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We generalize Kato’s (commutative) p-adic local ε-conjecture for families of
(ϕ, 0)-modules over the Robba rings. In particular, we prove the essential parts of
the generalized local ε-conjecture for families of trianguline (ϕ, 0)-modules. The
key ingredients are the author’s previous work on the Bloch–Kato exponential
map for (ϕ, 0)-modules and the recent results of Kedlaya, Pottharst and Xiao on
the finiteness of cohomology of (ϕ, 0)-modules.
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1. Introduction

1A. Introduction. Since the works of Kisin [2003], Colmez [2008], and Bellaïche
and Chenevier [2009], among others, the theory of (ϕ, 0)-modules over the (relative)
Robba ring has become one of the main focuses in the theory of p-adic Galois
representations. In particular, the trianguline representation, which is a class of
p-adic Galois representations defined using (ϕ, 0)-modules over the Robba ring,
is important since the rigid analytic families of p-adic Galois representations
associated to Coleman–Mazur eigencurves (or more general eigenvarieties) turn
out to be trianguline.

The recent works of Pottharst [2013] and Kedlaya, Pottharst and Xiao [Kedlaya
et al. 2014] established the fundamental theorems (comparison with Galois coho-
mology, finiteness, base change property, Tate duality, Euler–Poincaré formula) in
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the theory of the cohomology of (ϕ, 0)-modules over the relative Robba ring over
Qp-affinoid algebras. As is suggested and actually given in [Kedlaya et al. 2014;
Pottharst 2012], their results are expected to have many applications in number
theory (e.g., eigenvarieties, nonordinary case of Iwasawa theory; see Remarks 1.6
and 1.7 below).

On the other hand, in [Nakamura 2014a], we generalized the theory of Bloch–
Kato exponential maps and Perrin-Riou’s exponential maps in the framework of
(ϕ, 0)-modules over the Robba ring. Since these maps are very important tools in
Iwasawa theory, we expect that the results of [Nakamura 2014a] also have many
applications.

As an application of both theories, the purpose of this article is to generalize
Kato’s p-adic local ε-conjecture [1993b] in the framework of (ϕ, 0)-modules over
the relative Robba ring over Qp-affinoid algebras, and prove the essential parts of
its generalized version of the conjecture for rigid analytic families of trianguline
(ϕ, 0)-modules.

In this introduction, we briefly explain these conjectures; see Section 3 for the
precise definitions. Let GQp be the absolute Galois group of Qp. The main objects
of Kato’s local ε-conjecture are the pairs (3, T ), where 3 is a semilocal ring such
that 3/m3 is a finite ring of order a power of p (where m3 is the Jacobson radical
of 3) and T is a 3-representation of GQp , i.e., a finite projective 3-module with a
continuous 3-linear GQp -action. Let C •cont(GQp , T ) be the complex of continuous
cochains of GQp with values in T. By the classical theory of Galois cohomology
of GQp , this complex is a perfect complex of 3-modules which satisfies the base
change property, Tate duality, and other properties. This fact enables us to define
the determinant

Det3(C •cont(GQp , T )),

which is a (graded) invertible 3-module. Modifying this module by multiplying a
kind of det3(T ), one can canonically define a graded invertible 3-module

13(T ),

called the fundamental line of the pair (3, T ), which is compatible with base change
and Tate duality.

Our main objects are the pairs (A,M), where A is a Qp-affinoid and M is a
(ϕ, 0)-module over the relative Robba ring RA over A. By the results of [Kedlaya
et al. 2014], we can similarly attach a graded invertible A-module

1A(M),

called the fundamental line for (A,M), which is also compatible with base change
and Tate duality. For a pair (3, T ) as in the previous paragraph and a continuous
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homomorphism f :3→ A, there exists a canonical comparison isomorphism

13(T )⊗3 A −→∼ 1A(Drig(T ⊗3 A))

by the result of [Pottharst 2013]. The following conjecture is Kato’s conjecture if
(B, N )= (3, T ), and our new conjecture if (B, N )= (A,M).

Conjecture 1.1. (See Conjecture 3.8 for the precise formulation.) We can uniquely
define a B-linear isomorphism

εB,ζ (N ) : 1B −→
∼ 1B(N ),

for each pair (B, N ) of type (3, T ) or (A,M) and for each Zp-basis ζ of Zp(1),
which is compatible with any base changes B→ B ′, exact sequences 0→ N1→

N2→ N3→ 0, and Tate duality, and satisfies the following:

(v) For any f :3→ A as above, we have

ε3,ζ (T )⊗ idA = εA,ζ (Drig(T ⊗3 A))

under the canonical isomorphism 13(T )⊗3 A −→∼ 1A(Drig(T ⊗3 A)).

(vi) Let L = A be a finite extension of Qp, and let N be a de Rham representation
of GQp or de Rham (ϕ, 0)-module over RL . Then we have

εL ,ζ (N )= εdR
L ,ζ (N ),

where the isomorphism

εdR
L ,ζ (N ) : 1L −→

∼ 1L(N )

is called the de Rham ε-isomorphism which is defined using the Bloch–Kato
exponential and the dual exponential of N and the local factors (L-factor,
ε-constant) associated to Dpst(N ) and Dpst(N ∗).

Remark 1.2. To define condition (vi) for de Rham (ϕ, 0)-modules, we need to
generalize the Bloch–Kato exponential for (ϕ, 0)-modules, which was one of the
main themes of [Nakamura 2014a].

Roughly speaking, this conjecture says that the local factor which appears in
the functional equation of the L-functions of a motif p-adically interpolate to all
the families of p-adic Galois representations and also rigid-analytically interpolate
to all the families of (ϕ, 0)-modules in a compatible way. In fact, Kato [1993a]
formulated a conjecture, called the generalized Iwasawa main conjecture, which
asserts the existence of a compatible family of the zeta-isomorphisms

z3(Z[1/S], T ) : 13 −→∼ 1
global
3 (T )

for any 3-representation T of GQ,S (S is a finite set of primes) which interpolate
the special values of L-functions of a motif. Kato [1993b] also formulated another
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conjecture, called the global ε-conjecture, which asserts the functional equation
between z3(Z[1/S], T ) and z3(Z[1/S], T ∗), whose local factor at p is ε3,ζ (T |GQp

).
Kato [1993b] (see also [Venjakob 2013]) proved the local (and even the global)
ε-conjecture for the rank-one case. As a generalization of his theorem, the main
theorem of this article is the following.

Theorem 1.3. (See Theorem 3.11 for the precise statement.) Conjecture 1.1 is true
for the rank-one case.

From this theorem, we can immediately obtain some results for the trianguline
case. We say that a (ϕ, 0)-module M over RA is trianguline if M has a filtration
F : 0 :=M0⊆M1⊆ · · · ⊆Mn :=M whose graded quotients Mi/Mi−1 are rank-one
(ϕ, 0)-modules over RA for all 1≤ i ≤ n. We call the filtration F a triangulation
of M. For such a pair (M,F), we obtain the following theorem, a special case (in
particular, the rank-two case) of which will be used in Theorem 3.10 of our next
article, [Nakamura 2015].

Corollary 1.4. (See Corollary 3.12 for the precise statement.) Let M be a trian-
guline (ϕ, 0)-module over RA of rank n with a triangulation F as above. The
isomorphism

εF,A,ζ (M) : 1A
�n

i=1εA,ζ (Mi/Mi−1)
−−−−−−−−−→�n

i=11A(Mi/Mi−1)−→
∼ 1A(M),

defined as the product of the isomorphisms

εA,ζ (Mi/Mi−1) : 1A −→
∼ 1A(Mi/Mi−1),

which are defined in Theorem 1.3, satisfies (many parts of ) Conjecture 1.1; in
particular, it satisfies the following:

(vi)′ Let L = A be a finite extension of Qp, and let M be a de Rham and trianguline
(ϕ, 0)-module over RL . Then, for any triangulation F of M, we have

εF,L ,ζ (M)= εdR
L ,ζ (M).

Remark 1.5. Before this article, the local ε-conjecture was proved only for cyclo-
tomic deformations (or more general twists) of crystalline representations [Benois
and Berger 2008; Loeffler et al. 2015]. Since the (ϕ, 0)-modules associated to any
twists of crystalline representations are trianguline, our Corollary 1.4 essentially
contains all the known results concerning the local ε-conjecture. See Corollary 3.13
for the comparison of our theorem with the previous known results. Moreover,
since any twists of semistable representations are also trianguline, our results also
contain the semistable case, which seems to be unknown before this article.

Remark 1.6. Our method and previous known methods for the construction of local
ε-isomorphisms cannot be applied to the nontrianguline case. That case is much
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more difficult but is much more interesting since the Weil–Deligne representation
Dpst(M) associated to a nontrianguline and de Rham (ϕ, 0)-module M corresponds
to a nonprincipal series representation of GLn(Qp) via the local Langlands cor-
respondence, whose ε-constants are in general difficult to explicitly describe. In
our next article, [Nakamura 2015], we construct ε-isomorphisms for all rank-two
torsion p-adic representations of Gal(Qp/Qp) by using Colmez’s theory [2010] of
p-adic local Langlands correspondence for GL2(Qp). More precisely, we will
show that (a modified version of) the pairing defined in Corollaire VI.6.2 of
[Colmez 2010] essentially gives us ε-isomorphisms for the rank-two case. In
the trianguline case, by using Dospinescu’s result [2014] on the explicit description
of locally analytic vectors of Banach representations of GL2(Qp), we will show
that the ε-isomorphisms constructed in [Nakamura 2015] coincide with those
constructed in this article. More interestingly, for the de Rham and nontrianguline
case, we will show, by using Emerton’s theorem [2006] on the compatibility of
classical and p-adic Langlands correspondence, that the ε-isomorphisms defined
in [Nakamura 2015] satisfy the suitable interpolation property (i.e., condition (vi)
of Conjecture 1.1) for the critical range of Hodge–Tate weights. Moreover, as an
application, we will prove a functional equation of Kato’s Euler systems associated
to Hecke eigen elliptic cusp newforms.

Remark 1.7. Other than the application to Theorem 3.10 of [Nakamura 2015], our
Corollary 1.4 should be applicable to some Iwasawa theoretic studies of Galois
representations over eigenvarieties. For example, the rank-two case of the local
ε-isomorphism constructed in Corollary 1.4 should be the p-th local factor of
the conjectural functional equation satisfied by the conjectural zeta element over
the Coleman–Mazur eigencurve, whose existence is conjectured in (for example)
[Hansen 2016, Conjecture 1.3.3]. Since our article is long enough, we don’t study
this problem in this article, but we hope to study it in future works.

1B. Structure of the paper. In Section 2, we recall the results of [Kedlaya et al.
2014; Pottharst 2013; Nakamura 2014a]. After recalling the definition of (ϕ, 0)-
modules over the relative Robba ring, we recall the main results of [Kedlaya et al.
2014; Pottharst 2013] on the cohomology of (ϕ, 0)-modules, i.e., comparison with
Galois cohomology, finiteness, base change property, Euler–Poincaré formula, Tate
duality, and the classification of rank-one objects, all of which are essential for
the formulation of our conjecture. We next recall the result of [Nakamura 2014a]
on the theory of the Bloch–Kato exponential map of (ϕ, 0)-modules. Since the
result of [Nakamura 2014a] is not sufficient for our purpose, we slightly generalize
the result. In particular, we show the existence of Bloch–Kato fundamental exact
sequences involving Dcris(M) (Lemma 2.20), establishing Bloch–Kato duality for
the finite cohomology of (ϕ, 0)-modules (Proposition 2.24). The explicit formulae
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of our Bloch–Kato exponential maps (Proposition 2.23) are frequently used in
later sections.

In Section 3, using the preliminaries recalled in Section 2, we formulate our
ε-conjecture and state our main theorem of this paper. Since the conjecture is for-
mulated by using the notion of determinant, we first recall this notion in Section 3A.
In Section 3B, using the determinant of cohomology of (ϕ, 0)-modules, we define
a graded invertible A-module 1A(M), called the fundamental line, for any (ϕ, 0)-
module M over RA. In Section 3C, for any de Rham (ϕ, 0)-module M, we define
a trivialization (called a de Rham ε-isomorphism) of the fundamental line using
the Bloch–Kato fundamental exact sequence, Deligne–Langlands–Fontaine–Perrin-
Riou’s ε-constants and the “gamma-factor” associated to Dpst(M). In Section 3D,
we formulate our conjecture and compare our conjecture with Kato’s conjecture, and
state our main theorem of this article, which solves the conjecture for all rank-one
(ϕ, 0)-modules.

Section 4 is the main part of this paper, where we prove the conjecture for the
rank-one case. In Section 4A, using the theory of analytic Iwasawa cohomology
[Kedlaya et al. 2014; Pottharst 2012], and using the standard technique of p-adic
Fourier transform, we construct our ε-isomorphism for all rank-one (ϕ, 0)-modules.
In Section 4B, we show that our ε-isomorphism defined in Section 4A specializes
to the de Rham ε-isomorphism defined in Section 3B at each de Rham point. In
Section 4B1, we first verify this condition (which we call the de Rham condition) for
the “generic” rank-one de Rham (ϕ, 0)-modules by establishing a kind of explicit
reciprocity law (Proposition 4.11, 4.16). In the process of proving this, we prove a
proposition (Proposition 4.13) on the compatibility of our ε-isomorphism with a natu-
ral differential operator. Using the result in the generic case and the density argument,
we prove the compatibility of our ε-isomorphism with Tate duality and compare
our ε-isomorphism with Kato’s ε-isomorphism. In Section 4B2, we verify the de
Rham condition via explicit calculations for the exceptional case which includes the
case of R, R(1) (the (ϕ, 0)-modules corresponding to Qp, Qp(1), respectively).

In the Appendix, we explicitly calculate the cohomologies Hi
ϕ,γ (R(1)) and

Hi
ϕ,γ (R), which will be used in Section 4B2. Finally, we remark that, in our proof,

we don’t use any previous known results (e.g., [Kato 1993b; Benois and Berger 2008;
Loeffler et al. 2015]) on the local ε-conjecture. Our proof essentially follows from
the results in Section 2 of this article and those of [Nakamura 2014a] on the explicit
definition of the exponential and the dual exponential maps for (ϕ, 0)-modules. We
believe that our proof is the most simple and the most natural one.

1C. Notation. Throughout this paper, we fix a prime number p. The letter A will
always denote a Qp-affinoid algebra; we use Max(A) to denote the associated
rigid analytic space. We fix an algebraic closure Qp of Qp and consider any finite
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extension K of Qp inside Qp. Let |−| :Q×p →Q>0 be the absolute value such that
|p| = p−1. For n ≥ 0, let us denote by µpn the set of pn-th power roots of unity
in Qp, and put µp∞ :=

⋃
n≥1 µpn . For a finite extension K of Qp, put Kn := K (µpn )

for∞≥ n ≥ 0. Let us denote by χ : 0Qp :=Gal(Qp,∞/Qp)−→
∼ Z×p the cyclotomic

character given by γ (ζ ) = ζ χ(γ ) for γ ∈ 0 and ζ ∈ µp∞ . Set GK := Gal(Qp/K ),
HK := Gal(Qp/K∞), and 0K := Gal(K∞/K ).

We let k be the residue field of K, with F :=W (k)[1/p]. Put Zp(1) := lim
←−−n≥0 µpn .

For k ∈ Z, define Zp(k) := Zp(1)⊗k equipped with a natural action of 0K . For a
Zp[GK ]-module N, let us define N (k) := N ⊗Zp Zp(k). When we fix a generator
ζ = {ζpn }n≥0 ∈ Zp(1), we put e1 := ζ and ek := e⊗k

1 ∈ Z. For a continuous
GK -module N, let us denote by C •cont(GK , N ) the complex of continuous cochains
of GK with values in N. Define Hi (K , N ) := Hi (C •cont(GK , N )). For a group G,
denote by G tor the subgroup of G consisting of all torsion elements in G. If G is a
finite group, let |G| be the order of G.

For a commutative ring R, let us denote by Pfg(R) the category of finitely
generated projective R-modules. For N ∈ Pfg(R), denote by rkR N the rank of N
and let N∨ :=HomR(N , R). Let [− ,−] : N1×N2→ R be a perfect pairing. Then
we always identify N2 with N∨1 by the isomorphism N2−→

∼ N∨1 : x 7→ (y 7→ [y, x]).
Let us denote by D−(R) the derived category of bounded-below complexes of
R-modules. For a1 ≤ a2 ∈ Z, let us denote by D[a1,a2]

perf (R) (resp. Db
perf(R)) the

full subcategory of D−(R) consisting of the complexes of R-modules which are
quasi-isomorphic to a complex P• of Pfg(R) concentrated in degrees in [a1, a2]

(resp. bounded degree). There exists a duality functor

R HomR(−, R) : D[a1,a2]
perf (R)→ D[−a2,−a1]

perf (R)

characterized by R HomR(P•, R) := HomR(P−•, R) for any bounded complex
P• of Pfg(R). Define the notion χR(−) of Euler characteristic for any objects of
Db

perf(R), which is characterized by

χR(P•) :=
∑
i∈Z

(−1)i rkR P i
∈Map(Spec(R),Z)

for any bounded complex P• of Pfg(R).

2. Cohomology and Bloch–Kato exponential of (ϕ, 0)-modules

2A. Cohomology of (ϕ, 0)-modules. In this subsection, we recall the definition
of (families of) (ϕ, 0)-modules and the definition of their cohomologies following
[Kedlaya et al. 2014], and then recall the results of their article on the finiteness of
the cohomology.
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Put ω := p−1/(p−1)
∈ R>0. For r ∈ Q>0, define the r-Gauss norm |− |r on

Qp[T±] by the formula
∣∣∑

i ai T i
∣∣
r := maxi {|ai |ω

ir
}. For 0 < s ≤ r ∈ Q>0, we

write A1
[s, r ] for the rigid analytic annulus defined over Qp in the variable T

with radii |T | ∈ [ωr , ωs
]; its ring of analytic functions, denoted by R[s,r ], is the

completion of Qp[T±] with respect to the norm | · |[s,r ] := max{| · |r , | · |s}. We
also allow r (but not s) to be∞, in which case A1

[s, r ] is interpreted as the rigid
analytic disc in the variable T with radii |T | ≤ ωs ; its ring of analytic functions
R[s,r ] = R[s,∞] is the completion of Qp[T ] with respect to | · |s . Let A be a
Qp-affinoid algebra. Denote by R[s,r ]A the ring of rigid analytic functions on the
relative annulus (or disc if r =∞) Max(A)× A1

[s, r ]; its ring of analytic functions
is R[s,r ]A :=R[s,r ] ⊗̂Qp A. Put

Rr
A :=

⋂
0<s≤r

R[s,r ]A and RA :=
⋃
0<r

Rr
A.

Let k ′ be the residue field of K∞, with F ′ :=W (k ′)[1/p]. Put ẽK := [K∞ : F ′∞].
For 0< s ≤ r , we let R[s,r ](πK ) be the formal substitution of T by πK in the ring

R[s/ẽK ,r/ẽK ]

F ′ ; we set R[s,r ]A (πK ) := R[s,r ](πK ) ⊗̂Qp A. We define Rr
A(πK ), RA(πK )

similarly; the latter is referred to as the relative Robba ring over A for K.
By the theory of fields of norms, there exists a constant C(K ) > 0 such that, for

any 0< r ≤ C(K ), we can equip Rr
A(πK ) with a finite étale Rr

A(πQp) algebra free
of rank [K∞ :Qp,∞] with the Galois group HQp/HK . More generally, for any finite
extensions L ⊇ K ⊇Qp, we can naturally equip Rr

A(πL) with a structure of finite
étale Rr

A(πK )-algebra free of rank [L∞ : K∞] with the Galois group HK /HL for
any 0< r ≤min{C(K ),C(L)}.

There are commuting A-linear actions of 0K on R[s,r ]A (πK ) and of an operator

ϕ :R[s,r ]A (πK )→R[s/p,r/p]
A (πK )

for 0< s ≤ r ≤ C(K ). The actions on the coefficients F ′ are the natural ones, i.e.,
0K through its quotient Gal(F ′/F) and ϕ by the canonical lift of the p-th Frobenius
on k ′. For 0< s≤ r ≤C(K ), ϕ makes R[s/p,r/p]

A (πK ) into a free R[s,r ]A (πK )-module
of rank p, and we obtain a 0K -equivariant left inverse

ψ :R[s/p,r/p]
A (πK )→R[s,r ]A (πK )

by the formula
1
pϕ
−1
◦TrR[s/p,r/p]

A (πK )/ϕ(R[s,r ]A (πK ))
.

The map ψ naturally extends to the maps Rr/p
A (πK )→Rr

A(πK ) for 0< r ≤ C(K )
and RA(πK )→RA(πK ).

Remark 2.1. In fact, these rings are constructed using Fontaine’s rings of p-adic
periods. We don’t have any canonical choice of the parameter πK for general K,
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but the ring RA(πK ) and the actions of ϕ, 0K don’t depend on the choice of πK .
More precisely, R(πK ) is defined as a subring of the ring B̃†

rig of p-adic periods
defined in [Berger 2002], and this subring does not depend on the choice of πK ,
and the actions of ϕ, 0K are induced by the natural actions of ϕ, GK on B̃†

rig.
However, for unramified K, once we fix a Zp-basis ζ := {ζpn }n≥0 of Zp(1) :=

lim
←−−n≥0 µpn , we have a natural choice of πK as follows. Let Zp be the integral
closure of Zp in Qp, let Ẽ+ := lim

←−−n≥0 Zp/pZp be the projective limit with respect
to the p-th power map, and let [−] : Ẽ+→ W (̃E+) be the Teichmüller lift to the
ring W (̃E+) of Witt vectors. Under the fixed ζ, we can choose

πK = πQp = πζ := [(ζ̄pn )n≥0] − 1 ∈W (̃E+)⊆ B̃†
rig,

and then ϕ and 0Qp act by ϕ(πζ ) = (1+ πζ )p
− 1 and γ (πζ ) = (1+ πζ )χ(γ )− 1

for γ ∈ 0Qp .

Notation 2.2. From Section 3, we will concentrate on the case K =Qp and fix ζ :=
{ζpn }n≥0 as above. Then we use the notation 0 :=0Qp , π :=πζ and omit (πQp) from
the notation of Robba rings by writing, for example, R[s,r ]A instead of R[s,r ]A (πQp). In
this case, R[s/p,r/p]

A =
⊕

0≤i≤p−1(1+π)
iϕ(R[s,r ]A ), so if f =

∑p−1
i=0 (1+π)

iϕ( fi )

then ψ( f ) = f0. We define the special element t = log(1+ π) ∈ R∞A . We have
ϕ(t)= pt and γ (t)= χ(γ )t for γ ∈ 0.

We first recall the definitions of ϕ-modules over RA(πK ) following [Kedlaya
et al. 2014, Definition 2.2.5].

Definition 2.3. Choose 0 < r0 ≤ C(K ). A ϕ-module over Rr0
A (πK ) is a finite

projective Rr0
A (πK )-module Mr0 equipped with a Rr0/p

A (πK )-linear isomorphism
ϕ∗Mr0 −→∼ Mr0 ⊗Rr0

A (πK )
Rr0/p

A (πK ). A ϕ-module M over RA(πK ) is a base change
to RA(πK ) of a ϕ-module over some Rr0

A (πK ).

For a ϕ-module Mr0 over Rr0
A (πK ) and for 0< s ≤ r ≤ r0, we set

M [s,r ] = Mr0 ⊗Rr0
A (πK )

R[s,r ]A (πK ) and M s
= Mr0 ⊗Rr0

A (πK )
Rs

A(πK ).

For 0<s≤r0, the given isomorphism ϕ∗(Mr0)−→∼ Mr0/p induces a ϕ-semilinear map

ϕ :M s
→ϕ∗M s

−→∼ ϕ∗Mr0⊗Rr0/p
A (πK )

Rs/p
A (πK )−→

∼ Mr0/p
⊗Rr0/p

A (πK )
Rs/p

A (πK )=M s/p,

where the first map, M s ↪→ ϕ∗M s , is given by

x 7→ x ⊗ 1 ∈ M s
⊗Rs

A(πK ),ϕ R
s/p
A (πK )=: ϕ

∗M s,

the second isomorphism is just the associativity of tensor products, and the third
isomorphism is the base change of the given isomorphism ϕ∗Mr0 −→∼ Mr0/p. This
map ϕ also induces an A-linear homomorphism

ψ : M s/p
= ϕ(M s)⊗ϕ(Rs

A(πK ))R
s/p
A (πK )→ M s
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given by ψ(ϕ(m)⊗ f )=m⊗ψ( f ) for m ∈M s and f ∈Rs/p
A (πK ). For a ϕ-module

M over RA(πK ), the maps ϕ : M s
→ M s/p and ψ : M s/p

→ M s naturally extend
to ϕ : M→ M and ψ : M→ M.

We recall the definition of (ϕ, 0)-modules over RA(πK ) following [Kedlaya et al.
2014, Definition 2.2.12].

Definition 2.4. Choose 0 < r0 ≤ C(K ). A (ϕ, 0)-module over Rr0
A (πK ) is a

ϕ-module over Rr0
A (πK ) equipped with a commuting semilinear continuous action

of 0K . A (ϕ, 0)-module over RA(πK ) is a base change of a (ϕ, 0)-module over
Rr0

A (πK ) for some 0< r0 ≤ C(K ).

We can generalize these notions for general rigid analytic space as in [Kedlaya
et al. 2014, Definition 6.1.1]

Definition 2.5. Let X be a rigid analytic space over Qp. A (ϕ, 0)-module over
RX (πK ) is a compatible family of (ϕ, 0)-modules over RA(πK ) for each affinoid
Max(A) of X.

For (ϕ, 0)-modules M, N over RX (πK ), we define M ⊗ N := M ⊗RX (πK ) N to
be the tensor product equipped with the diagonal action of (ϕ, 0K ). We also define
M∨ := HomRX (πK )(M,RX (πK )) to be the dual (ϕ, 0)-module.

For a (ϕ, 0)-module M over RA(πK ), we define

rM := rkRA(πK ) M ∈Map(Spec(RA(πK )),Z≥0)

to be the rank of M, where Map(−,−) is the set of continuous maps and Z≥0

is equipped with the discrete topology. We will see later (in Remark 2.16) that
rM is in fact in Map(Spec(A),Z≥0), i.e., we have rM = pr ◦ fM for unique fM ∈

Map(Spec(A),Z≥0), where pr :Spec(RA(πK ))→Spec(A) is the natural projection.
We also let rM := fM .

The importance of (ϕ, 0)-modules follows from the next theorem.

Theorem 2.6 [Kedlaya and Liu 2010, Theorem 3.11]. Let V be a vector bundle
over X equipped with a continuous OX -linear action of GK . Then there is functori-
ally associated to V a (ϕ, 0)-module Drig(V ) over RX (πK ). The rule V 7→ Drig(V )
is fully faithful and exact, and it commutes with base change in X.

For example, we have a canonical isomorphism Drig(A(k)) = RA(πK )(k) for
k ∈ Z.

From Section 3, we will concentrate on the case where K = Qp and M is a
rank-one (ϕ, 0)-module over RX . Here, we recall the result of [Kedlaya et al. 2014]
concerning the classification of rank-one (ϕ, 0)-modules. Actually, they obtained a
similar result for general K, but we don’t recall it since we don’t use it.
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Definition 2.7. For a continuous homomorphism δ :Q×p → 0(X,OX )
×, we define

RX (δ) to be the rank-one (ϕ, 0)-module RX · eδ over RX with ϕ(eδ)= δ(p)eδ and
γ (eδ)= δ(χ(γ ))eδ for γ ∈ 0.

Theorem 2.8 [Kedlaya et al. 2014, Theorem 6.1.10]. Let M be a rank-one (ϕ, 0)-
module over RX . Then there exist a continuous homomorphism δ :Q×p →0(X,OX )

×

and an invertible sheaf L on X, the pair of which is unique up to isomorphism, such
that M −→∼ RX (δ)⊗OX L.

