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Some sums over irreducible polynomials
David E. Speyer

We prove a number of conjectures due to Dinesh Thakur concerning sums of the
form

∑
P h(P) where the sum is over monic irreducible polynomials P in Fq [T ],

the function h is a rational function and the sum is considered in the T−1-adic
topology. As an example of our results, in F2[T ], the sum

∑
P 1/(Pk

−1) always
converges to a rational function, and is 0 for k = 1.

1. Introduction

Our goal is to explain some identities experimentally discovered by Dinesh Thakur,
involving sums over irreducible polynomials in finite fields. We begin by stating the
simplest of these identities: Let P be the set of irreducible polynomials in F2[T ].
Then ∑

P∈P

1
P − 1

= 0.

Here the sum must be interpreted as a sum of power series in T−1. For example,
the first five summands are

1
T − 1

= T−1
+ T−2

+ T−3
+ · · ·

1
(T + 1)− 1

= T−1

1
(T 2+ T + 1)− 1

= T−2
+ T−3

+ · · ·

1
(T 3+ T + 1)− 1

= T−3
+ · · ·

1
(T 3+ T 2+ 1)− 1

= T−3
+ · · · .

As the reader can see, only finitely many terms contribute to the coefficient of each
power of T−1, and the coefficient of T− j is 0 for each j .
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We now introduce the notation necessary to state our general results. To aid
the reader’s comprehension, we adopt the following conventions: Integers will
always be denoted by lower case Roman letters (k, p, q, . . . ); polynomials over
finite fields will always be denoted by capital Roman letters (A, F , P , . . . ), sets
of such polynomials will always be denoted by calligraphic letters (A, P , R, . . . ),
symmetric polynomials will be denoted by bold letters (ek , pk , . . . ). Of course,
there will be other sorts of mathematical objects as well, which we trust the reader
to accommodate as they occur.

Let p be a prime and q a power of p. Let Fq be the field with q elements. Let R
be the polynomial ring Fq [T ]. Let K be the fraction field Fq(T ) and let K̂ be the
T−1-adic completion of K. All infinite sums will be understood in the T−1-adic
topology.

Let P be the set of irreducible polynomials in R; let P1 be the set of monic
irreducible polynomials. Here is our main result for the case p = 2.

Theorem 1.1. If p = 2 then, for any positive integer k ≡ 0 mod q − 1, the sum∑
P∈P1

1
Pk − 1

is in K.

The reader may wonder what happens if we sum over all irreducible polynomials
rather than monic ones; that is an easy corollary:

Corollary 1.2. Let p = 2. For any positive integer k, the sum∑
P∈P

1
Pk − 1

is in K.

Proof. We rewrite the sum as
∑

P∈P1

∑
a∈F×q

1/((a P)k − 1). The corollary then
follows from the identity∑

a∈F×q

1
(aX)k − 1

=
1

XLCM(k,q−1)− 1

in Fq(U ). To prove this identity, write

1
(aX)k − 1

=

∞∑
j=1

1/(aX)k j

and recall that ∑
a∈F×q

am
=

{
1, m ≡ 0 mod q − 1,
0, otherwise. �
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We now discuss the case of a general prime. Define the rational function Gp(U )
by

Gp(U )=
(1−U p)− (1−U )p

p(1−U )p .

When p = 2, we have G2(U ) = (2U − 2U 2)/(2(1 − U )2) = U/(1 − U ), so
G2(1/P)= 1/(P−1). When p is odd, we have the following alternate expressions
for Gp:

Proposition 1.3. If p is odd, then, as rational functions in Fp(U ), we have

Gp(U )=

∑p−1
j=1 U j/j

(1−U )p =
∑

0≤ j<∞
j 6≡0 mod p

U j

j
.

Proof. If p is odd, then (1−U p)− (1−U )p
=
∑p−1

j=1 (−1) j−1
(p

j

)
U j. We have

(−1) j−1

p

(
p
j

)
=
(−1) j−1(p− 1)(p− 2) · · · (p− j + 1)

1 · · · 2 · · · ( j − 1) j
≡

1
j

mod p.

This proves the first equality, and the second is immediate. �

Theorem 1.4. For any positive integer k ≡ 0 mod q − 1, the sum∑
P∈P1

Gp(1/Pk)

is in K.

As we noted, G2(1/X)= 1/(X − 1), so Theorem 1.4 implies Theorem 1.1.

Remark 1.5. When p = 2, we do not have G2(U )=
∑

j 6≡0 mod p U j/j ; the latter
sum is H(U ) := U/(1−U 2). However, it is true that

∑
P∈P1

H(1/Pk) is in K,
because H(U )= G(U )−G(U 2).

