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Appendix by Christian Kappen and Florent Martin

Let k be a discretely valued nonarchimedean field. We give an explicit description
of analytic functions whose norm is bounded by a given real number r on tubes
of reduced k-analytic spaces associated to special formal schemes (including
k-affinoid spaces as well as open polydiscs). As an application we study the
connectedness of these tubes. In the discretely valued case, this generalizes
a result of Siegfried Bosch. We use as a main tool a result of Aise Johan de
Jong relating formal and analytic functions on special formal schemes and a
generalization of de Jong’s result which is proved in the joint appendix with
Christian Kappen.

1. Introduction

Let us temporarily consider a nonarchimedean nontrivially valued field k. We work
with k-analytic spaces, which were introduced by Vladimir Berkovich [1990; 1993]
(and we always consider strictly k-affinoid and strictly k-analytic spaces). If X is a
k-affinoid space, its ring of analytic functions A is a k-affinoid algebra which has
nice algebraic properties. A k-analytic space is connected if and only if its ring of
global analytic functions contains no nontrivial idempotents. In concrete situations,
if X is a k-affinoid space, one can expect to use the nice algebraic properties of its
k-affinoid algebra A to study the connectedness of X . For more general k-analytic
spaces, it might be difficult to deal with their ring of global analytic functions. For
instance, the ring of global analytic functions of the open unit disc is not Noetherian.
The starting point of this work is to use generic fibres of special formal schemes to
overcome this difficulty in certain situations.

A result of Siegfried Bosch. Our motivation is a generalization as well as a new
proof of a result due to Siegfried Bosch [1977] in the discretely valued case. Let us
consider a k-affinoid algebra A and let X be the associated k-affinoid space. Let x be
a rigid point of X , mx the associated maximal ideal of A and x̃ the image of x under
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the reduction map red : X→ X̃ (for the definition and properties of the reduction
map, we refer to [Bosch et al. 1984, Section 7.1.5] for rigid spaces and to [Berkovich
1990, Section 2.4] for k-analytic spaces). Let X+(x) := red−1(x̃). Following Pierre
Berthelot’s terminology [1996, Définitions 1.1.2], we call X+(x) the tube of x̃
in X . Bosch proves that if X is distinguished and equidimensional, X+(x) is
connected. This connectedness result is a corollary of the main result of [Bosch
1977, Theorem 5.8], which asserts that if X is distinguished and equidimensional,
then

0(X+(x),O◦X )' (A
◦)∧(t ·A

◦
+
◦

mx ) ' lim
←−−

n
A◦/(t ·A◦+

◦

mx)
n,

where t ∈ k with 0< |t |< 1, O◦X denotes the sheaf of analytic functions f such that
| f |sup ≤ 1,

◦

mx :=mx ∩A◦ and ∧ denotes the completion with respect to an ideal.

Analytic functions and formal functions. For the rest of the article, we assume
that k is discretely valued, with nontrivial valuation. We denote its valuation ring
by R and we fix a uniformizer π . Following [Berkovich 1996, Section 1], we say
that an adic R-algebra A is a special R-algebra if it is isomorphic to a quotient of
R〈T1, . . . , Tm〉[[S1, . . . , Sn]] equipped with the (π, S1, . . . , Sn)-adic topology. Let
X := Spf(A) be its associated formal R-scheme. Following a construction due
to Berthelot [1996, 0.2.6] for rigid spaces and extended to k-analytic spaces by
Berkovich [1996, Section 1], one can associate to X a k-analytic space denoted by
Xη called its generic fibre. For instance, if A = R〈T1, . . . , Tm〉[[S1, . . . , Sn]], then
Xη' Em

×Bn , where we denote by Em the m-dimensional closed unit polydisc and
by Bn the n-dimensional open unit polydisc. Following the terminology introduced
by Christian Kappen [2010; 2012], we say that A := A ⊗R k is a semiaffinoid
k-algebra. Up to canonical isomorphism, the k-analytic space Xη depends only on
the semiaffinoid k-algebra A and we call it a semiaffinoid k-analytic space (this
should not be confused with semiaffinoid k-spaces in [Kappen 2010; 2012]). So
we can functorially associate to a semiaffinoid k-algebra a k-analytic space. If A is
R-flat, one gets a natural injection A→ 0(Xη,O◦Xη). When A is in addition normal,
it was proven by A.J. de Jong [1995, Theorem 7.4.1] that

A ' 0(Xη,O◦Xη).

For the applications we have in mind, we need the following generalization, which
was already stated without proof in [de Jong 1995, Remark 7.4.2].

Theorem 2.1. Let A be a reduced special R-algebra which is R-flat and integrally
closed in A⊗R k, and let X be the associated k-analytic space. Then A'0(X,O◦X ).

Let us mention that if A is a special R-algebra which is R-flat and integrally
closed in A⊗R k, then A is automatically reduced (see the argument in [Kappen
2012, Remark 2.7]). Hence one can remove the assumption that A is reduced in the
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above theorem if necessary. Theorem 2.1 easily follows from the following result,
which is proved in the appendix with Christian Kappen.

Theorem A.8. Let A be a reduced semiaffinoid k-algebra, and let X be the associ-
ated k-analytic space. Then A' { f ∈ 0(X,OX ) | | f |sup <∞}.

Main result. Actually, the tube X+(x) is a semiaffinoid k-analytic space. Therefore,
it seemed very natural to us to look for a generalization and a more direct proof of
Bosch’s result [1977, Theorem 5.8] using special formal R-schemes, semiaffinoid
k-algebras and de Jong’s result as well as its generalization (Theorem 2.1). This is
the content of this article. Let us fix X a reduced semiaffinoid k-analytic space. Let
f1, . . . , fn ∈ 0(X,O◦X ) and let

U := {x ∈ X | | fi (x)|< 1 ∀i = 1, . . . , n}.

Theorem 3.1 and Proposition 5.13. With the above notations,

0(X,O◦X )
∧( f1,..., fn) ' 0(U,O◦X ). (1)

More generally, for any positive real number r , 0(X,O≤r
X )
∧( f1,..., fn) ' 0(U,O≤r

X ),
where O≤r

X is the sheaf of analytic functions f such that | f | ≤ r .

In Section 4 we associate to a semiaffinoid k-analytic space X its canonical
reduction X̃ , which is a k̃-scheme of finite type, and a canonical reduction map
red : X→ X̃ . If X is a k-affinoid space, then red coincides with the reduction map
of [Berkovich 1990, Section 2.4]. We prove the following result:

Corollary 4.14. Let Z ⊂ X̃ be a connected Zariski closed subset. Then red−1(Z)
is connected.

We want to stress that our results hold under the assumption that k is discretely
valued, whereas this assumption is not made in [Bosch 1977]. We conjecture
that Theorem 3.1 holds for any nontrivially valued nonarchimedean field k and
for any reduced k-affinoid space (with ( f1, . . . , fn) replaced by (t, f1, . . . , fn)

for some t ∈ k∗ with |t | < 1). We do not see how this could be done using the
techniques of [Bosch 1977]. We believe that quasiaffinoid k-algebras (which are
a generalization of special R-algebras and semiaffinoid k-algebras to arbitrary
nonarchimedean nontrivially valued fields [Lipshitz and Robinson 2000]) might be
a good framework to tackle this. We also want to stress that our results are more
general and the proofs simpler than in [Bosch 1977] regarding the following points.

– The proof we give of (1) is pretty short: one has to use Theorem 2.1 and a certain
compatibility between integral closure and tensor product for excellent rings (whose
use was suggested to us by Ofer Gabber).

– The explicit description of the rings 0(U,O◦X ) given in Theorem 3.1 holds for any
tube, whereas in [Bosch 1977] this was proved only for tubes over closed points.
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– For a positive real number r , we extend Bosch’s result to analytic functions f
such that | f |sup ≤ r (Proposition 5.13).

– Unlike in [Bosch 1977], we do not assume that X is distinguished or equidi-
mensional. Hence, Corollary 4.14 answers positively in the discretely valued case
the question raised by Jérôme Poineau [2014, Remarque 2.9]. Let us point out
that using Bosch’s result, Antoine Ducros [2003, Lemma 3.1.2] proved that when
k is algebraically closed and X is equidimensional and reduced, the tube of a
connected Zariski closed subset of X̃ in X is connected; afterwards Poineau [2014,
Théorème 2.8] (still relying on Bosch’s result) proved the same statement for any k
and assuming only that X is equidimensional.

– Our results hold not only for k-affinoid spaces, but also for semiaffinoid k-analytic
spaces.

