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We give an explicit construction of global Galois gerbes constructed more abstractly by Kaletha to define
global rigid inner forms. This notion is crucial to formulate Arthur’s multiplicity formula for inner
forms of quasisplit reductive groups. As a corollary, we show that any global rigid inner form is almost
everywhere unramified, and we give an algorithm to compute the resulting local rigid inner forms at all
places in a given finite set. This makes global rigid inner forms as explicit as global pure inner forms, up
to computations in local and global class field theory.
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1. Introduction

Let F be a number field, and G a connected reductive group over F. Following seminal contributions
in [Labesse and Langlands 1979; Langlands 1983; Langlands and Shelstad 1987], Kottwitz [1984] and
Arthur [1989] conjectured a multiplicity formula for discrete automorphic representations for G, in
terms of Arthur–Langlands parameters ψ : L F × SL2(C)→

L G. The formulation of this conjecture on
automorphic multiplicities requires a precise version of the local Arthur–Langlands correspondence for
GFv := G ×F Fv at all places v of F, describing individual elements of local packets using the theory
of endoscopy. For this it is necessary to endow each GFv with a rigidifying datum. For places v such
that GFv is quasisplit, that is for all but finitely many places of F, this can take the form of a Whittaker
datum wv. If G is quasisplit, then one can choose a global Whittaker datum w, and it is expected that
taking localizations wv of w yields a coherent family of precise versions of the local Arthur–Langlands
correspondence. This coherence is crucial for the automorphic multiplicity formula to hold. For example
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this is the setting used in [Arthur 2013] and [Mok 2015]. Note that even though a choice of global
Whittaker datum is necessary to express the formula for automorphic multiplicities, these multiplicities
are canonical, as one can easily deduce from [Kaletha 2013, Theorem 4.3].

In general the connected reductive group G might not be quasisplit, and G is only an inner form of a
unique quasisplit group. Recall (see [Borel 1979]) that two connected reductive groups have isomorphic
Langlands dual groups if and only if they are inner forms of each other. Vogan [1993] and Kottwitz
conjectured a formulation of the local Langlands correspondence in the case where GFv is a pure inner
form of a quasisplit group. In this case a rigidifying datum is a quadruple (G∗v, 4v, zv,wv) where G∗v is a
connected reductive quasisplit group over Fv , 4v : (G∗v)Fv→G Fv is an isomorphism, and zv ∈ Z1(Fv,G∗v)
is such that for any σ ∈Gal(Fv/Fv) we have 4−1

v σ(4v)=Ad(zv(σ )). If globally G is a pure inner form
of a quasisplit group, one can choose a similar global quadruple (G∗, 4, z,w), and localizing at all places
of F seems to yield a coherent family of rigidifying data. Away from a finite set S of places of F, the
restriction zv of z to a decomposition group Gal(Fv/Fv) is cohomologically trivial, and writing it as a
coboundary yields an isomorphism 4′v : G

∗

Fv ' GFv well defined up to conjugation by G(Fv), which
endows GFv with a Whittaker datum (4′v)∗(wv) in a canonical way. Furthermore, up to enlarging S this
can be done integrally, that is over a finite étale extension of O(Fv), so that 4′v is an isomorphism between
the canonical models of G∗ and G over O(Fv).

Unfortunately not all connected reductive groups can be realized as pure inner forms of quasisplit
groups, due to the fact that H 1(F,G∗)→ H 1(F,G∗ad) can fail to be surjective. The simplest example
is certainly the group of elements having reduced norm equal to 1 in a nonsplit quaternion algebra, an
inner form of SL2, considered in [Labesse and Langlands 1979]. To circumvent this problem, Kaletha
defined larger Galois cohomology groups in [Kaletha 2016] for the local case and in [Kaletha 2018] for
the global case. More precisely, he constructed central extensions (Galois gerbes bound by commutative
groups in the terminology of [Langlands and Rapoport 1987])

1→ Pv→ Ev→ Gal(Fv/Fv)→ 1

in the local case, v any place of F, and

1→ P→ E→ Gal(F/F)→ 1

in the global case. Here Pv and P are inverse limits of finite commutative algebraic groups defined
over Fv or F, and we have denoted by Pv→ Ev the extension denoted by u→W in [Kaletha 2016], to
emphasize the analogy between the local and global cases. The central extensions are obtained from
certain classes ξv ∈ H 2(Fv, Pv), ξ ∈ H 2(F, P). Using these central extensions Kaletha defined, for Z a
finite central algebraic subgroup of G∗, certain sets of 1-cocycles

Z1(Pv→ Ev, Z(Fv)→ G∗(Fv))⊃ Z1(Fv,G∗Fv ), resp. Z1(P→ E, Z(F)→ G∗(F))⊃ Z1(F,G∗),

which naturally map to Z1(Fv,G∗ad,Fv ) (resp. Z1(F,G∗ad)), so that such cocycles give rise to inner forms
of G∗. Kaletha also proposed precise formulations of the local Langlands conjecture and Arthur multiplicity
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formula, using rigidifying data (G∗v, 4v, zv,wv) (resp. (G∗, 4, z,w)) where now zv (resp. z) belongs to
this larger group of 1-cocycles. For Z large enough, for example if Z contains the center of the derived
subgroup of G∗, the map between the resulting cohomology sets

H 1(P→ E, Z(F)→ G∗(F))→ H 1(F,G∗ad)

is surjective, and so any G can be endowed with such a rigidifying datum (G∗, 4, z,w). From such a
global rigidifying datum, one obtains local rigidifying data by localization. Each localization zv = locv(z)
of z is defined by pulling back via a morphism of central extensions

1 Pv Ev Gal(Fv/Fv) 1

1 P E Gal(F/F) 1

(1.0.1)

and extending coefficients from G∗(F) to G∗(Fv).
In this paper we give an explicit, bottom-up realization of the central extension

1→ P→ E→ Gal(F/F)→ 1

constructed in [Kaletha 2018]. Here “bottom-up” means that our construction is naturally an inverse limit
over k ≥ 0 of central extensions

1→ Pk→ Ek→ Gal(E ′k/F)→ 1,

where E ′k/F is finite Galois extension, Pk is a finite commutative algebraic group over F such that
Pk(E ′k) = Pk(F), and P = lim

←−−k≥0 Pk . We also give bottom-up realizations of localization morphisms
(1.0.1) and generalized Tate–Nakayama morphisms for tori ([Kaletha 2018, Theorem 3.7.3], which
generalizes [Tate 1966]), as well as compatibilities between them. We also show (Proposition 5.5.2) that
our construction recovers the “canonical class” defined abstractly in [Kaletha 2018, §3.5]. Apart from
giving alternative proofs of some results in that work, a benefit of our construction is that it allows one
to compute with global rigid inner forms “at finite level”, that is using a finite Galois extension of the
base field F. In particular, we deduce that global rigid inner forms are almost everywhere unramified
(Proposition 6.1.1), a fact which is obvious for pure inner forms, but surprisingly not for rigid inner forms.
In the future our construction could be used to prove further properties of Kaletha’s canonical class.

Our direct construction is also useful for explicit applications using Arthur’s formula for automorphic
multiplicities. Computing spaces of automorphic forms, along with action of a Hecke algebra, is possible
for definite reductive groups thanks to reduction theory. Unfortunately noncommutative definite reductive
groups are not quasisplit. Once such spaces are computed, one would like to interpret Hecke eigenforms
as being related to (ersatz) motives, and Arthur’s multiplicity formula makes this relation precise (see
[Taïbi 2015] for some cases for which rigid inner forms are needed). For this it is necessary to compute
localizations of rigidifying data, more precisely to solve the following problem.
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Problem. Given a connected reductive group G over a number field F, find

• a global rigidifying datum D = (G∗, 4, z,w),

• a finite set S of places of F containing all archimedean places and all nonarchimedean places v such
that GFv is ramified,

• a reductive model of G over the ring OF,S of S-integers in F such that for any v 6∈ S, the localization
Dv of D at v is unramified with respect to the integral model GOFv

of GFv ,

• for each v ∈ S, an explicit description of the localization Dv of D at v.

Above, “unramified” means that locv(z) ∈ B1(Fv,G), and that the resulting isomorphism 4′v : G
∗

Fv '

GFv , which is well-defined up to composing with conjugation by an element of G(Fv), identifies the
conjugacy class of wv with a Whittaker datum for GFv compatible with the integral model GO(Fv), in
the sense of [Casselman and Shalika 1980]. At almost all places this is implied by the fact that wv

is compatible with the canonical model of G∗ and the fact that locv(z) ∈ Z1(Funr
v /Fv,G∗), but for

applications it is desirable to keep S as small as possible. For v ∈ S, the meaning of “explicit description
of Dv” is somewhat vague. In the case where locv(z) is cohomologically trivial this simply means a
Whittaker datum for GFv . In general it means describing the localization Dv in a purely local fashion, so
that it could be compared to a reference rigidifying datum. We give detailed steps to solve this problem
in Section 7, reducing the computation of localizations at places in S to computations in local and global
class field theory. We give an example in Section 7.2 in a case where G is a definite inner form of SL2

over F = Q(
√

3) which is split at all finite places, and for S the set of archimedean places, that is in
“level one”. It can be generalized effortlessly, and without additional computations, to the analogous inner
forms of Sp2n over F, for arbitrary n ≥ 2.