Once again, we have a trivial variant where we sum over P:

Corollary 1.6. For any positive integer k, the sum∑
P∈P

Gp(1/Pk)

is in K.

Proof. If p=2, we proved this in Corollary 1.2, so we may (and do) assume p is odd.
As in the proof of Corollary 1.2, we rewrite the sum as

∑
P∈P1

∑
a∈F×q

Gp(1/(a P)k).
We now need the identity∑

a∈F×q

Gp((aU )k)= GCD(q − 1, k)Gp(U LCM(q−1,k))
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in Fq(U ). To prove this identity, we use the formula Gp(U ) =
∑

j 6≡0 mod p U j/j
and the identity ∑

a∈F×q

am
=

{
q − 1, m ≡ 0 mod q − 1,
0, otherwise.

So ∑
a∈F×q

Gp(1/(aU )k)=
∑

j 6≡0 mod p

∑
a∈F×q

1
j (aU )k j = (q − 1)

∑
j 6≡0 mod p

k j≡0 mod q−1

1
jU k j .

Putting k j = LCM(q − 1, k)`, this is

(q − 1)
∑

`6≡0 mod p

k
LCM(q − 1, k)`U LCM(q−1,k)`

=
k(q − 1)

LCM(q − 1, k)
Gp(U LCM(q−1,k))

= GCD(q − 1, k)Gp(U LCM(q−1,k)),

as required. �

We also compute explicit values for the sum when k is not too large.

Theorem 1.7. Let k = (q − 1)`. If 1 ≤ ` ≤ q/p, then
∑

P∈P1
Gp(1/Pk) = 0. If

q/p+ 1< `≤ 2q/p, then∑
P∈P1

Gp(1/Pk)= `
(T q
− T )q+1

(T q2
− T q)(T q2

− T )
.

In principle, our methods are capable of computing
∑

P∈P1
Gp(1/Pk) for any

k ≡ 0 mod q − 1, but they become impractical beyond `= 2q/p.

History of the problem. Dinesh Thakur suspected such relations should exist, based
on heuristics concerning ζ deformation. He experimentally discovered most of
the relations described above in characteristic two, and suspected there should be
similar results in odd characteristic. Thakur [2015] published these computations
in a preprint entitled “Surprising symmetries in distribution of prime polynomials”.
At Thakur’s suggestion, Terence Tao [2015] promoted the problem in posts on his
blog and on the Polymath blog. I am grateful to Thakur for finding such an elegant
problem and to Tao for bringing it to my attention. My thanks also to all who
participated in the discussion on the Polymath blog: Noam Elkies, Ian Finn, Ofir
Gorodetsky, Jesse, Gil Kalai, David Lowry-Duda, Dustin G. Mixon, John Nicol,
Partha Solapurkar, John Voight, Victor Wang, Qiaochu Yuan, Joshua Zelinsky, and
additional thanks to Ofir Gorodetsky for suggesting several improvements to the
manuscript.

The author is supported by NSF grant DMS-1600223.
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2. The Carlitz exponential, and symmetric polynomials

The main tool in our proofs is the theory of the Carlitz exponential. Put

Di = (T q i
− T )(T q i

− T q)(T q i
− T q2

) · · · (T q i
− T q i−1

).

Define

eC(Z)=
∞∑
j=0

Zq j

D j
,

this sum is T−1-adically convergent for any Z ∈ K̂. We will make use of the product
identity

eC(π Z)
π Z

=

∏
A∈R\{0}

(
1+ Z

A

)
,

where π ∈ K̂( q−1
√
−T ) is given by

π =
T q−1
√
−T∏

A∈R\{0}(1− (T A)−1)
.

See, for example, [Goss 1996, Theorem 3.2.8]. This identity should be thought of
as similar to Euler’s identity,

sin(π z)
π z

=

∏
a∈Z\{0}

(
1+

z
a

)
.

We introduce the notations A for the nonzero polynomials of R, and A1 for the
monic polynomials.

Writing ek for the elementary symmetric function of degree k, this implies

ek(1/A)A∈A =

{
π k/D j , k = q j

− 1,
0, otherwise.

Since the ring of symmetric polynomials is generated by the ek , we deduce:

Proposition 2.1. If f is a homogenous symmetric polynomial of degree k, then
f (1/A)A∈A is in π kK.

Here we note that f (1/A)A∈A is always defined, since only finitely many terms
contribute to the coefficient of any particular power of T−1.