Organization of the paper. In Section 2, we give general facts about semiaffinoid
k-analytic spaces. In Section 3, we prove the main result of the article, Theorem 3.1.
In Section 4, we define and study the canonical reduction of semiaffinoid k-analytic
spaces, and apply it to study the connectedness of tubes. In Section 5, we prove
Proposition 5.13, which is the graded version of Theorem 3.1. In Section 6, we
grasp additional remarks about semiaffinoid k-analytic spaces. The joint appendix
with Christian Kappen aims to prove Theorem A.8.

2. Semiaffinoid k-analytic spaces

Following [Kappen 2012, Definition 2.2], we say that a k-algebra A is a semiaffinoid
k-algebra if it is of the form A⊗R k for some special R-algebra A. Equivalently, a
semiaffinoid k-algebra is a quotient of R〈T1, . . . , Tm〉[[S1, . . . , Sn]]⊗R k for some
given integers m and n. The category of semiaffinoid k-algebras is defined as
the category whose objects are semiaffinoid k-algebras and whose morphisms are
k-algebra morphisms. In particular, the category of k-affinoid algebras is a full
subcategory of the category of semiaffinoid k-algebras. If A is a semiaffinoid
k-algebra, a special R-model of A is an R-flat special R-algebra A such that there
exists an isomorphism of k-algebras A⊗R k'A. If A is an R-flat special R-algebra,
one has a natural inclusion A→ A := A⊗R k and through this inclusion, A is
identified with a special R-model of A. One can define a functor from the category
of semiaffinoid k-algebras to the category of k-analytic spaces [Kappen 2012,
Section 2C1]. If A is a semiaffinoid k-algebra, its associated k-analytic space X is
called a semiaffinoid k-analytic space. For any special R-model A of A, one has a
natural isomorphism X ' Spf(A)η. If f ∈A, we set | f |sup := sup{| f (x)| | x ∈ X}
and we define

A◦ = { f ∈A | | f |sup ≤ 1}.
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It is proved in the Appendix (Theorem A.8) that if the semiaffinoid k-algebra A is
reduced, one has an isomorphism

A' { f ∈ 0(X,OX ) | | f |sup <∞}.

We are particularly interested in the following consequence of this result.

Theorem 2.1. Let A be a reduced special R-algebra with associated k-analytic
space X. Let us assume that A is R-flat and integrally closed in A⊗R k. Then
A ' 0(X,O◦X ).

Proof. Let A= A⊗R k. By definition, A is a reduced semiaffinoid k-algebra, so
thanks to Theorem A.8, one has A◦ ' 0(X,O◦X ). According to [Kappen 2012,
Corollaries 2.10 and 2.11] A◦ is a special R-algebra which contains A, and the
inclusion A ⊂A◦ is integral. Since by assumption A is integrally closed in A, A is
also integrally closed in A◦. So A 'A◦ ' 0(X,O◦X ). �

Corollary 2.2. Let A be a reduced semiaffinoid k-algebra with associated k-
analytic space X.

(i) The R-algebra 0(X,O◦X ) is a reduced special R-algebra.

(ii) If A is a reduced special R-algebra such that A⊗R k 'A, then 0(X,O◦X ) is
isomorphic to the integral closure of A in A⊗R k.

Proof. Let A be a reduced special R-model of A, so that A⊗R k 'A. Let A′ be the
integral closure of A in A. Since A is excellent (see [Valabrega 1975; 1976]), A′ is a
finite A-algebra, so A′ is a reduced special R-algebra. Since A′⊗R k ' A⊗R k 'A,
the k-analytic spaces attached to A and A′ are both isomorphic to X . So thanks
to Theorem 2.1, 0(X,O◦X ) ' A′, which is a special R-algebra. This proves (i)
and (ii). �

Example 2.3. The two statements of Corollary 2.2 do not hold for nonreduced
semiaffinoid k-algebras. For instance, if A= (R[[T1, T2]]⊗Rk)/(T 2

2 )with associated
k-analytic space X , then any element of 0(X,O◦X ) is of the form f (T1)+ g(T1)T2,
where f (T1) ∈ R[[T1]] and g(T1) is an arbitrary analytic function on the open unit
disc. We can choose g(T1) such that g(T1) /∈ R[[T1]]⊗R k (in mixed characteristic,
one could take g = log). This gives a counterexample to the statements (i) and (ii)
of Corollary 2.2 (for (i), see [Kappen 2012, Remark 2.7]).

Corollary 2.4. The functor

{semiaffinoid k-algebras} → {k-analytic spaces}

is faithful and its restriction

{reduced semiaffinoid k-algebras} → {k-analytic spaces}

is fully faithful.
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Proof. If f : X→ Y is a morphism of k-analytic spaces induced by a morphism of
semiaffinoid k-algebras B→A then f induces the diagram

B //

��

A

��
0(Y,OY ) // 0(X,OX )

whose vertical arrows are injective. This proves that the functor is faithful.
To prove that the restriction of the functor to reduced semiaffinoid k-algebras

is full, let us fix a reduced semiaffinoid k-algebra A and let X be its associated
k-analytic space. Let Y be the k-analytic space associated to another semiaffinoid
k-algebra B and let us consider a presentation

B = (R〈T1, . . . , Tm〉[[S1, . . . , Sn]]⊗R k)/I

giving rise to a closed immersion Y ↪→ Em
× Bn . If f : X→ Y is a morphism of

k-analytic spaces then using the composition

X
f
−→ Y ↪→ Em

× Bn,

one gets functions f1, . . . , fm ∈ 0(X,O◦X ) and fm+1, . . . , fm+n ∈ 0(X,O◦X ) with
| fi (x)| < 1 for all x ∈ X and i ∈ {m + 1, . . . ,m + n} such that the functions
f1, . . . , fm+n induce the morphism X→ Em

×Bn . Thanks to Theorem A.8, fi ∈A◦

for i = 1, . . . ,m+ n. Thanks to [Kappen 2012, Theorem 2.13] there is a unique
morphism of semiaffinoid k-algebras R〈T1, . . . , Tm〉[[S1, . . . , Sn]]⊗Rk→A sending
Ti to fi for i = 1, . . . ,m and sending Si to fm+i for i = 1, . . . , n. It factorizes
through B and gives the desired morphism of semiaffinoid k-algebras B→A. �

Example 2.5. The functor from semiaffinoid k-algebras to k-analytic spaces is not
fully faithful. Indeed, as in Example 2.3, consider A= (R[[T1, T2]]⊗R k)/(T 2

2 ) with
associated k-analytic space X . Let g(T1)∈ k[[T1]] be a power series which converges
on the open unit disc, but such that g(T1) /∈ R[[T1]]⊗R k. Then T2g(T1)∈0(X,O◦X )
and hence it defines a morphism of k-analytic spaces φ : X→ A

1,an
k whose image

is the origin of A
1,an
k . In particular it also defines a morphism X → E , where E

is the closed unit disc over k, which is a k-affinoid space (with affinoid algebra
B = k〈T 〉). But φ is not induced by a morphism of semiaffinoid k-algebras B→A.

Remark 2.6. Theorem 2.1 was already stated in [de Jong 1995, Remark 7.4.2]
without proof. Theorem A.8 is also stated in [Nicaise 2009, Lemma 2.14] but its
proof is obtained as a corollary of [de Jong 1995, Remark 7.4.2]. Corollary 2.4 is
also stated in [Kappen 2012, Remark 2.56] without proof.

Remark 2.7. Let A be a semiaffinoid k-algebra with associated k-analytic space X .
Let Ared :=A/(nilA) be the reduced ring associated to A. Then Ared is a reduced
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semiaffinoid k-algebra. Let Y be the k-analytic space associated with Ared. Then
A→ Ared induces a closed immersion of k-analytic spaces Y → X which is a
bijection of sets. Let B be a special R-model of Ared. Since B ⊂ B⊗R k 'Ared, we
deduce that B is reduced. Hence since Y ' Spf(B)η, by [de Jong 1995, Proposition
7.2.4(c)], Y is reduced. Hence Y ' Xred.

3. Analytic functions and formal functions on tubes

I am very grateful to Ofer Gabber for having pointed out the reference to Proposition
6.14.4 of [EGA IV2 1965], which greatly simplifies the proof of the following
statement.

Theorem 3.1. Let X be a k-analytic space associated with a reduced semiaffinoid
k-algebra A. Let I ⊂0(X,O◦X ) be an ideal and let U ={x ∈ X | | f (x)|< 1 ∀ f ∈ I }.
Then

0(X,O◦X )
∧I
' 0(U,O◦X ).

