument is a little different: By toric resolution of
singularities, one can subdivide 6 until we get a subcomplex of a smooth rational
polyhedral fan 6′ of NR (see A.7 for the connection to toric varieties). We may
assume that φ(0)= 0. Let λ be a primitive lattice vector contained in an edge of
6′ with λ 6∈ |6| and let φ(λ) ∈ Z. Then there is a unique piecewise linear function
φ′ on NR with φ′ = φ on |6| and φ′(λ)= φ(λ) for all primitive lattice vectors λ as
above.

Similarly to [Esterov 2012; François 2013], we introduce the corner locus of a
piecewise smooth function.

Definition 1.10 (corner locus). Let C = (C ,m) be a tropical cycle with smooth
weights of dimension n. We consider a piecewise smooth function φ : |C |→R with
polyhedral complex of definition C . Given τ ∈ Cn−1 we choose for each σ ∈ Cn

with τ ≺ σ an ωσ,τ ∈ Nσ as in Definition 1.1(ii). For ω in τ , we define

ωτ :=
∑
σ∈Cn
τ≺σ

mσ (ω)ωσ,τ ∈ Lτ .

Note that ωτ depends on the choice of ω. Viewing ωσ,τ and ωτ as tangential vectors
at ω, we denote the corresponding derivatives by

∂φσ

∂ωσ,τ
:= 〈dφσ , ωσ,τ 〉, and

∂φτ

∂ωτ
:= 〈dφτ , ωτ 〉,

respectively. It is straightforward to check that the definition of the weight function

mτ : τ → R, mτ (ω) :=

(∑
σ∈Cn
τ≺σ

mσ (ω)
∂φσ

∂ωσ,τ
(ω)

)
−
∂φτ

∂ωτ
(ω) (1.10.1)

does not depend on the choice of the ωσ,τ . The corner locus φ · C of φ is by
definition the weighted polyhedral subcomplex C ′ of C generated by Cn−1 endowed
with the smooth weight functions mτ defined in (1.10.1).
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Remark 1.11. Let φ : |C | → R be a piecewise linear function on a tropical cycle
C = (C ,m) with integral weights. Then the corner locus φ ·C is a tropical cycle
with integral weights which is the tropical Weil divisor of φ on C in the sense of
Allermann and Rau [2010, 6.5].

Esterov [2012, Theorem 2.7] showed that the corner locus of a piecewise polyno-
mial function on a tropical cycle with polynomial weights is again a tropical cycle
of the same kind. We have here a similar result for tropical cycles with smooth
weights:

Proposition 1.12. The corner locus φ·C of a piecewise smooth function φ : |C |→R

on a tropical cycle C= (C ,m) of dimension n is a tropical cycle with smooth weights
of dimension n− 1. The corner locus is defined independently of the choice of the
polyhedral complex C and φ ·C depends only on the function φ||C |.

Proof. This follows from Remark 1.11 as explained in Remark 1.2. �

Proposition 1.13. Let F : N ′R → NR be an integral R-affine map. Let φ be a
piecewise smooth function on an integral R-affine polyhedral complex C on NR.
Suppose that C ′ = (C ′,m′) is a tropical cycle on N ′R with smooth weights m′ such
that F(|C ′|)⊆|C |. Then we have the projection formula F∗(F∗(φ)·C ′)=φ ·F∗(C ′),
where F∗(φ) is the piecewise smooth function on |C ′| obtained by φ ◦ F.

Proof. This follows locally as in [Allermann and Rau 2010, Proposition 4.8] using
Remarks 1.2 and 1.11, and a linearization procedure (see proof of Proposition 1.14).

�

Proposition 1.14. Let C and C ′ be tropical cycles on NR with smooth weights. Let
C be a polyhedral complex of definition for C and φ : |C | → R and ψ : |C | → R

piecewise smooth functions. Then we have the associativity law

φ · (C ·C ′)= (φ ·C) ·C ′ (1.14.1)

and the commutativity law

φ · (ψ ·C)= ψ · (φ ·C) (1.14.2)

as identities of tropical cycles on NR.

Proof. Using Remark 1.11 it is shown in [Allermann and Rau 2010, Lemma 9.7,
Proposition 6.7] that (1.14.1) and (1.14.2) hold for tropical cycles C,C ′ with integral
weights and piecewise linear functions φ,ψ : |C | → R with integral slopes. As
both sides of (1.14.1) and (1.14.2) are linear in weights and slopes, both formulas
extend by linearity to tropical cycles with constant weight functions and piecewise
linear functions with arbitrary real slopes.

To reduce to the above situation, we use the procedure described in Remark 1.2.
We may assume that C and C ′ are tropical cycles of pure dimension n and n′
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respectively. Let C be an integral R-affine polyhedral complex such that C≤n and
C≤n′ are polyhedral complexes of definition for C and C ′. We write C = (C≤n,m),
C ′ = (C ′

≤n′,m′), and C ·C ′ = (C≤l,m′′) with l := n + n′ − r . Given ω ∈ |C | we
denote by Cω the rational polyhedral fan of local cones of C in ω. There is a
bijective correspondence between the polyhedra σ ∈ C with ω ∈ σ and the cones
σω in Cω. Each σ ∈ C with ω ∈ σ determines a canonical isomorphism of affine
spaces Iω : Lσω −→

∼ Aσ with Iω(0) = ω. We obtain tropical fans with constant
weight functions Cω = (Cω,≤n,m(ω)), C ′ω = (Cω,≤n′,m′(ω)), and (C · C ′)ω =
(Cω,≤n,m′′(ω)). We have Cω · C ′ω = (C · C

′)ω by our construction of the stable
tropical intersection product with smooth weights. There is a unique piecewise
linear function φω : |Cω| → R such that for all σω ∈ Cω the R-linear function φσω
on Lσω determined by φω|σω = φσω |σω satisfies

(dφσω)(0)= (I
∗

ωdφ)(0)

in L∗σω . We write

φ · (C ·C ′)= (C≤l−1,m1), φω · (Cω ·C ′ω)= (Cω,≤l−1,mω,1),

(φ ·C) ·C ′ = (C≤l−1,m2), (φω ·Cω) ·C ′ω = (Cω,≤l−1,mω,2).

The local nature of our definitions yields

mi,σ (ω)= mω,i,σω(0)

for i = 1, 2 and all σ ∈ C≤n+n′−r−1 with ω ∈ σ . Formula (1.14.1) for constant
weight functions and piecewise linear functions with arbitrary real slopes gives
mω,1,σω(0) = mω,2,σω(0). Hence m1 = m2 and (1.14.1) is proven in general. The
reduction of (1.14.2) to the case of constant weight functions and piecewise linear
functions proceeds in exactly the same way. �

Corollary 1.15. Let F : N ′R → NR be an integral R-affine map. We consider a
tropical cycle C = (C ,m) with smooth weights on NR and a piecewise smooth
function φ : |C | → R. We write F∗C = (C ′,m′), where F(|C ′|) ⊆ |C |. Then φ
induces a piecewise smooth function F∗(φ) : |C ′| → R and we have

F∗(φ) · F∗(C)= F∗(φ ·C),

i.e., the formation of the corner locus is compatible with pull-back.

Proof. Using (1.4.5) giving pull-back as a stable intersection with the graph, the
claim follows by applying Proposition 1.13 and (1.14.1) in Proposition 1.14. �

2. The algebra of delta-preforms

In this section we define polyhedral supercurrents on an open subset �̃ in NR for
some free Z-module N of finite rank. The polyhedral supercurrents are special
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supercurrents in the sense of Lagerberg. We show that an analogue of Stokes’
theorem holds for polyhedral supercurrents with respect to the polyhedral derivatives
d ′P and d ′′P . Then we introduce the algebra of δ-preforms on �̃ which is going to play
a central role in this paper. These δ-preforms are special polyhedral supercurrents
defined by tropical cycles and superforms. We show that δ-preforms admit products
and pull-back morphisms, satisfy a projection formula and that the polyhedral
derivative of a δ-preform coincides with its derivative in the sense of supercurrents.

Throughout this section N and N ′ denote free Z-modules of finite rank r and r ′.
We write NR = N ⊗Z R and N ′R = N ′ ⊗Z R. We refer to the Appendix for the
notation from convex geometry.

2.1. Given an open subset �̃ in NR, we denote by Ap,q(�̃) the space of superforms
of type (p, q) on �̃, by Ap,q

c (�̃) the space of superforms with compact support
of type (p, q) on �̃, and by Dk,l(�̃)= Dr−k,r−l(�̃) the space of supercurrents of
type (k, l) on �̃ in the sense of Lagerberg [2012] (see also [Chambert-Loir and
Ducros 2012; Gubler 2016]). We have seen in the introduction that A :=

⊕
p,q Ap,q

defines a sheaf of differential bigraded R-algebras with respect to the differentials
d ′ and d ′′. The bigraded sheaf D :=

⊕
p,q D p,q contains A as a bigraded subsheaf

and has canonical differentials d ′ and d ′′ extending those of A.
The sheaf Ap,q comes with a natural operator J p,q

: Ap,q
→ Aq,p which extends

to J p,q
: D p,q

→ Dq,p. The first one induces an involution J :=
⊕

p,q J p,q on
A which is determined by the fact that it is an endomorphism of sheaves of A0.0-
algebras and that d ′ ◦ J = J ◦d ′′. The extension of J to supercurrents is determined
by

〈J (T ), α〉 = (−1)r 〈T, J (α)〉

for α ∈ Ar−p,r−q(�̃) and T ∈ D p,q(�̃). Sections of Ap,p (resp. D p,p) which are
invariant under the action of (−1)p J p,p are called symmetric superforms (resp.
symmetric supercurrents). Sections of Ap,p (resp. D p,p) which are invariant under
the action of (−1)p+1 J p,p are called antisymmetric superforms (resp. antisymmetric
supercurrents).

2.2. Let �̃ be an open subset of NR. An integral R-affine polyhedron 1 of dimen-
sion n in NR determines a canonical calibration

µ1 ∈
∣∣∧nL1

∣∣= Or(A1)×±1∧nL1

as in [Chambert-Loir and Ducros 2012, (1.3.5)]. Given a superform α ∈ An,n
c (�̃)

the integral ∫
1

α =

∫
NR

〈α,µ1〉
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was defined in [Chambert-Loir and Ducros 2012, §1.5] (see also [Gubler 2016, §3]).
The polyhedron 1 determines a continuous functional

An,n
c (�̃)→ R, α 7→

∫
1

α (2.2.1)

and a symmetric supercurrent δ1 ∈ Dn,n(�̃).
For � := �̃ ∩1, we define Ap,q

1 (�) as the space of superforms on the open
subset �̃ ∩ relint(1) of the affine space A1 given by restriction of elements in
Ap,q(�̃). A partition of unity argument shows that this definition is independent of
the choice of �̃.

For a superform α ∈ Ap,q
1 (�̃∩1), the supercurrent

α∧ δ1 ∈ Dn−p,n−q(�̃)

is defined by 〈α∧ δ1, β〉 = 〈δ1, α∧β〉 for all β ∈ An−p,n−q
c (�̃).

Definition 2.3 (polyhedral supercurrents). Let �̃ be an open subset of NR. A
supercurrent α ∈ D(�̃) is called polyhedral if there exists an integral R-affine
polyhedral complex C in NR and a family (α1)1∈C of superforms α1 ∈ A1(�̃∩1)
such that

α =
∑
1∈C

α1 ∧ δ1 (2.3.1)

holds in D(�̃). In this case we say that C is a polyhedral complex of definition
for α. The polyhedral derivatives d ′P(α) and d ′′P(α) of a polyhedral supercurrent
(2.3.1) are the polyhedral supercurrents defined by the formulas

d ′P(α)=
∑
1∈C

d ′(α1)∧ δ1, d ′′P(α)=
∑
1∈C

d ′′(α1)∧ δ1.

Remark 2.4. (i) We observe that the family of forms (α1)1∈C in (2.3.1) is uniquely
determined by α and C . Furthermore the support supp(α) of a polyhedral supercur-
rent α is the union of the supports of the forms α1 for all 1 ∈ C .

(ii) It is straightforward to check that the definitions of the polyhedral deriva-
tives d ′P(α) and d ′′P(α) do not depend on the choice of the polyhedral complex of
definition C .

(iii) We do not claim that the polyhedral derivatives of a polyhedral supercurrent α
coincide with derivative of a α in the sense of supercurrents. In fact the derivatives
of a polyhedral supercurrent in the sense of supercurrents are in general not even
polyhedral.

Definition 2.5. Let �̃ denote an open subset of NR. Let P ⊆ �̃ be an integral
R-affine polyhedral set in NR. We choose an integral R-affine polyhedral complex
C in NR whose support is P.
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(i) Let α ∈ D0,0(�̃) be a polyhedral supercurrent such that supp(α)∩ P is compact.
After suitable refinements, we may assume that α admits a polyhedral complex of
definition D such that D is a subcomplex of C . In this situation we write

α =
∑
1∈D

α1 ∧ δ1 (2.5.1)

as in (2.3.1) and define the integral of α over P as∫
P
α =

∑
1∈D

∫
1

α1. (2.5.2)

(ii) Let β ∈ D1,0(�̃) be a polyhedral supercurrent with supp(β) ∩ P compact.
Proceeding as in (i), we get β =

∑
1∈D β1 ∧ δ1 for a suitable subcomplex D of C

and we define the integral of β over the boundary of P as∫
∂P
β =

∑
1∈D

∫
∂1

β1, (2.5.3)

where the boundary integrals on the right are defined as in [Chambert-Loir and
Ducros 2012, §1.5; Gubler 2016, 2.6]. We define the boundary integral (2.5.3) for
a polyhedral supercurrent β ∈ D0,1(�̃) with supp(β) ∩ P compact by the same
formula.

Remark 2.6. (i) The definitions in (2.5.2) and (2.5.3) do not depend on the choice
of the polyhedral complex D .

(ii) On the Borel algebra B(P), we get signed measures

µP,α : B(P)→ R, µP,α(M)=
∑
1∈D

∫
M∩1

α1

and

µ∂P,β : B(P)→ R, µ∂P,β(M)=
∑
1∈D

∫
M∩∂1

β1.

(iii) We recall from A.5 that relint(P) denotes the set of regular points of a polyhe-
dral set P . Then supp(β)∩ P ⊆ relint(P) implies∫

∂P
β = 0 (2.6.1)

as an immediate consequence of the definitions.

Proposition 2.7 (Stokes’ formula for polyhedral supercurrents). Let �̃ denote an
open subset and P an integral R-affine polyhedral subset in NR with P ⊆ �̃. Then
we have ∫

P
d ′Pα =

∫
∂P
α,

∫
P

d ′′Pβ =
∫
∂P
β
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for all polyhedral supercurrents α ∈ D1,0(�̃) and β ∈ D0,1(�̃) with supp(α)∩ P
and supp(β)∩ P compact.

Proof. We choose a polyhedral complex of definition C for α such that a subcomplex
D has support P. By linearity it is sufficient to treat the case α = α1 ∧ δ1 for a
superform α1 ∈ An−1,n

c (�̃∩1) and 1 ∈ Dn . We get∫
P

d ′P(α)=
∫

P
d ′(α1)∧ δ1 =

∫
1

d ′(α1)=
∫
∂1

α1 =

∫
∂P
α,

using Stokes’ formula for superforms on polyhedra (see [Chambert-Loir and Ducros
2012, (1.5.7)] or [Gubler 2016, 2.9]). The formula for β follows in the same way. �

Remark 2.8. Let �̃ be an open subset of NR. An integral R-affine polyhedral
complex C = (C ,m) with smooth weights of pure dimension n and a superform
α ∈ Ap,q(�̃) determine a polyhedral supercurrent

α∧ δC =
∑
1∈Cn

(m1 ·α|1)∧ δ1 ∈ Dn−p,n−q(�̃).

In particular we get the polyhedral supercurrents [α] = α∧ δNR
∈ Dr−p,r−q(�̃) and

δC = 1∧ δC ∈ Dn,n(�̃).

Definition 2.9 (δ-preforms). (i) Let �̃ be an open subset of NR. A supercurrent
α ∈ Dr−p,r−q(�̃) is called a δ-preform of type (p, q) if there exist a finite set I , a
family (Ci )i∈I of tropical cycles with smooth weights Ci = (Ci ,mi ) of codimension
ni in NR, and a family (αi )i∈I of superforms αi ∈ Api ,qi (�̃) such that pi + ni = p
and qi + ni = q for all i ∈ I and

α =
∑
i∈I

αi ∧ δCi (2.9.1)

holds in Dr−p,r−q(�̃). The support of a δ-preform is the support of its underlying
supercurrent.

(ii) The δ-preforms define a subspace P p,q(�̃) in Dr−p,r−q(�̃). We put

Pn(�̃)=
⊕

p+q=n

P p,q(�̃)

and P(�̃) =
⊕

n∈N Pn(�̃). We denote by Pc(�̃) the subspace of P(�̃) given by
the δ-preforms with compact support. A δ-preform α ∈ P p,p(�̃) of type (p, p)
is called symmetric (resp. antisymmetric), if the underlying supercurrent of α is
symmetric (resp. antisymmetric).

(iii) We say that a δ-preform α has codimension l, if it admits a presentation (2.9.1)
where all the tropical cycles Ci are of pure codimension l. The δ-preforms of type
(p+ l, q+ l) of codimension l define a subspace of D p+l,q+l(�̃) which we denote
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by P p,q,l(�̃). As an immediate consequence of our definitions, we have the direct
sum

Pn(�̃)=
⊕

p+q+2l=n

P p,q,l(�̃).

Example 2.10. It follows from Remark 1.7 that a δ-preform of codimension 0 on
�̃ is the same as a superform on �̃ with piecewise smooth coefficients.

Remark 2.11. Let
α =

∑
i∈I

αi ∧ δCi ∈ P p,q,l(�̃)

be a δ-preform as in (2.9.1). Let C be a common polyhedral complex of definition
for the tropical cycles (Ci )i∈I . Then the supercurrent α is polyhedral and C is a
polyhedral complex of definition for α. In fact we have Ci = (C ,mi ) for suitable
families of weight functions mi,1 on polyhedra 1 in Cr−l and define

α1 :=
∑
i∈I

mi,1 · (αi |1) ∈ Ap,q
1 (�̃∩ |1|).

Then we get
δCi =

∑
1∈Cr−l

mi,1 ∧ δ1

and
α =

∑
1∈Cr−l

α1 ∧ δ1.

In order to compare δ-preforms in P p,q,l(�̃), presented as in (2.9.1),

α =
∑
i∈I

αi ∧ δCi , β =
∑
j∈J

β j ∧ δD j ,

we choose a common polyhedral complex of definition C for the finite families
(Ci )i∈I and (D j ) j∈J of tropical cycles and obtain

α = β⇐⇒ α1 = β1 for all 1 ∈ Cr−l . (2.11.1)

Proposition 2.12. Let �̃ denote an open subset of NR. Presenting δ-preforms as in
(2.9.1), we can perform the following constructions:

(i) We have a canonical C∞(�̃)-linear map

Ap,q(�̃)→ P p,q,0(�̃), α 7→ α∧ δNR

and a C∞(NR)-linear isomorphism

TZl(NR)−→
∼ P0,0,l(NR), C 7→ 1∧ δC .
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(ii) There are well-defined C∞(�̃)-bilinear products

∧ : P p,q,l(�̃)⊗R P p′,q ′,l ′(�̃)→ P p+p′,q+q ′,l+l ′(�̃),(∑
i∈I

αi ∧ δCi

)
∧

(∑
j∈J

β j ∧ δD j

)
=

∑
(i, j)∈I×J

(αi ∧β j )∧ δCi ·D j .

(iii) An integral R-affine map F : N ′R→ NR induces a natural pull-back

F∗ : P p,q,k(�̃)→ P p,q,k(�̃′),
∑
i∈I

αi ∧ δCi 7→

∑
i∈I

(F∗αi )∧ δF∗Ci

for any open subset �̃′ of F−1(�̃).

(iv) The pull-back morphism F∗ in (iii) satisfies

F∗(α∧β)= (F∗α)∧ (F∗β)

for all α, β ∈ P(�̃).

Proof. The proof of (i) is straightforward. For (ii), we have to show that the
definition

α∧β :=
∑

(i, j)∈I×J

(αi ∧β j )∧ δCi ·D j (2.12.1)

is independent of the presentations

α =
∑
i∈I

αi ∧ δCi ∈ P p,q,l(�̃), β =
∑
j∈J

β j ∧ δD j ∈ P p′,q ′,l ′(�̃)

given as in (2.9.1). We choose a common polyhedral complex of definition C for
all tropical cycles Ci and D j . Using Remark 2.11, we represent the δ-preforms as
polyhedral supercurrents

α =
∑
σ∈C l

ασ ∧ δσ , β =
∑
σ ′∈C l′

βσ ′ ∧ δσ ′ . (2.12.2)

We choose a generic vector v and ε > 0 as in 1.4(ii). From (2.12.1) and (1.4.1), we
deduce

α∧β =
∑

τ∈C l+l′

∑
σ,σ ′

[N : Nσ + Nσ ′] ·ασ ∧βσ ′ ∧ δτ , (2.12.3)

where σ, σ ′ ranges over all pairs in C l
×C l ′ with σ ∩σ ′= τ and σ ∩(σ ′+εv) 6=∅.

Then (ii) follows from (2.12.3) and from the uniqueness of the representations in
(2.12.2). Bilinearity is obvious.

Similarly we show (iii). Given a δ-preform α as above, we have to prove that

F∗(α) :=
∑
i∈I

(F∗αi )∧ δF∗Ci (2.12.4)
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is independent of the representation of α in (2.12.2). There is a complete, integral R-
affine polyhedral complex C ′ of N ′R and a complete, common polyhedral complex
of definition C for all tropical cycles Ci satisfying the following compatibility
property: for every σ ′ ∈ C ′, there is a σ ∈ C with F(σ ′)⊆ σ . Using the coefficients
mγ ′

σ ′,σ from Remark 1.4(v), we deduce from (2.12.4) and (1.4.4) that

F∗(α)=
∑

γ ′∈(C ′)l

∑
σ ′,σ

mγ ′

σ ′,σ · F
∗ασ ∧ δγ ′, (2.12.5)

where σ ′, σ ranges over all pairs in (C ′)0×C l with γ ′ ⊆ σ ′, F(γ ′)⊆ σ . Then (iii)
follows from (2.12.5) and uniqueness of the representation (2.12.2).

Note that (iv) is a direct consequence of our definitions. �

Remark 2.13. Let P be an integral R-affine polyhedral subset in NR of dimension n.
Let C = (C ,m) be a tropical cycle with |C | = P or |C | = P and α ∈ P ·c(NR).
Observe that

∫
P α is in general different from

∫
NR
α∧ δC as the latter integral takes

the multiplicities of C into account.

Proposition 2.14 (projection formula). Let F : N ′R→ NR be an integral R-affine
map and C ′ a tropical cycle of dimension n on N ′R. Let P be an integral R-affine
polyhedral subset and �̃ an open subset of NR with P ⊆ �̃. Let α ∈ P(�̃) be a δ-
preform such that supp(F∗(α)∧δC ′)∩F−1(P) is compact. Then supp(α∧δF∗(C ′))∩P
is compact. If α ∈ Pn,n(�̃), then∫

P
α∧ δF∗(C ′) =

∫
F−1(P)

F∗(α)∧ δC ′ . (2.14.1)

If α ∈ Pn−1,n(�̃), then∫
∂P
α∧ δF∗(C ′) =

∫
∂F−1(P)

F∗(α)∧ δC ′ . (2.14.2)

Proof. We consider first the case where α ∈ Pn,n(�̃). We may assume without loss
of generality that α ∈ P p,p,l(�̃), where n = p+ l. We write

α =
∑
i∈I

αi ∧ δCi

for suitable αi ∈ Ap,p(�̃) and Ci ∈ TZl(NR) as in (2.9.1). We get

α∧ δF∗(C ′) =
∑
i∈I

αi ∧ δF∗(F∗Ci ·C ′), F∗(α)∧ δC ′ =
∑
i∈I

F∗(αi )∧ δF∗Ci ·C ′

by the projection formula, Proposition 1.5(ii). We choose common polyhedral
complexes of definition C ′ in N ′R for C ′ and F∗Ci for all i ∈ I and C in NR for
F∗C ′ and Ci for all i ∈ I . We may assume that F∗(C ′) is a subcomplex of C . After
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further refinements we can find polyhedral subcomplexes D ′ of C ′ with support
F−1(P) and D of C with support P. Then F∗D ′ is a subcomplex of D and we write∑

i∈I

αi ∧ δF∗(F∗Ci ·C ′) =
∑
σ∈Cp

ασ ∧ δσ , (2.14.3)

∑
i∈I

F∗(αi )∧ δF∗Ci ·C ′ =
∑
σ ′∈C ′p

ασ ′ ∧ δσ ′ . (2.14.4)

Consider σ ∈Cp. Given σ ′ ∈C ′p with F(σ ′)=σ there is a unique form α̃σ ′ ∈ Aσ (σ )
such that F∗(α̃σ ′)= ασ ′ in Aσ ′(σ ′). From (1.4.3), (2.14.3) and (2.14.4) we get

ασ =
∑
σ ′∈C ′p

F(σ ′)=σ

[Nσ : LF (N ′σ ′)] · α̃σ ′ (2.14.5)

and ασ ′ =0 for all σ ′ ∈C ′p with dim F(σ ′)< p. If σ ∈Dp, which means σ ⊆ P , then
only the σ ′∈D ′p contribute to the sum in (2.14.5). Since σ ′∈D ′p is equivalent to σ ′⊆
F−1(P), we deduce from (2.14.5) and compactness of supp(F∗(α)∧δC ′)∩F−1(P)
that supp(α∧ δF∗(C ′))∩ P is compact. The above formulas show that∫

P
α∧ δF∗(C ′) =

∑
σ∈Dp

∫
σ

ασ =
∑
σ∈Dp

∑
σ ′∈C ′p

F(σ ′)=σ

[Nσ : LF (N ′σ ′)]
∫
σ

α̃σ ′

and hence the transformation formula of integration theory (see [Chambert-Loir
and Ducros 2012, (1.5.8); Gubler 2016, Proposition 3.10]) gives∫

P
α∧ δF∗(C ′) =

∑
σ∈Dp

∑
σ ′∈C ′p

F(σ ′)=σ

∫
σ ′
ασ ′ =

∑
σ ′∈D ′p

∫
σ ′
ασ ′ =

∫
F−1(P)

F∗(α)∧ δC ′ .

This proves (2.14.1). Formula (2.14.2) is proved in exactly the same way using the
transformation formula for boundary integrals in [Chambert-Loir and Ducros 2012,
(1.5.8)]. �

2.15. Given a tropical cycle C = (C ,m) with constant weight functions, it follows
from Stokes’ theorem that the supercurrent δC is closed under d ′ and d ′′ [Gubler
2016, Proposition 3.8]. The following proposition shows that this is no longer true
for tropical cycles with smooth weights.

Proposition 2.16. Let C = (C ,m) be a tropical cycle with smooth weights of pure
dimension n in NR. Then we have

d ′δC = d ′m ∧ δC , d ′′δC = d ′′m ∧ δC
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in D·(NR), where the polyhedral supercurrent d ′m ∧ δC is defined by

〈d ′m ∧ δC , α〉 =
∑
σ∈Cn

∫
σ

d ′mσ ∧α

and the supercurrent d ′′m ∧ δC is defined analogously.

Proof. This is a direct consequence of Stokes’ formula for superforms on polyhedra
[Chambert-Loir and Ducros 2012, lemme (1.5.7)], [Gubler 2016, 2.9] and the
balancing condition (1.1.1). �

Remark 2.17. It follows from Proposition 2.16 that the subspace P ·(NR) of D·(NR)

of δ-preforms is not closed under the differentials d ′ and d ′′ in the sense of super-
currents. We will address this problem again in 4.6.

Proposition 2.18. Let �̃ denote an open subset of NR. Then we have

d ′(β)= d ′P(β), d ′′(β)= d ′′P(β)

for all δ-preforms β ∈ P(�̃).

Proof. It is sufficient to treat the case β = α∧ δC for a superform α ∈ Ap,q(�̃) and
a tropical cycle C = (C ,m) of pure dimension n on NR. We have

β =
∑
σ∈Cn

(mσ ·α|σ )∧ δσ .

From Proposition 2.16 we get

d ′β = d ′α∧ δC + (−1)p+qα∧ d ′m ∧ δC =
∑
σ∈Cn

(
mσ · d ′α|σ + d ′mσ ∧α|σ

)
∧ δσ .

Then Leibniz’s rule shows

d ′β =
∑
σ∈Cn

d ′(mσ ·α|σ )∧ δσ = d ′P(β)

which proves the first equality. The second claim is proved similarly. �

3. Supercurrents and delta-preforms on tropical cycles

In this section, we introduce supercurrents and δ-preforms on a given tropical cycle
C = (C ,m) of pure dimension n with constant weight functions. Similarly to
complex manifolds, such tropical cycles have no boundary as d ′δC = d ′′δC = 0.
In the applications, C will be the tropical variety of a closed subvariety of a
multiplicative torus. We build upon the results in Section 2. We will obtain the
formulas of Stokes and Green. The main result is the tropical Poincaré–Lelong
equation which will be used in Section 9 for the first Chern δ-current of a metrized
line bundle.
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3.1. The space Ap,q
C (�) of (p, q)-superforms on an open subset � in |C | is defined

as follows. We choose an open subset �̃ of NR such that �= �̃∩ |C |. Elements
in Ap,q

C (�) are represented by elements in Ap,q(�̃) where two such elements are
identified if they induce the same element in Ap,q

1 (�∩1) (see 2.2) for all maximal
polyhedra 1 in C . A partition of unity argument shows that this definition is
independent of the choice of �̃. Observe furthermore that Ap,q

C (�) depends only
on the support |C | of C . We will often omit the polyhedral complex C from our
notation and write simply Ap,q(�) instead of Ap,q

C (�) when C or at least |C | is
clear from the context. The spaces Ap,q(�) define a sheaf on |C |. Hence the
support of a superform in Ap,q(�) is defined as a closed subset of �. We denote
by Ap,q

c (�) the space of superforms on � with compact support.