The above considers symmetric polynomials in {1/A}A∈A, but we would rather
restrict to the case of A monic. To this end, we have

Proposition 2.2.

e`(1/Aq−1)A∈A1 =

{
(−1)`π`(q−1)/D j , `= (q j

− 1)/(q − 1),
0, otherwise.
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Proof. Grouping together scalar multiples of the same polynomial in the Carlitz
product identity, we have

eC(π Z)
π Z

=

∏
A∈A1

(
1− Zq−1

Aq−1

)
.

Equate coefficients of Z `(q−1) on both sides. �

Corollary 2.3. If f is a homogenous symmetric polynomial of degree `, then
f (1/Aq−1)A∈A1 is in π`(q−1)K.

3. Proofs of rationality

We now have enough background to prove Theorem 1.4 and, hence, Theorem 1.1.
Throughout, let k ≡ 0 mod q − 1.

Consider the symmetric polynomial

gp(X1, X2, . . .) :=
1
p

((∑
X i

)p
−

∑
X p

i

)
.

The polynomial gp has integer coefficients, so we may discuss plugging elements
of K into it.

Let C be the cyclic group of order p, and let C act on Ap
1 by rotating coordinates.

Let 1 denote the diagonal: 1 := {(A, A, . . . , A)} ⊂Ap
1 . Then

gp(1/Ak)A∈A1 =

∑
(A1,...,Ap)∈(A

p
1 \1)/C

1
Ak

1 Ak
2 · · · A

k
p
.

The sum is over cosets for the free action of C on Ap
\1.

Let
8=

{
(A1, . . . , Ap) ∈A

p
1 : GCD(A1, . . . , Ap)= 1

}
.

Any (A1, . . . , Ap) ∈A
p
1 can be uniquely factored as Ai = DBi for some D ∈A1

and (B1, . . . , Bp) ∈8. So we can factor the above sum as

gp(1/Ak)A∈A1 =

(∑
D∈A1

1
Dkp

)( ∑
(B1,...,Bp)∈(8\{(1,...,1)})/C

1
Bk

1 Bk
2 · · · B

k
p

)
.

Now, from Corollary 2.3, gp(1/Ak)A∈A, is in π pkK. Also from Corollary 2.3,∑
D∈A1

1/Dkp is in π pkK, and a quick computation shows that this sum is 1 plus
terms in T−1Fq [[T−1

]], so it is not zero. We deduce that∑
(B1,...,Bp)∈(8\(1,...,1))/C

1
Bk

1 Bk
2 · · · B

k
p
∈ K.
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For B ∈A1, let9(B) be the set of p-tuples (B1, B2, . . . , Bp) for which
∏

Bi = B
and GCD(B1, . . . , Bp)= 1. Let ψ(B)= #9(B). So we have shown that∑

B∈A1\{1}

ψ(B)/p
Bk ∈ K.

Here, to interpret the numerator, we must divide ψ(B) by p as integers and only
then consider the quotient in Fp.

If B= Pk1
1 Pk2

2 · · · P
kr
r then there is an easy bijection between9(B) and9(Pk1

1 )×

9(Pk2
2 )× · · · ×9(P

kr
r ), so ψ(B)=

∏
ψ(Pki

i ). If P is irreducible then ψ(Pr ) is
divisible by p for any r > 0, since C acts freely on 9(Pr ). So, if B is divisible
by two different irreducible polynomials, then ψ(B) is divisible by p2. So we can
rewrite the sum as ∑

P∈P1

∞∑
r=1

ψ(Pr )/p
Prk .

We now compute ψ(Pr ); which is the number of p-tuples (Pr1, . . . , Prp)

with
∏

Pri = Pr and GCD(Pr1, . . . , Prp) = 1. In other words, we must count
(r1, . . . , rp) ∈ Z

p
≥0 with

∑
ri = r and min(r1, . . . , rp) = 0. The number of

(r1, . . . , rp) ∈ Z
p
≥0 with

∑
ri = r is the coefficient of U r in 1/(1−U )p. In order

to impose min(r1, . . . , rp)= 0, we subtract off the terms with min(r1, . . . , rp) > 0.
These are in bijection with (s1, . . . , sp) ∈ Z

p
≥0 with p+

∑
si = r . So ψ(Pr ) is the

coefficient of U r in 1/(1−U )p
−U p/(1−U )p. In other words,

∑
∞

r=0 ψ(P
r )U r
=

(1−U p)/(1−U )p. So

∞∑
r=1

ψ(Pr )

p
U r
=

1
p

( 1−U p

(1−U )p − 1
)
= Gp(U ).