Let us explain why this problem does not appear to be directly solvable using constructions in [Kaletha
2018], which might be surprising when one considers the case of pure inner forms, as it is straightforward
to restrict a 1-cocycle to a decomposition group. For explicit computations one can only work with
finite extensions of F, and finite Galois modules. Although the localization maps (1.0.1) are canonical,
unfortunately they do not arise from canonical morphism of central extensions of Galois groups by finite
Galois modules, because of the possible nonvanishing of H 1(Fv, Pk), where P = lim

←−−k Pk . Similarly, the
possible nonvanishing of H 1(F, Pk) means that inflation morphisms

1 Pk+1 Ek+1 Gal(F/F) 1

1 Pk Ek Gal(F/F) 1

(1.0.2)

are not defined canonically, where Ek is the central extension obtained using a 2-cocycle in the cohomology
class of the image of ξ in H 2(F, Pk). For applications to generalized Tate–Nakayama isomorphisms,
Kaletha shows that these ambiguities are innocuous using a clever indirect argument (Lemma 3.7.10 in
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[Kaletha 2018]) in cohomology (but only in cohomology). Note that in the local case, Kaletha gave an
explicit construction of the inflation maps analogous to (1.0.2): see [Kaletha 2016, §4.5].

Our construction is a global analogue. The main difficulty lies in formulating and proving the analogue
of [Kaletha 2016, Lemma 4.4] (which draws on [Langlands 1983, §VI.1]) in the global case. First
we reinterpret [Kaletha 2016, Lemma 4.4] using a modification AW2 of the Akizuki–Witt map on 2-
cocycles [Artin and Tate 1968, Chapter XV] occurring in the construction of Weil groups attached to
class formations. We study this modification systematically in Section 3.1, in particular we observe that
it is more flexible while retaining the interpretation in terms of central extensions. It is not difficult to
establish the analogue of [Kaletha 2016, Lemma 4.4] where local fundamental cocycles are replaced
by global fundamental cocycles. However, in Tate–Nakayama isomorphisms these global fundamental
cocycles control Galois cohomology groups such as H 1(E/F, T (AE)/T (E)), where T is a torus over
F split by the finite Galois extension E/F, whereas we are interested in cohomology groups such
as H 1(E/F, T (E)). These are controlled by Tate cocycles defined by Tate [1966], essentially as a
consequence of the compatibility between local and global fundamental 2-cocycles. Unfortunately these
do not seem to have an interpretation using the Akizuki–Witt map, and this makes the global case more
challenging. We give an ad hoc definition of a certain map AWES2 in Definition 4.2.1, which is compatible
with the corestriction map in Eckmann–Shapiro’s lemma for modules which are twice induced. This
definition is crucial for the main technical result of this article, Theorem 4.4.2, constructing a family of
Tate cocycles compatible under AWES2, as well as local-global compatibility with local fundamental
cocycles. We give a second proof as preparation for the algorithm in Section 7. Once this is proved, we
construct Kaletha’s generalized Tate–Nakayama morphisms at the level of cocycles in Section 5, and
prove compatibilities with respect to inflation and localization. In particular we obtain an explicit version
of Kaletha’s localization maps at finite level and for cocycles. Although these explicit localization maps
are not canonical, as they depend on a number of choices detailed in the paper to form cocycles, they
are compatible with inflation and so yield a localization map between towers of central extensions (see
Proposition 5.4.5).

As mentioned above, a consequence is that global rigid inner forms are unramified away from a finite
set (Proposition 6.1.1), which is not obvious from the definition using cohomology classes. After the first
version of this paper was written, we found a short proof of this ramification property using only Kaletha’s
characterization of the canonical class in [Kaletha 2018, §3.5]. This proof is included in Section 6, along
with an example of a “noncanonical” class, which does not satisfy this ramification property.

2. Notation

Let F be a number field. We denote by A the ring of adeles for F. Let F be an algebraic closure of F.
All algebraic extensions of F considered will be subextensions of F . If E is an algebraic extension of F,
let O(E) be its ring of integers, AE = E ⊗F A, I (E)= A×E the group of ideles and C(E)= I (E)/E×

the group of idele classes. Let A = AF . Let V be the set of all places of F. If S ⊂ V and E is an
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algebraic extension of F, denote by SE the set of places of E above S. If S is a set of places of F or E
containing all archimedean places, let I (E, S) be the subgroup of I (E) consisting of ideles which are
integral units away from S, and O(E, S) the ring of S-integral elements of E . For S ⊂ V let F S be the
maximal subextension of F/F unramified outside S, and OS =O(F S, S). For E an algebraic extension
of F and u ∈ VE , we will denote by pru the projection AE → Eu . For v ∈ V we will denote by prv the
projection AF → F ⊗F Fv.

As in [Kaletha 2018] we fix a tower (Ek)k≥0 of increasing finite Galois extensions of F, with E0 = F
and

⋃
k Ek = F . Choose an increasing sequence (Sk)k≥0 of finite subsets of V such that S0 contains all

archimedean places of F, Sk contains all nonarchimedean places of F ramifying in Ek , and I (Ek, Sk)

maps onto C(Ek). We also fix a set V̇ ⊂ VF of representatives for the action of Gal(F/F), that is V̇
contains a place of F above every place of F. For E a Galois extension of F and S′ ⊂ V let Ṡ′E be the set
of places of E below V̇ and above S′, so that Ṡ′E is a set of representatives for the action of Gal(E/F)
on S′E . We can assume that V̇ is chosen so that for any finite Galois extension E/F and σ ∈ Gal(E/F),
there exists v̇ ∈ V̇E such that σ · v̇ = v̇. This follows from Chebotarev’s density theorem by an inductive
process as in [Kaletha 2018, (3.8)]. For v ∈ V and k ≥ 0 we will denote by v̇k the unique place in V̇Ek

above v. To avoid double subscripts we let Ek,v̇ = Ek,v̇k . For v ∈ S let Fv = lim
−−→k Ek,v̇k , an algebraic

closure of Fv, so that we have a well-defined inclusion Gal(Fv/Fv)⊂ Gal(F/F).

Remark 2.0.1. The above hypotheses on (Sk)k≥0 are weaker than Conditions 3.3.1 in [Kaletha 2018].
For effective computations (see Section 7) it is useful to have Sk as small as possible, and so we have
only imposed conditions on (Sk)k≥0 that are necessary for constructions in the present article.

The condition on the choice of V̇ (corresponding to Condition 3.3.1.4 in [Kaletha 2018]) will not be
used for the main constructions in this article. However, the extension P → E → Gal(F/F) and the
morphism ι in Corollary 5.2.4 depend on the choice of (Ek)k≥0 and V̇ , and so the above condition on V̇ is
necessary to obtain objects isomorphic to those in that work. Note that Condition 3.3.1.4 in [Kaletha 2018]
is first used in Lemma 3.3.2, 3 there, and so it is also used in Lemma 3.6.1 there to obtain surjectivity of

H 1(P→ E, Z→ G)→ H 1(F,G/Z)

for any connected reductive group G over F and finite central subgroup Z . This is crucial for applications
to automorphic forms (see §4.3 there).

Condition 3.3.1.3 there, which we have not imposed, is used to prove that certain inflation maps are
injective (Lemma 3.1.10, Lemma 3.2.7, Proposition 3.7.12).

If A is a commutative group, A∨ =Hom(A,Q/Z). If A is commutative group and N ≥ 1 is an integer,
A[N ] denotes the N -torsion subgroup of A. If A is a finite commutative group, exp(A) is the exponent
of A, i.e., the smallest N ≥ 1 such that A[N ] = A. We will denote the group law of most abelian groups
multiplicatively, except notably for groups of characters or cocharacters of tori. If G is a group and A a
G-module, AG

⊂ A is the subgroup of G-invariants. If in addition G = Gal(E/F), we will write NE/F

for the norm map, and ANE/F for the subgroup of elements killed by NE/F .
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3. Preliminaries

3.1. A modification of the Akizuki–Witt map. Consider G a finite group, N a normal subgroup. If
s :G/N→G is a section such that s(1)= 1 and A is a G-module, with group law written multiplicatively,
then for α ∈ Z2(G, A),

ÃW(α) : (σ, τ ) 7→
∏
n∈N

n(α(s(σ ), s(τ )))×α(n, s(σ )s(τ ))
α(n, s(στ))

(3.1.1)

defines an element of Z2(G/N , AN ), the cohomology class of which only depends on that of α [Artin
and Tate 1968, Chapter XIII, §3], so that ÃW descends to a map H 2(G, A)→ H 2(G/N , AN ). We refer
to [Artin and Tate 1968, Chapter XIII, §3] for the natural interpretation of ÃW in terms of central group
extensions. Using the 2-cocycle relation for α at (n, s(σ ), s(τ )) we can express (3.1.1) as∏

n∈N

α(n, s(σ ))×α(ns(σ ), s(τ ))
α(n, s(στ))

=

∏
n∈N

α(n, s(σ ))×α(σ̃n, s(τ ))
α(n, s(στ))

,

where σ̃ ∈ G is any lift of σ , not necessarily equal to s(σ ). Using the 2-cocycle relation for α at
(σ̃ , n, s(τ )) we can also rewrite this as

ÃW(α)(σ, τ )=
∏
n∈N

(α(n, s(σ ))× σ̃ (α(n, s(τ )))
α(n, s(στ))

×
α(σ̃ , ns(τ ))
α(σ̃ , n)

)
. (3.1.2)

The following shows that with an appropriate choice of α in its cohomology class, this expression
simplifies.