Proof. Let us set A :=0(X,O◦X ). Thanks to Corollary 2.2(i), A is a reduced special
R-algebra. Let us choose some functions f1, . . . , fn ∈ A such that ( f1, . . . , fn)= I .
Then

A∧I
' A[[ρ1, . . . , ρn]]/( fi − ρi )i=1,...,n

is a special R-algebra. Let us set Y = Spf(A∧I ). Then by [de Jong 1995,
Lemma 7.2.5] (or see also [Lipshitz and Robinson 2000, Theorem 5.3.5 and
Proposition 5.3.6]), the induced morphism of k-analytic spaces Yη→ X identifies
Yη with U as an analytic domain of X . So U is the k-analytic space associated
to the semiaffinoid k-algebra B := A∧I

⊗R k and by definition, A∧I is a special
R-model of B. Thanks to Theorem 2.1, it only remains to show that A∧I is integrally
closed in A∧I

⊗R k ' B.
Since A is an excellent ring (this follows from [Valabrega 1975, Proposition 7]

when char(k)= p > 0 and from [Valabrega 1976, Theorem 9] when char(k)= 0),
the morphism Spec(A∧I )→ Spec(A) is regular [EGA IV2 1965, Scholie 7.8.3(v)],
so in particular, Spec(A∧I )→ Spec(A) is a normal morphism (see [EGA IV2 1965,
Définition 6.8.1] for the definitions of normal and regular morphisms of schemes).

Since A=0(X,O◦X ), it follows that A is integrally closed in A⊗R k. So thanks to
[EGA IV2 1965, Proposition 6.14.4], A∧I is integrally closed in A∧I

⊗R k. Finally,
by Theorem 2.1,

A∧I
' 0(U,O◦X ). �

4. Reduction and connectedness

Reduction. Let A be a semiaffinoid k-algebra and let X be its associated k-analytic
space. We set
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A◦ = { f ∈A | | f |sup ≤ 1}, Ǎ= { f ∈A | ∀x ∈ X | f (x)|< 1},

A◦◦ = { f ∈A | | f |sup < 1}, Ã=A◦/Ǎ, Ã+ =A◦/A◦◦.

When A is a k-affinoid algebra, thanks to the maximum modulus principle [Bosch
et al. 1984, Proposition 6.2.1.4], Ǎ=A◦◦, Ã= Ã+ and in this case, Ã corresponds
to the reduction of A as defined in [Bosch et al. 1984, Section 6.3]. For a general
semiaffinoid k-algebra, the maximum modulus principle does not hold1 (consider
for instance S ∈ R[[S]] ⊗R k), so in general, one has a strict inclusion A◦◦ ⊂ Ǎ
and Ã is a strict quotient of Ã+. If A = R〈T1, . . . , Tm〉[[S1, . . . , Sn]] ⊗R k, then
Ã= k̃[T1, . . . , Tm] and Ã+ = k̃[T1, . . . , Tm][[S1, . . . , Sn]].

For a k-analytic space X , recall that we defined the subsheaf O◦X ⊂OX of analytic
functions f such that | f (x)| ≤ 1 for all x . Likewise, we denote by ǑX ⊂OX the
subsheaf of analytic functions f such that | f (x)|< 1 for all x .

Lemma 4.1. Let A be a semiaffinoid algebra and Ared the associated reduced
semiaffinoid k-algebra. Let X be the k-analytic space associated with A. By
Remark 2.7, the k-analytic space associated with Ared can be identified with Xred.
Then all the natural maps in the following commutative squares are isomorphisms
of R-algebras

A◦/Ǎ α //

φ

��

(Ared)
◦/ ˇ(Ared)

φred
��

0(X,O◦X )/0(X, ǑX )
β
// 0(Xred,O◦Xred

)/0(Xred, ǑXred)

(2)

A◦/A◦◦ //

��

(Ared)
◦/(Ared)

◦◦

��
0(X,O◦X )/0(X,OX )<1 // 0(Xred,O◦Xred

)/0(Xred,OXred)<1

(3)

where 0(X,OX )<1 = { f ∈ 0(X,OX ) | | f |sup < 1}, and similarly 0(Xred,OXred)<1.

Proof. Using Theorem A.8, we get isomorphisms (Ared)
◦
' 0(Xred,O◦Xred

) and

ˇAred ' 0(Xred, ǑXred),

which imply φred is an isomorphism. To prove β is an isomorphism, we first remark
that X is a quasi-Stein space in the sense of [Kiehl 1967, Definition 2.3]. Moreover,
we have an isomorphism of ringed spaces (Xred,OXred)' (X,OX/(radOX )), where
radOX is the nilradical of OX . Since the latter is a coherent OX -ideal sheaf by

1Actually, A is a k-affinoid algebra if and only if the maximum modulus principle holds [Lipshitz
and Robinson 2000, Proposition 5.3.8].
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[Bosch et al. 1984, Corollary 9.5.4], it follows from Theorem B for quasi-Stein
spaces [Kiehl 1967, Satz 2.4.2] that0(X,OX )→0(Xred,OXred) is surjective. Hence
0(X,O◦X )→0(Xred,O◦Xred

) is also surjective, and so β is surjective. The injectivity
of β follows easily from the fact that X and Xred are in natural bijection. So β is
an isomorphism. Since A◦→ (Ared)

◦ is surjective, we deduce similarly that α is
an isomorphism. Since (2) commutes, we deduce that φ is also an isomorphism.
The proof for (3) is analogous. �

Lemma 4.2. Let A be a semiaffinoid k-algebra. Then Ã is a reduced k̃-algebra of
finite type and Ã+ is a reduced k̃-algebra which is a quotient of some

k̃[T1, . . . , Tm][[S1, . . . , Sn]].

Proof. By Lemma 4.1, Ã' Ãred, so we can replace A by Ared and assume that A is
reduced. By [Kappen 2012, Corollary 2.11], under this assumption A◦ is a special
R-algebra, so there is an isomorphism

A◦ ' R〈T1, . . . , Tm〉[[S1, . . . , Sn]]/I

for some ideal I of R〈T1, . . . , Tm〉[[S1, . . . , Sn]]. The ideal Ǎ then contains the
ideal generated by the image of (π, S1, . . . , Sn) modulo I . Hence Ã is a quotient
of k̃[T1, . . . , Tm], proving the first part of the lemma. Likewise A◦◦ contains the
ideal (π), hence we get a surjective map

k̃[T1, . . . , Tm][[S1, . . . , Sn]] → Ã+. �

Remark 4.3. If A is a reduced semiaffinoid k-algebra, then Ǎ is the biggest ideal of
definition of the special R-algebra A◦ (see [Kappen 2012, Remark 2.8]). Likewise,
one can prove easily that A◦◦ = rad(π).

4.4. Let A be an arbitrary special R-algebra and let X := Spf(A). We define
Xs := Spec(A/J ), where J is the biggest ideal of definition of A. Then there is a
specialization map spX :Xη→Xs which is defined in [de Jong 1995, 7.1.10] on the
subset of rigid points Xrig and in general in [Berkovich 1996, §1, p. 371] (beware
that in [Berkovich 1996] the map spX is called the reduction map).

Definition 4.5. Let X be a semiaffinoid k-analytic space coming from a semiaffi-
noid k-algebra A. We set X̃ = Spec(Ã). We call X̃ the canonical reduction of
X . According to Lemma 4.2, it is a reduced k̃-scheme of finite type. If Y is a
semiaffinoid k-analytic space and ϕ : X→Y is a morphism of k-analytic spaces, then
we get an associated morphism ϕ∗ : 0(Y,O◦Y )→ 0(X,O◦X ). Hence by Lemma 4.1,
we can functorially associate a morphism ϕ̃ : X̃→ Ỹ . If ϕ comes from a morphism
of semiaffinoid k-algebras ψ : B→A, then ϕ̃ is induced by ψ̃ : B̃→ Ã.
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4.6. As in [Berkovich 1990, Section 2.4] one can define a canonical reduction
map red : X → X̃ in the following way. If x ∈ X , we obtain an associated map
χx :A→H(x), which gives rise to a map χ̃x : Ã→ H̃(x). Then

red : X→ X̃ , x 7→ Ker(χ̃x).

To stress the dependence in X , we might write redX instead of red. Similarly as in
[Berkovich 1990, Corollary 2.4.3] one can check that the canonical reduction map
red is anticontinuous, i.e., the inverse image of an open set is closed.

