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A duality in Buchsbaum rings
and triangulated manifolds
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Let 1 be a triangulated homology ball whose boundary complex is ∂1. A result
of Hochster asserts that the canonical module of the Stanley–Reisner ring F[1]

of 1 is isomorphic to the Stanley–Reisner module F[1, ∂1] of the pair (1, ∂1).
This result implies that an Artinian reduction of F[1, ∂1] is (up to a shift in
grading) isomorphic to the Matlis dual of the corresponding Artinian reduction
of F[1]. We establish a generalization of this duality to all triangulations of
connected orientable homology manifolds with boundary. We also provide an
explicit algebraic interpretation of the h′′-numbers of Buchsbaum complexes
and use it to prove the monotonicity of h′′-numbers for pairs of Buchsbaum
complexes as well as the unimodality of h′′-vectors of barycentric subdivisions of
Buchsbaum polyhedral complexes. We close with applications to the algebraic
manifold g-conjecture.

1. Introduction

In this paper, we study an algebraic duality of Stanley–Reisner rings of triangulated
homology manifolds with nonempty boundary. Our starting point is the following
(unpublished) result of Hochster — see [Stanley 1996, Chapter II, §7]. (We defer
most definitions until later sections.) Let 1 be a triangulated (d − 1)-dimensional
homology ball whose boundary complex is ∂1, let F[1] be the Stanley–Reisner ring
of 1, and let F[1, ∂1] be the Stanley–Reisner module of (1, ∂1). (Throughout
the paper F denotes an infinite field.) Hochster’s result asserts that the canonical
module ωF[1] of F[1] is isomorphic to F[1, ∂1]. In the last decade or so, this
result had a lot of impact on the study of face numbers of simplicial complexes,
especially in connection with the g-conjecture for spheres; see, for instance, the
proof of Theorem 3.1 in the recent survey paper [Swartz 2014].
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One numerical consequence of Hochster’s result is the following symmetry of
h-numbers of homology balls: hi (1, ∂1)= hd−i (1). The h-numbers are certain
linear combinations of the face numbers; they are usually arranged in a vector called
the h-vector. In fact, Hochster’s result implies a stronger statement: it implies that
there is an isomorphism

F[1, ∂1]/2F[1, ∂1] ∼= (F[1]/2F[1])∨(−d), (1)

where2 is a linear system of parameters for F[1] and N∨ is the (graded) Matlis dual
of N (see, e.g., [Murai and Yanagawa 2014, Lemma 3.6]). As the F-dimensions of
the i-th graded components of modules in (1) are equal to hi (1, ∂1) and hd−i (1),
respectively, the above-mentioned symmetry, hi (1, ∂1)= hd−i (1), follows.

Hochster’s result was generalized to homology manifolds with boundary by Gräbe
[1984]. To state Gräbe’s result, we recall the definition of homology manifolds.
We denote by Sd and Bd the d-dimensional sphere and ball, respectively. A pure
d-dimensional simplicial complex1 is an F-homology d-manifold without boundary
if the link of each nonempty face τ of 1 has the homology of Sd−|τ | (over F). An
F-homology d-manifold with boundary is a pure d-dimensional simplicial com-
plex 1 such that

(i) the link of each nonempty face τ of 1 has the homology of either Sd−|τ | or
Bd−|τ |, and

(ii) the set of all boundary faces, that is,

∂1 :=
{
τ ∈1 : the link of τ has the same homology as Bd−|τ |

}
∪ {∅}

is a (d − 1)-dimensional F-homology manifold without boundary.

A connected F-homology d-manifold with boundary is said to be orientable if the
top homology H̃d(1, ∂1) is isomorphic to F.

Gräbe proved [1984] that if1 is an orientable homology manifold with boundary,
then F[1, ∂1] is the canonical module of F[1]. Gräbe also established [1987] a
symmetry of h-numbers for such a1. While Gräbe’s original statement of symmetry
is somewhat complicated, it was recently observed by the first two authors [Murai
and Novik 2016] that it takes the following simple form when expressed in the
language of h′′-numbers.

Theorem 1.1. Let 1 be a connected orientable F-homology (d − 1)-manifold with
nonempty boundary ∂1. Then h′′i (1, ∂1)= h′′d−i (1) for all i = 0, 1, . . . , d.

The h′′-numbers are certain modifications of h-numbers (see Section 3 for their
definition). Similarly to the h-numbers, the h′′-numbers are usually arranged in a
vector, called the h′′-vector. For homology manifolds, this vector appears to be a
“correct” analog of the h-vector. Indeed, many properties of h-vectors of homology
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balls and spheres are now known to hold for the h′′-vectors of homology manifolds
(with and without boundary); see recent survey articles [Klee and Novik 2016;
Swartz 2014]. In light of Gräbe’s result [1984] and Theorem 1.1, it is natural to ask
if Theorem 1.1 can be explained by Matlis duality. The first goal of this paper is to
provide such an explanation.

To this end, the key object is the submodule 6(2;M) defined by Goto [1983].
Several definitions are in order. Let S = F[x1, . . . , xn] be a graded polynomial ring
over a field F with deg xi = 1 for i = 1, 2, . . . , n. Let M be a finitely generated
graded S-module of Krull dimension d and let 2= θ1, . . . , θd be a homogeneous
system of parameters for M. The module 6(2;M) is defined as follows:

6(2;M) :=2M +
d∑

i=1

((θ1, . . . , θ̂i , . . . , θd)M :M θi )⊆ M.

This module was introduced by Goto [1983] and has been used in the study
of Buchsbaum local rings. Note that if M is a Cohen–Macaulay module, then
6(2;M) = 2M. We first show that this submodule is closely related to the
h′′-vectors. Specifically, we establish the following explicit algebraic interpretation
of h′′-numbers.

Theorem 1.2. Let (1, 0) be a Buchsbaum relative simplicial complex of dimension
d − 1 and let 2 be a linear system of parameters for F[1,0]. Then

dimF(F[1,0]/6(2; F[1,0])) j = h′′j (1, 0) for all j = 0, 1, . . . , d.

Theorems 1.1 and 1.2 suggest that when1 is a homology manifold with boundary
there might be a duality between the quotients of F[1] and F[1, ∂1] by6(2; F[1])
and6(2; F[1, ∂1]), respectively. We prove that this is indeed the case. In fact, we
prove a more general algebraic result on canonical modules of Buchsbaum graded
algebras. Let m= (x1, . . . , xn) be the graded maximal ideal of S. If M is a finitely
generated graded S-module of Krull dimension d , then the canonical module of M
is the module

ωM := (H d
m(M))

∨,

where H i
m(M) denotes the i-th local cohomology module of M. We prove that the

following isomorphism holds for all Buchsbaum graded algebras.