Lemma 3.1.1. In any cohomology class in H 2(G, A), there is a 2-cocycle α such that for all n ∈ N and
σ ∈ G/N, α(n, s(σ ))= 1.

Proof. It is well known that any cohomology class contains a 2-cocycle α such that for all σ ∈ G,
α(σ, 1)= 1= α(1, σ ). We choose such an α, and we will construct β : G→ A such that α d(β) satisfies
the required property. Let β(1)= 1, and choose the values of β on N r {1} and s(G/N r {1}) arbitrarily.
For n ∈ N and σ ∈ G/N,

dβ(n, s(σ ))=
β(n)× n(β(s(σ )))

β(ns(σ ))
,

and we are led to define β(ns(σ ))= α(n, s(σ ))×β(n)×n(β(s(σ ))) for n ∈ N r {1} and σ ∈G/N r {1}.
Note that this equality also holds when n = 1 or σ = 1. �

This motivates to the following modification AW2 of the Akizuki–Witt map ÃW.

Definition 3.1.2. Let 0 be an extension of G, i.e., 0 is a group endowed with a surjective morphism
0→ G. Let A be a commutative group, with group law written multiplicatively. For α : 0×G→ A,
define AW2(α) : 0×G/N → A by

AW2(α)(σ, τ )=
∏
n∈N

α(σ, nτ̃ )
α(σ, n)

,

where σ ∈ 0, τ ∈ G/N and τ̃ ∈ G is any lift of τ .
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Although this coincides with the original Akizuki–Witt map a priori only for classes α as in Lemma 3.1.1
(for A a G-module and 0 = G), this definition has the advantage that it does not require a choice of
section s, and will be more convenient for taking cup products. Moreover it is defined in a slightly more
general setting, since it does not involve an action of G on A. This property will make “extracting N -th
roots” in Section 5 almost harmless. The definition has the disadvantage that, even when A is a G-module,
0 = G and α ∈ Z2(G, A), it is not automatic that AW2(α) factors through G/N ×G/N or takes values
in AN.

For 0 an extension of G and A a commutative group recall [Kaletha 2016, §4.3] for i ≥ j ≥ 0 the
commutative group C i, j (0,G, A) of functions 0i− j

×G j
→ A, which is naturally a subgroup of C i (0, A).

If A is a 0-module, the differential d maps C i, j (0,G, A) to C i+1, j (0,G, A). Let Z i, j (0,G, A) be its
kernel.

The following proposition is the first evidence that AW2 behaves nicely under weaker conditions than
the one imposed in Lemma 3.1.1, retaining the interpretation in terms of central extensions.

Proposition 3.1.3. Let 0 be an extension of G.

(1) For α ∈ Z2,1(0,G, A), we have AW2(α) ∈ Z2,1(0,G/N , A).

(2) If 0 = G then σ 7→
∏

n∈N α(n, σ ) descends to a map G/N → A/AN mapping 1 to 1.

(3) If 0 = G, the following are equivalent:

(a) AW2(α) factors through G/N ×G/N,
(b) for all σ ∈ N and τ ∈ G/N, AW2(α)(σ, τ )= 1,
(c) for all σ ∈ G,

∏
n∈N α(n, σ ) ∈ AN.

(4) If 0 = G and the above conditions are satisfied, then AW2(α) ∈ Z2(G/N , AN ) belongs to the same
cohomology class as ÃW(α) and we have a morphism of central extensions

A�
α

G→ AN �
AW2(α)

G/N , x � σ 7→

(∏
n∈N

n(x)α(n, σ )
)
� σ . (3.1.3)

We only sketch the proof, since this proposition is not logically necessary for the rest of the paper.

Proof. (1) This is an easy computation.

(2) Suppose that 0 = G. Using the cocycle relation for α, for every τ, γ ∈ N,

τ

(∏
n∈N

α(n, γ )
)
=

∏
n∈N

α(τn, γ )α(τ, n)/α(τ, nγ )=
∏
n∈N

α(n, γ )

and so
∏

n∈N α(n, γ ) ∈ AN for any γ ∈ N. Now for γ ∈ N and σ ∈ G, using the cocycle relation again,∏
n∈N

α(n, γ σ )=
∏
n∈N

α(nγ, σ )α(n, γ )n(α(γ, σ ))≡
∏
n∈N

α(n, σ ) mod AN .
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(3) Using the cocycle relation we can write

AW2(α)(σ, τ )=
∏
n∈N

α(σn, τ̃ )
σ (α(n, τ̃ ))

.

The numerator only depends on α mod N, and the equivalence between (a) and (c) follows easily. The
equivalence between (b) and (c) is obtained by taking σ ∈ N.

(4) The fact that AW2(α) is cohomologous to ÃW2
(α) follows from the expression (3.1.2) for ÃW and

condition (c). This give an isomorphism AN �AW2(α)G/N ' AN �ÃW2
(α)

G/N. Since we have an explicit
map A �α G→ AN �ÃW2

(α)
G/N by construction in [Artin and Tate 1968, Chapter XIII, §3], finding

formula (3.1.3) is a simple computation. Alternatively, one can directly check that (3.1.3) is a morphism. �

In order to investigate the effect on AW2(α) of the choice of α in its cohomology class, let us define a
second map AW1 on 1-cochains.

Definition 3.1.4. Let A be a commutative group. For β : G→ A, define AW1(β) : G/N → A by the
formula AW1(β)(σ )=

∏
n∈N β(nσ̃ )/β(n), where σ̃ ∈ G is any lift of σ ∈ G/N.

Proposition 3.1.5. Suppose 0 is an extension of G, and A is a 0-module. For any β : G→ A, we have
d(AW1(β))= AW2(d(β)) in Z2,1(0,G/N , A).

Proof. For σ ∈ 0 and τ ∈ G/N, denoting σ the image of σ in G, we have

d(AW1(β))(σ, τ )=
∏
n∈N

β(nσ)
β(n)

σ (β(nτ̃ ))
σ (β(n))

β(n)
β(nσ τ̃ )

=

∏
n∈N

β(nσ)σ(β(nτ̃ ))
β(nσ τ̃ )σ (β(n))

and

AW2(d(β))(σ, τ )=
∏
n∈N

β(σ)σ (β(nτ̃ ))
β(σnτ̃ )

β(σn)
β(σ )σ (β(n))

=

∏
n∈N

σ(β(nτ̃ ))
β(σnτ̃ )

β(σn)
σ (β(n))

. �

Lemma 3.1.6. The maps

{β : G→ A | β(1)= 1} → {β : G/N → A | β(1)= 1}

induced by AW1 and

{α : 0×G→ A | α(σ, 1)= 1 for all σ ∈ 0} → {α : 0×G/N → A | α(σ, 1)= 1 for all σ ∈ 0}

induced by AW2 are both surjective.

Proof. Let s : G/N → G be a section such that s(1) = 1. Restricting AW1 to the set of β : G → A
such that β|N = 1 and β(ns(σ )) = 1 for σ ∈ G/N r {1} and n ∈ N r {1} yields a bijective map onto
{β : G/N → A | β(1)= 1}.

Similarly, restricting AW2 to the set of α : 0×G→ A such that

• for all σ ∈ 0 and n ∈ N, α(σ, n)= 1,

• for all σ ∈ 0, n ∈ N r {1} and τ ∈ G/N r {1}, α(σ, ns(τ ))= 1,

yields a bijective map onto {α : 0×G/N → A | α(σ, 1)= 1 for all σ ∈ 0}. �
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The following corollary is readily deduced from Lemmas 3.1.1 and 3.1.6 and Proposition 3.1.5.

Corollary 3.1.7. Suppose that A is a G-module. Consider c ∈ H 2(G, A), and let αN ∈ Z2(G/N , AN ) be
in the cohomology class of the image of c under ÃW. Assume that αN (1, 1)= 1. Then there exists α ∈ c
such that α(1, 1)= 1 and AW2(α)= αN .

