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Deligne conjectured that a single `-adic lisse sheaf on a normal variety over a
finite field can be embedded into a compatible system of `′-adic lisse sheaves with
various `′. Drinfeld used Lafforgue’s result as an input and proved this conjecture
when the variety is smooth. We consider an analogous existence problem for a
regular flat scheme over Z and prove some cases using Lafforgue’s result and the
work of Barnet-Lamb, Gee, Geraghty, and Taylor.

1. Introduction

Deligne [1980] conjectured that all the Q`-sheaves on a variety over a finite field
are mixed. A standard argument reduces this conjecture to the following one.

Conjecture 1.1 (Deligne). Let p and ` be distinct primes. Let X be a connected
normal scheme of finite type over Fp and E an irreducible lisse Q`-sheaf whose
determinant has finite order. Then the following properties hold:

(i) E is pure of weight 0.

(ii) There exists a number field E⊂Q` such that the polynomial det(1−Frobx t,Ex̄)

has coefficients in E for every x ∈ |X |.

(iii) The roots of det(1− Frobx t,Ex̄) are λ-adic units for any nonarchimedean
place λ of E prime to p.

(iv) For a sufficiently large E and for every nonarchimedean place λ of E prime to
p, there exists an Eλ-sheaf Eλ compatible with E, that is, det(1−Frobx t,Ex̄)=

det(1−Frobx t,Eλ,x̄) for every x ∈ |X |.

Here |X | denotes the set of closed points of X and x̄ is a geometric point above x.

The conjecture for curves is proved by L. Lafforgue [2002]. He also deals with
parts (i) and (iii) in general by reducing them to the case of curves (see also [Deligne
2012]). Deligne [2012] proves part (ii), and Drinfeld [2012] proves part (iv) for
smooth varieties. They both use Lafforgue’s results.
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We can consider similar questions for arbitrary schemes of finite type over Z[`−1
].

This paper focuses on part (iv), namely the problem of embedding a single lisse
Q`-sheaf into a compatible system of lisse sheaves. We have the following folklore
conjecture in this direction.

Conjecture 1.2. Let ` be a rational prime. Let X be an irreducible regular scheme
that is flat and of finite type over Z[`−1

]. Let E be a finite extension of Q and
λ a prime of E above `. Let E be an irreducible lisse Eλ-sheaf on X and ρ the
corresponding representation of π1(X). Assume the following conditions:

(i) The polynomial det(1−Frobx t,Ex̄) has coefficients in E for every x ∈ |X |.

(ii) E is de Rham at ` (see below for the definition).

Then for each rational prime `′ and each prime λ′ of E above `′ there exists a lisse
Eλ′-sheaf on X [`′−1

] which is compatible with E|X [`′−1].

The conjecture when dim X = 1 is usually rephrased in terms of Galois repre-
sentations of a number field (see Conjecture 1.3 of [Taylor 2002], for example).

When dim X > 1, a lisse sheaf E is called de Rham at ` if for every closed point
y ∈ X ⊗Q`, the representation i∗yρ of Gal

(
k(y)/k(y)

)
is de Rham, where iy is the

morphism Spec k(y)→ X . Ruochuan Liu and Xinwen Zhu [2017] have shown that
this is equivalent to the condition that the lisse Eλ-sheaf E|X⊗Q`

on X ⊗Q` is a
de Rham sheaf in the sense of relative p-adic Hodge theory.

Now we discuss our main results. They concern Conjecture 1.2 for schemes over
the ring of integers of a totally real or CM field.

Theorem 1.3. Let ` be a rational prime and K a totally real field which is unrami-
fied at `. Let X be an irreducible smooth OK [`

−1
]-scheme such that

• the generic fiber is geometrically irreducible,

• XK (R) 6=∅ for every real place K ↪→ R, and

• X extends to an irreducible smooth OK -scheme with nonempty fiber over each
place of K above `.

Let E be a finite extension of Q and λ a prime of E above `. Let E be a lisse
Eλ-sheaf on X and ρ the corresponding representation of π1(X). Suppose that E

satisfies the following assumptions:

(i) The polynomial det(1−Frobx t,Ex̄) has coefficients in E for every x ∈ |X |.

(ii) For every totally real field L which is unramified at ` and every morphism
α : Spec L→ X , the Eλ-representation α∗ρ of Gal(L/L) is crystalline at each
prime v of L above `, and for each τ : L ↪→ Eλ it has distinct τ -Hodge–Tate
numbers in the range [0, `− 2].
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(iii) ρ can be equipped with a symplectic (resp. orthogonal) structure with multi-
plier µ : π1(X)→ E×λ such that µ|π1(XK ) admits a factorization

µ|π1(XK ) : π1(XK )→ Gal(K/K )
µK
−→ E×λ

with a totally odd (resp. totally even) character µK (see below for the defini-
tions).

(iv) The residual representation ρ̄|π1(X [ζ`]) is absolutely irreducible. Here ζ` is a
primitive `-th root of unity and X [ζ`] = X ⊗OK OK [ζ`].

(v) `≥ 2(rank E+ 1).

Then for each rational prime `′ and each prime λ′ of E above `′ there exists a lisse
Eλ′-sheaf on X [`′−1

] which is compatible with E|X [`′−1].

For an Eλ-representation ρ : π1(X)→ GL(Vρ), a symplectic (resp. orthogonal)
structure with multiplier is a pair (〈·,·〉, µ) consisting of a symplectic (resp. orthogo-
nal) pairing 〈·,·〉 : Vρ×Vρ→ Eλ and a continuous homomorphismµ : π1(X)→ E×λ
satisfying 〈ρ(g)v, ρ(g)v′〉 = µ(g)〈v, v′〉 for any g ∈ π1(X) and v, v′ ∈ Vρ .

We show a similar theorem without assuming that K is unramified at ` using
the potential diagonalizability assumption. See Theorem 4.1 for this statement and
Theorem 4.2 for the corresponding statement when K is CM.

The proof of Theorem 1.3 uses Lafforgue’s work and the work of Barnet-Lamb,
Gee, Geraghty, and Taylor [Barnet-Lamb et al. 2014, Theorem C]. The latter work
concerns Galois representations of a totally real field, and it can be regarded as a
special case of Conjecture 1.2 when dim X = 1. We remark that their theorem has
several assumptions on Galois representations since they use potential automorphy.
Hence Theorem 1.3 needs assumptions (ii)–(v) on lisse sheaves.

The main part of this paper is devoted to constructing a compatible system of
lisse sheaves on a scheme from those on curves. Our method is modeled after
Drinfeld’s [2012] result, which we explain now.

For a given lisse sheaf on a scheme, one can obtain a lisse sheaf on each curve
on the scheme by restriction. Conversely, Drinfeld [2012, Theorem 2.5] proves that
a collection of lisse sheaves on curves on a regular scheme defines a lisse sheaf
on the scheme if it satisfies some compatibility and tameness conditions. See also
a remark after Theorem 1.4. This method originates from the work of Wiesend
[2006] on higher dimensional class field theory [Kerz and Schmidt 2009].

Drinfeld uses this method to reduce part (iv) of Conjecture 1.1 for smooth varieties
to the case when dim X = 1, where he can use Lafforgue’s result. Similarly, one
can use his result to reduce Conjecture 1.2 to the case when dim X = 1.

However, Drinfeld’s result cannot be used to reduce Theorem 1.3 to the results
of Lafforgue and Barnet-Lamb, Gee, Geraghty, and Taylor since his theorem needs
a lisse sheaf on every curve on the scheme as an input. On the other hand, the
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results of [Lafforgue 2002] and [Barnet-Lamb et al. 2014] only provide compatible
systems of lisse sheaves on special types of curves on the scheme: curves over
finite fields and totally real curves, that is, open subschemes of the spectrum of
the ring of integers of a totally real field. Thus the goal of this paper is to deduce
Theorem 1.3 using the existence of compatible systems of lisse sheaves on these
types of curves.

We now explain our method. Fix a prime ` and a finite extension Eλ of Q`. Fix a
positive integer r. On a normal scheme X of finite type over Spec Z[`−1

], each lisse
Eλ-sheaf E of rank r defines a polynomial-valued map fE : |X |→ Eλ[t] of degree r
given by fE,x(t)= det(1−Frobx t,Ex̄). Here we say that a polynomial-valued map
is of degree r if its values are polynomials of degree r . Moreover, fE determines E

up to semisimplifications by the Chebotarev density theorem. Conversely, we can
ask whether a polynomial-valued map f : |X | → Eλ[t] of degree r arises from a
lisse sheaf of rank r on X in this way.

Let K be a totally real field. Let X be an irreducible smooth OK -scheme which
has geometrically irreducible generic fiber and satisfies XK (R) 6=∅ for every real
place K ↪→ R. In this situation, we show the following theorem.

Theorem 1.4. A polynomial-valued map f of degree r on |X | arises from a lisse
sheaf on X if and only if it satisfies the following conditions:

(i) The restriction of f to each totally real curve arises from a lisse sheaf.

(ii) The restriction of f to each separated smooth curve over a finite field arises
from a lisse sheaf.

We prove a similar theorem when K is CM (Theorem 3.14).
Drinfeld’s theorem involves a similar equivalence, which holds for arbitrary

regular schemes of finite type, although his condition (i) is required to hold for
arbitrary regular curves and there is an additional tameness assumption in his
condition (ii).1

If K and X satisfy the assumptions in Theorem 1.3, then we prove a variant of
Theorem 1.4, where we require condition (i) to hold only for totally real curves
which are unramified over ` (Remark 3.13). This variant, combined with the results
by Lafforgue and Barnet-Lamb, Gee, Geraghty, and Taylor, implies Theorem 1.3.

One of the main ingredients for the proof of these types of theorems is an
approximation theorem: one needs to find a curve passing through given points in
given tangent directions and satisfying a technical condition coming from a given
étale covering. To prove this Drinfeld uses the Hilbert irreducibility theorem. In
our case, we need to further require that such a curve be totally real or CM. For
this we use a theorem of Moret-Bailly.