Theorem 1.3. Let R = S/I be a Buchsbaum graded F-algebra of Krull dimension
d ≥ 2, let 2= θ1, . . . , θd ∈ S be a homogeneous system of parameters for R, and
let δ =

∑d
i=1 deg θi . If depth R ≥ 2, then

ωR/6(2;ωR)∼= (R/6(2; R))∨(−δ).
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As we mentioned above, if 1 is a connected orientable homology manifold,
then (by Gräbe’s result) the module F[1, ∂1] is the canonical module of F[1];
furthermore it is not hard to see that F[1] satisfies the assumptions of Theorem 1.3.
(Indeed, the connectivity of 1 implies that depth F[1] ≥ 2, and the fact that F[1]

is Buchsbaum follows from Schenzel’s theorem — see Theorem 3.1 below.) Hence
we obtain the following corollary that generalizes (1).

Corollary 1.4. Let 1 be a connected orientable F-homology (d− 1)-manifold with
nonempty boundary ∂1, and let 2 be a linear system of parameters for F[1]. Then

F[1, ∂1]/6(2; F[1, ∂1])∼= (F[1]/6(2; F[1]))
∨(−d).

We also consider combinatorial and algebraic applications of Theorems 1.2
and 1.3. Specifically, we prove the monotonicity of h′′-vectors for pairs of Buchs-
baum simplicial complexes, establish the unimodality of h′′-vectors of barycentric
subdivisions of Buchsbaum polyhedral complexes, provide a combinatorial formula
for the a-invariant of Buchsbaum Stanley–Reisner rings, and extend [Swartz 2014,
Theorem 3.1] as well as [Böhm and Papadakis 2015, Corollary 4.5], which is related
to the sphere g-conjecture, to the generality of the manifold g-conjecture. More
precisely, Swartz’s result asserts that most bistellar flips when applied to a homology
sphere preserve the weak Lefschetz property, while Böhm and Papadakis’ result
asserts that stellar subdivisions at large-dimensional faces of homology spheres
preserve the weak Lefschetz property; we extend both of these results to bistellar flips
and stellar subdivisions performed on connected orientable homology manifolds.

The structure of the paper is as follows. In Section 2 we prove Theorem 1.3
(although we defer part of the proof to the Appendix). In Section 3, we study Stanley–
Reisner rings and modules of Buchsbaum simplicial complexes. There, after
reviewing basics of simplicial complexes and Stanley–Reisner rings and modules,
we verify Theorem 1.2 and derive several combinatorial consequences. Section 4 is
devoted to applications of our results to the manifold g-conjecture. Finally, in the
Appendix, we prove a graded version of [Goto 1983, Proposition 3.6] — a result on
which our proof of Theorem 1.3 is based.

2. Duality in Buchsbaum rings

In this section, we prove Theorem 1.3. We start by recalling some definitions and
results pertaining to Buchsbaum rings and modules.

Let S=F[x1, . . . , xn] be a graded polynomial ring with deg xi=1, i=1,2, . . . , n,
and let m = (x1, . . . , xn) be the graded maximal ideal of S. Given a graded
S-module N, we denote by N (a) the module N with grading shifted by a ∈ Z, that
is, N (a) j = Na+ j . If M is a finitely generated graded S-module of Krull dimen-
sion d , then a homogeneous system of parameters (or h.s.o.p.) for M is a sequence
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2= θ1, . . . , θd ∈m of homogeneous elements such that dimF M/2M <∞. A se-
quence θ1, . . . , θr ∈m of homogeneous elements is said to be a weak M-sequence if

(θ1, . . . , θi−1)M :M θi = (θ1, . . . , θi−1)M :M m

for all i = 1, 2, . . . , r . We say that M is Buchsbaum if every h.s.o.p. for M is a
weak M-sequence.

Let M be a finitely generated graded S-module and let 2 be its h.s.o.p. The
function P2,M : Z→ Z defined by

P2,M(n) := dimF(M/(2)n+1 M)

is called the Hilbert–Samuel function of M with respect to the ideal (2). It is
known that there is a polynomial in n of degree d , denoted by p2,M(n), such that
P2,M(n)= p2,M(n) for n� 0 (see [Bruns and Herzog 1993, Proposition 4.6.2]).
The leading coefficient of the polynomial p2,M(n) multiplied by d! is called the
multiplicity of M with respect to the ideal (2), and is denoted by e2(M). We will
make use of the following known characterization of the Buchsbaum property; see
[Stückrad and Vogel 1986, Theorem I.1.12 and Proposition I.2.6].

Lemma 2.1. A finitely generated graded S-module M of Krull dimension d is
Buchsbaum if and only if , for every h.s.o.p. 2 of M,

dimF(M/2M)− e2(M)=
d−1∑
i=0

(d−1
i

)
dimF H i

m(M).

We also recall some known results on canonical modules of Buchsbaum mod-
ules. For a finitely generated graded S-module M, the depth of M is defined by
depth(M) :=min{i : H i

m(M) 6= 0}.

Lemma 2.2. Let M be a finitely generated graded S-module of Krull dimension d.
If M is Buchsbaum, then the following properties hold:

(i) ωM is Buchsbaum.

(ii) H i
m(ωM)∼= (H d−i+1

m (M))∨ (as graded modules) for all i = 2, 3, . . . , d − 1.

(iii) If depth(M)≥ 2, then (H d
m(ωM))

∨ ∼= M (as graded modules).

(iv) If 2 is an h.s.o.p. for M, then2 is also an h.s.o.p. forωM and e2(ωM)=e2(M).

See [Stückrad and Vogel 1986, Theorem II.4.9] for (i) and (ii), [Schenzel 1982,
Korollar 3.13] or [Aoyama and Goto 1986, (1.16)] for (iii), and [Suzuki 1981,
Lemma 2.2] for (iv).

The following theorem is a graded version of [Goto 1983, Proposition 3.6]. The
original result by Goto is a statement about Buchsbaum local rings. It may be
possible to prove Theorem 2.3 in the same way as in [Goto 1983] by replacing rings
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with modules and by carefully keeping track of grading. However, since we could
not find any literature allowing us to easily check this statement, we will provide
its proof in the Appendix.

Theorem 2.3. Let M be a finitely generated graded S-module of Krull dimension
d > 0. Assume further that M is Buchsbaum and that 2= θ1, . . . , θd is an h.s.o.p.
for M with deg θi = δi . Let δC :=

∑
i∈C δi for C ⊆ [d] = {1, 2, . . . , d}. Then

(i) 6(2;M)/2M ∼=
⊕

C([d] H |C |m (M)(−δC), and

(ii) there is an injection M/6(2;M)→ H d
m(M)(−δ[d]).