Note that we have not imposed that α should satisfy the property in Lemma 3.1.1, and indeed it can
happen that no such α maps to αN under AW2. A simple computation shows that if we fix a section
s : G/N → G as above, then for α, α′ ∈ c as in Lemma 3.1.1, AW2(α/α′) ∈ B2(G/N , NN (A)) where

NN (A)=
{∏

n∈N

n(x) | x ∈ A
}
.

3.2. Explicit Eckmann–Shapiro. Let G be a finite group acting transitively on the left on a set X. Choose
x0 ∈ X and let H be the stabilizer of x0, so that we have an identification of G-sets X ' G/H mapping
x0 to the trivial coset.

Let A be a left H -module. Define

IndG
H (A)= { f : G→ A | for all h ∈ H, g ∈ G, f (hg)= h · f (g)}.

It is naturally a left G-module by defining (g1 · f )(g2)= f (g2g1). Evaluation at 1 defines a surjective
morphism of H -modules π : IndG

H (A)→ A, which admits a natural splitting: we can identify A with the
H -submodule of IndG

H (A) consisting of all functions whose support is contained in H. Choose R a set of
representatives for G/H. Then IndG

H (A)=
⊕

r∈R r · A. For simplicity we assume that 1 ∈ R.
If A happens to be a G-module, then

f 7→ (gH 7→ g · f (g−1)) (3.2.1)

defines an isomorphism of G-modules φG
H between IndG

H (A) and Maps(X, A). The H -submodule A of
IndG

H (A) corresponds to functions supported on x0 under this isomorphism.
The Eckmann–Shapiro lemma states that for any i ≥ 0, the composite

H i (G, IndG
H (A))→ H i (H, IndG

H (A))→ H i (H, A)

is an isomorphism, where the first map is restriction and the second map is induced by π . See, e.g., [Serre
1994, Chapter I, §2.5]. It is well known (for example [Tate 1966, p.713]) that the inverse is obtained as
the composite

H i (H, A)→ H i (H, IndG
H (A))→ H i (G, IndG

H (A))

where the first map is induced by the embedding of H -modules A→ IndG
H (A) mentioned above and the

second map is corestriction. In this paper we will use explicit formulas for this inverse map, especially in
degree 2.

Proposition-Definition 3.2.1. As above, G is a finite group, H is a subgroup of G, R is a set of represen-
tatives for G/H containing 1, and A is a G-module.
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(1) For i ≥ 0 and c ∈ C i (H, A), define ESi
R(c) ∈ C i (G, IndG

H (A)) by

ESi
R(c)(r1h1r−1

2 , r2h2r−1
3 , . . . , ri hir−1

i+1)(hi+1r−1
1 )= hi+1(c(h1, h2, . . . , hi )),

where r1, . . . , ri+1 ∈ R and h1, . . . , hi+1 ∈ H. If A happens to be a G-module, then using the
identification (3.2.1) we can write

φG
H (ESi

R(c)(r1h1r−1
2 , r2h2r−1

3 , . . . , ri hir−1
i+1))(r1 · x0)= r1(c(h1, h2, . . . , hi )). (3.2.2)

(2) For i ≥ 0 and c ∈ C i (H, A), d(ESi
R(c)) = ESi+1

R (d(c)). Thus ESi
R induces a map H i (H, A)→

H i (G, IndG
H ), which is an isomorphism that we still denote by ESi

R .

Proof. The formula for ESi
R(c) follows from the explicit formula for corestriction for homogeneous

cochains found in [Neukirch et al. 2008, Chapter I, §5.4. p. 48] specialized to the case at hand where c
takes values in A ⊂ IndG

H (A). �

4. Construction of Tate cocycles in a tower

Let us recall from [Tate 1966] the construction of the Tate–Nakayama isomorphism, which gives a
relatively simple description of Galois cohomology groups of tori over F. Consider E a finite Galois
extension of F, and S a not necessarily finite set of places of F containing all archimedean places and all
nonarchimedean places that ramify in E , and such that I (E, S) surjects to C(E). Tate introduced the
Gal(E/F)-module Ta(E, S) which consists of all morphisms from the short exact sequence

Z[SE ]0→ Z[SE ] → Z

to the short exact sequence

O(E, S)×→ I (E, S)→ C(E).

Equivalently,

Ta(E, S)= Hom(Z[SE ], I (E, S)) ×
Hom(Z[SE ],C(E))

C(E)⊂Maps(SE , I (E, S)).

Tate constructed, using local and global fundamental classes and compatibility between them, a Tate class
α ∈ H 2(E/F,Ta(E, S)). Consider a torus T over F which is split by E , let Y = X∗(T ) be the associated
Gal(E/F)-module of cocharacters. The main result of [Tate 1966] is that taking cup product with α gives
isomorphisms in every degree i ∈ Z

Ĥ i (E/F, Y [SE ]0)→ Ĥ i+2(E/F, T (O(E, S))) (4.0.1a)

Ĥ i (E/F, Y [SE ])→ Ĥ i+2(E/F, T (AE , S)) (4.0.1b)

Ĥ i (E/F, Y )→ Ĥ i+2(E/F, T (AE)/T (E)) (4.0.1c)

where

T (AE , S)= Y ⊗Z I (E, S)=
∏
w∈SE

T (Ew)×
∏
w 6∈SE

T (OEw).
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We shall see that varying S among the sets of places containing a fixed finite set S0 satisfying the above
conditions does not result in any difficulty. Varying E (for example in the tower Ek that is fixed in
this paper), however, leads to the surprising phenomenon that it is not completely obvious that all three
isomorphisms (4.0.1) are compatible with inflation of cohomology classes on the right hand side. See
[Kaletha 2018, Lemma 3.1.4] for a precise statement and a proof in cohomology.

Our first goal is to construct a compatible family of Tate cocycles

αk ∈ Z2(Ek/F,Maps(VEk , I (Ek)))

for the Galois extensions Ek/F. We will give a precise meaning to technical notion of “compatibility” in
Theorem 4.4.2. For now we simply mention that this compatibility is a global analogue of [Kaletha 2016,
Lemma 4.4].

Unwinding the definition, one can see that for a fixed k, a Tate cocycle αk for Ek/F is obtained as
follows.

(1) Choose a representative αk ∈ Z2(Ek/F,C(Ek)) of the fundamental class for Ek/F.

(2) For each place v of F, choose a representative αk,v ∈ Z2(Ek,v̇/Fv, E×k,v̇) of the fundamental class
for Ek,v̇/Fv. Let α′k ∈ Z2(Ek/F,Maps(VEk , I (Ek))) be such that for any v ∈ V, the 2-cocycle

Gal(Ek,v̇/Fv)2→ I (Ek), (σ, τ ) 7→ α′k(σ, τ )(v̇k)

is cohomologous to αk,v composed with jk,v : E×k,v̇ ↪→ I (Ek). Explicitly, α′k can be obtained from
(αk,v)v∈V using (3.2.2).

(3) Choose βk ∈ C1(Ek/F,Maps(VEk ,C(Ek))) such that αk/α
′

k = d(βk), where αk is seen as taking
values in the set of constant maps VEk → C(Ek) and α′k is the composition of α′k with the natural
map Maps(VEk , I (Ek))→Maps(VEk ,C(Ek)).

(4) Lift βk to βk ∈ C1(Ek/F,Maps(VEk , I (Ek))) arbitrarily, and define αk = α
′

k × d(βk).

In this section we will show that each step can be done compatibly with Akizuki–Witt-like maps. For
cocycles αk,v this was done in [Kaletha 2016, Lemma 4.4], we will however give a slightly different
construction, using Corollary 3.1.7. The case of αk is very similar. A key point of the construction will
be the definition (see 4.2.1) of an “Akizuki–Witt–Eckmann–Shapiro” map relating the maps AW for local
and global Galois groups, and formula (3.2.2) (see Lemma 4.2.2).

4.1. Global fundamental cocycles. For any k ≥ 0, the image in H 2(Ek+1/F,C(Ek+1)) of the funda-
mental class under the Akizuki–Witt map (3.1.1) (for the normal subgroup Gal(Ek+1/Ek), and any choice
of section) is the fundamental class in H 2(Ek/F,C(Ek)). This is a direct consequence of [Artin and Tate
1968, Chapter XIII, Theorem 6]. For i ∈ {1, 2} write AWi

k for the maps AWi defined in Section 3.1, for
the normal subgroup Gal(Ek+1/Ek) of Gal(Ek+1/F). Using Corollary 3.1.7 we see that there exists a
family (αk)k≥0 where each αk ∈ Z2(Ek/F,C(Ek)) represents the fundamental class, and such that for all
k ≥ 0 we have αk = AW2

k(αk+1).
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Remark 4.1.1. Alternatively, one could construct such a family using a method similar to [Kaletha
2016, §4.4] (and so [Langlands 1983, §VI.1]), that is by choosing sections Gal(Ek+1/Ek)→WEk , where
WEk is the Weil group of Ek , and multiplying them to produce sections Gal(Ek/F)→WEk/F , yielding
fundamental cocycles compatible with AW2

k .
A third way would be to use a compactness argument and Lemma 3.1.1, as in the proof of Theorem 4.4.2

(using 2-cochains instead of 1-cochains). The details for this last alternative are left to the reader.