Definition 3.2. We define the space of supercurrents DC
p,q(�) of type (p, q) on

an open subset � in |C | as follows. An element in DC
p,q(�) is given by a linear

form T ∈ HomR(A
p,q
c (�),R) such that we can find an open set �̃ of NR and a

supercurrent T ′ ∈ Dp,q(�̃) such that � = �̃ ∩ |C | and T (η|�) = T ′(η) for all
η ∈ Ap,q

c (�̃). As in 3.1 we often omit C from the notation and write Dp,q(�)

instead of DC
p,q(�). We also use the grading D p,q(�) := Dn−p,n−q(�).

Remark 3.3. In the situation of Definition 3.2 we fix an open subset �̃ of NR with
�= �̃∩ |C |. It follows from a partition of unity argument that in the definition of
Dp,q(�) we may use this �̃. We may identify Dp,q(�) with a subspace of Dp,q(�̃)

using the canonical map T 7→ T ′. Indeed, this map is well defined and injective
since T (η|�)= T ′(η) holds for all η ∈ Ap,q

c (�̃). Furthermore the differentials d ′

and d ′′ on D(�̃) induce well-defined differentials d ′ and d ′′ on D(�).
A polyhedral supercurrent α′ on �̃ is in D(�) if and only if supp(α′) is contained

in �. The corresponding element α in D(�) is called a polyhedral supercurrent
on �. Using Definition 2.3, the polyhedral derivatives d ′Pα and d ′′Pα are again
polyhedral supercurrents on �. Definition 2.5 yields integrals

∫
P α =

∫
P α
′ and

boundary integrals
∫
∂P α =

∫
∂P α

′ of polyhedral supercurrents α in D0(�) and
D1(�), respectively, over an integral R-affine polyhedral subset P of �, provided
that supp(α)∩ P is compact.

Definition 3.4. Let � be an open subset of |C | and consider an open subset �̃
of NR with � = �̃ ∩ |C |. For any δ-preform α̃ ∈ P(�̃) on �̃, the supercurrent
α̃∧ δC on �̃ lies in the subspace D(�) of D(�̃). We will denote the corresponding
element in D(�) by α̃|�. A supercurrent α ∈ D(�) is called a δ-preform on � if
there is an open subset �̃ of NR with �= �̃∩|C | and a α̃ ∈ P(�̃) with α= α̃∧δC .
The space of δ-preforms on � is denoted by P(�) and the subspace of compactly
supported δ-preforms is denoted by Pc(�). Note that these spaces depend also on
the weights m of the tropical cycle C = (C ,m) and not only on the open subset �
of |C |.
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Remark 3.5. (i) A partition of unity argument again shows that P(�) is the image
of the natural morphism

P(�̃)→ D(�), α̃ 7→ α̃|� := α̃∧ δC

for any open subset �̃ of NR with�= �̃∩|C |. We give P(�) the unique structure as
a bigraded algebra such that the surjective map P(�̃)→ P(�) is a homomorphism
of bigraded algebras. Similarly, we define the grading by codimension on P(�).
For δ-preforms α = α̃ ∧ δC and α′ = α̃′ ∧ δC on �, their product is given by the
formula

α∧α′ = α̃∧ α̃′ ∧ δC .

(ii) By Remarks 2.11 and 3.3, α = α̃ ∧ δC ∈ P(�) is a polyhedral supercurrent
on �. After possibly passing to a subdivision of C , we have

α =
∑
1∈C

α1 ∧ δ1 ∈ D(�),

with α1 ∈ A1(�∩1). It follows from Proposition 2.18 that

d ′Pα = d ′α and d ′′Pα = d ′′α, (3.5.1)

where we use the polyhedral derivative introduced in Definition 2.3 on the left-hand
sides, and the derivative of currents in D(�) on the right-hand sides.

(iii) Now we assume that α ∈ Pn,n(�) and that P is an integral R-affine polyhedral
subset of � such that supp(α)∩ P is compact. By passing again to a subdivision,
we may assume that C has a subcomplex D with |D | = P. Using the definition of
the integral of polyhedral supercurrents on � in Remark 3.3 and a decomposition
of α as above, (2.5.2) gives ∫

P
α =

∑
1∈D

∫
1

α1.

A similar formula holds for the boundary integral
∫
∂P α for α ∈ Pn−1,n(�) or

α ∈ Pn,n−1(�).

Proposition 3.6 (Stokes’ formula for δ-preforms). Let P be an integral R-affine
polyhedral subset of the open subset � of |C |. Then we have∫

P
d ′α =

∫
∂P
α,

∫
P

d ′′β =
∫
∂P
β

for all δ-preforms α ∈ Pn−1,n(�) and β ∈ Pn,n−1(�) with supp(α) ∩ P and
supp(β)∩ P compact.

Proof. This follows from Proposition 2.7 and (3.5.1). �
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The following result will be important in the construction of δ-forms on algebraic
varieties.

Lemma 3.7. Let � be an open subset of |C |. Given d ′-closed (resp. d ′′-closed)
δ-preforms γ and γ ′ on �, their product γ ∧γ ′ is again d ′-closed (resp. d ′′-closed).

Proof. Consider an open subset �̃ of NR with�= �̃∩|C | and d ′-closed δ-preforms
γ and γ ′ on �. We may assume that γ (resp. γ ′) is of codimension l (resp. l ′) and
that γ has degree k + 2l (resp. k ′ + 2l). We choose δ-preforms γ̃ =

∑
i αi ∧ δCi

and γ̃ ′ :=
∑

j α
′

j ∧ δC ′j for superforms αi ∈ Ak(�̃), α′j ∈ Ak′(�̃) and tropical cycles
Ci = (Ci ,mi ),C ′j = (C

′

j ,m′j ) of codimension l, l ′ with smooth weight functions
such that γ = γ̃ ∧ δC and γ ′ = γ̃ ′ ∧ δC . We have to show that the supercurrent

γ ∧ γ ′ = γ̃ ∧ γ̃ ′ ∧ δC ∈ D(�)

is d ′-closed. After suitable refinements we may assume that the polyhedral com-
plexes Ci , C ′j and C are all subcomplexes of a complete integral R-affine polyhedral
complex D in NR. We choose generic vectors v,w ∈ NR in order to compute stable
tropical intersection products as in Remark 1.4 for tropical cycles with polyhedral
complex of definition D . We have C ′j ·C = (D≤n−l ′,m′′j ). For ρ ∈Dn−l ′ and ω ∈ ρ,
we have

m′′jρ(ω)=
∑

ρ=σ ′∩1

cσ ′1 m′jσ ′(ω)m1

for small ε > 0, where (σ ′,1) ranges over D l ′
×Dn and cσ ′1 = [N : Nσ ′ + N1] if

σ ′ ∩ (1+ εv) 6=∅ and cσ ′1 = 0 otherwise. In the same way we write

Ci ·C
′

j ·C = (D≤n−l−l ′,m′′′i j ).

For τ ∈ Dn−l−l ′ and ω ∈ τ , we have

m′′′i jτ (ω)=
∑
τ=σ∩ρ

cσρ miσ (ω)m′′jρ(ω)

for small ε > 0, where (σ, ρ) ranges over D l
×Dn−l ′ and cσρ = [N : Nσ + Nρ] if

σ ∩ (ρ+εw) 6=∅ and cσρ = 0 otherwise. Combining the last two formulas, we get

m′′′i jτ (ω)=
∑

τ=σ∩σ ′∩1

cσσ ′1 miσ (ω)m′jσ ′(ω)m1 (3.7.1)

where (σ, σ ′,1) ranges over D l
×D l ′

×Dn and

cσσ ′1 = cσ,σ ′∩1 · cσ ′1. (3.7.2)

We observe that by associativity and commutativity Ci · (C
′

j ·C) = C ′j · (Ci ·C).
This implies

cσσ ′1 = cσ ′,σ∩1 · cσ1. (3.7.3)
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Now we use d ′P(γ̃ ∧ δC)= d ′γ = 0 in D(�). For every ρ ∈ Dn−l , we get∑
i

∑
ρ=σ∩1

cσ1 d ′(miσm1αi )= 0 (3.7.4)

on � ∩ ρ. Similarly, we use d ′P(γ̃
′
∧ δC) = d ′γ ′ = 0. For every ρ ′ ∈ Dn−l ′ , this

gives ∑
j

∑
ρ′=σ ′∩1

cσ ′1 d ′(m′jσ ′m1α
′

j )= 0 (3.7.5)

on �∩ ρ ′. We have to show that

d ′(γ ∧ γ ′)= d ′(γ̃ ∧ γ̃ ′ ∧ δC)=
∑

i j

d ′(αi ∧α
′

j ∧ δCi ·C
′

j ·C) (3.7.6)

vanishes in D(�). Since d ′ agrees with d ′P on δ-preforms, we deduce

d ′(αi ∧α
′

j ∧ δCi ·C
′

j ·C)=
∑
τ

d ′(m′′′i jταi ∧α
′

j )∧ δτ . (3.7.7)

By (3.7.1) and Leibniz’s rule, we can split this into the sum of∑
τ

∑
τ=σ∩σ ′∩1

cσσ ′1m1 d ′(miσαi )∧m′jσ ′α
′

j ∧ δτ (3.7.8)

and
(−1)k

∑
τ

∑
τ=σ∩σ ′∩1

cσσ ′1m1miσαi ∧ d ′(m′jσ ′α
′

j )∧ δτ . (3.7.9)

Note that here and in the following, we use our standing assumption that the weight
m1 of C is constant. From (3.7.3) and (3.7.4) we get∑

i j

∑
τ

∑
τ=σ∩σ ′∩1

cσσ ′1m1 d ′(miσαi )∧m′jσ ′α
′

j

=

∑
j

∑
τ

∑
τ=σ ′∩ρ

cσ ′ρ

( ∑
ρ=σ∩1

∑
i

cσ1m1 d ′(miσαi )

)
∧m′jσ ′α

′

j = 0.

In the same way we get∑
i j

∑
τ

∑
τ=σ∩σ ′∩1

cσσ ′1m1miσαi ∧ d ′(m′jσ ′α
′

j )= 0

from (3.7.2) and (3.7.5). These two equations and (3.7.6)–(3.7.9) prove the vanishing
of d ′(γ ∧ γ ′). In the same way, one derives d ′′(γ ∧ γ ′)= 0 from the vanishing of
d ′′(γ ) and d ′′(γ ′). �

Corollary 3.8. Let� be an open subset of |C |. We consider β= η∧γ ∈ Pk(�) and
β ′ = η′ ∧ γ ′ ∈ Pk′(�) for superforms η, η′ ∈ A(�) and δ-preforms γ, γ ′ ∈ P(�).
If d ′γ = d ′γ ′ = 0, then d ′β is again a δ-preform with

d ′β = d ′η∧ γ and d ′(β ∧β ′)= d ′β ∧β ′+ (−1)kβ ∧ d ′β ′.
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If d ′′γ = d ′′γ ′ = 0, then d ′′β is again a δ-preform with

d ′′β = d ′′η∧ γ and d ′′(β ∧β ′)= d ′′β ∧β ′+ (−1)kβ ∧ d ′′β ′.

Proof. Given a superform η ∈ Ap(�) and a supercurrent T ∈ D(�), we have

d ′(η∧ T )= d ′η∧ T + (−1)pη∧ d ′T . (3.8.1)

This implies the first formula and hence d ′β is a preform. Combined with Lemma 3.7,
we deduce the second formula as well. Similarly, we prove the corresponding claims
for d ′′. �

Proposition 3.9 (Green’s formula for δ-preforms). Let � be an open subset of |C |
and let P be an integral R-affine polyhedral subset of �. We consider symmetric
δ-preforms βi ∈ P pi ,pi (�) for i = 1, 2 with p1+ p2= n−1 such that βi = ηi∧γi for
superforms ηi ∈ A(�) and δ-preforms γi ∈ P(�) with d ′γ =d ′γ ′=d ′′γ =d ′′γ ′= 0.
Then we have∫

P

(
β1 ∧ d ′d ′′β2−β2 ∧ d ′d ′′β1

)
=

∫
∂P

(
β1 ∧ d ′′β2−β2 ∧ d ′′β1

)
,

if we assume furthermore that supp(β1)∩ supp(β2)∩ P is compact.

Proof. As in [Chambert-Loir and Ducros 2012, lemme (1.3.8)], the formula is
obtained as a direct consequence of Proposition 3.6 and the Leibniz formula in
Corollary 3.8. �

Definition 3.10. Let P be an integral R-affine polyhedral subset in NR. A piecewise
smooth superform α on an open subset � of P is given by an integral R-affine
polyhedral complex D with support P and smooth superforms α1 ∈ A1(�∩1)
for every 1 ∈ D such that α1 restricts to αρ for every closed face ρ of 1. In this
case we call D a polyhedral complex of definition for α. The support of a piecewise
smooth superform α as above is the union of the supports of the forms α1 for all 1
in D . We identify two superforms α, α′ on � if they have the same support and
if α1 = α′1′ on 1∩1′ ∩� for all polyhedra 1,1′ of the underlying polyhedral
complexes D,D ′.

Remark 3.11 (properties of piecewise smooth superforms). Let � denote an open
subset of an integral R-affine polyhedral subset P in NR.

(i) The space of piecewise smooth superforms on � is denoted by PS(�). It
comes with a natural bigrading and has a natural wedge product. We conclude
that PS·,·(�) is a bigraded R-algebra which contains A·,·(�) as a subalgebra. We
denote by PS·,·c (�) the subspace of PS·,·(�) given by piecewise smooth superforms
with compact support.
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(ii) Let N ′ be also a free abelian group of finite rank and let F : N ′R→ NR be an
integral R-affine map. Suppose that �′ is an open subset of an integral R-affine
polyhedral subset Q in N ′R with F(Q) ⊆ P and F(�′) ⊆ �. For a piecewise
smooth superform α on �, there is an integral R-affine polyhedral complex D ′

with |D ′| = Q and a polyhedral complex of definition D for α such that for every
1′ ∈ D ′, there is a 1 ∈ D with F(1′) ⊆ 1. Then we define a piecewise smooth
superform F∗(α) = α′ on �′ with D ′ as a polyhedral complex of definition by
setting α′1′ := F∗(α1) ∈ A1′(�′ ∩1′) for every 1′ ∈ D ′. In this way, we get a
well-defined graded R-algebra homomorphism

F∗ : PS·,·(�)→ PS·,·(�′).

In particular, we can restrict α to an open subset of an integral R-affine polyhedral
subset of P.

(iii) Let α ∈ PSp,q(�) be given by an integral R-affine polyhedral complex D

and smooth superforms α1 ∈ Ap,q(�∩1) for every 1 ∈ D . Then the superforms
d ′α1 ∈ Ap+1,q

1 (�∩1), with 1 ranging over D , define an element in PSp+1,q(�)

which we denote by d ′Pα. Similarly, we define d ′′Pα ∈ PSp,q+1(�). One verifies
immediately that PS·,·(W ) is a differential graded R-algebra. with respect to the
differentials

d ′P : PSp,q(�)→ PSp+1,q(�), d ′′P : PSp,q(�)→ PSp,q+1(�). (3.11.1)

(iv) The elements of PS0,0(�) are the piecewise smooth functions on the open
subset � of P from Definition 1.6.

3.12. Now we apply the above to an open subset � of the polyhedral set P := |C |
for the given tropical cycle C = (C ,m) with constant weight functions. A piecewise
smooth superform α as above defines a polyhedral supercurrent

[α] :=
∑
1∈Cn

α1 ∧ δ1

and the derivatives in (3.11.1) coincide — as suggested by the notation — with the
polyhedral derivatives introduced in Definition 2.3. Note that these differentials of
piecewise smooth superforms are not compatible with the corresponding differentials
of the associated supercurrents. We define the d ′-residue of α by

Resd ′(α) := d ′[α] − [d ′Pα].

Similarly, we define residues with respect to the differential operators d ′′ and d ′d ′′.

3.13. Given α ∈ PS(�) and a polyhedral supercurrent β on the open subset �
of |C |, there is natural bilinear product α ∧ β which is defined as a polyhedral
supercurrent on � as follows. After passing to a subdivision of C , we may assume
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that C is a polyhedral complex of definition for α and β. Then C is a polyhedral
complex of definition for α∧β and for every 1 ∈ C we set

(α∧β)1 := α1 ∧β1 ∈ A1(�∧1),

where α, β are given on � by α1, β1 ∈ A1(�∧1). For α ∈ PSk(�), the Leibniz-
type formula

d ′P(α∧β)= d ′Pα∧β + (−1)kα∧ d ′Pβ (3.13.1)

is a direct consequence of our definitions. An analogous formula holds for d ′′P .

There is no obvious product on the space of polyhedral currents which extends
the given products on the subspaces P(�) and PS(�). The next remark shows that
such a product exists for a canonical subspace PSP(�) of the space of polyhedral
currents.

Remark 3.14. The linear subspace PSP(�) of D(�), generated by currents of the
form α ∧ β with α ∈ PS(�) and with β ∈ P(�), will play a role later. Note that
PSP(�) has a unique structure as a bigraded differential R-algebra with respect d ′P
and d ′′P extending the corresponding structures on PS(�) and P(�). To see that the
wedge product is well defined, we can use the same arguments as for P(�). The
crucial point is that for a piecewise smooth form α as in 3.12 and τ 41 ∈ C , the
restriction of α1 to τ is ατ . This allows us to use the arguments in Proposition 2.12
which show that ∧ is well defined on PSP(�).

If F : N ′R → NR is an integral R-affine map and if �̃′ is an open subset of
the preimage of the open subset �̃ of NR, then we have a unique pull-back F∗ :
PSP(�̃)→ PSP(�̃′) which extends the pull-back maps on piecewise smooth forms
and on δ-preforms and which is compatible with the bigrading and the wedge
product. Again, the argument is the same as in the proof of Proposition 2.12.
Moreover, it is clear that the projection formulas in Proposition 2.14 hold more
generally for α ∈ PSP(�̃).

3.15. Recall that C = (C ,m) is a tropical cycle on NR of pure dimension n and
with constant weight functions. Let φ be a piecewise smooth function on |C |. We
have seen in Proposition 1.12 that the corner locus φ ·C is again a tropical cycle. It
induces a polyhedral supercurrent δφ·C ∈ Dn−1,n−1(|C |) on |C |. By Proposition 1.8,
there is a piecewise smooth function φ̃ on NR extending φ. We have

δφ·C = δφ̃·NR
∧ δC

and hence δφ·C is a δ-preform in P1,1(|C |). By Remark 3.5, we obtain a δ-preform
δφ·C ∧β ∈ P p,q,l+1(|C |) for any β ∈ P p,q,l(|C |).

The following tropical Poincaré–Lelong formula and its Corollary 3.19 compute
the d ′d ′′-residue of φ.



110 Walter Gubler and Klaus Künnemann

Theorem 3.16. We consider a δ-preform ω ∈ P p,q,l(|C |) such that d ′ω= 0= d ′′ω.
Let η ∈ An−p−l−1,n−q−l−1(|C |) be a superform such that β = η∧ω has compact
support. Then we have∫

|C |

φ d ′d ′′β −
∫
|C |

d ′Pd ′′Pφ ∧β =
∫
|C |

δφ·C ∧β, (3.16.1)

where we use the integral of polyhedral supercurrents on |C | defined in Remark 3.3.

Proof. We may assume after suitable refinements that C is also a polyhedral complex
of definition for φ and ω. From (3.13.1) and (3.5.1), we get

d ′′P(φ d ′β)+ d ′P(d
′

Pφ ∧β)= φ d ′′d ′β + d ′Pd ′′Pφ ∧β = d ′Pd ′′Pφ ∧β −φ d ′d ′′β.

Let P denote the polyhedral set |C |. Stokes’ formula for polyhedral supercurrents,
Proposition 2.7, yields∫

P

(
d ′Pd ′′Pφ ∧β −φ d ′d ′′β

)
=

∫
∂P
φ ∧ d ′β +

∫
∂P

d ′′Pφ ∧β. (3.16.2)

We write
ω =

∑
i∈I

ωi ∧ δCi

for tropical cycles Ci = (C≤n−l,mi ) with suitable smooth weight functions mi and
superforms ωi . Then we have∫

∂P
φ ∧ d ′β =

∑
i∈I

∫
∂P
φ ∧ d ′η∧ωi ∧ δCi

=

∑
i∈I

∑
σ∈Cn−l

∫
∂σ

miσφσ d ′η∧ωi .

For each σ ∈Cn−l and each face τ ∈Cn−l−1 we choose an element ωσ,τ as in (1.1.1).
We observe that the elements ωτ,σ used in [Gubler 2016, 2.8] to define the boundary
integrals

∫
∂σ

satisfy ωτ,σ =−ωσ,τ . The definition of the boundary integral uses the
contraction 〈 · , ωτ,σ 〉{n−l} of the involved superform of type (n− l, n− l) given by
inserting ωτ,σ for the (n− l)-th variable and leads to∫

∂P
φ ∧ d ′β =−

∑
i∈I

∑
τ∈Cn−l−1

∑
σ∈Cn−l
τ≺σ

∫
τ

〈miσφσ d ′η∧ωi , ωσ,τ 〉{n−l}.

Given i ∈ I and τ ∈ Cn−l−1, the balancing condition (1.1.1) for Ci gives us the
vector field

ωiτ :=
∑
σ∈Cn−l
τ≺σ

miσωσ,τ : τ → Lτ .
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We observe that φσ |τ = φτ for all τ ≺ σ yielding∫
∂P
φ ∧ d ′β =−

∑
i∈I

∑
τ∈Cn−1

∫
τ

〈φτ d ′η∧ωi , ωiτ 〉{n−l} = 0

as a superform contracted with a vector field with values in Lτ restricts to zero on τ .
Using this in (3.16.2), we obtain∫

|C |

φ d ′d ′′β −
∫
|C |

d ′Pd ′′Pφ ∧β =−
∫
∂|C |

d ′′Pφ ∧β. (3.16.3)

Our claim is then a consequence of the following lemma. �

Lemma 3.17. Let φ be a piecewise smooth function on |C |. For any δ-preform
β ∈ Pn−1,n−1

c (|C |) with compact support, we have∫
∂|C |

d ′′Pφ ∧β =−
∫
|C |

δφ·C ∧β,

∫
∂|C |

d ′Pφ ∧β =
∫
|C |

δφ·C ∧β. (3.17.1)

Proof. We prove only the first formula. The second formula follows by applying
the first one to J ∗(β) and using the symmetry of the supercurrent of integration.
We use the notation introduced in the proof of Theorem 3.16. We may assume that
β ∈ Pn−l−1,n−l−1,l(|C |) and that

β =
∑
i∈I

ηi ∧ δCi

for tropical cycles Ci = (C≤n−l,mi ) with suitable smooth weight functions mi and
superforms ηi ∈ An−l−1,n−l−1(|C |). Since β is a δ-preform on C , we may assume
that there is a tropical cycle C̃i of codimension l in NR such that Ci = C̃i .C for
every i ∈ I . Recall that ∂/∂ωσ,τ denotes the partial derivative along the tangential
vector ωσ,τ . An exercise in linear algebra gives

〈d ′′φσ ∧ ηi , ωσ,τ 〉{2n−2l−1} =
∂φσ
∂ωσ,τ

∧ ηi + d ′′φσ ∧ 〈ηi , ωσ,τ 〉{2n−2l−2}

for all i ∈ I , σ ∈ Cn−l and all faces τ of σ of codimension one. Furthermore one
sees easily that ∫

τ

d ′′φτ ∧ 〈ηi , ωiτ 〉{2n−2l−2} =−

∫
τ

∂φτ
∂ωiτ
∧ ηi .

Let φ · Ci = (C≤n−l−1,mi ) denote the corner locus of φ on Ci introduced in
Definition 1.10. Using the last two formulas and the definition of the weight
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functions miτ of the corner locus in (1.10.1), we get∑
σ∈Cn−l
τ≺σ

∫
τ

〈miσ d ′′φσ ∧ ηi , ωσ,τ 〉{2n−2l−1}

=

∑
σ∈Cn−l
τ≺σ

∫
τ

(
miσ

∂φσ
∂ωσ,τ

∧ ηi + d ′′φτ ∧
〈
ηi ,

∑
σ∈Cn−l
τ≺σ

miσωσ,τ

〉
{2n−2l−2}

)

=

∑
σ∈Cn−l
τ≺σ

∫
τ

(
miσ

∂φσ
∂ωσ,τ

∧ ηi −
∂φτ
∂ωiτ
∧ ηi

)

=

∫
τ

( ∑
σ∈Cn−l
τ≺σ

miσ
∂φσ
∂ωσ,τ

−
∂φτ
∂ωiτ

)
∧ ηi

=

∫
τ

miτηi

for all i ∈ I and τ ∈ Cn−l−1. For the polyhedral set P := |C |, we have∫
∂P

d ′′Pφ ∧β =
∑
i∈I

∑
σ∈Cn−l

∫
∂σ

miσ d ′′φσ ∧ ηi

=−

∑
i∈I

∑
τ∈Cn−l−1

∑
σ∈Cn−l
τ≺σ

∫
τ

〈
miσ d ′′φσ ∧ ηi , ωσ,τ

〉
{2n−2l−1}

=−

∑
i∈I

∑
τ∈Cn−l−1

∫
τ

miτηi

=−

∑
i∈I

∫
P
ηi ∧ δφ·Ci .

We get δφ·Ci = δφ·C̃i ·C = δC̃i
∧ δφ·C from Proposition 1.14. Hence∑

i∈I

∫
P
ηi ∧ δφ·Ci =

∫
P

(∑
i∈I

ηi ∧ δC̃i

)
∧ δφ·C =

∫
P
δφ·C ∧β

yields our claim. �

Remark 3.18. In the situation of Lemma 3.17 we consider a δ-preform β ∈

Pn−1,n−1(|C |) on C . However we do no longer assume that β has compact sup-
port. Instead we make the weaker assumption that the polyhedral supercurrents
d ′′Pφ ∧ β ∈ D1,0(|C |) (resp. d ′Pφ ∧ β ∈ D0,1(|C |)) and δφ·C ∧ β ∈ D0,0(|C |) have
compact support. Then the first (resp. second) formula in (3.17.1) still hold for β.
In order to prove this, one chooses a function f ∈ A0

c(|C |) which is equal to 1 on
the above compact supports and applies Lemma 3.17 to f ·β.
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Corollary 3.19. Let C = (C ,m) be a tropical cycle with constant weight functions
of pure dimension n on NR and φ : |C | → R a piecewise smooth function with
corner locus φ ·C. Then we have

d ′d ′′[φ] − [d ′Pd ′′Pφ] = δφ·C (3.19.1)

in DC
n−1,n−1(|C |).

Proof. Both sides of (3.19.1) have support in |C |. Hence it suffices to show that(
d ′d ′′[φ] − [d ′Pd ′′Pφ]

)
(α)= δφ·C(α)

holds for all α ∈ An−1,n−1
c (|C |), and this is a special case of Theorem 3.16. �

Corollary 3.20. Let φ : |C | → R a piecewise linear function on C. Then we have

d ′d ′′[φ] = δφ·C (3.20.1)

in DC
n−1,n−1(NR).

Proof. This follows from Corollary 3.19. �

4. Delta-forms on algebraic varieties

Let X be an algebraic variety over K of dimension n and X an the associated
Berkovich space.

We introduce the algebra B(W ) of δ-forms on an open subset W of X an. We
use tropicalizations as in [Chambert-Loir and Ducros 2012] and [Gubler 2016] to
pull-back algebras of δ-preforms to X an. After a suitable sheafification process we
obtain the sheaves of algebras B and P of δ-forms and generalized δ-forms. We
show that B is a sheaf of bigraded differential R-algebras with respect to natural
differentials d ′ and d ′′.

4.1. Consider a tropical chart (V, ϕU ) on X as in [Gubler 2016, 4.15]. It consists
of a very affine Zariski open U in X . Recall that U is called very affine if U has a
closed immersion into a multiplicative torus. Then there is a canonical torus TU

with cocharacter group

NU = HomZ(O(U )×/K×,Z),

and a canonical closed embedding ϕU : U → TU , unique up to translation (see
[Gubler 2016, 4.12, 4.13] for details). We get a tropicalization map

tropU :U
an ϕan

U
−→ T an

U
trop
−−→ NU,R

associated with ϕU . The second ingredient of a tropical chart is an open subset
V ⊆U an for which there is an open subset �̃ of NU,R with V = trop−1

U (�̃).
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The set tropU (U
an) is the support of a canonical tropical cycle Trop(U ) =

(Trop(U ),mU ) with integral weights. It is the tropical variety associated to the
closed subvariety U of TU equipped with its canonical tropical weights (see [Gubler
2013, §3, §13]). Note that V = trop−1

U (�) for the open subset � := �̃∩Trop(U )
of Trop(U ).

Definition 4.2. Let f : X ′→ X be a morphism of algebraic varieties over K . We
say that charts (V, ϕU ) and (V ′, ϕU ′) of X and X ′ respectively are compatible with
respect to f , if we have f (U ′)⊆U and f an(V ′)⊆ V .

4.3. Let f : X ′→ X be a morphism of algebraic varieties over K . Given compatible
charts (V, ϕU ) and (V ′, ϕU ′) of X and X ′, we obtain a commutative diagram

V ′

f an
|V ′

��

� � // (U ′)an

f an
|U ′an

��

ϕU ′
// TU ′

ψ

��

trop
// NU ′,R

F
��

V �
�

// U an ϕU
// TU

trop
// NU,R

where ψ : TU ′ → TU is the canonical affine homomorphism of tori induced by
O×(U )→ O×(U ′) and F : NU ′,R → NU,R is the induced canonical integral 0-
affine map. These maps are unique up to translation, but this ambiguity will never
play a role. If �′ is the open subset of Trop(U ′) with trop−1

U ′ (�
′) = V ′, then

�′ ⊆ F−1(�)∩Trop(U ′).
We define deg( f ) = [K (X ′) : K (X)] if f is dominant and the extension of

function fields is finite. Otherwise we set deg( f ) = 0. Let Y be the schematic
image of f and f ′ : X ′→ Y the induced morphism. Then a formula of Sturmfels
and Tevelev [2008] which was generalized by Baker, Payne and Rabinoff [2016,
Section 7] to the present setting gives

F∗ Trop(U ′)= deg( f ′) ·Trop( f (U ′)) (4.3.1)

as an equality of tropical cycles (see [Gubler 2013, Theorem 13.17]).