We are now in a position to prove Theorem 1.3.

Proof of Theorem 1.3. We first prove that R/6(2; R) and ωR/6(2;ωR) have the
same F-dimension. Indeed,

dimF(R/6(2; R))= dimF(R/2R)− dimF(6(2; R)/2R)

= e2(R)+
d−1∑
i=0

(d−1
i

)
dimF H i

m(R)−
d−1∑
i=0

(d
i

)
dimF H i

m(R)

= e2(R)−
d−1∑
i=1

(d−1
i−1

)
dimF H i

m(R),

where we use Lemma 2.1 and Theorem 2.3(i) for the second equality. Similarly,
since ωR is Buchsbaum, the same computation yields

dimF(ωR/6(2;ωR))= e2(ωR)−

d−1∑
i=1

(d−1
i−1

)
dimF H i

m(ωR).

Now, since depth(R)≥2 by the assumptions of the theorem and since depth(ωR)≥2
always holds (see [Aoyama 1980, Lemma 1]), parts (ii) and (iv) of Lemma 2.2
guarantee that

dimF(R/6(2; R))= dimF(ωR/6(2;ωR)).

Thus, to complete the proof of the statement, it suffices to show that there is a
surjection from R/6(2; R)(+δ) to (ωR/6(2;ωR))

∨. By Theorem 2.3(ii), there
is an injection

ωR/6(2;ωR)→ H d
m(ωR)(−δ).

Dualizing and using Lemma 2.2(iii), we obtain a surjection

R(+δ)∼= (H d
m(ωR)(−δ))

∨
→ (ωR/6(2;ωR))

∨. (2)

Since ωR is an R-module, it follows from the definition of 6(2;ωR) that

6(2; R) ·ωR ⊆6(2;ωR).
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Hence
6(2; R) · (ωR/6(2;ωR))= 0,

which in turn implies

6(2; R) · (ωR/6(2;ωR))
∨
= 0. (3)

Now (2) and (3) put together guarantee the existence of a surjection

(R/6(2; R))(+δ)→ (ωR/6(2;ωR))
∨,

as desired. �

Remark 2.4. The above proof also works in the local setting: it shows that if R is
a Buchsbaum Noetherian local ring with depth R ≥ 2 (and if the canonical module
of R exists), then ωR/6(2;ωR) is isomorphic to the Matlis dual of R/6(2; R).

3. Duality in Stanley–Reisner rings of manifolds

In this section, we study Buchsbaum Stanley–Reisner rings and modules. Some
objects in this section such as homology groups, Betti numbers, and h′- and h′′-
numbers depend on the characteristic of F; however, we fix a field F throughout
this section and omit F from our notation.

We start by reviewing basics of simplicial complexes and Stanley–Reisner rings.
A simplicial complex 1 on [n] is a collection of subsets of [n] that is closed under
inclusion. A relative simplicial complex 9 on [n] is a collection of subsets of [n]
with the property that there are simplicial complexes1⊇0 such that9=1\0. We
identify such a pair of simplicial complexes (1, 0) with the relative simplicial com-
plex 1 \0. Also, a simplicial complex 1 will be identified with (1,∅). A face of
(1, 0) is an element of1\0. The dimension of a face τ is its cardinality minus one,
and the dimension of (1, 0) is the maximal dimension of its faces. A relative sim-
plicial complex is said to be pure if all its maximal faces have the same dimension.

We denote by H̃i (1, 0) the i-th reduced homology group of the pair (1, 0)
computed with coefficients in F: when 0 6= ∅, H̃∗(1, 0) is the usual relative
homology of a pair, and when 0=∅, H̃∗(1, 0)= H̃∗(1) is the reduced homology
of 1. The Betti numbers of (1, 0) are defined by β̃i (1, 0) := dimF H̃i (1, 0). If
1 is a simplicial complex on [n] and τ ∈1 is a face of 1, then the link of τ in 1 is

lk1(τ ) := {σ ∈1 : τ ∪ σ ∈1, τ ∩ σ =∅}.

For convenience, we also define lk1(τ )=∅ if τ 6∈1.
Let 1 be a simplicial complex on [n]. The Stanley–Reisner ideal of 1 (in S) is

the ideal
I1 = (xτ : τ ⊆ [n], τ 6∈1)⊆ S,
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where xτ =
∏

i∈τ xi . If (1, 0) is a relative simplicial complex, then the Stanley–
Reisner module of (1, 0) is the S-module

F[1,0] = I0/I1.

When 0 =∅, the ring F[1] = F[1,∅] = S/I1 is called the Stanley–Reisner ring
of 1.

A relative simplicial complex (1, 0) is said to be Buchsbaum if F[1,0] is a
Buchsbaum module. The following characterization of the Buchsbaum property was
given in [Schenzel 1981, Theorem 3.2]; a proof for relative simplicial complexes
appears in [Adiprasito and Sanyal 2016, Theorem 1.11].

Theorem 3.1. A pure relative simplicial complex (1, 0) of dimension d is Buchs-
baum if and only if

H̃i (lk1(τ ), lk0(τ ))= 0

for every nonempty face τ ∈1 \0 and all i 6= d − |τ |.

In particular, if1 is a homology manifold with boundary, then1 and (1, ∂1) are
Buchsbaum (relative) simplicial complexes. (However, most Buchsbaum complexes
are not homology manifolds.)

Next, we discuss face numbers of Buchsbaum simplicial complexes. For a
relative simplicial complex (1, 0) of dimension d− 1, let fi (1, 0) be the number
of i-dimensional faces of (1, 0) and let

hj (1, 0)=

j∑
i=0

(−1) j−i
( d−i

d− j

)
fi−1(1, 0) for j = 0, 1, . . . , d.

For convenience, we also define hj (1, 0)=0 for j>dim(1, 0)+1. The h-numbers
play a central role in the study of face numbers of Cohen–Macaulay simplicial
complexes. On the other hand, for Buchsbaum simplicial complexes, the following
modifications of h-numbers, called h′-numbers and h′′-numbers, behave better than
the usual h-numbers.

Recall that a linear system of parameters (or l.s.o.p.) is an h.s.o.p.2= θ1, . . . , θd

consisting of linear forms. Note that when F is infinite, any finitely generated graded
S-module has an l.s.o.p. The following result, established in [Schenzel 1981, §4]
(a proof for Stanley–Reisner modules appears in [Adiprasito and Sanyal 2016,
Theorem 2.5]), is known as Schenzel’s formula.