4.2. Local and adelic fundamental classes. Fix v ∈ V. For i ∈ {1, 2} write AWi
k,v for the maps AWi

defined in Section 3.1, for the normal subgroup Gal(Ek+1,v̇/Ek,v̇) of Gal(Ek+1,v̇/Fv). As in the global
case we can use Corollary 3.1.7 inductively to produce a family (αk,v)k≥0 where αk,v ∈ Z2(Ek,v̇/Fv, E×k,v̇)
represents the fundamental class and for all k ≥ 0, we have αk,v =AW2

k,v(αk+1,v). Alternatively we could
simply use [Kaletha 2016, Lemma 4.4]: see Remark 4.1.1.

For each k ≥ 1, choose representatives for Gal(Ek/Ek−1)/Gal(Ek,v̇/Ek−1,v̇), and choose lifts of these
representatives in Gal(F/Ek−1) to obtain a finite set Rk,v ⊂ Gal(F/Ek−1). We can and do assume
that 1 ∈ Rk,v. For convenience we also define R0,v = {1} ⊂ Gal(F/F). For any k ≥ 0, R′k,v :=
R0,vR1,v · · · Rk,v ⊂ Gal(F/F) projects to a set of representatives for Gal(Ek/F)/Gal(Ek,v̇/Fv). For
v ∈ V and k ≥ 0 let ζk,v : {v}Ek → {v}Ek+1 be the section such that for all r ∈ R′k,v , ζk,v(r · v̇k)= r · v̇k+1.
Define jk,v : E×k,v̇ ↪→ I (Ek) by ( jk,v(x))v̇k = x and ( jk,v(x))w = 1 for w 6= v̇k . We have natural inclusions
E×k,v̇ ⊂ E×k+1,v̇ and for x ∈ E×k,v̇ we have

jk,v(x)=
∏

r∈Rk+1,v

r( jk+1,v(x)). (4.2.1)

Following Proposition-Definition 3.2.1 define, for all k ≥ 0, α′k ∈ Z2(Ek/F,Maps(VEk , I (Ek))) by

α′k(r1σr−1
2 , r2τr−1

3 )(r1 · v̇k)= r1( jk,v(αk,v(σ, τ ))) (4.2.2)

for v ∈ V, σ, τ ∈ Gal(Ek,v̇/Fv) and r1, r2, r3 ∈ R′k,v. That is, α′k is obtained by aggregating

φ
Gal(Ek/F)
Gal(Ek,v̇/Fv)

(
ES2

R′k,v
( jk,v(αk,v))

)
∈ Z2(Ek/F,Maps({v}Ek , I (Ek))

)
for v ∈ V.

Definition 4.2.1. Suppose that A is a commutative group. For k≥ 0 and α :Gal(F/F)×Gal(Ek+1/F)→
Maps(VEk+1, A), define

AWES2
k(α) : Gal(F/F)×Gal(Ek/F)→Maps(VEk , A)

by

AWES2
k(α)(σ, τ )(σkτ ·w) :=

∏
n∈Gal(Ek+1/Ek)

α(σ, nτ̃ )(σk+1nτ̃ · ζk,v(w))

α(σ, n)(σk+1n · ζk,v(τ ·w))
.

In this formula σ ∈ Gal(F/F) has image σk+1 in Gal(Ek+1/F) and σk in Gal(Ek/F), τ ∈ Gal(Ek/F)
and τ̃ ∈ Gal(Ek+1/F) is any lift of τ , v ∈ V and w ∈ {v}Ek .

Note that AWES2
k depends on the choice of representatives R′k,v only via ζk,v.
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Lemma 4.2.2. For all k ≥ 0 we have AWES2
k(α
′

k+1)= α
′

k .

Note that a priori the left hand side is only a map Gal(Ek+1/F)×Gal(Ek/F)→Maps(VEk , I (Ek+1)).
The lemma implies that it is inflated from a map Gal(Ek/F)2→Maps(VEk , I (Ek)).

Proof. Fix σ ∈ Gal(Ek+1/F), τ ∈ Gal(Ek/F) and γ ∈ R′k,v. In Gal(Ek/F) write τγ = r2g2, where
r2 ∈ R′k,v and g2 ∈ Gal(Ek,v̇/Fv). Let τ̃ ∈ Gal(Ek+1/F) be any lift of τ and let g̃2 ∈ Gal(Ek+1,v̇/Fv) be
any lift of g2. Note that

{nτ̃ | n ∈ Gal(Ek+1/Ek)} = {r2unv g̃2γ
−1
| u ∈ Rk+1,v, nv ∈ Gal(Ek+1,v̇/Ek,v̇)},

Gal(Ek+1/Ek)= {r2unvr−1
2 | u ∈ Rk+1,v, nv ∈ Gal(Ek+1,v̇/Ek,v̇)}.

In Gal(Ek/F) write σkr2= r1g1 where r1 ∈ R′k,v and g1 ∈Gal(Ek,v̇/Fv). Choose g̃1 ∈Gal(Ek+1,v̇/Fv) lift-
ing g1. For every u ∈ Rk+1,v we can decompose σr2u ∈Gal(Ek+1/F) as follows: σr2u = r1u′g̃1xv where
u′ ∈ Rk+1,v and xv ∈ Gal(Ek+1,v̇/Ek,v̇) depend on u. Moreover u 7→ u′ realizes a bijection from Rk+1,v

to itself: r−1
1 σr2g̃−1

1 ∈ Gal(Ek+1/Ek) induces a permutation of the set of places of Ek+1 lying above v̇k .

AWES2
k(α
′

k+1)(σ, τ )(σkτγ · v̇k)=
∏

n∈Gal(Ek+1/Ek)

α′k+1(σ, nτ̃ )(σnτ̃ γ · v̇k+1)

α′k+1(σ, n)(σnr2 · v̇k+1)

=

∏
u,nv

α′k+1(r1u′g̃1xv(r2u)−1, r2unv g̃2γ
−1)(r1u′ · v̇k+1)

α′k+1(r1u′g̃1xv(r2u)−1, r2unvr−1
2 )(r1u′ · v̇k+1)

using the above bijections. Now apply definition (4.2.2) of α′k+1 to the numerator (resp. denominator),
with (r1, r2, r3) replaced by (r1u′, r2u, γ ) (resp. (r1u′, r2u, r2)):

AWES2
k(α
′

k+1)(σ, τ )(σkτγ · v̇k)=
∏

u

r1u′
(∏

nv

jk+1,v(αk+1,v(g̃1xv, nv g̃2))

jk+1,v(αk+1,v(g̃1xv, nv))

)
=

∏
u

r1u′( jk+1,v(αk,v(g1, g2)))

= r1( jk,v(αk,v(g1, g2)))

= α′k(r1g1r−1
2 , r2g2γ

−1)(r1 · v̇k)

= α′k(σ, τ )(στγ · v̇k).

The second equality follows from αk,v = AW2
k,v(αk+1,v). The third is a consequence of (4.2.1). The

fourth follows from the definition (4.2.2) of α′k , and the last from the definition of r1, r2, g1, g2. �

Remark 4.2.3. One could define AWES2 axiomatically, as we did for AW2 in Section 3.1, for general
quadruples (G, N , H, RG/N , RN ) where G is a finite group, N a normal subgroup of G, H a subgroup of
G, RG/N ⊂ G a set of representatives for G/H N = (G/N )/(H N/N ) such that 1 ∈ RG/N , and RN ⊂ N
a set of representatives for N/(N ∩ H) such that 1 ∈ RN . One could also state the generalization of
Lemma 4.2.2 in this context, with an identical proof. Note that it would apply to 2-cocycles α′ taking values
in a twice induced module, that is Z[G/H ]⊗Z IndG

H (A) for some H -module A. Indeed Definition 4.2.1
is essentially used with A = (Ek ⊗F Fv)× =

∏
w|v E×w , which is already induced with respect to the

subgroup Gal(Ek,v̇/Fv) of Gal(Ek/F). We will not need this generality, however.
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4.3. Properties of AWES2
k. To establish the analogue of Proposition 3.1.5, we introduce variants of

AWES2
k in degrees 0 and 1.

Definition 4.3.1. Fix k ≥ 0.

(1) Suppose that A is a commutative group. For β :Gal(Ek+1/F)→Maps(VEk+1, A), define AWES1
k(β) :

Gal(Ek/F)→Maps(VEk , A) by

AWES1
k(β)(σ )(σ ·w)=

∏
n∈Gal(Ek+1/Ek)

β(nσ̃ )(nσ̃ · ζk,v(w))

β(n)(n · ζk,v(σ ·w))

for σ ∈ Gal(Ek/F) and w ∈ {v}Ek . In this formula σ̃ ∈ Gal(Ek+1/F) is any lift of σ .