1We do not need tameness assumption in condition (ii) in Theorem 1.4. This was pointed out by
Drinfeld.
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We briefly mention a topic related to Conjecture 1.2. As conjectures on Galois
representations suggest, the following stronger statement should hold.

Conjecture 1.5. (With notation as in Conjecture 1.2). Condition (ii) implies condi-
tion (i) after replacing E by a bigger number field inside Eλ.

This is an analogue of Conjecture 1.1(ii) and (iii). Even if we assume the
conjectures for curves, that is, Galois representations of a number field, no method
is known to prove Conjecture 1.5 in full generality. However in [Shimizu 2015]
we show the conjecture for smooth schemes assuming conjectures on Galois rep-
resentations of a number field and the Generalized Riemann Hypothesis. Note
that Deligne’s [2012] proof of Conjecture 1.1(iii) uses the Riemann Hypothesis for
varieties over finite fields, or more precisely, the purity theorem of [Deligne 1980].

We now explain the organization of this paper. In Section 2, we review the
theorem of Moret-Bailly and prove an approximation theorem for “schemes with
enough totally real curves.” We show a similar theorem in the CM case. In Section 3,
we prove Theorem 1.4 and its variants using the approximation theorems. Most
arguments in Section 3 originate from [Drinfeld 2012]. Finally, we prove the main
theorems in Section 4.

Notation. For a number field E and a place λ of E , we denote by Eλ a fixed
algebraic closure of Eλ.

For a scheme X , we denote by |X | the set of closed points of X . We equip finite
subsets of |X | with the reduced scheme structure. We denote the residue field of a
point x of X by k(x). An étale covering over X means a scheme which is finite
and étale over X .

For a number field K and an OK -scheme X , XK denotes the generic fiber
of X regarded as a K-scheme. In particular, for a K-algebra R, XK (R) means
HomK (Spec R,XK ), not HomZ(Spec R,XK ). We also write X(R) instead of XK(R).

For simplicity, we omit base points of fundamental groups and we often change
base points implicitly in the paper.

2. Existence of totally real and CM curves via the theorem of Moret-Bailly

Theorem 2.1 [Moret-Bailly 1989]. Let K be a number field. We consider a quadru-
ple (XK , 6, {Mv}v∈6, {�v}v∈6) consisting of

(i) a geometrically irreducible, smooth and separated K-scheme XK ,

(ii) a finite set 6 of places of K ,

(iii) a finite Galois extension Mv of Kv for every v ∈6, and

(iv) a nonempty Gal(Mv/Kv)-stable open subset�v of XK (Mv) with respect to the
Mv-topology.
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Then there exist a finite extension L of K and an L-rational point x ∈ XK (L)
satisfying the following two conditions:

• For every v ∈6, L is Mv-split, that is, L⊗K Mv
∼= M [L : K ]

v .

• The images of x in XK (Mv) induced from embeddings L ↪→ Mv lie in �v.

Remark 2.2. Our formulation is slightly different from that of Moret-Bailly, but
Theorem 2.1 is a simple consequence of [Moret-Bailly 1989, théorème 1.3]: We
can always find an integral model f : X→ B of XK → Spec K over a sufficiently
small open subscheme B of Spec OK such that (X → B, 6, {Mv}v∈6, {�v}v∈6)

is an incomplete Skolem datum (see [Moret-Bailly 1989, définition 1.2]). Then
Theorem 2.1 follows from théorème 1.3 of [Moret-Bailly 1989] applied to this
incomplete Skolem datum.

Since the set 6 can contain infinite places, the above theorem implies the
existence of totally real or CM valued points.

Lemma 2.3. (i) Let K be a totally real field and XK a geometrically irreducible
smooth K-scheme such that XK (R) 6=∅ for every real place K ↪→ R. For any
dense open subscheme UK of XK , there exists a totally real extension L of K
such that UK (L) 6=∅.

(ii) Let F be a CM field and Z F a geometrically irreducible smooth F-scheme.
For any dense open subscheme VF of Z F , there exists a CM extension L of F
such that VF (L) 6=∅.

Proof. In either setting, we may assume that the scheme is separated over the base
field by replacing it by an open dense subscheme.

(i) For every real place v : K ↪→ R, let Uv = UK ∩ (XK ⊗K ,v R)(R). It follows
from the assumptions and the implicit function theorem that Uv is a nonempty open
subset of (XK ⊗K ,v R)(R) with respect to real topology.

We apply the theorem of Moret-Bailly to the datum (XK , {v}, {R}v, {Uv}v) to
find a finite extension L of K and a point x ∈ XK (L) such that L ⊗K R∼= R[L:K ]

and the images of x induced from real embeddings L ↪→R above v lie in Uv . Then
L is totally real and x ∈UK (L). Hence UK (L) 6=∅.

(ii) Let F+ be the maximal totally real subfield of F . Define Z+F+ (resp. V+F+)
to be the Weil restriction ResF/F+ Z F (resp. ResF/F+ VF ). Denote the nontrivial
element of Gal(F/F+) by c and Z F⊗F,c F by c∗Z F . Then we have Z+F+⊗F+ F ∼=
Z F ×F c∗Z F , and this scheme is geometrically irreducible over F . Thus Z+F+ is a
geometrically irreducible smooth F+-scheme, and V+F+ is dense and open in Z+F+ .
Moreover, for every real place F+ ↪→ R, we can extend it to a complex place
F ↪→ C and get F ⊗F+ R∼= C. Hence we have Z+F+(R)= Z F (C) 6=∅. Therefore
we can apply (i) to the triple (F+, Z+F+, V+F+) and find a totally real extension L+ of
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F+ such that VF (L+⊗F+ F)= V+F+(L
+) 6=∅. Since L+⊗F+ F is a CM extension

of F , this completes the proof. �

This lemma leads to the following definitions.

Definition 2.4. A totally real curve is an open subscheme of the spectrum of the
ring of integers of a totally real field. A CM curve is an open subscheme of the
spectrum of the ring of integers of a CM field.

Definition 2.5. Let K be a totally real field and X an irreducible regular OK -scheme.
We say that X is an OK -scheme with enough totally real curves if X is flat and of
finite type over OK with geometrically irreducible generic fiber and XK (R) 6=∅ for
every real place K ↪→ R.

Now we introduce some notation and state our approximation theorems.

Definition 2.6. Let g : X→ Y be a morphism of schemes. For x ∈ X , consider the
tangent space Tx X = Homk(x)(mx/m

2
x , k(x)) at x , where mx denotes the maximal

ideal of the local ring at x . This contains Tx(Xg(x)), where Xg(x) = X ⊗Y k(g(x)).
A one-dimensional subspace l of Tx X is said to be horizontal (with respect to g)
if l does not lie in the subspace Tx(Xg(x)).

Definition 2.7. Let X be a connected scheme and Y a generically étale X-scheme.
A point x ∈ X(L) with some field L is said to be inert in Y → X if for each
irreducible component Yα of Y , (Spec L)×x,X Yα is nonempty and connected.

Theorem 2.8. Let K be a totally real field and X an irreducible smooth separated
OK -scheme with enough totally real curves. Consider the following data:

(i) a flat OK -scheme Y which is generically étale over X ;

(ii) a finite subset S ⊂ |X | such that S→ Spec OK is injective;

(iii) a one-dimensional subspace ls of Ts X for every s ∈ S.

Then there exist a totally real curve C with fraction field L , a morphism ϕ : C→ X
and a section σ : S→ C of ϕ over S such that ϕ(Spec L) is inert in Y → X and
Im(Tσ(s)C→ Ts X)= ls for every s ∈ S.

Proof. We will use the theorem of Moret-Bailly to find the desired curve. Note that
we can replace Y by any dominant étale Y -scheme.

Let v denote the structure morphism X → Spec OK . Take an open subscheme
U ⊂ X such that v(U )∩ v(S) = ∅ and the morphism Y ×X U → U is finite and
étale. Replacing each connected component of Y ×X U by its Galois closure, we
may assume that each connected component of Y ×X U is Galois over U . Write
Y ×X U =

∐
1≤i≤k Wi as the disjoint union of connected components and denote by

Gi the Galois group of the covering Wi →U. Let Hi1, . . . , Hiri be all the proper
subgroups of Gi .
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We will choose a quadruple of the form(
XK , {vi j }i, j ∪ {v(s)}s∈S ∪ {v∞,i }i , {Kvi j } ∪ {Ms} ∪ {R}, {Vi j } ∪ {Vs} ∪ {V∞,i }

)
.

First we choose vi j and Vi j (1≤ i ≤ k, 1≤ j ≤ ri ) which control the inertness
property.

Claim. There exist a finite set {vi j }i, j of finite places of K and a nonempty open
subset Vi j of X(Kvi j ) with respect to the Kvi j -topology for each (i, j) such that:

(i) For any finite extension L of K and any L-rational point x ∈ X(L), x is inert
in Y → X if L is Kvi j -split and if all the images of x under the induced maps
X(L)→ X(Kvi j ) lie in Vi j .

(ii) The vi j are different from any element of v(S) regarded as a finite place of K .

Proof of Claim. For each i = 1, . . . , k and j = 1, . . . , ri , let πHi j denote the
induced morphism Wi/Hi j → X and let Mi j be the algebraic closure of K in
the field of rational functions of Wi/Hi j . Then we have a canonical factorization
Wi/Hi j → Spec OMi j → Spec OK .

If Mi j = K , then the generic fiber (Wi/Hi j )K is geometrically integral over K .
It follows from Proposition 3.5.2 of [Serre 2008] that there are infinitely many finite
places v0 of K such that U(Kv0) \πHi j (Wi/Hi j (Kv0)) is a nonempty open subset
of U(Kv0). Thus choose such a finite place vi j and put

Vi j =U(Kvi j ) \πHi j (Wi/Hi j (Kvi j )).