Theorem 3.2. Let (1, 0) be a Buchsbaum relative simplicial complex of dimension
d − 1 and let 2 be an l.s.o.p. for F[1,0]. Then, for j = 0, 1, . . . , d,

dimF(F[1,0]/2F[1,0]) j = hj (1, 0)−
(d

j

) j−1∑
i=1

(−1) j−i β̃i−1(1, 0).
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In view of Schenzel’s formula, we define the h′-numbers of a (d−1)-dimensional
relative simplicial complex (1, 0) by

h′j (1, 0)= hj (1, 0)−
(d

j

) j−1∑
i=1

(−1) j−i β̃i−1(1, 0).

Furthermore, we define the h′′-numbers of (1, 0) by

h′′j (1, 0)=

h′j (1, 0)−
(d

j

)
β̃ j−1(1, 0) if 0≤ j < d,

h′d(1, 0) if j = d.

We are now ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let M = F[1,0]. Observe that

dimF(M/6(2;M)) j = dimF(M/2M) j − dimF(6(2;M)/2M) j .

Since H i
m(M) = (H

i
m(M))0 ∼= H̃i−1(1, 0) for i < d (see [Adiprasito and Sanyal

2016, Theorem 1.8]), Theorem 2.3(i) implies

dimF(6(2;M)/2M) j =


(d

j

)
β̃ j−1(1, 0) if 0≤ j ≤ d − 1,

0 if j ≥ d .

The statement then follows from Theorem 3.2, asserting that dimF(M/2M) j =

h′j (1, 0) for all j. �

It was proved in [Novik and Swartz 2009b, Theorem 3.4] that the j-th graded
component of the socle of F[1]/2F[1] has dimension at least

(d
j

)
β̃ j−1(1). This

implies that the h′′-numbers of a Buchsbaum simplicial complex form the Hilbert
function of some quotient of its Stanley–Reisner ring. A new contribution and the
significance of Theorem 1.2 is that it provides an explicit algebraic interpretation
of h′′-numbers via a submodule 6(2;−).

In the rest of this section we discuss a few algebraic and combinatorial appli-
cations of our results. As was proved by Kalai and, independently, Stanley [1993;
1996, Chapter III, §9], if 1⊇ 0 are Cohen–Macaulay simplicial complexes of the
same dimension, then hi (1)≥ hi (0) for all i . The interpretation of the h′′-numbers
given in Theorem 1.2 allows us to prove the following generalization of this fact.

Theorem 3.3. Let 1⊇ 0 be Buchsbaum simplicial complexes of the same dimen-
sion. Then h′′i (1)≥ h′′i (0) for all i .

Proof. We may assume that 1 and 0 are simplicial complexes on [n] and that F is
infinite. Let d = dim1+ 1. Then there is a common linear system of parameters
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2= θ1, . . . , θd for F[1] and F[0]. By the definition of 6(2;−),

F[1]/6(2; F[1])= S
/(
(2)+

d∑
k=1

(
((θ1, . . . , θ̂k, . . . , θd)+ I1) :S θk

))
,

and an analogous formula holds for F[0]/6(2; F[0]). Since I0 ⊇ I1, the above
formula implies that F[0]/6(2; F[0]) is a quotient ring of F[1]/6(2; F[1]). The
desired statement then follows from Theorem 1.2. �

Corollary 3.4. Let 1 be a Buchsbaum simplicial complex and let τ ∈ 1 be any
nonempty face. Then h′′i (1)≥ hi (lk1(τ )) for all i .

Proof. Consider the star of τ , st1(τ )= {σ ∈1 : σ ∪τ ∈1}. Then st1(τ ) is Cohen–
Macaulay (by Theorem 3.1 and Reisner’s criterion) and has the same dimension
as 1, and so by Theorem 3.3 we have h′′i (1) ≥ h′′i (st1(τ )) for all i . The result
follows since lk1(τ ) and st1(τ ) have the same h-numbers (this is because st1(τ ) is
just a cone over lk1(τ ); cf. [Stanley 1996, Corollary III.9.2]) and since for Cohen–
Macaulay simplicial complexes the h′′-numbers coincide with the h-numbers. �

Let R = S/I be a graded F-algebra. The a-invariant of R is the number

a(R)=−min{k : (ωR)k 6= 0}.

This number is an important invariant in commutative algebra. When R is Cohen–
Macaulay, it is well-known that a(R)=max{i : hi (R) 6= 0}− dim R, where hi (R)
is the i-th h-number of R. (See [Bruns and Herzog 1993, §4.1] for the definition of
h-numbers for modules.) The following result provides a generalization of this fact.

Theorem 3.5. Let R= S/I be a Buchsbaum graded F-algebra of Krull dimension d
with depth(R)≥ 2, and let 2= θ1, . . . , θd be an l.s.o.p. for R. Then

a(R)=max{k : (R/6(2; R))k 6= 0}− d.

In particular, for any connected Buchsbaum simplicial complex 1 of dimension
d − 1, we have a(F[1])=max{k : h′′k (1) 6= 0}− d.

Proof. Let m =max{k : (R/6(2; R))k 6= 0}. Then by Theorem 1.3,

min{k : (ωR/6(2;ωR))k 6= 0} = d −m.

As min{k : (ωR)k 6= 0} =min{k : (ωR/2ωR)k 6= 0}, the theorem would follow if we
prove that min{k : (ωR/2ωR)k 6= 0} = d−m. To this end, it is enough to show that

(6(2;ωR)/2ωR)k = 0 for k ≤ d −m− 1. (4)

Since mH i
m(R)= 0 for i < d (see [Stückrad and Vogel 1986, Proposition I.2.1]),

we conclude from Theorem 2.3(i) that m(6(2; R)/2R)= 0. Furthermore, since
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(R/2R)k = (6(2; R)/2R)k for k ≥ m+ 1, it follows that, for k ≥ m+ 2,

(6(2; R)/2R)k = (R/2R)k = (m(R/2R))k = (m(6(2; R)/2R))k = 0.

The isomorphism

6(2; R)/2R ∼=
⊕

C([d]
H |C |m (R)(−|C |)

established in Theorem 2.3(i) then implies that

H i
m(R) j = 0 for all i ≤ d − 1, j ≥ m+ 2− i.