(2) Suppose that A is a Gal(Ek+1/Ek)-module. For β ∈Maps(VEk+1, A) define

AWES0
k(β) ∈Maps(VEk , AGal(Ek+1/Ek)) by AWES0

k(β)(w)= NEk+1/Ek

(
β(ζk,v(w))

)
for w ∈ {v}Ek .

Lemma 4.3.2. Fix k ≥ 0.

(1) Suppose that A is a Gal(F/F)-module. For β : Gal(Ek+1/F) → Maps(VEk+1, A), we have the
equality of maps Gal(F/F)×Gal(Ek/F)→Maps(VEk , A)

AWES2
k(d(β))= d(AWES1

k(β)).

(2) Suppose that A is a Gal(Ek+1/F)-module. For β ∈Maps(VEk+1, A), we have the equality of maps
Gal(Ek+1/F)→Maps(VEk , A)

AWES1
k(d(β))= d(AWES0

k(β)).

The right hand side is a map Gal(Ek/F)→Maps(VEk , NEk+1/Ek (A)).

Proof. (1) Let v ∈ S, w ∈ {w}k , σ ∈ Gal(Ek+1/F) and τ ∈ Gal(Ek/F). Let σ be the image of σ in
Gal(Ek/F), and fix τ̃ ∈ Gal(Ek+1/F) lifting τ . We have

d(AWES1
k(β))(σ, τ )(στ ·w)

=
AWES1

k(β)(σ )(στ ·w)σ(AWES1
k(β)(τ ))(στ ·w)

AWES1
k(β)(στ)(στ ·w)

=

∏
n∈Gal(Ek+1/Ek)

β(nσ)(nσ · ζk,v(τ ·w))

β(n)(n · ζk,v(στ ·w))
× σ

(β(nτ̃ )(nτ̃ · ζk,v(w))

β(n)(n · ζk,v(τ ·w))

)
×
β(n)(n · ζk,v(στ ·w))

β(nσ τ̃ )(nσ τ̃ · ζk,v(w))

=

∏
n∈Gal(Ek+1/Ek)

σ(β(nτ̃ )(nτ̃ · ζk,v(w)))

β(nσ τ̃ )(nσ τ̃ · ζk,v(w))
×
β(nσ)(nσ · ζk,v(τ ·w))

σ(β(n)(n · ζk,v(τ ·w)))

=

∏
n∈Gal(Ek+1/Ek)

σ(β(nτ̃ )(nτ̃ · ζk,v(w)))

β(σnτ̃ )(σnτ̃ · ζk,v(w))
×
β(σn)(σn · ζk,v(τ ·w))

σ(β(n)(n · ζk,v(τ ·w)))

=

∏
n∈Gal(Ek+1/Ek)

dβ(σ, nτ̃ )(σnτ̃ · ζk,v(w))

β(σ )(σnτ̃ · ζk,v(w))
×

β(σ)(σn · ζk,v(τ ·w)))

dβ(σ, n)(σn · ζk,v(τ ·w))

=

∏
n∈Gal(Ek+1/Ek)

dβ(σ, nτ̃ )(σnτ̃ · ζk,v(w))

dβ(σ, n)(σn · ζk,v(τ ·w))
= AWES2

k(dβ)(σ, τ )(στ ·w).
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We have used the fact that for any u ∈ {v}Ek+1 ,

card{n ∈ Gal(Ek+1/Ek) | nτ̃ · ζk,v(w)= u} = card{n ∈ Gal(Ek+1/Ek) | n · ζk,v(τ ·w))= u}

that implies ∏
n∈Gal(Ek+1/Ek)

β(σ)(σnτ̃ · ζk,v(w))=
∏

n∈Gal(Ek+1/Ek)

β(σ)(σn · ζk,v(τ ·w)).

(2) Let v ∈ S and w ∈ {v}Ek . Let σ ∈ Gal(Ek/F) and fix σ̃ ∈ Gal(Ek+1/F) lifting σ .

d(AWES0
k(β))(σ )(σ ·w)=

σ(AWES0
k(β))(σ ·w)

AWES0
k(β)(σ ·w)

=

∏
n∈Gal(Ek+1/Ek)

σ̃n(β(ζk,v(w)))

n(β(ζk,v(σ ·w)))
=

∏
n∈Gal(Ek+1/Ek)

nσ̃ (β(ζk,v(w)))

n(β(ζk,v(σ ·w)))

=

∏
n∈Gal(Ek+1/Ek)

dβ(nσ̃ )(nσ̃ · ζk,v(w))×β(nσ̃ · ζk,v(w))

dβ(n)(n · ζk,v(σ ·w))×β(n · ζk,v(σ ·w))

=

∏
n∈Gal(Ek+1/Ek)

dβ(nσ̃ )(nσ̃ · ζk,v(w))

dβ(n)(n · ζk,v(σ ·w))
= AWES1

k(dβ)(σ )(σ ·w).

Again we have used the fact that for any u ∈ {v}Ek+1 ,

card{n ∈ Gal(Ek+1/Ek) | nσ̃ · ζk,v(w)= u} = card{n ∈ Gal(Ek+1/Ek) | n · ζk,v(σ ·w))= u}

that implies ∏
n∈Gal(Ek+1/Ek)

β(nσ̃ · ζk,v(w))=
∏

n∈Gal(Ek+1/Ek)

β(n · ζk,v(σ ·w))). �

Corollary 4.3.3. Fix k ≥ 0, and suppose that A is a Gal(Ek+1/F)-module.

(1) Let β : Gal(Ek+1/F)→Maps(VEk+1, A) be such that AWES2
k(d(β)) factors through Gal(Ek/F)2.

Then AWES1
k(β) takes values in Maps(VEk , AGal(Ek+1/Ek)).

(2) If β ∈ Z1(Gal(Ek+1/F),Maps(VEk+1, A)) then

AWES1
k(β) ∈ Z1(Gal(Ek/F),Maps(VEk , AGal(Ek+1/Ek))).

Proof. (1) Recall that a priori AWES1
k(β) :Gal(Ek/F)→Maps(VEk , A). By the previous lemma, for all

w ∈ VEk , σ ∈ Gal(Ek+1/F) and τ ∈ Gal(Ek/F), the quotient

AWES1
k(β)(σ )(στ ·w)× σ(AWES1

k(β)(τ )(τ ·w))

AWES1
k(β)(στ)(στ ·w)

depends on σ only via its image σ ∈Gal(Ek/F). Taking σ ∈Gal(Ek+1/Ek) shows AWES1
k(β)(τ )(τ ·w)

is invariant under Gal(Ek+1/Ek).

(2) This follows directly from the first point and a second application of the previous lemma. �

We now establish the analogue of Lemma 3.1.6 for AWES1
k and AWES2

k .
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Lemma 4.3.4. Let k ≥ 0. Suppose that A is a commutative group.

(1) The map

{β : Gal(Ek+1/F)→Maps(VEk+1, A) | β(1)= 1} → {β : Gal(Ek/F)→Maps(VEk , A) | β(1)= 1}

induced by AWES1
k is surjective.

(2) Let K ⊂ F be a Galois extension of F containing Ek+1. The map

{α : Gal(K/F)×Gal(Ek+1/F)→Maps(VEk+1, A) | for all σ ∈ Gal(K/F), α(σ, 1)= 1}

→ {α : Gal(K/F)×Gal(Ek/F)→Maps(VEk , A) | for all σ ∈ Gal(K/F), α(σ, 1)= 1}

induced by AWES2
k is surjective.

Proof. As in the proof of Lemma 3.1.6, in each case we exhibit a subset of the source such that restricting
to this subset yields a bijection. Choose a section s : Gal(Ek/F)→ Gal(Ek+1/F) such that s(1)= 1.

(1) Restrict to the set of β : Gal(Ek+1/F)→ Maps(VEk+1, A) such that for n ∈ Gal(Ek+1/Ek), σ ∈
Gal(Ek/F), v ∈ V and u ∈ {v}Ek+1 , β(ns(σ ))(ns(σ ) · u)= 1 unless n = 1, σ 6= 1 and u belongs to the
image of ζk,v : {v}Ek → {v}Ek+1 .

(2) Restrict to the set of α : Gal(K/F)×Gal(Ek+1/F)→Maps(VEk+1, A) such that for σ ∈ Gal(K/F),
n ∈ Gal(Ek+1/Ek), τ ∈ Gal(Ek/F), v ∈ V and u ∈ {v}Ek+1 , α(σ, ns(τ ))(σns(τ ) · u) = 1 unless n = 1,
τ 6= 1 and u belongs to the image of ζk,v : {v}Ek → {v}Ek+1 . �

4.4. Tate cocycles. Recall that for every k ≥ 0 the kernel C(Ek)
1 of the surjective norm map ‖·‖k :

C(Ek)→ R>0 is compact, and that these norm maps commute with the norm maps for the Galois action
NEk+1/Ek : C(Ek+1)→ C(Ek), that is ‖x‖k+1 = ‖NEk+1/Ek (x)‖k for all x ∈ C(Ek+1). In this section
we will see the fundamental cocycles αk ∈ Z2(Ek/F,C(Ek)) defined in Section 4.1 as taking values in
Maps(VEk ,C(Ek)), by seeing elements of C(Ek) as constant functions VEk → C(Ek).