Notation 2.9. (i) For δ, δ′ :Q×p → 0(X,OX )
×, we fix isomorphisms

RX (δ)⊗RX (δ
′)−→∼ RX (δδ

′) by eδ ⊗ eδ′ 7→ eδδ′,

RX (δ)
∨
−→∼ RX (δ

−1) by e∨δ 7→ eδ−1 .

(ii) For k ∈ Z, we define a continuous homomorphism xk
: Q×p → 0(X,OX )

×
:

y 7→ yk. Define |x | : Q×p → 0(X,OX )
×
: p 7→ p−1, a 7→ 1 for a ∈ Z×p .

Then the homomorphism x |x | corresponds to the Tate twist, i.e., we have an
isomorphism RX (1) −→∼ RX (x |x |). When we fix a generator ζ ∈ Zp(1), we
identify RX (1)=RX (x |x |) by e1 7→ ex |x |.

We next recall some cohomology theories concerning (ϕ, 0)-modules. Denote
by 1 the largest p-power torsion subgroup of 0K . Fix γ ∈ 0K , whose image
in 0K /1 is a topological generator. For a 1-module M, put M1

= {m ∈ M |
σ(m)= m for all σ ∈1}.

Definition 2.10. For a (ϕ, 0)-module M over RA(πK ), we define the complexes
C •ϕ,γ (M) and C •ψ,γ (M) of A-modules concentrated in degree [0, 2], and define a
morphism 9M between them as follows:

C •ϕ,γ (M)=
[
M1 (γ−1,ϕ−1)
−−−−−−→ M1

⊕M1 (ϕ−1)⊕(1−γ )
−−−−−−−→ M1

]
9M

y yid

yid⊕−ψ
y−ψ

C •ψ,γ (M)=
[
M1 (γ−1,ψ−1)
−−−−−−→ M1

⊕M1 (ψ−1)⊕(1−γ )
−−−−−−−−→ M1

] (1)

The map 9M is a quasi-isomorphism by Proposition 2.3.4 of [Kedlaya et al. 2014].

For i ∈ Z≥0, define Hi
ϕ,γ (M) for the i-th cohomology of C •ϕ,γ (M), called the

(ϕ, 0)-cohomology of M. We similarly define Hi
ψ,γ (M) to be the i-th cohomol-

ogy of C •ψ,γ (M), called the (ψ, 0)-cohomology of M. In this article, we freely
identify C •ϕ,γ (M) (resp. Hi

ϕ,γ (M)) with C •ψ,γ (M) (resp. Hi
ψ,γ (M)) via the quasi-

isomorphism 9M .
More generally, for h = ϕ,ψ and any module N with commuting actions of h

and 0, we similarly define the complexes C •h,γ (N ) and denote the resulting cohomol-
ogy by Hi

h,γ (N ). We denote by [x, y] ∈H1
h,γ (N ) (resp. [z] ∈H2

h,γ (N )) the element
represented by a 1-cocycle (x, y) ∈ N1

⊕ N1 (resp. by z ∈ N1). The functor



330 Kentaro Nakamura

N 7→ C •h,γ (N ) from the category of topological A-modules which are Hausdorff
with commuting continuous actions of h, 0K to the category of complexes of
A-modules is independent of the choice of γ up to canonical isomorphism; i.e., for
another choice γ ′ ∈ 0K , we have a canonical isomorphism

C •h,γ (N ) =
[
N1 (γ−1,h−1)
−−−−−−→ N1

⊕ N1 (h−1)⊕(1−γ )
−−−−−−−→ N1

]
ιγ,γ ′

y yid

y γ ′−1
γ−1 ⊕id

y γ ′−1
γ−1

C •h,γ ′(N )=
[
N1 (γ ′−1,h−1)
−−−−−−→ N1

⊕ N1 (h−1)⊕(1−γ ′)
−−−−−−−−→ N1

] (2)

For a commutative ring R, let us denote by D−(R) the derived category of
bounded-below complexes of R-modules. We use the same notation, C •h,γ (N ) ∈
D−(A), for the object represented by this complex.

Let V be a finite projective A-module with a continuous A-linear action of GK .
Let us denote by C •cont(GK , V ) the complex of continuous GK -cochains with values
in V, and let Hi (K , V ) be the cohomology. By Theorem 2.8 of [Pottharst 2013],
we have a functorial isomorphism

C •cont(GK , V )−→∼ C •ϕ,γ (Drig(V ))

in D−(A) and a functorial A-linear isomorphism

Hi (K , V )−→∼ Hi
ϕ,γ (Drig(V )).

Definition 2.11. For (ϕ, 0)-modules M, N over RA(πK ), we have a natural A-
bilinear cup product morphism

C •ϕ,γ (M)×C •ϕ,γ (N )→ C •ϕ,γ (M ⊗ N );

see Definition 2.3.11 of [Kedlaya et al. 2014]. This induces an A-bilinear graded
commutative cup product pairing

∪ : Hi
ϕ,γ (M)×H j

ϕ,γ (N )→ Hi+ j
ϕ,γ (M ⊗ N ).

For example, this is defined by the formulae

x ∪ [y] := [x ⊗ y] for i = 0, j = 2,

[x1, y1] ∪ [x2, y2] := [x1⊗ γ (y2)− y1⊗ϕ(x2)] for i = j = 1.

Remark 2.12. The definition of the cup product for H1
ϕ,γ (−)×H1

ϕ,γ (−)→H2
ϕ,γ (−),

given in our previous paper, [Nakamura 2014a], is (−1) times the above definition.
The above one seems to be the standard one in the literature. All the results of [Naka-
mura 2014a] hold without any changes when we use the above definition, except
Lemmas 2.13 and 2.14, where we need to multiply by (−1) for the commutative
diagrams there to be commutative.
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Definition 2.13. Let us denote by M∗ := M∨(1) the Tate dual of M. Using the
cup product, the evaluation map ev : M∗⊗M→RA(πK )(1) : f ⊗ x 7→ f (x), the
comparison isomorphism H2(K , A(1))−→∼ H2

ϕ,γ (RA(πK )(1)) and Tate’s trace map
H2(K , A(1))−→∼ A, one gets the Tate duality pairings

C •ϕ,γ (M
∗)×C •ϕ,γ (M)→ C •ϕ,γ (M

∗
⊗M)→ C •ϕ,γ (RA(πK )(1)))

→H2
ϕ,γ (RA(πK )(1))[−2] −→∼ H2(K , A(1))[−2] −→∼ A[−2]

and

〈−,−〉 : Hi
ϕ,γ (M

∗)×H2−i
ϕ,γ (M)→ A.

Remark 2.14. In the Appendix, we explicitly describe the isomorphism

H2
ϕ,γ (RA(1))−→∼ H2(GQp , A(1))−→∼ A

using the residue map; see Proposition 5.2.

One of the main results of [Kedlaya et al. 2014] which is crucial to formulating
our conjecture is the following.

Theorem 2.15 [Kedlaya et al. 2014, Theorems 4.4.3, 4.4.4]. Let M be a (ϕ, 0)-
module over RA(πK ).

(1) C •ϕ,γ (M)∈ D[0,2]perf (A). In particular, the cohomology groups Hi
ϕ,γ (M) are finite

A-modules.

(2) Let A→ A′ be a continuous morphism of Qp-affinoid algebras. Then the
canonical morphism C •ϕ,γ (M)⊗

L
A A′→C •ϕ,γ (M ⊗̂A A′) is a quasi-isomorphism.

In particular, if A′ is flat over A, we have Hi
ϕ,γ (M)⊗A A′ −→∼ Hi

ϕ,γ (M ⊗̂A A′).

(3) (Euler–Poincaré characteristic formula) We have χA(C •ϕ,γ (M))=−[K :Qp]·rM .

(4) (Tate duality) The Tate duality pairing defined in Definition 2.13 induces a
quasi-isomorphism

C •ϕ,γ (M)−→∼ R HomA(C •ϕ,γ (M
∗), A)[−2].

Remark 2.16. By the equality of (3), the rank rM ∈Map(Spec(RA(πK )),Z≥0) is
contained in Map(Spec(A),Z≥0).

Let X be a rigid analytic space over Qp and let M be a (ϕ, 0)-module over
RX (πK ). By (1) and (2) of the above theorem, the correspondence U 7→Hi

ϕ,γ (M |U )
for each affinoid open U in X defines a coherent OX -module for each i ∈ [0, 2],
which we also denote by Hi

ϕ,γ (M).
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2B. Bloch–Kato exponential for (ϕ, 0)-modules. For any Qp-representation V
of GK , Bloch and Kato [1990] defined the diagram with exact rows

0−→ H0(K , V )
x 7→x
−−→ DK

cris(V )
ϕ=1 x 7→x̄
−−→ tV (K )

expV
−−→ H1

e(K , V ) −→ 0yid

yx 7→x
yx 7→(0,x)

yx 7→x

0−→ H0(K , V )
x 7→x
−−→ DK

cris(V )
f
−→

DK
cris(V )
⊕ tV (K )

g
−→ H1

f (K , V )−→ 0

(3)

with
f (x, y)= ((1−ϕ)x, x̄) and g = exp f,V ⊕ expV ,

which is associated to the tensor product of V (over Qp) with the Bloch–Kato
fundamental exact sequences

0−→Qp
x 7→(x,x)
−−−−→ Bϕ=1

cris ⊕ B+dR
(x,y)7→x−y
−−−−−−→ BdR −→ 0yid

y(x,y) 7→(x,y) yx 7→(0,x)

0−→Qp
x 7→(x,x)
−−−−→ Bcris⊕ B+dR

(x,y) 7→((1−ϕ)x,x−y)
−−−−−−−−−−−−→ Bcris⊕ BdR −→ 0

in which Bcris and BdR are Fontaine’s rings of p-adic periods. We set DK
cris(V ) :=

(Bcris⊗Qp V )GK, tV (K ) := (BdR⊗Qp V )GK /(B+dR⊗Qp V )GK,

H1
e(K , V ) := Im(expV : tV (K )→ H1(K , V ))

and

H1
f (K , V ) := Im(exp f,V ⊕ expV : DK

cris(V )⊕ tV (K )→ H1(K , V )).

The boundary map
expV : tV (K )→ H1

e(K , V )

is called the Bloch–Kato exponential, and its definition is generalized to (ϕ, 0)-
modules over the Robba ring in [Nakamura 2014a]. To formulate the local ε-
conjecture, we also need another boundary map,

exp f,V : DK
cris(V )→ H1

f (K , V ),

which is not studied in [Nakamura 2014a].
The aim of this subsection is to define the map exp f,M for all the (ϕ, 0)-

modules M over the Robba ring purely in terms of (ϕ, 0)-modules (Proposi-
tions 2.21 and 2.23), to prove Bloch–Kato duality for them (Proposition 2.24),
to compare our maps expM and exp f,M with the Bloch–Kato maps for the étale
case (Proposition 2.26), all of which we need in order to generalize the local
ε-conjecture for (ϕ, 0)-modules. The explicit formulae for the maps expM and
exp f,M (Proposition 2.23) is especially important in the proof of our main theorem
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(Theorem 1.3). We apologize to the readers that the arguments are slightly longer
than §2 of [Nakamura 2014a], but we think that these arguments are needed. This
is because, to define the map exp f,M , we need some additional arguments (Lemmas
2.17, 2.18 and 2.20), and, to obtain the precise explicit formulae for the maps expM
and exp f,M , it seems to be safer not to omit any steps of the proofs.

Define n(K )≥1 to be the minimal integer n such that 1/pn−1
≤ ẽK C(K ), and put

R(n)
A (πK )=R1/(pn−1ẽK )

A (πK )

for n ≥ n(K ). For n ≥ n(K ), one has a 0K -equivariant A-algebra homomorphism

ιn :R(n)
A (πK )→ (Kn ⊗Qp A)[[t]]

such that

ιn(π)= ζpn · exp
( t

pn

)
− 1 and ιn(a)= ϕ−n(a) (a ∈ F ′).

For n ≥ n(K ), we have the commutative diagrams

R(n)
A (πK )

ιn
−→ (Kn ⊗Qp A)[[t]]yϕ ycan

R(n+1)
A (πK )

ιn+1
−−→ (Kn+1⊗Qp A)[[t]]

and
R(n+1)

A (πK )
ιn+1
−−→ (Kn+1⊗Qp A)[[t]]yψ y 1

p ·TrKn+1/Kn

R(n)
A (πK )

ιn
−→ (Kn ⊗Qp A)[[t]]

in which can is the canonical injection and 1
p ·TrKn+1/Kn is defined by∑

k≥0

ak tk
7→

∑
k≥0

1
p
·TrKn+1/Kn (ak)tk .

Let M be a (ϕ, 0)-module over RA(πK ) obtained as a base change of a (ϕ, 0)-
module Mr0 over Rr0

A (πK ) for some 0< r0≤ c(K ). Define n(M)∈Z≥n(K ) to be the
minimal integer such that 1/pn−1

≤ ẽK r0. Put M (n)
= M1/(pn−1ẽK ) for n ≥ n(M).

Then ϕ and ψ induce ϕ : M (n)
→ M (n+1) and ψ : M (n+1)

→ M (n), respectively.
Define

D+dif,n(M)=M (n)
⊗R(n)

A (πK ),ιn
(Kn⊗Qp A)[[t]]

(
resp. Ddif,n(M)= D+dif,n(M)[1/t]

)
,

which is a finite projective (Kn ⊗Qp A)[[t]]-module (resp. (Kn ⊗Qp A)((t))-module)
with a semilinear action of 0K . We also let ιn : M (n)

→ D+dif,n(M) be the map
defined by x 7→ x ⊗ 1.
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Using the base change of the Frobenius structure ϕ∗M (n)
−→∼ M (n+1) by the

map ιn+1, we obtain a 0K -equivariant (Kn+1⊗Qp A)[[t]]-linear isomorphism

D+dif,n(M)⊗(Kn⊗Qp A)[[t]] (Kn+1⊗Qp A)[[t]]

−→∼ ϕ∗(M (n))⊗R(n+1)
A (πK ),ιn+1

(Kn+1⊗Qp A)[[t]]

−→∼ M (n+1)
⊗R(n+1)

A (πK ),ιn+1
(Kn+1⊗Qp A)[[t]] = D+dif,n+1(M).

Using this isomorphism, we obtain 0K -equivariant (Kn⊗Qp A)[[t]]-linear morphisms

can : D+dif,n(M)
x 7→x⊗1
−−−−→D+dif,n(M)⊗(Kn⊗Qp A)[[t]] (Kn+1⊗Qp A)[[t]] −→∼ D+dif,n+1(M)

and
1
p
·TrKn+1/Kn : D+dif,n+1(M)−→

∼ D+dif,n(M)⊗(Kn⊗Qp A)[[t]] (Kn+1⊗Qp A)[[t]]

x⊗ f 7→ 1
p ·TrKn+1/Kn ( f )x

−−−−−−−−−−−−→D+dif,n(M).

These naturally induce can : Ddif,n(M) → Ddif,n+1(M) and 1
p · TrKn+1/Kn :

Ddif,n+1(M)→ Ddif,n(M), and we have the commutative diagrams

M (n) ιn
−→ D+dif,n(M)yϕ ycan

M (n+1) ιn+1
−−→ D+dif,n+1(M)

and
M (n+1) ιn+1

−−→ D+dif,n+1(M)yψ y 1
p ·TrKn+1/Kn

M (n) ιn
−→ D+dif,n(M)

Put D(+)
dif (M) := lim

−−→n≥n(M) D(+)
dif,n(M), where the transition map is can : D(+)

dif,n(M)→
D(+)

dif,n+1(M). Then we have

D(+)
dif (M)= D(+)

dif,n(M)⊗(Kn⊗Qp A)[[t]] (K∞⊗Qp A)[[t]]

for any n ≥ n(M), where we define (K∞⊗Qp A)[[t]] =
⋃

m≥1(Km ⊗Qp A)[[t]].
For an A[0K ]-module N, we define a complex of A-modules concentrated in

degree [0, 1] by
C •γ (N )=

[
N1 γ−1
−−→ N1

]
and denote by Hi

γ (N ) the cohomology of C •γ (N ). If N is a topological Hausdorff
A-module with a continuous action of 0K , the complex C •γ (N ) is also independent
of the choice of γ up to canonical isomorphism.
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Let M be a (ϕ, 0)-module over RA(πK ). For n ≥ n(M) and M0 = M,M[1/t],
we define a complex C̃ •ϕ,γ (M

(n)
0 ) concentrated in degree [0, 2] by

C̃ •ϕ,γ (M
(n)
0 ) :=

[
M (n),1

0
(γ−1)⊕(ϕ−1)
−−−−−−−→M (n),1

0 ⊕M (n+1),1
0

(ϕ−1)⊕(1−γ )
−−−−−−−→M (n+1),1

0

]
.

Of course, we have lim
−−→n C̃ •ϕ,γ (M

(n)
0 )= C •ϕ,γ (M0), where the transition map is the

natural one induced by the canonical inclusion M (n)
0 ↪→ M (n+1)

0 . We define another
complex

C (ϕ),•
ϕ,γ (M0) := lim

−−→
n,ϕ

C̃ •ϕ,γ (M
(n)
0 ),

where the transition map is the natural one induced by ϕ : M (n)
0 → M (n+1)

0 . We
similarly define

C (ϕ),•
γ (M0) := lim

−−→
n,ϕ

C •γ (M
(n)
0 )

and denote by H(ϕ),i
ϕ,γ (M0) (resp. H(ϕ),i

γ (M0)) the cohomology of C (ϕ),•
ϕ,γ (M0) (resp.

C (ϕ),•
γ (M0)). For n ≥ n(M), we equip C •γ (M

(n)
0 ) with a structure of a complex of

F-vector spaces by ax := ϕn(a)x for a ∈ F, x ∈ C •γ (M
(n)
0 ). Then C (ϕ),•

γ (M0) (resp.
H(ϕ),i
γ (M0)) is also naturally equipped with a structure of a complex of F-vector

spaces (resp. an F-vector space).
By the compatibility of ϕ : M (n) ↪→ M (n+1) and can : D+dif,n(M) ↪→ D+dif,n+1(M)

with respect to the map ιn : M (n)
→ D+dif,n(M), the map ιn induces canonical maps

ι : C (ϕ),•
γ (M)→ C •γ (D

+

dif(M)) and ι : C (ϕ),•
γ (M[1/t])→ C •γ (Ddif(M)),

which are (F ⊗Qp A)-linear.

Lemma 2.17. For n ≥ n(M), the natural maps

C •γ (D
(+)
dif,n(M))→ C •γ (D

(+)
dif,n+1(M)), C •γ (M

(n)
0 )→ C •γ (M

(n+1)
0 )

and
C̃ •ϕ,γ (M

(n)
0 )→ C̃ •ϕ,γ (M

(n+1)
0 )

for M0 = M,M[1/t], which are induced by ϕ, are quasi-isomorphism. Similarly,
the maps

C •γ (D
(+)
dif,n(M))→ C •γ (D

(+)
dif (M)), C •γ (M

(n)
0 )→ C (ϕ),•

γ (M0)

and
C̃ •ϕ,γ (M

(n)
0 )→ C (ϕ),•

ϕ,γ (M0)

for M0 = M,M[1/t] are quasi-isomorphism.

Proof. The latter statement is trivial if we can prove the first statement. Let’s
prove the first statement. We first note that γ − 1 : (M (n)

0 )ψ=0
→ (M (n)

0 )ψ=0 is an
isomorphism for n≥ n(M)+1 by Theorem 3.1.1 of [Kedlaya et al. 2014] (precisely,
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this fact for M0 = M[1/t] follows from the proof of this theorem). Taking the base
change of this isomorphism by the map ιn :R(n)

A (πK )→ (Kn ⊗Qp A)[[t]], we also
have that

γ − 1 : (D(+)
dif,n(M))

1
p ·TrKn/Kn−1=0

→ (D(+)
dif,n(M))

1
p ·TrKn/Kn−1=0

is an isomorphism for n ≥ n(M)+ 1. Using these facts, we prove the lemma as
follows. Here, we only prove that the map C •γ (M

(n)
0 )→ C •γ (M

(n+1)
0 ) induced by

ϕ : M (n)
0 → M (n+1)

0 is an quasi-isomorphism for n ≥ n(M) since the other cases
can be proved in the same way. Since we have a 0K -equivariant decomposition
M (n+1)

0 = ϕ(M (n)
0 )⊕ (M (n+1)

0 )ψ=0, we obtain a decomposition

C •γ (M
(n+1)
0 )= ϕ(C •γ (M

(n)
0 ))⊕C •γ ((M

(n+1)
0 )ψ=0).

Since the complex C •γ ((M
(n+1)
0 )ψ=0) is acyclic by the above remark and ϕ :M (n)

0 →

M (n+1)
0 is an injection, the map ϕ :C •γ (M

(n)
0 )→C •γ (M

(n+1)
0 ) is a quasi-isomorphism.

�

For another canonical map, C •γ (M
(n)
0 ) → C •γ (M0), which is induced by the

canonical inclusion M (n) ↪→ M, we can show the following lemma.

Lemma 2.18. For n ≥ n(M) and M0 = M,M[1/t], the inclusion

H0
γ (M

(n)
0 ) ↪→ H0

γ (M0)

induced by the canonical inclusion M (n)
0 ↪→ M0 is an isomorphism.

Proof. It suffices to show that H0
γ (M

(n)
0 ) ↪→H0

γ (M
(n+1)
0 ) is an isomorphism for each

n ≥ n(M). We first prove this claim when A is a finite Qp-algebra. In this case, we
may assume A=Qp. Since we have an inclusion ιn :H0

γ (M
(n)
0 ) ↪→H0

γ (Ddif(M)) and
the latter is a finite-dimensional Qp-vector space, H0

γ(M
(n)
0 ) is also finite-dimensional.

Since ϕ : C •γ (M
(n)
0 )→ C •γ (M

(n+1)
0 ) is a quasi-isomorphism for n ≥ n(M) by the

above lemma, we get an isomorphism ϕ : H0
γ (M

(n)
0 )−→∼ H0

γ (M
(n+1)
0 ). In particular,

the dimension of H0
γ (M

(n)
0 ) is independent of n ≥ n(M). Hence, the canonical

inclusion H0
γ (M

(n)
0 ) ↪→ H0

γ (M
(n+1)
0 ) is an isomorphism.

We next prove the claim for general A. By Lemma 6.4 of [Kedlaya and Liu 2010],
there exists a strict inclusion A ↪→

∏k
i=1 Ai of topological rings, in which each Ai

is a finite algebra over a complete discretely valued field. If we similarly define the
rings R(n)

Ai
(πK ), RAi (πK ), we can generalize the notions concerning (ϕ, 0)-modules

for RAi (πK ). In particular, the above claim holds for M0,i := M0 ⊗̂A Ai for each i .
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Consider the following canonical diagram with exact rows:

0−→ M (n)
0 −→ M (n+1)

0 −→ M (n+1)
0 /M (n)

0 −→ 0y y y
0−→

∏k
i=1 M (n)

0,i −→
∏k

i=1 M (n+1)
0,i −→

∏k
i=1 M (n+1)

0,i /M (n)
0,i −→ 0

If we can show that the right vertical arrow is an injection, then the claim for A
follows from the claim for each Ai by a simple diagram chase. To show that the
right vertical arrow is an injection, we may assume that M =RA(πK ) since M (n) is
finite projective over R(n)

A (πK ) for each n. Then the natural map

R(n+1)
A (πK )[1/t]/R(n)

A (πK )[1/t] →
k∏

i=1

R(n+1)
Ai

(πK )[1/t]/R(n)
Ai
(πK )[1/t]

is an injection since the inclusion A ↪→
∏k

i=1 Ai is strict, which proves the claim
for general A, hence proves the lemma. �

Remark 2.19. We don’t know whether the natural map H1
γ (M

(n)
0 ) → H1

γ (M0)

induced by the canonical inclusion M (n)
0 ↪→ M0 is an isomorphism or not.

For the (ϕ, 0)-cohomology, we can prove the following lemma.

Lemma 2.20. (1) For n ≥ n(M) and for M0 = M,M[1/t], the map

C̃ •ϕ,γ (M
(n)
0 )→ C •ϕ,γ (M0)

induced by the canonical inclusion M (n)
0 ↪→ M0 is a quasi-isomorphism.

(2) In D−(A), the isomorphism

C •ϕ,γ (M0)−→
∼ C (ϕ),•

ϕ,γ (M0),

which is obtained as the composition of the inverse of the isomorphism in (1),
C̃ •ϕ,γ (M

(n)
0 ) −→∼ C •ϕ,γ (M0), with the isomorphism C̃ •ϕ,γ (M

(n)
0 ) −→∼ C (ϕ),•

ϕ,γ (M0)

in Lemma 2.17, is independent of the choice of n ≥ n(M).

Proof. For n ≥ n(M), we define a map f• : C̃ •ϕ,γ (M
(n)
0 )→ C̃ •ϕ,γ (M

(n+1)
0 )[+1] by

f1 : M
(n),1
0 ⊕M (n+1),1

0 → M (n+1),1
0 : (x, y) 7→ y,

f2 : M
(n+1),1
0 → M (n+1),1

0 ⊕M (n+2),1
0 : x 7→ (x, 0).

This gives a homotopy between

ϕ : C̃ •ϕ,γ (M
(n)
0 )→ C̃ •ϕ,γ (M

(n+1)
0 )

and
can : C̃ •ϕ,γ (M

(n)
0 )→ C̃ •ϕ,γ (M

(n+1)
0 )



338 Kentaro Nakamura

induced by the canonical inclusion M (n)
0 ↪→ M (n+1)

0 . Hence, can : C̃ •ϕ,γ (M
(n)
0 )→

C̃ •ϕ,γ (M
(n+1)
0 ) is also an isomorphism by Lemma 2.17, and, by taking the limit, the

map C̃ •ϕ,γ (M
(n)
0 )→ C •ϕ,γ (M0) is also an isomorphism, which proves (1).

In a similar way, we can show that the map can :C (ϕ),•
ϕ,γ (M0)→C (ϕ),•

ϕ,γ (M0) induced
by the canonical inclusions can :M (n)

0 ↪→M (n+1)
0 for any n≥ n(M) is homotopic to

the identity map. Hence, we obtain the following commutative diagram in D−(A)
for any n ≥ n(M):

C̃ •ϕ,γ (M
(n)
0 ) −→ C (ϕ),•

ϕ,γ (M0)ycan
yid

C̃ •ϕ,γ (M
(n+1)
0 )−→ C (ϕ),•

ϕ,γ (M0)

From this we obtain the second statement in the lemma. �

We define a morphism

f : C •ϕ,γ (M0)→ C (ϕ),•
γ (M0)

in D−(A) as the composition of the isomorphism C •ϕ,γ (M0) −→
∼ C (ϕ),•

ϕ,γ (M0) in
Lemma 2.20(2) with the map C (ϕ),•

ϕ,γ (M0)→ C (ϕ),•
γ (M0), which is induced by

C̃ •ϕ,γ (M
(n)
0 )=

[
M (n),1

0
(γ−1)⊕(ϕ−1)
−−−−−−−→ M (n),1

0 ⊕M (n+1),1
0

(ϕ−1)⊕(1−γ )
−−−−−−−→ M (n+1),1

0

]y yid

y(x,y) 7→x

C •γ (M
(n)
0 ) =

[
M (n),1

0
γ−1
−−→ M (n),1

0

]
We define

g : C •ϕ,γ (M)
f
→C (ϕ),•

γ (M) ι
→C •γ (D

+

dif(M))

and let
can : C (ϕ),•

γ (M0)→ C (ϕ),•
γ (M0)

be the map induced by the canonical inclusion can : M (n)
0 → M (n+1)

0 for each
n ≥ n(M). Under this notation, we prove the following proposition, which is a
modified version of Theorem 2.8 of [Nakamura 2014a].