Therefore,

(H d−i+1
m (R)∨(−i))k = 0 for all 2≤ i ≤ d − 1, −(k− i)≥ m+ 2− (d − i + 1),

and so

(H d−i+1
m (R)∨(−i))k = 0 for all 2≤ i ≤ d − 1, k ≤ d −m− 1. (5)

Finally, since depth(ωR)≥2, we infer from Theorem 2.3(i) and Lemma 2.2(ii) that

6(2;ωR)/2ωR ∼=
⊕

C([d],|C |≥2

H |C |m (ωR)(−|C |)∼=
⊕

C([d],|C |≥2

H d−|C |+1
m (R)∨(−|C |).

The above isomorphisms and (5) then yield the desired property (4). �

Observe that, by Hochster’s formula on local cohomology [Bruns and Herzog
1993, Theorem 5.3.8], if 1 is a (d − 1)-dimensional Buchsbaum simplicial com-
plex, then −a(F[1]) equals the minimum cardinality of a face whose link has a
nonvanishing top homology. Thus the “in particular” part of Theorem 3.5 can be
equivalently restated as follows: if, for every face τ ∈1 of dimension < d − k, the
link of τ has vanishing top homology, then h′′k (1)= 0. For the case of homology
manifolds with boundary, faces with vanishing top homology are precisely the
boundary faces; in this case, the above statement reduces to [Murai and Nevo 2014,
Theorem 3.1].

A sequence h0, h1, . . . , hm of numbers is said to be unimodal if there is an
index p such that h0 ≤ h1 ≤ · · · ≤ hp ≥ · · · ≥ hm . It was proved in [Murai 2010]
that the h′′-numbers of the barycentric subdivision of any connected Buchsbaum
simplicial complex form a unimodal sequence. Here we use the Matlis duality
established in Theorem 1.3 to generalize this result to Buchsbaum polyhedral
complexes. (We refer our readers to [Murai 2010] for the definition of barycentric
subdivisions.)

Theorem 3.6. Let 1 be the barycentric subdivision of a connected polyhedral
complex 0 of dimension d − 1. Suppose that the characteristic of F is zero and
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1 is Buchsbaum. Then, for a generic choice of linear forms 2 = θ1, . . . , θd , and
θd+1 ∈ F[1], the multiplication

×θd+1 : (F[1]/6(2; F[1]))i → (F[1]/6(2; F[1]))i+1

is injective for i ≤ d
2 − 1 and is surjective for i ≥ d

2 . In particular, the sequence
h′′0(1), h′′1(1), . . . , h′′d(1) is unimodal.

Proof. By genericity of linear forms, 2= θ1, . . . , θd is a common l.s.o.p. for F[1]

and ωF[1]. Let P be the face poset of 0. Then the Stanley–Reisner ring F[1]

is a squarefree P-module (a notion introduced in [Murai and Yanagawa 2014,
Definition 2.1]); furthermore, by [Murai and Yanagawa 2014, Theorem 3.1] ωF[1]

is also a squarefree P-module. It then follows from [Murai and Yanagawa 2014,
Theorem 6.2(ii)] that the multiplication maps

×θd+1 : (F[1]/2F[1])i → (F[1]/2F[1])i+1 (6)

and
×θd+1 : (ωF[1]/(2ωF[1]))i → (ωF[1]/(2ω2F[1]))i+1

are surjective for i ≥ d
2 . (While Cohen–Macaulayness was assumed in [Murai

and Yanagawa 2014, Theorem 6.2], one can see from their proof of the theorem
that this assumption was used only in the proof of part (i) and is unnecessary
to derive surjectivity.) Since 2F[1] is contained in 6(2; F[1]), the map in (6)
remains surjective if we replace 2F[1] with 6(2; F[1]), and a similar statement
holds for ωF[1]. These surjectivities and the Matlis duality F[1]/6(2; F[1]) ∼=

(ωF[1]/6(2;ωF[1]))
∨(d) of Theorem 1.3 yield the desired statement. �

In fact, in view of results from [Juhnke-Kubitzke and Murai 2015], it is tempting
to conjecture that if 1 is a barycentric subdivision of a Buchsbaum regular CW-
complex of dimension d − 1, then even the sequence

h′′0(1)/
(d

0

)
, h′′1(1)/

(d
1

)
, h′′2(1)/

(d
2

)
, . . . , h′′d(1)/

(d
d

)
is unimodal.

We close this section with a couple of remarks.

Remark 3.7. Our results on h′′-vectors can be generalized to the following setting.
Consider a finitely generated graded S-module M of Krull dimension d such that

H i
m(M)= (H

i
m(M))0 for all 0≤ i < d. (7)

Define the h′- and h′′-numbers of M in the same way as for the Stanley–Reisner
modules but with dimF(H

j
m(M)) used as a replacement for β̃ j−1(1, 0). Then

suitably modified statements of Theorems 1.2 and 3.2 continue to hold for such an M.
Furthermore, if M satisfies (7), then M must be Buchsbaum (see [Stückrad and Vogel
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1986, Proposition I.3.10]), in which case ωM also satisfies (7) by Lemma 2.2(ii).
In particular, if 1 is an arbitrary connected Buchsbaum simplicial complex of
dimension d − 1, then

h′′i (ωF[1])= h′′d−i (F[1]) for all i = 0, 1, . . . , d.

Remark 3.8. A statement analogous to Corollary 1.4 also holds for homology
manifolds without boundary. Indeed, if 1 is an orientable homology manifold
without boundary, then by Gräbe’s result [1984], F[1] is isomorphic to its own
canonical module, and hence, by Theorem 1.3, F[1]/6(2; F[1]) is an Artinian
Gorenstein algebra. This fact was essentially proved in [Novik and Swartz 2009a,
Theorem 1.4].

Let us also point out that if 1 is a connected orientable homology manifold with
or without boundary, then for M = F[1] the statement of part (ii) of Lemma 2.2
is a simple consequence of the Poincaré–Alexander–Lefschetz duality along with
Gräbe’s result [1984] that ωM ∼= F[1, ∂1].

4. Applications to the manifold g-conjecture

In this section we discuss connected orientable homology manifolds without bound-
ary. One of the most important open problems in algebraic combinatorics is the
algebraic g-conjecture; it asserts that every homology sphere has the weak Lefschetz
property (the WLP, for short). Kalai proposed [Novik 1998, Conjecture 7.5] a
far-reaching generalization of this conjecture to homology manifolds. Using the
6(2,−) module allows us to restate Kalai’s conjecture as follows.

Conjecture 4.1. Let 1 be a connected orientable F-homology (d − 1)-manifold
without boundary. Then, for a generic choice of linear forms 2 = θ1, . . . , θd ,
the ring F[1]/6(2; F[1]) has the WLP; that is, for a generic linear form ω, the
multiplication

×ω : (F[1]/6(2; F[1]))bd/2c→ (F[1]/6(2; F[1]))bd/2c+1

is surjective.