Lemma 4.4.1. There exists a family (β(0)k )k≥0, where β(0)k : Gal(Ek/F)→Maps(VEk ,C(Ek)), such that:

(1) For any k ≥ 0 we have αk/α
′

k = d(β(0)k ), where α′k := α
′

k mod E×k .

(2) For any k ≥ 0 we have

AWES1
k(β

(0)
k+1) ∈Maps(Gal(Ek/F),Maps(VEk ,C(Ek))).

(3) For any k ≥ 0 we have ‖AWES1
k(β

(0)
k+1)‖k = ‖β

(0)
k ‖k , as functions Gal(Ek/F)× VEk → R>0.

Proof. For a given k, the existence of β(0)k satisfying the first condition is a consequence of compatibility
between local and global fundamental classes; see [Tate 1966]. Note that if β(0)k+1 is such that αk+1/α

′

k+1=

d(β(0)k+1), then by Lemma 4.3.2

d(AWES1
k(β

(0)
k+1))= AWES2

k(d(β
(0)
k+1))= AWES2

k(αk+1)/AWES2
k(α
′

k+1)= αk/α
′

k (4.4.1)
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factors through Gal(Ek/F)2, and by Corollary 4.3.3 AWES1
k(β

(0)
k+1) takes values in Maps(VEk ,C(Ek)).

So the second condition in the lemma is a consequence of the first one.
Let us start with a family (β(0)k )k≥0 satisfying the first condition, and show that we can inductively

multiply β(0)k , k≥ 1, by a 1-coboundary so that the third condition is also satisfied. By (4.4.1) we know that

AWES1
k(β

(0)
k+1)/β

(0)
k ∈ Z1(Gal(Ek/F),Maps(VEk ,C(Ek)))

and by vanishing of H 1(Gal(Ek/F),Maps(VEk ,C(Ek))) there exists bk : VEk → C(Ek) such that
AWES1

k(β
(0)
k+1)/β

(0)
k = d(bk). Choose b̃k : VEk+1 → C(Ek+1) such that for any w ∈ {v}Ek , we have

‖b̃k(ζk,v(w))‖k+1 = ‖bk(τ · v̇k)‖k . Equivalently, ‖AWES0
k(b̃k)‖k = ‖bk‖k . Substituting β(0)k+1/ d(b̃k) for

β
(0)
k+1, the third condition becomes satisfied. �

Theorem 4.4.2. There exists a family (βk)k≥0 with βk ∈ C1(Ek/F,Maps(VEk , I (Ek, Sk))) such that

(1) For any k ≥ 0 we have αk/α
′

k = d(βk), where βk ∈ C1(Ek/F,Maps(VEk ,C(Ek))) is the projection
of βk .

(2) For any k ≥ 0 we have AWES1
k(βk+1)= βk .

Therefore, the family (αk)k≥0 defined by αk = α
′

k × d(βk) is a family of Tate cocycles, compatible in the
sense that AWES2

k(αk+1)= αk for all k ≥ 0.

Proof. Let (β(0)k )k≥0 be a family as in the previous Lemma. The space

Xk :=
{
βk : Gal(Ek/F)→Maps(VEk ,C(Ek)) | ‖βk‖k = ‖β

(0)
k ‖k and αk/α

′

k = d(βk)
}

is compact for the topology induced by the product topology on

Maps(Gal(Ek/F),Maps(VEk ,C(Ek)))=
∏

Gal(Ek/F)×VEk

C(Ek).

Moreover β(0)k ∈ Xk . The inverse system ((Xk)k≥0, (AWES1
k : Xk+1→ Xk)k≥0) consists of nonempty

compact topological spaces and continuous maps between them; therefore lim
←−−k≥0 Xk 6= ∅. Choose

(βk)k ∈ lim
←−−

Xk . Such a family satisfies the two conditions in the proposition, but note that βk takes values
in C(Ek).

Let us inductively choose lifts βk of βk such that AWES1
k(βk+1)= βk . Note that this imposes βk(1)= 1

for all k. Choose any β0 lifting β0 such that β0(1) = 1. Suppose that βk is given. If β is any lift of
βk+1 such that β(1) = 1, then βk/AWES1

k(β) is a mapping Gal(Ek/F)→Maps(VEk ,O(Ek+1, Sk+1)).
By Lemma 4.3.4, there exists ν : Gal(Ek+1/F)→Maps(VEk+1,O(Ek+1, Sk+1)) such that ν(1)= 1 and
βk/AWES1

k(β)= AWES1
k(ν), and we let βk+1 = β × ν. �

Remark 4.4.3. This result solves two problems at once:

(1) Constructing a family of Tate cocycles (αk)k≥0 compatible with respect to AWES2
k , which will be

useful to compare (generalized) Tate–Nakayama isomorphisms in the tower (Ek)k≥0, by taking cup
products (Lemma 5.2.1 and Proposition 5.2.3).
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(2) Constructing a family (βk)k≥0 compatible with respect to AWES1
k and realizing local-global compat-

ibility, which will be useful to compare local and global (generalized) Tate–Nakayama isomorphisms
(Lemmas 5.4.1 and 5.4.4 and Propositions 5.4.3 and 5.4.5).

The proof suggests that it is not possible to solve the first problem separately from the second. One
can show that if families (αk,v)k≥0,v∈V , (Rk,v)k≥0,v∈V and (αk)k≥0 as above are fixed, then (βk)k≥0 is
determined up to

B1(Gal(F/F), lim
←−−
k≥0

C(Ek)
0)

where C(Ek)
0 is the connected component of 1 in C(Ek), i.e., the closure of (R⊗Q Ek)

×,0 in C(Ek),
where (R⊗Q Ek)

×,0 is the connected component of 1 in (R⊗Q Ek)
×.

Note that while αk,v, αk and Rk,v can simply be chosen sequentially as k grows, the existence of
a family (βk)k≥0 in Theorem 4.4.2 follows from a compactness argument. Let us give an alternative,
constructive but more intricate argument for the existence of (βk)k≥0. For simplicity we assume that for
any k ≥ 0, Ek+1 contains the narrow Hilbert class field of Ek , i.e., NEk+1/Ek (C(Ek+1)) is contained in the
image of (R⊗Q Ek)

×,0
× Ô(Ek)

×

in C(Ek). This can be achieved by discarding some of the Ek . Choose
β
(0)
1 such that d(β(0)1 )= α1/α

′

1. Note that β(1)0 := AWES1
0(β

(0)
1 )= 1. For good measure let β(1)0 = 1 and

α0 = 1. We now proceed to inductively construct β(0)k+1, β
(1)
k and εk−1 for k ≥ 1, satisfying the following

properties.

(1) β(0)k+1 : Gal(Ek+1/F)→Maps(VEk+1,C(Ek+1)) is such that α′k+1× d(β(0)k+1)= αk+1.

(2) β(1)k : Gal(Ek/F)→Maps(VEk , I (Ek, Sk)) is a lift of AWES1
k(β

(0)
k+1) such that β(1)k (1)= 1.

(3) εk ∈Maps(VEk , Ô(Ek)
×

) is such that AWES1
k−1(β

(1)
k )= β

(1)
k−1 d(εk−1).

Let k ≥ 0, assume that β(0)k+1 and β(1)k are constructed. First choose any β(0)k+2 : Gal(Ek+2/F) →
Maps(VEk+2,C(Ek+2)) such that α′k+2× d(β(0)k+2)= αk+2. As we saw in the proof of Lemma 4.4.1, there
exists zk+1 ∈ Maps(VEk+1,C(Ek+1)) such that AWES1

k+1(β
(0)
k+2) = β

(0)
k+1 × d(zi+1). Applying AWES1

k ,
we get

AWES1
k ◦AWES1

k+1(β
(0)
k+2)= AWES1

k(β
(0)
k+1)× d(AWES0

k(zk+1))

and we would like to let εk ∈Maps(VEk , (R⊗Q Ek)
×,0
×Ô(Ek)

×

) be a lift of AWES0
k(zk+1), which exists

thanks to the hypothesis that Ek+1 contains the narrow Hilbert class field of Ek . This is not quite right,
since we want εk ∈Maps(VEk , Ô(Ek)

×

). By surjectivity of

AWES0
k ◦AWES0

k+1 :Maps(VEk+2, (R⊗Q Ek+2)
×,0)→Maps(VEk , (R⊗Q Ek)

×,0),

we see that up to dividing β(0)k+2 by an element of B1(Gal(Ek+2/F),Maps(VEk+2, (R⊗Q Ek+2)
×,0)), we can

find εk ∈Maps(VEk , Ô(Ek)
×

). Now let β(2)k = β
(1)
k ×d(εk), and as we saw in the proof of Theorem 4.4.2,

there exists β(1)k+1 : Gal(Ek+1/F) → Maps(VEk+1, I (Ek+1, Sk+1)) a lift of AWES1
k+1(β

(0)
k+2) such that

β
(1)
k+1(1)= 1 and AWES1

k(β
(1)
k+1)= β

(2)
k . This concludes the construction of (β(0)k+2, β

(1)
k+1, εk).
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Define inductively β(i+1)
k = AWES1

k(β
(i)
k+1) for i ≥ 0. Then for all i > k ≥ 0, we have

β
(i+2−k)
k = β

(i+1−k)
k × d(AWES0

k ◦ · · · ◦AWES0
i−1(εi ))

and since AWES0
k ◦ · · · ◦ AWES0

i−1(εi ) ∈ Maps(VEk , NEi/Ek (Ô(Ei )
×

)), by the existence theorem in
local class field theory and Krasner’s lemma the sequences (β(i)k )i>0 converge and we can define
βk = limi→+∞ β

(i)
k .