Definition 4.4. Let us consider a tropical chart (V, ϕU ) of X . As above, we consider
the open subset � := tropU (V ) of Trop(U ). We choose an open subset �̃ of
NU,R with � = �̃ ∩ Trop(U ) and a δ-preform α̃ ∈ P p,q(�̃). For any morphism
f : X ′→ X of varieties over K and a tropical chart (V ′, ϕU ′) of X ′ compatible with
(V, ϕU ), we define �′ := tropU ′(V

′). We choose an open subset �̃′ of F−1(�̃)

with �̃′ ∩ Trop(U ′) = �′. By Proposition 2.12, we have F∗(α̃) ∈ P p,q(�̃′). We
denote by N p,q(V, ϕU ) the subspace given by elements α̃ ∈ P p,q(�̃) such that
we have F∗(α̃)|�′ = 0 ∈ P p,q(�′) for all compatible pairs of charts as above (see
Definition 3.4 for the definition of the restriction). We define

P p,q(V, ϕU ) := P p,q(�̃)/N p,q(V, ϕU ).
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A partition of unity argument shows that this definition is independent of the choice
of �̃. We call an element in P p,p(V, ϕU ) symmetric (resp. antisymmetric) if it can
be represented by a symmetric (resp. antisymmetric) δ-preform in P p,p(�̃). We
define

P p,q,l(V, ϕU ) := P p,q,l(�̃)
/(

P p,q,l(�̃)∩ N p,q(V, ϕU )
)

using the δ-preforms on �̃ of codimension l from Definition 2.9.

Remark 4.5. (i) The ∧-product descends to the space

P(V, ϕU ) :=
⊕

p,q≥0

P p,q(V, ϕU )

and we get a bigraded anticommutative R-algebra which contains A(�) as a bigraded
subalgebra.

(ii) If (V ′, ϕU ′) and (V, ϕU ) are compatible charts with respect to f : X ′→ X as
in Definition 4.2, then we get a canonical bigraded homomorphism

f ∗ : P(V, ϕU )→ P(V ′, ϕU ′)

of bigraded R-algebras which is defined for α ∈ P p,q(V, ϕU ) as follows: By
definition, α is represented by some α̃ ∈ P p,q(�̃). Let �′ := tropU ′(V

′) and
choose an open subset �̃′ of F−1(�̃) with �′ = �̃′ ∩ Trop(U ′). Then we define
f ∗(α) ∈ P p,q(V ′, ϕU ′) as the class of F∗(α̃) ∈ P p,q(�̃′). If X = X ′ and f = id,
then (V ′, ϕU ′) is a tropical subchart of (V, ϕU ) and we write α|V ′ for the pull-back
of α ∈ P p,q(V, ϕU ).

Note that the definition of f ∗(α) does not depend on the choice of the represen-
tative α̃.

However, the elements of P p,q(V, ϕU ) do not only depend on the restriction

α|� := α̃|� = α̃∧ δTrop(U ) ∈ P p,q(�)⊆ D p,q(�) (4.5.1)

to � as Example 4.22 below shows that it might happen that two different elements
α, β ∈ P p,q(V, ϕU ) satisfy α|� = β|� ∈ P p,q(�). The purpose of our definition
of P(V, ϕU ) is to have a pull-back as above at hand. Here we use the fact that we
always have a pull-back from tropical cycles on NU,R to tropical cycles on NU ′,R,
but there is a pull-back available from tropical cycles on Trop(U ) to tropical cycles
on Trop(U ′) only if these tropical varieties are smooth (see [François and Rau
2013]). To have a pull-back available, we consider all morphisms f : X ′→ X of
varieties over K in the definition of N p,q(V, ϕU ) and not only open immersions.

4.6. As mentioned already in Remark 2.17, we have the problem that the differential
operators d ′ and d ′′ are not defined on the algebra P(V, ϕU ). For α in P p,q(V, ϕU )

and every compatible tropical chart (V ′, ϕU ′) with respect to f : X ′→ X , we use the
above notation. We get a δ-preform f ∗(α)|�′ = F∗(α̃)|�′ ∈ P p,q(�′). Recall that
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f ∗(α)|�′ is a supercurrent on �′. We differentiate it in the sense of supercurrents
to get d ′[ f ∗(α)|�′] ∈ D(�′), but it need not be a δ-preform on �′. In the following
construction, we pass to a convenient subalgebra of P(V, ϕU ) which is invariant
under d ′ and d ′′.

As an initial step, we consider the elements ω of P p,q(V, ϕU ) and P p,q,l(V, ϕU ),
respectively, satisfying the closedness condition

d ′[ f ∗(ω)|�′] = d ′′[ f ∗(ω)|�′] = 0 ∈ D(�′) (4.6.1)

for every tropical chart (V ′, ϕU ′) which is compatible with (V, ϕU ) with respect
to f : X ′→ X . These elements form subspaces Z p,q(V, ϕU ) of P p,q(V, ϕU ) and
Z p,q,l(V, ϕU ) of P p,q,l(V, ϕU ), respectively, and we define

Z(V, ϕU ) :=
⊕

p,q≥0

Z p,q(V, ϕU )=
⊕

p,q,l≥0

Z p,q,l(V, ϕU )

as usual.

Proposition 4.7. Using the notation above, Z(V, ϕU ) is a bigraded R-subalgebra
of P(V, ϕU ).

Proof. The only nontrivial point is that Z(V, ϕU ) is closed under the ∧-product.
This is a direct consequence of Lemma 3.7 applied to δ-preforms on the tropical
cycle Trop(U ′) for any tropical chart (V ′, ϕU ′) compatible with (V, ϕU ). �

Example 4.8. Every tropical cycle C = (C ,m) on NU,R with constant weight
functions induces an element in Z(V, ϕU ). Indeed, if (V ′, ϕU ′) is a tropical chart on
X ′ compatible with (V, ϕU ) as above, then F∗(δC)|�′ is given by the restriction of
δF∗(C)·Trop(U ′) to�′. Since F∗(C) ·Trop(U ′) is a tropical cycle with constant weight
functions, the associated current is d ′- and d ′′-closed [Gubler 2016, Proposition 3.8].

Definition 4.9. Let AZ(V, ϕU ) be the subalgebra of P(V, ϕU ) generated by A(�)
and Z(V, ϕU ). An element β ∈ AZ(V, ϕU ) has the form

β =
∑
i∈I

αi ∧ωi (4.9.1)

for a finite set I with all αi ∈ A(�) and ωi ∈ Z(V, ϕU ). We define

d ′β :=
∑
i∈I

d ′(αi )∧ωi , d ′′β :=
∑
i∈I

d ′′(αi )∧ωi .

It follows from the closedness condition (4.6.1) that d ′β and d ′′β are well-defined
elements in AZ(V, ϕU ). By definition, we have

Z(V, ϕU )= {α ∈ AZ(V, ϕU ) | d ′(α)= d ′′(α)= 0}.

An element in AZ(V, ϕU ) is called symmetric (resp. antisymmetric) if it is symmetric
(resp. antisymmetric) in P(V, ϕU ).
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The following result shows that AZ(V, ϕU ) is a good analogue of the algebra of
complex differential forms.

Proposition 4.10. The space AZ(V, ϕU ) is a bigraded differential R-algebra with
respect to the differentials d ′ and d ′′.

Proof. This follows easily from Leibniz’s rule 3.8(ii) and Proposition 4.7. �

Proposition 4.11. Let f : X ′→ X be a morphism of varieties over K . Let (V, ϕU )

and (V ′, ϕU ′) be tropical charts of X and X ′ respectively which are compatible
with respect to f . Then the pull-back homomorphism f ∗ : P(V, ϕU )→ P(V ′, ϕU ′)

maps Z(V, ϕU ) to Z(V ′, ϕU ′) and AZ(V, ϕU ) to AZ(V ′, ϕU ′).

Proof. This follows directly from the definitions. We leave the details to the reader.
�

Proposition 4.12. Let (V, ϕU ) be a tropical chart of X and � := tropU (V ). Let
(�i )i∈I be a finite open covering of �. For i ∈ I , let Vi := trop−1

U (�i ) and let
αi ∈ P(Vi , ϕU ). For all i, j ∈ I , we assume that αi |Vi∩Vj = αj |Vi∩Vj . Then there is
a unique α ∈ P(V, ϕU ) with α|Vi = αi for every i ∈ I . If αi ∈AZ(Vi , ϕU ) for every
i ∈ I then α ∈ AZ(V, ϕU ).

Proof. It is a straightforward consequence of our definitions that α is unique. In
order to construct α we choose for each i ∈ I an open subset �̃i in NU,R such that
�̃i ∩Trop(U )=�i and a δ-preform α̃i ∈ P(�̃i ) which represents αi . Let (φi )i∈I

be a smooth partition of unity on �̃=
⋃

i∈I �̃i with respect to the covering (�̃i )i∈I .
Observe that we may choose the same index set I as we do not require that the φi

have compact support. Then by our assumptions α̃ :=
∑

i∈I φi α̃i ∈ P(�̃) induces
the desired element α in P(V, ϕU ). If

αi =
∑
j∈Ii

βi j ∧ωi j ∈ AZ(Vi , ϕU )

as in (4.9.1), we choose representatives β̃i j ∈ A(�̃i ) of βi j ∈ A(�i ) and ω̃i j in
P(�̃i ) of ωi j ∈ Z(V, ϕU ). Then we may choose α̃i as

∑
j∈Ii

φiβi j ∧ ω̃i j and

α̃ =
∑
i∈I

φi α̃i =
∑
i∈I

∑
j∈Ii

φiβi j ∧ ω̃i j

shows α ∈ AZ(V, ϕU ), using the finiteness of I . �

Recall that the tropical charts (V, ϕU ) of X form a basis for X an [Gubler 2016,
Proposition 4.16]. Hence we can use the algebras P(V, ϕU ) and AZ(V, ϕU ) to
define sheaves on X an as follows:
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Definition 4.13. For a fixed open subset W in X an, the set of all tropical charts
(V, ϕU ) on X with W ⊆ V is ordered with respect to compatibility and forms a
directed set. Then we get presheaves

W 7→ lim
−→

P(V, ϕU ), W 7→ lim
−→

AZ(V, ϕU ) (4.13.1)

of real vector spaces on X an, where the limit is taken over this directed set with
respect to the pull-back maps considered in Proposition 4.11. The associated sheaves
P and B on X an are by definition the sheaf of generalized δ-forms and the subsheaf
of δ-forms. On an open subset W of X an the space of δ-forms

B(W )=
⊕

p,q≥0

B p,q(W )=
⊕

p,q,l≥0

B p,q,l(W )

and the space of generalized δ-forms

P(W )=
⊕

p,q≥0

P p,q(W )=
⊕

p,q,l≥0

P p,q,l(W )

carry natural gradings by the (p, q)-type of the underlying currents and the codi-
mension of the underlying tropical cycles (as defined in Definitions 2.9 and 4.4).
The wedge product on the spaces AZ(V, ϕU ) (resp. P(V, ϕU )) induces a product
on B(W ) (resp. P(W )). Moreover, the differential operators d ′, d ′′ on AZ(V, ϕU )

induce differential operators d ′, d ′′ on B(W ). The symmetric and antisymmetric ele-
ments in P(V, ϕU ) define subsheaves of (generalized) symmetric and antisymmetric
δ-forms in B p,q and P p,q for all p, q ≥ 0.

4.14. We conclude that a δ-form β of bidegree (p, q) on an open subset W of X an

is given by a covering (Vi )i∈I of W by tropical charts (Vi , ϕUi ) of X an and elements
βi ∈ AZp,q(Vi , ϕUi ) such that

βi |Vi∩Vj = β j |Vi∩Vj

holds for all i, j ∈ I . If β ′ is another δ-form of bidegree (p, q) on W given by
β ′j ∈ AZp,q(V ′j , ϕU ′j ) with respect to the tropical charts (V ′j , ϕU ′j ) j∈J covering W ,
then β and β ′ define the same δ-forms if and only if

βi |Vi∩V ′j = β
′

j |Vi∩V ′j

holds for all i ∈ I and j ∈ J . A similar description holds for generalized δ-forms.

Proposition 4.15. (i) The sheaves P and B are sheaves of bigraded anticommu-
tative R-algebras.

(ii) We have natural monomorphisms of sheaves of bigraded R-algebras A→ B
and B→ P.



A tropical approach to nonarchimedean Arakelov geometry 119

(iii) The differentials d ′, d ′′ : B → B turn (B, d ′, d ′′) into a sheaf of bigraded
differential R-algebras.

Proof. Only the injectivity of the natural morphism A→ B does not follow directly
from what we have shown before. The injectivity of A→ B can be checked on
the presheaves (4.13.1). For each tropical chart (V, ϕU ) of X the natural map from
A(V ) to AZ(V, ϕU ) is injective as the associated map A(�)→AZ(V, ϕU )→D(�)
for �= tropU (V ) is injective. This directly yields our claim. �

4.16. Let f : X ′→ X be a morphism of varieties over K . For an open subset W of
X an and an open subset W ′ of f −1(W ), we have a canonical pull-back morphism
f ∗ : P(W )→ P(W ′) which respects products and the bigrading. Furthermore
it induces a homomorphism f ∗ : B(W )→ B(W ′) of bigraded R-algebras which
commutes with the differentials d ′ and d ′′ on B. They are induced by the pull-back
f ∗ : P(V, ϕU )→ P(V ′, ϕU ′) for compatible charts (V ′, ϕU ′) on W ′ and (V, ϕU )

on W given in Proposition 4.11.

Lemma 4.17. Let (V, ϕU ) be a tropical chart on X. Let (Vi )i∈I be an open covering
of V by tropical charts (Vi , ϕUi ) on X which are compatible with (V, ϕU ). There
are canonical integral 0-affine morphisms Fi : NUi ,R→ NU,R such that tropU =

Fi ◦tropUi
. We choose open subsets �̃ in NU,R and �̃i in F−1

i (�̃) such that V =
trop−1

U (�̃) and Vi = trop−1
U (�̃i ) for all i ∈ I . Let α̃U ∈ P(�̃) be a δ-preform. Then

α̃U ∧ δTrop(U ) vanishes in D(�̃) if F∗i (α̃U )∧ δTrop(Ui ) vanishes in D(�̃i ) for every
i ∈ I .

Proof. We write α̃U =
∑

j∈J αj∧δC j for suitable superforms αj ∈ A(�̃) and tropical
cycles C j . We have Fi∗ Trop(Ui ) = Trop(U ) by (4.3.1). The projection formula
(Proposition 1.5) gives

Fi∗(F∗i C j ·Trop(Ui ))= C j ·Trop(U ).

By the same arguments as in the proof of Proposition 2.14, the vanishing of

F∗i (α̃U )∧ δTrop(Ui ) =

∑
j∈J

F∗i (αj )∧ δF∗i C j ·Trop(Ui )

in D(�̃i ) for all i ∈ I yields that

α̃U ∧ δTrop(U ) =
∑
j∈J

αj ∧ δFi∗(F∗i C j ·Trop(Ui ))

vanishes in D(�̃). �

Proposition 4.18. Given a tropical chart (V, ϕU ) on X , we have by construction
natural algebra homomorphisms

trop∗U : P
p,q(V, ϕU )→ P p,q(V ), trop∗U : AZp,q(V, ϕU )→ B p,q(V )
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for all p, q ≥ 0. These maps are injective.

Proof. We extend the argument in [Chambert-Loir and Ducros 2012, lemme (3.2.2)].
It suffices to show that the first map is injective. Let trop∗U (αU ) vanish for some
αU ∈ P(V, ϕU ). We obtain an open covering (Vi )i∈I of V by tropical charts (Vi , ϕUi )

compatible with (V, ϕU ) such that αU |Vi = 0 in P(Vi , ϕUi ) for all i ∈ I . Let αU

be induced by α̃U ∈ P(�̃) for some open subset �̃ ∈ NU,R with V = trop−1
U (�̃).

We have to show that α̃U ∈ N (V, ϕU ). Let f : X ′→ X be a morphism of varieties
and (V ′, ϕU ′) a tropical chart on X ′ which is compatible with (V, ϕU ). We obtain a
canonical integral 0-affine morphism F : NU ′,R→ NU,R such that tropU = F◦tropU ′ .
We choose an open subset �̃′ in F−1(�̃) such that V ′ = trop−1

U (�̃′). We have to
show that F∗(α̃U )∧ δTrop(U ′) vanishes in D(�̃′).

For every i ∈ I we choose an open covering (V ′i j ) j∈Ji of ( f an)−1(Vi )∩ V ′ by
tropical charts (V ′i j , ϕU ′i j

) on X ′ which are compatible with (V ′, ϕU ′) and (Vi , ϕUi ).
For all i ∈ I and j ∈ Ji we obtain a commutative diagram

(U ′i j )
an

f |U ′i j
��

� � //

tropU ′i j ++

(U ′)an

f |U ′
��

tropU ′

++
U an

i
� � //

tropUi
++

U an

tropU

++

NU ′i j ,R F ′i j

//

Fi j

��

NU ′,R

F
��

NUi ,R
Fi

// NU,R

of canonical maps. We choose an open subset �̃′i j in (F ′i j )
−1(�̃′)∩ (Fi j )

−1(�̃i )

such that V ′i j = trop−1
U ′i j
(�̃′i j ). We have (F ′i j )

∗F∗(α̃U )∧ δTrop(U ′i j )
= 0 in D(�̃′i j ) by

the commutativity of the above diagram and the fact that αU |Vi = 0 in P(Vi , ϕUi ).
Now Lemma 4.17 applied to F∗(α̃U ) on (V ′, ϕU ′) and the covering (V ′i j )i j of V ′

yields the vanishing of F∗(α̃U )∧ δTrop(U ′) in D(�̃′). �

4.19. Let W be an open subset of X an. By construction, the algebra A·,·(W ) of
differential forms on W is a bigraded subalgebra of the algebra B ·,·(W ) of δ-forms.
In general, Ap,q(W ) is a proper subspace of B p,q(W ). The situation in degree zero
is quite different as we may identify δ-forms of degree 0 with functions. We will
show that

A0,0(W )= B0,0(W ). (4.19.1)

Clearly, this is a local statement and so we may consider a tropical chart (V, ϕU )

on W . It is enough to show

A0,0(�)= AZ0,0(V, ϕU ) (4.19.2)
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for the open subset � := tropU (V ) of Trop(U ). Let �̃ be any open subset of NU,R.
Since pull-back of functions is always well defined, we may identify the elements of
P0,0(V, ϕU ) with some continuous functions on� and a partition of unity argument
together with Example 2.10 shows

P0,0(V, ϕU )= {φ|� | φ ∈ P0,0(�̃)} = {φ|� | φ ∈ PS0,0(�̃)}. (4.19.3)

To prove (4.19.2), it is enough to show that the elements of Z(V, ϕU ) are precisely
the locally constant functions on �. By (4.19.3), we have to show that φ|� is
locally constant for any φ ∈ PS0,0(�̃) with φ|� ∈ Z(V, ϕU ). This means that φ is a
continuous function on �̃ with an integral R-affine complete polyhedral complex C

on NR such that φ|�∩1 is smooth for every 1 ∈ C . By refinement, we may assume
that a subcomplex D of C has support equal to Trop(U ). Then the closedness
condition (4.6.1) yields that [φ|�] is d ′- and d ′′-closed. We conclude that φ|�∩1
is constant on every 1 ∈ D . By continuity, we deduce that φ|� is locally constant
proving the claim.

4.20. Let (V, ϕU ) be a tropical chart on X and �= tropU (V ).

(i) If �0 is an open subset of �, then V0 := trop−1
U (�0) is an open subset of V

and (V0, ϕU ) is a tropical chart of X . We say that αU ∈ P(V, ϕU ) vanishes on the
open subset �0 if we have αU |V0 = 0 in P(V0, ϕU ) (see Remark 4.5). We define
supp(αU ), the support of αU ∈ P(V, ϕU ), as{

ω ∈� | αU does not vanish on any open neighbourhood �0 of ω in �
}
,

which is a closed subset of �.

(ii) A (generalized) δ-form α on an open subset W of X an has a well defined support
as a section of the sheaf B p,q (resp. P p,q ). We denote by B p,q

c (resp. by P p,q
c ) the

subsheaves of forms with compact support.

(iii) Observe that compact support always implies proper support in the sense of
[Chambert-Loir and Ducros 2012, (4.2.1)] as our assumptions imply that we have
∂W =∅ for each open subset W of X an (using that X an is closed, meaning that it
has no boundary, see [Berkovich 1990, Theorem 3.4.1]).

Proposition 4.21. Let (V, ϕU ) be a tropical chart on X. Suppose that a generalized
δ-form α ∈ P(V ) is given by αU ∈ P(V, ϕU ). Then αU is uniquely determined and
we have tropU (supp(α))= supp(αU ). Furthermore α has compact support if and
only if αU has compact support.

Proof. This uniqueness follows from Proposition 4.18. The second statement
follows from Proposition 4.18 by the same arguments as in [Chambert-Loir and
Ducros 2012, corollaire (3.2.3)]. The last statement is a direct consequence of the
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continuity and properness of the tropicalization map tropU (see [Baker et al. 2016,
Remark in 2.3]). �

Example 4.22. We construct a tropical chart (V, ϕU ) and a nonzero δ-form α ∈

AZ(V, ϕU ) \ {0} with α|� = 0 for � := tropU (V ). This example announced
in Remark 4.5 justifies the functorial definition of (generalized) delta-forms in
Definition 4.4.

We work over the ground field K = Cp for some prime number p 6= 2, 3 and
consider the affine curve X in A2

K defined by the affine equation

f (x, y)= xy+ px3
+ py3.

We consider the very affine open subset U = X \ ({x = 1} ∪ {y = 1}). The only
singularity of the rational cubic X is the origin 0 = (0, 0), which is an ordinary
double point. The normalization of X may be seen as an open subset of P1

K and can
be obtained as the blowup of X in (0, 0), as in [Hartshorne 1977, Example I.4.9.1].
This description leads to a surjective morphism

ϕ : P1
K \ {ξ1, ξ2, ξ3} → X, u 7→

(
x =

−u
p(1+ u3)

, y =
−u2

p(1+ u3)

)
for a suitable affine coordinate u on P1

K , where ξi are the roots of u3
+ 1 = 0.

It is clear that all ξi have absolute value 1 and we may choose ξ1 = −1. Note
that ϕ−1({x = 1}) = {ρ1, ρ2, ρ3} for the roots ρi of pu3

+ u + p = 0 in K and
ϕ−1(X \ {y = 1})= {ρ−1

1 , ρ−1
2 , ρ−1

3 }. Moreover, we have ϕ−1(0)= {0,∞}.
The method of the Newton polygon [Neukirch 1999, Proposition II.6.3] shows

that pu3
+ u+ p = 0 has one root ρ1 of absolute value |p|, and two roots ρ2, ρ3 of

absolute value |p|−
1
2 . We put

(λ0, λ1, . . . , λ8)= (ξ1, ξ2, ξ3, ρ1, ρ2, ρ3, ρ
−1
1 , ρ−1

2 , ρ−1
3 )

and get
W := ϕ−1(U )= P1

K \ {(λi : 1) | i = 0, . . . , 8}.

The abelian group O(W )×/K× is free of rank eight with generators bi =
u−λi
u+1

,
i = 1, . . . , 8. We deduce from [Liu 2002, Proposition 7.5.15] that

O(U )× = { f ∈O(W )× | f (0)= f (∞)}.

We conclude that MU :=O(U )×/K× is a free abelian group of rank seven.
In the following, we would like to describe the canonical tropicalization Trop(U )

in the euclidean space R7 given by choosing a basis in MU . This is rather com-
plicated and so we compute the tropicalization tropx−1,y−1(U ) in R2 using the
tropicalization map

tropx−1,y−1 : U an
→ R2, q 7→

(
−log|(x − 1)(q)|,−log|(y− 1)(q)|

)
.
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Figure 1. Minimal skeleton S(W ) and Tropx−1,y−1(U ).

This will be not enough for our purpose, but we will use the minimal skeleton
S(W ) of W for the computation and as S(W ) also covers Trop(U ), we get a very
good picture of the latter. This method to compute tropicalizations is due to [Baker
et al. 2013; 2016] and we will refer to these papers for details of the following
construction. Skeleta are discussed in [Baker et al. 2013] and we refer to [Baker et al.
2013, Corollary 4.23] for existence and uniqueness of the minimal skeleton S(W )

of the smooth curve W . We recall that the skeleton S(W ) has a canonical retraction
τ : (P1

K )
an
→ S(W ) and hence S(W ) is a compact subset of (P1

K )
an. Similarly as

in the examples in [Baker et al. 2016, Section 2], we describe the minimal skeleton
S(W ) and the tropicalization Tropx−1,y−1(U ) := tropx−1,y−1(U

an) in Figure 11.
Using [Gubler et al. 2016, Section 5], there is a map F : S(W )→ Tropx−1,y−1(U )
with F ◦ τ = tropx−1,y−1 ◦ϕ

an such that F maps each segment (resp. leaf) of S(W )

by an integral Q-affine map onto a segment (resp. leaf) of Tropx−1,y−1(U ). One
computes easily that these affine maps are all integral Q-affine isomorphisms. The
polyhedral set Tropx−1,y−1(U ) carries a natural structure of a tropical cycle [Gubler
2013, Theorem 13.11]. All weights are one if not indicated otherwise in Figure 1.
For r > 0, let ζr ∈ (P

1
K )

an be the supremum norm on the closed ball {|u| ≤ r}, where
u denotes our distinguished affine coordinate on P1

K .
Let

�̃ :=
{
(x, y) ∈ R2

| x >−1
2 , y >− 1

2

}
and � := �̃∩ Tropx−1,y−1(U ). Let H : NU,R→ R2 be the canonical affine map
with NU the dual of MU . Moreover, we have a canonical surjective map G from

1Thanks to Christian Vilsmeier for drawing the figure.
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the minimal skeleton S(W ) onto the canonical tropicalization Trop(U ) which is
affine on every segment and every leaf of the minimal skeleton and such that
tropU ◦ ϕ

an
= G ◦ τ for the canonical retraction τ onto the skeleton S(W ) (see

[Gubler et al. 2016, Section 5]). Using our description of O(U )×, we deduce that

G(ζ|p|−1)=G◦τ(∞)= tropU ◦ϕ
an(∞) and G(ζ|p|)=G◦τ(0)= tropU ◦ϕ

an(0)

are equal as the right-hand sides are given in terms of units on U .
Using the fact that F = H ◦G, we conclude that the fibre of the surjective map

H : Trop(U )→ tropx−1,y−1(U ) over (0, 0) is one single point and that H maps
�′ := H−1(�̃) ∩ Trop(U ) homeomorphically and isometrically with respect to
lattice length onto �. We express this fact by saying that �′ is unimodular to �.
This is all we need in the following.

Now we consider the tropical chart (V, ϕU ) around the ordinary double point
0 = (0, 0) of U , where V := trop−1

U (�). We consider the unique function φ̃ on
R2 which is linear on each quadrant with φ̃(1, 0) = 1, φ̃(0, 1) = −1 and which
is zero in the third quadrant. Let φ be the restriction of φ̃ to �. Let φ′ := φ ◦ H
as a real function on �′. It follows from the tropical Poincaré–Lelong formula in
Theorem 0.1 that d ′d ′′[φ] is the supercurrent on � given by δφ·Tropx−1,y−1(U ), where
φ ·Tropx−1,y−1(U ) is the corner locus of φ. Similarly, d ′d ′′[φ′] = δφ′·Trop(U ). It is
clear that φ ·Tropx−1,y−1(U ) is zero on�\{(0, 0)} as φ is linear there. By definition,
the multiplicity of φ · Tropx−1,y−1(U ) in (0, 0) is the sum of the four outgoing
slopes, which is zero as well. We conclude that the corner locus φ ·Tropx−1,y−1(U )
is zero. Since we have shown that �′ is unimodular to �, we conclude that the
corner locus φ′ ·Trop(U ) is zero on �′ as well.

We note that the corner locus φ̃′ · NU,R of the function φ̃′ := φ̃ ◦ H on NU,R

induces a δ-preform δφ̃′·NU,R
on NU,R which represents a δ-form α on the tropi-

cal chart (V, ϕU ). We have α ∈ AZ1,1(V, ϕU ) ⊂ P1,1(V, ϕU ). It follows from
Proposition 1.14 that

α|� = δφ̃′·NU,R
∧ δTrop(U ) = δφ′·Trop(U ) = 0. (4.22.1)

Now let us consider the open ball B := {|u|< |p|
1
2 } in P1

K . It is clear that V ′′ :=
B \ {ρ1} is mapped by F to �∩ {x = 0}. The coordinate w := u − ρ1 on U ′′ :=
P1

K \ {ρ1,∞} induces an isomorphism ϕU ′′ : U ′′ → Gm . Note that (V ′′, ϕU ′′) is
a tropical chart. Indeed, we have V ′′ = trop−1

U ′′(�
′′) and tropU ′′(V

′′) = �′′ for
�′′ :=

( 1
2 ,∞

)
. The tropical charts (V ′′, ϕU ′′) and (V, ϕU ) are compatible with

respect to the morphism ϕ and hence there is a canonical affine map E : R→ NU,R

with tropU ◦ϕ
an
= E ◦ tropw. We have

ϕ∗(α)|�′′ = E∗(δφ̃′·NU,R
)|�′′ = δE∗(φ̃′)·NU ′′,R

|�′′ .
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It is clear that φ′′ := E∗(φ̃′) is a piecewise linear function on�′′ which is identically
zero on

( 1
2 , 1

]
and which has slope 1 on [1,∞). It follows that ϕ∗(α)|�′′ = δ1.

We conclude that α ∈ AZ1,1(V, ϕU ) is an example with α|� = 0, but α 6= 0 as
ϕ∗(α)|�′′ 6= 0.