We deduce that
∑
∞

r=1(ψ(P
r )/p)/Prk

= Gp(1/Pk). We have now shown that∑
P∈P1

Gp(1/Pk) ∈ K, as claimed. �

We record the specific formula we have proved:

Proposition 3.1. Let k be a positive integer. Then

∑
P∈P1

Gp(1/Pk)=
gp(1/Ak)A∈A1∑

A∈A1
1/Apk .

We will rewrite this formula in various ways in Section 5. We remark that
this formula is correct even if k is not divisible by q − 1, although we have only
shown the ratio is in K when k ≡ 0 mod q − 1. The denominator of this formula is
ζ(pk)= ζ(k)p, where ζ is the Goss ζ -function [1979].
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4. Vanishing

We will now prove the claim in Theorem 1.7 that the sum vanishes when k =
(q − 1)` for 1 ≤ ` ≤ q/p. From Proposition 3.1, it is equivalent to show that
gp(1/A`(q−1))A∈A1 = 0. To this end, we must explicitly write gp(1/A`(q−1)) as a
polynomial in the ek(1/Aq−1).

The variables λ or µ will always denote partitions, meaning weakly decreasing
sequences (λ1, λ2, . . . , λr ) of positive integers; sums over λ or µ implicitly contain
the condition that the summation variable is a partition.

We define eλ =
∏

s eλs . The symmetric polynomials eλ form an integer basis for
the symmetric polynomials with integer coefficients.

Lemma 4.1. Write

gp(X`
1, X`

2, . . .)=
∑
|λ|=p`

cλeλ(X1, X2, . . .)

for some integers cλ. Then c11···1 = 0.

Proof. Note that e11···1 is the only eλ with a nonzero coefficient of X p`
1 . The

coefficient of X p`
1 in gp(X`

1, X`
2, . . .) is clearly 0. �

Now, suppose that `≤ q/p, so we have p`< q+1. So any partition (λ1, . . . , λr )

of p` other than (1, 1, . . . , 1) contains a λi between 2 and q. By Proposition 2.2,
em(1/Aq−1)A∈A1 = 0 for 2 ≤ m ≤ q, so eλ(1/Aq−1)A∈A1 = 0 whenever λ is a
partition of p` other than (1, 1, . . . , 1). We deduce that gp(1/Aq−1)A∈A1 = 0 as
desired. �

5. Computations for small k

In this section, we will discuss the computation of
∑

P∈P1
Gp(1/Pk) for k ≡

0 mod q−1 and, in particular, prove the remaining half of Theorem 1.7. Our strategy
is to combine Propositions 3.1 and 2.2. We must compute gp(1/A`(q−1))A∈A1 and∑

A∈A1
1/Apk . Note the latter is ( p`(1/Aq−1)A∈A1)

p, where pd(X1, X2, . . .) is the
power sum symmetric function

∑
Xd

i . We write k = (q − 1)`.
Put

gp(X`
1, X`

2, . . . )=
∑
|λ|=`p

cλeλ(X1, X2, . . .),

p`(X1, X2, . . . )=
∑
|µ|=`

dµeµ(X1, X2, . . .).

Note that em(1/Aq−1)A∈A1 = 0 unless m is of the form (q j
−1)/(q−1). So we only

need to sum over partitions where all the parts of λ are of the form (q j
−1)/(q−1).

From now on, we now impose that q/p+ 1 ≤ ` ≤ 2q/p. So ` < q + 1. Any
partition of ` cannot contain any parts of size (q j

−1)/(q−1), for j > 1. Similarly,
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p` < 2q + 2, so a partition of p` can contain at most one part of size q + 1 =
(q2
− 1)/(q − 1) and no parts of size (q j

− 1)/(q − 1) for j > 2. We deduce that
the only terms which contribute to our final answer come from λ= (1, 1, . . . , 1)
or λ = (q + 1, 1, 1, . . . , 1) when computing gp(1/A`(q−1))A∈A1 , and from µ =

(1, 1, . . . , 1) in computing ( p`(1/Aq−1)A∈A1)
p. Moreover, from Lemma 4.1, the

coefficient c(1,1,...,1) is zero.
We deduce that∑
P∈P1

Gp(1/Pk)=
c(q+1,1p`−q−1) e(q+1,1p`−q−1)(1/Aq−1)A∈A1

(d1` e1` (1/Aq−1)A∈A1)
p

=
c(q+1,1p`−q−1) eq+1(1/Aq−1)A∈A1(e1(1/Aq−1)A∈A1)

p`−q−1

d1` (e1(1/Aq−1)A∈A1)
p`

=
c(q+1,1p`−q−1) eq+1(1/Aq−1)A∈A1

d1` (e1(1/Aq−1)A∈A1)
q+1 .