Proposition 2.21. We have a functorial map between the two distinguished triangles

C •ϕ,γ (M)
d1
−→

C •ϕ,γ (M[1/t])
⊕C •γ (D

+

dif(M))
d2
−→ C •γ (Ddif(M))

[+1]
−−→yid

y f⊕id
yx 7→(0,x)

C •ϕ,γ (M)
d3
−→

C (ϕ),•
γ (M[1/t])
⊕C •γ (D

+

dif(M))
d4
−→

C (ϕ),•
γ (M[1/t])
⊕C •γ (Ddif(M))

[+1]
−−→

(4)
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with
d1(x)= (x, g(x)), d2(x, y)= g(x)− y,

d3(x)= ( f (x), g(x)), d4(x, y)= ((can− 1)x, g(x)− y).

Remark 2.22. In §2 of [Nakamura 2014a], we (essentially) proved that the top
horizontal line in the proposition is a distinguished triangle. For the application to
the local ε-conjecture, we also need the bottom triangle, which involves DK

cris(M) :=
H0
γ (M[1/t]).

Proof of Proposition 2.21. We first show that the top horizontal line is a distinguished
triangle. Actually, this is the content of Theorem 2.8 of [Nakamura 2014a], but
we briefly recall the proof since we also use it to prove that the bottom line is a
distinguished triangle. In this proof, we assume 1= {1} for simplicity; the general
case follows by just taking the 1-fixed parts.

For n ≥ n(M), we have the exact sequence of A-modules

0→ M (n) c1
−→M (n)

[1/t]⊕
∏
m≥n

D+dif,m(M)
c2
−→

⋃
k≥0

∏
m≥n

1
tk D+dif,m(M)→ 0 (5)

with

c1(x)= (x, (ιm(x))m≥n) and c2(x, (ym)m≥n)= (ιm(x)− ym)m≥n

by Lemma 2.9 of [Nakamura 2014a] (precisely, we proved it when A is a finite
Qp-algebra, but we can prove it for general A in the same way). For n ≥ n(M) and
k ≥ 0, we define a complex C̃ •ϕ,γ

( 1
tk D+dif,n(M)

)
concentrated in degree in [0, 2] by[∏

m≥n

1
tk D+dif,m(M)

b0
−→

∏
m≥n

1
tk D+dif,m(M) ⊕

∏
m≥n+1

1
tk D+dif,m(M)

b1
−→

∏
m≥n+1

1
tk D+dif,m(M)

]
(6)

with

b0((xm)m≥n)=
(
((γ − 1)xm)m≥n, (xm−1− xm)m≥n+1

)
and

b1((xm)m≥n, (ym)m≥n+1)= ((xm−1− xm)− (γ − 1)ym)m≥n+1.

Put C̃ •ϕ,γ (Ddif,n(M)) =
⋃

k≥0 C̃ •ϕ,γ
( 1

tk D+dif,n(M)
)
. By the exact sequence (5), we

obtain the following exact sequence of complexes of A-modules:

0→ C̃ •ϕ,γ (M
(n))→ C̃ •ϕ,γ (M

(n)
[1/t])⊕ C̃ •ϕ,γ (D

+

dif,n(M))

→ C̃ •ϕ,γ (Ddif,n(M))→ 0. (7)
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Moreover, the map C •γ (D
+

dif,n(M))→ C̃ •ϕ,γ (D
+

dif,n(M)), which is defined by

D+dif,n(M)
γ−1
−−→ D+dif,n(M)yx 7→(x)m≥n

yx 7→((x)m≥n,0)∏
m≥n D+dif,m(M) −→

∏
m≥n D+dif,m(M)
⊕
∏

m≥n+1 D+dif,m(M)
−→

∏
m≥n+1 D+dif,m(M)

(8)

and the similar map C •γ (Ddif,n(M))→ C̃ •ϕ,γ (Ddif,n(M)) are easily seen to be quasi-
isomorphisms since we have the exact sequence

0→ D(+)
dif,n(M)

x 7→(x)m≥n
−−−−−→

∏
m≥n

D(+)
dif,m(M)

(xm)m≥n 7→(xm−1−xm)m≥n+1
−−−−−−−−−−−−−−→

∏
m≥n+1

D(+)
dif,m(M)→ 0. (9)

Put C̃ •ϕ,γ (D
(+)
dif (M)) := lim

−−→n,a• C̃ •ϕ,γ (D
(+)
dif,n(M)), where the transition map

a• : C̃ •ϕ,γ (D
(+)
dif,n(M))→ C̃ •ϕ,γ (D

(+)
dif,n+1(M))

is defined by

a0((xm)m≥n)= (xm)m≥n+1,

a1((xm)m≥n, (ym)m≥n+1)= ((xm)m≥n+1, (ym)m≥n+2),

a2((xm)m≥n+1)= (xm)m≥n+2.

We also define C̃ (ϕ),•
ϕ,γ (D(+)

dif (M)) := lim
−−→n,(a′)• C̃ •ϕ,γ (D

(+)
dif,n(M)), where the transition

map (a′)• is defined by

(a′)0((xm)m≥n)= (xm−1)m≥n+1,

(a′)1((xm)m≥n, (ym)m≥n+1)= ((xm−1)m≥n+1, (ym−1)m≥n+2),

(a′)2((xm)m≥n+1)= (xm−1)m≥n+2.

Then it is easy to see that the quasi-isomorphism C •γ (D
(+)
dif,n(M))−→

∼ C̃ •ϕ,γ (D
(+)
dif,n(M))

defined in (8) is compatible with the transition maps a•, (a′)• and C •γ (D
(+)
dif,n(M)) ↪→

C •γ (D
(+)
dif,n+1(M)), hence induces quasi-isomorphisms

C •γ (D
(+)
dif (M))−→

∼ C̃ •ϕ,γ (D
(+)
dif (M)), C •γ (D

(+)
dif (M))−→

∼ C̃ (ϕ),•
ϕ,γ (D

(+)
dif (M)). (10)

For C̃ (ϕ),•
ϕ,γ (D(+)

dif (M)), we also have a left inverse

C̃ (ϕ),•
ϕ,γ (D

(+)
dif (M))→ C •γ (D

(+)
dif (M)) (11)
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of the quasi-isomorphism C •γ (D
(+)
dif (M))→ C̃ (ϕ),•

ϕ,γ (D(+)
dif (M)), which is obtained as

the limit of the map

∏
m≥n D+dif,m(M) −→

∏
m≥n D+dif,m(M)
⊕
∏

m≥n+1 D+dif,m(M)
−→

∏
m≥n+1 D+dif,m(M)y(xm)m≥n 7→xn

y((xm)m≥n,(ym)m≥n+1) 7→xn

D+dif,n(M)
γ−1
−−→ D+dif,n(M)

Taking the limits of the map C̃ •ϕ,γ (M
(n))→ C̃ •ϕ,γ (D

+

dif,n(M)) : x 7→ (ιm(x))m≥n0

(n0 = n, n+ 1), we obtain the maps

C •ϕ,γ (M)→ C̃ •ϕ,γ (D
+

dif(M)) and C (ϕ),•
ϕ,γ (M)→ C̃ (ϕ),•

ϕ,γ (D
+

dif(M)). (12)

Taking the limit of the exact sequence (7) with respect to the transition map
induced by the canonical inclusion M (n)

0 ↪→ M (n+1)
0 and a•, and taking the quasi-

isomorphism C •γ (D
(+)
dif (M))−→

∼ C̃ •ϕ,γ (D
(+)
dif (M)) in (10), we obtain the following

exact triangle, which is the top horizontal line in the proposition:

C •ϕ,γ (M)
d1
−→C •ϕ,γ (M[1/t])⊕C •γ (D

+

dif(M))
d2
−→C •γ (Ddif(M))

[+1]
−−→ .

On the other hand, since we have

C •ϕ,γ (M
(n)
[1/t])= Cone

(
1−ϕ : C •γ (M

(n)
[1/t])→ C •γ (M

(n+1)
[1/t])

)
[−1]

for n ≥ n(M) (where we define Cone( f : M •
→ N •)[−1]n = Mn

⊕ N n−1 and
d : Mn

⊕ N n−1
→ Mn+1

⊕ N n
: (x, y) 7→ (dM(x),− f (x)− dN (y))), taking the

limit of the exact sequence (7) with respect to the transition map induced by a′
•

and
ϕ : M (n)

0 ↪→ M (n+1)
0 , and taking the left inverse C̃ (ϕ),•

ϕ,γ (D(+)
dif (M))→ C •γ (D

(+)
dif (M))

in (11), and identifying C •ϕ,γ (M)−→∼ C (ϕ),•
ϕ,γ (M) by Lemma 2.20(2), we obtain the

following exact triangle, which is the bottom horizontal line in the proposition:

C •ϕ,γ (M)
d3
−→C (ϕ),•

γ (M[1/t])⊕C •γ (D
+

dif(M))
d4
−→C (ϕ),•

γ (M[1/t])⊕C •γ (Ddif(M))
[+1]
−−→ .

Here d3(x)= ( f (x), g(x)) and d4(x, y)= ((can− 1)(x), g(x)− y), which proves
the proposition. �

We next recall some notions concerning p-adic Hodge theory for (ϕ, 0)-modules
over the Robba ring. For a (ϕ, 0)-module M over RA(πK ), let us define

DK
dR(M) := H0

γ (Ddif(M)) and DK
dR(M)

i
:= DK

dR(M)∩ t i D+dif(M)

for i ∈ Z, and
DK

cris(M) := H0
γ (M[1/t]).
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By Lemma 2.17, ϕ : C •γ (M[1/t])→ C •γ (M[1/t]) induces a ϕ-semilinear automor-
phism

ϕ : DK
cris(M)−→∼ DK

cris(M).

More precisely, by Lemma 2.18, we have Dcris(M)=H0
γ (M

(n)
[1/t]), and ϕ induces

an automorphism ϕ : H0
γ (M

(n)
[1/t]) ϕ

→ H0
γ (M

(n+1)
[1/t]) = H0

γ (M
(n)
[1/t]) for

n ≥ n(M). Using these facts, we define an isomorphism

j1 : DK
cris(M)= H0

γ (M
(n)
[1/t]) ϕ

n
→H0

γ (M
(n)
[1/t])−→∼ H(ϕ),0

γ (M[1/t]),

which does not depend on the choice of n. Then the map ι : C (ϕ),•
γ (M[1/t])→

C •γ (Ddif(M)) induces an (F ⊗Qp A)-linear injection

ι : DK
cris(M)

j1
−→H(ϕ),0

γ (M[1/t]) ι
→ DK

dR(M).

We define another isomorphism

j2 : DK
cris(M)

j1
−→H(ϕ),0

γ (M[1/t]) can
−→H(ϕ),0

γ (M[1/t]),

where H(ϕ),0
γ (M[1/t]) can

−→H(ϕ),0
γ (M[1/t]) is the map induced by

can : C (ϕ),•
γ (M[1/t])→ C (ϕ),•

γ (M[1/t]),

which is an isomorphism by Lemma 2.20. Then we obtain the commutative diagram

DK
cris(M)

1−ϕ
−−→ DK

cris(M)y j1

y j2

H(ϕ),0
γ (M[1/t])

can−id
−−−→ H(ϕ),0

γ (M[1/t])

Let us denote by

expM : D
K
dR(M)→H1

ϕ,γ (M), exp f,M : D
K
cris(M)

j2
−→H(ϕ),0

γ (M[1/t])→H1
ϕ,γ (M)

the boundary maps obtained by taking the cohomology of the exact triangles in
Proposition 2.21. We define

H1
ϕ,γ (M)e = Im

(
DK

dR(M)
expM
−−→H1

ϕ,γ (M)
)

and

H1
ϕ,γ (M) f = Im

(
DK

cris(M)⊕ DK
dR(M)

exp f,M ⊕ expM
−−−−−−−→H1

ϕ,γ (M)
)
.
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We call the latter group the finite cohomology. Put tM(K ) := DK
dR(M)/DK

dR(M)
0.

By Proposition 2.21, we obtain the diagram with exact rows

0−→ H0
ϕ,γ (M)

x 7→x
−−→ DK

cris(M)
ϕ=1 x 7→ι(x)
−−−−→ tM(K )

expM
−−→ H1

ϕ,γ (M)e −→ 0yid

yx 7→x
yx 7→(0,x)

yx 7→x

0−→ H0
ϕ,γ (M)

x 7→x
−−→ DK

cris(M)
d5
−→

DK
cris(M)
⊕ tM(K )

d6
−→ H1

ϕ,γ (M) f −→ 0

(13)

with
d5(x, y)= ((1−ϕ)x, ι(x)) and d6 = exp f,M ⊕ expM ,

where we also define expM : tM(K )→ H1
ϕ,γ (M), which is naturally induced by

expM : DK
dR(M)→ H1

ϕ,γ (M).
By the proof of Proposition 2.21, we obtain the following explicit formulae

for expM and exp f,M , which are very important in the proof of our main theorem
(Theorem 1.3).

Proposition 2.23. (1) For x ∈ DK
dR(M), take x̃ ∈M (n)

[1/t]1 (n≥n(M)) such that

ιm(x̃)− x ∈ D+dif,m(M)

for any m ≥ n (such an x̃ exists by the exact sequence (5) in the proof of
Proposition 2.21). Then we have

expM(x)= [(γ − 1)x̃, (ϕ− 1)x̃] ∈ H1
ϕ,γ (M).

(2) For x ∈ DK
cris(M), take x̃ ∈ M (n)

[1/t]1 (n ≥ n(M)) such that

ιn(x̃) ∈ D+dif,n(M)

and

ιn+k(x̃)−
k∑

l=1

ιn+l(ϕ
n(x)) ∈ D+dif,n+k(M)

for any k ≥ 1 (we remark that we have ϕn(x) ∈ M (n)
[1/t] by Lemma 2.18 and

that such an x̃ exists by the exact sequence (5)). Then we have

exp f,M(x)= [(γ − 1)x̃, (ϕ− 1)x̃ +ϕn(x)] ∈ H1
ϕ,γ (M).

Proof. These formulae directly follow from simple but a little bit long diagram
chases in the proof of Proposition 2.21. For the convenience of the reader, we give
a proof of these formulae.

We first prove formula (1). By the proof of Proposition 2.21, the above exact
triangle in this proposition is obtained by taking the limit of the composition of the
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quasi-isomorphism

C̃ •ϕ,γ (M
(n))

−→∼ Cone
(
C̃ •ϕ,γ (M

(n)
[1/t])⊕ C̃ •ϕ,γ (D

+

dif,n(M))→ C̃ •ϕ,γ (Ddif,n(M))
)
[−1] := C •1

(obtained by the exact sequence (7)) with the inverse of the quasi-isomorphism

C •2 := Cone
(
C̃ •ϕ,γ (M

(n)
[1/t])⊕C •γ (D

+

dif,n(M))→ C •γ (Ddif,n(M))
)
[−1] −→∼ C •1

induced by the quasi-isomorphism C •γ (D
(+)
dif,n(M))→ C̃ •ϕ,γ (D

(+)
dif,n(M)) : x 7→ (x)m≥n

of (10).
By definition of expM(−), for x ∈ H0

γ (Ddif,n(M)), these quasi-isomorphisms
send expM(x)

(
which we see as an element of H1(C̃ •ϕ,γ (M

(n)))
)

to the element
[0, 0, x] ∈ H1(C •2) represented by

(0, 0, x) ∈ C̃1
ϕ,γ (M

(n)
[1/t])⊕C1

γ (D
+

dif,n(M))⊕C0
γ (Ddif,n(M)).

Take x̃ ∈ M (n)
[1/t]1 satisfying the condition in (1). Then it suffices to show that

[(γ −1)x̃, (ϕ−1)x̃] ∈H1(C̃ •ϕ,γ (M
(n))) and [0, 0, x] ∈H1(C •2) are the same element

in H1(C •1). By definition, [(γ − 1)x̃, (ϕ− 1)x̃] is sent to[
((γ − 1)x̃, (ϕ− 1)x̃),

(
(ιm((γ − 1)x̃))m≥n, (ιm((ϕ− 1)x̃))m≥n+1

)
, 0
]

and [0, 0, x] is sent to

[0, 0, (−x)m≥n]

in H1(C •1). Both are represented by elements of

C̃1
ϕ,γ (M

(n)
[1/t])⊕ C̃1

ϕ,γ (D
+

dif,n(M))⊕ C̃0
ϕ,γ (Ddif,n(M))

(we note the sign; for f : C •→ D•, we define D•−1
→ Cone(C •→ D•)[−1] by

x 7→ (−x, 0) and Cone(C •→ D•)[−1] → C • by (x, y) 7→ y). Then it is easy to
check that the difference of these two elements is the coboundary of the element

(x̃, (ιm(x̃)− x)m≥n) ∈ C0
1 = M (n)

[1/t]1⊕
∏
m≥n

D+dif,m(M)
1,

which proves (1).
We next prove (2). The bottom exact triangle in Proposition 2.21 is obtained by

taking the limit of the composition of the quasi-isomorphism C̃ •ϕ,γ (M
(n))−→∼ C •1

defined above with the quasi-isomorphism

C •1 −→∼ Cone
(
C̃ •ϕ,γ (M

(n)
[1/t])⊕C •γ (D

+

dif,n(M))→ C •γ (Ddif,n(M))
)
[−1] := C •3
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induced by the map
∏

m≥n D+dif,m(M) → D+dif,n(M) : (xm)m≥n → xn , with the
inverse of the quasi-isomorphism

C •3 −→∼ Cone
(
C •γ (M

(n)
[1/t])⊕C •γ (D

+

dif,n(M))

→ C •γ (M
(n+1)
[1/t])⊕C •γ (Ddif,n(M))

)
[−1] := C •4,

which is naturally obtained by the identity

C̃ •ϕ,γ (M
(n)
[1/t]))= Cone

(
C •γ (M

(n)
[1/t]) 1−ϕ

−−→C •γ (M
(n+1)
[1/t])

)
[−1].

For x ′ ∈ H0
γ (M

(n+1)
[1/t]), the image of x ′ by the first boundary map of the

cone C •4 is equal to [0, 0, x ′, 0] ∈ H1(C •4), which is represented by the element

(0, 0, x ′, 0)∈C1
γ(M

(n)
[1/t])⊕C1

γ(D
+

dif,n(M))⊕C0
γ(M

(n+1)
[1/t])⊕C0

γ(Ddif,n(M)).

Take x̃ ′ ∈ M (n)
[1/t]1 such that

ιn(x̃ ′)∈ D+dif,n(M) and ιn+k(x̃ ′)−
k∑

l=1

ιn+l(x ′)∈ D+dif,n+k(M) for any k≥1.

Then, by definition of the map j2 : DK
cris(M)−→

∼ H(ϕ),0
γ (M[1/t]) and exp f,M , it suf-

fices to show that the element [(γ−1)x̃ ′, (ϕ−1)x̃ ′+x ′] ∈H1(C̃ •ϕ,γ (M
(n))) is sent to

[0, 0, x ′, 0] ∈ H1(C •4) by the above quasi-isomorphisms. By definition, the element
[(γ − 1)x̃ ′, (ϕ− 1)x̃ ′+ x ′] is sent to

[(γ − 1)x̃ ′, ιn((γ − 1)x̃ ′), (ϕ− 1)x̃ ′+ x ′, 0] ∈ H1(C •4)

by the above quasi-isomorphism. Then it is easy to check that the difference of this
element with [0, 0, x ′, 0] is the coboundary of the element

(x̃ ′, ιn(x̃ ′)) ∈ C0
4 = M (n)

[1/t]1⊕ D+dif,n(M)
1,

which proves formula (2). �

We next generalize the Bloch–Kato duality concerning the finite cohomology for
(ϕ, 0)-modules. Let L= A be a finite extension of Qp, and let M be a (ϕ, 0)-module
over RL(πK ). We say that M is de Rham if the equality dimK DK

dR(M)=[L :Qp]·rM

holds. When M is de Rham, we have a natural L-bilinear perfect pairing

[−,−]dR : DK
dR(M

∗)× DK
dR(M)

( f,x) 7→ f (x)
−−−−−−→ DK

dR(RL(1))

= L ⊗Qp K
1
t

e1

a
t e1 7→

1
[K :Qp ]

(id⊗ trK/Qp )(a)
−−−−−−−−−−−−−−→ L , (14)

which induces natural isomorphisms

DK
dR(M)−→∼ DK

dR(M
∗)∨ and DK

dR(M)
0
−→∼ tM∗(K )∨.
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We remark that, as in the étale case, we have

H1
ϕ,γ (M)e = Ker(H1

ϕ,γ (M)→ H1
ϕ,γ (M[1/t]))

and

H1
ϕ,γ (M) f = Ker(H1

ϕ,γ (M)→ H(ϕ),1
γ (M[1/t]))

under the assumption that M is de Rham.

Proposition 2.24. Let L = A be a finite extension of Qp, and let M be a de Rham
(ϕ, 0)-module over RL(πK ). Then H1

ϕ,γ (M) f is the orthogonal complement of
H1
ϕ,γ (M

∗) f with respect to the Tate duality pairing

〈−,−〉 : H1
ϕ,γ (M

∗)×H1
ϕ,γ (M)→ L .

Proof. We remark that we have dimL H1
ϕ,γ (M) f = dimL(tM(K ))+ dimL H0

ϕ,γ (M)
by the bottom exact sequence of (13). Using this formula for M, M∗, it is easy to
check that we have dimL H1

ϕ,γ (M) f +dimL H1
ϕ,γ (M

∗) f = dimL H1
ϕ,γ (M) under the

assumption that M is de Rham. Hence, it suffices to show that we have 〈x, y〉=0 for
any x ∈H1

ϕ,γ (M
∗) f and y ∈H1

ϕ,γ (M) f by comparing the dimensions. By definition
of H1

ϕ,γ (−) f , this claim follows from Lemma 2.25 below. �

Let M be a (ϕ, 0)-module over RA(πK ) (we don’t need to assume that M is
de Rham). Using the isomorphism j2 : DK

cris(M
∗)−→∼ H(ϕ),0

γ (M∗[1/t]), define an
A-bilinear pairing

h(−,−) : (DK
cris(M

∗)⊕ DK
dR(M

∗))× (H(ϕ),1
γ (M[1/t])⊕H1

γ (D
+

dif(M)))

→ H(ϕ),1
γ (M∗⊗M[1/t])⊕H1

γ (Ddif(M∗⊗M))

by

h((x, y), ([z], [w])) := ([ j2(x)⊗ z], [y⊗w]).

Lemma 2.25. For (x, y) ∈ DK
cris(M

∗)⊕ DK
dR(M

∗) and z ∈ H1
ϕ,γ (M), we have

f2(h((x, y), g(z)))= (exp f,M∗(x)+ expM∗(y))∪ z ∈ H2
ϕ,γ (M

∗
⊗M),

where

g : H1
ϕ,γ (M)→ H(ϕ),1

γ (M)⊕H1
γ (D

+

dR(M))

is induced by d3 and

f2 : H(ϕ),1
γ (M∗⊗M[1/t])⊕H1

γ (Ddif(M∗⊗M))→ H2
ϕ,γ (M

∗
⊗M)

is the second boundary map of the bottom exact triangle of Proposition 2.21.
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Proof. The equality expM∗(y)∪z= f2(h((0, y), g(z))), y∈ DK
dR(M

∗), z∈H1
ϕ,γ (M),

is proved in Lemma 2.13 of [Nakamura 2014a]. Hence, it suffices to show the
equality

exp f,M∗(x)∪ z = f2(h((x, 0), g(z)))

for x ∈ DK
cris(M

∗), whose proof is also just a diagram chase similar to the proof of
Proposition 2.23, hence we omit the proof. �

Finally, we compare our exponential map with the Bloch–Kato exponential map
for p-adic representations V. Here, we assume that A =Qp for simplicity. We can
do the same things for any L = A a finite Qp-algebra.

We want to compare the diagram (3) for V with the diagram (13) for M= Drig(V ).
More generally, as in §2.4 of [Nakamura 2014a], we compare a similar diagram
defined below for a B-pair W = (We,W+dR) with the diagram (13) for the associated
(ϕ, 0)-module Drig(W ). For the definitions of B-pairs and the definition of the
functor W 7→ Drig(W ), which gives an equivalence between the category of B-pairs
and that of (ϕ, 0)-modules over R(πK ), see [Nakamura 2014a, §2.5; Berger 2008a].

Let W = (We,W+dR) be a B-pair for K. Put Wcris := Bcris ⊗Be We, which is
naturally equipped with an action of ϕ. Since we have an exact sequence

0→ Bϕ=1
cris → Bcris

1−ϕ
−−→ Bcris→ 0,

we have a natural quasi-isomorphism (the vertical arrows) between the following
two complexes of GK -modules concentrated in degree [0, 1]:[

We⊕W+dR
(x,y)7→x−y
−−−−−−→ WdR

]y(x,y) 7→(x,y) yx 7→(0,x)[
Wcris⊕W+dR

(x,y) 7→((1−ϕ)x,x−y)
−−−−−−−−−−−−→ Wcris⊕WdR

]
Put

C •cont(GK ,W ) := Cone
(
C •cont(GK ,We)⊕C •cont(GK ,W+dR)→ C •cont(GK ,WdR)

)
[−1]

and

C •cont(GK ,W )′ := Cone
(
C •cont(GK ,Wcris)⊕C •cont(GK ,W+dR)

→ C •cont(GK ,Wcris)⊕C •cont(GK ,WdR)
)
[−1].

We identify

Hi (K ,W ) := Hi (C •cont(GK ,W ))= Hi (C •cont(GK ,W )′)

by the above quasi-isomorphism. Put DK
cris(W ) := H0(K ,Wcris), DK

dR(W ) :=

H0(K ,WdR), and DK
dR(W )i := DK

dR(W )∩ t i W+dR for i ∈ Z. Taking the cohomology
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of the mapping cones, we obtain the similar diagram with exact rows

0−→ H0(K ,W )
x 7→x
−−→ DK

cris(W )ϕ=1 x 7→x̄
−−→ tW (K )

expW
−−→ H1

e(K ,W ) −→ 0yid

yx 7→x
yx 7→(0,x)

yx 7→x

0−→ H0(K ,W )
x 7→x
−−→ DK

cris(W )
f
−→

DK
cris(W )
⊕ tW (K )

g
−→ H1

f (K ,W )−→ 0

(15)

with
f (x, y)= ((1−ϕ)x, x̄) and g = exp f,W ⊕ expW .

By definition, it is clear that the diagram (15) for the associated B-pair W (V ) :=
(Be⊗Qp V, B+dR⊗Qp V ) is canonically isomorphic to the diagram (3) for V defined
by Bloch–Kato.

Our comparison result is the following.

Proposition 2.26. (1) We have the following functorial isomorphisms:

(i) Hi (K ,W )−→∼ Hi
ϕ,γ (Drig(W )),

(ii) DK
dR(W ) j

−→∼ DK
dR(Drig(W )) j for j ∈ Z,

(iii) DK
cris(W )−→∼ DK

cris(Drig(W )).

(2) The isomorphisms in (1) induce an isomorphism from the diagram (15) for W
to the diagram (13) for Drig(W ).

Proof. We have already proved (i), (ii) of (1) and the comparison of the top
exact sequence in (15) for W with that in (13) for Drig(W ); see Theorem 2.21 of
[Nakamura 2014a] or the references in the proof of this theorem.