5. Integration of delta-forms

We keep the notation and the hypotheses from the previous section. Our goal is to
introduce integration of generalized δ-forms of top degree with compact support.
We proceed as in [Gubler 2016, 5.13]. A crucial ingredient in our definition of
the integral is Lemma 5.5 which shows that the support of a generalized δ-form
of high degree is always concentrated in points of high local dimensions. This
allows us to compute the integral with a single chart of integration. We obtain a
well defined integral for generalized δ-forms which satisfies a projection formula
and the theorem of Stokes.

5.1. Let (V, ϕU ) be a tropical chart of X . As before we write V = trop−1
U (�̃) for

some open subset �̃ of NU,R and �= �̃∩Trop(U ). Recall n := dim(X).

(i) An element αU in P(V, ϕU ) is represented by a δ-preform α̃U in P(�̃) and
determines a δ-preform

αU |� = α̃U ∧ δTrop(U ) ∈ P(�)⊆ D(�)

on � as in (4.5.1) which does neither depend on the choice of α̃U nor on the choice
of �̃. Often, it is convenient to use the notation αU |Trop(U ) for αU |�.

(ii) Given αU in Pn,n(V, ϕU ) and an integral R-affine polyhedral subset P of �
such that P ∩ supp(αU |�) is compact, we define∫

P
αU :=

∫
P
α̃U ∧ δTrop(U ),

where the right-hand side is defined as in Remark 3.5. As usual, we extend the
integral by 0 to the αU of other bidegrees.

(iii) If αU in Pn,n(V, ϕU ) and if the support of αU |� is compact, then we can
consider αU |� as a δ-preform on Trop(U ) with compact support and we write∫

�

αU :=

∫
|Trop(U )|

αU |�,

again using Remark 3.5.

(iv) Given αU in Pn−1,n(V, ϕU ) or Pn,n−1(V, ϕU ) and an integral R-affine polyhe-
dral subset P of � such that P ∩ supp(αU |�) is compact, we define∫

∂P
αU :=

∫
∂P
α̃U ∧ δTrop(U ),
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where the right-hand side is defined in Remark 3.5. We extend the boundary integral
by 0 to the αU of other bidegrees.

5.2. In the next result, we look at functoriality of the above integrals with respect to
a morphism f : X ′→ X of algebraic varieties over K . Let (V, ϕU ) be a tropical chart
of X . Let U ′ be a very affine open subset of X ′ with f (U ′)⊆U . Recall that there is a
canonical integral 0-affine morphism F : NU ′,R→ NU,R such that tropU = F◦tropU ′ .
Letting V ′ := ( f an)−1(V )∩ (U ′)an, we deduce easily that (V ′, ϕU ′) is a tropical
chart of X ′ which is compatible with the tropical chart (V, ϕU ). Let P be an integral
R-affine polyhedral subset of � := tropU (V ) and let Q := F−1(P)∩Trop(U ′). We
consider αU ∈ P(V, ϕU ) and its pull-back f ∗(αU ) ∈ P(V ′, ϕU ′) (see Remark 4.5).
In the following, we will use the degree of a morphism as introduced in 4.3.

Proposition 5.3. Under the hypothesis of 5.2 and with n := dim(X), we assume ad-
ditionally that Q∩ supp( f ∗(αU )|Trop(U ′)) is compact. Then the following properties
hold:

(i) The set P ∩ supp(αU |Trop(U )) is compact.

(ii) If αU is of bidegree (n, n), then

deg( f ) ·
∫

P
αU =

∫
Q

f ∗(αU ). (5.3.1)

(iii) If αU is of bidegree (n− 1, n) or (n, n− 1), then

deg( f ) ·
∫
∂P
αU =

∫
∂Q

f ∗(αU ). (5.3.2)

Proof. We choose an open subset �̃ of NU,R with � = �̃∩ Trop(U ). We write
V ′ = trop−1

U (�̃′) for some open subset �̃′ of N ′R. Replacing �̃′ by �̃′ ∩ F−1(�̃),
we may assume that �̃′ is contained in F−1(�̃). We write �′ = �̃′ ∩ Trop(U ′).
If αU ∈ P(V, ϕU ) is represented by some element α̃U ∈ P(�̃), then f ∗(αU ) is
represented by the element F∗(α̃U ) in P(�̃′). We obtain from (4.3.1) and (2.14.1)
that P ∩ supp(αU |Trop(U )) is compact. This proves (i).

If αU ∈ Pn,n(V, ϕU ), then we obtain

deg( f )
∫

P
α̃U ∧ δTrop(U ) =

∫
F−1(P)

F∗α̃U ∧ δTrop(U ′) (5.3.3)

if we combine (4.3.1) with the projection formula (2.14.1). By definition, (5.3.1) is
a direct consequence of (5.3.3). Equation (5.3.2) is derived in the same way from
(4.3.1) and (2.14.2) �

Let W denote an open subset of X an. Note that a generalized δ-form on W is
locally given by elements of P(V, ϕU ) for tropical charts (V, ϕU ). The following
corollary will be crucial for the definition of the integral of generalized δ-forms.
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Corollary 5.4. We consider very affine open subsets U ′ ⊆ U in X. Let α =
trop∗U (αU ) for some αU ∈ P(U an, ϕU ). Then there is a unique αU ′ ∈ P((U ′)an, ϕU ′)

with α|(U ′)an = trop∗U ′(αU ′). If α is of bidegree (n, n) and has compact support in
(U ′)an, then we have ∫

|Trop(U )|
αU =

∫
|Trop(U ′)|

αU ′ .

Proof. Let F : NU ′,R→ NU,R be the canonical affine map with tropU = F ◦ tropU ′

on (U ′)an. Then α|(U ′)an is given by αU ′ := F∗(αU ) ∈ P((U ′)an, ϕU ′). This proves
existence, and uniqueness follows from Proposition 4.18. To prove the last claim,
we use (5.3.1) for f = id, P = |Trop(U )| and Q = |Trop(U ′)|. �

In the following result, we need the local invariant d(x) for x ∈ X an [Gubler
2016, 4.2]. This invariant was introduced in [Berkovich 1990, Chapter 9] and was
extensively studied in [Ducros 2012]. We note that d(x) ≤ m if x belongs to a
Zariski closed subset of dimension m [Berkovich 1990, Proposition 9.1.3].

Lemma 5.5. Let W be an open subset of X an and let α ∈ P p,q(W ). If x ∈ W
satisfies d(x) <max(p, q), then x 6∈ supp(α).

Proof. The proof relies on a result of Ducros [2012, théorème 3.4] which says
roughly that in a sufficiently small analytic neighbourhood of x , the dimension of
the tropical variety is bounded by d(x). The details are as follows. We choose a
tropical chart (V, ϕU ) around x such that α is induced by a δ-preform

∑
i∈I αi ∧δCi

on NU,R. By linearity, we may assume that α is induced by α1∧δC1 for a superform
α1 in Ap′,q ′(NU,R) and a tropical cycle C1 of codimension c := p− p′ = q−q ′ ≥ 0
in NU,R. By definition of a tropical chart, there is an open subset �̃ of NU,R

such that V = trop−1
U (�̃). By the mentioned result of Ducros (see also [Gubler

2016, Proposition 4.14]), there is a compact neighbourhood Vx of x in V such that
tropU (Vx) is a polyhedral subset of NU,R with

dim(tropU (Vx))≤ d(x) <max(p, q). (5.5.1)

We will show that α|Vx = 0. Let f : X ′→ X be a morphism of algebraic varieties
over K and (V ′, ϕU ′) a tropical chart of X ′ with f an(V ′)⊆ Vx . By definition, we
have V ′ = trop−1

U ′ (�
′) for the open subset �′ := tropU ′(V

′) of Trop(U ′). In this
situation, we get a commutative diagram

V ′

f an
|V ′

��

� � // (U ′)an

f an
|(U ′)an

��

ϕU ′
// TU ′

��

// NU ′,R

F
��

V �
�

// U an ϕU
// TU // NU,R

(5.5.2)
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as before. To prove the claim, it is enough to show that

f ∗(α)|�′ := F∗(α1)∧ δF∗(C1)|�′ = 0,

or equivalently
F∗(α1)∧ δC ′ = 0 ∈ D(�′) (5.5.3)

for the tropical cycle C ′ := F∗(C1) ·Trop(U ′) of codimension c in Trop(U ′). We
note that �′ = tropU ′(V

′) ⊆ F−1(tropU (Vx)). Let 1′ be a maximal polyhedron
from C ′ with 1′ ∩�′ 6=∅. Then F(1′ ∩�′)⊆ tropU (Vx) and hence

F∗(α1)|1′∩�′ = (F |1′∩�′)∗(α1|F(1′)∩tropU (Vx )). (5.5.4)

We will show below that

codim
(
F(1′ ∩�′), tropU (Vx)

)
≥ c. (5.5.5)

Then (5.5.3) follows from (5.5.4) by using (5.5.5) and (5.5.1). This proves x 6∈
supp(α).

It remains to prove (5.5.5). By definition of the stable tropical intersection
product in Remark 1.4(ii), there are maximal polyhedra 1′0 and 1′1 of Trop(U ′)
and F∗(C1), respectively, such that 1′ = 1′0 ∩1

′

1. Moreover, N1′0,R and N1′1,R
intersect transversely in NU ′,R which means that

N1′0,R+ N1′1,R = NU ′,R. (5.5.6)

Similarly, the definition of pull-back of tropical cycles in Remark 1.4(v) shows
that there is a maximal polyhedron 11 of C1 with F(1′1)⊆11 and such that

N11,R+ LF (NU ′,R)= NU,R. (5.5.7)

It follows from (5.5.6) and (5.5.7) that LF (N1′0,R) intersects N11,R transversely
in NU,R. Since the codimension is decreasing under a surjective linear map, we
easily get

LF (N1′,R)= LF (N1′0,R ∩ N1′1,R)= LF (N1′0,R)∩ N11,R

and hence

codim
(
F(1′ ∩�′), F(1′0 ∩�

′)
)
= codim

(
LF (N1′,R), LF (N1′0,R)

)
= c

by transversality. Using F(�′)⊆ tropU (Vx), this proves (5.5.5). �

Corollary 5.6. Let W be an open subset of X an and let U be an open subset of X.
If α ∈ P p,q(W ) with dim(X \U ) <max(p, q), then supp(α)⊆W ∩U an.

Proof. If x ∈W \U an, then the assumptions yield d(x)≤ dim(X \U ) <max(p, q)
and hence the claim follows from Lemma 5.5. �
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Proposition 5.7. Let α ∈ P p,q(X an) with compact support in the open subset W
of X an.

(a) There is a nonempty tropical chart (V, ϕU ) with supp(α)∩U an
⊆ V ⊆U an

∩W
and αU ∈ P p,q(U an, ϕU ) such that α = trop∗U (αU ) on U an.

(b) Given U , the element αU in (a) is unique.

(c) If α is a δ-form, then we may choose αU ∈ AZp,q(U an, ϕU ).

(d) If max(p, q) = dim(X), then any nonempty very affine open subset U of X
with α|U an = trop∗U (αU ) for some αU ∈ P p,q(U an, ϕU ) satisfies automatically
supp(α)⊆U an. Moreover, αU has always compact support in Trop(U ).

Explicitly, if supp(α) is covered by nonempty tropical charts (Vi , ϕUi )i=1,...,s in W
and if α is given on Vi by αi ∈ P p,q(Vi , ϕUi ), then any nonempty very affine open
subset U of U1 ∩ · · · ∩Us and V = (V1 ∪ · · · ∪ Vs)∩U an fit in (a).

Proof. Since the support of α is a compact subset of W , it is covered by tropical
charts (Vi , ϕUi )i=1,...,s describing α as above. Compactness again shows that for any
i = 1, . . . , s, there is a relatively compact open subset �′i of �i with corresponding
open subset V ′i := trop−1

Ui
(�′i ) of Vi such that supp(α) ⊆ V ′1 ∪ · · · ∪ V ′s . Let us

consider a nonempty very affine open subset U of U1 ∩ · · · ∩Us of X and the open
subsets

V ′ :=U an
∩

s⋃
i=1

V ′i ⊆ V :=U an
∩

s⋃
i=1

Vi

of W ∩U an. We have to show that V and U satisfy (a). Let Fi : NU,R→ NUi ,R

be the canonical integral 0-affine map induced by the inclusion U ⊆Ui (see 4.3).
Then the open subsets

�′ := Trop(U )∩
s⋃

i=1

F−1
i (�′i )⊆� := Trop(U )∩

s⋃
i=1

F−1
i (�i )

of Trop(U ) satisfy V = trop−1
U (�) and V ′= trop−1

U (�′) which means that (V ′, ϕU )

and (V, ϕU ) are compatible tropical charts of X contained in W. Note that the
tropical chart (Vi ∩U an, ϕU ) is compatible with (Vi , ϕUi ) and hence α is given on
(Vi ∩U an, ϕU ) by α′i = αi |Vi∩U an ∈ P(Vi ∩U an, ϕU ). Using that �′i is relatively
compact in �i , we deduce that the closure S of �′ in Trop(U ) is contained in �.
We set V ′′ := trop−1

U (Trop(U ) \ S) leading to the tropical chart (V ′′, ϕU ). Since
α has compact support in W , we may view α as an element of P p,q(X an). By
construction, we have supp(α)∩U an

⊆ V ′. Using that V ′ and V ′′ are disjoint, we
deduce that α is given on the tropical chart (V ′′, ϕU ) by 0∈ P p,q(V ′′, ϕU ). We note
that the tropical charts (Vi ∩U an, ϕU )i=1,...,s and (V ′, ϕU ) cover U an and hence we
may apply the glueing from Proposition 4.12 to get the desired αU ∈ P p,q(U an, ϕU )

from (a).
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Uniqueness in (b) follows from Proposition 4.18. If α ∈ B p,q
c (X an), then we may

choose αi ∈ AZp,q(Vi , ϕUi ) and hence we get (c).
If max(p, q)=dim(X), then (d) follows from Corollary 5.6 and Proposition 4.21.

�

Definition 5.8. Let W be an open subset of X an and let α ∈ Pn,n
c (W ), where

n := dim(X). We may view α as a generalized δ-form on X an with compact support
contained in W . A nonempty very affine open subset U of X is called a very affine
chart of integration for α if α|U an = trop∗U (αU ) for some αU ∈ Pn,n(U an, ϕU ). By
Proposition 5.7, a chart of integration exists, and αU is unique and has compact
support in Trop(U ). We define the integral of α over W by∫

W
α :=

∫
|Trop(U )|

αU ,

where the right-hand side is defined in 5.1. As usual, we extend the integral by 0 to
generalized δ-forms of other bidegrees.

Proposition 5.9. Let W be an open subset of X an and α ∈ Pn,n
c (W ) as above.

(i) If supp(α) is covered by finitely many nonempty tropical charts (Vi , ϕUi ) such
that α is given on any Vi by αi ∈ Pn,n(Vi , ϕUi ), then U :=

⋂
i Ui is a very

affine chart of integration for α.

(ii) The definition of the integral
∫

W α given in Definition 5.8 does not depend on
the choice of the very affine chart of integration for α.

(iii) The integral defines a linear map
∫

W : Pn,n
c (W )→ R .

(iv) If f : X ′ → X is a proper morphism of degree deg( f ) then the projection
formula

deg( f )
∫

W
α =

∫
( f an)−1(W )

f ∗α (5.9.1)

holds for all α ∈ Pn,n
c (W ).

Proof. The explicit description of U in Proposition 5.7 proves (i). We show (ii).
Let U be a very affine chart of integration for α. Then every nonempty very affine
open subset U ′ of U is a very affine chart of integration and it is enough to show
that U ′ leads to the same integral. By uniqueness in Proposition 5.7, the pull-back
of αU with respect to the canonical affine map F : NU ′,R→ NU,R is equal to αU ′

and the claim follows from Corollary 5.4.
Claim (iii) is a direct consequence of our definitions. To prove (iv), we may

assume that dim(X ′)= dim(X)= n. We choose a very affine chart of integration U
for α and a nonempty very affine open subset U ′ of X ′ with f (U ′)⊆U . Note that
f ∗(α) is given on (U ′)an by f ∗(αU ) ∈ Pn,n(U ′, ϕU ′) constructed in Remark 4.5.
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Since f an is proper as well, the support of f ∗(α) is compact. We conclude that U ′

is a very affine chart of integration for f ∗(α) and∫
( f an)−1(W )

f ∗α =
∫
|Trop(U ′)|

f ∗(αU ).

The projection formula in (iv) is now a direct consequence of (5.3.1). �

In our setting, we have the following version of the theorem of Stokes.

Theorem 5.10. For α ∈ B2n−1
c (X) we have∫

X an
d ′α =

∫
X an

d ′′α = 0.

Proof. By Proposition 5.7, there is a nonempty very affine open subset U of X
such that supp(α)⊆U an and αU ∈ AZ2n−1

c (U an, ϕU ) such that α|U an = trop∗U (αU ).
Then U is a chart of integration for d ′α and d ′′α using d ′αU and d ′′αU on the
tropical side for integration. The claim follows from Stokes’ formula for δ-preforms
on Trop(U ) (see Proposition 3.6) by observing that boundary integrals

∫
∂|Trop(U )|

vanish as Trop(U ) satisfies the balancing condition. �

6. Delta-currents

In this section, we define δ-currents on an open subset W of X an for an n-dimensional
algebraic variety X over K . We proceed analogously to the case of manifolds in
differential geometry, endowing some specific subspaces of the space Bc(W ) of δ-
forms with compact support in W with the structure of a locally convex topological
vector space. Then we define a δ-current as a linear functional on Bc(W ) with
continuous restrictions to all these subspaces.

6.1. Let (V, ϕU ) be a tropical chart of X with V ⊆W and let � := tropU (V ) be as
usual. We recall from Definition 4.9 that an element β ∈ AZ(V, ϕU ) has the form

β =
∑
j∈J

αj ∧ω j ∈ P(V, ϕU ) (6.1.1)

for a finite set J , αj ∈ A(�) and ω j ∈ Z(V, ϕU ).
Now we fix the family ωJ := (ω j ) j∈J and define AZ(V, ϕU , ωJ ) as the subspace

of AZ(V, ϕU ) given by all elements β with a decomposition (6.1.1) for suitable
αj ∈ A(�). For every s ∈ N and every compact subset C of �, we have the usual
seminorms pC,s on A(�) measuring uniform convergence on C of the derivatives
of the coefficients of the superforms up to order s (see for example [Dieudonné
1972, (17.3.1)]). We get seminorms pC,s,ωJ on AZ(V, ϕU , ωJ ) by defining

pC,s,ωJ (β) := inf
{

max
j∈J

pC,s(αj )

∣∣∣ β =∑
j∈J

αj ∧ω j , αj ∈ A(�)
}
.
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Letting s ∈ N and the compact subset C of W vary, we get a structure of a locally
convex topological vector space on AZ(V, ϕU , ωJ ).

6.2. A δ-form β on W is given by a covering (Vi , ϕUi )i∈I of W by tropical charts
and by βi ∈ AZ(Vi , ϕUi ) such that β|Vi = trop∗Ui

(βi ) for every i ∈ I . Using 6.1, we
have a finite tuple ωJi of elements in AZ(Vi , ϕUi ) such that βi ∈ AZ(Vi , ϕUi , ωJi )

for every i ∈ I . Now we fix the covering by tropical charts and all ωJi and we
define B(W ; Vi , ϕUi , ωJi : i ∈ I ) to be the subspace of B(W ) given by the elements
β such that β|Vi = trop∗Ui

(βi ) for some βi ∈ AZ(Vi , ϕUi , ωJi ) and for every i ∈ I .
We endow B(W ; Vi , ϕUi , ωJi : i ∈ I ) with the coarsest structure of a locally convex
topological vector space such that the canonical linear maps

B(W ; Vi , ϕUi , ωJi : i ∈ I )→ AZ(Vi , ϕUi , ωJi )

are continuous for every i ∈ I . An element β ∈ B(W ; Vi , ϕUi , ωJi : i ∈ I ) given as
above is mapped to βi , which is well defined by Proposition 4.18.

For a compact subset C of W , let BC(W ; Vi , ϕUi , ωJi : i ∈ I ) be the subspace
of B(W ; Vi , ϕUi , ωJi : i ∈ I ) given by the δ-forms with compact support in C . We
endow it with the induced structure of a locally convex topological vector space.

Definition 6.3. A δ-current on W is a real linear functional T on Bc(W ) such that
the restriction of T to BC(W ; Vi , ϕUi , ωJi : i ∈ I ) is continuous for every compact
subset C of W , for every covering (Vi , ϕUi )i∈I of W by tropical charts and for every
finite tuple ωJi of elements in Z(Vi , ϕUi ). We denote the space of δ-currents on W
by E(W ). A δ-current is called symmetric (resp. antisymmetric) if it vanishes on
the subspace of antisymmetric (resp. symmetric) δ-forms in Bc(W ).

6.4. Let W be an open subset of X an. Using that Bc(W ) =
⊕

p,q B p,q
c (W ) is

bigraded, we get E(W ) =
⊕

r,s Er,s(W ) as a bigraded R-vector space, where a
δ-current in Er,s(W ) acts trivially on every B p,q

c (W ) with (p, q) 6= (r, s). We
set E p,q(W ) := En−p,n−q(W ). The definition of δ-currents in 6.3 is local and
hence E·,· is a sheaf of bigraded real vector spaces on X an. This follows from
standard arguments using partition of unity if W is paracompact, and follows in
general from the fact that every compact subset C of W has a paracompact open
neighbourhood in W by [Chambert-Loir and Ducros 2012, lemme (2.1.6)]. The
argument is similar to that in [Chambert-Loir and Ducros 2012, lemme (4.2.5)] and
we leave the details to the reader.

There is a product

B p,q(W )× E p′,q ′(W )→ E p+p′,q+q ′(W ), (α, T ) 7→ α∧ T (6.4.1)

such that
〈α∧ T, β〉 = (−1)(p+q)(p′+q ′)T (α∧β)
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for each β ∈ Bn−p−p′,n−q−q ′
c (W ).

Proposition 6.5. Let U be a Zariski open subset of X and let W be an open subset
of X an. If codim(X \U, X) >min(p, q), then E p,q(W ∩U an)= E p,q(W ).

Proof. Corollary 5.6 shows that every δ-form on W of bidegree (n− p, n− q) has
support in W ∩U an. We conclude that every δ-current T in E p,q(W ∩U an) is a
linear functional on Bn−p,n−q

c (W ). It remains to prove that the restriction of T to
Bn−p,n−q

C (W ; Vi , ϕUi , ωJi : i ∈ I ) is continuous for every compact subset C of W ,
for every covering (Vi , ϕUi )i∈I of W by tropical charts and for every finite tuple
ωJi of elements in Z(Vi , ϕUi ).

We consider the set S of x ∈ W for which there is i ∈ I and a compact neigh-
bourhood Vx of x in W ∩ Vi with

dim(tropUi
(Vx)) <max(n− p, n− q). (6.5.1)

Note that tropUi
(Vx) is a polyhedral subset of NU,R by [Ducros 2012, théorème 3.2].

Obviously, S is an open subset of W . It follows from the proof of Lemma 5.5 that
S is disjoint from the support of any δ-form in Bn−p,n−q(W ; Vi , ϕUi , ωJi : i ∈ I ).
We conclude that

Bn−p,n−q
C (W ; Vi , ϕUi , ωJi : i ∈ I )= Bn−p,n−q

D (W ; Vi , ϕUi , ωJi : i ∈ I ) (6.5.2)

for the compact subset D := C \ S of C . By the proof of Lemma 5.5 again, every
x ∈ X an

\U an satisfies

d(x)≤ dim(X \U ) <max(n− p, n− q)

and has a compact neighbourhood Vx contained in some Vi and satisfying (6.5.1).
This proves D ⊆ W ∩U an. Using (6.5.2) and T ∈ E p,q(W ∩U an), we get the
continuity of the restriction of T to Bn−p,n−q

C (W ; Vi , ϕUi , ωJi : i ∈ I ). �

Proposition 6.6. A generalized δ-form η ∈ P p,q(W ) determines a δ-current [η] ∈
E p,q(W ) such that

〈[η], β〉 =

∫
W
η∧β

for each β ∈ Bn−p,n−q
c (W ).

Proof. We have to show that the restriction of [η] to every subspace

Bn−p,n−q
C (W ; Vi , ϕUi , ωJi : i ∈ I )

as in Definition 6.3 is continuous. By passing to a refinement of the covering by
tropical charts, we may assume that η is given on Vi by ηi ∈ P p,q(Vi , ϕUi ) for
every i ∈ I . Since C is compact, there is a finite subset I0 of I such that

⋃
i∈I0

Vi



134 Walter Gubler and Klaus Künnemann

covers C . By Proposition 5.9(i), we may use U :=
⋂

i∈I0
Ui as a very affine chart

of integration for any γ ∈ Bn,n
C (W ; Vi , ϕUi , ωJi : i ∈ I ).

Similarly to the proof of Proposition 6.5, we consider the set S of x ∈ W for
which there is an i ∈ I and a compact neighbourhood Vx of x in W ∩ Vi with

dim(tropUi
(Vx)) < n. (6.6.1)

It follows again from the proof of Lemma 5.5 that the open subset S of W is disjoint
from the support of η∧β ∈ Pn,n(W ) for any β ∈ Bn−p,n−q(W ; Vi , ϕUi , ωJi : i ∈ I )
and that the compact set D := C \ S is contained in W ∩U an.

By definition, β ∈ Bn−p,n−q
C (W ; Vi , ϕUi , ωJi : i ∈ I ) is given on Vi by βi =∑

j∈Ji
αi j ∧ ωi j with αi j ∈ A(�i ) and ωi j ∈ Z(Vi , ϕUi ), where �i := tropUi

(Vi ).
For i ∈ I0, let Fi : NU,R→ NUi ,R be the canonical affine map with tropUi

= Fi ◦tropU
on U an and let �′i := F−1

i (�i ) ∩ Trop(U ) = tropU (Vi ∩U an). The definition of∫
W η ∧ β uses that η ∧ β is given on U an by a unique γU ∈ Pn,n(U an, ϕU ) (see

Definition 5.8). Moreover, Proposition 5.7 shows that γU has compact support in⋃
i∈I0

�′i and that γU is characterized by the restrictions

γU |Vi∩U an =

∑
j∈Ji

ηi ∧αi j ∧ωi j |Vi∩U an ∈ Pn,n(Vi , ϕUi )

for every i ∈ I0. Recall that D is a compact subset of W ∩U an with supp(γ )⊆ D.
By Proposition 4.21, tropU (D) is a compact set of Trop(U ) containing the support
of γU. Then there is an integral R-affine polyhedral subset P of Trop(U ) with
tropU (D)⊆ P and hence we have

〈[η], β〉 =

∫
X an
η∧β =

∫
|Trop(U )|

γU =

∫
P
γU . (6.6.2)

We use now that P is independent of the choice of β ∈ Bn,n
C (W ; Vi , ϕUi , ωJi : i ∈ I ).

If all the αi j are small with respect to the supremum-norm (of the coefficients),
then a partition of unity argument on Trop(U ) shows that (6.6.2) is small, proving
the desired continuity. �

Remark 6.7. The maps P p,q(W )→ E p,q(W ) induce a map of sheaves P p,q
→

E p,q , α 7→ [α] which fits into a commutative diagram

Ap,q � � //� _

[ · ]D
��

B p,q � � //

[ · ]

��

P p,q

[ · ]{{

D p,q E p,qoo

(6.7.1)

There is an induced map P p,q(W )→ D p,q(W ). For β ∈ P p,q(W ), we denote the
associated current in D p,q(W ) by [β]D .
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There is no a priori reason that the canonical map from δ-forms to currents or
δ-currents is injective. However, we have the following functorial criterion:

Proposition 6.8. Let W be an open subset of X an and let α, β ∈ P p,q(W ). Then
α=β if and only if [ f ∗(α)]D=[ f ∗(β)]D ∈D p,q(W ′) for all morphisms f : X ′→ X
from algebraic varieties X ′ over K and for all open subsets W ′ of (X ′)an with
f (W ′)⊆W .

Proof. If α = β, then all pull-backs and also their associated currents are the
same. Conversely, we assume that the associated currents of all pull-backs are the
same for α and β. There is an open covering (Vi )i∈I of X an by tropical charts
(Vi , ϕUi ) such that α, β are given on Vi by αi , βi ∈ P p,q(Vi , ϕUi ). Let f : X ′→ X
be a morphism of varieties over K and let (V ′, ϕU ′) be a tropical chart of X ′

which is compatible with (Vi , ϕUi ). Let �′ denote the open subset tropU ′(V
′) of

Trop(U ′). It follows from our definitions that αi = βi in P(Vi , ϕUi ) if we show
f ∗(αi )|�′ = f ∗(βi )|�′ ∈ D p,q(�′) for all morphisms f and all charts (V ′, ϕU ′)

compatible with (Vi , ϕUi ). By assumption, we have [ f ∗(α)]D = [ f ∗(β)]D in
D p,q(V ′). We conclude that f ∗(αi )|�′ = f ∗(βi )|�′ ∈ P p,q(�′) ⊆ D p,q(�′) and
get αi = βi ∈ P(Vi , ϕUi ) proving the claim. �

6.9. As usual, we define the linear differential operators d ′ : E p,q(W )→ E p+1,q(W )

and d ′′ : E p,q
→ E p,q+1(W ) by

〈d ′T, β〉 := (−1)p+q+1
〈T, d ′β〉, 〈d ′′T, β〉 := (−1)p+q+1

〈T, d ′′β〉.

Note that d ′ and d ′′ induce continuous linear maps on the locally convex topological
vector spaces introduced in 6.2 and hence it is easy to check that d ′ and d ′′ are
well-defined on δ-currents. Moreover, the natural maps from Remark 6.7 fit into
commutative diagrams

B p,q [ · ]
//

d ′
��

E p,q

d ′
��

B p,q [ · ]
//

d ′′
��

E p,q

d ′′
��

B p+1,q [ · ]
// E p+1,q B p,q+1 [ · ]

// E p,q+1

(6.9.1)

of sheaves. As usual, we define d := d ′+ d ′′ also on E .