It is worth mentioning that while Kalai’s original statement of the conjecture did
not involve 6(2,−), the two statements are equivalent (see [Novik and Swartz
2009a] and Remark 3.8 above). Somewhat informally, we say that 1 (or F[1])
has the WLP if 1 satisfies the conclusions of the above conjecture. Enumerative
consequences of this conjecture are discussed in [Novik and Swartz 2009a, §1].

Given a finite set A, we denote by A the simplex on A, i.e., the simplicial complex
whose set of faces consists of all subsets of A. When A = {a} consists of a single
vertex, we write ā to denote the vertex a, viewed as a 0-dimensional simplex. If
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1 and 0 are two simplicial complexes on disjoint vertex sets, then the join of 1
and 0, 1 ∗0, is the simplicial complex defined by

1 ∗0 := {σ ∪ τ : σ ∈1, τ ∈ 0}.

Finally, if 1 is a simplicial complex and W is a set, then 1W = {σ ∈1 : σ ⊆W }
is the subcomplex of 1 induced by W.

Let 1 be a (d−1)-dimensional homology manifold, and let A and B be disjoint
subsets such that |A|+|B|=d+1. If1A∪B= A∗∂B, then the operation of removing
A ∗∂B from 1 and replacing it with ∂A ∗ B is called a (|B|−1)-bistellar flip. (For
instance, a 0-flip is simply a stellar subdivision at a facet.) The resulting complex
is a homology manifold homeomorphic to the original complex.

The following surprising property was proved by Pachner [1987; 1991]: if 11

and 12 are two PL homeomorphic combinatorial manifolds without boundary, then
they can be connected by a sequence of bistellar flips. Since the boundary complex
of a simplex has the WLP, Pachner’s result suggests the following inductive approach
to the algebraic g-conjecture for PL spheres: prove that bistellar flips applied to
PL spheres preserve the WLP. Swartz showed [2014, §3] that most bistellar flips
applied to homology spheres preserve the WLP. Here we extend Swartz’s results
to the generality of orientable homology manifolds without boundary:

Theorem 4.2. Let 1 be a (d − 1)-dimensional, connected, orientable homology
manifold without boundary. Suppose 1′ is obtained from 1 via a (p− 1)-bistellar
flip with p 6= 1

2(d+ 1) if d is odd and with p /∈
{d

2 ,
1
2(d+ 2)

}
if d is even, and let 2

be a common l.s.o.p. for F[1] and F[1′]. Then F[1′]/6(2; F[1′]) has the WLP if
and only if F[1]/6(2; F[1]) has the WLP.

If1 is a simplicial complex and σ is a face of1, then the stellar subdivision of1
at σ consists of (i) removing σ and all faces containing it from 1, (ii) introducing
a new vertex a, and (iii) adding new faces in ā ∗ ∂σ̄ ∗ lk1(σ ) to 1:

sdσ (1) := (1 \ st1(σ ))∪ (ā ∗ ∂σ̄ ∗ lk1(σ )).

A classical result due to Alexander [1930] asserts that two simplicial complexes are
PL homeomorphic if and only if they are stellar equivalent; that is, one of them can
be obtained from another by a sequence of stellar subdivisions and their inverses.
Thus, a different approach to the algebraic g-conjecture (at least for PL manifolds)
is to show that the WLP is preserved by stellar subdivisions and their inverses.
Böhm and Papadakis proved [2015, Corollary 4.5] that this is the case if one applies
stellar subdivisions at faces of sufficiently large dimension (or their inverses) to
homology spheres. We extend their result to the generality of orientable homology
manifolds without boundary:
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Theorem 4.3. Let 1 be a (d − 1)-dimensional, connected, orientable F-homology
manifold without boundary and let σ be a face of 1 with dim σ > d

2 . Then F[1]

has the WLP if and only if F[sdσ (1)] has the WLP.

The structure of the proofs of both theorems is similar to the proof of [Swartz
2014, Theorem 3.1]. The new key ingredient is given by the following lemma.
Recall that 1 is an F-homology (d − 1)-sphere if 1 is an F-homology manifold
whose homology over F coincides with that of Sd−1. Similarly, 1 is an F-homology
ball if (i) 1 is an F-homology manifold with boundary, (ii) the homology of 1
(over F) vanishes, and (iii) the boundary of 1 is an F-homology sphere.

Lemma 4.4. Let 1 be a (d − 1)-dimensional F-homology manifold without bound-
ary, 0 a full-dimensional subcomplex of 1, and 2 an l.s.o.p. for F[1]. Assume
further that 0 is an F-homology ball, and let D be the simplicial complex obtained
from1 by removing the interior faces of 0. Then D is an F-homology manifold with
boundary and the natural surjection F[1]→ F[0] induces the short exact sequence

0→ F[D, ∂D]/6(2; F[D, ∂D])→ F[1]/6(2; F[1])→ F[0]/(2F[0])→ 0.

Proof. The fact that D is a homology manifold with boundary follows by a standard
Mayer–Vietoris argument (note that ∂D = ∂0 is a homology (d − 2)-sphere).
Furthermore, by excision and since 0 has vanishing homology,

β̃i (D, ∂D)= β̃i (1, 0)= β̃i (1) for all i. (8)

Now, using that the homology ball 0 is a full-dimensional subcomplex of 1, we
conclude as in the proof of Theorem 3.3 that there is a natural surjection

φ : F[1]/6(2; F[1])→ F[0]/(2F[0])= F[0]/6(2; F[0]). (9)

Thus, to finish the proof of the lemma, it suffices to show that the kernel of φ is
F[D, ∂D]/6(2; F[D, ∂D]). This, in turn, would follow if we verify that

(i) Ker(φ) is a quotient of F[D, ∂D]/6(2; F[D, ∂D]), and

(ii) dimF(Ker(φ)) j = dimF(F[D, ∂D]/6(2; F[D, ∂D])) j for all j.