Remark 4.7. Identifying Xred with the k-analytic space associated with Ared (see
Remark 2.7), and using Lemma 4.1, we get a commutative diagram

Xred //

redXred
��

X

redX
��

X̃red X̃

Remark 4.8. Let A be a special R-model of the semiaffinoid k-algebra A, with
associated k-analytic space X . Let J be the biggest ideal of definition A. The
injection A→A◦ induces an injective morphism of k̃-algebras ϕ : A/J→ Ã, which
induces a morphism ι : X̃→ Xs . If X := Spf(A) we get a commutative diagram

X ' Xη
red

||

spX

##
X̃

ι
// Xs

If A is reduced, then A := A◦ is a special R-model and in that case J = Ǎ (see
Remark 4.3). Hence in that case, ϕ and ι are isomorphisms. In general, since Ã is
a finitely generated k̃-algebra, we can find f1, . . . , fm ∈A◦ such that f̃1, . . . , f̃m

generate Ã. By [Kappen 2012, Corollary 2.12], A′ := A[ f1, . . . , fm] ⊂A◦ is still
a special R-model of A, and by construction, if J ′ is the biggest ideal of definition
of A′, the map ϕ : A′/J ′→ Ã is surjective. Since ϕ is injective anyway, it is an
isomorphism. In conclusion, if X is a semiaffinoid k-analytic space, one can always
find a special R-scheme X= Spf(A) which is a model of X such that X̃ ' Xs and
such that red can be identified with spX.

Corollary 4.9. Let X be a semiaffinoid k-analytic space. Let Z be a Zariski closed
subset of X̃ and let Y := red−1(Z). Then Y is a semiaffinoid k-analytic space and
the naturally induced map Ỹ → X̃ is a closed immersion with image Z.

Proof. Let A be the semiaffinoid k-algebra of X . Using Remark 4.7, we can replace
A by Ared and assume that A is reduced. Under this assumption, by [Kappen 2012,
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Corollary 2.11], A◦ is a special R-algebra, and X ' Spf(A◦)η. Let I be an ideal of
A◦ such that Z = V ( Ĩ ), where Ĩ = { f̃ | f ∈ I }. Then as already seen in the proof
of Theorem 3.1, Y ' Spf((A◦)∧I )η, hence Y is the k-analytic space associated to
the semiaffinoid k-algebra B := (A◦)∧I

⊗R k. Then according to Theorem 3.1,
B◦ = (A◦)∧I . Since Ǎ is an ideal of definition of A◦ [Kappen 2012, Remark 2.8],
Ǎ+ I is also an ideal of definition of B◦. Since B̌ is the biggest ideal of definition
of B◦ [Kappen 2012, Remark 2.8], it follows that

B̃ = B◦/B̌ =
(
(A◦)∧I /(Ǎ+ I )

)
red = (Ã/I )red. �

Remark 4.10. In general, when U is an affinoid domain of the k-affinoid space X ,
it is difficult to describe the induced canonical reduction map Ũ → X̃ . However,
it is proved in [Bosch et al. 1984, Proposition 7.2.6.3] that when U is the tube
of a principal open subset of X̃ (i.e., when U = red−1(D( f̃ )) for some f ∈ A◦),
then Ũ → X̃ is an open immersion with image D( f̃ ). The above corollary is the
counterpart of [Bosch et al. 1984, Proposition 7.2.6.3] for Zariski closed subsets of
the canonical reduction.

Lemma 4.11. Let A be an R-flat special R-algebra and let X= Spf(A). Then the
specialization map spX : Xη→ Xs is surjective.

Proof. This proof is strongly inspired by the proof of Lemme 1.2 in [Poineau 2008].
Let x̃ ∈Xs , and let r be the transcendence degree of the field extension k̃(x̃)/k̃. Let
K be the completion of k(U1, . . . ,Ur ) with respect to the Gauss norm. Then K is
a discretely valued nonarchimedean field extension of k, and K̃ ' k̃(U1, . . . ,Ur ).
Hence x̃ is the image of a closed point ỹ ∈ Xs ×Spec(k̃) Spec(K̃ ) with respect to the
canonical map Xs ×Spec(k̃) Spec(K̃ )→ Xs .

Using base change extension induced by the inclusion R→ K ◦ (see [de Jong
1995, 7.2.6]),

X′ := X×Spf(R) Spf(K ◦)

is a special formal scheme over K ◦ of the form X′= Spf(A′), where A′ := A⊗̂R K ◦.
Let J be the biggest ideal of definition of A. Then JA′ is an ideal of definition of A′

and J ′ := rad(JA′) is the biggest ideal of definition of A′. There is a well-defined
morphism of k̃-algebras α : A/J ⊗k̃ K̃ → A′/J ′ defined by ã ⊗ λ̃ 7→ ã⊗ λ for
a ∈ A, λ ∈ K ◦ and where ·̃ stands for the various residue maps. We claim that α
induces an isomorphism

(A/J ⊗k̃ K̃ )red ' A′/J ′. (4)

Indeed by construction α is surjective, so it remains to prove that kerα is the
nilradical of A/J ⊗k̃ K̃ . There is also a well-defined surjective map

β : A′→ A/J ⊗k̃ K̃ , a⊗ λ 7→ ã⊗ λ̃,
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and by construction α ◦ β : A′→ A′/J ′ is the quotient map. So for some ai ∈ A
and λi ∈ K ◦, let z̃ =

∑
i ãi ⊗ λ̃i ∈ kerα and z :=

∑
i ai ⊗ λi ∈ A′. Then β(z)= z̃,

hence z ∈ kerα ◦β, hence z ∈ J ′. Since J ′ := rad(JA′), we have zn
∈ JA′ for some

n ∈N∗. Hence β(zn)= 0 and z̃n
= 0, thus proving (4). We get a natural composite

morphism
ι : (X′)s

ι1
−→ Xs ×Spec(k̃) Spec(K̃ )

ι2
−→ Xs,

where ι1 is induced by (4) and hence is bijective, and ι2 is the canonical map. Thus
we can identify ỹ with a closed point of (X′)s . We also get a commutative diagram
of sets

(X′)η
α //

spX′
��

(X)η

spX
��

(X′)s ι
// Xs

Thanks to [Kappen 2012, Lemma 2.3 and Remark 2.5] we know that spX′ induces a
surjective map from the set of rigid points (X′)rig to the set of closed points of (X′)s .
Hence we can find y ∈ (X′)η such that spX′(y)= ỹ. In conclusion, if x := α(y) we
get spX(x)= x̃ , proving the surjectivity of spX. �

Corollary 4.12. Let X be a semiaffinoid k-analytic space. Then the canonical
reduction map red : X→ X̃ is surjective.

Proof. This follows from Lemma 4.11 and Remark 4.8. �

Connected components. In this subsection, we consider a semiaffinoid k-algebra
A with associated k-analytic space X . It follows from Theorem A.8 and Remark 2.7
that Spec(A) is connected if and only if X is connected. Indeed by Remark 2.7, we
can assume that A is reduced, and we conclude since the connected components of
X are in correspondence with the set of idempotents of 0(X,OX ), which themselves
are equal to the set of idempotents of { f ∈ 0(X,OX ) | | f | <∞} = A. From the
Noetherianity of A it follows that A can be uniquely decomposed as

A'A1× · · ·×An, (5)

where each Ai is a semiaffinoid k-algebra such that Spec(Ai ) is connected. If we
denote by X i the k-analytic space associated to Ai it follows that

X = X1q · · · q Xn (6)

is the decomposition of X in connected components. These remarks easily imply
the following.

Lemma 4.13. A semiaffinoid k-analytic space X is connected if and only if X̃ is
connected.
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Proof. The equations (5) and (6) imply that X̃ '
∐

X̃ i . So if X is not connected, X̃
is also not connected. Conversely, since red : X→ X̃ is surjective (Corollary 4.12)
and anticontinuous, if one has a decomposition X̃ = U1 qU2 in two nonempty
closed-open sets, then X = red−1(U1)q red−1(U2) is a decomposition of X in
nonempty closed-open sets. �

Corollary 4.14. Let X be a semiaffinoid k-analytic space. Let Z be a Zariski
closed subset of X̃ and let Y := red−1(Z). Then Y is connected if and only if Z is
connected.

Proof. This follows from Corollary 4.9 and from Lemma 4.13. �

Using Theorem 2.1, one checks that if A is a reduced special R-algebra which is
integrally closed in A⊗R k, then there is a one-to-one correspondence between the
connected components of Spec(A) and the connected components of Spf(A)η.

Example 4.15. In general, if A is a reduced special R-algebra with associated
k-analytic space X , the connected components of Spec(A) do not coincide with the
connected components of X , as the example A = Zp〈T 〉/(T 2

+ pT ) shows.

5. Analytic functions and formal functions on tubes: a graded version

In this section, we fix A a reduced semiaffinoid k-algebra. Let us recall that this
implies that A◦ is a special R-algebra [Kappen 2012, Corollary 2.11].

5.1. For r ∈ R∗
+

we set

A◦r = { f ∈A | | f |sup ≤ r}, A◦◦r = { f ∈A | | f |sup < r}, Ã+r =A◦r /A
◦◦

r .

By definition, A◦1 =A◦, A◦◦1 =A◦◦ and Ã+1 = Ã+. We also set

ρ(A)= {| f |sup | f ∈A, f 6= 0} ⊂ R∗
+
.