6.10. If f : X ′→ X is a proper morphism of algebraic varieties, then we get a
push-forward f∗ : Er,s( f −1(W ))→ Er,s(W ) as follows: For T ′ ∈ Er,s( f −1(W )),
the push-forward is the δ-current on W given by

〈 f∗(T ), β〉 := 〈T, f ∗(β)〉

for β ∈ Br,s
c (W ). It is easy to see that pull-back of δ-forms induces continuous

linear maps between appropriate locally convex topological vector spaces defined
in 6.2 and hence the proper push-forward of δ-currents is well defined.
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Example 6.11. In Definition 5.8, we introduced
∫

X an β for β ∈ Pn,n
c (X an). Setting

〈δX , β〉 :=
∫

X an β, we get the δ-current δX = [1] ∈ E0,0(X an). We call it the δ-
current of integration along X . Using linearity in the components and 6.10, we get
a δ-current of integration δZ for every algebraic cycle Z on X .

Proposition 6.12. Let f : X ′→ X be a proper morphism of algebraic varieties
and let Z ′ be a p-dimensional algebraic cycle on X ′. Then we have the equality
f∗δZ ′ = δ f∗Z ′ in E p,p(X an).

Proof. This is a direct consequence of the projection formula (5.9.1). �

Proposition 6.13. Let W be an open subset of X an. We equip the space Cc(W ) of
continuous functions f : W → R with compact support with the supremum norm
| · |W and its subspace A0

c(W ) of smooth functions with compact support with the
induced norm. Then for each α ∈ Pn,n

c (W ) the map

A0
c(W )→ R, f 7→

∫
W

f ·α

is continuous and extends in a unique way to a continuous map Cc(W )→ R .

Proof. We may assume that α is of codimension l. We observe that the Stone–
Weierstraß theorem [Chambert-Loir and Ducros 2012, proposition (3.3.5)] implies
that A0

c(W ) is a dense subspace of Cc(W ). Consider f ∈ A0
c(W ) and α ∈ Pn,n

c (W ).
Our claims are obvious once we have obtained a bound Cα such that the inequality∣∣∣∣∫

W
f ·α

∣∣∣∣≤ Cα · | f |W (6.13.1)

holds. We are going to prove this inequality in four steps.

First step: The definition of the bound Cα . We fix a very affine chart of integration
U for α which means that there is αU ∈ Pn,n

c (U an, ϕU ) with trop∗U (αU )= α and we
set N := NU . Then αU is represented by a δ-preform α̃U ∈ Pn,n

c (NR) of the form

α̃U =
∑
σ

ασ ∧ δσ (6.13.2)

as a polyhedral supercurrent, where σ ranges over C l for a complete integral R-
affine polyhedral complex C of N and where ασ ∈ An−l,n−l

c (σ ). The definition
of the bound Cα will depend on the choice of U and of the lift α̃U , but not on
the choice of C . The restriction αστ of ασ to an (n− l)-dimensional face τ of σ
is an element of An−l,n−l

c (τ ). As this is a superform of top-degree, we have a
well-defined compactly supported superform |αστ | of degree (n − l, n − l) with
continuous coefficient on τ . This single coefficient is independent of the choice of
an integral base of Lτ and it is given by the absolute value of the coefficient of α.
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After passing to a refinement, we may assume that Trop(U ) is given by the tropical
cycle (C≤n,m). Then we define

Cα :=
∑
(1,σ)

[N : N1+ Nσ ]m1

∫
τ

|αστ|, (6.13.3)

where (1, σ) ranges over all elements of Cn × C l such that L1 + Lσ = NR and
such that τ :=1∩ σ is (n− l)-dimensional. Here, the integral of a superform of
top-degree with continuous coefficient is defined as in [Chambert-Loir and Ducros
2012, (1.2.2), (1.4.1)].

Second step: A first estimate for the integral. By definition of a smooth function,
there is a covering of W by tropical charts (V ′j , ϕU ′j ) j∈J such that f |V ′j = trop∗U ′j

(φ′j )

for smooth functions φ′j on the open subsets �′j = tropU ′j
(V ′j ) of Trop(U ′j ). Any

given compact subset C of W containing the support of α will be covered by
(V ′j ) j∈J0

for a finite subset J0 of J . By Proposition 5.9, U ′ := U ∩
⋂

j∈J0
U ′j is a

very affine chart of integration for α and for f α. Let N ′ := NU ′ and let F : N ′R→ NR

be the canonical integral R-affine map. Since the restriction map O(U )×→O(U ′)×

is injective, it follows that F is surjective. After refining C , there is a complete
integral R-affine polyhedral complex C ′ on N ′R such that Trop(U ′)= (C ′

≤n,m′) and
such that 1 := F(1′) ∈ C for every 1′ ∈ C ′.

For V ′ :=
⋃

j∈J0
Vj ∩ (U ′)an, note that by Corollary 5.6, (V ′, ϕU ′) is a tropical

chart of W containing C ∩ (U ′)an and the support of α. The pull-backs of the
functions φ′j with respect to the canonical affine maps F j : N ′R→ NU ′j ,R glue to a
well-defined smooth function fU ′ on �′ := tropU ′(V

′). By definition, we have∫
W

f α =
∫
|Trop(U ′)|

fU ′F∗(α̃U )|Trop(U ′). (6.13.4)

Using that F is surjective, we deduce from (6.13.2) and (2.12.5) that

F∗(α̃U )=
∑
σ ′

[N : LF (N ′)+ Nσ ] · F∗ασ ∧ δσ ′,

where σ ′ ranges over all elements of (C ′)l such that σ := F(σ ′) is of codimension l
in N . We choose a generic vector v′ ∈ N ′R. It follows from (2.12.3) that

F∗(α̃U )|Trop(U ′) =
∑
τ ′

∑
(1′,σ ′)

[N ′ : N ′1′ + N ′σ ′][N : LF (N ′)+ Nσ ]m1′F∗ασ ∧ δτ ′,

where τ ′ ranges over C ′n−l and (1′, σ ′) ranges over all pairs in C ′n × (C
′)l such

that τ ′ =1′ ∩ σ ′ and such that 1′ ∩ (σ ′+ εv′) 6=∅ for all sufficiently small ε > 0.
Additionally, we assume that σ := F(σ ′) is of codimension l in NR as above. For
degree reasons, we may restrict the sum to those τ ′ with τ :=F(τ ′) of dimension n−l.
Note that this is equivalent to restricting our attention to those 1′ with 1 := F(1′)



138 Walter Gubler and Klaus Künnemann

of dimension n. Since α has support in V ′, the restriction of F∗ασ to σ ′ has support
in �′ ∩ σ ′. By (6.13.4), we have∫

W
f α =

∑
τ ′

∑
(1′,σ ′)

[N ′ : N ′1′ + N ′σ ′][N : LF (N ′)+ Nσ ]m1′
∫
τ ′

fU ′F∗ασ .

We deduce the following bound:∣∣∣∣∫
W

f α
∣∣∣∣

≤ | f |W
∑
τ ′

∑
(1′,σ ′)

[N ′ : N ′1′ + N ′σ ′][N : LF (N ′)+ Nσ ]m1′
∫
τ ′
|F∗αστ |. (6.13.5)

The transformation formula shows∫
τ ′
|F∗αστ | = [Nτ : LF (N ′τ ′)]

∫
τ

|αστ |

and hence the sum in (6.13.5) is equal to∑
τ ′

∑
(1′,σ ′)

[Nτ : LF (N ′τ ′)][N
′
: N ′1′+N ′σ ′][N : LF (N ′)+Nσ ]m1′

∫
τ

|αστ |. (6.13.6)

Third step: The following basic lattice index identity holds:

[Nτ : LF (N ′τ ′)][N
′
: N ′1′ + N ′σ ′][N : LF (N ′)+ Nσ ]

= [N : N1+ Nσ ][N1 : LF (N1′)]. (6.13.7)

In the basic lattice index identity (6.13.7), (1′, σ ′) is a pair in C ′n × (C
′)l such that

1′ ∩ (σ ′ + εv′) 6= ∅ for ε > 0 sufficiently small and such that σ := F(σ ′) is of
codimension l in N . We have also used 1 := F(1′), τ ′ :=1′ ∩σ ′ and τ := F(τ ′).
Since F is a surjective integral R-affine map, all lattice indices in the claim of
the third step are finite. Setting P ′ := N ′1′ and Q := Nσ , the basic lattice identity
(6.13.7) follows from the projection formula for lattices in Lemma 6.14 below.

Fourth step: The desired inequality (6.13.1) holds. To prove (6.13.1), we note that
v := F(v′) is a generic vector for C . We have τ =1∩ σ and 1∩ (σ + εv) 6=∅.
The basic lattice index identity (6.13.7) yields that the sum in (6.13.6) is equal to∑

τ ′

∑
(1′,σ ′)

[N : N1+ Nσ ][N1 : LF (N ′1′)]m1′
∫
τ

|αστ |. (6.13.8)

The Sturmfels–Tevelev multiplicity formula (4.3.1) gives∑
1′

[N1 : LF (N ′1′)]m1′ = m1,
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where 1′ ranges over all elements of C ′n mapping onto a given 1 ∈ Cn . Using this,
one can show that (6.13.8) is equal to∑

τ

∑
(1,σ)

[N : N1+ Nσ ]m1

∫
τ

|αστ |, (6.13.9)

where the sum is over all pairs (1, σ) ∈ Cn ×C l such that 1∩ (σ + εv) 6=∅ and
τ =1∩ σ . Now (6.13.1) follows from (6.13.3)–(6.13.9). �

The basic lattice index identity (6.13.7) is a special case of the following pro-
jection formula for lattices. Note that it is stronger than the projection formula for
tropical cycles in Proposition 1.5. The latter would not give the required bound in
the fourth step above.

Lemma 6.14. Let F : N ′→ N be a homomorphism of free abelian groups of finite
rank and let P ′ ⊆ N ′, Q ⊆ N be subgroups. We assume that rk(F(N ′))= rk(N )=
rk(F(P ′)+ Q). Then we have the equality

[F(P ′)R ∩ Q : F(P ′ ∩ F−1(Q))][N ′ : P ′+ F−1(Q)][N : F(N ′)+ Q]

= [N : F(P ′)R ∩ N + Q][F(P ′)R ∩ N : F(P ′)], (6.14.1)

where all involved lattice indices are finite.

Proof. The assumptions show easily that all lattice indices are finite. Using

F(P ′ ∩ F−1(Q))= F(P ′)∩ Q

and the isomorphism theorem A/(A∩ B)∼= (A+ B)/B for abelian groups, we get

(F(P ′)R ∩ Q)/F(P ′ ∩ F−1(Q))∼= (F(P ′)R ∩ Q+ F(P ′))/F(P ′).

Similarly, F(P ′)R ∩ Q+ F(P ′)= F(P ′)R ∩ (F(P ′)+ Q) yields

(F(P ′)R ∩ N )/(F(P ′)R ∩ Q+ F(P ′))∼= (F(P ′)R ∩ N + Q)/(F(P ′)+ Q).

Multiplying (6.14.1) by [F(P ′)R∩N+Q : F(P ′)+Q], the above two isomorphisms
show that the claim is equivalent to

[N ′ : P ′+ F−1(Q)][N : F(N ′)+ Q] = [N : F(P ′)+ Q]. (6.14.2)

Using F(P ′)+ Q ∩ F(N ′)= (F(P ′)+ Q)∩ F(N ′), we have

N ′/(P ′+ F−1(Q))∼= F(N ′)/(F(P ′)+Q∩ F(N ′))∼= (F(N ′)+Q)/(F(P ′)+Q)

and hence (6.14.2) holds. This proves the claim. �

We recall that on a locally compact Hausdorff space Y , the Riesz representation
theorem gives a bijective correspondence between positive (resp. signed) Radon
measures on Y and positive (resp. bounded) linear functionals on the space of
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continuous real functions with compact support on Y, endowed with the supremum
norm.

Corollary 6.15. Let W be an open subset of X an. For each α ∈ Pn,n
c (W ) there is a

unique signed Radon measure µα on W such that∫
W

f ·α =
∫

W
f dµα (6.15.1)

for all smooth functions f on W with compact support.

Proof. This is a consequence of Proposition 6.13 and Riesz’s representation theorem.
�

Proposition 6.16. Let W be an open subset of X an and let f be a continuous
function on W . Then the map

[ f ] : Bn,n
c (W )→ R, α 7→

∫
W

f dµα

is a δ-current in E0,0(W ).

Proof. The integral is well defined by Corollary 6.15 using that supp(α) is com-
pact. Obviously, [ f ] is a linear map. We have to show that the restriction of
[ f ] to any subspace Bn,n

C (W ; Vi , ϕUi , ωJi : i ∈ I ) as in 6.2 is continuous. For
i ∈ I , let �i := tropUi

(Vi ). For every x ∈ C , there is an i(x) ∈ I with x ∈ Vi(x).
We choose a polytopal neighbourhood Pi(x) of tropUi(x)

(x) in NUi(x),R such that
Pi(x) ∩ Trop(Ui(x)) ⊆ �i(x) and we denote the interior of Pi(x) by Qi(x). There
is a finite set Y of X such that the open sets trop−1

Ui(x)
(Qi(x)), x ∈ Y , cover the

compact set C . By Proposition 5.9, U :=
⋂

x∈Y Ui(x) works as a very affine
chart of integration for every α ∈ Bn,n

C (W ; Vi , ϕUi , ωJi : i ∈ I ). Then we have
αU ∈ AZn,n

c (U, ϕU ) with trop∗U (αU ) = α. By the Sturmfels–Tevelev multiplicity
formula (4.3.1) and by degree reasons, one can show that αU has support in the
compact subset

CU =
⋃
x∈Y

⋃
1i(x)

1i(x) ∩ F−1
i(x)(Pi(x))

of Trop(U ), where 1i(x) ranges over all n-dimensional faces of Trop(U ) such that
1i(x) ∩ F−1

i(x)(Pi(x)) is mapped onto an n-dimensional face of Trop(Ui(x)) by the
canonical affine map Fi(x) : NU,R→ NUi(x),R. Using the supremum seminorm | f |C
on C , we get ∣∣∣∣∫

W
f dµα

∣∣∣∣≤ Cα · | f |C . (6.16.1)

To see this, we note first that supp(µα) ⊆ C . There is a smooth function g on
W with 0 ≤ g ≤ 1, with g ≡ 1 on C and with compact support in a sufficiently
small neighbourhood of C [Chambert-Loir and Ducros 2012, corollaire (3.3.4)].
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Then (6.16.1) follows from applying (6.13.1) to compactly supported smooth
approximations of f g using the Stone–Weierstraß theorem in [Chambert-Loir and
Ducros 2012, corollaire (3.3.4)].

Now we deduce the claim from the definition of the bound Cα in (6.13.3): We
set i := i(x) for x ∈ Y and we may assume that α|Vi is given by∑

j∈Ji

αi j ∧ωi j

for αi j ∈ A(�i ) with coefficients of small supremum seminorm pPi∩Trop(Ui ),0(αi j ).
Noting that the ωi j are fixed, this yields that every αστ in (6.13.3) has small
coefficient. Using that only the compact subset CU ∩ τ matters for integration, we
deduce that Cα is small and hence (6.16.1) shows that [ f ] is continuous. �

7. The Poincaré–Lelong formula and first Chern delta-currents

The Poincaré–Lelong formula in complex analysis is of fundamental importance
for Arakelov theory. Chambert-Loir and Ducros [2012, §4.6] have shown that the
Poincaré–Lelong formula holds as an identity between currents on Berkovich spaces
while Theorem 7.2 below enhances the Poincaré–Lelong formula as an equality of
δ-currents. We use the Poincaré–Lelong formula to define the first Chern δ-current
of a continuously metrized line bundle.

7.1. Let X be a variety over K of dimension n and let f ∈ K (X) \ {0}. In
Example 6.11, we introduced the δ-current of integration δX leading to the definition
of the δ-current δZ for any cycle Z on X . Using that for the Weil divisor cyc( f )
of f , we get a δ-current δcyc( f ) on X an.

On the other hand, the complement U of the support of the principal Cartier
divisor div( f ) is an open dense subset of X . By Proposition 6.5, we get the δ-current
[log| f |] ∈ E0,0(U an)= E0,0(X an).

Theorem 7.2. For a nonzero rational function f on X , the Poincaré–Lelong equa-
tion

δcyc( f ) = d ′d ′′[log| f |]

holds in E1,1(X an).

Proof. The proof is similar to that in [Chambert-Loir and Ducros 2012, §4.6],
but it is more on the tropical side as we do not have integrals of δ-forms over
analytic subdomains at hand. We will first do some reduction steps and then we will
introduce some notation which allows us to use results from [Chambert-Loir and
Ducros 2012]. The claim is local on X an and so we may assume that X = Spec(A)
and f ∈ A. The latter induces a morphism f : X→ A1. We may assume that the
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morphism is not constant as otherwise all terms are 0. Since A is a domain, the
property S1 of Serre is satisfied.

Let us recall some results from [Chambert-Loir and Ducros 2012] before we
start the actual proof. Let W be an affinoid subdomain of X an and let g :W → T an

be an analytic map for T = Gr
m . Following [Chambert-Loir and Ducros 2012], we

call such a map to a torus an analytic moment map. We obtain a continuous map

gtrop := trop ◦ g :W → Rr.

We get an analytic map h := ( f, g) :W → (A1)an
× T an. We denote the fibre of W

over t ∈ (A1)an by Wt with respect to the restriction of f to W . If I is an interval
in (0,∞), then WI := | f |−1(I ) ∩W . We observe that Wt and WI carry natural
structures of analytic spaces of dimension n− 1 and n respectively. It follows from
general results of Ducros [2012, théorème 3.2] that the sets gtrop(Wt) and htrop(WI )

are integral R-affine polyhedral sets of dimension less or equal to n − 1 and n
respectively. These polyhedral sets can be equipped with natural integral weights.
A construction of these so called tropical weights can be found in [Gubler 2016, §7]
or in [Chambert-Loir and Ducros 2012, §3.5] in the language of calibrations. We
observe that the tropical weights take the multiplicities of irreducible components
into account. The k-skeleton of a polyhedral set P of dimension at most k is by
definition the union of all k-dimensional polyhedra contained in P. By [Chambert-
Loir and Ducros 2012, proposition (4.6.6)], there exist a real number r > 0 and an
integral R-affine polyhedral complex C in Rr of pure dimension n− 1 with integer
weights m such that all polyhedra in C are polytopes with the following properties:

(a) For every t in the closed ball in (A1)an with centre 0 and radius r , the (n− 1)-
skeleton of gtrop(Wt) endowed with the canonical tropical weights is equal to
(C ,m).

(b) For every closed interval I ⊂ (0, r ], the n-skeleton of htrop(WI ) endowed with
the canonical analytic tropical weights is equal to (−log(I ), 1)× (C ,m) as a
product of weighted polyhedral complexes.

In fact, Chambert-Loir and Ducros formulated this crucial result in terms of canoni-
cal calibrations instead of analytic tropical weights. We refer to [Gubler 2016, §7]
for the definition and translation of these equivalent notions. The analytic space
W0 coincides with the closed analytic subspace of W determined by the effective
Cartier divisor div( f |W ). Using (a) for t = 0, we see that (C ,m) is equal to the
(n− 1)-skeleton of gtrop(div( f |W )) as a weighted polyhedral complex.

Having recalled these preliminary results, we proceed with the proof. Since
the δ-currents δcyc( f ) and d ′d ′′[log| f |] are symmetric, it is enough to check the
Poincaré–Lelong equation by evaluating at a symmetric α ∈ Bn−1,n−1

c (X an). The
δ-form α is given by tropical charts (Vi , ϕUi )i∈I covering X an and symmetric
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αi ∈ AZn−1,n−1(Vi , ϕUi ). Since α has compact support, there are finitely many i
such that the corresponding Vi ’s cover supp(α). In the following, we restrict our
attention to these finitely many i’s and we number them by i = 1, . . . ,m.

Let us consider the very affine open subset U :=U1 ∩ · · · ∩Um \ supp(div( f ))
of X . Let Gi : NU,R→ NUi ,R (resp. F : NU,R→ R) be the canonical affine map
compatible with tropU and tropUi

(resp. −log| f |). Let x0 be the coordinate on R

and let Hi := (F,Gi ) : NU,R→ R× NUi ,R.
For every x ∈ supp(α), there is an i ∈ {1, . . . ,m} such that x ∈ Vi . We choose an

integral 0-affine polytope1i of maximal dimension in NUi ,R containing tropUi
(x) in

its interior. We may assume that1i∩Trop(Ui )⊆ tropUi
(Vi ). Then Wi := trop−1

Ui
(1i )

is an affinoid subdomain of X an with x ∈ Int(Wi ). Renumbering the covering and
using again compactness of supp(α), we may assume that i does not depend
on x , which means that the interiors of the affinoid subdomains W1, . . . ,Wm cover
supp(α). Note that W :=

⋃m
i=1 Wi is a compact analytic subdomain of X an.

For every nonempty subset E of {1, . . . ,m}, the set WE :=
⋂

i∈E Wi is affinoid
(using that X an is separated). Note that UE :=

⋂
i∈E Ui is very affine and we set

VE :=
⋂

i∈E Vi . We choose r > 0 sufficiently small such that (a) and (b) above
hold for every WE and moment map gE := ϕUE

. Note that the union of the integral
0-affine polyhedral sets

tropU (Wi ∩U an)= Trop(U )∩G−1
i (1i ) (i = 1, . . . ,m) (7.2.1)

is equal to tropU (W ∩U an). For every subset E of {1, . . . ,m}, we have a integral
0-affine polyhedral set

tropU (WE ∩U an)= Trop(U )∩
⋂
i∈E

G−1
i (1i )=

⋂
i∈E

tropU (Wi ∩U an). (7.2.2)

For V :=
⋃

i Vi ∩ U an, it follows from Corollary 5.6 that (V, ϕU ) is a tropi-
cal chart containing the support of d ′′α. The δ-form α is represented on V by
αU ∈ AZn−1,n−1(V, ϕU ), i.e., α = trop∗U (αU ) on V . In fact, we have seen in
Proposition 5.7 that αU extends by 0 to an element of AZn−1,n−1(U an, ϕU ), but the
support of this extension is not necessarily compact. We conclude that U is a very
affine chart of integration for log| f | d ′d ′′α and that

〈d ′d ′′[log| f |], α〉 = −
∫

tropU (V )
F∗(x0) d ′d ′′αU . (7.2.3)

The minus sign comes from the tropical coordinates trop∗U (F
∗(x0)) = −log| f |

as remarked above. Corollary 5.6 shows that the support of d ′′α does not meet
f −1(0). Since the support of d ′′α is compact, there is a positive s < r such that
| f (x)| > s for every x ∈ supp(d ′′α). We consider the analytic subdomain of W ,
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W(s) := {x ∈W | | f (x)| ≥ s}, and the affinoid subdomains of Wi and WE ,

Wi (s) := {x ∈Wi | | f (x)| ≥ s} and WE(s) := {x ∈WE | | f (x)| ≥ s}.

It follows from (7.2.1) and (7.2.2) that their tropicalizations are integral R-affine
polyhedral sets such that the union of all

tropU (Wi (s)∩U an)= Trop(U )∩G−1
i (1i )∩ F−1((−∞,−log s]) (7.2.4)

for i = 1, . . . ,m is equal to tropU (W (s)∩U an) and such that

tropU (WE(s)∩U an)= Trop(U )∩
⋂
i∈E

G−1
i (1i )∩ F−1((−∞,−log s]). (7.2.5)

In the following, we use integrals and boundary integrals of δ-preforms over integral
R-affine polyhedral sets as introduced in Definition 2.5, Remark 3.5 and 5.1. By the
choice of s, we have supp(d ′′α) ⊆ W (s)∩U an. We conclude that supp(d ′′αU ) ⊆

tropU (W (s)∩U an) and hence∫
tropU (V )

F∗(x0) d ′d ′′αU =

∫
tropU (W (s)∩U an)

F∗(x0) d ′d ′′αU . (7.2.6)

By Green’s formula (see Proposition 3.9) and using d ′d ′′F∗(x0)= 0, the integrals
in (7.2.6) are equal to∫

∂(tropU (W (s)∩U an))

(
F∗(x0) d ′′αU − d ′′(F∗(x0))∧αU

)
. (7.2.7)

By construction and (7.2.1), we have

supp(αU )⊆ relint(tropU (W ∩U an)).

By the choice of s, it follows that supp(d ′′αU ) ⊆ relint(tropU (W (s)∩U an)). Ap-
plying Remark 2.6(iii) to the integral R-affine polyhedral set tropU (W (s)∩U an), it
follows that ∫

∂(tropU (W (s)∩U an))

F∗(x0) d ′′αU = 0. (7.2.8)

Combining (7.2.3) and (7.2.6)–(7.2.8) with (7.3.1) below, we get

〈d ′d ′′[log| f |], α〉 = 〈δcyc( f ), α〉, (7.2.9)

proving the claim. �

Lemma 7.3. In the situation of the proof of Theorem 7.2 above, we have∫
∂(tropU (W (s)∩U an))

d ′′(F∗(x0))∧αU = 〈δcyc( f ), α〉. (7.3.1)
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Proof. For integers ` ≥ 1, there are ϕ` ∈ C∞(R) with 0 ≤ ϕ` ≤ 1, ϕ`(t) = 1
for t ≤ −log(s) − 1/` and ϕ`(t) = 0 for t ≥ −log(s) − 1/(2`). By construc-
tion, supp (ϕ`(F∗(x0))d ′′(F∗(x0)) ∧ αU is contained in the relative interior of
tropU (W (s)∩U an) and hence∫

∂(tropU (W (s)∩U an))

ϕ`(F∗(x0)) d ′′(F∗(x0))∧αU = 0 (7.3.2)

as above. Setting ψ` := 1− ϕ`, it follows from (7.3.2) that the left-hand side in
(7.3.1) is equal to∫

∂(tropU (W (s)∩U an))

ψ`(F∗(x0)) d ′′(F∗(x0))∧αU . (7.3.3)

Now we use the additivity of measures from Remark 2.6(ii). The decomposition
(7.2.4) of the polyhedral set tropU (W (s) ∩U an) and Equation (7.2.5) show that
(7.3.3) is equal to

m∑
j=1

(−1) j+1
∑
|E |= j

∫
∂(tropU (WE (s)∩U an))

ψ`(F∗(x0)) d ′′(F∗(x0))∧αU . (7.3.4)

We fix i ∈ E . Let GE : NU,R→ NUE ,R and GE,i : NUE ,R→ NUi ,R be the canonical
affine maps which are compatible with the given moment maps. Let us consider
the closed embedding

hE := ( f, gE)= ( f, ϕUE
) :UE \ div( f )→ Gm × TUE

inducing the tropical variety hE,trop(UE \ div( f )), which we view as a tropical
cycle on R× NUE ,R. The affine maps HE := (F,GE) : NU,R→ R× NUE ,R (resp.
HE,i := idR×GE,i : R× NUE ,R → R× NUi ,R) are compatible with the moment
maps ϕU and hE (resp. hE and hi ). The Sturmfels–Tevelev multiplicity formula
shows that

hE,trop(UE \ div( f ))= (HE)∗(Trop(U )) (7.3.5)

(see [Gubler 2016, Proposition 4.11] for the required generalization of (4.3.1)). For
αE := αi |VE ∈ AZn−1,n−1(VE , ϕUE

), we have α|VE = trop∗UE
(αE) and the definition

of αE does not depend on the choice of i ∈ E . In the following, the weighted
integral R-affine polyhedral complex 6E(s) := hE,trop(WE(s)) in R× NUE ,R plays
a crucial role. Note that we have

6E(s)= hE,trop(UE \ div( f ))∩
⋂
i∈E

H−1
E,i

(
(−∞,−log s]×1i

)
. (7.3.6)

Let PE : R× NUE ,R→ NUE ,R denote the canonical projection. By definition, the
element αE of AZn−1,n−1(VE , ϕUE

) is represented by a δ-preform α̃E on an open
subset �̃E of NUE ,R with �̃E ∩Trop(UE)= tropUE

(VE). Recall from (4.5.1), that
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αU |� = α̃U ∧ δTrop(U ) denotes the δ-preform on � := TropU (V ) induced by αU .
Using αU = G∗E(αE), we get

αU |� = G∗E(αE)|� = G∗E(α̃E)∧ δTrop(U ) = H∗E P∗E(α̃E)∧ δTrop(U ).

We consider the coordinate x0 on R also as a function on R × NUE ,R. Using
tropU (W (s)∩U an)= H−1

E (6E(s))∩Trop(U ) and (7.3.5), the projection formula
(2.14.2) shows that∫
∂(tropU (WE (s)∩U an))

ψ`(F∗(x0)) d ′′(F∗(x0))∧αU

=

∫
∂(tropU (WE (s)∩U an))

H∗E(ψ`(x0)d ′′x0)∧ H∗E P∗E(α̃E)∧ δTrop(U )

=

∫
∂(6E (s))

ψ`(x0) d ′′x0 ∧ P∗E(α̃E)∧ δhE,trop(UE\div( f )). (7.3.7)

By construction of the functions ϕ`, we have

lim
`→∞

∫
∂(6E (s))

ψ`(x0) d ′′x0 ∧ P∗E(α̃E)∧ δhE,trop(UE\div( f ))

=

∫
6E (s)∩{x0=−log|s|}

P∗E(α̃E)∧ δhE,trop(UE\div( f )). (7.3.8)

By (7.3.6) and [Gubler 2016, §7], the analytic tropical weights on the n-skeleton of
the tropicalization 6E(s) of the affinoid domain WE(s) are the same as the tropical
weights induced by hE,trop(UE \div( f )). Using that s < r and I := [s, r ], it follows
from (a) and (b) that the n-skeletons of6E(I ) := {ω∈6E(s) | x0(ω)∈−log(I )} and
−log(I )× tropUE

(div( f )∩WE) are equal even as a product of weighted polyhedral
complexes if we endow −log(I ) with weight 1. Note that these tropicalizations
can differ from the n-skeletons only inside the relative boundary. As we have some
flexibility in the choice of the polyhedra 1i and in the choice of s, we may assume
that 6E(I )=−log(I )× tropUE

(div( f )∩WE) and that this is of pure dimension n.
We conclude that (7.3.8) is equal to∫

tropUE
(div( f )∩WE∩U an

E )

αE . (7.3.9)

Using (7.3.3)–(7.3.9), it follows that the left-hand side of (7.3.1) is equal to
m∑

j=1

(−1) j+1
∑
|E |= j

∫
tropUE

(div( f )∩WE∩U an
E )

αE .