Next consider the case where Mi j 6= K . The Lang–Weil theorem and the
Chebotarev density theorem show that there are infinitely many finite places v0

of K such that U(Kv0) 6= ∅ and v0 does not split completely in Mi j , that is,
Mi j⊗K Kv0 6

∼= K [Mi j :K ]
v0

(see [Serre 2008, Propositions 3.5.1 and 3.6.1], for example).
In this case, choose such a finite place vi j and put

Vi j =U(Kvi j ).

It is easy to see that we can choose vi j satisfying condition (ii). We now show
that these vi j and Vi j satisfy condition (i). Take L and x ∈ X(L) as in condition (i).
By Lemma 2.9 below, it suffices to prove that x 6∈ πHi j (Wi/Hi j (L)) for any Hi j .

When Mi j = K , this is obvious because the images of x under the maps X(L)→
X(Kvi j ) lie in Vi j =U(Kvi j ) \πHi j (Wi/Hi j (Kvi j )). When Mi j 6= K , we know that
Mi j ⊗K Kvi j is not Kvi j -split. Since L is assumed to be Kvi j -split, Mi j cannot be
embedded into L . On the other hand, we have a canonical factorization Wi/Hi j →

Spec OMi j . Therefore Wi/Hi j (L)=∅. Thus x is inert in Y → X in both cases. �

Next we choose a finite Galois extension Ms of Kv(s) and a Gal(Ms/Kv(s))-stable
nonempty open subset Vs of X(Ms) with respect to the Ms-topology to make a
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totally real curve pass through s in the tangent direction ls . Here Kv(s) denotes the
completion of K with respect to the finite place v(s) of K . Let ÔX,s denote the
completed local ring of X at s ∈ S. Since ÔX,s is regular, we can find a regular
one-dimensional closed subscheme Spec Rs ⊂ Spec ÔX,s which is tangent to ls and
satisfies Rs ⊗OK K 6=∅ (see [Drinfeld 2012, Lemma A.6]).

It follows from the construction that Rs is a complete discrete valuation ring which
is finite and flat over OKv(s) and has residue field k(s). Let M ′s be the fraction field
of Rs . For each s ∈ S we first choose Ms and a local homomorphism OX,s→ OMs .
There are two cases.

If ls is horizontal, then Rs is unramified over OKv(s) and hence M ′s is Galois
over Kv(s). Put Ms :=M ′s in this case. Then we have a natural local homomorphism
OX,s→ ÔX,s→ OMs .

If ls is not horizontal, then Rs is ramified over OKv(s) . Let K ′v(s) be the maximal
unramified extension of Kv(s) in M ′s and Ms the Galois closure of M ′s over Kv(s).
Then both K ′v(s) and Ms have the same residue field k(s).

We construct a local homomorphism ÔX,s → OMs in this setting. Since X is
smooth over OK , the ring ÔX,s is isomorphic to the ring of formal power series
OK ′v(s)[[t1, . . . , tm]] for some m and we identify these rings.

Let ui ∈ OM ′s denote the image of ti under the homomorphism

OK ′v(s)[[t1, . . . , tm]] = ÔX,s→ Rs = OM ′s .

Let π (resp. $ ) be a uniformizer of OM ′s (resp. OMs ) and consider π -adic expansion
ui =

∑
∞

j=0 ai jπ
j . Since ÔX,s → OM ′s is a local homomorphism, we have ai0 = 0

for each i .
Consider the differential of Spec OM ′s = Spec Rs→ Spec ÔX,s at the closed point.

The tangent vector ∂/∂π is sent to
∑m

i=1 ai1∂/∂ti under this map, and the latter
spans the tangent line ls .

Define a local homomorphism ÔX,s→ OMs by sending ti to
∑
∞

j=1 ai j$
j . Then

the image of the differential of the corresponding morphism Spec OMs → X at the
closed point is ls by the same computation as above.

In either case, we have chosen Ms and a homomorphism OX,s → OMs . Let
ŝ ∈ X(OMs ) be the point induced by the homomorphism. Note that X(OMs ) is an open
subset of X(Ms) by separatedness. Let α : X(OMs )→ X(OMs/m

2
Ms
) be the reduction

map, where mMs denotes the maximal ideal of OMs . Define V ′s = α
−1(α(ŝ)), which

is a nonempty open subset of X(Ms), and put

Vs =
⋃
σ

σ(V ′s ),

where σ runs over all the elements of Gal(Ms/Kv(s)). Since Gal(Ms/Kv(s)) acts con-
tinuously on X(Ms), Vs is a nonempty Gal(Ms/Kv(s))-stable open subset of X(Ms).
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Finally, let v∞,1, . . . , v∞,n be the real places of K and put

V∞,i = X(R)

for each i = 1, . . . , n. This is nonempty by our assumption.
It follows from the theorem of Moret-Bailly (Theorem 2.1) that there exist a

finite extension L of K and an L-rational point x ∈ X(L) satisfying the following
properties:

(i) L ⊗K Kvi j is Kvi j -split and x goes into Vi j under any embedding L ↪→ Kvi j .

(ii) L ⊗K Ms is Ms-split and x goes into Vs under any embedding L ↪→ Ms .

(iii) L is totally real.

We can spread out the L-rational point x : Spec L→ X to a morphism ϕ : C→ X ,
where C is a totally real curve with fraction field L . By property (ii), we can choose
C and ϕ so that all the points of Spec OL above v(S)⊂ Spec OK are contained in C .
The claim on page 188 shows that x is inert in Y→ X . Thus it remains to prove that
there exists a section σ of ϕ over S such that Im(Tσ(s)C→ Ts X)= ls for every s ∈ S.

It follows from property (ii) and the definition of Vs that there exists an embedding
L ↪→ Ms such that the image of x under the associated map X(L)→ X(Ms) lies
in V ′s . Let s ′ ∈ Spec OL be the closed point corresponding to this embedding. Then
we have s ′ ∈ C , k(s ′) = k(s), and Im(Ts′C → Ts X) = ls . Hence we can define a
desired section of ϕ over S. �

Lemma 2.9. Let L be a field, U a locally noetherian connected scheme and
π : W →U a Galois covering with Galois group G. For any subgroup H ⊂ G, let
πH denote the induced morphism W/H →U. An L-valued point of X is inert in π
if and only if it lies in U(L) \

⋃
H(G πH (W/H(L)).

Proof. Let x denote the L-valued point. Choose a point of W above x and fix
a geometric point above it. This also defines a geometric point above x and we
have a homomorphism π1(x) → G, where π1(x) is the absolute Galois group
of L . Let H0 denote the image of this homomorphism. Then x is inert in π
if and only if the homomorphism is surjective, that is, H0 = G. On the other
hand, for a subgroup H ⊂ G, the point x lies in πH (W/H(L)) if and only if
Spec L×x,U W/H→ Spec L has a section, which is equivalent to the condition that
some conjugate of H contains H0. The lemma follows from these two observations.

�

For our applications, we need a stronger variant of the theorem.

Corollary 2.10. Let K be a totally real field and X an irreducible smooth separated
OK -scheme with enough totally real curves. Let U be a nonempty open subscheme
of X. Suppose that we are given the following data:
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(i) a flat OK -scheme Y which is generically étale over X ;

(ii) a closed normal subgroup H ⊂ π1(U ) such that π1(U )/H contains an open
pro-` subgroup;

(iii) a finite subset S ⊂ |X | such that S→ Spec OK is injective;

(iv) a one-dimensional subspace ls of Ts X for every s ∈ S.

Then there exist a totally real curve C with fraction field L , a morphism ϕ : C→ X
with ϕ−1(U ) 6=∅ and a section σ : S→ C of ϕ over S such that

• ϕ(Spec L) is inert in Y → X ,

• π1(ϕ
−1(U ))→ π1(U )/H is surjective, and

• Im(Tσ(s)C→ Ts X)= ls for every s ∈ S.

Proof. As is shown in the proof of Proposition 2.17 of [Drinfeld 2012], we can
find an open normal subgroup G0 ⊂ π1(U )/H satisfying the following property:
Every closed subgroup G ⊂ π1(U )/H such that the map G→ (π1(U )/H)/G0 is
surjective equals π1(U )/H .

Let Y ′ be the Galois covering of U corresponding to G0. Then we can apply
Theorem 2.8 to (Y t Y ′, S, (ls)s∈S) and get the desired triple (C, ϕ, σ ). �

We have a similar approximation theorem in the CM case. The proof uses the
Weil restriction and is essentially similar to the totally real case, although one has
to check that the conditions are preserved under the Weil restriction.

Theorem 2.11. Let F be a CM field and Z an irreducible smooth separated OF -
scheme with geometrically irreducible generic fiber. Let U be a nonempty open
subscheme of Z. Suppose that we are given the following data:

(i) a flat OF -scheme W which is generically étale over Z ;

(ii) a closed normal subgroup H ⊂ π1(U ) such that π1(U )/H contains an open
pro-` subgroup;

(iii) a finite subset S ⊂ |Z | such that S→ Spec OF+ is injective;

(iv) a one-dimensional subspace ls of Ts Z for every s ∈ S.

Then there exist a CM curve C with fraction field L , a morphism ϕ : C→ Z with
ϕ−1(U ) 6=∅ and a section σ : S→ C of ϕ over S such that

• ϕ(Spec L) is inert in W → Z ,

• π1(ϕ
−1(U ))→ π1(U )/H is surjective, and

• Im(Tσ(s)C→ Ts Z)= ls for every s ∈ S.

Proof. Let F+ be the maximally totally real subfield of F . Let w (resp. v) denote
the structure morphism Z → Spec OF (resp. Z → Spec OF+). As in the proof of
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Corollary 2.10, we may omit the datum (ii) by replacing W by another flat, generi-
cally étale Z -scheme and prove the first and third properties of the triple (C, ϕ, σ ).

Define Z+ to be the Weil restriction ResOF/OF+
Z . Then we have Z+⊗OF+

OF ∼=

Z×OF c∗Z , where c denotes the nontrivial element of Gal(F/F+) and c∗Z denotes
Z ⊗OF ,c OF . It follows from the assumptions that Z+ is an irreducible smooth OF+-
scheme with enough totally real curves. We will apply the theorem of Moret-Bailly
to Z+ with appropriate data.