By [Kappen 2010, Proposition 1.2.5.9], ρ(A) ⊂
√
|k∗|. We denote by G the

subgroup of
√
|k∗| generated by ρ(A).

Lemma 5.2. Let r ∈ R∗
+

. Then A◦r , A◦◦r and Ã+r are finitely generated A◦-modules.

Proof. Let us pick some λ ∈ k∗ such that |λ|r ≤ 1. Then

A◦r →A◦|λ|r , f 7→ λ f

is an isomorphism of A◦-modules. So, replacing r by |λ|r , we can assume that r ≤ 1.
Then A◦r is an ideal of A◦, hence it is a finitely generated A◦-module because A◦ is
Noetherian. We conclude since A◦◦r is a submodule, and Ã+r a quotient, of A◦r . �

Lemma 5.3. The index [G : |k∗|] is finite. As a consequence, G ' Z.
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Proof. Let κ := sup{λ |λ< 1 and λ∈ρ(A)}. We claim that κ is actually a maximum,
that is to say, there exists λ < 1 with λ ∈ ρ(A) such that κ = λ (this implies in
particular that κ < 1). Indeed, if κ was not a maximum, we could find an increasing
sequence (λn)n∈N with λn < 1 in ρ(A). Then In = { f ∈A | | f |sup ≤ λn} would be
an infinite increasing sequence of ideals of A◦, which is Noetherian. This would be
a contradiction. Hence, κ < 1 and κ ∈ ρ(A).

Since κ ∈ ρ(A), we can write κ = |π |a/b with a and b relatively prime and
b > 0. One can easily prove using Bézout’s theorem that a = 1. Hence κ = |π |1/b.
Likewise, using again Bézout’s theorem, one can prove that if |π |α/β ∈ ρ(A) with
β > 0 and α and β coprime, then β ≤ b. Hence, if v := lcm(1, 2, . . . , b), one has
ρ(A)⊂ |π |Z/v. �

Remark 5.4. If ‖ · ‖ is a k-Banach algebra norm on A, according to [Kappen
2010, Lemma 1.2.5.8], for any f ∈ A, | f |sup = limn∈N

n
√
‖ f n‖. The notation

ρ(A) that we have introduced is compatible with [Berkovich 1990, Section 1.3],
where the spectral radius of an element of a Banach algebra A is defined to be
ρ( f )= limn∈N

n
√
‖ f n‖. Let us recall from [Kappen 2010, Lemma 1.2.5.4] that a

surjective morphism of semiaffinoid k-algebras

R〈T1, . . . , Tm〉[[S1, . . . , Sn]]⊗R k→A

induces a k-Banach norm on A by taking the residue seminorm of the Gauss norm
on

R〈T1, . . . , Tm〉[[S1, . . . , Sn]]⊗R k.

Example 5.5. In general, ρ(A) is not a subgroup, and not even a monoid. For
instance if A=Qp(

√
p)×Qp( 3

√
p) then ρ(A)= pZ/2

∪ pZ/3, which is not a monoid.

The following definition is inspired by [Temkin 2004, Section 3].

Definition 5.6. We define the total reduction ring of A as

Ã+tot :=
⊕
r∈G

Ã+r .

Corollary 5.7. The total reduction ring Ã+tot of A is excellent and reduced.

Proof. By Lemma 5.3, [G : |k∗|] is finite, so we can introduce n := [G : |k∗|] ∈N.
Let r1, . . . , rn ∈ G be some representatives of the classes of G/|k∗|. For each
i ∈ {1, . . . , n}, by Lemma 5.2, we can find a finite family ( fi, j ) j∈J which is a
finite set of generators of the A◦-module Ã+ri

. Let us denote by π̃ the image of π
in Ã+1/|π |, and likewise by (̃1/π) the image of 1/π in Ã+1/|π |. We get that⊕

r∈G

Ã+r = Ã+
[
π̃ ,
(̃ 1
π

)
, fi, j

]
.
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Hence Ã+tot is a finitely generated Ã+-algebra. Since Ã+ is excellent, it follows that
Ã+tot is also excellent. For the reducedness, consider a nonzero element f̃ ∈ Ã+r for
some f ∈ A with | f |sup = r . Then for any integer k > 0, the associated element
f̃ k
= f̃ k ∈ Ã+r k is also nonzero since | f k

|sup = | f |ksup = r k . �

Remark 5.8. Let r ∈ ρ(A). Since ρ(A) is discrete in R∗
+

(see Lemma 5.3), there
exists a real number s ∈ ρ(A) which is the biggest element of ρ(A) such that s < r .
It follows that A◦◦r =A◦s .

We fix I an ideal of A◦. If M is an A◦-module, we denote by M∧I the completion
of M with respect to the I -adic topology. So

M∧I
' lim
←−−

n
M/I n M.

Lemma 5.9. Let r ∈ ρ(A). There is a short exact sequence of A◦-modules

0→ (A◦◦r )
∧I
→ (A◦r )

∧I
→ (Ã+r )

∧I
→ 0. (7)

Proof. By definition of Ã+r , there is a short exact sequence

0→A◦◦r →A◦r → Ã+r → 0 (8)

of finitely generated A◦-modules. So the I -adic completion of (8) remains exact;
see [Matsumura 1989, Theorems 8.7 and 8.8]. �

5.10. Let I be an ideal of A◦ and let us set U = {x ∈ X | | f (x)|< 1 ∀ f ∈ I }. Let
us denote by B its associated semiaffinoid k-algebra, which can be defined as

B = (A◦[[S1, . . . , Sn]]/( fi − Si )i=1,...,n)⊗R k,

where I = ( f1, . . . , fn). According to Theorem 3.1, one has B◦ ' (A◦)∧I . We de-
note by Y the k-analytic space associated with B. If g∈B, set |g|sup= supy∈Y |g(y)|.

Remark 5.11. Let r ∈ |k∗| and let λ ∈ k with |λ| = r−1. Multiplication by λ
induces an isomorphism of A◦-modules A◦r

×λ
−→ A◦. Completing with respect to

I one gets an isomorphism of (A◦)∧I -modules (A◦r )∧I
' (A◦)∧I . Finally, using

Theorem 3.1 we get an isomorphism of (A◦)∧I -modules B◦r ' (A◦r )∧I obtained as
the composition

(A◦r )
∧I ×λ
−→ (A◦)∧I

→ B◦ ×λ
−1

−−−→ B◦r .

More generally, if r ∈ ρ(A), we can find s ∈ |k∗| with r ≤ s, leading to an inclusion
of A◦-modules A◦r →A◦s . Then completing with respect to I we get an inclusion
of (A◦)∧I -modules (A◦r )∧I

→ (A◦s )∧I . Using the above identifications, we can
assimilate (A◦r )∧I as a B◦-submodule of B◦s , hence as a B◦-submodule of B.
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Lemma 5.12. Let r ∈ |k∗|.

(i) Let g ∈ B◦r ' (A◦r )∧I (see Remark 5.11). Let g̃ ∈ (Ã+r )∧I be the image of g by
the reduction map of the short exact sequence (7) of Lemma 5.9. Then g̃ = 0 if
and only if |g|sup < r . Equivalently, g̃ 6= 0 if and only if |g|sup = r .

(ii) There is a natural isomorphism B◦◦r ' (A◦◦r )∧I .

Proof. Using the same arguments as in Remark 5.11, we can assume that r = 1.
We then consider the short exact sequence of Lemma 5.9 for r = 1:

0→ (A◦◦)∧I
→ (A◦)∧I

→ (Ã+)∧I
→ 0.

Let us then consider g ∈ B◦ ' (A◦)∧I and let us assume that g̃ = 0. This implies
that g ∈ (A◦◦)∧I . By Remark 5.8, there exists s < 1 such that (A◦◦)∧I

= (A◦s )∧I

for some s < 1. It follows that |g|sup ≤ s < 1. Conversely, let us assume that
|g|sup < 1. There exists an integer d ∈ N such that |gd

|sup ≤ |π |. Hence, according
to Remark 5.11, gd

∈ B◦
|π | ' (A

◦

|π |)
∧I
⊂ (A◦◦)∧I . This proves (i), and (ii) follows

from (i). �

We can now generalize Theorem 3.1 to an arbitrary r ∈ ρ(A).

Proposition 5.13. We use the notations of 5.10.

(i) There is an inclusion ρ(B)⊂ ρ(A).
(ii) Let r ∈ ρ(A). There are isomorphisms B◦r ' (A◦r )∧I , B◦◦r ' (A◦◦r )∧I and

B̃+r ' (Ã
+

r )
∧I .

(iii) There is a natural isomorphism B̃+tot '
⊕

r∈G(Ã
+

r )
∧I .