Let Y be an irreducible component of div( f ) and let

EY := {i ∈ {1, . . . ,m} |Ui ∩ Y 6=∅}.
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Then we use the very affine open subset UEY to compute the following integrals
over Y by performing the above steps backwards:

m∑
j=1

(−1) j+1
∑
|E |= j

∫
tropUE

(Y∩WE∩U an
E )

αE =

∫
tropUEY

(Y∩W∩U an
EY
)

αUEY
=

∫
Y
α, (7.3.10)

where we have used in the last step that W covers supp(α). Using linearity in the irre-
ducible components Y (see [Gubler 2013, Remark 13.12]), we get Equation (7.3.1).

�

Remark 7.4. Let f denote a regular function on the affine variety X . The proof of
Lemma 7.3 given above shows that Equation (7.3.1) holds more generally for any
generalized δ-forms α on X an with compact support. If we permute the roles of d ′

and d ′′, we obtain by the same argument that

−

∫
∂(tropU (W (s)∩U an))

d ′F∗(x0)∧αU = 〈δcyc( f ), α〉 (7.4.1)

holds for all generalized δ-forms α ∈ Pn−1,n−1
c (X an). An elegant way to deduce

(7.4.1) is to apply (7.3.1) for J ∗(α) and to use the symmetry of the δ-current of
integration.

7.5. Let ϕ denote an invertible analytic function on some open subset W of X an.
Given x ∈W there exists by [Gubler 2016, Proposition 7.2] an open subset U of X ,
an algebraic moment map f : U → Gm and an open neighbourhood V of x in
U an
∩W such that −log|ϕ| and −log| f | agree on V . It follows that the function

−log|ϕ| belongs to A0(W ) and we get

d ′d ′′[−log|ϕ|] = −[d ′d ′′ log|ϕ|] = 0 (7.5.1)

from (6.9.1) and the trivial case of the Poincaré–Lelong formula where f is invert-
ible.

7.6. Let L be a line bundle on X and let W be an open subset of X an. We fix
an open covering (Ui )i∈I of X , a family (si )i∈I of nowhere vanishing sections
si ∈ 0(Ui , L), and the 1-cocycle (hi j ) with values in O×X determined by s j = hi j si .
Recall that a continuous metric ‖·‖ on L over W is given by a family (ρi )i∈I of
continuous functions ρi :U an

i ∩W → R such that ρj = |hi j |ρi on (Ui ∩Uj )
an
∩W

for all i, j ∈ I . An analytic section s ∈ 0(V, Lan) on some open subset V of W
determines as follows a continuous function ‖s‖ : V → R. We write s = fi si for
some analytic function fi on V ∩U an

i and define ‖s‖= | fi | ·ρi on V ∩U an
i . Observe

that we have ρi = ‖si‖ on U an
i ∩W .

7.7. Let L be a line bundle on X endowed with a continuous metric ‖·‖ over the open
subset W of X an. Then we define the first Chern current associated to the metrized
line bundle (L|W , ‖·‖) as the δ-current [c1(L|W , ‖·‖)] ∈ E1,1(W ) given locally
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on W ∩U an by d ′d ′′[−log‖s|U an∩W‖] for any trivialization U of L with nowhere
vanishing section s ∈ 0(U, L). Here, we have used that a continuous function
defines a δ-current as explained in Proposition 6.16. Since d ′d ′′[−log|ϕ|] = 0 for
an invertible analytic function ϕ, the δ-current [c1(L|W , ‖·‖)] is well-defined on
W and we may even use analytic trivializations in the definition. Obviously, the
formation of the first Chern current is compatible with tensor products of metrized
line bundles as usual.

If the metric is smooth then [c1(L , ‖·‖)] is the current associated to the first
Chern form c1(L|W , ‖·‖) defined in [Chambert-Loir and Ducros 2012]. In general,
the notion c1(L|W , ‖·‖) has no meaning as a form and we use brackets to emphasize
that [c1(L|W , ‖·‖)] is a δ-current. In Section 9, we will introduce metrics for which
c1(L|W , ‖·‖) has a meaning as a δ-form.

Corollary 7.8. Let L be a line bundle on X endowed with a continuous metric ‖·‖
over the open subset W of X an. For every nontrivial meromorphic section s of L
with associated Weil divisor Y , the equality[

c1(L|W , ‖·‖)
]
= d ′d ′′

[
−log

∥∥s|W
∥∥]+ δY |W

holds in E1,1(W ).

Proof. This can be checked locally on a trivialization U of L with a nowhere
vanishing sU ∈ 0(U, L). Then there is a rational function f on X with s = f sU

and hence

d ′d ′′
[
−log

∥∥s|W∩U an

∥∥]= d ′d ′′
[
−log

∥∥sU |W∩U an

∥∥]+ d ′d ′′
[
−log

∣∣ f |W∩U an

∣∣].
Using the definition of c1(L|W∩U an, ‖·‖) for the first summand and Theorem 7.2
for the second summand, we get the claim. �

8. Piecewise smooth and formal metrics on line bundles

In this section, X is an algebraic variety over K . In the following, we consider an
open subset W of X an.

We first introduce piecewise smooth functions and piecewise linear functions
on W . This leads to corresponding notions for metrics on line bundles. We prove
that a piecewise linear metric is the same as a formal metric. We show that canonical
metrics in various situations are piecewise smooth.

In Definition 1.6, we have defined piecewise smooth functions on an open subset
of an integral R-affine polyhedral set. Using tropicalizations and viewing tropical
varieties as polyhedral sets, we will define piecewise smooth functions on W as
follows:

Definition 8.1. A function f : W → R is called piecewise smooth if for every
x ∈ W there is a tropical chart (V, ϕU ) such that V is an open neighbourhood of
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x in W and such that there is a piecewise smooth function φ on tropU (V ) with
f = φ ◦ tropU on V .

In a similar way, we will define a piecewise linear function on W . We recall
from Definition 1.6 that we have defined piecewise linear functions on integral
R-affine polyhedral complexes. As we are working with a variety over a valued
field, we will take the value group 0 into account and in the definition of piecewise
linear functions we will additionally require that the underlying polyhedral complex
and the restriction of the functions are both integral 0-affine. Note however that
in Definition 8.1, the underlying polyhedral complex for φ is only assumed to be
integral R-affine.

Definition 8.2. A function f :W→R is called piecewise linear if for every x ∈W
there is a tropical chart (V, ϕU ) such that V is an open neighbourhood of x in W
and a real function φ on tropU (V ) with f = φ ◦ tropU on V . We require that there
is an integral 0-affine polyhedral complex 6 in NU,R with tropU (V ) ⊆ |6| such
that φ is the restriction of a function on |6| with integral 0-affine restrictions to all
faces of 6.

8.3. The space of piecewise smooth functions on W is an R-subalgebra of the
R-algebra of continuous functions on W . It contains all smooth functions on W .
The space of piecewise linear functions on W is closed under forming max and
min. Moreover, it is a subgroup of the space of piecewise smooth functions on W
with respect to addition. If ϕ : X ′→ X is a morphism and W ′ is an open subset of
(ϕan)−1(W ), then for every piecewise smooth (resp. piecewise linear) function f
on W , the restriction of f ◦ϕ to W ′ is a piecewise smooth (resp. piecewise linear)
function on W ′.

In the following result, we need the G-topology on W . It is a Grothendieck
topology build up from analytic subdomains of W and it is closely related to the
Grothendieck topology of the underlying rigid analytic space ([Berkovich 1993,
§1.3, §1.6]).

Proposition 8.4. Let f : W → R be a continuous function. Then f is piecewise
smooth (resp. piecewise linear) if and only if there is a G-covering (Wi )i∈I by
analytic (resp. strict analytic) subdomains Wi of W and analytic moment maps
ϕi : Wi → (Ti )

an to tori Ti := Spec(K [Mi ]) such that f = φi ◦ ϕi,trop on Wi for a
smooth (resp. integral 0-affine) function φi : Ni,R→ R, where Ni := Hom(Mi ,Z)

as usual.

Proof. First, we assume that f is piecewise smooth (resp. piecewise linear). For any
x ∈W , there is a tropical chart (V, ϕU ) in W containing x such that f = φ ◦ tropU
on V for a piecewise smooth (resp. integral 0-affine function) φ on the open subset
� := tropU (V ) of Trop(U ). There are finitely many integral R-affine (resp. 0-affine)
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polytopes 1i in NU,R containing tropU (x) such that
⋃

i 1i is a neighbourhood of
tropU (x) in � and such that φ|1i = φi |1i for a smooth (resp. integral 0-affine)
function φi : NU,R→ R. Note that the affinoid (resp. strictly affinoid) subdomains
Wi (x) := trop−1

U (1i ) of W contain x and cover a neighbourhood of x . Letting x
vary over W , we get a G-covering of W with the desired properties.

To prove the converse, we assume that f is given on a G-covering (Wi )i∈I of
W by smooth (resp. integral 0-affine) functions φi : Ni,R → R with respect to
analytic moment maps ϕi : Wi → (Ti )

an. Piecewise smoothness (resp. piecewise
linearity) is a local condition and so we have to check that f is piecewise smooth in
a neighbourhood of x ∈ X an. There is a finite I0⊆ I such that the sets (Wi )i∈I0 cover
a sufficiently small strict affinoid neighbourhood W ′ of x in W . By shrinking W , we
may assume that x ∈Wi for every i ∈ I0. In the following, we restrict our attention
to elements i ∈ I0. The definition of an analytic (resp. of a strict analytic) domain
shows that we may assume that all W ′i :=Wi ∩W ′ are affinoid (resp. strict affinoid)
subdomains of W . Any analytic function on a neighbourhood of x in W ′i can be
approximated uniformly on a sufficiently small neighbourhood of x by rational
functions on X . By shrinking W again, this shows that we may assume that ϕi |W ′i
is induced by the restriction of an algebraic moment map ϕ′i :Ui → Ti for a dense
open subset Ui of X with W ′i ⊆ (Ui )

an (see [Gubler 2016, Proposition 7.2] for a
similar argument). Similarly, we may assume that there are affinoid coordinates
(xi j ) j∈Ji on W ′i which extend to rational functions on X . Clearly, we may assume
that |xi j (x)| = 1 for i ∈ I0 and j ∈ Ji . There is a tropical chart (V, ϕU ) with
x ∈ V ⊆W ′, U ⊆

⋂
i∈I0

Ui and such that all the functions xi j are in O(U )×. We
may assume that tropU (x)= 0 and hence there is an open neighbourhood �̃ of 0 in
NU,R with V = trop−1

U (�̃). By [Gubler 2016, 4.12, Proposition 4.16], ϕ′i |U is the
composition of an affine homomorphism ψi : TU → Ti with ϕU . By shrinking V
and using the Bieri–Groves theorem [Gubler 2013, Theorem 3.3], we may assume
that there are finitely many rational cones (1 j ) j∈J in NU,R such that

tropU (V )= �̃∩
⋃
j∈J

1 j . (8.4.1)

For every i ∈ I0 and every j ∈ Ji , there is a linear form ui j ∈ MU with −log|xi j | =

ui j ◦ tropU on U an. The definition of affinoid coordinates yields

W ′i ∩U an
= trop−1

U (σi ) (8.4.2)

for
σi := {ω ∈ NU,R | ui j (ω)≥ ri j ∀ j ∈ Ji }

and suitable ri j ∈R. Note that σi is an integral R-affine polyhedron. In the piecewise
linear case, we may choose always ri j = 0 and hence σi is a rational cone. Using that
the sets W ′i ∩U an cover V and equations (8.4.1), (8.4.2), we get the decomposition
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(σi ∩1 j ∩ �̃)i∈I0, j∈J of tropU (V ). On σi ∩1 j ∩ �̃, we choose the smooth (resp.
integral 0-affine) function φ′i j := φi ◦ψi . Using (8.4.2), we see that these functions
paste to a continuous piecewise smooth (resp. continuous piecewise linear) function
φ′ on tropU (V ) with φ′ ◦ tropU = f on V . This proves easily that f is piecewise
smooth (resp. piecewise linear) on W . �

Definition 8.5. Let L be a line bundle on X and let W be an open subset of X an. A
metric ‖·‖ on L|W is called piecewise smooth (resp. piecewise linear) if for every
x ∈W , there is a tropical chart (V, ϕU ) with x ∈ V ⊆W and a nowhere vanishing
section s ∈ 0(U, L) such that −log‖s|V ‖ is piecewise smooth (resp. piecewise
linear) on V .

8.6. Since −log| f | is smooth for an invertible regular function f and even the
pull-back of a linear function with respect to a suitable tropicalization, the last
definition does neither depend on the choice of the trivialization s nor on the choice
of the tropical chart (V, ϕU ). Moreover, we may also use analytic trivializations in
the definition. By Proposition 8.4, the definition of a piecewise linear metric agrees
with the definition of PL-metrics in [Chambert-Loir and Ducros 2012, §6.2].

Note that every piecewise linear metric is piecewise smooth. It follows from
8.3 that every piecewise smooth metric is continuous, that the tensor product of
piecewise linear (resp. piecewise smooth) metrics is again a piecewise linear (resp.
piecewise smooth) metric and that the dual metric of a piecewise linear (resp.
piecewise smooth) metric is piecewise linear (resp. piecewise smooth). Moreover,
the pull-back of a piecewise linear (resp. piecewise smooth) metric on L|W with
respect to a morphism ϕ : X ′→ X is a piecewise linear (resp. piecewise smooth)
metric on ϕ∗(L)|W ′ for any open subset W ′ of ϕ−1(W ).

8.7. Recall that K ◦ is the valuation ring of the given nonarchimedean absolute
value | | on K . Raynaud introduced an admissible formal scheme over K ◦ as
a formal scheme X over the valuation ring K ◦ which is locally isomorphic to
Spf(A) for a flat K ◦-algebra A of topologically finite type over K ◦ (see [Bosch and
Lütkebohmert 1993, §1] for details). For simplicity, we require additionally that
X has a locally finite atlas of admissible affine formal schemes over K ◦. Then X

has a generic fibre Xη (resp. a special fibre Xs) which is a paracompact strictly
analytic Berkovich space over K (resp. an algebraic scheme over the residue field K̃ )
locally isomorphic to M (A ) (resp. Spec(A⊗K ◦ K̃ )) for the strict affinoid algebra
A := A⊗K ◦ K (see [Berkovich 1993, §1.6] for the equivalence to rigid analytic
spaces over K with an affinoid covering of finite type).

A formal K ◦-model of X is an admissible formal scheme X over K ◦ with an
isomorphism Xη

∼= X an. For a line bundle L on X , we define a formal K ◦-model
of L as a line bundle L on a formal K ◦-model X of X with an isomorphism
Lη
∼= Lan over Xη

∼= X an. For simplicity, we usually identify Lη with Lan.
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8.8. Let L be a line bundle on X . A formal metric on L is a metric ‖·‖L associ-
ated to a formal K ◦-model L of L in the following way: If L admits a formal
trivialization over U and if s ∈ 0(U ,L ) corresponds under this trivialization to
the function γ ∈ OX (U ), then ‖s(x)‖ = |γ (x)| for all x ∈ Uη. This definition is
independent of the choice of the trivialization and shows immediately that formal
metrics are continuous. The tensor product and the pull-back of formal metrics are
again formal metrics.

Proposition 8.9. Every line bundle L on X has a formal K ◦-model and hence a
formal metric.

Proof. This follows as in [Gubler 1998, Proposition 7.6] based on the theorem of
Raynaud that every paracompact analytic space has a formal K ◦-model (see [Bosch
2014, Theorem 8.4.3]). The argument for paracompact strictly K -analytic spaces
was first given in [Chambert-Loir and Ducros 2012, proposition (6.2.13)]. �

Proposition 8.10. Let ‖·‖ be a formal metric on the line bundle L on X. Then
there is an admissible formal K ◦-model X of X with reduced special fibre Xs

and a K ◦-model L of L on X such that ‖·‖ = ‖·‖L . Moreover, the invertible
sheaf associated to L is always canonically isomorphic to the sheaf on X given by
{s ∈ 0(L ,Uη) | ‖s(s)‖ ≤ 1 ∀x ∈ Uη} on a formal open subset U of X .

Proof. This follows as in [Gubler 1998, Lemma 7.4 and Proposition 7.5]. �

Proposition 8.11. Let ‖·‖ be a metric on the line bundle L on X. Then the following
properties are equivalent:

(a) ‖·‖ is a formal metric;

(b) ‖·‖ is a piecewise linear metric;

(c) there is a G-covering (Wi )i∈I of X an by strict analytic subdomains Wi of X an

and trivializations si ∈ 0(Wi , Lan) with ‖si (x)‖ = 1 for all x ∈Wi , i ∈ I .

Proof. If we use again Raynaud’s theorem to generalize to paracompact X an,
the equivalence of (a) and (c) is proved as in [Gubler 1998, Lemma 7.4 and
Proposition 7.5]. The implication (a)⇒ (c) can also be found in [Chambert-Loir
and Ducros 2012, exemple (6.2.10)]. It remains to see the equivalence of (b) and (c).
Suppose that (b) holds. Then there is a locally finite covering of X by trivializations
Ui of L such that −log‖si‖ is piecewise linear on (Ui )

an for every i ∈ I . By
Proposition 8.4, there is a G-covering Wi j of (Ui )

an and analytic moment maps
ϕi j :Wi j→ (Ti j )

an such that −log‖si‖= φi j ◦ϕi j,trop on Wi j for an integral 0-affine
function φi j on Ni j,R. The definition of integral 0-affine functions shows that there
is an invertible analytic function γi j on Wi j such that ‖si‖ = |γi j | on Wi j . Using
the trivialization γ−1

i j si on Wi j , we get (b)⇒ (c). The converse is an immediate
application of Proposition 8.4. �
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8.12. If X is proper over K , then an algebraic K ◦-model of X is an integral scheme
X which is of finite type, flat and proper over K ◦ and with a fixed isomorphism
between the generic fibre Xη and X . We use the isomorphism to identify Xη and X .
An algebraic K ◦-model of L is a line bundle L on an algebraic K ◦-model X of
X together with a fixed isomorphism between Lη and L . We define an algebraic
metric on L as in 8.8 by using an algebraic K ◦-model L of L .

Proposition 8.13. On a line bundle on a proper variety over K , a metric is alge-
braic if and only if it is formal.

Proof. Passing to the formal completion along the special fibre, it is clear that every
algebraic metric is a formal metric. Using [Gubler 2003, Proposition 10.5], the
converse is true if X is projective. The same argument shows that the converse
is also true for proper X if the formal GAGA theorem in [EGA III1 1961, Theo-
rem 5.1.4] holds over K ◦ and if X has an algebraic K ◦-model. In [EGA III1 1961,
Theorem 5.1.4], the base has to be noetherian and hence it applies only for discrete
valuation rings. The required generalization is now given in [Fujiwara and Kato
2014, Theorem I.10.1.2]. The existence of an algebraic K ◦-model follows from
Nagata’s compactification theorem. This was proved by Nagata in the noetherian
case and proved by Conrad in general (based on notes of Deligne, see [Temkin
2011] for another proof and references). �

Corollary 8.14. Let L be a line bundle on a proper variety over K . Then L has an
algebraic metric.

Proof. This follows from Proposition 8.9 and Proposition 8.13. �

We will show now that many important metrics are piecewise smooth.

Example 8.15. Let L be a line bundle on the abelian variety A over K . Choosing
a rigidification of L at 0 ∈ A and assuming L symmetric (resp. odd), the theorem of
the cube allows one to identify [m]∗(L) with L⊗m2

(resp. L⊗m). There is a unique
continuous metric ‖·‖can on Lan with [m]∗‖·‖can = ‖·‖

⊗m2

can (resp. [m]∗‖·‖can =

‖·‖
⊗m
can ) for all m∈Z. In general, L⊗2 is the tensor product of a symmetric and an odd

line bundle, unique up to 2-torsion in Pic(A), and hence we get a canonical metric
‖·‖can on L which is unique up to multiples from |K×| if we vary rigidifications.
We claim that ‖·‖can is locally on X an the tensor product of a smooth metric and a
piecewise linear metric. In particular, we deduce that ‖·‖can is a piecewise smooth
metric.

To prove the claim, we use the Raynaud extension of A to describe the canonical
metric on L (see [Gubler 2010, §4] for details). The Raynaud extension is an exact
sequence

1→ T an
→ E

q
−→ Ban

→ 0 (8.15.1)
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of commutative analytic groups, where T = Spec(K [M]) is a multiplicative torus
of rank r and B is an abelian variety of good reduction. Moreover, there is a lattice
P in E with E/P = Aan. More precisely P is a discrete subgroup of E(K ) which is
mapped by a canonical map, val : E→ NR, isomorphically onto a complete lattice
3 of NR, where N is the dual of M . The map val is locally over B a tropicalization.
Note that the Raynaud extension is algebraizable, but the quotient homomorphism
p : E→ Aan is only defined in the analytic category.

Let B be the abelian scheme over K ◦ with generic fibre B. By [loc. cit.] there
exists a line bundle H on B such that q∗((Hη)

an) = p∗(Lan). Here, and in the
following, we use rigidified line bundles to identify isomorphic line bundles. Then
q∗‖·‖H is a formal metric on p∗(Lan). On p∗(Lan), we have a canonical P-action
α over the canonical action of P on E by translation. By [loc. cit.] there is a
1-cocycle Z in Z1(P, (R×)E) such that

(q∗‖αγ (w)‖H )γ ·x = Zγ (x)−1
· (q∗‖w‖H )x (8.15.2)

for all γ ∈ P , x ∈ E and w ∈ (p∗Lan)x . The cocycle Z depends only on the map val,
which means that there is a unique function zλ : NR→ R with

zλ(val(x))=−log(Zγ (x)) (γ ∈ P, x ∈ E, λ= val(γ )).

Moreover, there is a canonical symmetric bilinear form b :3×3→ Z associated
to L such that

zλ(ω)= zλ(0)+ b(ω, λ) (ω ∈ NR, λ ∈3).

The cocycle condition

Zργ (x)= Zρ(γ x)Zγ (x) (ρ, γ ∈ P, x ∈ E)

shows that
zλ+µ(0)= zλ(0)+ zµ(0)+ b(λ, µ) (λ, µ ∈3),

which means that λ 7→ zλ(0) is a quadratic function on 3. There is a unique
extension to a quadratic function q0 : NR→ R. We define a metric ‖·‖ on p∗(Lan)

by ‖·‖ := e−q0◦valq∗‖·‖H . Using (8.15.2) and that q0 is a quadratic function with
associated bilinear form b, it follows easily that ‖·‖ descends to the canonical
metric on L . We conclude from the descent with respect to the local isomorphism p
that the canonical metric on L is locally on Aan the tensor product of a smooth
metric with a piecewise linear metric. This proves the claim.

Example 8.16. Let L be a line bundle on a proper smooth algebraic variety over
K which is algebraically equivalent to zero. Let A denote the Albanese variety of
X (see [Grothendieck 1966, théorème 2.1, corollaire 3.2]). We fix some x ∈ X (K )
and obtain a universal morphism ψ : X→ A from X to the abelian variety A with
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ψ(x)= 0. Furthermore L is in a canonical way the pull-back of an odd line bundle
on A along ψ . It follows that L carries a canonical metric ‖·‖can, unique up to
multiples from |K×|. By [Gubler 2010, Example 3.7], there is an integer N ≥ 1
such that ‖·‖⊗N

can is an algebraic metric and hence piecewise linear. We conclude
that ‖·‖can is a piecewise smooth metric.

Example 8.17. Let L be a line bundle on a complete toric variety X over K .
Similarly as in the case of abelian varieties and using rigidifications, we have
[m]∗(L)= L⊗m and there is a unique metric ‖·‖can on L with [m]∗‖·‖can = ‖·‖

⊗m
can

for all integers m ∈Z (see [Maillot 2000, Section 3]). There is a canonical algebraic
K ◦-model X of K ◦ and a canonical algebraic K ◦-model L by using the same
rational polyhedral fan and the same piecewise linear function. Since ‖·‖can=‖·‖L ,
the canonical metric on L is algebraic and hence a piecewise linear metric.

8.18. Finally, we consider the case where our variety X is defined over a ground
field F which is equipped with the trivial valuation. If L is a line bundle on X ,
then we choose an algebraically closed extension field K endowed with a nontrivial
complete absolute value extending the trivial absolute value of F . Then F ⊆ K ◦

and the line bundle L⊗F K ◦ on X ⊗F K ◦ is a canonical algebraic K ◦-model of the
line bundle LK on XK . We conclude that L has a canonical metric ‖·‖can.

The metric ‖·‖can has the following intrinsic description. Let U = Spec(A) be
an affine open subset of X which is a trivialization of L given by the nowhere
vanishing section s ∈ 0(U, L). We consider the formal affinoid subdomain U ◦ :=
{x ∈U an

| | f (x)| ≤ 1 ∀ f ∈ A} of X an. Note that U ◦ is the set of points in U an with
reduction contained in U (see [Gubler 2013, §4] for more details). It follows that
‖s(x)‖can = 1 for all x ∈U ◦. Since X is proper, such trivializations U ◦ cover X an

leading to a description of ‖·‖can which is independent of K .
For simplicity, we have considered only varieties in this paper. We may also

consider continuous metrics on Lan for a line bundle over a separated scheme X of
finite type over the ground field F . For such schemes X , the intrinsic description
above shows in particular that we still have a canonical metric ‖·‖can on L in the
case of a trivially valued F .

9. Piecewise smooth forms and delta-metrics

We consider again an algebraic variety X over K of dimension n. In this section,
we first study piecewise smooth forms on an open subset W of X an. This leads
to a decomposition of the first Chern current of a piecewise smoothly metrized
line bundle (L|W , ‖·‖) into the sum of a piecewise smooth form and a residual
current. We show that the residual current is induced by a generalized δ-form. If the
first Chern current of (L|W , ‖·‖) is induced by a δ-form on W , then ‖·‖ is called
a δ-metric and the δ-form is called the first Chern δ-form. We show that many
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important metrics are δ-metrics. In the following sections, we will use δ-metrics
for our approach to nonarchimedean Arakelov theory.

9.1. In Definition 3.10, we defined the space PS(�) of piecewise smooth superforms
on an open subset � of a polyhedral subset. If (V, ϕU ) is a tropical chart, then we
apply this definition for the open subset � := tropU (V ) of Trop(U ). If α ∈ PS(�)
and (V ′, ϕU ′) is a tropical chart with V ′ ⊆ V and U ′ ⊆ U , then we define α|V ′
as the piecewise smooth form on �′ := tropU ′(V

′) given by pull-back of α with
respect to the canonical affine map NU ′,R→ NU,R.

Definition 9.2. A piecewise smooth form on an open subset W of X an may be
defined in a similar way as a differential form in A(W ): A piecewise smooth
form α is given by an open covering (Vi , ϕUi )i∈I of W by tropical charts and
piecewise smooth superforms αi on �i := tropUi

(Vi ) such that αi |Vi∩Vj = αj |Vi∩Vj

for all i, j ∈ I . A superform α′ given by the covering (V ′j , ϕU ′j ) j∈J and piecewise
smooth superforms α′j on �′j := tropU ′j

(V ′j ) will be identified with α if and only if
αi |Vi∩V ′j = α

′

j |Vi∩V ′j for every i ∈ I and every j ∈ J .

9.3. We denote the space of piecewise smooth forms on W by PS(W ). It comes
with a bigrading and is canonically equipped with a ∧-product. We conclude easily
that PS·,·(W ) is a bigraded A·,·(W )-algebra on X an. It is clear that PS0,0(W ) is the
space of piecewise smooth functions on W . It coincides with the space P0,0(W ) of
generalized δ-preforms of degree zero. The equality

PS0,0(W )= P0,0(W ) (9.3.1)

is in fact a direct consequence of (4.19.3).
If ϕ : X ′→ X is a morphism of algebraic varieties over K , then the pull-back of

piecewise smooth superforms from Definition 3.10 carries over to define a pull-back
f ∗ : PSp,q(W )→ PSp,q(W ′) for any open subset W ′ of (X ′)an with f (W ′) ⊆ W .
In the special case of X = X ′, f = id and W ′ an open subset of W , we denote the
pull-back by α|W ′ and call it the restriction of α to W ′.

9.4. In (3.11.1), we introduced differentials of piecewise smooth forms on open
subsets of polyhedral sets. If α ∈ PSp,q(W ) is given as in Definition 9.2, then the
polyhedral differential d ′Pα ∈ PSp+1,q(W ) is locally defined by d ′Pαi ∈ PSp+1,q(�i ).
Similarly, we define d ′′Pα ∈ PSp,q+1(W ). Then PS·,·(W ) is a differential graded
R-algebra with respect to the polyhedral differentials d ′P and d ′′P .

9.5. The bigraded differential R-algebras PS(W ) of piecewise smooth forms and
P(W ) of generalized δ-forms are not directly comparable except that they both
contain A(W ) as a bigraded differential R-subalgebra. We construct a bigraded
differential R-algebra PSP(W ) containing both spaces as follows.
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Recall from Remark 3.14 that we have obtained a bigraded differential R-algebra
PSP(�̃) with respect to d ′P, d ′′P for any open subset �̃ of NR. We repeat now the
construction of generalized δ-forms in Section 4 building upon the spaces PSP(�̃)
instead of P(�̃). This leads first to spaces PSP(V, ϕU ) for tropical charts (V, ϕU )

of X and then to the desired space PSP(W ). Note that PSP(W ) is a differential
bigraded R-algebra with respect to the polyhedral differential operators d ′P and
d ′′P which extends the corresponding structure on the subalgebra P(W ). To see
that PS(W ) is a graded subalgebra of PSP(W ), we use the obvious generalization
of Proposition 1.8 from piecewise smooth functions to piecewise smooth forms.
Obviously, PSP(W ) is generated by the subalgebras PS(W ) and P(W ). Moreover,
the polyhedral differentials d ′P and d ′′P agree with the corresponding differential
operators on PS(W ).