Moreover, the isomorphism (iii) may be well known to the experts, but we give
a proof of it since we couldn’t find suitable references. In this proof, we freely use
the notation in §2.5 of [Nakamura 2014a] or in [Berger 2008a]; please see these ref-
erences. We first note that the inclusion (B̃+rig[1/t]⊗Be We)

GK ↪→ DK
cris(W ) induced

by the natural inclusion B̃+rig :=
⋂

n≥0 ϕ
n(B+cris) ↪→ B+cris is an isomorphism since

DK
cris(W ) is a finite-dimensional Qp-vector space on which ϕ acts as an automor-

phism. Moreover, in the same way as the proof of Proposition 3.4 of [Berger 2002],
we can show that the natural inclusion (B̃+rig[1/t]⊗Be We)

GK ↪→ (B̃†
rig[1/t]⊗Be We)

GK

is also an isomorphism. Since we have

B̃†
rig[1/t]⊗Be We = B̃†

rig[1/t]⊗R(πK )[1/t] Drig(W )[1/t]

by definition of Drig(W ), it suffices to show that the natural inclusion

DK
cris(Drig(W )) ↪→

(
B̃†

rig[1/t]⊗R(πK )[1/t] Drig(W )[1/t]
)GK
=: D0

is an isomorphism. Moreover, it suffices to show that D0 ⊆ Drig(W )[1/t]. This
claim is proved as follows. Define R(πK ) ⊗F D0 ⊆ B̃†

rig ⊗F D0, which are
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(ϕ, 0)-modules over R(πK ) (resp. (ϕ,GK )-modules over B̃†
rig). Then, by Théorème

1.2 of [Berger 2009], the natural map

B̃†
rig⊗F D0→ B̃†

rig[1/t]⊗R(πK )[1/t] Drig(W )[1/t] : a⊗ x 7→ a · x

(which is actually an inclusion) of (ϕ,GK )-modules factors through R(πK )⊗F D0→

Drig(W )[1/t]. In particular we have D0 ⊆ Drig(W )[1/t], which proves the claim.
We next prove that the bottom exact sequence in (15) for W is isomorphic to that

in (13) for Drig(W ) by the isomorphisms in (1) of this proposition. Since the other
commutativities are clear, or were already proved in Theorem 2.21 of [Nakamura
2014a], it suffices to show that the following diagram commutes:

DK
cris(Drig(W ))

exp f,Drig(W )

−−−−−−→ H1
ϕ,γ (Drig(W ))y∼ y∼

DK
cris(W )

exp f,W
−−−→ H1(K ,W )

(16)

In the same way as the proof of Theorem 2.21 of [Nakamura 2014a], we assume
that 1= {1}, and using the canonical identifications

H1(K ,W )−→∼ Ext1(B,W ), H1
ϕ,γ (Drig(W ))−→∼ Ext1(R(πK ), Drig(W ))

(where we denote by B = (Be, B+dR) the trivial B-pair). It suffices to show that,
for a ∈ DK

cris(Drig(W )), the extension corresponding to exp f,Drig(W )(a) is sent
to the extension corresponding to exp f,W (a) by the inverse functor W (−) of
Drig(−). We prove this claim as follows. Take n ≥ 1 sufficiently large such
that a ∈ (D(n)

rig (W )[1/t])0K. Take ã ∈ D(n)
rig [1/t] satisfying the condition in (2) of

Proposition 2.23. Then, by (2) of Proposition 2.23, the extension Da corresponding
to exp f,Drig(W )(a) is written by[

0→ Drig(W )
x 7→(x,0)
−−−−→ Drig(W )⊕R(πK )e

(x,ye) 7→y
−−−−→R(πK )→ 0

]
such that

ϕ((x, ye))= (ϕ(x)+ϕ(y)((ϕ− 1)ã+ϕn(a)), ϕ(y)e)
and

γ ((x, ye))= (γ (x)+ γ (y)(γ − 1)ã, γ (y)e).

(Here, we remark that there is a mistake in [Nakamura 2014a]; in the proof of
Theorem 2.21 of [Nakamura 2014a], Da should be defined by

ϕ((x, ye))= (ϕ(x)+ϕ(y)(ϕ− 1)ã, ϕ(y)e)
and

γ ((x, ye))= (γ (x)+ γ (y)(γ − 1)ã, γ (y)e).)
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On the other hand, by definition of exp f,W , the extension

Wa :=
(
We,a,W+dR,a :=W+dR⊕ B+dRedR

)
corresponding to exp f,W (a) is defined by

g(x, yedR)= (g(x), g(y)edR)

for x ∈W+dR, y ∈ B+dR, g ∈ GK , and We,a is defined as the kernel of the surjection

Wcris,a :=Wcris⊕Bcrisecris→Wcris,a : (x, yecris) 7→ ((ϕ−1)x+ϕ(y)a, (ϕ−1)yecris)

on which GK acts by g(ecris) = ecris (actually, this is equal to the kernel of the
surjection

Wrig,a :=Wrig⊕B̃+rig[1/t]ecris→Wrig,a :(x,yecris) 7→((ϕ−1)x+ϕ(y)a,(ϕ−1)yecris),

where we define Wrig := B̃+rig[1/t]⊗Be We), and the isomorphism BdR⊗Be We,a −→
∼

BdR⊗B+dR
W+dR is defined by

BdR⊗Be We,a = BdR⊗Bcris Wcris,a
(x,yecris)7→(x,yedR)
−−−−−−−−−→ BdR⊗B+dR

W+dR.

Then, by definition of the functor Drig(−) in §2.2 of [Berger 2008a] (where the
notation D(−) is used), B̃†,rn

rig ⊗R(n)(πK )
D(n)

rig (Wa) is equal to{
x ∈ B̃†,rn

rig [1/t]⊗Be We,a | ιm(x) ∈W+dR,a for any m ≥ n
}
. (17)

Since we have

B̃†,rn
rig [1/t]⊗Be We,a = B̃†,rn

rig [1/t]⊗B̃+rig[1/t]Wrig,a,

and ϕ−m(ecris)= ecris−
∑m

k=1 ϕ
−k(a) for m ≥ 1 and we have ιn+k ◦ϕ

n
= ϕ−k, it is

easy to see that the group (17) is equal to

B̃†,rn
rig ⊗R(n)(πK )

D(n)
rig (W )⊕ B̃†,rn

rig (ã+ϕ
n(ecris)),

which is easily seen to be isomorphic to B̃†,rn
rig ⊗R(n)(πK )

D(n)
a as a (ϕ,GK )-module.

Therefore, we obtain the isomorphism

Drig(Wa)−→
∼ Da

as an extension by Théorème 1.2 of [Berger 2009], which proves the proposition. �

3. Local ε-conjecture for (ϕ, 0)-modules over the Robba ring

From now on, we assume that K =Qp, and we freely omit the notation Qp, i.e.,
we use the notation 0, RA, DdR(M), Dcris(M), tM , . . . instead of 0Qp , RA(πQp),
DQp

dR (M), DQp
cris(M), tM(Qp), . . . . Moreover, since Kato’s and our conjectures are
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formulated after fixing a Zp-basis ζ = {ζpn }n≥0 of Zp(1), we also fix a parameter
π := πζ of RA and let t = log(1+π) as in Notation 2.2.

In this section, we formulate a conjecture which is a natural generalization of
Kato’s (p-adic) local ε-conjecture, where the main objects were p-adic or torsion
representations of GQp , for (ϕ, 0)-modules over the relative Robba ring RA. Since
the article [Kato 1993b], in which the conjecture was stated, remains unpublished,
and since the compatibility of our conjecture with his conjecture is an important
part of our conjecture, here we also recall his original conjecture.

3A. Determinant functor. Kato’s and our conjectures are formulated using the
theory of the determinant functor. In this subsection, we briefly recall this theory
following [Knudsen and Mumford 1976] and §2.1 of [Kato 1993a].

Let R be a commutative ring. We define a category PR whose objects are
pairs (L , r), where L is an invertible R-module and r : Spec(R)→ Z is a locally
constant function, and whose morphisms are defined by MorPR ((L , r), (M, s)) :=
IsomR(L ,M) if r = s, and empty otherwise. We call the objects of this category
graded invertible R-modules. The category PR is equipped with the structure of
a (tensor) product defined by (L , r)� (M, s) := (L ⊗R M, r + s) with the natural
associativity constraint and the commutativity constraint

(L , r)� (M, s)−→∼ (M, s)� (L , r) : l⊗m 7→ (−1)rsm⊗ l.

From now on, we always identify (L , r)�(M, s)= (M, s)�(L , r) by this constraint
isomorphism. The unit object for the product is 1R := (R, 0). For each (L , r), set
L∨ := HomR(L , R). Then (L , r)−1

:= (L∨,−r) becomes an inverse of (L , r) by
the isomorphism i(L ,r) : (L , r)� (L∨,−r)−→∼ 1R induced by the evaluation map
L ⊗R HomR(L , R) −→∼ R : x ⊗ f 7→ f (x). We remark that we have i(L ,r)−1 =

(−1)r i(L ,r). For a ring homomorphism f : R→ R′, one has a base change functor
(−)⊗R R′ : PR → PR′ defined by (L , r) 7→ (L , r)⊗R R′ := (L ⊗R R′, r ◦ f ∗),
where f ∗ : Spec(R′)→ Spec(R).

For a category C, denote by (C, is) the category whose objects are the same as C
and whose morphisms are all isomorphisms in C. Define a functor

DetR : (Pfg(R), is)→ PR : P 7→ (detR P, rkR P),

where rkR : Pfg(R)→ Z≥0 is the R-rank of P and detR P :=
∧rkR P

R P. Note that
DetR(0)= 1R is the unit object. For a short exact sequence 0→ P1→ P2→ P3→ 0
in Pfg(R), we always identify DetR(P1)�DetR(P3)with DetR(P2) by the functorial
isomorphism (put ri := rkR Pi )

DetR(P1)�DetR(P3)−→
∼ DetR(P2) (18)
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induced by

(x1 ∧ · · · ∧ xr1)⊗ (xr1+1 ∧ · · · ∧ xr2) 7→ x1 ∧ · · · ∧ xr1 ∧ xr1+1 ∧ · · · ∧ xr2,

where x1, . . . , xr1 (resp. xr1+1, . . . , xr2) are local sections of P1 (resp. P3) and
xi ∈ P2 (r1+ 1≤ i ≤ r2) is a lift of xi ∈ P3.

For a bounded complex P• in Pfg(R), define DetR(P•) ∈ PR by

DetR(P•) :=�i∈Z DetR(P i )(−1)i .

For a short exact sequence 0→ P•1 → P•2 → P•3 → 0 of bounded complexes in
Pfg(R), we define a canonical isomorphism

DetR(P•1)�DetR(P•3)−→∼ DetR(P•2) (19)

by applying the isomorphism (18) to each exact sequence 0→ P i
1→ P i

2→ P i
3→ 0.

Moreover, if P• is an acyclic bounded complex in Pfg(R), we can define a canonical
isomorphism

hP• : DetR(P•)−→∼ 1R, (20)

which is characterized by the following properties: when P• :=
[
P i f
→ P i+1

]
is

concentrated in degree [i, i + 1], we define it as the composite

DetR(P•)= DetR(P i )�DetR(P i+1)−1

Det( f )�id
−−−−−→DetR(P i+1)�DetR(P i+1)−1 δDetR (Pi+1)

−−−−−→ 1R

when i is even (when i is odd, we similarly define it using f −1
: P i+1

−→∼ P i ), and
for a short exact sequence 0→ P•1→ P•2→ P•3→ 0 of acyclic bounded complexes
of Pfg(R), we have the commutative diagram

DetR(P•1)�DetR(P•3)
∼
−→ DetR(P•2)yhP•1

�hP•3

yhP•2

1R � 1R
=
−→ 1R

The theory of determinants of [Knudsen and Mumford 1976] enables us to uniquely
(up to canonical isomorphism) extend DetR(−) to a functor

DetR : (Db
perf(R), is)→ PR

such that the isomorphism (19) extends to the following situation: for any exact
sequence 0→ P•1 → P•2 → P•3 → 0 of complexes of R-modules such that each
P•i is quasi-isomorphic to a bounded complex in Pfg(R), there exists a canonical
isomorphism

DetR(P•1)�DetR(P•3)−→∼ DetR(P•2). (21)
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By this property, if P• ∈ Db
perf(R) satisfies Hi (P•)[0] ∈ Db

perf(R) for any i , there
exists a canonical isomorphism

DetR(P•)−→∼ �i∈Z DetR(Hi (P•)[0])(−1)i .

For (L , r)∈PR , define (L , r)∨ := (L∨, r)∈PR , which induces an antiequivalence
(−)∨ :PR−→

∼ PR . For P ∈ Pfg(R), we have a canonical isomorphism DetR(P∨)−→∼

DetR(P)∨ defined by the isomorphism

detR(P∨)−→∼ (detR P)∨ :

f1 ∧ · · · ∧ fr 7→

[
x1 ∧ · · · ∧ xr 7→

∑
σ∈Sr

sgn(σ ) f1(xσ(1)) · · · fr (xσ(r))
]
.

This naturally extends to (Db
perf(R), is), i.e., for any P• ∈ Db

perf(R), there exists a
canonical isomorphism

DetR(R HomR(P•, R))−→∼ DetR(P•)∨. (22)

3B. Fundamental lines. Both Kato’s conjecture and ours concern the existence of
a compatible family of canonical trivializations of some graded invertible modules
defined by using the determinants of the Galois cohomologies of Galois representa-
tions or (ϕ, 0)-modules. We call these graded invertible modules the fundamental
lines, which we explain in this subsection.

Kato’s conjecture concerns pairs (3, T ) such that:

(i) 3 is a noetherian semilocal ring which is complete with respect to the m3-adic
topology (where m3 is the Jacobson radial of 3) such that 3/m3 is a finite
ring with order a power of p.

(ii) T is a 3-representation of GQp , i.e., a finite projective 3-module equipped
with a continuous 3-linear action of GQp .

Our conjecture concerns pairs (A,M) such that:

(i) A is a Qp-affinoid algebra.

(ii) M is a (ϕ, 0)-module over RA.

For each pair (B, N )= (3, T ) or (A,M) as above, we’ll define graded invertible
3-modules 1B,i (N ) ∈ PB for i = 1, 2 as below, and the fundamental line will be
defined as 1B(N ) :=1B,1(N )�1B,2(N ) ∈ PB .

We first define 13,i (T ) for (3, T ). Denote by C •cont(GQp , T ) the complex of
continuous cochains of GQp with values in T. It is known that C •cont(GQp , T ) ∈
D−(3) is contained in Db

perf(3) and that it satisfies properties similar to (1), (2),
(3), (4) in Theorem 2.15. In particular, we can define a graded invertible 3-module

13,1(T ) := Det3(C •cont(GQp , T ))
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(whose degree is −rT := −rk3 T by the Euler–Poincaré formula) which satisfies
the following properties:

(i) For each continuous homomorphism f : 3→ 3′, there exists a canonical
3′-linear isomorphism

13,1(T )⊗33′ −→∼ 13′,1(T ⊗33′).

(ii) For each exact sequence 0→ T1→ T2→ T3→ 0 of 3-representations of GQp ,
there exists a canonical 3-linear isomorphism

13,1(T1)�13,1(T3)−→
∼ 13,1(T2).

(iii) The Tate duality C •cont(GQp , T )−→∼ R Hom3(C •cont(GQp , T ∗),3)[−2] and the
isomorphism (22) induce a canonical 3-linear isomorphism

13,1(T )−→∼ 13,1(T ∗)∨.

We next define 13,2(T ) as follows. For a ∈3×, we define

3a :=
{

x ∈W (Fp) ⊗̂Zp 3 | (ϕ⊗ id3)(x)= (1⊗ a)x
}
,

which is an invertible 3-module. In the same way as in Theorem 2.8, for any rank-
one 3-representation T0, there exists a unique (up to isomorphism) pair (δT0,LT0),
where δT0 : Q×p → 3× is a continuous homomorphism and LT0 is an invertible
3-module such that T0 −→

∼ 3(δ̃T0)⊗3 LT0 , where we denote by δ̃T0 : G
ab
Qp
→ 3×

the continuous character which satisfies δ̃T0 ◦ recQp = δT0 . Under these definitions,
we define a(T ) := δdet3 T (p) ∈3×, an invertible 3-module

L3(T ) :=3a(T )⊗3 det3 T

and a graded invertible 3-module

13,2(T ) := (L3(T ), rT ).

Since we have a canonical isomorphism 3a1 ⊗33a2 −→
∼ 3a1a2 : x ⊗ y 7→ xy for

any a1, a2 ∈3, 13,2(T ) also satisfies the following similar properties:

(i) For f :3→3′, there exists a canonical isomorphism

13,2(T )⊗33′ −→∼ 13,2(T ⊗33′).

(ii) For 0→ T1→ T2→ T3→ 0, there exists a canonical isomorphism

13,2(T1)�13,2(T3)−→
∼ 13,2(T2).

(iii) Let rT be the rank of T. Then there exists a canonical isomorphism

13,2(T )−→∼ 13,2(T ∗)∨� (3(rT ), 0)
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which is induced by the product of the isomorphisms

3δdet3 T (p) −→
∼ (3δdet3 T∗ (p))

∨
: x 7→ [y 7→ y⊗ x]

(note that we have

3δdet3 T∗ (p)⊗3δdet3 T (p) −→
∼ 3 : y⊗ x 7→ yx

since we have δdet3 T (p) = δdet3 T ∗(p)−1) and the isomorphism det3 T −→∼

det3(T ∗)∨⊗33(rT ) induced by the canonical isomorphism T −→∼ (T ∗)∨(1) :
x 7→ [y 7→ y(x)⊗ e−1]⊗ e1.

Finally, we define

13(T ) :=13,1(T )�13,2(T ) ∈ PB .

Then 13(T ) also satisfies properties similar to (i), (ii) for 13,i (T ) and

(iii) there exists a canonical isomorphism

13(T )−→∼ 13(T ∗)∨� (3(rT ), 0).

Next, we define the fundamental line 1A(M) for (ϕ, 0)-modules M over RA.
Let A be a Qp-affinoid algebra, and let M be a (ϕ, 0)-module over RA. By
our Theorem 2.15 (Kedlaya–Pottharst–Xiao), we can define a graded invertible
A-module

1A,1(M) := DetA C •ϕ,γ (M) ∈ PA

which satisfies properties similar to (i), (ii), (iii) for 13,1(T ). We next define
3A,2(M) as follows. By our Theorem 2.8 (Kedlaya–Pottharst–Xiao), there exists a
unique (up to isomorphism) pair (δdetRA M ,LdetRA M), where δdetRA M :Q

×
p → A×

is a continuous homomorphism and LdetRA M is an invertible A-module such that
detRA M −→∼ RA(δdetRA M)⊗RA LdetRA M . Then we define an A-module

LA(M) :=
{

x ∈ detRA M |ϕ(x)= δdetRA M(p)x, γ (x)= δdetRA M(χ(γ ))x (γ ∈0)
}
,

which is an invertible A-module since it is isomorphic to LdetRA M , and we define a
graded invertible A-module

1A,2(M) := (LA(M), rM) ∈ PA.

By definition, it is easy to check that 1A,2(M) satisfies properties similar to (i), (ii),
(iii) for 13,2(T ). Finally, we define a graded invertible A-module 1A(M), which
we call the fundamental line, by

1A(M) :=1A,1(M)�1A,2(M) ∈ PA,

which also satisfies properties similar to (i), (ii), (iii) for 13(T ).
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More generally, let X be a rigid analytic space over Qp, and let M be a (ϕ, 0)-
module over RX . By the base change property (i) of1A(M), we can also functorially
define a graded invertible OX -module

1X (M) ∈ POX

on X (we can naturally generalize the notion of graded invertible modules in this
setting) such that there exists a canonical isomorphism

0(Max(A),1X (M))−→∼ 1A(M |Max(A))

for any affinoid open subset Max(A)⊆ X.
We next compare Kato’s fundamental line 13(T ) with our fundamental line

1A(M). Let f : 3 → A be a continuous ring homomorphism, where 3 is
equipped with m3-adic topology and A is equipped with p-adic topology. Let
T be a 3-representation of GQp . Let us denote by M := Drig(T ⊗3 A) the
(ϕ, 0)-module over RA associated to the A-representation T ⊗3 A of GQp . By
Theorem 2.8 of [Pottharst 2013], there exists a canonical quasi-isomorphism
C •cont(GQp , T )⊗L

3 A −→∼ C •ϕ,γ (M), and this induces an A-linear isomorphism

13,1(T )⊗3 A −→∼ 1A,1(M).

We also have the following isomorphism.

Lemma 3.1. In the above situation, there exists a canonical A-linear isomorphism

13,2(T )⊗3 A −→∼ 1A,2(M).

Proof. By definition, it suffices to show the lemma when T is of rank one. Hence, we
may assume that T =3(δ̃)⊗3L for a continuous homomorphism δ :Q×p →3× and
an invertible 3-module L (where δ̃ is the character of Gab

Qp
such that δ̃ ◦ recQp = δ).

Moreover, since we have a canonical isomorphism

Drig((3(δ̃)⊗3 L)⊗3 A)−→∼ Drig(3(δ̃)⊗3 A)⊗A (L⊗3 A)

by the exactness of Drig(−), it suffices to show the lemma when L=3.
Since the image of HQ := Gal(Qp/Qp,∞) in Gab

Qp
is the closed subgroup which

is topologically generated by recQp(p), we have

Drig(3(δ̃)⊗3 A)= (W (Fp) ⊗̂Zp 3(δ̃))
recQp (p)=1

⊗3RA,

by definition of Drig(−), and the right-hand side is isomorphic to RA( f ◦δ). Hence,
we obtain

LA(M)=
(
(W (Fp) ⊗̂Zp 3(δ̃))

recQp (p)=1
⊗3RA

)ϕ= f (δ(p)),0= f ◦δ◦χ

=
(
W (Fp) ⊗̂Zp 3(δ̃)

)recQp (p)=1
⊗3 A = L3(T )⊗3 A,
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which proves the lemma. �

Taking the products of these two canonical isomorphisms, we obtain the following
corollary.

Corollary 3.2. In the above situation, there exists a canonical isomorphism

13(T )⊗3 A −→∼ 1A(M).

Example 3.3. The typical example of the above base change property is the follow-
ing. For 3 as above, let us denote by X the associated rigid analytic space. More
precisely, X is the union of affinoids Max(An) for n≥1, where An is the Qp-affinoid
algebra defined by An :=3[m

n
3/p]∧ [1/p] (for a ring R, denote by R∧ the p-adic

completion). Let T be a 3-representation of GQp , and let Mn := Drig(T ⊗3 An).
Since Mn is compatible with the base change with respect to the canonical map
An → An+1 for any n, {Mn}n≥1 defines a (ϕ, 0)-module M over RX . Then the
canonical isomorphism 13(T )⊗3 An −→

∼ 1An (Mn) defined in the above corollary
glues to an isomorphism

13(T )⊗3OX −→
∼ 1X (M).

Moreover, using the terminology of coadmissible modules [Schneider and Teitel-
baum 2003], we can define this comparison isomorphism without using sheaves. Let
us define A∞ := 0(X,OX ) and 1A∞(M∞) := lim

←−−n 1An (Mn). Taking the limit of
the isomorphism 13(T )⊗3 An −→

∼ 1An (Mn) we obtain an A∞-linear isomorphism

13(T )⊗3 A∞ −→∼ 1A∞(M∞).

Then the theory of coadmissible modules [Schneider and Teitelbaum 2003, Corol-
lary 3.3] says that to consider the isomorphism 13(T )⊗3OX −→

∼ 1X (M) is the
same as to consider the isomorphism 13(T )⊗3 A∞ −→∼ 1A∞(M∞). In fact, we
will frequently use the latter object 1A∞(M∞) in Section 4.

3C. de Rham ε-isomorphism. In this subsection, we assume that L = A is a finite
extension of Qp. We define a trivialization

εdR
L ,ζ (M) : 1L −→

∼ 1L(M),

which we call the de Rham ε-isomorphism, for each de Rham (ϕ, 0)-module M
over RL and for each Zp-basis ζ = {ζpn }n≥0 of Zp(1).

Let M be a de Rham (ϕ, 0)-module over RL . We first recall the definition of
Deligne and Langlands’ [Deligne 1973] and Fontaine and Perrin-Riou’s [1994]
ε-constant associated to M.
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We first briefly recall the theory of ε-constants of Deligne and Langlands [Deligne
1973]. Let WQp ⊆ GQp be the Weil group of Qp. Let E be a field of character-
istic zero, and let V = (V, ρ) be an E-representation of WQp , i.e., V is a finite-
dimensional E-vector space equipped with a smooth E-linear action ρ of WQp .
Let us denote by V∨ the dual (HomE(V, E), ρ∨) of V. Denote by E(|x |) the
rank-one E-representation of WQp corresponding to the continuous homomorphism
|x | : Q×p → E× : p 7→ 1/p, a 7→ 1(a ∈ Z×p ) via the local class field theory. Put
V∨(|x |) := V∨⊗E E(|x |). Assume that E is a field which contains Q(ζp∞). The
definition of the ε-constants depends on the choice of an additive character of Qp

and a Haar measure on Qp. In this article, we fix the Haar measure dx on Qp for
which Zp has measure 1. For each Zp-basis ζ = {ζpn }n≥0 of Zp(1), we define an
additive character ψζ :Qp→ E× such that ψζ (1/pn) := ζpn for n≥ 1. In this article,
we don’t recall the precise definition of ε-constants, but we recall here some of their
basic properties under the fixed additive character ψζ and the fixed Haar measure dx .
We can attach a constant ε(V, ψζ , dx) ∈ E× for each V as above which satisfies
the following properties (we let ε(V, ζ ) := ε(V, ψζ , dx) for simplicity):

(1) For each exact sequence 0 → V1 → V2 → V3 → 0 of finite-dimensional
E-vector spaces with continuous actions of WQp , we have

ε(V2, ζ )= ε(V1, ζ )ε(V3, ζ ).

(2) For each a ∈ Z×p , we define ζ a
:= {ζ a

pn }n≥1. Then we have

ε(V, ζ a)= detE V (recQp(a))ε(V, ζ ).

(3) ε(V, ζ )ε(V∨(|x |), ζ−1)= 1.

(4) ε(V, ζ )= 1 if V is unramified.

(5) If dimE V equals 1 and corresponds to a locally constant homomorphism
δ :Q×p → E× via the local class field theory, then

ε(V, ζ )= δ(p)n(δ)
( ∑

i∈(Z/pn(δ)Z)×

δ(i)−1ζ i
pn(δ)

)
,

where n(δ)≥ 0 is the conductor of δ, i.e., the minimal integer n ≥ 0 such that
δ|(1+pnZp)∩Z×p

= 1 (then δ|Z×p factors through (Z/pn(δ)Z)×).

For a Weil–Deligne representation W = (V, ρ, N ) of WQp defined over E , we set

ε(W, ζ ) := ε((V, ρ), ζ ) · detE
(
−Frp | V L p/(V N=0)Ip

)
,

which also satisfies
ε(W, ζ ) · ε(W∨(|x |), ζ−1)= 1.
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Next, we define the ε-constant for each de Rham (ϕ, 0)-module over RL fol-
lowing Fontaine and Perrin-Riou [1994]. Let M be a de Rham (ϕ, 0)-module
over RL . Then M is potentially semistable by the result of Berger (for exam-
ple, see Théorème III.2.4 of [Berger 2008b]) based on Crew’s conjecture, which
was proved by André, Mebkhout, and Kedlaya. Hence, we can define a filtered
(ϕ, N ,GQp)-module Dpst(M) :=

⋃
K⊆Qp

DK
st (M |K ) which is a free (Qur

p ⊗Qp L)-
module whose rank is rM , where K runs through all the finite extensions of Qp

and we define DK
st (M |K ) := (RL(πK )[log(π), 1/t] ⊗RL M)0K=1. Set Dst(M) :=

DQp
st (M). Following Fontaine, one can define a Weil–Deligne representation

W (M) := (Dpst(M), ρ, N ) of WQp defined over Qur
p ⊗Qp L such that N is the

natural one and ρ(g)(x) := ϕv(g)(g · x) for g ∈ WQp and x ∈ W (M), where we
denote by g · x the natural action of GQp on W (M) and

v :WQp � W ab
Qp

rec−1
Qp

−−→Q×p
vp
−→Z.