Proof. Let g ∈ B be a nonzero element. Then there exists s ∈ ρ(A) such that
g ∈ B◦s . Since ρ(A) is discrete by Lemma 5.3, we can then define the smallest
element r ∈ ρ(A) such that g ∈ B◦r . By Remark 5.11, for each r ∈ ρ(A), we can
naturally identify (A◦r )∧I with a B◦-submodule of B, and under these identifications,
B=

⋃
r∈ρ(A)(A

◦
r )
∧I . Since ρ(A) is discrete, we can then define the smallest element

r ∈ ρ(A) such that g ∈ (A◦r )∧I . We then consider the short exact sequence (7):

0→ (A◦◦r )
∧I
→ (A◦r )

∧I
→ (Ã+r )

∧I
→ 0.

The minimality of r and Remark 5.8 imply that g /∈ (A◦◦r )∧I . It follows that g̃ 6= 0,
where g̃ ∈ (Ã+r )∧I denotes the reduction of g in (Ã+r )∧I . Thanks to Lemma 5.3
we can pick some d ∈ N∗ such that rd

∈ |k∗|. Then gd
∈ (A◦rd )

∧I . Since (Ã+tot) is
reduced and excellent (Corollary 5.7), it follows that (Ã+tot)

∧I is also reduced. Hence
g̃d = g̃d

6= 0 in (Ã+rd )∧I . Since rd
∈ |k∗|, Lemma 5.12 implies that |gd

|sup = rd . So
|g|sup = r . This proves (i) as well as (ii) and (iii). �

We also obtain the following generalization of [Bosch and Lütkebohmert 1985,
Lemma 2.1].
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Corollary 5.14. Let X be a k-affinoid space, and let Z ⊂ X̃ be a Zariski closed
subset. Then ̂̃X/Z , the formal completion of X̃ along Z , depends intrinsically on the
k-analytic space red−1(Z).

Proof. Let us denote by B the semiaffinoid k-algebra of red−1(Z). The space ̂̃X/Z

is the formal scheme associated to the adic k̃-algebra (Ã+)∧I . Thanks to the short
exact sequence (7) for r = 1,

(Ã+)∧I
'A◦∧I

/A◦◦∧I
.

Thanks to Theorem 3.1 and Lemma 5.12(ii), one gets that

(Ã+)∧I
' B◦/B◦◦ = B̃+,

which depends intrinsically on red−1(Z) since B does. �

Remark 5.15. More generally, if X is the k-analytic space associated to the reduced
semiaffinoid k-algebra A, then Ã+ is naturally an adic algebra with an ideal of
definition given by Ǎ. This adic algebra is isomorphic to a quotient of k̃[Ti ][[S j ]].
Let us set X := Spf(Ã+). Then |X | = X̃ . Let Z be a Zariski closed subset of X̃ ,
Y the k-analytic space defined by Y = red−1(Z) and B its associated semiaffinoid
k-algebra. One shows similarly that the inclusion of analytic domains Y → X
induces an isomorphism X̂/Z ' Spf(B̃+), where we denote by X̂/Z the completion
of X along Z . In particular, X̂/Z depends intrinsically on the k-analytic space
red−1(Z).

6. Additional remarks

Finite morphisms.

Proposition 6.1. Let ϕ : B→ A be a finite morphism of semiaffinoid k-algebras,
with A reduced. Then ϕ◦ : B◦→A◦ is finite.

Proof. Since B◦ → (Bred)
◦ is finite, we can also assume that B is reduced. Let

f1, . . . , fn be elements of A such that

A= B[ f1, . . . , fn]. (9)

Each f ∈ { f1, . . . , fn} satisfies a unitary polynomial equation with coefficients in
B of the form

f d
+ bd−1 f d−1

+ · · ·+ b1 f + b0 = 0. (10)

Then for m ∈ N∗, multiplying by πmd , (10) becomes

(πm f )d +πmbd−1(π
m f )d−1

+ · · ·+πm(d−1)b1(π
m f )+πmdb0 = 0.

But for m big enough, all the coefficients πmbd−1, . . . , π
m(d−1)b1, π

mdb0 appearing
in the above equation belong to B◦. Hence, for m big enough, πm fi satisfies a



674 Florent Martin

unitary polynomial equation with coefficients in B◦. So replacing each fi by πm fi

(which will not change (9)), we can assume that the fi belong to A◦ and are integral
over B◦. So, thanks to (9), B◦[ f1, . . . , fn] is a special R-model of A. According
to [Kappen 2012, Corollary 2.10], A◦ is finite over B◦[ f1, . . . , fn], and hence also
over B◦. �

We conjecture that for an arbitrary nonarchimedean nontrivially valued field k, a
similar statement holds for quasiaffinoid k-algebras (see [Lipshitz and Robinson
2000, Remark 2.1.8] for the definition of a quasiaffinoid k-algebra).

Corollary 6.2. Let ϕ :A→ B be a finite morphism of semiaffinoid k-algebras. The
associated morphisms ϕ̃ : Ã→ B̃, ϕ̃+ : Ã+→ B̃+, ϕ̃tot : Ã

+

tot→ B̃+tot are finite.

Proof. Since the above morphisms do not change if one replaces A and B by Ared

and Bred, we can assume that A and B are reduced. The first two points then follow
from Proposition 6.1. To prove that ϕ̃tot is finite, one has to use that ϕ̃+ is finite,
and then argue as in the proof of Corollary 5.7. �

The nonaffine case.

Lemma 6.3. Let A be a reduced special R-algebra which is integrally closed in the
semiaffinoid k-algebra A⊗R k. Let U be a formal open affine subset of X= Spf(A).
Then 0(U,OX) is also a reduced special R-algebra which is integrally closed in the
semiaffinoid k-algebra 0(U,OX)⊗R k and 0(U,OX)' 0(sp−1

X (U),O◦Xη).

Proof. We first assume that U is a principal formal open subset of the form U=D( f )
for some f ∈ A. Let J be an ideal of definition of A. Then 0(U,OX) ' A{ f },
where A{ f } ' Â f is the completion of the localization A f with respect to the ideal
JA f . The composition morphism A→ A f → Â f is regular. Indeed, A→ A f is
regular since it is a localization, and A f → Â f is regular since it is the completion
of an excellent ring. It follows that the morphism A→ Â f is regular since regular
morphisms are stable under composition [EGA IV2 1965, Proposition 6.8.3]. Using
[EGA IV2 1965, Proposition 6.14.4], we conclude that 0(U,OX)' Â f is integrally
closed in 0(U,OX)⊗R k.

Let us now assume that U is an arbitrary formal open affine subset of X. It
follows from [de Jong 1995, §7, p. 74–75] that 0(U,OX) is a special R-algebra.
Moreover, we can cover U by some principal formal open subsets of the form D( fi )

for some fi ∈ A. Let us now consider an element g ∈ 0(U,OX)⊗R k which is
integral over 0(U,OX). This means that g satisfies an equation

gd
+ bd−1gd−1

+ · · ·+ b1g+ b0 = 0 (11)

for some b j ∈ 0(U,OX). But for each principal formal open subset D( fi ), we can
restrict (11) to 0(D( fi ),OX)⊗R k. We then get that g|D( fi ) ∈0(D( fi ),OX)⊗R k is
integral over 0(D( fi ),OX), so by the first part of the proof, g|D( fi ) ∈0(D( fi ),OX).
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Since the D( fi ) form a covering of U, we deduce that g ∈ 0(U,OX), which
proves that 0(U,OX) is integrally closed in 0(U,OX)⊗R k. Finally, the equality
0(U,OX)' 0(sp−1

X (U),O◦Xη) now follows from Theorem 2.1. �

The following result extends [Bosch et al. 1984, Proposition 7.2.6.3] from affinoid
to semiaffinoid k-algebras.

Corollary 6.4. Let X be a semiaffinoid k-analytic space. Let f ∈ 0(X,O◦X ) and
let Y = {x ∈ X | | f (x)| = 1}. Then Y is a semiaffinoid k-analytic space and the
associated map Ỹ → X̃ is the Zariski open embedding of the principal open subset
D( f̃ )⊂ X̃ .