We may assume that each connected component of W is a Galois cover over
its image in Z by replacing W if necessary. Put Y = W ×OF c∗W and regard it
as an OF+-scheme. Then Y → Z ×OF c∗Z→ Z+ is flat and generically étale, and
therefore satisfies the same assumptions as Y → X in Theorem 2.8 and the second
paragraph of its proof. Hence, as in the claim on page 188, there exist a finite set
{vi j }1≤i≤k,1≤ j≤ri of finite places of F+ and a nonempty open subset Vi j of Z+(F+vi j

)

for each (i, j) satisfying the following properties:

(i) For any finite extension L+ of F+ and any L+-rational point z+ ∈ Z+(L+),
z+ is inert in Y → Z+ if L+ is F+vi j

-split and if z+ lands in Vi j under any
embedding L+ ↪→ F+vi j

.

(ii) The vi j are different from any element of v(S).

Next take any s ∈ S. We will choose a finite Galois extension Ms of Fw(s) and a
Gal(Ms/F+v(s))-stable nonempty subset of Z+(Ms) with respect to the Ms-topology.
Here we regard w(s) (resp. v(s)) as a finite place of F (resp. F+). Then Ms is
Galois over F+v(s) since w(s) lies above v(s) and [Fw(s) : F+v(s)] is either 1 or 2.

As in the proof of Theorem 2.8, we can find a finite Galois extension Ms of Fw(s)
with residue field k(s) and a homomorphism OZ ,s → OMs such that the image of
the differential of the corresponding morphism Spec OMs → Z at the closed point
is ls . Denote by ŝ ∈ Z(OMs )⊂ Z(Ms) the point corresponding to this morphism.

Let α : Z(OMs )→ Z(OMs/m
2
Ms
) be the reduction map, where mMs denotes the

maximal ideal of OMs . Define V ′s = α
−1(α(ŝ)), which is a nonempty open sub-

set of Z(Ms), and put V ′′s =
⋃
σ σ(V

′
s ), where σ runs over all the elements of

Gal(Ms/Fw(s)).
Denote by ι a natural embedding F ↪→ Fw(s) ↪→Ms . We have HomF+(F,Ms)=

{ι, ι◦c} and the F+-homomorphism (ι, ι◦c) : F→Ms×Ms induces an isomorphism
Ms ⊗F+ F ∼= Ms × Ms which sends a ⊗ b to

(
aι(b), aι(c(b))

)
. Hence we get

identifications

Z+(Ms)= Z(Ms ⊗F+ F)= Z(Ms)× c∗Z(Ms).

Here Z(Ms) denotes HomOF (Spec Ms, Z) by regarding Spec Ms as an F-scheme
via ι.
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Define
Vs := V ′′s × c∗V ′′s ⊂ Z(Ms)× c∗Z(Ms)= Z+(Ms).

This is a nonempty open subset of Z+(Ms). Since V ′′s is Gal(Ms/Fw(s))-stable and
Gal(F/F+)= {id, c}, Vs is Gal(Ms/F+v(s))-stable.

Let v∞,1, . . . , v∞,n be the real places of F+. Then for each 1≤ i ≤ n put

V∞,i = Z+(R)= Z(C)

via an isomorphism F ⊗F+ R∼= C. This is a nonempty open set.
We apply Theorem 2.1 to the quadruple(
Z+F+, {vi j }i, j ∪ {v(s)}s∈S ∪ {v∞,i }i , {F+vi j

} ∪ {Ms} ∪ {R}, {Vi j } ∪ {Vs} ∪ {V∞,i }
)

and find a totally real finite extension L+ of F+ and an L+-rational point z+ ∈
Z+(L+) satisfying the following properties:

(i) z+ is inert in Y → Z+.

(ii) L+ is Ms-split and z+ goes into Vs via any embedding L+ ↪→ Ms .

Let L be the CM field L+⊗F+ F and z ∈ Z(L) be the L-rational point corre-
sponding to z+ ∈ Z+(L+). Then the morphism z is equal to the composite

prZ ◦(z
+
⊗F+ F) : Spec L→ Z+⊗OF+

OF = Z ×OF c∗Z→ Z .

We can spread out z : Spec L→ Z to a morphism ϕ : C→ Z for some CM curve
C with fraction field L . We may assume that C contains all the points of Spec OL

above w(S)⊂ Spec OF . It follows from property (ii) and the definition of Vs that
ϕ has a section σ over S such that Im(Tσ(s)C→ Ts X)= ls for every s ∈ S.

It remains to prove that z = ϕ(Spec L) is inert in W → Z . Without loss of
generality, we may assume that WF is connected, and thus it suffices to show that
Spec L ×z,Z W = Spec L ×z,Z F WF is connected. Define the schemes P and Q
such that the squares in the following diagram are Cartesian:

P //

��

Q //

��

Spec L //

z+⊗F+ F
��

Spec L+

z+
��

WF ×F c∗WF // WF ×F c∗Z F //

��

Z F ×F c∗Z F //

prZ F

��

Z+F+

WF // Z F

Since WF ×F c∗WF = YF+ , we have P ∼= Spec L+ ×z+,Z+
F+

YF+ . As Q ∼=
Spec L ×z,Z F WF , we need to show that Q is connected.



194 Koji Shimizu

Note that WF ×F c∗Z F is connected; this follows from the fact that c∗Z F is
geometrically connected over F and WF is connected. Now take any connected
component T of YF+ = WF ×F c∗WF . Since WF ×F c∗WF → WF ×F c∗Z F is an
étale covering with connected base, T surjects onto WF ×F c∗Z F . At the same
time, the subscheme Spec L+×z+,Z+

F+
T ⊂ P is connected because z+ is inert in

Y → Z+. Since the connected scheme Spec L+ ×z+,Z+
F+

T surjects onto Q, the
latter is also connected. �

Remark 2.12. In Theorem 2.8, Corollary 2.10, and Theorem 2.11, we assume that
the scheme in question is smooth and separated. If S=∅, then we can replace these
two assumptions by regularity. In fact, if S =∅, we can replace the scheme by an
open subscheme, and thus reduce to the separated case. Moreover, the regularity
implies that the generic fiber of the scheme is smooth. So we can apply the theorem
of Moret-Bailly to our scheme. Note that the smoothness assumption was used only
when S 6=∅ and ls is not horizontal for some s ∈ S.

3. Proofs of Theorem 1.4 and its variants

In this section, we prove Theorem 1.4 and its variants following [Drinfeld 2012].
First we set up our notation. Fix a prime ` and a finite extension Eλ of Q`. Let O

be the ring of integers of Eλ and m its maximal ideal.
Fix a positive integer r . For a normal scheme X of finite type over Spec Z[`−1

],
LSEλ

r (X) denotes the set of equivalence classes of lisse Eλ-sheaves on X of rank r ,
and L̃SEλ

r (X) denotes the set of maps from the set of closed points of X to the set
of polynomials of the form 1+ c1t + · · · + cr tr with ci ∈ O and cr ∈ O×. Here
we say that two lisse Eλ-sheaves on X are equivalent if they have isomorphic
semisimplifications. Since the coefficient field Eλ is fixed throughout this section,
we simply write LSr (X) or L̃Sr (X).

For an element f ∈ L̃Sr (X), we denote by fx(t) or f (x)(t) the value of f at
x ∈ X ; this is a polynomial in t . By the Chebotarev density theorem, we can regard
LSr (X) as a subset of L̃Sr (X) by attaching to each equivalence class its Frobenius
characteristic polynomials. For another scheme Y and a morphism α : Y → X , we
have a canonical map α∗ : L̃Sr (X)→ L̃Sr (Y ) whose restriction to LSr (X) coincides
with the pullback map of sheaves LSr (X)→LSr (Y ). We also denote α∗( f ) by f |Y .

Let C be a separated smooth curve over a finite field and C the smooth com-
pactification of C . We define LStame

r (C) to be the subset of LSr (C) consisting of
equivalence classes of lisse Eλ-sheaves on C which are tamely ramified at each
point of C \ C . This condition does not depend on the choice of a lisse sheaf
in the equivalence class. Let ϕ be a morphism C → X and f ∈ L̃Sr (X). When
ϕ∗( f ) ∈ LSr (C) (resp. ϕ∗( f ) ∈ LStame

r (C)), we simply say that f arises from a
lisse sheaf (resp. a tame lisse sheaf) over the curve C .
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To show Theorem 2.5 of [Drinfeld 2012], which is a prototype of Theorem 1.4,
Drinfeld considers a subset LS′r (X) of L̃Sr (X) which contains LSr (X) and is
characterized by a group-theoretic property. He then proves the following three
statements for f ∈ L̃Sr (X), which imply Theorem 2.5 of [Drinfeld 2012].

• If the map f satisfies two conditions2 similar to those in Theorem 1.4, then
f |U ∈ LS′r (U ) for some dense open subscheme U ⊂ X .

• If U is regular, then LS′r (U ) = LSr (U ). In particular, the restriction f |U ∈
LS′r (U ) arises from a lisse sheaf.

• If f |U arises from a lisse sheaf, then so does f under the assumptions that X
is regular and that f |C arises from a lisse sheaf for every regular curve C .

Following Drinfeld, we will introduce the group-theoretic notion of “having
a kernel” and prove similar statements: Propositions 3.4, 3.10, and 3.11. Then
Theorem 1.4 and its variants will be deduced from them at the end of the section.

Definition 3.1. Let X be a scheme of finite type over Z[`−1
] and f ∈ L̃Sr (X). For

a nonzero ideal I ⊂ O, the map f is said to be trivial modulo I if it has the value
congruent to (1− t)r modulo I at every closed point of X .

When X is connected, the map f is said to have a kernel if there exists a closed
normal subgroup H ⊂ π1(X) satisfying the following conditions:

(i) π1(X)/H contains an open pro-` subgroup.