All properties of generalized δ-forms from Section 4 and Section 5 extend
immediately to the sheaves PSP. Hence we have an integral

∫
W α for any α ∈

PSPn,n
c (W ). As a special case, we obtain such an integral for a piecewise smooth

form with compact support on W. As in 6.4, this leads to a δ-current [α] ∈ E p,q(W )

for any α ∈ PSPp,q(W ). In particular, this applies to a piecewise smooth α.

Remark 9.6. Note that the polyhedral differential d ′Pα of a piecewise smooth
form α, or more generally of any α ∈ PSP(W ), is not compatible with the corre-
sponding differential of the associated δ-current. We define the d ′-residue by

Resd ′(α) := d ′[α] − [d ′Pα].

Similarly, we define residues with respect to d ′′ and d ′d ′′.

9.7. Now we consider a line bundle L on X endowed with a piecewise smooth
metric ‖·‖ over the open subset W of X an. We are going to obtain a canon-
ical decomposition of the Chern current [c1(L|W , ‖·‖)] ∈ E1,1(X an) (see 7.7)
into a piecewise smooth part c1(L|W , ‖·‖)ps ∈ PS1,1(W ) and a residual part
[c1(L|W , ‖·‖)]res ∈ E1,1(W ).

Let (U, s) be a trivialization of L , i.e., U is an open subset of X and s is
a nowhere vanishing section in 0(U, L). Then −log‖s‖ is a piecewise smooth
function on U an

∩ W and hence −d ′Pd ′′P log‖s|U an∩W‖ ∈ PS1,1(U an
∩ W ). Note

that this piecewise smooth form is independent of the choice of s by the same
argument as in 7.7 and hence we obtain a globally defined element of PS1,1(W )

which we denote by c1(L|W , ‖·‖)ps. Recall from 9.5 that we denote the as-
sociated δ-current on W by [c1(L|W , ‖·‖)ps]. The same argument shows that
the residues Resd ′d ′′(−log‖s|U an∩W‖) paste together to give a global δ-current
[c1(L|W , ‖·‖)]res ∈ E1,1(W ) and we have

[c1(L|W , ‖·‖)] = [c1(L|W , ‖·‖)ps] + [c1(L|W , ‖·‖)]res. (9.7.1)
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Proposition 9.8. Let ‖·‖ be a piecewise smooth metric on L|W . Then there is a
unique β ∈ P1,1(W ) with

[ϕ∗(β)] = [c1(ϕ
∗(L)|W ′, ϕ∗‖·‖)]res ∈ E1,1(W ′)

for every morphism ϕ : X ′ → X from any algebraic variety X ′ over K and for
every open subset W ′ of ϕ−1(W ). The generalized δ-form β has codimension 1 (see
Definition 4.13) and will be denoted by c1(L|W , ‖·‖)res.

Proof. Note that uniqueness follows from Proposition 6.8. By definition of a
piecewise smooth metric, there is an open covering (Vi )i∈I of W by tropical
charts (Vi , ϕUi ), nowhere vanishing sections si ∈ 0(Vi , Lan) and piecewise smooth
functions φi on �i := tropUi

(Vi ) with −log‖si‖ = φi ◦ tropUi
on Vi . Passing to a

refinement of the open covering, we may assume that φi is defined on Trop(Ui ).
By Proposition 1.8, there is a piecewise smooth function φ̃i on NUi ,R restricting
to φi . By Proposition 1.12, the corner locus Ci := φ̃i ·NUi ,R of φ̃i is a tropical cycle
of codimension 1.

The δ-preform δCi represents an element βi ∈ P(Vi , ϕUi ) of codimension 1 (see
Definition 4.4). We have seen in Remark 4.5 that there is a pull-back f ∗(βi ) ∈

P1,1(V ′, ϕU ′) for every morphism f : X ′ → X of algebraic varieties over K
and every tropical chart (V ′, ϕU ′) of X ′ compatible with (Vi , ϕUi ). For the open
subset �′ := tropU ′(V

′) of Trop(U ′), we have f ∗(βi )|�′ ∈ P1,1(�′) ⊆ D1,1(�′)

(see (4.5.1)). Let F : NU ′,R→ NUi ,R be the canonical affine map with tropUi
=

F ◦ tropU ′ on (U ′)an. By Proposition 1.14 and Corollary 1.15, F∗(Ci ) ·Trop(U ′) is
the corner locus of φ′ := φi ◦ F |Trop(U ′) and hence we get

f ∗(βi )|�′ = F∗(δCi )∧ δTrop(U ′) = δφ′·Trop(U ′) ∈ P1,1(�′).

Together with the tropical Poincaré–Lelong formula (Corollary 3.19), we get

f ∗(βi )|�′ + [d ′Pd ′′Pφ
′
] = d ′d ′′[φ′] ∈ D1,1(�′). (9.8.1)

It follows from (9.8.1) that f ∗(βi )|�′ is independent of all choices. This yields
that βi |Vi∩Vj = β j |Vi∩Vj for all i, j ∈ I . We get a well-defined generalized δ-form
β ∈ P1,1(W ) of codimension 1 given by βi ∈ P1,1(Vi , ϕUi ) on Vi for every i ∈ I .

It remains to check that [ϕ∗(β)] = [c1(ϕ
∗(L)|W ′, ϕ∗‖·‖)]res for every morphism

ϕ : X ′→ X and every open subset W ′ of ϕ−1(W ). This has to be tested on α ∈
Bn−1,n−1

c (W ′). The claim is local and a partition of unity argument in a paracompact
open neighbourhood of supp(α) shows that we may assume supp(α)⊆ ϕ−1(Vi ) for
some i ∈ I .

There are finitely many tropical charts (V ′j , ϕU ′j ) j∈J within W ′ which cover
supp(α) such that α is given on every V ′j by αj ∈ AZn−1,n−1(V ′j , ϕU ′j ). We choose
a nonempty very affine open subset U ′ of X ′ contained in every U ′j and in ϕ−1(Ui ).
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By Proposition 5.9, U ′ is a very affine chart of integration for both ϕ∗(β) ∧ α
and d ′d ′′α. By construction, V ′ :=

⋃
j∈J V ′j ∩ ϕ

−1(Vi ) ∩ (U ′)an and ϕU ′ form
a tropical chart in W ′. By Proposition 5.7, α is given on �′ := tropU ′(V

′) by
αU ′ ∈ AZn−1,n−1(V ′, ϕU ′). In the following, we will use only the δ-preform α′ ∈

Pn−1,n−1(�′) induced by αU ′ . For the tropical cycle C ′ := Trop(U ′) and the
canonical affine map F : NU ′,R→ NUi ,R, it follows as above that ϕ∗(β) is given on
V ′ by the element in P1,1(V ′, ϕU ′) represented by δ(φi◦F)·NU ′,R

∈ P1,1(NU ′,R). For
φ′ := φi ◦ F |Trop(U ′), we have seen that

ϕ∗(βi )|�′ = (δ(φi◦F)·NU ′,R
)|�′ = δφ′·C ′ ∈ P1,1(�′).

Note that supp(α)⊆
⋃

j∈J V ′j ∩ ϕ
−1(Vi ). We deduce from the generalizations of

Corollary 5.6 and Proposition 4.21 to PSP-forms (see 9.5) that the currents d ′Pφ
′
∧α′,

d ′′Pφ
′
∧α′, d ′d ′′α′, α′∧ δφ′·C ′ have compact support in �′. We write C ′ = (C ′,m′)

for an integral 0-affine polyhedral complex C ′ and a family of integral weights m′.
To prove [c1(ϕ

∗(L)|W ′, ϕ∗‖·‖)]res = [ϕ
∗(β)], we have to show that∫

|C ′|

φ′ ∧ d ′d ′′α′ =
∫
|C ′|

δφ′·C ′ ∧α
′
+

∫
|C ′|

d ′Pd ′′Pφ
′
∧α′ (9.8.2)

holds. If α′ has compact support in �′, then this follows from the tropical Poincaré–
Lelong formula (9.8.1). In general, we still can deduce from the proof of the tropical
Poincaré–Lelong formula in Theorem 3.16 the formula (3.16.3) which here reads as∫

|C ′|

φ′ ∧ d ′d ′′α′ =−
∫
∂|C ′|

d ′′Pφ
′
∧α′+

∫
|C ′|

d ′Pd ′′Pφ
′
∧α′

as we have used only that d ′α′ and d ′′Pφ
′
∧α′ have compact support. Now (9.8.2)

follows from Lemma 3.17 and Remark 3.18 using additionally that α′ ∧ δφ′·C ′ has
compact support. �

Definition 9.9. A metric ‖·‖ on L|W is called a δ-metric if for every x ∈W , there
are a tropical chart (V, ϕU ) such that x ∈ V ⊆W and a piecewise smooth function
φ on Trop(U ) satisfying the following properties:

(i) There is a nowhere vanishing section s of L over U such that φ ◦ tropU =

−log‖s‖ on V .

(ii) There is a superform γ on NU,R of bidegree (1, 1) with piecewise smooth
coefficients such that d ′Pd ′′Pφ and γ |Trop(U ) agree on the open subset tropU (V )
of Trop(U ).

Remark 9.10. Condition (i) just means that the metric is piecewise smooth. Note
that a superform on NU,R with piecewise smooth coefficients is the same as a
δ-preform on NU,R of codimension 0 (see Example 2.10). Using 9.7, we deduce
easily that (ii) is equivalent to the condition that [c1(L|W , ‖·‖)ps] is the δ-current
associated to a generalized δ-form on W (of codimension 0).
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Proposition 9.11. Let ‖·‖ be a piecewise smooth metric on L|W . Then ‖·‖ is a
δ-metric if and only if there is a β ∈ B1,1(W ) with

[ϕ∗(β)] = [c1(ϕ
∗(L)|W ′, ϕ∗‖·‖)] ∈ E1,1(W ′)

for every morphism ϕ : X ′→ X from any algebraic variety X ′ over K and for every
open subset W ′ of ϕ−1(W ).

Proof. Suppose that ‖·‖ is a δ-metric. By Remark 9.10, there is γ ∈ P1,1(W ) of
codimension 0 such that [c1(L|W , ‖·‖)ps] = [γ ]. Since γ is of codimension 0, we
may handle γ as a piecewise smooth form and hence we get

[ϕ∗(γ )] = [ϕ∗(c1(L|W , ‖·‖)ps)] = [c1(ϕ
∗(L)|W ′, ϕ∗‖·‖)ps] ∈ E1,1(W ′).

Proposition 9.8 yields that β := c1(L , ‖·‖)res+ γ ∈ P1,1(W ) and that

[ϕ∗(β)]= [c1(ϕ
∗(L)|W ′, ϕ∗‖·‖)res]+[ϕ

∗(γ )]= [c1(ϕ
∗(L)|W ′, ϕ∗‖·‖)] ∈ E1,1(W ′)

as claimed. It remains to show that β ∈ B1,1(W ). Let (V, ϕU ) be a tropical chart in
W and let φ be a piecewise smooth function on Trop(U ) as in Definition 9.9 such
that β|V is given by βV ∈ P1,1(V, ϕU ). For every tropical chart (U ′, ϕU ′) of an
algebraic variety X ′ over K compatible with (V, ϕU ) with respect to the morphism
f : X ′→ X and for �′ := tropU ′(V

′), the last display yields

[ f ∗(βV )|�′] = d ′d ′′[φ ◦ F] ∈ D1,1(�′), (9.11.1)

where F : NU ′,R→ NU,R is the canonical affine map. Since this supercurrent is
d ′-closed and d ′′-closed on �′, we conclude that β is given on V by an element of
Z(V, ϕU ). This shows β ∈ B1,1(W ).

To prove the converse, we use that [c1(L|W , ‖·‖)] = [β] for some β ∈ P1,1(W ).
By Proposition 9.8, the δ-current associated to β − c1(L|W , ‖·‖)res ∈ P1,1(W ) is
[c1(L|W , ‖·‖)ps]. By Remark 9.10, ‖·‖ is a δ-metric. �

Definition 9.12. Let ‖·‖ be a δ-metric on L|W . By Proposition 6.8, the δ-form β

in Proposition 9.11 is unique. We call it the first Chern δ-form of (L|W , ‖·‖) and
we denote it by c1(L|W , ‖·‖).

9.13. We summarize the above constructions and definitions. A metric ‖·‖ on L|W
is a δ-metric if and only if every x ∈W is contained in a tropical chart (V, ϕU ) in
W with a piecewise smooth function φ on NU,R and a nowhere vanishing section s
of L over U such that

−log‖s‖ = φ ◦ tropU

on V and such that
d ′Pd ′′P(φ|tropU (V ))= γ |tropU (V )
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for a superform γ on NR of bidegree (1, 1) with piecewise smooth coefficients.
Then the restriction of c1(L|W , ‖·‖)res to V is represented by the δ-preform δφ·NU,R

on NU,R, c1(L|W , ‖·‖)ps|V is given by γ and c1(L|W , ‖·‖)|V is represented by the
δ-preform γ + δφ·NU,R on NU,R. A piecewise linear metric is a δ-metric as we can
choose φ integral 0-affine (use Remark 1.9) and γ = 0.

9.14. By construction, the δ-current associated to c1(L|W , ‖·‖) is equal to the first
Chern current [c1(L|W , ‖·‖)] defined in 7.7 which explains the notation used there.
It is an immediate consequence of (9.11.1) that the first Chern δ-form c1(L|W , ‖·‖)
is d ′-closed and d ′′-closed.

To be a δ-metric is a local property and respects isometry. The tensor product of
δ-metrics is again a δ-metric and the dual metric of a δ-metric is also a δ-metric. If
a positive tensor power of a metric ‖·‖ on L|W is a δ-metric, then ‖·‖ is a δ-metric.
It is easy to see that the first Chern δ-form c1(L|W , ‖·‖) is additive in terms of
isometry classes (L|W , ‖·‖) for δ-metrics ‖·‖.

Proposition 9.15. Let ϕ : X ′→ X be a morphism of algebraic varieties and let L
be a line bundle on X endowed with a δ-metric ‖·‖ over the open subset W of X an.
Then ϕ∗‖·‖ is a δ-metric on ϕ∗(L)|W ′ and we have

c1(ϕ
∗(L)|W ′, ϕ∗‖·‖)= ϕ∗c1(L|W , ‖·‖)∈ B1,1(W ′) (9.15.1)

for any open subset W ′ of ϕ−1(W ).

Proof. This follows from 8.6 and Proposition 9.11. �

Remark 9.16. Smooth metrics and piecewise linear metrics are δ-metrics, which
is clear from the definitions. It follows from Proposition 8.11 that every formal
metric is a δ-metric. In particular, every algebraic metric on a line bundle of a
proper variety is a δ-metric.

Example 9.17. All the canonical metrics in Examples 8.15, 8.16 and 8.17 are
δ-metrics. Indeed, a positive tensor power of such a metric is locally the tensor
product of a formal metric with a smooth metric and hence the claim follows from
Remark 9.16.

10. Monge–Ampère measures

We have seen in the previous section that formal metrics are δ-metrics giving
rise to a first Chern δ-form. The formalism of δ-forms allows us to define the
Monge–Ampère measure as a wedge product of first Chern δ-forms. We recall that
Chambert-Loir has introduced discrete measures for formally metrized line bundles
on a proper variety which are important for nonarchimedean equidistribution. The
main result of this section shows that the Monge–Ampère measure is equal to the
Chambert-Loir measure.
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In this section X is a proper algebraic variety over K of dimension n.

10.1. Let L1, . . . , Ln be line bundles on X endowed with δ-metrics. Then the
wedge product c1(L1) ∧ · · · ∧ c1(Ln) of the first Chern δ-forms is a δ-form of
bidegree (n, n). By Corollary 6.15, the δ-current associated to a δ-form on X an

of type (n, n) extends to a bounded linear functional on the space of continuous
functions and defines a signed Radon measure on X an. The Monge-Ampère measure
is the signed measure associated to c1(L1)∧ · · · ∧ c1(Ln); it is denoted by

MA
(
c1(L1), . . . , c1(Ln)

)
.

Proposition 10.2. If ϕ : X ′→ X is a morphism of n-dimensional proper varieties
over K , then the following projection formula holds:

ϕ∗MA
(
c1(ϕ

∗L1), . . . , c1(ϕ
∗Ln)

)
= deg(ϕ)MA

(
c1(L1), . . . , c1(Ln)

)
.

Proof. The Stone–Weierstraß theorem [Chambert-Loir and Ducros 2012, proposi-
tion (3.3.5)] implies that A0(X an) is a dense subspace of C(X an). For functions in
A0(X an) the desired equality follows from Proposition 9.15 and from the projection
formula for δ-forms (5.9.1). This yields our claim. �

Proposition 10.3. If X is a proper variety of dimension n, then the total mass of
MA

(
c1(L1, ‖·‖1), . . . , c1(Ln, ‖·‖n)

)
is equal to degL1,...,Ln

(X).

Proof. This follows as in [Chambert-Loir and Ducros 2012, proposition (6.4.3)].
They handled there only the case of smooth metrics, but our formalism of δ-forms
allows us to obtain this result more generally for δ-metrics. �

We recall the crucial properties of Chambert-Loir’s measures. They were intro-
duced in a slightly different setting by Chambert-Loir [2006].

Proposition 10.4. There is a unique way to associate to any n-dimensional proper
variety X over K and to any family of formally metrized line bundles L1, . . . , Ln on
X a signed Radon measure µ= µL1,...,Ln

on X an such that the following properties
hold:

(a) The measure µ is multilinear and symmetric in L1, . . . , Ln .

(b) If ϕ : Y → X is a morphism of n-dimensional proper varieties over K , then
the following projection formula holds:

ϕ∗(µϕ∗L1,...,ϕ∗Ln
)= deg(ϕ)µL1,...,Ln

.

(c) If X is a formal K ◦-model of X with reduced special fibre Xs and if the metric
of L j is induced by a formal K ◦-model L j of L j on X for every j = 1, . . . , n,
then

µ=
∑

Y

degL1,...,Ln
(Y )δξY ,
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where Y ranges over the irreducible components of Xs and δξY is the Dirac
measure in the unique point ξY of X an which reduces to the generic point of Y
(see [Berkovich 1990, Proposition 2.4.4]).

(d) The total mass is given by µ(X an)= degL1,...,Ln
(X).

Proof. For existence, we refer to [Gubler 2007, §3]. Uniqueness follows from (c)
alone as the existence of a simultaneous formal K ◦-model with reduced special
fibre is a consequence of [Gubler 1998, Proposition 7.5]. �

Theorem 10.5. For formally metrized line bundles L1, . . . , Ln on the proper variety
X of dimension n, the Monge–Ampère measure MA(c1(L1), . . . , c1(Ln)) agrees
with the Chambert-Loir measure µL1,...,Ln

.

This theorem was first proven by Chambert-Loir and Ducros [2012, §6.9] for
their Monge–Ampère measures defined by a tricky approximation process with
smooth metrics. Their argument uses Zariski–Riemann spaces, while we use here a
more tropical approach related to our δ-forms.

10.6. In Lemma 10.8, we will consider a closed subvariety U of a torus T =

Spec(K ◦[M]) over K ◦. We will use the following notation: N is the dual of the
free abelian group M of finite rank. Let U be the generic fibre of U and let Us be
the special fibre.

The tropicalization trop : (TK )
an
→ NR (resp. trop : Tan

s → NR) with respect to
the valuation v on K (resp. the trivial valuation on K̃ ) leads to the tropical variety
Trop(U ) (resp. Trop(Us)).

The local cone LC0(Trop(U )) at 0 is defined as the cone in NR which agrees
with Trop(U ) in a neighbourhood of 0. We endow it with the weights induced by
the canonical tropical weights on Trop(U ).

10.7. For the proof of Theorem 10.5, we need a preparatory result. Let L be a
line bundle on the proper variety X over K . We consider an algebraic K ◦-model
(X ,L ) of (X, L). Then we get an algebraic metric ‖·‖L on L . We have seen in
8.18 that the restriction Ls of L to the special fibre Xs has a canonical metric ‖·‖can.
Note that the first metric is continuous on the Berkovich space X an with respect
to the given valuation v while ‖·‖can is continuous on the Berkovich space X an

s
with respect to the trivial valuation on the residue field K̃ . Since X is assumed to
be proper, we have a reduction map π : X an

→Xs . For x ∈ X an, π(x) is a scheme
theoretic point of Xs . Using the trivial valuation on the residue field of π(x), we
will view π(x) as a point of X an

s .

In the next lemma, we will show that ‖·‖can is piecewise linear in an neighbour-
hood of π(x) in X an

s . This means that using a trivialization and a tropicalization,
the canonical metric is induced by a piecewise linear function on the tropical variety.
It will be crucial in the proof of Theorem 10.5 that we can use tropically the same
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piecewise linear function to describe the formal metric ‖·‖L in a neighbourhood
of x in X an. We now make this precise:

Lemma 10.8. Under the setup given in 10.7, we fix an element x ∈ X an and an
open neighbourhood V of π(x) in X . Then there is an open neighbourhood U of
π(x) in V and a closed embedding U ↪→ T into a torus T = Spec(K ◦[M]) with
the following properties (using the notation from 10.6):

(a) We have 0= trop(x) and the weighted local cone in 0 satisfies

LC0(Trop(U ))= Trop(Us).

(b) There is an open neighbourhood �̃ of 0 in NR with

LC0(Trop(U ))∩ �̃= Trop(U )∩ �̃.

(c) There exist a complete rational polyhedral fan 6 on NR and a continuous
function φ : NR→R which is piecewise linear with respect to 6 (i.e., for every
σ ∈6, there is uσ ∈ M with φ = uσ on σ ).

(d) U is a trivialization of L with respect to a nowhere vanishing section s ∈
0(U ,L ).

(e) We have −log‖s‖L = φ ◦ trop on a neighbourhood of x in X an.

(f) We have −log‖s‖can = φ ◦ trop on a neighbourhood of π(x) in X an
s .

If π(x) is the generic point of an irreducible component of Xs , then there is a U as
above with (a)–(d) and the following stronger properties:

(e′) We have −log‖s‖L = φ ◦ trop on trop−1(�̃)⊆U an.

(f ′) The identity −log‖s‖can = φ ◦ trop holds on U an
s .

Proof. Let (Ui )i∈I be a finite affine open covering of X such that L is trivial
over any Ui . The generic (resp. special) fibre of Ui is denoted by Ui (resp. Ui,s).
For every i ∈ I , we choose a nowhere vanishing section si ∈ 0(Ui ,L ). Let
I (x) := {i ∈ I | π(x) ∈Ui,s}. For i ∈ I (x), let (xi j ) j∈Ji be a finite set of generators
of the K ◦-algebra O(Ui ). Replacing xi j by 1+xi j if necessary, we may assume that
these generators are invertible in π(x). For i ∈ I , we have an affinoid subdomain

U ◦i := {z ∈U an
i | |a(z)| ≤ 1 ∀a ∈ O(Ui )} = {z ∈U an

i | π(z) ∈ Ui,s}

of X an. Using the trivial valuation on K̃ , we similarly get an affinoid subdomain
U ◦i,s := {z ∈ U an

i,s | |a(z)| ≤ 1 ∀a ∈ O(Ui,s)} of X an
s . We consider π(x) as a point

of X an
s by using the trivial absolute value on the residue field of π(x) and hence

we have I (x)= {i ∈ I | π(x) ∈ U ◦i,s}.
It is easy to see that π(x) has a very affine open neighbourhood U in X such

that U is contained in Ui for every i ∈ I (x). Very affine means that there is a closed
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embedding ϕ : U ↪→ T into a torus T = Spec(K ◦[M]). By shrinking U and by
adding new invertible functions to ϕ, we obtain the following properties:

(i) For every i, k ∈ I (x), the invertible meromorphic function si/sk on U is the
restriction of a character χuik associated to some uik ∈ M .

(ii) For every i ∈ I (x) and every j ∈ Ji , the generator xi j is invertible on U and
equal to the restriction of a character χu′i j associated to some u′i j ∈ M .

Note that we have 0 = trop(π(x)) ∈ Trop(Us) since we use the trivial valuation
on the residue field of π(x). It follows from π(x) ∈ Us that trop(x) = 0. By
definition, Us is the initial degeneration of U at 0 and hence (a) follows from
[Gubler 2013, Propositions 10.15, 13.7]. By definition of the local cone, we find an
open neighbourhood �̃ of 0 in NR with (b).

By construction, L is trivial over U and we choose s := sk for a fixed k ∈ I (x)
in (d). For i ∈ I (x), we define the rational cone σi := {ω∈ NR | 〈ω, u′i j 〉≥ 0∀ j ∈ Ji }

in NR. Then (ii) yields

U ◦i,s ∩U an
s = trop−1(σi )∩U an

s . (10.8.1)

By the Bieri–Groves theorem, Trop(Us) is the support of a rational polyhedral
fan in NR (see [Gubler 2013, Remark 3.4]). We conclude that there is a complete
rational polyhedral fan 6 on NR and a rational polyhedral subfan 6x with

|6x | =
⋃

i∈I (x)

σi ∩Trop(Us)

such that every cone σ ∈ 6x is contained in σi for some i ∈ I (x). Note that
‖si‖can = 1 on U ◦i,s and hence (i) shows that

−log‖s‖can =−log|sk/si | = uki ◦ trop (10.8.2)

on U ◦i,s∩U an
s . By (10.8.1), there is a continuous function φ : |6x |→R with φ= uki

on every σ . Using Remark 1.9 and passing to a refinement of 6, we easily extend
φ to a continuous function on NR satisfying (c). Since Xs is proper over K̃ , the sets
U ◦i,s , i ∈ I , form an open covering of X an

s . It follows from (10.8.1) and (10.8.2)
that (f) holds in the neighbourhood

W := U an
s \

⋃
i∈I\I (x)

U ◦i,s

of π(x) in X an
s .

Again (ii) shows
U ◦i ∩U an

= trop−1(σi )∩U an (10.8.3)

for every i ∈ I (x). Note that ‖si‖L = 1 on U ◦i and hence (i) shows that

−log‖s‖L =−log|sk/si | = uki ◦ trop (10.8.4)
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on U ◦i ∩U an. Since X is proper, the sets U ◦i , i ∈ I , form a compact covering of X an.
It follows from (a), (b), (10.8.3) and (10.8.4) that (e) holds in the neighbourhood
trop−1(�̃) \

⋃
i∈I\I (x) U ◦i of x in X an. This proves (e).

We assume now that π(x) is the generic point of an irreducible component Y
of Xs . Then we may assume that Us ⊆ Y . Let i ∈ I with Ui,s ∩ Y 6= ∅. Since
we use the trivial valuation on the residue field of π(x), we deduce easily that
π(x)∈U ◦i,s . By construction, we get W =U an

s , proving (f ′). It remains to show (e′).
Let i ∈ I \ I (x). By construction, we have Ui,s ∩ Y = ∅. For y ∈ U ◦i ∩ U an,
we have π(y) ∈ Ui,s and hence π(y) 6∈ Y . In particular, we have y 6∈ U ◦. Using
trop−1(0)∩U an

= U ◦, we see that trop(U ◦i ∩U an) is a closed subset of Trop(U )
not containing 0. By shrinking �̃, we may assume that �̃ is a neighbourhood of 0
which is disjoint from trop(U ◦i ∩U an) for every i ∈ I \ I (x). Then the above proof
of (e) shows that (e′) holds. �

Proof of Theorem 10.5. Let µMA
:=MA(c1(L1), . . . , c1(Ln)). For simplicity, we

assume that L = L1 = · · · = Ln and that all metrics are induced by the same
K ◦-model L on X . The general case follows either by the same arguments or
by multilinearity. It is more convenient for us to work algebraically and so we
use Proposition 8.13 to assume that X and L are algebraic K ◦-models. There is
a generically finite surjective morphism X ′

→X from a proper flat variety X ′

over K ◦ with reduced special fibre. This is a consequence of de Jong’s pluristable
alteration theorem which works over any Henselian valuation ring (see [Berkovich
1999, Lemma 9.2]). Since both sides of the claim satisfy the projection formula,
we may prove the claim for X ′. This shows that we may assume that X is an
algebraic K ◦-model of X with reduced special fibre.

We will analyse µMA in a neighbourhood of x ∈ X an. Let π(x) ∈ Xs be the
reduction of x . We choose a very affine open neighbourhood U of π(x) in X as
in Lemma 10.8. We will use the closed embedding U ↪→ T into the torus T and
the notation from there.

It follows from a theorem of Ducros [2012, théorème 3.4] that x has a compact
analytic neighbourhood V such that the germ of trop(V ) in trop(x) (considering
polytopal neighbourhoods) agrees with the germ of trop(W ) in trop(x) for every
compact analytic neighbourhood W ⊆ V of x . Using that trop(x)= 0, we deduce
from [Ducros 2012, théorème 3.4 item 1)] that the dimension of the germ is equal
to the transcendence degree of K̃ (π(x)) over K̃ .

We first assume that π(x) is not the generic point of an irreducible component
of Xs . Then the transcendence degree of K̃ (π(x)) over K̃ is less than n = dim(X).
Using the theorem of Ducros, there is a compact analytic neighbourhood V of x
in X an such that trop(V ) has dimension < n and such that Lemma 10.8(e) holds
on V . We choose a tropical chart (V ′, ϕU ′) in x which is contained in V and
with U ′ contained in the generic fibre U of U . We describe c1(L)|V ′ using the
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function φ constructed in Lemma 10.8 and the canonical affine map F : NU ′,R→ NR.
Using that φ is piecewise linear, it follows from 9.13 that c1(L)|V ′ = trop∗U ′(β)
for β ∈ AZ1,1(V ′, ϕU ′) represented by the δ-preform δF∗(φ)·NU ′,R

on NU ′,R. By
our construction of products and Corollary 1.15, µMA is given on V ′ by β∧n

∈

AZn,n(V ′, ϕU ′) represented by the δ-preform

(δF∗(φ)·NU ′,R
)∧n
= δF∗(C) (10.8.5)

on NU ′,R, where C is the n-codimensional tropical cycle of NR obtained by the
n-fold self-intersection of the tropical divisor φ · NR. Since V ′ ⊆ V , we have
F(tropU ′(V

′))⊆ trop(V ) and hence dim(F(tropU ′(V
′))) < n. It follows from the

definition of the pull-back and the local nature of stable tropical intersection that
δF∗(C)·Trop(U ′) does not meet the open subset tropU ′(V

′) of Trop(U ′). A similar
argument applies to any tropical chart compatible with (V ′, ϕU ′) and hence (10.8.5)
yields β∧n

= 0. We conclude that the support of µMA does not meet V ′.
Now we assume that π(x) is the generic point of an irreducible component Y

of Xs . Then x is the unique point of X an with reduction π(x) (see [Berkovich 1990,
Proposition 2.4.4]) and we write x = ξY . We may assume that the very affine open
neighbourhood U of π(x) in X from Lemma 10.8 has special fibre Us disjoint
from all other irreducible components Y ′ of Xs . We conclude that π(ξY ′) 6∈Us and
hence trop(ξY ′) 6= 0= trop(x). We may choose the neighbourhood �̃ of 0 in NR

disjoint from all points trop(ξY ′). We will use in the following that Lemma 10.8(e′)
holds on the open subset V := trop−1(�̃) of X an. Since no ξY ′ is contained in V ,
the nongeneric case above shows that the restriction of µMA to V is supported in ξY .