For brevity, let R = F[1] and let I = F[D, ∂D]. Since (D, ∂D) = (1, 0) as
relative simplicial complexes, it follows that I is an ideal of R, and R/I is F[0].
Thus our surjection φ is the projection φ : R/6(2; R)→ R/(I +2R). Hence

Ker(φ)= (I +2R)/6(2; R)= (I +6(2; R))/6(2; R)= I/(I ∩6(2; R)),

which together with an observation that I ∩ 6(2; R) contains 6(2; I ) yields
assertion (i). To see that I ∩ 6(2; R) ⊇ 6(2; I ), note that, since I is a sub-
set of R, 2I is contained in 2R, and (θ1, . . . , θ̂i , . . . , θd)I :I θi is contained in
(θ1, . . . , θ̂i , . . . , θd)R :R θi for all i ∈ [d]; therefore 6(2; R)⊇6(2; I ).
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As for assertion (ii), the dimension of the kernel of φ can be computed as follows:
by (9) and Theorem 1.2,

dimF(Ker(φ)) j = h′′j (1)− hj (0). (10)

Now, since each face of 1 is either a face of (D, ∂D) or a face of 0 (but not of
both), fi (1)= fi (D, ∂D)+ fi (0) for all i ≥−1, and so

hj (D, ∂D)= hj (1)− hj (0) for all j ≥ 0. (11)

Equations (8), (10) and (11) yield

dimF(Ker(φ)) j=h′′j (D, ∂D)=dimF(F[D, ∂D]/6(2; F[D, ∂D])) j for all j≥0,

where the last equality is another application of Theorem 1.2. The lemma follows. �

Another ingredient needed for both proofs is the following immediate conse-
quence of the snake lemma.

Lemma 4.5. Let 0→ L→ N→M→ 0 be an exact sequence of graded S-modules,
let ω ∈ S be a linear form, and let k be a fixed integer. Assume also that the map
×ω : Mk→ Mk+1 is bijective. Then the map ×ω : Nk→ Nk+1 is surjective if and
only if the map ×ω : Lk→ Lk+1 is surjective.

We are now ready to prove both of the theorems.

Proof of Theorem 4.2. We are given that 1′ = (1 \ (A ∗ ∂B))∪ (∂A ∗ B), where
|B| = p. Let D be the simplicial complex obtained from1 by removing the interior
faces of the ball 01 = A ∗ ∂B; equivalently, D is obtained from 1′ by removing the
interior faces of 02 = ∂A ∗ B. Since 01 and 02 are full-dimensional subcomplexes
of 1 and 1′, and 2 is an l.s.o.p. for both F[1] and F[1′], it is also an l.s.o.p. for
both F[01] and F[02]. Hence

dimF(F[01]/2F[01]) j = hj (A ∗ ∂B)= hj (∂B)=
{

1 if j ≤ p− 1,
0 if j > p− 1,

which implies that F[01]/2F[01] ∼= F[x]/(x p). Similarly, we have F[02]/2F[02] ∼=

F[x]/(xd−p+1). These isomorphisms together with the assumption p 6∈
{d

2 ,
d+1

2 , d+2
2

}
yield that, for a generic choice of a linear form w, the multiplication map

×w : (F[0i ]/2F[0i ])bd/2c→ (F[0i ]/2F[0i ])bd/2c+1

is bijective for i ∈ {1, 2}.
Applying Lemma 4.4 to 1 and 01, we can conclude from Lemma 4.5 that

F[1]/6(2; F[1]) has the WLP if and only if, for a generic linear form w, the
multiplication

×w : (F[D, ∂D]/6(2; F[D, ∂D]))bd/2c→ (F[D, ∂D]/6(2; F[D, ∂D]))bd/2c+1
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is surjective. On the other hand, by Lemma 4.4 applied to 1′ and 02, the latter
condition is equivalent to the WLP of F[1′]/6(2; F[1′]). �

Proof of Theorem 4.3. Let D be the homology manifold obtained from 1 by
removing the interior faces of the homology ball 01 = st1(σ ); equivalently, D
is obtained from sdσ (1) by removing the interior faces of the homology ball
02 = ā ∗ ∂σ̄ ∗ lk1(σ ). As the proof of Theorem 4.2 shows, to verify Theorem 4.3,
it suffices to check that, for a generic choice of linear forms 2 = θ1, . . . , θd and
another generic linear form w, the multiplication

×w : (F[0i ]/2F[0i ])bd/2c→ (F[0i ]/2F[0i ])bd/2c+1 (12)

is bijective for each i ∈ {1, 2}.
In the case of i = 1, the desired bijection is an immediate consequence of the

fact that

dimF(F[01]/2F[01]) j = hj (st1(σ ))= hj (lk1(σ ))= 0 for j ≥ d − |σ | + 1

and the assumption |σ |> d
2 +1. We now prove that the map in (12) is also bijective

for i = 2. To this end, observe that the homology (d − 2)-sphere ∂σ̄ ∗ lk1(σ ) is
the boundary of the homology (d − 1)-ball σ̄ ∗ lk1(σ ), and hence ∂σ̄ ∗ lk1(σ )
is (d − |σ |)-stacked. (A homology (d − 2)-sphere is called (d − k)-stacked if it
is the boundary of a homology ball that has no interior faces of size ≤ k − 1.)
It then follows from [Swartz 2014, Corollary 6.3] that ∂σ̄ ∗ lk1(σ ) has the WLP.
This, in turn, implies that the map in (12) is surjective, as F[02] is a polynomial
ring over F[∂σ̄ ∗ lk1(σ )]. Also, since |σ | > d

2 + 1, we infer from [McMullen
and Walkup 1971, Theorem 2] and the (d − |σ |)-stackedness of ∂σ̄ ∗ lk1(σ ) that
hbd/2c(∂σ̄ ∗ lk1(σ ))= hbd/2c+1(∂σ̄ ∗ lk1(σ )). As 02 and ∂σ̄ ∗ lk1(σ ) have the same
h-vector, we conclude that hbd/2c(02)= hbd/2c+1(02), and therefore that the map
in (12) is bijective. �

Let 1 be a triangulation of a closed surface and assume that one of the vertices
of 1 is connected to all other vertices of 1. Then by [Novik and Swartz 2009a,
Theorem 1.6],1 has the WLP. However, the problem of whether every triangulation
of a closed surface other than the sphere possesses the WLP is at present wide open.

Remark 4.6. Note that if 1 is an arbitrary odd-dimensional Buchsbaum complex
(e.g., a homology manifold), then there exists a simplicial complex 0 that is PL
homeomorphic to 1 and has the WLP in characteristic 0. Simply take 0 to be the
barycentric subdivision of 1: the WLP of 0 is guaranteed by Theorem 3.6.

Appendix: Proof of Theorem 2.3

The goal of this appendix is to verify Theorem 2.3. Our proof is based on the
proof of [Novik and Swartz 2009b, Theorem 2.2], and so some details are omitted.
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Let M be a finitely generated Buchsbaum graded S-module of Krull dimension d ,
and let 2 = θ1, . . . , θd be an h.s.o.p. for M with deg θi = δi . We write δC =∑

i∈C δi for C ⊆ [d]. We need the following result (see [Stückrad and Vogel 1986,
Lemma II.4.14′]).