Taking the base change of W (M) by the natural inclusion Qur
p ⊗Qp L ↪→Qab

p ⊗Qp L ,
and decomposing Qab

p ⊗Qp L −→∼
∏
τ Lτ into a finite product of fields Lτ , we obtain

a Weil–Deligne representation W (M)τ of WQp defined over Lτ for each τ . Hence,
we can define the ε-constant ε(W (M)τ , τ (ζ )) ∈ L×τ , where τ(ζ ) is the image of ζ
in Lτ by the projection Qab

p ⊗Qp L→ Lτ . Then the product

εL(W (M), ζ ) := (ε(W (M)τ , τ (ζ )))τ ∈
∏
τ

L×τ

is contained in L×
∞
:= (Qp(ζp∞)⊗Qp L)× ⊆ (Qp(ζp∞)⊗Qp Qur

p ⊗Qp L)× since it is
easy to check that εL(W (M), ζ ) is fixed by 1⊗ϕ⊗ 1.

Using this definition, for each de Rham (ϕ, 0)-module M over RL , we construct
a trivialization εdR

L ,ζ (M) : 1L −→
∼ 1L(M) as follows. We will first define two

isomorphisms
θL(M) : 1L −→

∼ 1L ,1(M)�DetL(DdR(M))

and
θdR,L(M, ζ ) : DetL(DdR(M))−→∼ 1L ,2(M)

(we remark that θdR,L(M, ζ ) depends on the choice of ζ ), and then define εdR
L ,ξ (M)

as the composite

εdR
L ,ξ (M) : 1L

0L (M)·θL (M)
−−−−−−→1L ,1(M)�DetL(DdR(M))

id�θdR,L (M,ζ )
−−−−−−−→1L ,1(M)�1L ,2(M)=1L(M),

where 0L(M) ∈Q× is defined by

0L(M) :=
∏
r∈Z

0∗(r)−dimL gr−r DdR(M),
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where we set

0∗(r) :=
{
(r − 1)! (r ≥ 1),
(−1)r/(−r)! (r ≤ 0).

We first define θL(M) : 1L −→
∼ 1L ,1(M) � DetL(DdR(M)). By the result of

Section 2B, we have the exact sequence of L-vector spaces

0→ H0
ϕ,γ (M0)→ Dcris(M0)1

x 7→((1−ϕ)x,x̄)
−−−−−−−→ Dcris(M0)2⊕ tM0

exp f,M0
⊕ expM0

−−−−−−−−→H1
ϕ,γ (M0) f → 0 (23)

for M0 = M,M∗, where we let Dcris(M0)i = Dcris(M0) for i = 1, 2.
Using Tate duality, the de Rham duality

DdR(M)0 −→∼ t∨M∗ : x 7→ [ȳ 7→ [y, x]dR]

(here y ∈ DdR(M∗) is a lift of ȳ) and Proposition 2.24, we define a map

exp∗M∗ : H
1
ϕ,γ (M)/ f := H1

ϕ,γ (M)/H
1
ϕ,γ (M) f

x 7→[y 7→〈y,x〉]
−−−−−−−→H1

ϕ,γ (M
∗)∨f

exp∨M∗
−−→t∨M∗ −→∼ DdR(M)0

which is called the dual exponential map and was studied in §2.4 of [Nakamura
2014a]. Using this map, as the dual of the exact sequence (23) for M0 = M∗, we
obtain an exact sequence

0→ H1
ϕ,γ (M)/ f

exp∨f,M∗ ⊕ exp∗M∗
−−−−−−−−→ Dcris(M∗)∨2 ⊕ DdR(M)0

(∗)
−→Dcris(M∗)∨1 → H2

ϕ,γ (M)→ 0, (24)

where the map Dcris(M∗)∨2 → Dcris(M∗)∨1 in (∗) is the dual of (1−ϕ). Therefore,
as the composite of the exact sequences (23) for M0 = M and (24), we obtain the
exact sequence

0→ H0
ϕ,γ (M)→ Dcris(M)1

x 7→((1−ϕ)x,x̄)
−−−−−−−→ Dcris(M)2⊕ tM → H1

ϕ,γ (M)

→ Dcris(M∗)∨2 ⊕ DdR(M)0→ Dcris(M∗)∨1 → H2
ϕ,γ (M)→ 0. (25)

Applying the trivialization (20) to this exact sequence and using the canonical
isomorphisms

iDetL (Dcris(M)1) : DetL(Dcris(M)2)�DetL(Dcris(M)1)−1
−→∼ 1L ,

iDetL (Dcris(M∗)∨1 ) : DetL(Dcris(M∗)∨2)�DetL(Dcris(M∗)∨1)
−1
−→∼ 1L ,

and
DetL(D0

dR(M))�DetL(tM)−→
∼ DetL(DdR(M)),
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we obtain a canonical isomorphism

θL(M) : 1L −→
∼ 1L ,1(M)�DetL(DdR(M)).

Next, we define an isomorphism θdR,L(M, ζ ) :DetL(DdR(M))−→∼ 1L ,2(M). To
define this, we show the following lemma.

Lemma 3.4. Let {h1, h2, . . . , hrM } be the set of Hodge–Tate weights of M (with
multiplicity). Put hM :=

∑rM
i=1 hi . For any n ≥ n(M) such that εL(W (M), ζ ) ∈

Ln :=Qp(ζpn )⊗Qp L , the map

LL(M)→ Ddif,n(detRL M)= Ln((t))⊗ιn,R(n)
L
(detRL M)(n) :

x 7→
1

εL(W (M), ζ )
·

1
thM
⊗ϕn(x)

induces an isomorphism

fM,ζ : LL(M)−→∼ DdR(detRL M),

and doesn’t depend on the choice of n.

Proof. The independence of n follows from the definition of the transition map
Ddif,n(−) ↪→ Ddif,n+1(−).

We show that fM,ζ is an isomorphism. Comparing the dimensions, it suffices
to show that the image of the map in the lemma is contained in DdR(detRL M),
i.e., is fixed by the action of 0. Since we have εL(W (M), ζ )/εL(W (detRL M), ζ ) ∈
L×(⊆ L×

∞
), it suffices to show the claim when M is of rank one. We assume that

M is of rank one. By the classification of rank-one de Rham (ϕ, 0)-modules, there
exists a locally constant homomorphism δ̃ :Q×p → L× such that M −→∼ RL(δ̃ · xhM ).
The corresponding representation W (M) of WQp is given by the homomorphism
δ̃·|x |hM :Q×p → L× via the local class field theory. By the property (2) of ε-constants,
we have γ (εL(Dpst(M), ζ )) = δ̃(χ(γ ))εL(W (M), ζ ) for γ ∈ 0, which proves the
claim since we have γ (ϕn(x)) = δ̃(χ(γ ))χ(γ )hMϕn(x) for x ∈ LL(M), γ ∈ 0,
by definition. �

Since we have a canonical isomorphism DdR(detRL M) −→∼ detL DdR(M), the
isomorphism fM,ζ induces an isomorphism fM,ζ : 1L ,2(M) −→∼ DetL(DdR(M)).
We define the isomorphism θdR,L(M, ζ ) as the inverse

θdR,L(M, ζ ) := f −1
M,ζ : DetL(DdR(M))−→∼ 1L ,2(M).

Remark 3.5. The isomorphism fM,ζ , and hence the isomorphism θdR,L(M, ζ ),
depends on the choice of ζ. If we choose another Zp-basis of Zp(1) which can
be written as ζ a

:= {ζ a
pn }n≥0 for unique a ∈ Z×p , then fM,ζ a is defined using

εL(W (M), ζ a) and the parameter πζ a (see Remark 2.1) and ta := log(1+πζ a ). Since
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we have εL(W (M), ζ a)=det W (M)(recQp(a))εL(W (M), ζ ) and πζ a = (1+π)a−1
and ta = at , we have fM,ζ a = fM,ζ/δdetRL M(a), and hence we also have

θdR,L(M, ζ a)= δdetRL M(a) · θdR,L(M, ζ ),

and obtain
εdR

L ,ζ a (M)= δdetRL M(a) · εdR
L ,ζ (M).

Remark 3.6. Kato [1993b] and Fukaya and Kato [2006] defined their de Rham
ε-isomorphism εdR

L ,ζ (V )
′
: 1L −→

∼ 1L(V ) (using a different notation) for each
de Rham L-representation V of GQp using the original Bloch–Kato exponential
map. Using Proposition 2.26, we can compare our εdR

L ,ζ (Drig(V ))with their εdR
L ,ζ (V )

′

under the canonical isomorphism 1L(V )−→∼ 1L(Drig(V )) defined in Corollary 3.2.
We remark that ours and theirs are different since they used (in our notation) the
ε-constant εL((Dpst(V ), ρ), ζ ) associated to the representation (Dpst(V ), ρ) of WQp

instead of W (V ). Since one has

εL(W (V ), ζ )= εL((Dpst(V ), ρ), ζ ) · detL(−ϕ | Dst(V )/Dcris(V )),

the correct relation between ours and theirs is

εdR
L ,ζ (Drig(V ))= detL(−ϕ | Dst(V )/Dcris(V )) · εdR

L ,ζ (V )
′. (26)

Moreover, we insist that ours is the correct one, since we show in Lemma 3.7 below
that our εdR

L ,ζ (M) is compatible with exact sequences (but εdR
L ,ζ (V )

′ may not satisfy
this compatibility).

Finally in this subsection, we prove a lemma on the compatibility of the de Rham
ε-isomorphism with exact sequences and the Tate duality.

Lemma 3.7. (1) For any exact sequence 0→ M1→ M2→ M3→ 0, we have

εdR
L ,ζ (M2)= ε

dR
L ,ζ (M1)� ε

dR
L ,ζ (M3)

under the canonical isomorphism 1L(M2)−→
∼ 1L(M1)�1L(M3).

(2) One has the following commutative diagram of isomorphisms

1L(M)
can
−→1L(M∗)∨� (L(rM), 0)

εdR
L ,ζ−1 (M)

x yεdR
L ,ζ (M

∗)∨�[erM 7→1]

1L
can
−→ 1L � 1L

Proof. We first prove (1). The proof is identical to that of Proposition 3.3.8 of
[Fukaya and Kato 2006], but we give a proof for convenience of the readers. We
first remark that we have

0L(M) ·0L(M∗)= (−1)hM+dimL tM (27)
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since we have

0∗(r) ·0∗(1− r)=
{
(−1)r−1 (r ≥ 1),
(−1)r (r ≤ 0).

We next remark that one has the commutative diagram

1L
θL (M)
−−−→ 1L ,1(M)�DetL(M)

(−1)dimL tM

y ycan

1L
θL (M∗)∨
←−−−−1L ,1(M∗)∨�DetL(M∗)∨

(28)

in which the right vertical arrow is induced by the Tate duality, since one has the
commutative diagram

tM
−expM
−−−→ H1

ϕ,γ (M)
exp∗M∗
−−−→ DdR(M)0

x̄ 7→[y,7→[y,x]dR]

y x 7→[y 7→〈y,x〉]
y yx 7→[ȳ 7→[y,x]dR]

DdR(M∗)∨
(exp∗M )

∨

−−−−→ H1
ϕ,γ (M

∗)∨
(expM∗ )

∨

−−−−−→ (tM∗)
∨

Finally, we remark that one has the commutative diagram

DetL(M)
θdR,L (M,ζ−1)
−−−−−−−→ 1L ,2(M)

(−1)hM ·can

y ycan

DetL(M∗)∨

=DetL(M∗)∨�1L

θdR,L (M∗,ζ )∨�[erM 7→1]
←−−−−−−−−−−−−−1L ,2(M∗)∨� (L(rM), 0)

(29)

in which the vertical maps can are also defined by the duality, since we have

εL(W (V ), ζ−1) · εL(W (V ∗), ζ )= 1.

Then (1) follows from the commutative diagrams (27), (28) and (29).
We next prove (1). We first define an isomorphism

θL(M)′ : 1L −→
∼ 1L ,1(M)�DetL(DdR(M))

in the same way as θL(M) using the exact sequence

0→ H0
ϕ,γ (M)→ Dcris(M)1

x 7→((1−ϕ−1)x,x̄)
−−−−−−−−→ Dcris(M)2⊕ tM

exp f,M ⊕ expM
−−−−−−−→H1

ϕ,γ (M) f → 0 (30)

(we use ϕ−1 instead of ϕ) and (24), and define

θdR,L(M, ζ )′ : DetL(DdR(M))−→∼ 1L ,2(M)
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in the same way as θdR,L(M, ζ )′ using the constant

εL(W (M), ζ ) · detL(−ϕ | Dcris(M))= εL((Dpst(M), ρ), ζ ) · detL(−ϕ | Dst(M))

instead of εL(W (V ), ζ ). Since we have θL(M)′ = θL(M) · detL(−ϕ
−1
| Dcris(M)),

εdR
L ,ζ (M) can be defined using the triple (0L(M), θL(M)′, θdR,L(M, ζ )′) instead of
(0L(M), θL(M), θdR,L(M, ζ )).

Let 0→ M1→ M2→ M3→ 0 be an exact sequence as in (1). Since one has
0(M2) = 0(M1) · 0(M3), it suffices to show that both θL(−)

′ and θdR,L(−)
′ are

compatible with the exact sequence.
Since we have

εL((Dpst(M2), ρ), ζ )= εL((Dpst(M1), ρ), ζ ) · εL((Dpst(M3), ρ), ζ )

and

detL(−ϕ | Dst(M2))= detL(−ϕ | Dst(M1)) · detL(−ϕ | Dst(M3))

(since Dpst(−) and Dst(−) are exact for de Rham (ϕ, 0)-modules), the isomorphism
θdR,L(−)

′ is compatible with the exact sequence.
We remark that the functor Dcris(−) is not exact (in general) for de Rham (ϕ, 0)-

modules, but we have the exact sequence

0→ Dcris(M1)→ Dcris(M2)→ Dcris(M3)
(∗)
−→Dcris(M∗1 )

∨
→ Dcris(M∗2 )

∨
→ Dcris(M∗3 )

∨
→ 0

such that the boundary map (∗) satisfies the commutative diagram

Dcris(M3)
(∗)
−→ Dcris(M∗1 )

∨yϕ−1

yϕ∨
Dcris(M3)

(∗)
−→ Dcris(M∗1 )

∨

from which the compatibility of θL(−)
′ with the exact sequence follows, which

finishes the proof of the lemma. �

3D. Formulation of the local ε-conjecture. In this subsection, using the defini-
tions in the previous subsections, we formulate the following conjecture, which
we call the local ε-conjecture. This conjecture is a combination of Kato’s original
ε-conjecture for (3, T ) with our conjecture for (A,M). To state both situations at
the same time, we use the notation (B, N ) for (3, T ) or (A,M), and f : B→ B ′

for f :3→3′ or f : A→ A′.

Conjecture 3.8. We can uniquely define a B-linear isomorphism

εB,ζ (N ) : 1B −→
∼ 1B(N )



A generalization of Kato’s local 3-conjecture 365

for each pair (B, N ) as above and for each Zp-basis ζ of Zp(1) satisfying the
following conditions:

(i) Let f : B→ B ′ be a continuous homomorphism. Then we have

εB,ζ (N )⊗ idB ′ = εB ′,ζ (N ⊗B B ′)

under the canonical isomorphism 1B(N )⊗B B ′ −→∼ 1B ′(N ⊗B B ′).

(ii) Let 0→ N1→ N2→ N3→ 0 be an exact sequence. Then we have

εB,ζ (N1)� εB,ζ (N3)= εB,ζ (N2)

under the canonical isomorphism 1B(N1)�1B(N3)−→
∼ 1B(N2).

(iii) For any a ∈ Z×p , we have

εB,ζ a (N )= δdetB(N )(a) · εB,ζ (N ).

(iv) One has the following commutative diagram of isomorphisms:

1B(N )
can
−→1B(N ∗)∨� (L(rN ), 0)

εB,ζ−1 (N )
x yεB,ζ (N∗)∨�[erN 7→1]

1B
can
−→ 1B � 1B

(v) Let f :3→ A be a continuous homomorphism, and let M := Drig(T ⊗3 A) be
the associated (ϕ, 0)-module obtained by the base change of T with respect
to f . Then we have

ε3,ζ (T )⊗ idA = εA,ζ (M)

under the canonical isomorphism 13(T )⊗3 A −→∼ 1A(M) of Corollary 3.2.

(vi) Let L = A be a finite extension of Qp, and let M be a de Rham (ϕ, 0)-module
over RL . Then we have

εL ,ζ (M)= εdR
L ,ζ (M).

Remark 3.9. Kato’s original conjecture [1993b] is the restriction of Conjecture 3.8
to the pairs (3, T ). As explained in Remark 3.6, we insist that condition (v) should
be stated using εdR

L ,ζ (Drig(V ))
(
or εdR

L ,ζ (V ) :=ε
dR
L ,ζ (V )

′
·detL(−ϕ | Dst(V )/Dcris(V ))

)
instead of εdR

L ,ζ (V )
′.

Remark 3.10. In Kato’s conjecture, the uniqueness of the ε-isomorphism was not
explicitly predicted. Recently, it has been shown that the de Rham points (even crys-
talline points) are Zariski dense in “universal” families of p-adic representations, or
(ϕ, 0)-modules in many cases ([Colmez 2008; Kisin 2010] for the two-dimensional
case, [Chenevier 2013; Nakamura 2014b] for general case), hence we add the
uniqueness assertion in our conjecture.
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Kato [1993b] proved his conjecture for the rank-one case (note that one has
Dst(V )= Dcris(V ) for the rank-one case, hence one also has εdR

L ,ζ (V )
′
= εdR

L ,ζ (V )).
As a generalization of his theorem, our main theorem of this article is the following,
whose proof is given in the next section.

Theorem 3.11. Conjecture 3.8 is true for the rank-one case. More precisely, we
can uniquely define a B-linear isomorphism εB,ζ (N ) : 1B −→

∼ 1B(N ) for each pair
(B, N ) such that N is of rank one and for each Zp-basis ζ of Zp(1) satisfying the
conditions (i), (iii), (iv), (v), (vi).

Before passing to the proof of this theorem in the next section, we prove two
easy corollaries concerning the trianguline case. We say that a (ϕ, 0)-module M
over RA is trianguline if M has a filtration F : 0 := M0 ⊆ M1 ⊆ · · · ⊆ Mn := M
whose graded quotients Mi/Mi−1 are rank-one (ϕ, 0)-modules over RA for all
1≤ i ≤ n. We call the filtration F a triangulation of M.

Corollary 3.12. Let M be a trianguline (ϕ, 0)-module over RA of rank n with a
triangulation F as above. The isomorphism

εF,A,ζ (M) : 1A
�n

i=1εA,ζ (Mi/Mi−1)
−−−−−−−−−→�n

i=11A(Mi/Mi−1)−→
∼ 1A(M)

defined as the product of the isomorphisms εA,ζ (Mi/Mi−1) : 1A −→
∼ 1A(Mi/Mi−1),

which are defined in Theorem 3.11, satisfies the following properties:

(i)′ For any f : A→ A′, we have

εF,A,ζ (M)⊗ idA′ = εF ′,A′,ζ (M ⊗A A′),

where F ′ is the base change of the triangulation F by f .

(iii)′ For any a ∈ Z×p , we have

εF,A,ζ a (M)= δdetA(M)(a) · εF,A,ζ (M).

(iv)′ One has the commutative diagram of isomorphisms

1A(M)
can
−→1A(M∗)∨� (A(rM), 0)

εF,A,ζ (M)
x yεF∗,A,ζ (M∗)∨�[erM 7→(−1)rM ]

1A
can
−→ 1A � 1A

in which F∗ is the Tate dual of the triangulation F .

(vi)′ Let L = A be a finite extension of Qp, and let M be a de Rham and trianguline
(ϕ, 0)-module over RL . Then, for any triangulation F of M, we have

εF,L ,ζ (M)= εdR
L ,ζ (M).

In particular, in this case, εF,L ,ζ (M) does not depend on F .
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Proof. This corollary immediately follows from Theorem 3.11 since εdR
L ,ζ (M) is

multiplicative with respect to exact sequences by (1) of Lemma 3.7. �

Finally, we compare Corollary 3.12 with the previous known results on Kato’s
ε-conjecture for the cyclotomic deformations of crystalline ones. Let F be a finite
unramified extension of Qp. Let V be a crystalline L-representation of GF , and let
T ⊆ V be a GF -stable OL -lattice of V. In [Benois and Berger 2008] and [Loeffler
et al. 2015], they defined ε-isomorphisms for some twists of T. Here, for simplicity,
we only recall the result of [Benois and Berger 2008] under the additional assumption
that F = Qp, since other cases can be proven in the same way. Let OL [[0]] be
the Iwasawa algebra with coefficients in OL . We define an OL [[0]]-representation
Dfm(T ) := T ⊗OL OL [[0]] on which GQp acts by g(x ⊗ y) := g(x)⊗ [ḡ]−1 y for
any g ∈ GQp , x ∈ T , y ∈ OL [[0]]. In [Benois and Berger 2008], by studying the
associated Wach modules very carefully, they essentially showed that Perrin-Riou’s
big exponential map induces an ε-isomorphism, which we denote by

εBB
OL [[0]],ζ

(Dfm(T )) : 1OL [[0]] −→
∼ 1OL [[0]](Dfm(T )),

satisfying the conditions in Conjecture 3.8. Let Drig(V ) be the (ϕ, 0)-module
over RL associated to V. Then, applying Example 3.3 to (3, T ) = (OL [[0]], T ),
we obtain a canonical isomorphism

1OL [[0]](Dfm(T ))⊗OL [[0]]R
∞

L (0)−→
∼ 1R∞(0)(Dfm(Drig(V ))) (31)

(see the next section for the definitions of R∞L (0) and Dfm(Drig(V ))). Since
Drig(V ) is crystalline, after extending scalars, we may assume that it is trianguline
with a triangulation F . Then Dfm(Drig(V )) is also trianguline with a triangulation
F ′ := Dfm(F). Hence, by Corollary 3.12, we obtain an isomorphism

εF ′,R∞L (0),ζ (Dfm(Drig(V ))) : 1R∞L (0) −→
∼ 1R∞(0)(Dfm(Drig(V ))).

Under this situation, we easily obtain the following corollary.

Corollary 3.13. Under the isomorphism (31), we have

εBB
OL [[0]],ζ

(Dfm(T ))⊗ idR∞L (0) = εF ′,R
∞

L (0),ζ
(Dfm(Drig(V ))).

In particular, the isomorphism εF ′,R∞L (0),ζ (Dfm(Drig(V ))) does not depend on F .

Proof. By [Benois and Berger 2008] and Theorem 3.11, the base changes of both
sides in Corollary 3.13 by the continuous L-algebra morphism fδ :R∞L (0)→ L :
[γ ]→ δ(γ )−1 are equal to εdR

L ,ζ (Drig(V (δ))) for any potentially crystalline character
δ : 0→ L×. Since the points corresponding to such characters are Zariski dense
in the rigid analytic space associated to Spf(OL [[0]]), we obtain the equality in
the corollary. �
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4. Rank-one case

Kato [1993b] proved his ε-conjecture using the theory of Coleman homomorphism,
which interpolates the exponential maps and the dual exponential maps of rank-
one de Rham p-adic representations of GQp . In particular, the so-called explicit
reciprocity law, which is the explicit formula of its interpolation property, was very
important in his proof.

In this final section, we first construct the ε-isomorphism

εA,ζ (M) : 1A −→
∼ 1A(M)

for any rank-one (ϕ, 0)-module M by interpreting the theory of Coleman homo-
morphism in terms of p-adic Fourier transforms (e.g., Amice transforms, Colmez
transforms), which seems to be standard for experts of the theory of (ϕ, 0)-modules.
Then we prove that this isomorphism satisfies the de Rham condition (vi) by
establishing the “explicit reciprocity law” of our Coleman homomorphism using
our theory of Bloch–Kato exponential maps developed in Section 2B.

4A. Construction of the ε-isomorphism. We first recall the theory of analytic
Iwasawa cohomology of (ϕ, 0)-modules over the Robba ring after [Pottharst 2012;
Kedlaya et al. 2014]. Let 3(0) := Zp[[0]] be the Iwasawa algebra of 0 with
coefficients in Zp, and let m be the Jacobson radical of 3(0). For each n ≥ 1,
define a Qp-affinoid algebra R[1/pn,∞](0) := (3(0)[mn/p])∧ [1/p], where, for any
ring R, we denote by R∧ the p-adic completion of R. Let Xn :=Max(R[1/pn,∞](0))

be the associated affinoid. Define X :=
⋃

n≥1 Xn , which is a disjoint union of open
unit discs. For n ≥ 1, consider the rank-one (ϕ, 0)-module

Dfmn :=R[1/pn,∞](0) ⊗̂Qp Re=RR[1/pn ,∞](0)e
with

ϕ(1 ⊗̂ e)= 1 ⊗̂ e and γ (1 ⊗̂ e)= [γ ]−1
⊗̂ e for γ ∈ 0.

Put Dfm := lim
←−−n Dfmn; this is a (ϕ, 0)-module over the relative Robba ring over X.

For M a (ϕ, 0)-module over RA, we define the cyclotomic deformation of M by

Dfm(M) := lim
←−−

n
Dfmn(M)

with
Dfmn(M) := M ⊗̂R Dfmn −→

∼ M ⊗̂A R[1/pn,∞]

A (0)e,

which is a (ϕ, 0)-module over the relative Robba ring over Max(A)× X. This
(ϕ, 0)-module is the universal cyclotomic deformation of M in the sense that, for
each continuous homomorphism δ0 : 0→ A×, we have a natural isomorphism

Dfm(M)⊗R∞A (0), fδ0
A −→∼ M(δ0) : (x ⊗̂ ηe)⊗ a 7→ fδ0(η)axeδ0
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for x ∈ M , ηe ∈R∞A (0)e and a ∈ A, where

fδ0 :R
∞

A (0)→ A

is the continuous A-algebra homomorphism defined by

fδ0([γ ]) := δ0(γ )
−1

for γ ∈ 0 (and recall that M(δ0) := M ⊗A Aeδ0 = Meδ0 is defined by ϕ(xeδ0) =

ϕ(x)eδ0 and γ (xeδ0) := δ0(γ )γ (x)eδ0 for x ∈ M and γ ∈ 0).
By Theorem 4.4.8 of [Kedlaya et al. 2014], we have a natural quasi-isomorphism

of R∞A (0)-modules

gγ : C •ψ,γ (Dfm(M))−→∼ C •ψ(M) :=
[
M1 ψ−1
−−→M1

]
,

where the latter complex is concentrated in degree [1, 2]. This quasi-isomorphism
is obtained as a composite of (a system of) quasi-isomorphisms

C •ψ,γ (Dfmn(M))−→∼ C •ψ(M) ⊗̂R∞A (0)R
[1/pn,∞]

A (0),

which are naturally induced by the following diagrams of R[1/pn,∞]

A (0)-modules
for n ≥ 1 with exact rows:

0−→ Dfmn(M)1
γ−1
−−→ Dfmn(M)1

fγ
−→ M ⊗̂R∞A (0)R

[1/pn,∞]

A (0)−→ 0

ψ−1
y ψ−1

y ψ−1
y

0−→ Dfmn(M)1
γ−1
−−→ Dfmn(M)1

fγ
−→ M ⊗̂R∞A (0)R

[1/pn,∞]

A (0)−→ 0

(32)

Here

fγ

(∑
i

xi ⊗̂ ηi e
)
:=

1
|0tor| log0(χ(γ ))

∑
i

xi ⊗̂ ηi

for xi ∈ M , ηi e ∈R
[1/pn,∞]

A (0)e, with the inverse of the natural quasi-isomorphism

C •ψ(M)−→∼ lim
←−−

n
C •ψ
(
M⊗R∞A (0)R

[1/pn,∞]

A (0)
)
−→∼ lim
←−−

n
C •ψ
(
M ⊗̂R∞A (0)R

[1/pn,∞]

A (0)
)

(see Theorem 4.4.8 of [Kedlaya et al. 2014] and Theorem 2.8(3) of [Pottharst 2012]
for the proof). This quasi-isomorphism is canonical in the sense that, for another
γ ′ ∈ 0 whose image in 0/1 is a topological generator, we have the commutative
diagram

C •ψ,γ (Dfm(M))
gγ
−→ C •ψ(M)

ιγ,γ ′

y id

y
C •ψ,γ ′(Dfm(M))

gγ ′
−→ C •ψ(M)

(33)
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For δ0 :0→ A×, using the natural isomorphism Dfm(M)⊗R∞A (0), fδ0
A−→∼ M(δ0)

and the quasi-isomorphism gγ , we obtain the quasi-isomorphism

gγ,δ0 : C
•

ψ,γ (M(δ0))−→
∼ C •ψ,γ (Dfm(M)⊗R∞A (0), fδ0

A)

−→∼ C •ψ,γ (Dfm(M))⊗L
R∞A (0), fδ0

A −→∼ C •ψ(M)⊗
L
R∞A (0), fδ0

A, (34)

where the second isomorphism follows from the fact that any (ϕ, 0)-module M0

over RA0 is flat over A0 for any A0 (see Corollary 2.1.7 of [Kedlaya et al. 2014]).
This quasi-isomorphism can be written in a more explicit way as follows. To recall
this, we see A as an R∞A (0)-module by the map fδ0 . Then we can take the projective
resolution of A

0→R∞A (0) · pδ0

d1,γ
−→R∞A (0) · pδ0

d2,γ
−→ A→ 0,

where

pδ0 :=
1
|1|

∑
σ∈1

δ−1
0 (σ )[σ ] ∈R∞A (0)

(this is an idempotent) and

d1,γ (η) := (δ0(γ )[γ ] − 1)η and d2,γ (η) :=
1

|0tor| log0(χ(γ ))
fδ0(η).