(ii) For every n ∈ N, there exists an open subgroup Hn ⊂ π1(X) containing H
such that the pullback of f to Xn is trivial modulo mn . Here Xn denotes the
covering of X corresponding to Hn .

When X is disconnected, the map f is said to have a kernel if the restriction of f
to each connected component of X has a kernel.

Remark 3.2. If f arises from a lisse sheaf on X , it has a kernel. To see this, we
may assume that X is connected. Then the kernel of the Eλ-representation of π1(X)
corresponding to the lisse sheaf satisfies the conditions.

Remark 3.3. The set LS′r (X) defined by Drinfeld [2012, Definition 2.11] consists
of the maps f which have a kernel and arise from a lisse sheaf over every regular
curve.

Proposition 3.4. Let K be a totally real field. Let X be an irreducible regular
OK [`

−1
]-scheme with enough totally real curves and f ∈ L̃Sr (X). Assume that

(i) f arises from a lisse sheaf over every totally real curve, and

2One needs a tameness assumption in the second condition (it is identical to condition (ii) of
Proposition 3.4).
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(ii) there exists a dominant étale morphism X ′→ X such that the pullback f |X ′
arises from a tame lisse sheaf over every separated smooth curve over a finite
field.

Then there exists a dense open subscheme U ⊂ X such that f |U has a kernel.

We will first show two lemmas and then prove Proposition 3.4 by induction on
the dimension of X . For this we use elementary fibrations, which we recall now.

Definition 3.5. A morphism of schemes π : X→ S is called an elementary fibration
if there exist an S-scheme π : X→ S and a factorization X→ X −→π S of π such
that

(i) the morphism X → X is an open immersion and X is fiberwise dense in
π : X→ S,

(ii) π is a smooth and projective morphism whose geometric fibers are nonempty
irreducible curves, and

(iii) the reduced closed subscheme X \ X is finite and étale over S.

The next lemma, which is due to Drinfeld and Wiesend, is a key to our induction
argument in the proof of Proposition 3.4.

Lemma 3.6. Let X be a scheme of finite type over Z[`−1
] and f ∈ L̃Sr (X). Suppose

that X admits an elementary fibration X → S with a section σ : S→ X. Assume
that

(i) f arises from a tame lisse sheaf over every fiber of X→ S, and

(ii) there exists a dense open subscheme V ⊂ S such that σ ∗( f )|V has a kernel.

Then there exists a dense open subscheme U ⊂ X such that f |U has a kernel.

Proof. This is shown in the latter part of the proof of Lemma 3.1 of [Drinfeld 2012].
For the reader’s convenience, we summarize the proof below.

We may assume that X is connected and normal, and that V = S. For every n ∈N,
consider the functor which attaches to an S-scheme S′ the set of isomorphism classes
of GLr (O/m

n)-torsors on X×S S′ tamely ramified along (X \ X)×S S′ relative to S′

with trivialization over the section S′ ↪→ X×S S′. Then this functor is representable
by an étale scheme Tn of finite type over S and the morphism Tn+1→ Tn is finite
for each n. By shrinking S, we may assume that the morphism Tn→ S is finite for
each n. We will prove that f has a kernel in this situation.

Since σ ∗( f ) has a kernel by assumption (ii), there exist connected étale coverings
Sn of S such that

• the pullback of σ ∗( f ) to Sn is trivial modulo mn , and
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• for some (or any) geometric point s̄ of S, the quotient of the group π1(S, s̄) by
the intersection of the kernels of its actions on the fibers (Sn)s̄ , where n runs
in N, contains an open pro-` subgroup.

Let Tn be the universal tame GLr (O/m
n)-torsor over X ×S Tn . Define the X-

scheme Yn to be the Weil restriction ResX×S Tn/X Tn and let Xn denote Yn ×S Sn .
We thus have a diagram whose squares are Cartesian

Xn //

��

X ×S Sn //

��

Sn

{{ ��

Yn // X // S

and regard Xn as an étale covering of X . Here the morphism Sn → X is the
composite of Sn→ S and the section σ : S→ X .

It suffices to prove the following two assertions:

(a) The pullback of f to Xn is trivial modulo mn .

(b) For some (or any) geometric point x̄ of X , the quotient of the group π1(X, x̄)
by the intersection of the kernels of its actions on the fibers (Xn)x̄ , where n
runs in N, contains an open pro-` subgroup.

In fact, if we take a Galois covering X ′n of X splitting the (possibly disconnected)
covering Xn , the corresponding subgroup Hn := π(X ′n, x̄) ⊂ π1(X, x̄) and the
intersection H :=

⋂
n Hn satisfy the conditions for the map f to have a kernel.

First we prove assertion (a). Take an arbitrary closed point x ∈ Xn . Let s ∈ S
denote the image of x and choose a geometric point s̄ above s ∈ S. By assumption (i),
the restriction f |Xs arises from a lisse Eλ-sheaf of rank r . Let F be a locally constant
constructible sheaf of free (O/mn)-modules of rank r obtaining from the above lisse
sheaf modulo mn .

Consider the X s̄-scheme (Yn)s̄ . The scheme (X ×S Tn)s̄ is the disjoint union
of copies of X s̄ , and (Tn)s̄ is a disjoint union of the GLr (O/m

n)-torsors, each of
which lies above a copy of X s̄ in (X ×S Tn)s̄ . Since the Weil restriction and the
base change commute, (Yn)s̄ is the fiber product of the tame GLr (O/m

n)-torsors
over X s̄ . Hence F|(Yn)s̄ is constant, and so is F|(Xn)s̄ .

Now let s ′ ∈ Sn be the image of x . By the choice of Sn , we have

(σ ∗( f ))|Sn (s
′)(t)≡ (1− t)r mod mn.

Since we have shown that F|(Xn)s̄ is constant, it follows that

f |Xn (x)(t)≡ (1− t)r mod mn.

Finally, we prove assertion (b). Let η be the generic point of S. Choose a
geometric point η̄ above η ∈ S and let x̄ denote the geometric point above σ(η)
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induced from η̄. Let H be the intersection of the kernels of actions of π1(X, x̄) on
the fibers (Xn)x̄ , where n runs in N. We need to show that π1(X, x̄)/H contains
an open pro-` subgroup.

Using the fact that the tame fundamental group π tame
1 (X η̄, x̄) is topologically

finitely generated, one can prove that the quotient of the group π1(X, x̄) by the
intersection HY of the kernels of its actions on the fibers (Yn)x̄ , n ∈ N contains
an open pro-` subgroup (see the last part of the proof of Lemma 3.1 in [Drinfeld
2012]).

Let H ′S be the intersection of the kernels of actions of π1(S, η̄) on the fibers
(Sn)η̄, where n runs in N, and let HS be the inverse image of H ′S with respect to the
homomorphism π1(X, x̄)→ π1(S, η̄). By the choice of Sn , the group π1(S, η̄)/H ′S
contains an open pro-` subgroup. Since we have a surjection

π1(X, x̄)/(HY ∩ HS)→ π1(X, x̄)/H

and an injection

π1(X, x̄)/(HY ∩ HS)→ π1(X, x̄)/HY ×π1(S, η̄)/H ′S,

the group π1(X, x̄)/H also contains an open pro-` subgroup. �

To use the above lemma, we show that there exists a chain of split fibrations
ending with a totally real curve.

Definition 3.7. A sequence of schemes Xn→ Xn−1→ · · ·→ X1 is called a chain
of split fibrations if the morphism X i+1 → X i is an elementary fibration which
admits a section X i → X i+1 for each i = 1, . . . , n− 1.

Lemma 3.8. Let K be a totally real field and X an n-dimensional irreducible
regular OK -scheme with enough totally real curves. Then there exist an étale X-
scheme Xn , a totally real curve X1 and a chain of split fibrations Xn→ · · ·→ X1.

Proof. We prove the lemma by induction on n = dim X . When dim X = 1, the
lemma holds by assumption. Thus we assume dim X ≥ 2.

By induction on dim X , it suffices to prove that after replacing K by a totally
real field extension and X by a nonempty étale X-scheme, there exist an irreducible
regular OK -scheme S with enough totally real curves and an elementary fibration
X→ S with a section S→ X .

It follows from Lemma 2.3(i) that there exists a totally real extension L of K
such that XK (L) 6=∅. Replacing K by L and X by a nonempty open subscheme
of X ⊗OK OL that is étale over X , we may further assume that the generic fiber
XK → Spec K has a section x : Spec K → XK . We also denote the image of x in
XK by x .

If dim X = 2, then XK is a smooth and geometrically connected curve over K.
Take the smooth compactification XK of XK over K. Then the structure morphism
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XK→Spec K has the factorization XK ⊂ XK→Spec K and thus it is an elementary
fibration with a section x . After shrinking X , we can spread it out into an elementary
fibration X→ S over an open subscheme S of Spec OK such that it admits a section
S→ X .

Now assume dim X ≥ 3. We apply Artin’s theorem on elementary fibration
[SGA 43 1973, Exposé XI, proposition 3.3] to the pair (XK , x), and by shrinking X if
necessary we get an elementary fibration π : XK→ SK over K with a geometrically
irreducible smooth K-scheme SK . Note that this theorem holds if the base field is
perfect and infinite.

Since XK is smooth over SK , there exist an open neighborhood VK of x in XK and
an étale morphism α : VK → A1

SK
such that π |VK : VK → SK admits a factorization

VK
α
−→ A1

SK
→ SK .

Take a section τ : SK → A1
SK

of the projection such that α(x) lies in τ(SK ).
Consider the connected component S′K of SK×τ,A1

SK
VK that contains the K-

rational point (π(x), x). This is étale over SK and satisfies S′K (K ) 6=∅. Moreover,
S′K is geometrically integral over K since it is a connected regular K-scheme
containing a K-rational point.