Lemma A.1. There is an isomorphism

H i
m(M/((θ1, . . . , θ j )M))∼=

⊕
C⊆[ j]

H |C |+i
m (M)(−δC) for all i, j with i + j < d.

We use the following notation: if C ⊆ [d], then M〈C〉 is defined by

M〈C〉 = M/((θi : i 6∈ C)M).

By [Stückrad and Vogel 1986, Proposition I.2.1], if C ( [d] and s ∈ [d] \C , then
H 0
m(M〈C ∪ {s}〉)= 0 :M〈C∪{s}〉 θs . This leads to the short exact sequence

0−→M〈C∪{s}〉/H 0
m(M〈C∪{s}〉)(−δs)

×θs
−→M〈C∪{s}〉 πs

−→M〈C〉 −→ 0, (13)

where πs is a natural projection. This short exact sequence gives rise to exact
sequences

0−→ H k
m(M〈C∪{s}〉)

π∗s−→H k
m(M〈C〉)

ϕ∗s−→H k+1
m (M〈C∪{s}〉)(−δs)−→ 0 (14)

for k < |C |, and

0−→ H |C |m (M〈C ∪ {s}〉) π∗s−→ H |C |m (M〈C〉) ϕ∗s−→ H |C |+1
m (M〈C ∪ {s}〉)(−δs), (15)

where we denote by ϕ∗s the connecting homomorphism.
Similarly, if C ( [d], |C | ≤ d−2, and s, t ∈ [d] \C , we obtain the commutative

diagram

0 //M〈C∪{s}〉/H 0
m(M〈C∪{s}〉)(−δs)

×θs
//M〈C∪{s}〉

πs
//M〈C〉 // 0

0 //M〈C∪{s, t}〉/H 0
m(M〈C∪{s, t}〉)(−δs)

×θs
//

πt

OO

M〈C∪{s, t}〉
πs
//

πt

OO

M〈C∪{t}〉 //

πt

OO

0

This diagram, in turn, induces the commutative diagram

H i
m(M〈C〉)

ϕ∗s
// H i+1

m (M〈C ∪ {s}〉)(−δs)

H i
m(M〈C ∪ {t}〉)

ϕ∗s
//

π∗t

OO

H i+1
m (M〈C ∪ {s, t}〉)(−δs)

π∗t

OO

(16)
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Now, for k = 2, 3, . . . , d , define the maps φk and ψk as compositions:

φk : H 0
m(M〈∅〉)

ϕ∗1
−→H 1

m(M〈[1]〉)(−δ[1])
ϕ∗2
−→· · ·

ϕ∗k−1
−→H k−1

m (M〈[k−1]〉)(−δ[k−1]),

ψk :H 0
m(M〈{k}〉)

ϕ∗1
−→H 1

m(M〈[1]∪{k}〉)(−δ[1])
ϕ∗2
−→· · ·

ϕ∗k−1
−→H k−1

m (M〈[k]〉)(−δ[k−1]).

Then the commutativity of (16) implies the commutativity of

H 0
m(M〈∅〉)

φk
// H k−1

m (M〈[k− 1]〉)(−δ[k−1])

H 0
m(M〈{k}〉)

ψk
//

π∗k

OO

H k−1
m (M〈[k]〉)(−δ[k−1])

π∗k

OO

(17)

To prove part (ii) of Theorem 2.3, we consider the diagram

H 0
m(M〈{1}〉)

π∗1
// H 0

m(M〈∅〉)

ϕ∗1
��

H 0
m(M〈{2}〉)

ψ2
// H 1

m(M〈[2]〉)(−δ[1])
π∗2

// H 1
m(M〈[1]〉)(−δ[1])

ϕ∗2
��

...

ϕ∗d−1

��

H 0
m(M〈{d}〉)

ψd
// H d−1

m (M〈[d]〉)(−δ[d−1])
π∗d
// H d−1

m (M〈[d − 1]〉)(−δ[d−1])

ϕ∗d
��

H d
m(M〈[d]〉)(−δ[d])

The surjectivity of ϕ∗s in (14) implies that ψk is surjective. Hence, in each horizontal
line of the diagram,

Im(π∗k ◦ψk)= Im(π∗k ). (18)

Also, since the sequence in (15) is exact, it follows that in the diagram we have

Ker(ϕ∗k )= Im(π∗k ). (19)

Define φd+1 = ϕ
∗

d ◦ · · · ◦ ϕ
∗

1 to be the composition of the vertical maps in the
diagram. By (15), each π∗k (in the diagram) is injective, and we conclude that

Ker(φd+1)∼=

d⊕
k=1

Im(π∗k )∼=
d⊕

k=1

H k−1
m (M〈[k]〉)(−δ[k−1]) (20)



654 Satoshi Murai, Isabella Novik and Ken-ichi Yoshida

as F-vector spaces. In addition, using (18) and the commutativity of (17), we obtain
that Ker(φd+1) is the sum of the images of

π∗k : H
0
m(M〈{k}〉)→ H 0

m(M〈∅〉)= M/2M.

Finally, since

H 0
m(M〈{k}〉)= ((θ1, . . . , θ̂k, . . . , θd)M :M θk)/(θ1, . . . , θ̂k, . . . , θd)M

and since π∗k is a natural projection, it follows that

Ker(φd+1)=6(2;M)/2M.

This proves Theorem 2.3(ii) since φd+1 is a map from M/2M to H d
m(M)(−δ[d]).

It remains to verify Theorem 2.3(i). Recall that Ker(φd+1) is the sum of im-
ages of H 0

m(M〈{k}〉) and that, by [Stückrad and Vogel 1986, Proposition I.2.1],
m·H 0

m(M〈{k}〉)= 0. Hence the modules in (20) are in fact isomorphic as S-modules
(since they are direct sums of copies of F). Thus we infer from (20) and Lemma A.1
that

6(2;M)/2M = Ker(φd+1)∼=

d⊕
k=1

H k−1
m (M〈[k]〉)(−δ[k−1])

∼=

d⊕
k=1

[ ⊕
C⊆[d]\[k]

H |C |+k−1
m (M)(−δC∪[k−1])

]
∼=

⊕
C([d]

H |C |m (M)(−δC),

as desired. �

Remark. As the proof in this appendix is based on the proof of [Novik and Swartz
2009b, Theorem 2.2], it is worth pointing out that their paper contains a minor
mistake. Indeed, the short “exact” sequence that appears three lines after their
statement of Theorem 2.4 is not necessarily exact. However, this mistake can be
easily corrected by replacing this sequence with the short exact sequence of (13).
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