Proof. It follows from general properties of semiaffinoid k-analytic spaces that the
inclusion Y→ X is induced by a morphism of semiaffinoid k-algebras (see [de Jong
1995, Proposition 7.2.1(a)]). Using Remark 4.7, we can easily assume that X and
Y are reduced. Let A be the reduced semiaffinoid k-algebra associated with X .
By [Kappen 2012, Corollary 2.11], A◦ is a special R-algebra. Let X := Spf(A◦).
Let D( f ) ⊂ X be the principal formal open subset associated with f . Hence
Y = sp−1

X (D( f )). By Lemma 6.3, we have 0(D( f ),OX) ' B◦, where B is the
semiaffinoid k-algebra associated with Y . Let J be the biggest ideal sheaf of
definition of X (see [EGA I 1960, Proposition 10.5.4] for the definition and the
properties of J). By [EGA I 1960, 10.5.2] there is an isomorphism of schemes
(X,OX/J)' Spec(Ã)= X̃ . Moreover, by [EGA I 1960, Corollaire 10.5.5], J|U is
also the biggest ideal sheaf of definition of the formal scheme U. Hence 0(U, J) is
the biggest ideal of definition of the adic ring 0(U,OX)'B◦, and as a consequence
0(U, J)' B̌ by [Kappen 2012, Remark 2.8]. Hence we can conclude, since

B̃ = B◦/B̌ ' 0(D( f ),OX/I)' Ã[ f̃ −1
]. �

Lemma 6.5. Let X be a special formal scheme over R. The following are equiva-
lent.

(i) Any formal open affine subscheme of X is isomorphic to Spf(A), where A is a
reduced special R-algebra integrally closed in A⊗R k.

(ii) There exists a covering by formal open affine subschemes Ui = Spf(Ai ), where
for each i , Ai is a reduced special R-algebra which is integrally closed in
Ai ⊗R k.

Proof. That (i) implies (ii) is clear. To prove the converse implication, let U be a
formal open affine subset of X. Then U is covered by finitely many U∩Ui . For
each i we can find a finite covering {Ui, j } of U∩Ui by formal open affine subsets.
Thanks to Lemma 6.3, all the Ui, j satisfy the expected property. We are then reduced
to the situation where X is affine and is covered by finitely many formal open affine
Ui ’s which all satisfy the expected property. Let us then consider a function f in



676 Florent Martin

the integral closure of 0(U,OX) in 0(U,OX)⊗R k. Then for all i , f |Ui is in the
integral closure of 0(Ui ,OX) in 0(UiOX)⊗R k, which is by assumption 0(Ui ,OX).
So f ∈ 0(U,OX). �

Appendix: Bounded functions on reduced semiaffinoid k-spaces
by Christian Kappen and Florent Martin

In this appendix, we assume that k is a nontrivially discretely valued nonarchimedean
field, and we let R denote its valuation ring. We fix a reduced semiaffinoid k-algebra
A, and we let X denote the associated rigid analytic k-space.

Projective limits. Let us start with a reminder on derived functors of projective
limits of abelian groups. Let

· · ·
σ3
−→ G2

σ2
−→ G1

σ1
−→ G0

be a projective system of abelian groups indexed by N, and let

ϕ :
∏

n∈N

Gn→
∏

n∈N

Gn, (an)n 7→ (an − σn+1(an+1))n.

Then kerϕ ' lim
←−−

Gn . Let us denote by lim
←−−

i the i-th derived functor of lim
←−−

. Accord-
ing to [Weibel 1994, Corollary 3.5.4], one has the following descriptions:

lim
←−−

1 Gn ' cokerϕ,

lim
←−−

i Gn = 0 for i > 1.

A flatness result. Let us fix a presentation A' (k⊗R R〈T1, . . . , Tm〉[[S1, . . . , Sn]])/I
and let us equip A with the associated k-Banach algebra norm ‖ · ‖ as in [Kappen
2010, Section 1.2.5]. For a real number ε ∈

√
|k∗| such that 0< ε < 1, we set

Xε := {x ∈ X | |Si (x)| ≤ ε, i = 1, . . . , n}.

Then Xε is an affinoid k-space (depending on the chosen presentation of A), and we
let Aε denote the associated affinoid k-algebra. It comes with a natural presentation

Aε ' k〈T1, . . . , Tm, ε
−1S1, . . . , ε

−1Sn〉/I

and with an associated k-Banach algebra norm ‖·‖ε such that if ε≤ ε′, the restriction
morphism Aε′→Aε is contractive, that is to say, for f ∈Aε′ we have ‖ f ‖ε ≤‖ f ‖ε′ .

Let us now fix an increasing sequence of positive real numbers (εn)n∈N such
that limn→∞ εn = 1 and such that for all n ∈ N, we have that εn ∈

√
|k∗|. We set

An :=Aεn . We denote by Xn the k-affinoid space associated to An . For n ∈ N we
denote by τn :A→An the associated canonical map, and for m ≥ n ∈N we denote
by σm,n :Am→An the restriction morphism. By the above remark, each σm,n is a
contractive morphism with respect to the norms ‖ · ‖εm and ‖ · ‖εn . The sequence
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(An)n∈N and the restriction morphisms form a projective system of abelian groups.
The next lemma is inspired by [Bosch 1977, Satz 2.1], and the proof is verbatim
the same as in [Bosch 1977]. For the convenience of the reader, we recall it.

Lemma A.1. In the above setting, lim
←−−

1An = 0.

Proof. We have to show that the map

ϕ :
∏

n∈N

An→
∏

n∈N

An, (an)n 7→ (an − σn+1,n(an+1))n,

is surjective. So let us consider a sequence (gn) ∈
∏

n∈N An , and let us find a
sequence ( fn) ∈

∏
n∈N An satisfying the conditions

gn = fn − σn+1,n( fn+1) ∀n ∈ N. (12)

Step 1. Let us first assume that for all n ∈ N, gn lies in the image of the restriction
map τn : A→ An . For each n, let us then choose Gn ∈ A such that gn = τn(Gn).
We define inductively a sequence Fn ∈A via{

F0 := 0,
Fn+1 := Fn −Gn for n ≥ 0.

Setting fn := τn(Fn), we obtain a solution ( fn)n of (12).

Step 2. Let us now pick some arbitrary (gn) ∈
∏

n An . For each n ∈ N, the image
of A in An is dense with respect to the topology induced by ‖ · ‖εn . Hence for all
n ∈ N, there exists hn ∈ A such that ‖gn − τn(hn)‖εn ≤ 2−n . For n ∈ N, we have
gn = τn(hn)+ (gn − τn(hn)). By Step 1, there exists (Hn)n∈N ∈

∏
n An such that

ϕ((Hn)n∈N)= (τn(hn))n∈N. Hence it remains to prove that (gn−τn(hn))n∈N∈ im(ϕ).
Replacing gn by gn − τn(hn), we can thus assume that

‖gn‖εn ≤ 2−n
∀n ∈ N.

Since the morphisms σm,n are contractive, for each m ≥ n we have ‖σm,n(gm)‖εn ≤

‖gm‖εm ≤ 2−m . Hence, for each n ∈ N, since An is a k-Banach algebra, it makes
sense to define

fn :=
∑
m≥n

σm,n(gm).

Finally, we have

fn − σn+1,n( fn+1)=
∑
m≥n

σm,n(gm)− σn+1,n

( ∑
m≥n+1

σm,n+1(gm)

)
=

∑
m≥n

σm,n(gm)−
∑

m≥n+1

σm,n(gm)= gn,

which proves that ϕ(( fn)n)= (gn). �
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For any A-module M , we set Mn := M ⊗A An .

Definition A.2. We let 2 denote the functor

2 : {finitely generated A-modules} → {0(X,OX )-modules}, M 7→ lim
←−−

n
Mn.

The statement and the proof of the following result are again copied almost
verbatim from [Bosch 1977] (see however Remark A.4 below).

Lemma A.3. The functor 2 has the following properties.

(i) The functor 2 is exact.

(ii) For any finitely generated A-module M , there is a natural isomorphism

τ : M ⊗A 0(X,OX )'2(M).

Proof. Let us first show that2 is exact. By the local theory of uniformly rigid spaces
as developed in [Kappen 2010], the rings An are flat over A. Hence, it suffices to
show that lim

←−−

1 Mn vanishes for all finitely generated A-modules M . Thus, let M be
a finitely generated A-module, and let F→ M→ 0 be a finite presentation of M .
Since the higher derivatives of the projective limit functor vanish, lim

←−−

1 Fn maps
onto lim

←−−

1 Mn . Since lim
←−−

1 commutes with finite direct sums, Lemma A.1 shows that
lim
←−−

1 Fn = 0. The claim follows. Let us now prove the second statement. Since
0(X,OX ) is naturally isomorphic to lim

←−−
An , one has a natural morphism

τ : M ⊗A 0(X,OX )→ lim
←−−

Mn.