This resolution induces a canonical isomorphism

C •ψ(M)⊗R∞A (0)
[
R∞A (0) · pδ0

d1,γ
−→R∞A (0) · pδ0

]
−→∼ C •ψ(M)⊗

L
R∞A (0), fδ0

A.

Moreover, using the isomorphism

M ⊗R∞A (0)R
∞

A (0) · pδ0 −→
∼ M(δ)1 : m⊗ λpδ0 7→ λpδ0(meδ0),

we obtain a natural isomorphism

C •ψ(M)⊗R∞A (0)
[
R∞A (0) · pδ0

d1,γ
−→R∞A (0) · pδ0

]
−→∼ C •ψ,γ (M(δ0)).

Composing both, we obtain a natural quasi-isomorphism

C •ψ(M)⊗
L
R∞A (0), fδ0

A −→∼ C •ψ,γ (M(δ0)),

which is easily seen to be equal to gγ,δ0 .
Using the theory of analytic Iwasawa cohomology recalled as above, we can de-

scribe the fundamental line 1R∞A (0)(Dfm(M)) as follows. The quasi-isomorphism
gγ : C •ψ,γ (Dfm(M)) −→∼ C •ψ(M) and the quasi-isomorphism C •ϕ,γ (Dfm(M)) −→∼
C •ψ,γ (Dfm(M)) induce a natural isomorphism in PR∞A (0)

1R∞A (0),1(Dfm(M))−→∼ DetR∞A (0)(C
•

ψ,γ (Dfm(M)))−→∼ DetR∞A (0)(C
•

ψ(M)).
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Moreover, since we have

1R∞A (0),2(Dfm(M))= lim
←−−

n
1R[1/pn ,∞]

A (0),2(Dfmn(M))

−→∼ lim
←−−

n

(
1A,2(M)⊗A R[1/pn,∞]

A (0)e⊗rM
)

=1A,2(M)e⊗rM ⊗A R∞A (0)−→∼ 1A,2(M)⊗A R∞A (0),

where the last isomorphism is just the division by e⊗rM, we obtain a canonical
isomorphism

1R∞A (0)(Dfm(M))−→∼ DetR∞A (0)(C
•

ψ(M))� (1A,2(M)⊗A R∞A (0)). (35)

Under this canonical isomorphism, we will first define an isomorphism

θζ (M) : DetR∞A (0)(C
•

ψ(M))
−1
−→∼ (1A,2(M)⊗A R∞A (0)),

and then define εR∞A (0),ζ (Dfm(M)) as the composite

εR∞A (0),ζ (Dfm(M)) : 1R∞A (0)
can
−→DetR∞A (0)(C

•

ψ(M))�DetR∞A (0)(C
•

ψ(M))
−1

id�θζ (M)
−−−−→DetR∞A (0)(C

•

ψ(M))� (1A,2(M)⊗AR∞A (0))

−→∼ 1R∞A (0)(Dfm(M))

for the following special rank-one (ϕ, 0)-modules M.
For λ ∈ A×, define the “unramified” continuous homomorphism δλ :Q

×
p → A×

by δλ(p) := λ and δλ|Z×p := 1. We define an isomorphism θζ (M) for M =RA(δλ)

by the following steps, which are based on the reinterpretation of the theory of the
Coleman homomorphism in terms of the p-adic Fourier transform.

Let LA(Zp, A) be the set of A-valued locally analytic functions on Zp, and define
the action of (ϕ, ψ, 0) on it by

ϕ( f )|Z×p := 0, ϕ( f )(y) := f
(

y
p

)
(y ∈ pZp),

ψ( f )(y) := f (py), γ ( f )(y) :=
1

χ(γ )
f
(

y
χ(γ )

)
(γ ∈ 0).

One has a (ϕ, ψ, 0)-equivariant A-linear surjection, which we call the Colmez
transform,

Col :RA→ LA(Zp, A) (36)

defined by

Col( f (π))(y) := Res0

(
(1+π)y f (π)

dπ
(1+π)

)
,
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where Res0 :RA→ A is defined by Res0
(∑

n∈Z anπ
n
)
:=a−1 (note that Col depends

on the choice of the parameter π , i.e., the choice of ζ ). By this map, we obtain the
short exact sequence

0→R∞A →RA
Col
−→LA(Zp, A)→ 0. (37)

Twisting the action of (ϕ, ψ, 0) by δλ, we obtain the (ϕ, ψ, 0)-equivariant exact
sequence

0→R∞A (δλ)→RA(δλ)
Col⊗eδλ
−−−−→LA(Zp, A)(δλ)→ 0,

from which we obtain the exact sequence of complexes of R∞A (0)-modules

0→ C •ψ(R
∞

A (δλ))→ C •ψ(RA(δλ))→ C •ψ(LA(Zp, A)(δλ))→ 0. (38)

For each k ≥ 0, we define the algebraic function

yk
: Zp→ A : a 7→ ak .

Then Ayk eδλ ⊆ LA(Zp, A)(δλ) is a ψ-stable sub-R∞A (0)-module. By Lemme 2.9
of [Chenevier 2013], the natural inclusion

C •ψ

( N⊕
0=k

Ayk eδλ

)
↪→ C •ψ(LA(Zp, A)(δλ)) (39)

is a quasi-isomorphism for sufficiently large N.
Set Pk

i := Ayk eδλ for i = 1, 2. Since we have Ayk eδλ[0] ∈ D[−1,0]
perf (R∞A (0)) for

any k ≥ 0, the natural exact sequence

0→ Pk
1 [−1] → C •ψ(Ayk eδλ)→ Pk

2 [−2] → 0

induces a canonical isomorphism

gk : DetR∞A (0)(C
•

ψ(Ayk eδλ))−→∼ DetR∞A (0)(P
k
2 )�DetR∞A (0)(P

k
1 )
−1

iDetR∞A (0)
(Pk

1 )

−−−−−−→1R∞A (0).

We remark that, if the complex C •ψ(Ayk eδλ) is acyclic, then the composite of this
isomorphism with the inverse of the canonical trivialization isomorphism

hDetR∞A (0)(C
•

ψ (Ayk eδλ ))
: DetR∞A (0)(C

•

ψ(Ayk eδλ))−→∼ 1R∞A (0)

is the identity map. Hence, if we define the isomorphism

gN
:=�N

0=k gk : DetR∞A (0)

(
C •ψ

( N⊕
k=0

Ayk eδλ

))
−→∼ 1R∞A (0), (40)
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then, by (39) and (40) (for sufficiently large N ), we obtain an isomorphism

ι0 : DetR∞A (0)(C
•

ψ(LA(Zp, A)(δλ)))−→∼ 1R∞A (0), (41)

which is independent of the choice of (sufficiently large) N.
Since C •ψ(LA(Zp, A)(δλ)), C •ψ(RA(δλ)) are both perfect complexes, we also have

C •ψ(R
∞

A (0)) ∈ Db
perf(R

∞

A (0))

by the exact sequence (38), and then we obtain an isomorphism

ι1 : DetR∞A (0)(C
•

ψ(RA(δλ)))

−→∼ DetR∞A (0)(C
•

ψ(R
∞

A (δλ)))�DetR∞A (0)(C
•

ψ(LA(Zp, A)(δλ)))
id�ι0
−−→DetR∞A (0)(C

•

ψ(R
∞

A (δλ)))−→
∼ DetR∞A (0)(R

∞

A (δλ)
ψ=1
[0])−1, (42)

where the last isomorphism is the one naturally induced by the exact sequence

0→R∞A (δλ)
ψ=1
→R∞A (δλ)

ψ−1
−−→R∞A (δλ)→ 0

(where the surjectivity is proved in Lemme 2.9(v) of [Chenevier 2013]).
We next consider the complex C •ψ(R

∞

A (δλ)). For a R∞A (0)-module M with linear
actions of ϕ and ψ , define a complex

C •
ψ̃
(M) :=

[
M ψ
→M

]
∈ D[1,2](R∞A (0)),

and define a map of complexes αM : C •ψ(M)→ C •
ψ̃
(M) by

C •ψ(M) :
[
M

ψ−1
−−→ M

]yαM

y1−ϕ
yidM

C •
ψ̃
(M) :

[
M

ψ
−→ M

] (43)

For N ≥ 0, set DN :=
⊕

0≤k≤N Atk eδλ . Since Atk eδλ[0] ∈ D[−1,0]
perf (R∞A (0)), we

can define a canonical isomorphism

DetR∞A (0)(C
•

ψ(DN ))−→
∼ 1R∞A (0) (44)

in the same way as the isomorphism (40). Then the natural exact sequence
0→ C •ψ(DN )→ C •ψ(R

∞

A (δλ))→ C •ψ(R
∞

A (δλ)/DN )→ 0 induces a canonical iso-
morphism

DetR∞A (0)(C
•

ψ(R
∞

A (δλ)))

−→∼ DetR∞A (0)(C
•

ψ(DN ))�DetR∞A (0)(C
•

ψ(R
∞

A (δλ)/DN ))

−→∼ DetR∞A (0)(C
•

ψ(R
∞

A (δλ)/DN )), (45)

where the last isomorphism is induced by the isomorphism (44).
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Since the map 1 − ϕ : R∞A (δλ)/DN → R∞A (δλ)/DN is an isomorphism for
sufficiently large N by Lemme 2.9(ii) of [Chenevier 2013], the map α(R∞A (δλ)/DN )

is also an isomorphism for sufficiently large N. Hence, for sufficiently large N, we
obtain a canonical isomorphism

DetR∞A (0)(C
•

ψ(R
∞

A (δλ)/DN ))−→
∼ DetR∞A (0)(C

•

ψ̃
(R∞A (δλ)/DN )). (46)

Since the complex C •
ψ̃
(DN ) is acyclic (since ψ : Atk eδλ→ Atk eδλ is an isomorphism

for any k ≥ 0), the natural exact sequence 0 → C •
ψ̃
(DN ) → C •

ψ̃
(R∞A (δλ)) →

C •
ψ̃
(R∞A (δλ)/DN )→ 0 induces a canonical isomorphism

DetR∞A (0)(C
•

ψ̃
(R∞A (δλ)/DN ))

−→∼ DetR∞A (0)(C
•

ψ̃
(DN ))�DetR∞A (0)(C

•

ψ̃
(R∞A (δλ)/DN ))

−→∼ DetR∞A (0)(C
•

ψ̃
(R∞A (δλ))), (47)

where the first isomorphism is induced by the inverse of the isomorphism

hC•
ψ̃
(DN ) : DetR∞A (0)(C

•

ψ̃
(DN ))−→

∼ 1R∞A (0).

Moreover, the exact sequence 0→R∞A (δλ)
ψ=0
→R∞A (δλ)

ψ
→R∞A (δλ)→ 0 and

the isomorphism

R∞A (0)eδλ −→∼ R∞A (δλ)
ψ=0
: λeδλ 7→ (λ · (1+π)−1)eδλ (48)

(note that this isomorphism depends on the choice of ζ ) naturally induces the
isomorphism

DetR∞A (0)(C
•

ψ̃
(R∞A (δλ)))

−1
−→∼ DetR∞A (0)(R

∞

A (δλ)
ψ=0)−→∼ (R∞A (0)eδλ, 1). (49)

Finally, as the composites of the inverses of the isomorphisms (42), (45), (46),
(47), and the isomorphism (49), we define the desired isomorphism

θζ (RA(δλ)) : DetR∞A (0)(C
•

ψ(RA(δλ)))
−1

−→∼ (R∞A (0)eδλ, 1)=1A,2(RA(δλ))⊗A R∞A (0).

Definition 4.1. Using the isomorphism (35), for M = RA(δλ), we define the ε-
isomorphism by

εR∞A (0),ζ (Dfm(M)) : 1R∞A (0)
can
−→DetR∞A (0)(C

•

ψ(M))�DetR∞A (0)(C
•

ψ(M))
−1

id�θζ (M)
−−−−→DetR∞A (0)(C

•

ψ(M))� (1A,2(M)⊗AR∞A (0))

−→∼ 1R∞A (0)(Dfm(M)).

Before defining the ε-isomorphism for the general rank-one case, we check that
the isomorphism εR∞A (0),ζ (Dfm(RA(δλ))) defined above satisfies the properties (i)
and (iii) in Conjecture 3.8
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For the property (i), it is clear that, for each continuous homomorphism f : A→ A′

(and set λ′ = f (λ)), we have

εR∞A (0),ζ (Dfm(RA(δλ)))⊗ idA′ = εR∞A′ (0),ζ (Dfm(RA′(δλ′)))

under the canonical isomorphism

1R∞A (0)(Dfm(RA(δλ)))⊗A A′ −→∼ 1R∞A′ (0)(Dfm(RA(δλ) ⊗̂A A′))

−→∼ 1R∞A′ (0)(Dfm(RA′(δλ′))),

where the last isomorphism is induced by the isomorphism

RA(δλ) ⊗̂A A′ −→∼ RA′(δλ′) : g(π)eδλ ⊗̂ a 7→ ag f(π)eδλ′ ;

here we define

g f(π) :=
∑
n∈Z

f (an)π
n
∈RA′ for g(π)=

∑
n∈Z

anπ
n
∈RA.

The property (iii) easily follows from (48) since one has (1+πζ a )= (1+πζ )a =
[σa] · (1+πζ ) for a ∈ Z×p .

Next, we consider a rank-one (ϕ, 0)-module over RA of the form RA(δ) for a
general continuous homomorphism δ :Q×p → A×. Set

λ := δ(p) and δ0 := δ|Z×p ,

which we freely see as a homomorphism δ0 : 0→ A× by identifying χ : 0 −→∼ Z×p .
We define the continuous A-algebra homomorphism

fδ0 :R
∞

A (0)→ A,

which is uniquely characterized by fδ0([γ ]) = δ0(γ )
−1 for any γ ∈ 0. Then we

have a canonical isomorphism

Dfm(RA(δλ))⊗R∞A (0), fδ0
A −→∼ RA(δ)

defined by
( f (π)eδλ ⊗̂ ηe)⊗ a := a fδ0(η) f (π)eδ

for f (π) ∈RA, η ∈R∞A (0), a ∈ A, which also induces a canonical isomorphism

1R∞A (0)(Dfm(RA(δλ)))⊗R∞A (0), fδ0
A −→∼ 1A(RA(δ)).

Definition 4.2. We define the isomorphism

εA,ζ (RA(δ)) : 1A −→
∼ 1A(RA(δ))

by
εA,ζ (RA(δ)) := εR∞A (0),ζ (Dfm(RA(δλ)))⊗ idA
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under the above isomorphism.

Next, we consider a rank-one (ϕ, 0)-module of the form RA(δ)⊗A L for an
invertible A-module L.

Lemma 4.3. Let M be a (ϕ, 0)-module over RA (of any rank), and let L be an
invertible A-module. Then there exist a canonical A-linear isomorphism

1A(M ⊗A L)−→∼ 1A(M).

Proof. The natural isomorphism C •ϕ,γ (M ⊗A L) −→∼ C •ϕ,γ (M) ⊗A L induces an
isomorphism

1A,1(M ⊗A L)−→∼ 1A,1(M)� (L⊗−rM , 0).

Since we also have a natural isomorphism LA(M ⊗A L)−→∼ LA(M)⊗A L⊗rM, we
obtain a natural isomorphism

1A,2(M ⊗A L)−→∼ 1A,2(M)� (L⊗rM , 0).

Then the isomorphism in the lemma is obtained by taking the products of these iso-
morphisms with the canonical isomorphism i(L⊗rM ,0) : (L⊗rM , 0)�(L⊗−rM , 0)−→∼ 1A.

�

Definition 4.4. We define the isomorphism

εA,ζ (RA(δ)⊗A L) : 1A −→
∼ 1A(RA(δ)⊗A L)

by
εA,ζ (RA(δ)⊗A L) := εA,ζ (RA(δ))

under the above isomorphism 1A(M ⊗A L)−→∼ 1A(M).

Finally, let M be a general rank-one (ϕ, 0)-module over RA. By Theorem 2.8,
there exists a unique pair (δ,L) such that g : M −→∼ R(δ)⊗A L. This isomorphism
induces an isomorphism g∗ :1A(M)−→∼ 1A(RA(δ)⊗A L).

Definition 4.5. Under the above situation, we define

εA,ζ (M) := εA,ζ (RA(δ)⊗A L) ◦ g∗ : 1A −→
∼ 1A(M).

Lemma 4.6. The isomorphism εA,ζ (M) is well defined, i.e., does not depend on g.

Proof. Since we have Aut(RA(δ) ⊗A L) = A× (where Aut(M) is the group of
automorphisms of M as (ϕ, 0)-modules over RA), it suffices to show the following
lemma. �

Lemma 4.7. Let M be a (ϕ, 0)-module over RA. For a ∈ A×, let us define ga :

M −→∼ M : x 7→ ax. Then we have

(ga)∗ = id1A(M) .



A generalization of Kato’s local 3-conjecture 377

Proof. This lemma immediately follows from the fact that ga induces 11,A(M)−→∼

1A,1(M) : x 7→ a−rM x (by the Euler–Poincaré formula) and1A,2(M)−→∼ 1A,2(M) :
x 7→ arM x by definition. �

Remark 4.8. By definition, it is clear that εA,ζ (M), constructed above, satisfies the
conditions (i) and (iii) in Conjecture 3.8. It also seems to be easy to directly prove
the conditions (iv), (v) of Conjecture 3.8. However, in the next subsection, we prove
the conditions (iv) and (v) using density arguments in the process of verifying the
condition (vi).

Remark 4.9. Define OE :=
{∑

n∈Z anπ
n
| an ∈Zp, a−n→ 0 (n→+∞)

}
, OE+ :=

Zp[[π ]], and OE+,3 := OE+ ⊗̂Zp 3. Define C0(Zp,3) to be the 3-modules of
3-valued continuous functions on Zp. Using the exact sequence

0→OE+,3→OE,3
Col
−→ C0(Zp,3)→ 0,

which is the continuous function analogue of the exact sequence (37), and using the
equivalence between the category of 3-representations of GQp with that of étale
(ϕ, 0)-modules over OE,3 [Dee 2001], it seems possible to define an ε-isomorphism
ε3,ζ (3(δ̃)) for any δ̃ : Gab

Qp
→3× in the same way as the definition of εA,ζ (RA(δ)).

Using this ε-isomorphism, it is clear that our ε-isomorphism εA,ζ (RA(δ)) satisfies
the condition (v) in Conjecture 3.8. Moreover, it is easy to compare the isomorphism
ε3,ζ (3(δ̃)) with the one Kato defined [1993b].

4B. Verification of the conditions (iv), (v), (vi). In this final subsection, we prove
that our ε-isomorphism εA,ζ (M), constructed in the previous subsection, satisfies
the conditions (iv), (v), (vi) of Conjecture 3.8. Of course, the essential part is to
prove the condition (vi); the other conditions follow from it using density arguments.

Therefore, in this subsection, we mainly concentrate on the case where A = L
is a finite extension of Qp. Before verifying the condition (vi), we describe the
isomorphism εL ,ζ (RL(δ)) : 1L −→

∼ 1L(RL(δ)) for any continuous homomorphism
δ = δλδ0 :Q

×
p → L× in a more explicit way.

For an R∞L (0)-module N, define a 0-module N (δ0) := N eδ0 by γ (xeδ0) =

δ0(γ )([γ ] · x)eδ0 for any γ ∈ 0. Then we have a natural quasi-isomorphism

N [−1]⊗L
R∞L (0), fδ0

L −→∼ N ⊗R∞L (0)
[
R∞L (0)pδ0

d1,γ
−→R∞L (0)pδ0

]
−→∼ C •γ (N (δ0)).

Hence, if N [0] ∈ Db
perf(R

∞

L (0)), then we obtain a natural isomorphism

DetL(N [−1])⊗R∞L (0), fδ0
L −→∼ DetL(C •γ (N (δ0)))

−→∼ �i=0,1 DetL(Hi
γ (N (δ0)))

(−1)i .



378 Kentaro Nakamura

Moreover, if N is also equipped with a commuting linear action of ψ such that
C •ψ(M) ∈ Db

perf(R
∞

L (0)), then we obtain a natural isomorphism

DetL(C •ψ(N ))⊗R∞L (0), fδ0
L −→∼ DetL(C •ψ,γ (N (δ0)))

−→∼ �2
i=0 DetL(Hi

ψ,γ (N (δ0)))
(−1)i .

In particular, the isomorphism θ̄ζ (RL(δ)) := θζ (RL(δλ))⊗R∞L (0), fδ0
idL can be seen

as the isomorphism

θ̄ζ (RL(δ)) :�2
i=0 DetL(Hi

ψ,γ (RL(δ)))
(−1)i+1

−→∼ (R∞L (0)eδλ, 1)⊗R∞L (0), fδ0
L −→∼ (Leδ, 1), (50)

where the last isomorphism is induced by the isomorphism

R∞L (0)eδλ ⊗R∞L (0), fδ0
L −→∼ Leδ : (ηeδλ)⊗ a 7→ a fδ0(η)eδ.

Therefore, to verify the condition (vi) when RL(δ) is de Rham, we need to relate
the map θ̄ζ (RL(δ)) with the Bloch–Kato exponential map or the dual exponential
map.

To do so, we divide into the following three cases:

(1) δ 6= x−k, xk+1
|x | for any k ∈ Z≥0 (which we call the generic case).

(2) δ = x−k for k ≥ 0.

(3) δ = xk+1
|x | for k ≥ 0.

We will first verify the condition (vi) in the generic case by establishing a kind of
explicit reciprocity law (see Propositions 4.11 and 4.16). Then we will verify the
conditions (iv) and (v) using the generic case by density argument. Finally, we
will prove the condition (vi) in the case (2) via direct calculations, and reduce the
case (3) to the case (2) using the duality condition (iv).

In the remaining parts, we freely use the results of Colmez and Chenevier
concerning the calculations of cohomologies

Hi
ψ,γ (RL(δ)), Hi

ψ,γ (R
∞

L (δ)) and Hi
ψ,γ (LA(Zp, L)(δ));

see Proposition 2.1 and Théorème 2.9 of [Colmez 2008] and Lemme 2.9 and
Corollaire 2.11 of [Chenevier 2013].

4B1. Verification of the condition (vi) in the generic case. In this subsection, we
assume that δ is generic. Then we have

Hi
ψ,γ (Ltk eδ)= Hi

ψ,γ (Lyk eδ)= Hi
ψ,γ (LA(Zp, L)(δ))= 0

for any k ∈ Z≥0 and i ∈ {0, 1, 2}, and

Hi
ψ,γ (RL(δ))= Hi

ψ,γ (R
∞

L (δ))= 0
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for i = 0, 2, and

dimL H1
ψ,γ (RL(δ))= dimL H1

ψ,γ (R
∞

L (δ))= 1.

Then ι1,δ := ι1⊗R∞L (0), fδ0
idL (see (42)) is the isomorphism

(H1
ψ,γ (RL(δ)), 1)−1

−→∼ (H1
γ (R

∞

L (δ)
ψ=1), 1)−1 (51)

in PL induced by the isomorphism

H1
γ (R

∞

L (δ)
ψ=1)−→∼ H1

ψ,γ (RL(δ)) : [x] 7→ [x, 0].

Then the base change by fδ0 of the isomorphism

DetR∞L (0)(C
•

ψ(R
∞

L (δλ)))
−1
−→∼ DetR∞L (0)(R

∞

L (δλ)
ψ=0
[0])−→∼ (R∞L (0)eδλ, 1),

which is induced by (45), (46), (47) and (49), becomes the isomorphism

(H1
γ (R

∞

L (δ)
ψ=1), 1) [x]7→[(1−ϕ)x]−−−−−−−→ (H1

γ (R
∞

L (δ)
ψ=0), 1)−→∼ (Leδ, 1), (52)

where the last isomorphism is explicitly defined as follows. For an explicit definition
of this isomorphism, it is useful to use the Amice transform. Let D(Zp, L) :=
Homcont

L (LA(Zp, L), L) be the algebra of L-valued distributions on Zp, where the
multiplication is defined by the convolution. By the theorem of Amice, we have an
isomorphism of topological L-algebras

D(Zp, L)−→∼ R∞L : µ 7→ fµ(π) :=
∑
n≥0

µ

((
y
n

))
πn

(which depends on the choice of π , i.e., the choice of ζ ), where(
y
n

)
:=

y(y− 1) · · · (y− n+ 1)
n!

.

Then the action of (ϕ, 0,ψ) on R∞L induces the action on D(Zp, L) by∫
Zp

f (y)ϕ(µ)(y) :=
∫

Zp

f (py)µ(y),
∫

Zp

f (y)ψ(µ)(y) :=
∫

pZp

f
(

y
p

)
µ(y)

and ∫
Zp

f (y)σa(µ)(y) :=
∫

Zp

f (ay)µ(y),

where, for a ∈ Z×p , we define σa ∈ 0 such that χ(σa)= a.
Using this notion, it is easy to see that the second isomorphism in (52) is defined

by

H1
γ (R

∞

L (δ)
ψ=0)−→∼ Leδ : [ fµeδ] 7→

δ(−1)
|0tor| log0(χ(γ ))

·

∫
Z×p

δ−1(y)µ(y)eδ,
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where we note that we have an isomorphism

D(Z×p , L)eδ −→∼ R∞L (δ)
ψ=0
: µeδ 7→ fµeδ,

since one has

fδ0(λ)=

∫
Z×p

δ−1
0 (y)µγ (y)

for any λ ∈R∞L (0) and any continuous homomorphism δ0 : Z
×
p → L×, where we

define µγ ∈ D(Z×p , L) by fµγ (π)= λ · (1+π).
For a 0-module N, we define H1(0, N ) := N/N0, where N0 is the submodule

generated by the set {(γ − 1)n | γ ∈ 0, n ∈ N }. Then we have the canonical
isomorphism

H1(0,R∞L (δ)
ψ=1)−→∼ H1

γ (R
∞

L (δ)
ψ=1) : [ f eδ] 7→ [|0tor| log0(χ(γ ))p1( f eδ)]

(where “canonical” means that this is independent of γ , i.e., is compatible with the
isomorphisms ιγ,γ ′ for any γ ′ ∈ 0). Composing this with the isomorphism (52), we
obtain an isomorphism

(H1(0,RL(δ)
ψ=1), 1)−→∼ (Leδ, 1) (53)

in PL . Concerning the explicit description of this isomorphism, we obtain the
following lemma.

Lemma 4.10. The isomorphism (53) is induced by the isomorphism

ιδ : H1(0,R∞L (δ)
ψ=1)−→∼ Leδ : [ fµeδ] 7→ δ(−1) ·

∫
Z×p

δ−1(y)µ(y).