We replace SK by S′K and XK by XK×SK S′K . By this replacement, the elementary
fibration π : XK → SK admits a section and SK (K ) 6= ∅. After shrinking X , we
can spread it out into an elementary fibration X → S with a section S → X ,
where S is an irreducible regular scheme which is flat and of finite type over OK

with geometrically irreducible generic fiber and contains a K-rational point. The
existence of a K-rational point implies that S has enough totally real curves. �

Proof of Proposition 3.4. First note that if α∗( f )|U ′′ has a kernel for a nonempty étale
X-scheme α : X ′′→ X and a dense open subscheme U ′′⊂ X ′′, then so does f |α(U ′′).

Let n denote the dimension of X . Replacing X by the image of X ′→ X , we
may assume that X ′→ X is surjective.

Take a chain of split fibrations Xn → Xn−1 → · · · → X1 with a totally real
curve X1 as in Lemma 3.8. We regard X1 as an X-scheme via Xn → X and
the sections X i → X i+1. Put X ′1 = X ′ ×X X1. This is a nonempty scheme. For
i = 2, . . . , n we put X ′i = X i ×X1 X ′1 via the morphism X i → X i−1→ · · · → X1.
Then X ′n→ X ′n−1→ · · · → X ′1 is a chain of split fibrations.

Since f |X1 lies in LSr (X1) by assumption (i), we have f |X ′1=( fX1)|X ′1 ∈LSr (X ′1).
Then we get the result for (X ′2, f |X ′2) by Lemma 3.6. Repeating this argument
for the chain of split fibrations X ′n→ · · · → X ′2 we get the result for (X ′n, f |X ′n ).
Applying the remark at the beginning to the morphism X ′n→ X , we get the result
for (X, f ). �
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For the later use, we prove variants of Lemma 3.8. The proof given below is
similar to that of Lemma 3.8, but instead of Lemma 2.3 we will use Corollary 2.10
and Theorem 2.11.

Lemma 3.9. (i) (With notation as in Lemma 3.8). Suppose that we are given a
connected étale covering Y → X. Then there exist an étale X-scheme Xn , a
totally real curve X1, and a chain of split fibrations Xn→ · · · → X1 such that
X1×X Y is connected. Here X1→ X is the composite of sections X i+1→ X i

and Xn→ X.

(ii) Let F be a CM field and Z an n-dimensional irreducible regular OF -scheme
with geometrically irreducible generic fiber. Let Y → Z be a connected étale
covering. Then there exist an étale Z-scheme Zn , a CM curve Z1, and a chain
of split fibrations Zn → · · · → Z1 such that Z1 ×Z Y is connected. Here
Z1→ Z is the composite of sections Zi+1→ Zi and Zn→ Z.

Proof. First we prove (i) by induction on n = dim X . Since the claim is obvious
when dim X = 1, we assume dim X ≥ 2.

By induction on dim X , it suffices to prove that after replacing K by a totally
real field extension, X by a nonempty étale X-scheme, and the covering Y → X by
its pullback, there exist an irreducible regular OK -scheme S with enough totally real
curves and an elementary fibration X→ S with a section S→ X such that S×X Y
is connected. The construction of such an S will be the same as that of Lemma 3.8.

It follows from Corollary 2.10 and Remark 2.12 that there exist a totally real
extension L of K and an L-rational point x ∈ X(L) such that Spec L ×x,X Y is
connected. Note that Y ⊗OK OL is connected because

Y ⊗OK OL → X ⊗OK OL

is an étale covering with connected base and

Spec L ×x,(X⊗OK OL ) (Y ⊗OK OL)= Spec L ×x,X Y

is connected. Thus replacing K by L , X by a nonempty open subscheme of X⊗OK OL

that is étale over X , and Y by its pullback, we may further assume that the generic
fiber XK → Spec K has a section x : Spec K → XK such that Spec K ×x,X Y is
connected. We also denote the image of x in XK by x .

If dim X = 2, the morphism XK → Spec K is an elementary fibration with a
section x . After shrinking X , we can spread it out into an elementary fibration
X→ S over an open subscheme S of Spec OK such that it admits a section S→ X .
By construction, S×X Y is connected.

Now assume dim X ≥ 3. We apply Artin’s theorem on elementary fibration to
the pair (XK , x), and by shrinking X if necessary we get an elementary fibration
π : XK → SK over K with a geometrically irreducible smooth K-scheme SK.
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By smoothness, there exist an open neighborhood VK of x in XK and an étale
morphism α : VK → A1

SK
such that π |VK : VK → SK admits a factorization

VK
α
−→ A1

SK
→ SK.

Take a section τ : SK → A1
SK

of the projection such that α(x) lies in τ(SK ).
Consider the connected component S′K of SK×τ,A1

SK
VK that contains the K-

rational point (π(x), x). As was shown in Lemma 3.8, S′K is étale over SK and
geometrically integral over K , and S′K (K ) 6=∅.

The section τ defines the morphism S′K → XK ×SK S′K → XK . The composite
of this morphism and (π(x), x) : Spec K → S′K coincides with x : Spec K → XK.
Since S′K ×X Y → S′K is an étale covering with connected base and

Spec K ×(π(x),x),S′K (S
′

K ×X Y )= Spec K ×x,X Y

is connected, it follows that S′K ×X Y is connected.
We replace SK by S′K , XK by XK ×SK S′K and YK by YK ×SK S′K . By this

replacement, the elementary fibration π : XK → SK admits a section such that
SK (K ) 6= ∅ and SK ×XK YK is connected. As is discussed in the last paragraph
of the proof of Lemma 3.8, after shrinking X , we can spread out XK → SK and
YK → SK into an elementary fibration X→ S with a section S→ X and a covering
Y → X , where S is an irreducible regular OK -scheme with enough totally real
curves. Since S×X Y is connected by construction, this S works.

For part (ii), it is easy to verify that the same argument works if we apply
Theorem 2.11 instead of Corollary 2.10. �

Next we show that if f has a kernel and arises from a lisse sheaf over every
totally real curve then it actually arises from a lisse sheaf.

Proposition 3.10. Let K be a totally real field and X an irreducible smooth sepa-
rated OK [`

−1
]-scheme with enough totally real curves. Suppose that f ∈ L̃Sr (X)

satisfies the following conditions:

(i) f arises from a lisse sheaf over every totally real curve.

(ii) f has a kernel.

Then f ∈ LSr (X).

Proof. We follow Section 4 of [Drinfeld 2012]. Since f has a kernel, we take a
closed subgroup H of π1(X) as in the definition of having a kernel. In particular,
π1(X)/H contains an open pro-` subgroup.

By Corollary 2.10, there exists a totally real curve C with a morphism ϕ : C→ X
such that ϕ∗ : π1(C)→π1(X)/H is surjective. By assumption (i), for any such pair
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(C, ϕ), the pullback ϕ∗( f ) arises from a semisimple representation ρC : π1(C)→
GLr (Eλ). Define

HC := Ker
(
ϕ∗ : π1(C)→ π1(X)/H

)
.

Then condition (ii) in the definition of having a kernel (Definition 3.1), together
with the Chebotarev density theorem, shows that Ker ρC contains HC . See [Drinfeld
2012, Lemma 4.1] for details. Thus we regard ρC as a representation

ρC : π1(X)→ π1(X)/H → GLr (Eλ)

of π1(X). Note that ρC |π1(C) gives the original representation of π1(C).
We will show that the lisse sheaf on X corresponding to this representation

gives f . For this, we need to show that

det
(
1− tρC(Frobx)

)
= fx(t)

for all closed points x ∈ X . We know that this equality holds for each closed point
x ∈ ϕ(C) such that ϕ−1(x) contains a point whose residue field is equal to k(x).

Take any closed point x ∈ X . We will first construct a curve C ′ passing through x
and some finitely many points on C specified below. We will then construct a lisse
sheaf on C ′ whose Frobenius polynomial at x is fx(t), and prove that the lisse sheaf
on C ′ extends over X and the corresponding representation of π1(X) coincides
with ρC .

We use a lemma by Faltings; define T0 to be the set of closed points of C which
have the same image in Spec OK as that of x . By the theorem of Hermite, the
Chebotarev density theorem, and the Brauer–Nesbitt theorem, there exists a finite
set T ⊂ |C | \ T0 satisfying the following properties:

(i) T → Spec OK is injective.

(ii) For any semisimple representations ρ1, ρ2 : π1(C)→ GLr (Eλ), the equality
tr ρ1(Froby)= tr ρ2(Froby) for all y ∈ T implies ρ1 ∼= ρ2.

See [Faltings 1983, Satz 5] or [Deligne 1985, théorème 3.1] for details.
By Corollary 2.10 applied to S = ϕ(T )∪ {x}, there exists a totally real curve

C ′ with a morphism ϕ′ : C ′ → X such that the map ϕ′
∗
: π1(C ′) → π1(X)/H

is surjective and for each y ∈ ϕ(T ) ∪ {x} there exists a point in ϕ′−1(y) whose
residue field is equal to k(y). As discussed before, this pair (C ′, ϕ′) also defines a
semisimple representation

ρC ′ : π1(X)→ π1(X)/H → GLr (Eλ)

such that det(1− tρC ′(Froby)) = fy(t) for each y ∈ ϕ(T ) ∪ {x}. Note that the
surjectivity of ϕ∗ implies that ρC ′ |π1(C) is semisimple.
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It follows from property (ii) of T that ρC |π1(C) and ρC ′ |π1(C) are isomorphic as
representations of π1(C). Since the map ϕ∗ : π1(C)→ π1(X)/H is surjective, we
have ρC

∼= ρC ′ as representations of π1(X)/H and thus they are also isomorphic as
representations of π1(X). In particular, we have

det
(
1− tρC(Frobx)

)
= det

(
1− tρC ′(Frobx)

)
= fx(t).

Hence f comes from the lisse sheaf on X corresponding to ρC . �

We now prove the last proposition of our three key ingredients for Theorem 1.4.
This concerns extendability of a lisse sheaf on a dense open subset to the whole
scheme. In the proof we use the Zariski–Nagata purity theorem; thus the regularity
assumption for X is crucial. We further need to assume that X is smooth as we use
Corollary 2.10 to find a totally real curve passing through a given point in a given
tangent direction.