By definition, τ is an isomorphism when M = A, and more generally τ is an
isomorphism when M is finite and free. In general, since A is Noetherian, and M
is finitely generated, there is an exact sequence

F1→ F2→ M→ 0,

where F1 and F2 are finite free A-modules. Using exactness of 2, one obtains the
exact diagram

// F2⊗A 0(X,OX )

o

��

// F1⊗A 0(X,OX )

o

��

// M ⊗A 0(X,OX ) //

τ

��

0

// 2(F2) // 2(F1) // 2(M) // 0

and it follows that τ is an isomorphism. �

Remark A.4. The statements of Lemma A.3 do not hold for general A-modules.
Likewise, Satz 2.1 and Korollar 2.2 from [Bosch 1977] do not hold for general
A-modules either, although this is not explicitly mentioned there. Indeed, in
Example A.5 below, we give a counterexample to Satz 2.1 and Korollar 2.2 of
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[Bosch 1977] involving modules which are not finitely generated. We want to stress
that the results of [Bosch 1977, Section 2] are not affected by this observation: using
the notations of [Bosch 1977], a correct replacement of [Bosch 1977, Satz 2.1 and
Korollar 2.2] is to say that the functor θ is exact on the category of finitely generated
A〈ζ 〉-modules and that τ is an isomorphism for finitely generated A〈ζ 〉-modules.

Example A.5. We use the notations of Satz 2.1 and Korollar 2.2 of [Bosch 1977],
and we consider A = k. Moreover, we assume that ζ = (ζ1); that is, ζ is made of
only one variable. So θ is the functor sending a k〈ζ 〉-module M to the k〈〈ζ 〉〉-module

θ(M)= lim
←−−
n∈N

M ⊗k〈ζ 〉 k〈ε−1
n ζ 〉,

and for each M , τ = τM is the natural map

τM : M ⊗k〈ζ 〉 k〈〈ζ 〉〉 → θ(M).

Let us write A= k〈ζ 〉 and A j = k〈ε−1
j ζ 〉, and let us consider the A-modules

M ′ =
⊕
j∈N

A, M =
⊕
j∈N

A j , M ′′ =
⊕
j∈N

(A j/A),

which form a natural short exact sequence of A-modules

0→ M ′→ M→ M ′′→ 0.

We denote be (e j ) j∈N the canonical basis of M . For simplicity of notation, we also
denote by (e j ) j∈N the canonical bases of M ′ and M ′′. We claim that both the natural
morphism τM ′′ for M ′′ and the induced map θ(M)→ θ(M ′′) are not surjective,
contrary to the statements of Satz 2.1 and Korollar 2.2 of [Bosch 1977]. To this
end, let us choose, for each j ∈ N, a function f j ∈A such that f j is invertible in
A and such that for any m > j , f j is not invertible in Am , by picking an element
t ∈ k as well as some positive integers a, b such that

ε j+1 ≥ |t |a/b > ε j

and by setting f j := ζ
b
−ta
∈A= k〈ζ 〉. Let us now consider the element g∈

∏
n M ′′n

which is defined by giving, for each n, the element

gn :=

n−1∑
j=0

[ f −1
j ⊗ 1] · e j

of the An-module

M ′′n =
⊕
j∈N

(A j/A)⊗A An ∼=
⊕
j∈N

(A j ⊗A An)/An,
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where [·] denotes the formation of the residue class and where we have used flatness
of An over A to establish the above isomorphism. Then

g ∈ lim
←−−
n∈N

M ′′n ,

because in M ′′n , we have that [ f −1
n ⊗ 1] = [1⊗ f −1

n ] = 0. Let us now consider the
natural map

τM ′′ : M ′′⊗A lim
←−−

n
An→ lim

←−−
n

M ′′n .

For each element h in the image of this map, there exists a j0 such that for all
j > j0, the j-th component of hn is zero for all n. On the other hand, for each n,
all of the summands [ f −1

j ⊗ 1] · e j with j < n defining gn are nonzero. Indeed, if
there was an element h ∈An with

f −1
j ⊗ 1= 1⊗ h in A j ⊗A An,

then the same equality would hold in the completed tensor product, which is An ,
and f −1

j would thus extend to An , which is not the case. We have shown that
g /∈ im τM ′′ and thus established our claim that τM ′′ is not surjective. The same
statement regarding the structure of g shows our second claim, namely that g does
not lie in the image of the natural map θ(M)→ θ(M ′′). Indeed, it suffices to remark
that

θ(M)= lim
←−−

n

(⊕
j

(A j ⊗A An)

)
= lim
−−→

i
lim
←−−

n

(⊕
j≤i

(A j ⊗A An)

)

=

⊕
j

(
lim
←−−

n
(A j ⊗A An)

)
,

which follows from the fact that the transition maps An+1→An are injective and
that the A j are flat over A.

Proposition A.6. The A-module 0(X,OX ) is faithfully flat.

Proof. Flatness follows from Lemma A.3. For faithfully flatness, let us consider
a maximal ideal m of A. By the Nullstellensatz for semiaffinoid k-algebras, m
corresponds to a rigid point x of X . Since the Xn cover X , for n big enough one has
x ∈ Xn . Hence m′ := { f ∈ 0(X,OX ) | f (x)= 0} is a maximal ideal of 0(X,OX )

such that m′ ∩A=m. �

Lemma A.7. The following are equivalent.

(i) The semiaffinoid k-algebra A is normal.

(ii) The special R-algebra A◦ of power-bounded functions in A is normal.
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Proof. Let us first remark that Quot(A)=Quot(A◦). Let us first prove that (i)⇒ (ii).
Let f ∈ Quot(A◦) be an element which satisfies an equation f n

+
∑n−1

i=0 ai f i
= 0

with ai ∈A◦. Then f ∈A by (i), and since the ai are in A◦, it follows that f ∈A◦.
Let us now prove that (ii)⇒ (i). Let f ∈Quot(A) be an element which satisfies an
equation f n

+
∑n−1

i=0 ai f i
= 0 with ai ∈A. Then there exists an integer m such that

for all i , πmai ∈A◦. Using the same argument as in the proof of Proposition 6.1,
it follows that πm f satisfies a unitary equation with coefficients in A◦, hence
πm f ∈A◦ by (ii), hence f ∈A. �

Theorem A.8. Let A be a reduced semiaffinoid k-algebra, and X its associated
rigid analytic k-space. Then A' { f ∈ 0(X,OX ) | | f |sup <∞}.

Proof. If A is normal, then A◦ is a normal special R-algebra by Lemma A.7, and
[de Jong 1995, Theorem 7.4.1] shows that A◦ '0(X,O◦X ). The theorem follows in
that case. In general, let B denote the normalization of A. According to [Valabrega
1975; 1976], B is a semiaffinoid k-algebra. Let X ′ denote the rigid analytic k-space
associated to B and p : X ′→ X the induced morphism, and let us consider the
induced commutative diagram

A //

��

B

��
0(X,OX )

p∗
// 0(X ′,OX ′)

Let us first observe that

0(X ′,OX ′)' 0(X,OX )⊗A B.

Indeed, since A→ B is finite, for each n the morphism An → An ⊗A B is also
finite. Since An is a k-affinoid algebra, it follows that An ⊗A B is also a k-affinoid
algebra [Bosch et al. 1984, Proposition 6.1.1.6]. If X ′n denotes the k-affinoid space
associated to An ⊗A B, then X ′n is an affinoid domain of X ′ and the X ′n cover X ′.
It follows that

0(X ′,OX ′)' lim
←−−
n∈N

0(X ′n,OX ′)' lim
←−−
n∈N

(An ⊗A B)' 0(X,OX )⊗A B,

where the second equality follows from the fact that X ′n is a k-affinoid space, and
the third equality follows from Lemma A.3(ii).

Let now f ∈ 0(X,OX ) be a bounded function. Then p∗( f ) ∈ 0(X ′,OX ′) '

0(X,OX )⊗A B is also bounded on X ′, and according to what we have shown in
the first part of the proof, p∗( f ) comes from an element b ∈ B.

Finally, A⊂ B is a sub-A-module of B because A is reduced. Since 0(X,OX )

is flat over A (Proposition A.6), it follows that 0(X,OX ) is a submodule of
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0(X ′,OX ′) ' 0(X,OX ) ⊗A B. Since 0(X,OX ) is even faithfully flat over A,
we conclude that

0(X,OX )∩B =A.

Indeed, this follows from [Bourbaki 1998, Section I.3.5, Proposition 10(ii)], which
asserts that if C→ C ′ is a faithfully flat ring morphism, if N is a C-module and if
N ′ ⊂ N is a sub-C-module, then (N ′⊗C C ′)∩ N = N ′. Since f ∈ 0(X,OX )∩B,
it follows that f ∈A. �

Example A.9. Theorem A.8 does not hold if we do not assume the semiaffinoid
k-algebra A to be reduced. For instance, as in Example 2.3, let

A := R[[T1, T2]]/(T 2
2 )⊗R k,

and let X be the associated rigid k-space. Let f (T1) ∈ k[[T1]] be a formal power
series which converges on the open unit disc, but such that f (T1) /∈ R[[T1]] ⊗R k.
Then f (T1)T2 ∈ 0(X,O◦X ) \A.
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