Proof. For fµeδ ∈ R∞L (δ)
ψ=1, we have (1− ϕ)( fµeδ) = ((1− ϕψ) fµ) · eδ. Then

the lemma follows from the formula∫
Zp

f (x)(1−ϕψ)µ(x)=
∫

Z×p

f (x)µ(x) for µ ∈ D(Zp, L). �

Next, we furthermore assume that RL(δ) is de Rham. By the classification, it is
equivalent to δ= δ̃xk for k ∈Z and a locally constant homomorphism δ̃ :Q×p → L×.
In the generic case, we have the following isomorphisms of one-dimensional
L-vector spaces:

(1) exp∗RL (δ)∗
: H1

ψ,γ (RL(δ))−→
∼ DdR(RL(δ)) if k ≤ 0.

(2) expRL (δ)
: DdR(RL(δ))−→

∼ H1
ψ,γ (RL(δ)) if k ≥ 1.

Let us define n(δ) ∈ Z≥0 as the minimal integer such that δ̃|(1+pnZp)∩Z×p
is trivial.

Then:

(1) n(δ)= 0 if and only if RL(δ) is crystalline.
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(2) εL(W (RL(δ)), ζ )= 1 if n(δ)= 0.

(3) εL(W (RL(δ)), ζ )= δ̃(p)n(δ)
∑

i∈(Z/pn(δ)Z)× δ̃(i)
−1ζ i

pn(δ) if n(δ)≥ 1.

(4) εL(W (RL(δ)), ζ ) · εL(W (RL(δ)
∗), ζ )= δ̃(−1).

By definition of εL ,ζ (RL(δ)) and εdR
L ,ζ (RL(δ)), and by Lemma 4.10, to verify the

condition (vi), it suffices to show the following two propositions (Proposition 4.11
for k ≤ 0 and Proposition 4.16 for k ≥ 1), which can be seen as a kind of explicit
reciprocity law.

Proposition 4.11. If k ≤ 0, then the map

H1(0,R∞L (δ)
ψ=1)−→∼ H1

ψ,γ (RL(δ))
exp∗RL (δ)∗
−−−−→ DdR(RL(δ))=

(
1
tk L∞eδ

)0
(where the first isomorphism is defined by [ f eδ] 7→ [|0for| log0(χ(γ ))p1( f eδ), 0])
sends each element [ fµeδ] ∈ H1(0,R∞L (δ)

ψ=1) to

(1)
(−1)k

(−k)!
·

δ(−1)
εL(W (RL(δ)), ζ )

·
1
tk ·

∫
Z×p

δ−1(y)µ(y)eδ if n(δ) 6= 0,

(2)
(−1)k

(−k)!
·

detL(1−ϕ | Dcris(RL(δ)
∗))

detL(1−ϕ | Dcris(RL(δ)))
·
δ(−1)

tk ·

∫
Z×p

δ−1(y)µ(y)eδ if n(δ)= 0.

Proof. Here, we prove the proposition only when k= 0, i.e., δ= δ̃ is locally constant.
We will prove it for general k ≤ 0 after some preparations on the differential
operator ∂ (the proof for general k will be given after Remark 4.15).

Hence, we assume that k = 0. For such δ, we define a map

gRL (δ) : DdR(RL(δ))→ H1
γ (Ddif(RL(δ))) : x 7→ [log(χ(γ ))x],

which is easily seen to be an isomorphism. By Proposition 2.16 of [Nakamura
2014a], one has the commutative diagram

H1
ψ,γ (RL(δ))

exp∗RL (δ)∗

−−−−−→ DdR(RL(δ))

id

y gRL (δ)

y
H1
ψ,γ (RL(δ))

can
−→ H1

γ (Ddif(R(δ)))

(54)

Set n0 := max{n(δ), 1} if p 6= 2, and set n0 := max{n(δ), 2} if p = 2. Then
the image of [ fµeδ] ∈ H1(0,R∞L (δ)

ψ=1) −→∼ H1
ψ,γ (RL(δ)) by the canonical map

can : H1
ψ,γ (RL(δ))→ H1

γ (Ddif(R(δ))) is equal to

[|0tor| log0(χ(γ ))p1(ιn0( fµeδ))] ∈ H1
γ (Ddif(R(δ))).
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Hence, it suffices to calculate g−1
RL (δ)

([|0tor| log0(χ(γ ))p1(ιn0( fµeδ))]). By defini-
tion of gRL (δ), it is easy to check that we have

g−1
RL (δ)

([|0tor| log0(χ(γ ))p1(ιn0( fµeδ))])

=
|0tor| log0(χ(γ ))

log(χ(γ ))
1

[Qp(ζpn0 ) :Qp]

∑
i∈(Z/pn0 Z)×

σi (ιn0( fµeδ)|t=0)=: (∗).

Concerning the right-hand side, when n(δ) ≥ 1 if p 6= 2, or n(δ) ≥ 2 if p = 2,
one has the following equalities, from which the equality (1) follows in this case:

(∗)=
|0tor| log0(χ(γ ))

log(χ(γ ))
1

[Qp(ζpn(δ)) :Qp]

∑
i∈(Z/pn(δ)Z)×

σi (ιn(δ)( fµeδ)|t=0)

=
|0tor| log0(χ(γ ))

log(χ(γ ))
p

(p− 1)
1

pn(δ)

∑
i∈(Z/pn(δ)Z)×

σi

(
1

δ(p)n(δ)

∫
Zp

ζ
y
pn(δ)µ(y)eδ

)

=
1

(pδ(p))n(δ)
∑

i∈(Z/pn(δ)Z)×

δ(i)
∫

Zp

ζ
iy
pn(δ)µ(y)eδ

=
1

(pδ(p))n(δ)
∑

i∈(Z/pn(δ)Z)×

δ(i)
( ∑

j∈Z/pn(δ)Z

ζ
i j
pn(δ)

∫
j+pn(δ)Zp

µ(y)
)

eδ

=
1

(pδ(p))n(δ)
∑

j∈Z/pn(δ)Z

( ∑
i∈(Z/pn(δ)Z)×

δ(i)ζ i j
pn(δ)

)∫
j+pn(δ)Zp

µ(y)eδ

=
1

(pδ(p))n(δ)
∑

j∈(Z/pn(δ)Z)×

( ∑
i∈(Z/pn(δ)Z)×

δ(i)ζ i j
pn(δ)

)∫
j+pn(δ)Zp

µ(y)eδ

=
1

(pδ(p))n(δ)

( ∑
i∈(Z/pn(δ)Z)×

δ(i)ζ i
pn(δ)

) ∑
j∈(Z/pn(δ)Z)×

δ( j)−1
∫

j+pn(δ)Zp

µ(y)eδ

= εL(W (RL(δ)
∗), ζ )

∫
Z×p

δ−1(y)µ(y)eδ

=
δ(−1)

εL(W (RL(δ)), ζ )

∫
Z×p

δ−1(y)µ(y)eδ.

Here the second equality follows from

ιn(δ)( fµ)|t=0 = fµ(ζpn(δ) − 1)=
∫

Zp

ζ
y
pn(δ)µ(y),

the third equality follows from

|0for| log0(χ(γ ))

log(χ(γ ))
p

p− 1
= 1
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(for any p), the sixth equality follows from the fact that( ∑
i∈(Z/pn(δ)Z)×

δ(i)ζ i j
pn(δ)

)
= 0

if p | j, and the seventh and eighth follow from the property (4) of ε-constants listed
before this proposition.

When n(δ)= 0, one has n0 = 1 if p 6= 2 and n0 = 2 if p = 2. Then one has the
following equalities:

(∗)=
1

pn0

∑
i∈(Z/pn0 Z)×

σi (ιn0( fµeδ)|t=0)

=
1

pn0

∑
i∈(Z/pn0 Z)×

σi

(
1

δ(p)n0

∫
Zp

ζ
y
pn0µ(y)eδ

)

=
1

(pδ(p))n0

∑
i∈(Z/pn0 Z)×

∫
Zp

ζ
iy
pn0µ(y)eδ

=
1

(pδ(p))n0

∑
i∈(Z/pn0 Z)×

( ∑
j∈Z/pn0 Z

ζ
i j
pn0

∫
j+pn0 Zp

µ(y)
)

eδ

=
1

(pδ(p))n0

∑
j∈Z/pn0 Z

( ∑
i∈(Z/pn0 Z)×

ζ
i j
pn0

)∫
j+pn0 Zp

µ(y)eδ.

Here the first equality follows from

|0tor| log0(χ(γ ))

log(χ(γ ))
1

[Qp(ζpn0 ) :Qp]
=

1
pn0

for any p.
When p 6= 2, the last term is equal to

1
pδ(p)

(
(p− 1)

∫
pZp

µ(y)−
∫

Z×p

µ(y)
)

eδ

since
∑

i∈(Z/pZ)× ζ
i j
p = p− 1 if p | j and

∑
i∈(Z/pZ)× ζ

i j
p =−1 if p - j.

Since fµeδ ∈R∞(δ)ψ=1, we have ψ( fµ)= δ(p) fµ, hence we have∫
pZp

µ(y)=
∫

Zp

ψ(µ)(y)= δ(p)
∫

Zp

µ(y)= δ(p)
(∫

Z×p

µ(y)+
∫

pZp

µ(y)
)
,

and we have ∫
pZp

µ(y)=
δ(p)

1− δ(p)

∫
Z×p

µ(y)

since we have δ(p) 6= 1 by the generic assumption on δ.
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Therefore, we have

1
pδ(p)

(
(p−1)

∫
pZp

µ(y)−
∫

Z×p

µ(y)
)

eδ =
1

pδ(p)

(
(p−1)

δ(p)
1− δ(p)

−1
)∫

Z×p

µ(y)eδ

=
1

pδ(p)
pδ(p)− 1
1− δ(p)

∫
Z×p

µ(y)eδ

=

1− 1
pδ(p)

1− δ(p))

∫
Z×p

µ(y)eδ,

from which we obtain the equality (2) for p 6= 2.
When p = 2, then the last term is equal to

1
(pδ(p))2

(
2
∫

4Z2

µ(y)− 2
∫

2+4Z2

µ(y)
)

eδ =
1

pδ(p)2

(∫
4Z2

µ(y)−
∫

2Z2

µ(y)
)

eδ

since
∑

i∈(Z/4Z)× ζ
i j
4 is equal to 2 if j ≡ 0 (mod 4), is equal to 0 if j ≡ 1, 3 (mod 4),

and is equal to −2 if j ≡ 2 (mod 4). Since we have ψ( fµ)= δ(p) fµ, we have∫
4Zp

µ(y)=
∫

2Z2

ψ(µ)(y)= δ(p)
∫

2Z2

µ(y)= δ(p)
δ(p)

1− δ(p)

∫
Z×2

µ(y),

where the last equality follows from the same argument for p 6= 2.
Therefore, we have

1
pδ(p)2

(∫
4Z2

µ(y)−
∫

2Z2

µ(y)
)

eδ=
1

pδ(p)2

(
δ(p)

δ(p)
1− δ(p)

−
δ(p)

1− δ(p)

)∫
Z×p

µ(y)eδ

=
1

pδ(p)2
2δ(p)2− δ(p)

1− δ(p)

∫
Z×2

µ(y)eδ

=

1− 1
pδ(p)

1− δ(p)

∫
Z×2

µ(y)eδ,

from which we obtain the equality (2) for p = 2. �

To prove the above proposition for general k ≤ 0, we need to recall and prove
some facts on the differential operator ∂ defined in §2.4 of [Colmez 2008], which
will be used to reduce the verification of the condition (vi) for general k to that for
k = 0, 1 (even for the nongeneric case).

Let A be a Qp-affinoid algebra. We define an A-linear differential operator
∂ :RA→RA : f (π) 7→ (1+π) d f (π)

dπ . Let δ :Q×p → A× be a continuous homomor-
phism. Then ∂ naturally induces an A-linear and (ϕ, 0)-equivariant morphism

∂ :RA(δ)→RA(δx) : f (π)eδ 7→ ∂( f (π))eδx ,
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which sits in the exact sequence

0→ A(δ) aeδ 7→aeδ
−−−−→RA(δ)

∂
→RA(δx)

f eδx 7→Res0
(

f dπ
1+π

)
e
δ|x |−1

−−−−−−−−−−−−−→ A(δ|x |−1)→ 0. (55)

By this exact sequence, when A = L is a finite extension of Qp, we immediately
obtain the following lemma.

Lemma 4.12. ∂ : C •ϕ,γ (RL(δ))→ C •ϕ,γ (RL(δx)) is a quasi-isomorphism except
when δ = 1, |x |.

For the general case, the exact sequence (55) induces the canonical isomorphism

DetA(C •ϕ,γ (A(δ)))�1A,1(RA(δ))
−1 �1A,1(RA(δx))

�DetA(C •ϕ,γ (A(δ|x |
−1)))−1

−→∼ 1A. (56)

For δ′ = δ, δ|x |−1, since A(δ′) is a free A-module, the complex

C •ϕ,γ (A(δ
′)) :

[
A(δ′)11

(γ−1)⊕(ϕ−1)
−−−−−−−→ A(δ′)12 ⊕ A(δ′)13

(ϕ−1)⊕(1−γ )
−−−−−−−→ A(δ′)14

]
(where A(δ′)i = A(δ′) for i = 1, . . . , 4) induces the canonical isomorphism

DetA(C •ϕ,γ (A(δ
′)))

=
(
DetA(A(δ′)11 )�DetA(A(δ′)13 )

−1)� (DetA(A(δ′)14 )�DetA(A(δ′)12 )
−1)

iDetA(A(δ′)11 )
�iDetA(A(δ′)14 )

−−−−−−−−−−−−−→1A.

Applying this isomorphism, the isomorphism (56) becomes the isomorphism
1A,1(RA(δ))

−1 �1A,1(RA(δx))−→∼ 1A, and then, multiplying by 1A,1(RA(δ)) on
both sides, we obtain the following isomorphism, which we also denote by ∂:

∂ :1A,1(RA(δ))−→
∼ 1A,1(RA(δ))�

(
1A,1(RA(δ))

−1 �1A,1(RA(δx))
)

i
1A,1(RA(δ))−1
−−−−−−→1A,1(RA(δx)).

Taking the product of this isomorphism with the isomorphism

1A,2(RA(δ))−→
∼ 1A,2(RA(δx)) : aeδ 7→ −aeδx ,

we obtain the isomorphism

∂ :1A(RA(δ))−→
∼ 1A(RA(δx)).

By definition, it is clear that this isomorphism is compatible with any base change
A→ A′.

Concerning this isomorphism, we prove the following proposition.

Proposition 4.13. εA,ζ (RA(δx))= ∂ ◦ εA,ζ (RA(δ)).
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Proof. The proof of this proposition is a typical density argument, which will be
used several times later.

Define the unramified homomorphism δY :Q
×
p → 0(Gan

m ,OGan
m
)× by δY (p) := Y

(where Y is the parameter of Gan
m ). Then RA(δ) is obtained as a base change of the

“universal” rank-one (ϕ, 0)-module Dfm(RGan
m
(δY )) over RX×Gan

m
(X is the rigid

analytic space associated to Zp[[0]]). Since the isomorphism ∂ : 1A(RA(δ)) −→
∼

1A(RA(δx)) is compatible with any base change, it suffices to show the proposition
for Dfm(RGan

m
(δY )). Since X ×Gan

m is reduced, it suffices to show it for the Zariski
dense subset S0 of X ×Gan

m defined by

S0 :={(δ0, λ)∈ X (L)×Gan
m (L) | L is a finite extension of Qp, δ :=δλδ0 is generic}.

For any (δ0, λ) in S0(L), εL ,ζ (RL(δ)) corresponds to the isomorphism

ιδ : H1(0,R∞L (δ)
ψ=1)−→∼ Leδ : [ fµeδ] 7→ δ(−1) ·

∫
Z×p

δ−1(y)µ(y)eδ

by Lemma 4.10 and by the arguments before this lemma. Then the equality
εL ,ζ (RL(δx))= ∂ ◦ εL ,ζ (RL(δ)) is equivalent to the commutativity of the diagram

H1(0,R∞L (δ)
ψ=1)

ιδ
−→ Leδ

∂

y yeδ 7→−eδx

H1(0,R∞L (δx)ψ=1)
ιδx
−→ Leδx

Finally, this commutativity follows from the formula∫
Zp

f (y)∂(µ)(y)=
∫

Zp

y f (y)µ(y)

for any f (y) ∈ LA(Zp, L), which finally proves the proposition. �

We next prove the compatibility of ∂ with the de Rham ε-isomorphism εdR
L ,ζ(RL(δ))

for de Rham rank-one (ϕ, 0)-modules RL(δ) under a condition on the Hodge–Tate
weight of RL(δ) as below.

Lemma 4.14. Let RL(δ) be a de Rham (ϕ, 0)-module (here we don’t assume that
δ is generic). If the Hodge–Tate weight of RL(δ) is not zero, i.e., we have δ = δ̃xk

such that k 6= 0, then we have the equality

εdR
L ,ζ (RL(δx))= ∂ ◦ εdR

L ,ζ (RL(δ)).

Proof. Since one has DdR(RL(δ)) =
(
L∞ 1

tk eδ
)0 and ∂(g(t)) = dg(t)

dt for g(t) ∈
L∞((t)), the differential operator ∂ naturally induces an isomorphism

∂ : DdR(RL(δ))→ DdR(RL(δx)) :
a
tk eδ 7→ (−k)

a
tk+1 eδx
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under the condition k 6= 0. Hence, by definition of εdR
L ,ζ (M) using the isomorphisms

θL(M) and θdR,L(M, ζ ) and the constant 0L(M) in Section 3B, it suffices to show
the following two equalities:

(1) θL(RL(δx))= ∂ ◦ θL(RL(δ)).

(2) 0L(RL(δ)) · ∂ ◦ θdR,L(RL(δ), ζ )= 0L(RL(δx)) · θdR,L(RL(δx), ζ ) ◦ ∂ .

We first prove the equality (2). Since one has 0L(RL(δ))=0
∗(k) and 0L(RL(δx))=

0∗(k+ 1), it suffices to show that the diagram

LL(RL(δ))= Leδ
0∗(k)· fRL (δ),ζ
−−−−−−−→ DdR(RL(δ))yeδ 7→−eδx

y∂
LL(RL(δx))= Leδx

0∗(k+1)· fRL (δx),ζ
−−−−−−−−−−→ DdR(RL(δx))

is commutative, where the map fRL (δ′),ζ (for δ′ = δ, δx) is defined in Lemma 3.4.
This commutativity is obvious by definition of fRL (δ0),ζ since one has

εL(W (RL(δ)), ζ )= εL(W (RL(δx)), ζ )(
this is because one has a natural isomorphism Dpst(RL(δ)) −→

∼ Dpst(RL(δx)) :
a
tk eδ 7→ a

tk+1 eδx
)

and k ·0∗(k)=0∗(k+1) for k 6= 0. We next show the equality (1).
Under the assumption that k 6= 0, it is easy to see that ∂ induces the isomorphisms

DdR(RL(δ))−→
∼ DdR(RL(δx)), DdR(RL(δ))

0
−→∼ DdR(RL(δx))0

and

Dcris(RL(δ))−→
∼ Dcris(RL(δx)), Hi

ϕ,γ (RL(δ))−→
∼ Hi

ϕ,γ (RL(δx))

for any i = 0, 1, 2 by Lemma 4.12. Hence, by definition of θ ′L(RL(δ)), it suffices
to show that the following two diagrams are commutative for M =RL(δ):

H0
ϕ,γ (M) −→ Dcris(M) −→ Dcris(M)⊕ tM −→ H1

ϕ,γ (M)y∂ y∂ y∂ y∂
H0
ϕ,γ (M(x))−→ Dcris(M(x))−→ Dcris(M(x))⊕ tM(x) −→ H1

ϕ,γ (M(x))

(57)

and

H1
ϕ,γ (M) −→

Dcris(M∗)∨
⊕DdR(M)0

−→ Dcris(M)∨ −→ H2
ϕ,γ (M)y∂ y(−∂∨)⊕∂ y−∂∨ y∂

H1
ϕ,γ (M(x))−→

Dcris(M(x)∗)∨
⊕ DdR(M(x))0

−→ Dcris(M(x)∗)∨ −→ H2
ϕ,γ (M(x))

(58)
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Here ∂∨ is the dual of

∂ : Dcris(M(x)∗)= Dcris(RL(δ
−1
|x |))−→∼ Dcris(RL(δ

−1x |x |))= Dcris(M∗).

For the commutativity of the diagram (57), the only nontrivial part is the commuta-
tivity of the diagram

Dcris(M)⊕ tM
expM, f ⊕ expM
−−−−−−−−→ H1

ϕ,γ (M)

∂

y ∂

y
Dcris(M(x))⊕ tM(x)

expM(x), f ⊕ expM(x)
−−−−−−−−−−→ H1

ϕ,γ (M(x))

but this commutativity easily follows from Proposition 2.23. Using the commuta-
tivity of (57) for M =RL(δ

−1
|x |), to prove the commutativity of (58), it suffices

to show the commutativities of the following diagrams:

DdR(M) −→ DdR(M∗)∨

∂

y −∂∨

y
DdR(M(x))−→ DdR(M(x)∗)∨

(59)

and
Hi
ϕ,γ (M) −→ H2−i

ϕ,γ (M
∗)∨

∂

y −∂∨

y
Hi
ϕ,γ (M(x))−→ H2−i

ϕ,γ (M(x)
∗)∨

(60)

Here the horizontal arrows are isomorphisms obtained by (Tate) duality. Since
the commutativity of (59) is easy to check, here we only prove the commutativity
of (60). Moreover, we only prove it for i = 2 since other cases are proved in the
same way. For i = 2, it suffices to show the equality

[∂( f )ge1] = −[ f ∂(g)e1] ∈ H2
ϕ,γ (RL(1))

for any [ f eδ] ∈ H2
ϕ,γ (RL(δ)) and geδ−1|x | ∈ H0

ϕ,γ (RL(δ
−1
|x |)). Since we have

∂( f g)=∂( f )g+ f ∂(g), the equality follows from the fact that we have [∂(h)e1]=0
in H2

ϕ,γ (RL(1)) for any h ∈RL . �

Remark 4.15. Proposition 4.13 and Lemma 4.14 and the following proof of
Proposition 4.11 should be generalizable to a more general setting. Let M be
a de Rham (ϕ, 0)-module over RL of any rank. In §3 of [Nakamura 2014a], we
developed the theory of Perrin-Riou’s big exponential map for a de Rham (ϕ, 0)-
module, which is an R∞L (0)-linear map H1

ψ,γ (Dfm(M))→ H1
ψ,γ (Dfm(Nrig(M))),

where Nrig(M) ⊆ M[1/t] is a de Rham (ϕ, 0)-module equipped with a natural
action of the differential operator ∂M defined by Berger. This big exponential map



A generalization of Kato’s local 3-conjecture 389

is defined using the operator ∂M . Our generalization of Perrin-Riou’s δ(V )-theorem
[Nakamura 2014a, Theorem 3.21] states that this map gives an isomorphism

ExpM :1R∞L (0)(Dfm(M))−→∼ 1R∞L (0)(Dfm(Nrig(M))).

Therefore, as a generalization of Proposition 4.13, it seems to be natural to conjecture
that the conjectural ε-isomorphisms should satisfy

εR∞L (0),ζ (Dfm(Nrig(M)))= ExpM ◦ εR∞L (0),ζ (Dfm(M)),

which we want to study in future works.

Using these results, we prove Proposition 4.11 for general k ≤ 0 as follows.

Proof of Proposition 4.11 for general k≤0. Let δ= δ̃xk be a generic homomorphism
such that k ≤ 0. By the arguments before Proposition 4.11, it suffices to show
the equality εL ,ζ (RL(δ))= ε

dR
L ,ζ (RL(δ)). This equality follows from the equality

εL ,ζ (RL(δ̃))= ε
dR
L ,ζ (RL(δ̃)) proved in Proposition 4.11 for k = 0, since we have

εL ,ζ (RL(δ))= ∂
k
◦ εL ,ζ (RL(δ̃)) and εdR

L ,ζ (RL(δ))= ∂
k
◦ εdR

L ,ζ (RL(δ̃))

by Proposition 4.13 and Lemma 4.14. �

We next consider the case where k ≥ 1. To verify the condition (vi), it suffices
to show the following proposition.

Proposition 4.16. If k ≥ 1, then the map

H1(0,R∞L (δ)
ψ=1)−→∼ H1

ψ,γ (RL(δ))
exp−1

RL (δ)
−−−→ DdR(RL(δ))

sends each element [ fµeδ] ∈ H1(0,R∞L (δ)
ψ=1) to

(1) (k− 1)! ·
δ(−1)

εL(W (RL(δ)), ζ )
·

1
tk ·

∫
Z×p

δ−1(y)µ(y)eδ when n(δ) 6= 0,

(2) (k−1)!·
detL(1−ϕ | Dcris(RL(δ)

∗))

detL(1−ϕ | Dcris(RL(δ)))
·
δ(−1)

tk ·

∫
Z×p

δ−1(y)µ(y)eδ when n(δ)=0.

Proof. In the same way as the proof of Proposition 4.11, it suffices to show the
proposition for k = 1 (i.e., δ = δ̃x) using Proposition 4.13 and Lemma 4.14.

Hence, we assume k = 1. Then, in a similar way as the proof of Proposition 4.11
(for k = 0), we have the commutative diagram

H1
ψ,γ (RL(δ̃))←− H1(0,R∞L (δ̃)

ψ=1)
ιδ̃
−→ Leδ̃y∂ y∂ yeδ̃ 7→−eδ

H1
ψ,γ (RL(δ))←− H1(0,R∞L (δ)

ψ=1)
ιδ
−→ Leδ

(61)
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such that all the arrows are isomorphisms by Lemma 4.12. Hence, reducing to the
case of k = 0, it suffices to show that the following diagram is commutative:

H1(0,R∞L (δ̃)
ψ=1)−→ H1

ψ,γ (RL(δ̃))
exp∗

RL (δ̃−1x |x |)
−−−−−−−→ DdR(RL(δ̃))= (L∞eδ̃)

0

∂

y ∂

y yaeδ̃ 7→
a
t eδ

H1(0,R∞L (δ)
ψ=1)−→ H1

ψ,γ (RL(δ))
expRL (δ)
←−−−− DdR(RL(δ))=

(
L∞ 1

t eδ
)0

(62)

The following proof of this commutativity is very similar to that of Theorem 3.10
of [Nakamura 2014a]. Take [ f eδ̃] ∈ H1(0,R∞L (δ̃)

ψ=1). If we define

αeδ̃ :=exp∗RL (δ̃
−1x |x |)([|0tor| log0(χ(γ ))p1( f eδ̃), 0])∈ DdR(RL(δ̃))⊆ Ddif(RL(δ̃)),

then it suffices to show the equality

expRL (δ)

(
α

t
eδ
)
= |0tor| log0(χ(γ ))[p1(∂( f )eδ), 0].

We prove this equality as follows. First, we have an equality

|0tor| log0(χ(γ ))

log(χ(γ ))
[ιn(p1( f eδ̃))] = [αeδ̃] ∈ H1

ψ,γ (D
+

dif(RL(δ̃)))

for large enough n ≥ 1 by the explicit definition of exp∗RL (δ̃
−1x |x |) [Nakamura 2014a,

Proposition 2.16]. This equality means that for some yn ∈ D+dif,n(RL(δ̃))
1 we have

|0tor| log0(χ(γ ))

log(χ(γ ))
ιn(p1( f eδ̃))−αeδ̃ = (γ − 1)yn.