Now we choose a very affine open subset U ′ contained in the generic fibre U of
U with x ∈ (U ′)an. Let F : NU ′,R→ NR be the canonical affine map. Then

V ′ := trop−1
U ′ (F

−1(�̃))= (U ′)an
∩ V .

is an open neighbourhood of x in X an and (V ′, ϕU ′) is a tropical chart. Similarly to
the above,µMA is given on V ′ by β∧n

∈AZn,n(V ′, ϕU ′) represented by the δ-preform
in (10.8.5). Since µMA

|V ′ is supported in the single point x = ξY , we conclude that
the 0-dimensional tropical cycle F∗(C) ·Trop(U ′) has only one point ω′ contained
in the open subset tropU ′(V

′) of Trop(U ′). In fact, we have ω′ = tropU ′(x) with
multiplicity µMA(V ′). The tropical projection formula in Proposition 1.5 and the
Sturmfels–Tevelev multiplicity formula [Gubler 2013, Theorem 13.17] give the
identity

F∗(F∗(C) ·Trop(U ′))= C ·Trop(U )

of tropical cycles on NR. Using that tropU ′(V
′)= F−1(trop(V ))∩Trop(U ′), we de-

duce that µMA(V ′) is equal to the multiplicity of 0= trop(x)= F(ω′) in C ·Trop(U ).
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By Lemma 10.8, we conclude that µMA(V ′) is equal to the tropical intersection
number of C with LC0(Trop(U ))= Trop(Us).

We recall that C is the n-fold self-intersection of the tropical divisor φ · NR and
we note that these objects are weighted tropical fans. Now we use Lemma 10.8(f ′).
This shows that Us is a very affine chart of integration for c1(Ls |Y , ‖·‖can)

n , where
this δ-form is represented by the pull-back of δC with respect to the canonical affine
map NUs ,R → NR. Note that we may perform a base change to omit the trivial
valuation which was excluded for simplicity in our paper. The tropical projection
formula and the Sturmfels–Tevelev multiplicity formula show∫

Y an
c1(Ls |Y , ‖·‖can)

n
= deg(C ·Trop(Us))

as above. By Proposition 10.3, the left-hand side is equal to degL (Y ). We have seen
above that the right-hand side equals µMA(V ′). This proves that µMA

|V is a point
measure concentrated in x = ξY with total mass degL (Y ). By Proposition 10.4(c),
the Chambert-Loir measure µL1,...,Ln

is equal to µMA. �

11. Green currents

In this section X is an algebraic variety over K of dimension n. We introduce Green
currents for cycles on X . We define the product gY ∗ gZ for a divisor Y and a cycle
Z on X which intersect properly. This operation has the expected properties.

Definition 11.1. Let Z be a cycle of X of codimension p and let g be any δ-current
in E p−1,p−1(X an). Then we define

ω(Z , g) := d ′d ′′g+ δZ ∈ E p,p(X an).

If there is a δ-form ωZ ,g ∈ B p,p(X an) with ω(Z , g) = [ωZ ,g], then we call g a
Green current for the cycle Z . We will use often the notation gZ for such a current
and then we set ω(gZ ) := ω(Z , gZ ) and ωZ := ωZ ,gZ

for simplicity.

11.2. Let (L , ‖·‖) be a line bundle on X endowed with a δ-metric and let Z be a
cycle of codimension p in X with any current gZ ∈ E p−1,p−1(X an). We assume
that s is a meromorphic section of L with Cartier divisor D intersecting Z properly.
By the Poincaré–Lelong equation in Corollary 7.8 and by the definition of the first
Chern δ-form in Definition 9.12, gY := [−log‖s‖] is a Green current for the Weil
divisor Y associated to D with ωY = c1(L , ‖·‖).

If Z is a prime cycle of codimension p, then we define gY∧δZ ∈ E p,p(X an) as the
push-forward of [−log‖s‖|Z ] with respect to the inclusion iZ : Z→ X . In general,
we proceed by linearity in the prime components of Z to define gY ∧δZ ∈ E p,p(X an).
This leads to the definition of the ∗-product

gY ∗ gZ := gY ∧ δZ +ωY ∧ gZ ∈ E p,p(X an).
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Lemma 11.3. Under the hypothesis above and if Z is prime, then we have the
identity

d ′d ′′[−log‖s‖|Z ] = [ωY |Z ] − δD·Z (11.3.1)

of δ-currents on Z an.

Proof. This follows immediately from the Poincaré–Lelong equation for s|Z (see
Corollary 7.8). We use here c1(L|Z , ‖·‖) = c1(L , ‖·‖)|Z , which follows from
Proposition 9.15. �

Proposition 11.4. Under the hypothesis in 11.2, we have

ω(D · Z , gY ∗ gZ )= ωY ∧ω(gZ ).

If gZ is a Green current for Z , then gY ∗ gZ is a Green current for D · Z.

Proof. Using Lemma 11.3 and linearity in the prime components of Z , we get

d ′d ′′[−log‖s‖∧ δZ ] = ωY ∧ δZ − δD·Z (11.4.1)

and hence 9.14 and Proposition 4.15(iii) give

ω(D · Z , gY ∗ gZ )= d ′d ′′[−log‖s‖∧ δZ ] + d ′d ′′(ωY ∧ gZ )+ δD·Z = ωY ∧ω(gZ ),

proving the claim. �

Proposition 11.5. For i=1, 2, let L i be a line bundle on X with a δ-metric ‖·‖i and
nonzero meromorphic section si . We assume that the associated Cartier divisors D1

and D2 intersect properly. Let ηYi
:= −log‖si‖i and let gYi

= [ηYi
] be the induced

Green current for the Weil divisor Yi of Di . Then we have the identity

gY1
∗ gY2
− gY2

∗ gY1
= d ′[d ′′PηY1

∧ ηY2
] + d ′′[ηY1

∧ d ′PηY2
]

of δ-currents on X an.

Note that the piecewise smooth forms d ′′PηY1
∧ ηY2

and ηY1
∧ d ′PηY2

of degree 1
are defined on the analytification of a Zariski open and dense subset of X . By 9.5
and Proposition 6.5, they define δ-currents on X an.

Proof. The claim can be checked locally on X . Hence we may assume that X is
affine and L1 = L2 = OX . For i = 1, 2, we may view si as a rational function fi

and we have
ηYi
=−log| fi | − log‖1‖i .

The usual partition of unity argument shows that it is enough to test the claim by
evaluating at α ∈ Bn−1,n−1

c (W ) for a small open neighbourhood W of a given point
x in X an. There are finitely many tropical charts {(Vj , ϕUj )} j=1,...,m in W covering
supp(α) such that α = trop∗Uj

(αj ) on Vj for some element αj ∈AZn−1,n−1(Vj , ϕUj ).
We will use a Zariski dense very affine open subset U of U1 ∩ · · · ∩Um which will
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serve as a very affine chart of integration for various forms. Now we consider the
restriction of the canonical affine map F j : NU,R→ NUj ,R to Trop(U ). Let � in
Trop(U ) denote the union of the preimages of the open subsets � j := tropUj

(Vj ) in
Trop(Uj ) and put V = trop−1

U (�). By Proposition 4.12 there exists a unique element
αU ∈ AZn−1,n−1(V, ϕU ) such that α|V = trop∗U (αU ) and such that αU coincides
for all j on the preimage of � j with the pull-back of αj . Note that � is an open
subset of Trop(U ) and (V, ϕU ) is a tropical chart for V := trop−1

U (�). Then αU has
not necessarily compact support, but we can extend αU by zero to an element in
AZn−1,n−1(U an, ϕU ) using that supp(α)∩U an is a closed subset of V . By abuse of
notation, this extension will also be denoted by αU . Then we have α = trop∗U (αU )

on U an. By shrinking W and using an appropriate U , we may assume that

−log‖1‖i = φi ◦ tropU

on V for a piecewise smooth function φi on Trop(U ) and i = 1, 2. Since we deal
with δ-metrics, we may assume that there is a piecewise smooth extension φ̃i of
φi to NU,R and a superform γi on NU,R of bidegree (1, 1) such that the first Chern
δ-form ωYi

is represented on V by the δ-preform γi + δφ̃i ·NU,R
on NU,R and such

that γi restricts to d ′Pd ′′Pφi on � (see 9.13). We have

ηYi
=−log| fi | − log‖1‖i =−log| fi | +φi ◦ tropU

on V . Using bilinearity of ∗ and of ∧, we may either assume that ηYi
is equal to

−log‖1‖i or equal to −log| fi |. Hence we have to consider the following four cases:

Case 1: s1 = s2 = 1. In this case, the divisors Y1, Y2 are zero and ηYi
=−log‖1‖i

for i = 1, 2 are piecewise smooth functions on X an. Then we have

〈gY1
∗ gY2

, α〉 = 〈ωY1
∧ gY2

, α〉 = 〈gY2
, ωY1
∧α〉. (11.5.1)

Recall that gY2
is the current associated to ηY2

. By 9.3, we have PS0,0(W )= P0,0(W )

and hence ηY2
α ∈ Pn−1,n−1

c (W ). We may view it as a generalized δ-form on X an

given on U an by φ2αU ∈ Pn−1,n−1(U an, ϕU ). Since the first Chern δ-form ωY1
is

represented on V by δφ̃1·NU,R
+ γ1 ∈ P1,1(NU,R), we get

〈gY1
∗ gY2

, α〉 =

∫
|Trop(U )|

(δφ1·Trop(U )+ d ′Pd ′′Pφ1)∧φ2αU . (11.5.2)

Here, we have used that U is a very affine chart of integration for ωY1
∧ ηY2

α ∈

Pn,n
c (X an). Recall from 9.13 that the generalized δ-forms c1(L1, ‖·‖1)res and

c1(L1, ‖·‖1)ps are represented on V by δφ̃1·NU,R
and γ1 in P1,1(NU,R). We con-

clude that U is a very affine chart of integration for c1(L1, ‖·‖1)res ∧ ηY2
α and

c1(L1, ‖·‖1)ps ∧ ηY2
α in Pn,n

c (X an) and hence (11.5.2) yields

〈gY1
∗ gY2

, α〉 =

∫
|Trop(U )|

δφ1·Trop(U ) ∧φ2αU +

∫
|Trop(U )|

d ′Pd ′′Pφ1 ∧φ2αU . (11.5.3)
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Since α has compact support in W and supp(α) ∩ U an
⊆ V , it follows from

Proposition 4.21 and Corollary 5.6 that the integrands in (11.5.3) have compact
support in �. The generalization of Corollary 5.6 to PSP-forms given in 9.5 shows
that −d ′′P log‖1‖1 ∧α has compact support contained in U an. Again, we conclude
that d ′′Pφ1 ∧αU has compact support contained in �. Now Leibniz’s rule and the
theorem of Stokes (Proposition 2.7) for d ′P show∫
|Trop(U )|

d ′Pd ′′Pφ1 ∧φ2αU =

∫
∂|Trop(U )|

d ′′Pφ1 ∧φ2αU +

∫
|Trop(U )|

d ′′Pφ1 ∧ d ′P(φ2αU )

=

∫
∂|Trop(U )|

d ′′Pφ1 ∧φ2αU +

∫
|Trop(U )|

d ′′Pφ1 ∧ d ′Pφ2 ∧αU

+

∫
|Trop(U )|

d ′′Pφ1 ∧φ2d ′αU . (11.5.4)

Recall that φ2αU is a δ-preform on Trop(U ) and hence Remark 3.18 gives∫
|Trop(U )|

δφ1·Trop(U ) ∧φ2αU +

∫
∂|Trop(U )|

d ′′Pφ1 ∧φ2αU = 0. (11.5.5)

Using (11.5.4) and (11.5.5) in (11.5.3), we get

〈gY1
∗ gY2

, α〉 =

∫
|Trop(U )|

d ′′Pφ1 ∧ d ′Pφ2 ∧αU +

∫
|Trop(U )|

d ′′Pφ1 ∧φ2d ′αU . (11.5.6)

A similar computation where we replace (11.5.4) by an application of Stokes’
theorem with respect to d ′′P shows

〈gY2
∗ gY1

, α〉 =

∫
|Trop(U )|

d ′′Pφ1 ∧ d ′Pφ2 ∧αU −

∫
|Trop(U )|

φ1 d ′Pφ2 ∧ d ′′αU . (11.5.7)

Using that U is a very affine chart of integration for d ′′PηY1
∧ηY2
∧d ′α ∈PSPn,n

c (X an)

and for ηY1
∧ d ′PηY2

∧ d ′′αU ∈ PSPn,n
c (X an), this proves the claim in the first case.

Case 2: s1 = 1 and ‖1‖2 = 1. In this case Y1 is zero and ηY2
= −log| f2|. The

following computation is similar to the one in the proof of the Poincaré–Lelong
formula (see Theorem 7.2) and we will use the same terminology as there. We have
gY2
∗ gY1

= 0 as δY1 = 0 and ωY2
= c1(OX , ‖·‖2)= 0. It remains to show that

ωY1
∧ gY2

=−gY1
∧ δY2 + d ′[d ′′PηY1

∧ ηY2
] + d ′′[ηY1

∧ d ′PηY2
]. (11.5.8)

It is enough to check the claim locally and by linearity, we may assume that f2 is
a regular function on X . By the first case, we may assume that f2 is nonconstant.
We choose a very affine open subset U , the open subset � of Trop(U ) and φ1 as
above. We may assume that supp(div( f2))∩U =∅ and hence −log| f2| is induced
by an integral 0-affine function ϕ2 on Trop(U ). We use the very affine open U to
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compute the term 〈ωY1
∧ gY2

, α〉. Similarly to (11.5.1) and (11.5.2), we deduce

〈ωY1
∧ gY2

, α〉 =

∫
|Trop(U )|

δφ1·Trop(U )∧ϕ2αU +

∫
|Trop(U )|

d ′Pd ′′Pφ1∧ϕ2αU . (11.5.9)

The same computation as in (11.5.4)–(11.5.6) yields

〈ωY1
∧gY2

, α〉 =

∫
|Trop(U )|

d ′′Pφ1∧d ′Pϕ2∧αU +

∫
|Trop(U )|

d ′′Pφ1∧ϕ2d ′αU . (11.5.10)

As in the first case, we have∫
|Trop(U )|

d ′′Pφ1 ∧ϕ2d ′αU = 〈d
′
[d ′′PηY1

∧ ηY2
], α〉. (11.5.11)

Similarly to the proof of the Poincaré–Lelong formula, we may assume that the
support of α is covered by the interiors of the affinoid subdomains W j := trop−1

Uj
(1 j )

of the tropical chart Vj for j = 1, . . . ,m. We set W :=
⋃m

j=1 W j . We choose s > 0
sufficiently small with ϕ2 ≤ −log|s| on the compact set supp(d ′′Pφ1 ∧ αU ). Since
W covers supp(α), the analytic subdomain W (s) := {x ∈ W | | f2(x)| ≥ s} of W
contains supp(d ′′Pφ1 ∧α) and hence we have∫

|Trop(U )|
d ′′Pφ1 ∧ d ′Pϕ2 ∧αU =

∫
tropU (W (s)∩U an)

d ′′Pφ1 ∧ d ′Pϕ2 ∧αU . (11.5.12)

By the theorem of Stokes (Proposition 2.7), this is equal to∫
∂tropU (W (s)∩U an)

φ1d ′Pϕ2 ∧αU +

∫
tropU (W (s)∩U an)

φ1d ′Pϕ2 ∧ d ′′αU . (11.5.13)

By Corollary 5.6, the support of d ′′α is contained in U an. We may assume that the
compact set supp(d ′′α) is contained in W (s). Using that U is a very affine chart of
integration for ηY1

∧ d ′PηY2
∧ d ′′α, we get∫

tropU (W (s)∩U an)

φ1d ′Pϕ2 ∧ d ′′αU = 〈d
′′
[ηY1
∧ d ′PηY2

], α〉. (11.5.14)

Now we apply Remark 7.4 with f2 instead of f and the generalized δ-form ηY1
∧α

instead of α and observe that ϕ2 corresponds to F∗(x0) in Remark 7.4. Then
Equation (7.4.1) yields∫

∂tropU (W (s)∩U an)

φ1d ′Pϕ2 ∧αU =−〈gY1
∧ δY2, α〉 (11.5.15)

as W covers supp(α). Using (11.5.11)–(11.5.15) in (11.5.10), we get (11.5.8)
proving the claim in the second case.

Case 3: ‖1‖1 = 1 and s2 = 1. The formula proved in the second case yields

gY2
∗ gY1
− gY1

∗ gY2
= d ′[d ′′PηY2

∧ ηY1
] + d ′′[ηY2

∧ d ′PηY1
]
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The (1, 1)-current on the left-hand side is clearly symmetric. Hence the right-hand
side is symmetric as well and equals

−d ′′[d ′PηY2
∧ ηY1
] − d ′[ηY2

∧ d ′′PηY1
]

This proves our claim in the third case.

Case 4: ‖1‖1 = 1 and ‖1‖2 = 1. In this case ηY1
= −log| f1| and ηY2

= −log| f2|.
We have to show that

gY1
∧ δY2 − gY2

∧ δY1 = d ′[d ′′PηY1
∧ ηY2
] + d ′′[ηY1

∧ d ′PηY2
].

Again, we may assume that f1 and f2 are regular functions on X . By the pre-
vious cases, we may assume that these functions are nonconstant. We use the
same notation as above. Here, we choose the very affine open subset U disjoint
from supp(div( f1)) ∪ supp(div( f2)). Then ϕ1, ϕ2 are integral 0-affine functions
on Trop(U ) inducing −log | f1|,−log | f2| on U an. Going the computation in the
second case backwards, we see that

〈gY1
∧ δY2, α〉 = −

∫
|Trop(U )|

d ′′Pϕ1 ∧ d ′ϕ2 ∧αU +〈d
′′
[ηY1
∧ d ′PηY2

], α〉. (11.5.16)

Note here that d ′′Pϕ1∧d ′Pϕ2∧αU has compact support in �. Indeed, it follows from
Corollary 5.6, that d ′′P log| f1| ∧ d ′P log| f2| ∧α is a well-defined δ-form on X an with
compact support in U an (using that the divisors intersect properly) and hence we
get compactness in � from Proposition 4.21. Interchanging the role of Y1, Y2 and
also of d ′, d ′′ and d ′P, d ′′P in (11.5.16), we get the fourth claim. This proves the
proposition. �

In the following, we denote the support of a cycle Z (resp. of a Cartier divisor D)
on X by |Z | (resp. |D|).

Corollary 11.6. Let Z be a cycle of X of codimension p and let gZ be any δ-current
in E p−1,p−1(X). For i = 1, 2, let L i be a line bundle on X with a δ-metric ‖·‖i and
nonzero meromorphic section si . Let Di denote the Cartier divisor on X defined
by si . We assume that |D1| ∩ |Z | and |D2| ∩ |Z | both have codimension ≥ 1 in |Z |,
and that |D1| ∩ |D2| ∩ |Z | has codimension ≥ 2 in |Z |. Let ηYi

:= −log‖si‖i and
let gYi

= [ηYi
] be the induced Green current for the Weil divisor Yi of Di . Then we

have

gY1
∗ (gY2

∗ gZ )− gY2
∗ (gY1

∗ gZ ) ∈ d ′(E p,p+1(X an))+ d ′′(E p+1,p(X an)).

Proof. This follows immediately from Proposition 11.5 applied to the analytifica-
tions of the prime components of Z . �
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12. Local heights of varieties

In this section, we study the local height of a proper variety X of dimension n over
K with respect to metrized line bundles endowed with δ-metrics. If the metrics are
formal, then we show that these analytically defined local heights agree with the
ones based on divisorial intersection theory on formal models in [Gubler 1998].
In particular, they coincide with the local heights used in Arakelov theory over
number fields.

12.1. For i = 0, . . . , n, let L i be a line bundle on X endowed with a δ-metric
‖·‖i and a nonzero meromorphic section si . For the associated Cartier divisor
Di := div(si ), we consider the metrized Cartier divisor D̂i := (Di , ‖·‖i ), i.e., a
Cartier divisor Di and a metric ‖·‖i on the associated line bundle O(Di ). Recall
from 11.2 that we obtain the Green current gYi

:= [−log‖si‖i ] for the Weil divisor
Yi associated to Di .

We assume that the Cartier divisors D0, . . . , Dn intersect properly. Then we
define the local height of X with respect to D̂0, . . . , D̂n by

λD̂0,...,D̂n
(X) := gY0

∗ · · · ∗ gYn
(1).

12.2. If Z is a cycle on X of dimension t and D̂0, . . . , D̂t are δ-metrized Cartier
divisors on X with |D0|, . . . , |Dt |, |Z | intersecting properly, then 12.1 induces a
local height λD̂0,...,D̂t

(Z) by linearity in the prime components of Z .

Remark 12.3. The problem with this definition is that it is not functorial as the
pull-back of a Cartier divisor is not always well defined as a Cartier divisor. This
problem is resolved by using pseudodivisors instead of Cartier divisors (see [Fulton
1984, Chapter 2]). We follow [Gubler 2003] and define a δ-metrized pseudodivisor
as a triple (L, Z , s), where L = (L , ‖·‖) is a line bundle on X equipped with a
δ-metric, Z is a closed subset of X , and s is a nowhere vanishing section of L
over X \ Z . Using the same arguments as in [Gubler 2003], we get a local height
λD̂0,...,D̂t

(Z) for δ-metrized pseudodivisors which is well defined under the weaker
condition |D0| ∩ · · · ∩ |Dt | ∩ |Z | =∅.

It is straightforward to show that the local height is linear in Z and multilinear in
D̂0, . . . , D̂t . It follows from Corollary 11.6 along the arguments in [Gubler 2003]
that the local height is symmetric in D̂0, . . . , D̂t .

The next result shows that the induction formula holds for local heights.

Proposition 12.4. Let D̂0, . . . , D̂n be δ-metrized pseudodivisors on X with

|D0| ∩ · · · ∩ |Dn| =∅.
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Then the local height λD̂0,...,D̂n
(X) is equal to

λD̂0,...,D̂n−1
(Yn)−

∫
X an

log‖sn‖n · c1(O(D0))∧ · · · ∧ c1(O(Dn−1)),

where we assume that Dn is a Cartier divisor with associated Weil divisor Yn and
canonical meromorphic section sn of O(Dn).

Proof. The argument is the same as for [Gubler 2003, Proposition 3.5]. �

Proposition 12.5. Let ϕ : X ′→ X be a morphism of proper varieties over K and
let D̂0, . . . , D̂n be δ-metrized pseudodivisors on X with |D0|∩· · ·∩|Dn| =∅. Then
the functoriality

deg(ϕ)λD̂0,...,D̂n
(X)= λ

ϕ∗(D̂0),...,ϕ∗(D̂n)
(X ′)

holds.

Proof. The proof relies on the induction formula in Proposition 12.4 and the
projection formula for integrals (5.9.1). We refer to [Gubler 2003] for the analogous
arguments in the archimedean case. �

Proposition 12.6 (metric change formula). Suppose that the local height λ(X) with
respect to the δ-metrized pseudodivisors D̂0, . . . , D̂n is well defined. Let λ′(X) be
the local height of X obtained by replacing the metric ‖·‖0 on O(D0) by another
δ-metric ‖·‖′0. Then ρ := log(‖·‖′0/‖·‖0) is a piecewise smooth function on X an

and we have

λ(X)− λ′(X)=
∫

X an
ρ · c1(O(D1))∧ · · · ∧ c1(O(Dn)).

Proof. This follows from linearity and symmetry of the local height in D̂0 and D̂n

and from the induction formula in Proposition 12.4. �

Remark 12.7. Now suppose that D̂0, . . . , D̂n are formally metrized pseudodivisors
on X with |D0| ∩ · · · ∩ |Dn| = ∅. Then the intersection theory of divisors on
admissible formal K ◦-models given in [Gubler 1998] induces also a local height of
X (see [Gubler 2003]). It also satisfies an induction formula involving Chambert-
Loir’s measures (see [Gubler 2003, Remark 9.5]). Since the Chambert-Loir measure
agrees with the Monge–Ampère measure (see Theorem 10.5), we deduce from the
induction formula in Proposition 12.4 that the local height based on intersection
theory of divisors agrees with λD̂0,...,D̂n

(X) from Remark 12.3. In particular, this
proves Theorem 0.4 stated in the introduction.

Appendix: Convex geometry

In this appendix, we gather the notions from convex geometry on a finite dimensional
real vector space W coming with an integral structure. This means that we consider
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a free abelian group N of rank r with W = NR := N ⊗Z R. Let M := Hom(N ,Z)

be the dual abelian group and let V := Hom(M,R)= MR be the dual vector space
of W. The natural duality between V and W is denoted by 〈u, ω〉. Let 0 be a fixed
subgroup of R. In the applications, it is usually the value group of a nonarchimedean
absolute value.

A.1. Let N ′ be another free abelian group of finite rank and let F : NR→ N ′R be an
affine map. Then F is called integral 0-affine if F = LF+ω with ω∈ N ′⊗Z0⊆ N ′R
and with the associated linear map LF induced by a homomorphism N → N ′.

A.2. A polyhedron1 in W is defined as the intersection of finitely many half spaces
{ω ∈ W | 〈ui , ω〉 ≥ ci } with ui ∈ V and ci ∈ R. If we may choose all ui ∈ M and
all ci ∈ 0, then we say that 1 is an integral 0-affine polyhedron. A face of 1 is
either 1 itself or the intersection of 1 with the boundary of a closed half-space
containing 1. We write τ 41 for a face τ of 1 and we write τ ≺1 if additionally
τ 6=1. The relative interior of 1 is defined by

relint(1) :=1 \
⋃
τ≺1

τ.

Note that every polyhedron is convex. A polytope is a bounded polyhedron.
A polyhedron 1 in W generates an affine space A1 of the same dimension.

Recall that an affine space in W is a translate of a linear subspace and A1 is the
intersection of all affine spaces in W which contain 1. We denote the underlying
vector space by L1. If 1 is integral 0-affine, then the integral structure of A1 is
given by the complete lattice N1 := N ∩ L1 in L1.

A.3. A polyhedral complex C in W is a finite set of polyhedra such that

(a) 1 ∈ C ⇒ all closed faces of 1 are in C ;

(b) 1, σ ∈ C ⇒ 1∩ σ is either empty or a closed face of 1 and σ .

The polyhedral complex C is called integral 0-affine if every 1 ∈ C is integral
0-affine. The support of C is defined as

|C | :=
⋃
1∈C

1.

We say that a polyhedral complex C is complete if |C | =W . A subdivision of C

is a polyhedral complex D with |D | = |C | and with every 1 ∈ D contained in a
polyhedron of C . This has to be distinguished from a subcomplex of C which is a
polyhedral complex D with D ⊆ C .

A.4. Given a polyhedral complex C in NR, we denote by Cn the subset of n-
dimensional polyhedra in C and by C l

= Cr−l the subset of polyhedra in C of
codimension l in NR. We say that a polyhedral complex C is of pure dimension n
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(resp. of pure codimension l) if all polyhedra in C which are maximal with respect
to 4 lie in Cn (resp. C l). Given a polyhedral complex C of pure dimension n and
m ≤ n, we denote by C≤m the polyhedral subcomplex of C of pure dimension m
given by all σ ∈ C with dim σ ≤ m. We set C≥l

= C≤r−l if r − l ≤ n. Recall here
that r is the rank of N .

Definition A.5. (i) A polyhedral set P in NR (of pure dimension n) is a finite
union of polyhedra (of pure dimension n). Equivalently, there exists a polyhedral
complex D (of pure dimension n) whose support is P. The polyhedral set is called
integral 0-affine if the above polyhedra can be chosen integral 0-affine.

(ii) Let P be a polyhedral set in NR. A point x ∈ P is called regular if there exists
a polyhedron 1⊆ P such that relint(1) is an open neighbourhood of x in P. We
denote by relint(P) the set of regular points of the polyhedral set P.

A.6. A cone σ in W is characterized by R≥0 ·σ = σ . A cone which is a polyhedron
is called a polyhedral cone. An integral R-affine polyhedral cone is simply called a
rational polyhedral cone. A polyhedral cone is called strictly convex if it does not
contain a line. The local cone LCω(S) of S ⊆W at ω ∈W is defined by

LCω(S) := {ω′ ∈W | ω+ [0, ε)ω′ ⊆ S for some ε > 0}.

A.7. A polyhedral complex6 consisting of strictly convex rational polyhedral cones
is called a rational polyhedral fan. The theory of toric varieties (see [Kempf et al.
1973; Oda 1988; Fulton 1993; Cox et al. 2011]) gives a bijective correspondence
6 7→ Y6 between rational polyhedral fans on NR and normal toric varieties over
any field K with open dense torus Spec(K [M]) (up to equivariant isomorphisms
restricting to the identity on the torus). Then 6 is complete if and only if Y6 is a
proper variety over K .

A simplicial cone in NR is generated by a part of a basis. A simplicial fan is a fan
formed by simplicial cones. A smooth fan in NR is a rational polyhedral fan 6 such
that every cone σ ∈6 is generated by a part of a basis of N . In particular, a smooth
fan is a simplicial fan. A polyhedral fan 6 is smooth if and only if Y6 is a smooth
variety [Cox et al. 2011, Chapter 1, Theorem 3.12; Fulton 1993, 2.1 Proposition].
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