Here 1r is shorthand for the partition with r parts equal to 1.
We now use Proposition 2.2. The powers of π and (−1) cancel to give∑
P∈P1

Gp(1/Pk)=
c(q+1,1p`−q−1)

d1`

Dq+1
1

D2
=

c(q+1,1p`−q−1)

d1`

(T q
− T )q+1

(T q2
− T q)(T q2

− T )
.

To finish the computation, we must find cq+1,1ps−1 and d1` . The latter is easy:
Comparing coefficients of X`

1 on both sides of

p`(X1, X2, . . . )=
∑
|µ|=`

dµeµ(X1, X2, . . .),

we deduce that d1` = 1.
To compute c(q+1,1p`−q−1), we begin with the formula

gp(X`
1, X`

2, . . . )=
1
p
(

p`(X1, X2, . . . , )
p
− pp`(X1, X2, . . .)

)
.

For brevity, we write f (X) to indicate that the inputs to a symmetric polynomial are
(X1, X2, . . .). Note that we are working with symmetric polynomials with integer
coefficients, so it makes sense to divide by p.

We rewrite the right hand side of the previous equation as

1
p

((
e1(X)`+ · · ·

)p
−
(
e1(X)p`

+ dq+1,1p`−q−1 eq+1(X)e1(X)p`−q−1
+ · · ·

))
.

Here the ellipses denote terms eλ where λ has some part that is not of the form
(q j
− 1)/(q − 1). We deduce that

cq+1,1p`−q−1 =−
1
p

dq+1,1p`−q−1 .
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Now, observe the identity∑
j

(−1) j−1 p j (X)U j

j
=

∑
i

log(1+ X iU )

= log
∏

i

(1+ X iU )= log
(

1+
∞∑

m=1

em(X)U m
)
.

The coefficient of U p` on the left is ((−1)p`/p`) pp`. Expanding the log on the
right hand side as a Taylor series, only one term contributes to U p`eq+1ep`−q−1

1 .
So we obtain

(−1)p`−1

p`
pp`(X)=

(−1)p`−q−1

p`−q

( p`−q
1

)
eq+1(X)e

p`−q−1
1 (X)+ · · · ,

where the ellipses denote a sum of eλ other than eq+1(X)e
p`−q−1
1 (X). So

dq+1,1p`−q−1 = (−1)q p` and cq+1,1ps−1 = (−1)q−1`.

Plugging into our previous formula, and using that (−1)q−1
≡ 1 mod p,∑

P∈P1

Gp(1/Pk)= `
(T q
− T )q+1

(T q2
− T q)(T q2

− T )
.

This concludes the proof of Theorem 1.7. �

We conclude by verifying one of Thakur’s conjectures which goes beyond the
range `≤ 2q/p. Let p = q = 2. Thakur conjectures∑

P∈P1

1
P3− 1

=
1

T 4+ T 2 .

We begin by computing

p3(X)= e1(X)3+ 3e3(X)− 3e2(X)e1(X),

p3(X)2 = e1(X)6+ 6e1(X)3e3(X)+ 9e3(X)2+ · · · .

Here and in the following equations, the ellipses denote eλ terms where λ contains
a part other than 1 and 3. (Note that (23

− 1)/(2− 1)= 7, too large to contribute to
a symmetric polynomial of degree 6.) Similarly,

p6(X)= e1(X)6+ 6e1(X)3e3(X)+ 3e3(X)2+ · · · .

So
g2(X3

1, X3
2, . . .)=

1
2

(
p3(X)2− p6(X)

)
= 3e3(X)2+ · · ·

and (recall that we are working modulo 2)

g2(1/A3)A∈A1 = (e3(1/A)A∈A1)
2
=
π6

D2
2
=

π6

(T 4−T 2)2(T 4−T )2
.
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Similarly,

p6(1/A)A∈A1 = (e1(1/A)A∈A1)
6
+ (e3(1/A)A∈A1)

2

=

(
π

D1

)6
+

(π3

D2

)2

= π6
(( 1

T 2−T

)6
+

( 1
(T 4−T 2)(T 4−T )

)2)
.

We verify Thakur’s claim:∑
P∈P1

1
P3− 1

=
1/
(
(T 4
− T 2)2(T 4

− T )2
)

1/(T 2− T )6+ 1/
(
(T 4− T 2)2(T 4− T )2

) = 1
T 4+ T 2 .
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