Proposition 3.11. Let K be a totally real field and X an irreducible smooth sepa-
rated OK [`

−1
]-scheme with enough totally real curves. Suppose that f ∈ L̃Sr (X)

satisfies the following conditions:

(i) f arises from a lisse sheaf over every totally real curve.

(ii) There exists a dense open subscheme U ⊂ X such that f |U ∈ LSr (U ).

Then f ∈ LSr (X).

Proof. We follow Section 5.2 of [Drinfeld 2012]. Let EU be the semisimple lisse
Eλ-sheaf on U corresponding to f |U . First we show that EU extends to a lisse
Eλ-sheaf on X .

Suppose the contrary. Since X is regular, the Zariski–Nagata purity theorem
implies that there exists an irreducible divisor D of X contained in X \U such
that EU is ramified along D. Then by a specialization argument [Drinfeld 2012,
Corollary 5.2], we can find a closed point x ∈ X \U and a one-dimensional subspace
l ⊂ Tx X satisfying the following property:

(∗) Consider a triple (C, c, ϕ) consisting of a regular curve C , a closed point
c ∈ C , and a morphism ϕ : C → X such that ϕ(c) = x , ϕ−1(U ) 6= ∅, and
Im
(
TcC→ Tx X ⊗k(x) k(c)

)
= l ⊗k(x) k(c). For any such triple, the pullback

of EU to ϕ−1(U ) is ramified at c.

Let H be the kernel of the representation ρU : π1(U )→GLr (Eλ) corresponding
to EU . The group π1(U )/H ∼= Im ρU contains an open pro-` subgroup because
Im ρU is a compact open subgroup of GLr (Eλ). Therefore by Corollary 2.10 we
can find a totally real curve C , a closed point c ∈ C , and a morphism ϕ : C→ X
such that

• ϕ(c)= x and k(c)∼= k(x),
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• ϕ−1(U ) 6=∅ and ϕ∗ : π1(ϕ
−1(U ))→ π1(U )/H is surjective, and

• Im(TcC→ Tx X)= l.

Since ϕ∗ : π1(ϕ
−1(U ))→ π1(U )/H is surjective, the pullback of EU to ϕ−1(U )

is semisimple. Thus this lisse Eλ-sheaf has no ramification at c by assumption (i),
which contradicts property (∗). Hence EU extends to a lisse Eλ-sheaf E on X .

Let f ′ be the element of LSr (X) corresponding to E. We know f |U = f ′|U .
Take any closed point x ∈ X . It suffices to show that f (x)= f ′(x). We can find a
totally real curve C ′, a closed point c′ ∈ C ′, and a morphism ϕ′ : C ′→ X such that
ϕ′(c′)= x , k(c′)= k(x), and ϕ′−1(U ) 6=∅. Then

ϕ′∗( f )|ϕ′−1(U ) = ( f |U )|ϕ′−1(U ) = ( f ′|U )|ϕ′−1(U ) = ϕ
′∗( f ′)|ϕ′−1(U ).

Since ϕ′−1(U ) 6=∅, the homomorphism π1(ϕ
′−1(U ))→ π1(C ′) is surjective and

thus ϕ′∗( f )= ϕ′∗( f ′). In particular, f (x)= ϕ′∗( f )(c′)= ϕ′∗( f ′)(c′)= f ′(x). �

Proof of Theorem 1.4. First note that a polynomial-valued map f of degree r in the
theorem lies in L̃Sr (X). One direction of the equivalence is obvious, and thus it
suffices to prove that if f satisfies conditions (i) and (ii), then f lies in LSr (X).

First assume that X is separated. Let kλ be the residue field of Eλ and N be the
cardinality of GLr (kλ). Put X ′ := X⊗Z Z[N−1

]. Then X ′→ X is a dominant étale
morphism and satisfies the following property:

The pullback f |X ′ arises from a tame lisse sheaf over every separated
smooth curve over a finite field.

Thus by Proposition 3.4, there exists an open dense subscheme U of X such that
f |U has a kernel. Therefore f |U lies in LSr (U ) by Proposition 3.10 and we have
f ∈ LSr (X) by Proposition 3.11.

In the general case, we consider a covering X =
⋃

i Ui by open separated
subschemes. Then we can apply the above discussion to each f |Ui and obtain a
lisse Eλ-sheaf Ei on Ui that represents f |Ui . Since Ui is normal, we can replace Ei

by its semisimplification and assume that each Ei is semisimple.
Put U =

⋂
i Ui . This is nonempty, and the restrictions Ei |U are isomorphic to

each other. Thus {Ei }i glues to a lisse Eλ-sheaf on X and this sheaf represents f . �

We end this section with variants of Theorem 1.4. Condition (i) in Theorem 3.12
or Remark 3.13 is weaker than that of Theorem 1.4 since they concern only totally
real curves with additional properties. This weaker condition is essential to use the
result of [Barnet-Lamb et al. 2014] in the proof of our main theorems in the next
section. Theorem 3.14 is a variant in the CM case.

Theorem 3.12. Let K be a totally real field. Let X be an irreducible smooth
OK [`

−1
]-scheme with enough totally real curves. An element f ∈ L̃Sr (X) belongs

to LSr (X) if and only if it satisfies the following conditions:
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(i) There exists a connected étale covering Y → X such that f arises from a
lisse sheaf over every totally real curve C with the property that C ×X Y is
connected.

(ii) The restriction of f to each separated smooth curve over a finite field arises
from a lisse sheaf.

Proof. Recall that Theorem 1.4 is deduced from Propositions 3.4, 3.10, and 3.11 and
that these propositions have the same condition (i) that f arises from a lisse sheaf
over every totally real curve. Consider the variant statements of Propositions 3.4,
3.10, and 3.11 where we replace condition (i) by

(i′) f arises from a lisse sheaf over every totally real curve C such that C ×X Y is
connected.

It suffices to prove that these variants also hold; then the theorem is deduced from
them in the same way as Theorem 1.4.

The variant of Proposition 3.4 is proved in the same way as Proposition 3.4 if
one uses Lemma 3.9(i) instead of Lemma 3.8. For the variants of Propositions 3.10
and 3.11, the same proof works; observe that whenever one uses Corollary 2.10 in
the proof to find a totally real curve C , one can impose the additional condition that
C×X Y is connected by adding the covering Y → X to the input of Corollary 2.10.

�

Remark 3.13. We need another variant of Theorem 1.4 to prove Theorem 1.3:
With the notation as in Theorem 3.12, suppose further that

• K is unramified at `, and

• X extends to an irreducible smooth OK -scheme X ′ with nonempty fiber over
each place of K above `.

Then condition (i) in Theorem 3.12 can be replaced by

(i′) There exists a connected étale covering Y → X such that f arises from a lisse
sheaf over every totally real curve C with the properties that

• C ×X Y is connected and that
• the fraction field of C is unramified at `.

This statement is proved in the same way as Theorem 3.12; it suffices to prove
variants of Propositions 3.4, 3.10, and 3.11 where condition (i) in these propositions
is replaced by the following condition:

The map f arises from a lisse sheaf over every totally real curve C such that
C ×X Y is connected and the fraction field of C is unramified at `.
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For the proof of the variant of Proposition 3.4, we also need to consider the
variant of Lemma 3.9(i) where we further require that the fraction field of X1 is
unramified at `.

We now explain how to prove the variants of Lemma 3.9(i) and Propositions 3.4,
3.10, and 3.11. By the additional condition on X , for each place v of K above `,
there exist a finite unramified extension L of Kv and a morphism Spec OL → X ′.
We denote the image of the closed point of Spec OL by sv. Since L is unramified
over Kv , we can find a horizontal one-dimensional subspace lv of Tsv X ′ with respect
to X ′→ Spec OK .

If we add {sv}v|` and lv to the input when we use Corollary 2.10, the fraction
field of the resulting totally real curve is unramified over K at each v, hence
unramified at `. Thus we can prove the variant of Lemma 3.9(i) in the same way
as Lemma 3.9(i), and the arguments given in Theorem 3.12 work for the current
variants of Propositions 3.4, 3.10, and 3.11. Hence the statement of this remark
follows.

Theorem 3.14. Let F be a CM field. Let Z be an irreducible smooth OF [`
−1
]-

scheme with geometrically irreducible generic fiber. An element f ∈ L̃Sr (Z)
belongs to LSr (Z) if and only if it satisfies the following conditions:

(i) There exists a connected étale covering Y → Z such that f arises from a lisse
sheaf over every CM curve C with the property that C ×Z Y is connected.

(ii) The restriction of f to each separated smooth curve over a finite field arises
from a lisse sheaf.

Proof. We can prove variants of Propositions 3.4, 3.10, and 3.11 for the CM case
using Theorem 2.11 and Lemma 3.9(ii). Then the theorem is deduced from them in
the same way as Theorems 1.4 and 3.12. �

4. Proofs of the main theorems

In this section, we prove theorems on the existence of the compatible system of a
lisse sheaf. Theorem 4.1 concerns the totally real case and Theorem 4.2 concerns the
CM case. Theorem 1.3 in the introduction is proved after Theorem 4.1. Following
the discussion in [Drinfeld 2012, Section 2.3], we deduce these main theorems from
Theorems 3.12, 3.14, and theorems in [Lafforgue 2002; Barnet-Lamb et al. 2014].

As we mentioned in the introduction, some of the assumptions in the main
theorems come from the potential diagonalizability condition, which is introduced
in [Barnet-Lamb et al. 2014, Section 1.4]. We first review this notion; see [loc. cit.]
for details.

Let L be a finite extension of Q`. Let Eλ be a finite extension of Q`. We say that
an Eλ-representation ρ of Gal(L/L) is potentially diagonalizable if it is potentially
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crystalline and there is a finite extension L ′ of L such that ρ|Gal(L/L ′) lies on the
same irreducible component of the universal crystalline lifting ring of the residual
representation ρ̄|Gal(L/L ′) with fixed Hodge–Tate numbers as a sum of characters
lifting ρ̄|Gal(L/L ′).