If we set ∇0 := log([γ ])/log(χ(γ )) ∈R∞L (0) and define

∇0

γ − 1
:=

1
log(χ(γ ))

∞∑
m≥1

(−1)m−1([γ ] − 1)m−1

m
∈R∞L (0),

then we obtain the equality

ιn

(
|0tor| log0(χ(γ ))

log(χ(γ ))
∇0

γ − 1
(p1( f eδ̃))

)
=

1
log(χ(γ ))

αeδ̃ +∇0(yn) ∈
1

log(χ(γ ))
αeδ̃ + t D+dif,n(RL(δ̃)). (63)

Since we have f eδ̃ ∈RL(δ̃)
ψ=1, we have

(1−ϕ)(p1( f eδ̃)) ∈RL(δ̃)
1,ψ=0.

Hence, there exists β ∈RL(δ̃)
1,ψ=0 such that

(1−ϕ)(p1( f eδ̃))= (γ − 1)β
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by (for example) Theorem 3.1.1 of [Kedlaya et al. 2014]. Then, for any m ≥ n+ 1,
we obtain

ιm

(
∇0

γ − 1
(p1( f eδ̃))

)
− ιm−1

(
∇0

γ − 1
(p1( f eδ̃))

)
= ιm

(
(1−ϕ)

(
∇0

γ − 1
(p1( f eδ̃))

))
= ιm

(
∇0

γ − 1
((1−ϕ)(p1( f eδ̃)))

)
= ιm

(
∇0

γ − 1
((γ − 1)β)

)
= ιm(∇0(β)) ∈ t D+dif,m(RL(δ̃))

since we have ∇0(RL(δ̃))⊆ tRL(δ̃). In particular, we obtain

ιm

(
∇0

γ − 1
(p1( f eδ̃))

)
− ιn

(
∇0

γ − 1
(p1( f eδ̃))

)
∈ t D+dif,m(RL(δ̃)) (64)

for any m ≥ n+ 1 by induction.
Since the map RL(δ̃) −→

∼ 1
t RL(δ) : geδ̃ 7→

g
t eδ is an isomorphism of (ϕ, 0)-

modules, the facts (63), (64) and the explicit definition of the exponential map
(Proposition 2.23(1)) induce the equality

expRL (δ)

(
α

t
eδ
)

= |0tor| log0(χ(γ ))
[
(γ − 1) ∇0

γ−1

(
p1
( f

t
eδ
))
, (ψ − 1) ∇0

γ−1

(
p1
( f

t
eδ
))]

= |0tor| log0(χ(γ ))
[
∇0

(
p1
( f

t
eδ
))
, 0
]

= |0tor| log0(χ(γ ))[p1(∂( f )eδ), 0],

where the last equality follows from the equality ∇0
( f

t eδ
)
= ∂( f )eδ since we have

∇0
( 1

t eδ
)
= 0 by the assumption k= 1, from which the commutativity of the diagram

(62) follows. �

As a corollary of Propositions 4.11 and 4.16, we verify the conditions (iv), (v)
by the density argument as follows.

Corollary 4.17. Let M be a rank-one (ϕ, 0)-module over RA. Then the isomor-
phism εA,ζ (M) : 1A −→

∼ 1A(M), which is defined in Section 4A, satisfies the condi-
tions (iv) and (v) of Conjecture 3.8.

Proof. We first verify the conditions (iv). By the definition of εA,ζ (RA(δ)⊗A L), it
suffices to do this for (ϕ, 0)-modules of the form M =RA(δ) (i.e., L= A) since
the general case immediately follows from this case by Lemma 4.6. Then, in the
same way as the proof of Proposition 4.13, it suffices to verify these conditions for
any δ = δλδ0 :Q

×
p → L× such that the point (δ0, λ) ∈ X ×Gan

m is contained in the
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Zariski dense subset S1 of X ×Gan
m defined by

S1 := {(δ0, λ) ∈ X (L)×Gan
m (L) | [L :Qp]<∞, δ is generic, RL(δ) is de Rham}.

For such δ, the conditions (iv) follow from Lemma 3.7 since we have εL ,ζ (RL(δ))=

εdR
L ,ζ (RL(δ)) by Propositions 4.11 and 4.16.

We next verify the condition (v). Let (3, T ) be as in Conjecture 3.8(v). We
recall that we defined a canonical isomorphism

13(T )⊗3 A∞ −→∼ 1A∞(M∞)

(see Example 3.3 for definition and notation). Since any continuous map 3→ A
factors through 3→ A∞→ A, it suffices to show the equality

ε3,ζ (T )⊗ idA∞ = εA∞,ζ (M∞)
(
:= lim
←−−

n
εAn,ζ (Mn)

)
. (65)

Since condition (v) is local for Spf(3), it suffices to verify it for3-representations
of the form 3(δ̃) for some δ̃ : Gab

Qp
→ 3×. Let us decompose δ = δ̃ ◦ recQp into

δ= δλδ0. Since 3/m3 is a finite ring, there exists k ≥ 1 such that λk
≡ 1 (mod m3).

Then we can define a continuous Zp-algebra homomorphism

3k := lim
←−−

n
Zp[Y ]/(p, (Y k

− 1))n→3 : Y 7→ λ.

Hence, the 3-representation 3(δ̃) is obtained by a base change of the “universal”
Zp[[0]] ⊗̂Zp 3k-representation T univ

k , which corresponds to the homomorphism

δuniv
k :Q×p → (Zp[[0]] ⊗̂Zp 3k)

×
: p 7→ 1 ⊗̂ Y, a 7→ [σ−1

a ] ⊗̂ 1

for a ∈ Z×p . Hence, it suffices to verify the equality (65) for this universal one. In
this case, since the associated rigid space is an admissible open of X ×Gan

m defined
by

Zk := {(δ0, λ) ∈ X ×Gan
m | |λ

k
− 1|< 1},

and the associated (ϕ, 0)-module is isomorphic to the restriction of the universal
one Dfm(RGan

m
(δY )) defined in the proof of Proposition 4.13, it suffices to show the

equality

εZp[[0]]⊗̂Zp3k ,ζ (T
univ

k )⊗ id0(Zk ,OZk )
= ε0(Zk ,OZk ),ζ

(Dfm(RGan
m
(δY ))|Zk ).

Since both sides satisfy the condition (vi) for any point (δ0, λ) ∈ Zk ∩ S1 by Kato’s
theorem [1993b] and by Propositions 4.11 and 4.16, and since the set Zk ∩ S1 is
Zariski dense in Zk , the equality above follows by the density argument. �
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4B2. Verification of the condition (vi): the exceptional case. Finally, we verify the
condition (vi) in the exceptional case, i.e., δ = x−k or δ = xk+1

|x | for k ∈ Z≥0.
We first reduce all the exceptional cases to the case δ = x |x |.

Lemma 4.18. We assume that the equality

εL ,ζ (RL(x |x |))= εdR
L ,ζ (RL(x |x |))

holds. Then the other equalities

εL ,ζ (RL(δ))= ε
dR
L ,ζ (RL(δ))

also hold for all δ = xk+1
|x |, x−k for k ≥ 0.

Proof. The equality for δ = x0 follows from that for δ = x |x | by the compatibility
of εdR

L ,ζ (−) and εL ,ζ (−) with the Tate duality, which is proved in Lemma 3.7 and
Corollary 4.17. Then the equality for δ = xk+1

|x | (resp. δ = x−k) follows from
that for δ = x |x | (resp. δ = x0) by the compatibility of εdR

L ,ζ (−) and εL ,ζ (−) with ∂ ,
which is proved in Lemma 4.14 and Proposition 4.13. �

Finally, it remains to show the equality

εL ,ζ (RL(1))= εdR
L ,ζ (RL(1))

(we identify RL(x |x |) = RL(1) : f ex |x | 7→ f e1). Since RL(1) is étale, this
equality immediately follows from Kato’s result since we have εL ,ζ (RL(1)) =
εOL ,ζ (OL(1))⊗ idL under the canonical isomorphism

1L(RL(1))−→∼ 1OL (OL(1))⊗OL L

by Corollary 4.17. However, here we give another proof of this equality only using
the framework of (ϕ, 0)-modules.

In the remaining part of this section, we prove this equality by explicit calculations.
First, it is easy to see that the inclusion

C •ψ,γ (L · 1Zp e1) ↪→ C •ψ,γ (LA(Zp, L)(1))

induced by the natural inclusion L · 1Zp e1 ↪→ LA(Zp, L)(1) (here, 1Zp is the
constant function on Zp with the constant value 1) is quasi-isomorphism. This
quasi-isomorphism and the quasi-isomorphism

C •γ (R
∞

L (1)
ψ=1)−→∼ C •ψ,γ (R

∞

L (1)),

and the long exact sequence associated to the short exact sequence

0→R∞L (1)→RL(1)→ LA(Zp, L)(1)→ 0
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induce the isomorphisms

α0 : H0
ψ,γ (L · 1Zp e1)−→

∼ H1(0,R∞L (1)
ψ=1),

α1 : H1
ψ,γ (RL(1))−→∼ H1

ψ,γ (L · 1Zp e1) :

[ f1e1, f2e2] 7→

(
Res0

(
f1

dπ
1+π

)
· 1Zp e1,Res0

(
f2

dπ
1+π

)
· 1Zp e1

)
,

α2 : H2
ψ,γ (RL(1))−→∼ H2

ψ,γ (L · 1Zp e1) : [ f e1] 7→ Res0

(
f

dπ
1+π

)
· 1Zp e1.

Therefore, the isomorphism

θ̄ζ (RL(1)) :�2
i=1 DetL(Hi

ψ,γ (RL(1)))(−1)i+1
−→∼ (L(1), 1),

defined in (50), is the composition of the isomorphisms β0, β1 and ιx |x |:

�2
i=1 DetL(Hi

ψ,γ (RL(1)))(−1)i+1

β0
−→�2

i=0 DetL(Hi
ψ,γ (L · 1Zp e1))

(−1)i+1
� (H1(0,R∞L (1)

ψ=1), 1)
β1
−→(H1(0,R∞L (1)

ψ=1), 1) ιx |x |−→ (L(1), 1).

Here β0 is induced by αi (i = 0, 1, 2), and β1 is induced by the canonical isomor-
phism

β1 :�2
i=0 DetL(Hi

ψ,γ (L · 1Zp e1))
(−1)i−1

−→∼ 1L ,

which is the base change by fx |x | :R∞L (0)→ L : [γ ] 7→χ(γ )−1 of the isomorphism
(40) for M =RL .

By definition, the isomorphism β1 is explicitly described as in the following
lemma, which easily follows from the definition (hence, we omit the proof).

Lemma 4.19. If we define f̃0 := 1Zp e1 (resp. f̃1,1 := (1Zp e1, 0), f̃1,2 := (0, 1Zp e1),
resp. f̃2 := 1Zp e1) for the basis of H0

ψ,γ (L · 1Zp e1) (resp. H1
ψ,γ (L · 1Zp e1), resp.

H2
ψ,γ (L · 1Zp e1)), then the canonical trivialization

β1 : (H0
ψ,γ (L ·1Zp e1), 1)−1�(detL H1

ψ,γ (L ·1Zp e1), 2)�(H2
ψ,γ (L ·1Zp e1), 1)−1

−→∼ 1L

satisfies the equality

β1( f̃ ∨0 ⊗ ( f̃1,1 ∧ f̃1,2)⊗ f̃ ∨2 )= 1.

Lemma 4.20. The isomorphism

H0
ψ,γ (L · 1Zp e1)

α0
−→H1(0,R∞L (1)

ψ=1)
ιx |x |
−→ Le1

sends the element f̃0 to −e1 ∈ L(1).
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Proof. Since we have Col
(1+π
π

)
= 1Zp and ψ

( 1+π
π

e1
)
=

1+π
π

e1, we have

α0( f̃0)=

[
1

|0tor| log0(χ(γ ))
(γ − 1)

(
1+π
π

e1

)]
by definition of the boundary map.

Since we have

(γ − 1)
(

1+π
π

e1

)
= ∂

(
log
(
γ (π)

π

))
e1 and log

(
γ (π)

π

)
e|x | ∈R∞L (|x |)

ψ=1,

and have the commutative diagram

H1(0,R∞L (|x |)
ψ=1)

ι|x |
−→ Le|x |y∂ ye|x | 7→−e1

H1(0,R∞L (1)
ψ=1)

ιx |x |
−−→ Le1

(66)

we obtain an equality

ιx |x |(α0( f̃0))=
1

|0tor| log0(χ(γ ))
ιx |x |

([
∂

(
log
(
γ (π)

π

))
e1

])
=−

1
|0tor| log0(χ(γ ))

∫
Z×p

µγ (y)e1

by Lemma 4.10, where we define µγ ∈D(Zp, L) such that fµγ (π)= log(γ (π)/π).
We calculate

∫
Z×p
µγ (y) as follows. Since we have ψ(µγ )= 1

pµγ , we obtain∫
pZp

µγ (y)=
∫

Zp

ψ(µγ )(y)=
1
p

∫
Zp

µγ (y).

Hence, we obtain∫
Z×p

µγ (y)=
∫

Zp

µγ (y)−
∫

pZp

µγ (y)=
∫

Zp

µγ (y)−
1
p

∫
Zp

µγ (y)

=
p− 1

p

∫
Zp

µγ (y)=
p− 1

p
log
(
γ (π)

π

)
|π=0 =

p− 1
p

log(χ(γ )).

Hence,

ιx |x |(α0( f̃0))=−
log(χ(γ ))

|0for| log0(χ(γ ))

p− 1
p

e1 =−e1

(for any prime p), which proves the lemma. �

In the Appendix, we define a canonical basis { f1,1, f1,2} of H1
ψ,γ (RL(1)), f2 ∈

H2
ψ,γ (RL(1)), e0 ∈ H0

ψ,γ (RL) and {e1,1, e1,2} of H1
ψ,γ (RL); see the Appendix for

the definition.
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Corollary 4.21. The isomorphism

θ̄ζ (RL(1)) : (detL H1
ψ,γ (RL(1)), 2)� (H2

ψ,γ (RL(1)), 1)−1
−→∼ (Le1, 1)

sends the element ( f1,1 ∧ f1,2)⊗ f ∨2 to − p−1
p e1.

Proof. By definition, we have

α1( f1,1)=
p− 1

p
log(χ(γ )) f̃1,1,

α1( f1,2)=
p− 1

p
f̃1,2,

α2( f2)=
p− 1

p
log(χ(γ )) f̃2.

Then the corollary follows from the previous lemmas. �

Finally, since one has 0L(RL(1)) = 1 and θdR,L(RL(1), ζ ) corresponds to the
isomorphism

LL(RL(1))= Le1 −→
∼ DdR(RL(1))=

1
t

Le1 : ae1 7→
a
t

e1,

it suffices to show the following lemma.

Lemma 4.22. The isomorphism

θL(RL(1)) : (detL H1
ψ,γ (RL(1)), 2)� (H2

ψ,γ (RL(1)), 1)−1

−→∼ (DdR(RL(1)), 1)=
(

L
1
t

e1, 1
)

sends the element ( f1,1 ∧ f1,2)⊗ f ∨2 to − p−1
pt e1.

Proof. By definition, the above isomorphism is the one which is naturally induced
by the exact sequence

0→ Dcris(RL(1))
(1−ϕ)⊕can
−−−−−→ Dcris(RL(1))⊕ DdR(RL(1))

exp f,RL (1)
⊕ expRL (1)

−−−−−−−−−−−→H1
ψ,γ (RL(1)) f → 0

and the isomorphisms

exp∨f,RL
: H1

ψ,γ (RL(1))/H1
ψ,γ (RL(1)) f −→

∼ Dcris(RL)
∨

and
Dcris(RL)

∨
−→∼ H2

ψ,γ (RL(1)),

which is the dual of the natural isomorphism H0
ψ,γ (RL)−→

∼ Dcris(RL).
We have expRL (1)

( 1
t e1
)
= f1,2 by the proof of Lemma 5.1. Since we have

exp f,RL
(1)= e1,2
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for d0 := 1 ∈ L = Dcris(RL) by the explicit definition of exp f (Proposition 2.23(2)),
and since we have 〈 f1,1, e1,2〉 = 1 by Lemma 5.4, we obtain

exp∨f,RL
( f1,1)=−d∨0 ∈ Dcris(RL)

∨

(we should be careful with the sign). Since the natural isomorphism H0
ψ,γ (RL)−→

∼

Dcris(RL) sends e0 to d0 ∈ L = Dcris(RL), we obtain

Dcris(RL)
∨
→ H2

ψ,γ (RL(1)) : d∨0 7→ f2

by Lemma 5.4. The lemma follows from these calculations and a diagram chase. �

Appendix: Explicit calculations of Hi
ϕ,γ (RL) and Hi

ϕ,γ (RL(1))

In this appendix, we compare Hi (Qp, L(k))with Hi
ϕ,γ (RL(k)) explicitly for k=0, 1,

and define a canonical basis of Hi
ϕ,γ (RL(k)), which is used to compare εL ,ζ (RL(1))

with εdR
L ,ζ (RL(1)) in Corollary 4.21 and Lemma 4.22. All the results in this appendix

seem to be known (see for example [Benois 2000]), but here we give another proof
of these results in the framework of (ϕ, 0)-modules over the Robba ring. Of course,
we may assume that L =Qp by base change.

We first consider Hi
ϕ,γ (RQp). If we identify by

H1(Qp,Qp)= Homcont(Gab
Qp
,Qp)−→

∼ Homcont(Q
×

p ,Qp) : τ 7→ τ ◦ recQp ,

then this has a basis {[ordp], [log]} defined by

ordp :Q
×

p →Qp : p 7→ 1, a 7→ 0 for a ∈ Z×p ,

log :Q×p →Qp : p 7→ 0, a 7→ log(a) for a ∈ Z×p .

We define a basis e0 of H0
ϕ,γ (RQp) and {e1,1, e1,2} of H1

ϕ,γ (RQp) by

e0 = 1 ∈RQp , e1,1 := [log(χ(γ )), 0], e1,2 := [0, 1].

The basis is independent of the choice of γ , i.e., is compatible with the com-
parison isomorphism ιγ,γ ′ . We can easily check that the canonical isomorphism
H1(Qp,Qp)−→

∼ H1
ϕ,γ (RQp) sends [log] to e1,1 and [ordp] to e1,2.

We next consider H1
ϕ,γ (RQp(1)). Let us denote by

κ :Q×p → H1(Qp,Qp(1))

the Kummer map. Composing this with the canonical isomorphism

H1(Qp,Qp(1))−→∼ H1
ϕ,γ (RQp(1)),

we obtain a homomorphism

κ0 :Q
×

p → H1
ϕ,γ (RQp(1)).
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We define a homomorphism

H1
ϕ,γ (RQp(1))→Qp⊕Qp :

[ f1e1, f2e1] 7→

(
p

p− 1
·

1
log(χ(γ ))

·Res0

(
f1

dπ
1+π

)
,−

p
p− 1

·Res0

(
f2

dπ
1+π

))
(we note that p−1

p · log(χ(γ ))= |0tor| · log0(χ(γ ))), which is also independent of
the choice of γ , and is an isomorphism. Using this isomorphism, we define a basis
{ f1,1, f1,2} of H1

ϕ,γ (RQp(1)) such that f1,1 (resp. f1,2) corresponds to (1, 0)∈ L⊕L
(resp. (0, 1)) by this isomorphism. We want to explicitly describe the map κ0 using
this basis. For this, we first prove the following lemma.

Lemma 5.1. For each a ∈ Z×p , we have κ0(a)= log(a) · f1,2.

Proof. By the classical explicit calculation of the exponential map, we have

κ(a)= expQp(1)

(
log(a)

t
e1

)
.

Since we have the commutative diagram

DdR(Qp(1))
expQp (1)
−−−−→ H1(Qp,Qp(1))

∼

y ∼

y
DdR(RQp(1))

expRQp (1)

−−−−−→ H1
ϕ,γ (RQp(1))

by Proposition 2.26, it suffices to show that

expRQp (1)

(1
t

e1

)
= f1,2.

We show this equality as follows. We first take some f ∈ (R∞
Qp
)1 such that

f (ζpn − 1)= 1/pn for any n ≥ 0, which is possible since we have an isomorphism
R∞

Qp
/t −→∼

∏
n≥0 Qp(ζpn ) : f̄ 7→ ( f (ζpn−1))n≥0 by Lazard’s theorem [1962]. Then

the element f
t e1 ∈

( 1
t RQp(1)

)1 satisfies

ιn

( f
t

e1

)
−

1
t

e1 ∈ D+dif,n(RQp(1))

for any n ≥ 1, since we have

ιn

( f
t

e1

)
≡ pn

·
f (ζpn − 1)

t
e1 =

1
t

e1 (mod D+dif,n(RQp(1))).
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By the explicit definition of expRQp (1)
(Proposition 2.23(1)), we have

expRQp (1)

(1
t

e1

)
=

[
(γ − 1)

( f
t

e1

)
, (ϕ− 1)

( f
t

e1

)]
∈ H1

ϕ,γ (RQp(1)).

Hence, it suffices to show that

Res0

(
γ ( f )− f

t
·

dπ
1+π

)
= 0

and

Res0

((
ϕ( f )

p
− f

)
·

1
t
·

dπ
1+π

)
=−

p− 1
p

.

Here, we only calculate

Res0

((
ϕ( f )

p
− f

)
·

1
t
·

dπ
1+π

)
(the calculation of

Res0

(
γ ( f )− f

t
·

dπ
1+π

)
is similar). By definition of f , we have

ϕ( f )(ζpn − 1)
p

− f (ζpn − 1)=
f (ζpn−1 − 1)

p
− f (ζpn − 1)=

1
p
·

1
pn−1 −

1
pn = 0

for each n ≥ 1. Hence, we have(
ϕ( f )

p
− f

)
∈

( ∞∏
n≥1

Qn(π)

p

)
R∞Qp

by the theorem of Lazard [1962], where we define Qn(π) := ϕ
n−1
(
ϕ(π)/π

)
for

each n ≥ 1. Since we have t = π
∏

n≥1
(
Qn(π)/p

)
, we obtain the equality

Res0

((
ϕ( f )

p
− f

)
·

1
t
·

dπ
1+π

)
=

((
ϕ( f )

p
− f

)
·

1∏
∞

n≥1
Qn(π)

p

·
1

1+π

)∣∣∣∣
π=0

=

(
ϕ( f )

p
− f

)∣∣∣∣
π=0
=

f (0)
p
− f (0)=−

p− 1
p

,

where the second equality follows from the fact that Qn(0)
p
= 1 for n ≥ 1, which

proves the lemma. �

Before calculating κ0(p) ∈ H1
ϕ,γ (RQp(1)), we explicitly describe Tate’s trace

map in terms of (ϕ, 0)-modules. We note that we normalize Tate’s trace map

H2(Qp,Qp(1))−→∼ Qp
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so that the cup product pairing

〈−,−〉 : H1(Qp,Qp(1))×H1(Qp,Qp)
∪
→H2(Qp,Qp(1))−→∼ Qp

satisfies

〈κ(a), [τ ]〉 = τ(a)

for a ∈Q×p and [τ ] ∈Hom(Q×p ,Qp)=H1(Qp,Qp) (we remark that this normaliza-
tion coincides with the one used in §2.4 of [Nakamura 2014a] and with −1 times
the one in [Kato 1993a, Chapter II, §1.4]).

Proposition 5.2. The map ιγ : H2
ϕ,γ (RQp(1))−→∼ H2(Qp,Qp(1))−→∼ Qp, which is

the composition of the canonical isomorphism H2
ϕ,γ (RQp(1))−→∼ H2(Qp,Qp(1))

with Tate’s trace map is explicitly defined by

ιγ ([ f e1])=
p

p− 1
·

1
log(χ(γ ))

Res0

(
f

dπ
1+π

)
.

Proof. Since the map

ι : H2
ϕ,γ (RQp(1))−→∼ Qp : [ f e1] 7→ Res0

(
f

dπ
1+π

)
is a well-defined isomorphism, there exists a unique α ∈ Q×p such that ιγ = α · ι.
We calculate α as follows.

We recall that the element [log(χ(γ )), 0] ∈ H1
ϕ,γ (RQp) is the image of [log] ∈

H1(Qp,Qp) by the comparison isomorphism. By the proof of Lemma 5.1, for each
a ∈ Z×p , we have

κ0(a)= log(a)
[
(γ − 1)

( f
t

e1

)
, (ϕ− 1)

( f
t

e1

)]
∈ H1

ϕ,γ (RQp(1)),

where f ∈ R∞
Qp

is an element defined in the proof of Lemma 5.1. Since the cup
products are compatible with the comparison isomorphism (see Remark 2.12),
we have

ιγ
(
κ0(a)∪ [log(χ(γ )), 0]

)
= 〈κ(a), [log]〉 = log(a). (67)

By definition of the cup product, we have

κ0(a)∪ [log(χ(γ )), 0] = log(a)
[
(ϕ− 1)

(
f
t

e1

)
⊗ϕ(log(χ(γ )))

]
=−log(a) log(χ(γ ))

[
(ϕ− 1)

(
f
t

e1

)]
∈ H2

ϕ,γ (RQp(1)).
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Since Res0

(
(ϕ− 1)

( f
t

)
·

dπ
1+π

)
=−

p−1
p

by the proof of Lemma 5.1, we obtain

ιγ
(
κ0(a)∪ [log(χ(γ )), 0]

)
= α · ι

(
κ0(a)∪ [log(χ(γ )), 0]

)
=−α · log(χ(γ )) · log(a) · ι

([
(ϕ− 1)

( f
t

e1

)])
= α · log(χ(γ )) · log(a) ·

p− 1
p

.

Comparing this equality with the equality (67), we obtain

α =
p

p− 1
·

1
log(χ(γ ))

,

which proves the proposition. �

Finally, we prove the following lemma, which completes the calculation of the
map κ0 :Q

×
p →Qp⊕Qp.

Lemma 5.3. κ0(p)= f1,1.

Proof. Take f1,1 = [ f1e1, f2e1] ∈ H1
ϕ,γ (RQp(1)) to be a representative of f1,1. By

definition of the cup product, we have

ιγ ( f1,1 ∪ e1,1)= ιγ
(

f1,1 ∪ [log(χ(γ )), 0]
)

=−ιγ
(
[ f2e1⊗ϕ(log(χ(γ )))]

)
=−

p
p− 1

Res0

(
f2

dπ
1+π

)
= 0,

and

ιγ ( f1,1 ∪ e1,2)= ιγ ( f1,1 ∪ [0, 1])

= ιγ ([ f1e1⊗ γ (1)])=
p

p− 1
·

1
log(χ(γ ))

·Res0

(
f1

dπ
1+π

)
= 1

by Proposition 5.2. Since κ(p) ∈ H1(Qp,Qp(1)) satisfies the similar formulae

〈κ(p), [ordp]〉 = 1, 〈κ(p), [log]〉 = 0,

we obtain the equality
κ0(p)= f1,1. �

Using these lemmas, we obtain the following result. We define the basis f2 of
H2
ϕ,γ (RL(1)) by f2 := ι

−1
γ (1).

Lemma 5.4. Tate’s duality pairings

〈−,−〉 : H1
ϕ,γ (RL(1))×H1

ϕ,γ (RL)
∪
→H2

ϕ,γ (RL(1))
ιγ
−→ L

and
〈−,−〉 : H2

ϕ,γ (RL(1))×H0
ϕ,γ (RL)

∪
→H2

ϕ,γ (RL(1))
ιγ
−→ L
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satisfy
〈 f1,1, e1,1〉 = 0, 〈 f1,1, e1,2〉 = 1

〈 f1,2, e1,1〉 = 1, 〈 f1,2, e1,2〉 = 0,

〈 f2, e0〉 = 1.

Proof. That we have 〈 f1,1, e1,1〉= 0 and 〈 f1,1, e1,2〉= 1 is proved in Lemma 5.3. We
prove the formula for f1,2. By Lemma 5.1, we have an equality f1,2= κ0(a)/log(a)
for any nontorsion a ∈ Z×p . Hence, we obtain

〈 f1,2, e1,1〉 =
1

log(a)
〈κ(a), [log]〉 = 1,

〈 f1,2, e1,2〉 =
1

log(a)
〈κ(a), [ordp]〉 = 0

by the compatibility of the cup products. Finally, that 〈 f2, e0〉 = 1 is trivial by
definition. �
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