There are two important examples of this notion (see [Barnet-Lamb et al. 2014,
Lemma 1.4.3]): Ordinary representations are potentially diagonalizable. When L is
unramified over Q`, a crystalline representation is potentially diagonalizable if for
each τ : L ↪→ Eλ the τ -Hodge–Tate numbers lie in the range [aτ , aτ + `− 2] for
some integer aτ .

We first prove our main theorem for the totally real case.

Theorem 4.1. Let ` be a rational prime. Let K be a totally real field and X an
irreducible smooth OK [`

−1
]-scheme with enough totally real curves. Let E be a

finite extension of Q and λ a prime of E above `. Let E be a lisse Eλ-sheaf on
X and ρ the corresponding representation of π1(X). Suppose that E satisfies the
following assumptions:

(i) The polynomial det(1−Frobx t,Ex̄) has coefficients in E for every x ∈ |X |.

(ii) For every totally real field L and every morphism α : Spec L → X , the Eλ-
representation α∗ρ of Gal(L/L) is potentially diagonalizable at each prime v
of L above ` and for each τ : L ↪→ Eλ it has distinct τ -Hodge–Tate numbers.

(iii) ρ can be equipped with a symplectic (resp. orthogonal) structure with multi-
plier µ : π1(X)→ E×λ such that µ|π1(XK ) admits a factorization

µ|π1(XK ) : π1(XK )→ Gal(K/K )
µK
−→ E×λ

with a totally odd (resp. totally even) character µK .

(iv) The residual representation ρ̄|π1(X [ζ`]) is absolutely irreducible.

(v) `≥ 2(rank E+ 1).

Then for each rational prime `′ and each prime λ′ of E above `′ there exists a lisse
Eλ′-sheaf on X [`′−1

] which is compatible with E|X [`′−1].

Proof. Replacing X by X [`′−1
], we may assume that `′ is invertible in OX . Let r be

the rank of E. Take an arbitrary extension M of Eλ′ of degree r !. By assumption (i),
we regard the map f : x 7→ det(1− Frobx t,Ex̄) as an element of L̃SM

r (X) via the
embedding E ↪→ Eλ′ ↪→ M .

We will apply Theorem 3.12 to f ∈ L̃SM
r (X). Here we use the prime `′ and the

field M (we used ` and Eλ in Section 3).
First we show that the map f satisfies condition (i) in Theorem 3.12. Let Y be

the connected étale covering Y → X [ζ`] that corresponds to Ker ρ̄|π1(X [ζ`]). We
regard Y as a connected étale covering over X via Y → X [ζ`]→ X . We will prove
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that this Y → X satisfies condition (i). Take any totally real curve ϕ : C→ X such
that C ×X Y is connected.

To show that ϕ∗( f ) arises from a lisse M-sheaf on C , it suffices to prove that
there exists a lisse Eλ′-sheaf on C which is compatible with ϕ∗E; this follows
from [Drinfeld 2012, Lemma 2.7]. Namely, let ρ ′C : π1(C)→ GLr (Eλ′) denote the
semisimplification of the corresponding Eλ′-representation. Since

det
(
1− tρ ′C(Frobx)

)
= fx(t) ∈ Eλ′[t]

for every closed point x ∈ C , the character of ρ ′C is defined over Eλ′ by the
Chebotarev density theorem. It follows from [M : Eλ′] = r ! that the Brauer
obstruction of ρ ′C in the Brauer group Br(Eλ′) vanishes in Br(M) and ρ ′C can
be defined over M . This means ϕ∗( f ) ∈ LSM

r (C).
We will construct a lisse Eλ′-sheaf on C which is compatible with ϕ∗E. For this

we will apply Theorem C from [Barnet-Lamb et al. 2014] to the Eλ-representation
ϕ∗Lρ of Gal(L/L), where L denotes the fraction field of C and ϕL : Spec L→ X
denotes ϕ|Spec L .

We need to see that the Galois representation ϕ∗Lρ satisfies the assumptions in
Theorem C. By assumptions (ii) and (v) it remains to check that

(a) ϕ∗Lρ can be equipped with a symplectic (resp. orthogonal) structure with totally
odd (resp. totally even) multiplier, and

(b) the residual representation (ϕ∗L ρ̄)|Gal(L/L(ζ`)) is absolutely irreducible.

Assumption (a) follows from assumption (iii). To see (b), recall that C ×X Y is
connected. Hence C×X X [ζ`] is connected with fraction field L(ζ`), and C×X Y→
C ×X X [ζ`] is a connected étale covering. It follows from the definition of Y
that Im(ϕ∗L ρ̄)|Gal(L/L(ζ`)) coincides with Im ρ̄|π1(X [ζ`]), and thus (ϕ∗L ρ̄)|Gal(L/L(ζ`))
is absolutely irreducible by assumption (iv).

Hence by [Barnet-Lamb et al. 2014, Theorem C] we obtain an Eλ′-representation
of Gal(L/L). The proof of the theorem, which uses potential automorphy and
Brauer’s theorem, shows that this representation is unramified at each closed point
of C , and thus it gives rise to a lisse Eλ′-sheaf on C which is compatible with ϕ∗E.
Hence f satisfies condition (i) in Theorem 3.12.

Next we show that f satisfies condition (ii) in Theorem 3.12. Let C be a separated
smooth curve over Fp for some prime p and denote the structure morphism C→
Spec Fp by α. Let ϕ : C→ X be a morphism. Note that p is different from ` and `′.

We write the semisimplification of ϕ∗E as
⊕

i E⊕ri
i , where Ei are distinct irre-

ducible lisse Eλ-sheaves on C . Then there exist an irreducible lisse Eλ-sheaf Fi

on C and a lisse Eλ-sheaf Gi of rank 1 on Spec Fp such that Fi has determinant of
finite order and Ei ∼= Fi ⊗α

∗Gi (see [Deligne 1980, Section I.3] or [Deligne 2012,
Section 0.4], for example).
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By théorèm VII.6 of [Lafforgue 2002], for each closed point x ∈ C , the roots of
det(1−Frobx t,Fi,x̄) are algebraic numbers that are λ′-adic units. Moreover, there
exists an irreducible lisse Eλ′-sheaf F′i on C which is compatible with Fi .

We will show that there exists a lisse Eλ′-sheaf G′i on Spec Fp which is com-
patible with Gi . Note that the lisse Eλ-sheaf Gi is determined by the value of the
corresponding character of Gal(Fp/Fp) at the geometric Frobenius. Denote this
value by βi ∈ E×λ . It suffices to prove that βi is an algebraic number that is a
λ′-adic unit. Since the roots of det(1−Frobx t,Ex̄) and det(1− Frobx t,Fi,x̄) are
all algebraic numbers, so is βi .

We prove that βi is a λ′-adic unit. To see this, take a closed point x of C . Then
by Corollary 2.10 we can find a totally real curve C ′ and a morphism ϕ′ : C ′→ X
such that ϕ(x)∈ ϕ′(C ′) and C ′×X Y is connected. As discussed before, Theorem C
of [Barnet-Lamb et al. 2014] implies that there exists a lisse Eλ′-sheaf on C ′ whose
Frobenius characteristic polynomial map is ϕ′∗( f ). Thus for each closed point y∈C ′

the roots of ϕ′∗( f )(y) are algebraic numbers that are λ′-adic units. Considering a
point y ∈ϕ′−1(ϕ(x)), we conclude that some power of βi is a λ′-adic unit and thus so
is βi . Hence there exists a lisse Eλ′-sheaf G′i on Spec Fp which is compatible with Gi .

The Frobenius characteristic polynomial map associated with the semisimple
lisse Eλ′-sheaf

⊕
i (F
′

i ⊗α
∗G′i )

⊕ri is ϕ∗( f ). As discussed before, this sheaf can be
defined over M . Thus f satisfies condition (ii) in Theorem 3.12.

Therefore by Theorem 3.12 there exists a lisse M-sheaf on X which is compatible
with E. �

Proof of Theorem 1.3. All the discussions in the proof of Theorem 4.1 also work in
this setting by using Remark 3.13 instead of Theorem 3.12. �

We also have a theorem for the CM case.

Theorem 4.2. Let ` be a rational prime, E a finite extension of Q, and λ a prime of
E above `. Let F be a CM field with ζ` 6∈ F and Z an irreducible smooth OF [`

−1
]-

scheme with geometrically irreducible generic fiber. Let E be a lisse Eλ-sheaf on
X and ρ the corresponding representation of π1(Z). Suppose that E satisfies the
following assumptions:

(i) The polynomial det(1−Frobx t,Ex̄) has coefficients in E for every x ∈ |X |.

(ii) For any CM field L with ζ` 6∈ L and any morphism α : Spec L → Z , the
Eλ-representation α∗ρ of Gal(L/L) satisfies the following two conditions:

(a) α∗ρ is potentially diagonalizable at each prime v of L above ` and for
each τ : L ↪→ Eλ it has distinct τ -Hodge–Tate numbers.

(b) α∗ρ is totally odd and polarizable (in the sense of [Barnet-Lamb et al.
2014, Section 2.1]).

(iii) The residual representation ρ̄|π1(Z [ζ`]) is absolutely irreducible.
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(iv) `≥ 2(rank E+ 1).

Then for each rational prime `′ and each prime λ′ of E above `′ there exists a lisse
Eλ′-sheaf on Z [`′−1

] which is compatible with E|Z [`′−1].

Proof. In the same way as Theorem 4.1, the theorem is deduced from Theorem 3.14,
Theorem 5.5.1 of [Barnet-Lamb et al. 2014], théorèm VII.6 of [Lafforgue 2002],
and the following remark: If Y → Z [ζ`] denotes the connected étale covering
defined by Ker ρ̄π1(Z [ζ`]) and C is a CM curve with a morphism to Z such that
C ×Z Y is connected, then C ×Z Z [ζ`] = C ⊗OF OF (ζ`) is connected. In particular,
the fraction field of C does not contain ζ`. �
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