5. Generalized Tate–Nakayama morphisms

In this section we will construct N -th roots of the cochains (αk,v)v∈V , α′k , βk and αk for all N ≥ 1 and
k ≥ 0. This is necessary to establish the global analogue of [Kaletha 2016, §4.5], i.e., to make explicit the
morphism ιV̇ of [Kaletha 2018, Theorem 3.7.3] for the tower (Ek)k≥0, and to study the localization map,
(3.19) there.

5.1. Choice of N-th roots.

Proposition 5.1.1. For any v ∈ V, there exists a family ( N
√
αk,v)N≥1,k≥0 where N

√
αk,v :Gal(Ek,v̇/Fv)2→

Fv× such that

(1) for all k ≥ 0, 1
√
αk,v = αk,v,

(2) for all k ≥ 0 and N , N ′ ≥ 1 such that N divides N ′, N ′
√
αk,v

N ′/N
= N
√
αk,v,

(3) for all k ≥ 0 and N ≥ 1, AW2
k,v(

N
√
αk+1,v)= N

√
αk,v.

Proof. Using Bézout identities, we see that it is enough to construct families ( `m√αk,v)m≥0,k≥0 for all
primes `. So fix a prime number `. For a fixed k ≥ 0, there exists a family ( `m√αk,v)m≥0 satisfying the first
two conditions in the proposition, and such that for all m ≥ 0 and σ ∈ Gal(Ek,v̇/Fv), `m

√
αk,v(σ, 1)= 1.

If we choose two such families for k and k+ 1, the last condition might not be satisfied, i.e., for some
m ≥ 1 the obstruction

AW2
k,v(

`m
√
αk+1,v)

`m
√
αk,v

: Gal(Ek+1,v̇/Fv)×Gal(Ek,v̇/Fv)→ µ`m

could be nontrivial. Note that the target is contained in µ`m because AW2
k,v(αk+1,v)= αk,v. Recall that

Z`(1) is defined as lim
←−−m≥0 µ`m . By the second condition these obstructions, as m varies, glue to give a

mapping

Gal(Ek+1,v̇/Fv)×Gal(Ek,v̇/Fv)→ Z`(1)

which maps any element of Gal(Ek+1,v̇/Fv)× {1} to 1. Applying Lemma 3.1.6 with A = Z`(1), we
obtain that ( `m√αk+1,v)m≥0 can be chosen so that AW2

k,v(
`m
√
αk+1,v)= `m

√
αk,v for all m ≥ 0. �
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Fix such a family for each v ∈ V. Recall from Section 4.2 the embedding jk,v : E×k,v̇ ↪→ I (Ek). We
now want to extend to jk,v : Fv× ↪→ I (F). For x ∈ Fv×, there exists i ≥ 0 such that x ∈ E×k+i,v̇. Define

jk,v(x)=
∏

r∈Rk+1,v ···Rk+i,v

r( jk+i,v(x)),

which does not depend on the choice of a big enough i . These extended embeddings jk,v also satisfy a
compatibility formula similar to (4.2.1): for any x ∈ Fv× we have

jk,v(x)=
∏

r∈Rk+1,v

r( jk+1,v(x)). (5.1.1)

For N ≥ 1 define N
√
α′k : Gal(Ek/F)2→Maps(VEk , I (F)) by

N
√
α′k(r1σr−1

2 , r2τr−1
3 )(r1 · v̇k)= r1( jk,v( N

√
αk,v(σ, τ )))

for r1, r2, r3 ∈ R′k,v and σ, τ ∈ Gal(Ek,v̇/Fv). Obviously 1
√
α′k = α′k and whenever N divides N ′,

N ′
√
α′k

N ′/N
= N
√
α′k . By the same proof as Lemma 4.2.2, thanks to (5.1.1), we have

AWES2
k
(

N
√
α′k+1

)
=

N
√
α′k .

Note that for any k ≥ 0 and v ∈ V, there exists i ≥ 0 such that N
√
αk,v takes values in E×k+i,v̇ and so for

any w ∈ {v}Ek , N
√
α′k(−,−)(w) takes values in A×Ek+i

.
We now want to construct N -th roots N

√
αk of the Tate classes αk constructed in Section 4.4. For

this it is necessary to take N -th roots of ideles, which may not be ideles. For S′ a finite subset of V,
let I(F, S′) ⊂

∏
v∈V (F ⊗F Fv)× be the set of families (xv)v such that for any v 6∈ S′, there exists a

finite Galois extension K/F unramified above v such that xv ∈ (OK ⊗OF OFv )
×
=
∏
w|v O

×

Kw
. Let

I(F) = lim
−−→S′ I(F, S′). Recall (Theorem 4.4.2) that αk : Gal(Ek/F)2 → Maps(VEk , I (Ek)) has the

following properties:

• for all σ, τ ∈ Gal(Ek/F) and w1, w2 ∈ VEk , αk(σ, τ )(w1)/αk(σ, τ )(w2) ∈ E×k ;

• for all σ, τ ∈Gal(Ek/F), v∈V andw∈{v}Ek , αk(σ, τ )(w)∈ I (Ek) is a unit away from Sk,Ek∪{v}Ek .

It is crucial for N
√
αk to enjoy similar properties.

Proposition 5.1.2. There exists a family ( N
√
αk)N≥1,k≥0 where N

√
αk : Gal(Ek/F)2→ I(F) such that

(1) for all k ≥ 0, 1
√
αk = αk ,

(2) for all k ≥ 0 and N , N ′ ≥ 1 such that N divides N ′, N ′
√
αk

N ′/N
= N
√
αk ,

(3) for all k ≥ 0 and N ≥ 1, AWES2
k(

N
√
αk+1)= N

√
αk ,

(4) for all k ≥ 0, N ≥ 1, σ, τ ∈ Gal(Ek/F) and w1, w2 ∈ VEk ,

N
√
αk(σ, τ )(w1)/

N
√
αk(σ, τ )(w2) ∈ F×,

(5) for all k ≥ 0, N ≥ 1, σ, τ ∈Gal(Ek/F), v ∈ V and w ∈ {v}Ek , N
√
αk(σ, τ )(w) ∈ I(F, Sk ∪{v}∪N ).
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Proof. It will be convenient to fix an archimedean place u of F, so that in particular u̇k ∈ Sk,Ek for all
k ≥ 0. As in the proof of Proposition 5.1.1 it is enough to restrict to powers of a fixed prime `.

First we show how to construct a family ( `m
√
αk)m≥0 for a fixed k ≥ 0. For m ≥ 0 and σ, τ ∈Gal(Ek/F)

choose roots `m
√
αk(σ, τ )(στ · u̇k) ∈ I(F, Sk ∪`) such that `m+1√

αk(σ, τ )(στ · u̇k)
`
= `m
√
αk(σ, τ )(στ · u̇k).

We can further impose that `m
√
αk(σ, 1)(σ · u̇k) = 1 for all σ ∈ Gal(Ek/F). Then choose, for σ, τ ∈

Gal(Ek/F), v∈V andw∈{v}Ek r{στ ·u̇k}, `m-th roots of αk(σ, τ )(w)/αk(σ, τ )(στ ·u̇k) in (F Sk∪{v}∪`)
×,

and define `m
√
αk(σ, τ )(w) as the products of these `m-th roots with `m

√
αk(σ, τ )(στ · u̇k). This can be

done compatibly as m varies. Again we can impose `m
√
αk(σ, 1)(w) = 1 for all σ ∈ Gal(Ek/F). We

obtain a family ( `m
√
αk)m≥0 satisfying all conditions in the proposition except for the third one.

The fact that these choices can be made compatibly as k varies, i.e., in such a way that the third
condition is also satisfied, can be proved as in Proposition 5.1.1, using the fact that AWES2

k(αk+1)= αk

and Lemma 4.3.4 instead of Lemma 3.1.6. �

Fix a family ( N
√
αk)N≥1,k≥0 as in the proposition. We want to compare N

√
α′k and N

√
αk . Recall

(Theorem 4.4.2) that αk = α
′

k d(βk), where βk : Gal(Ek/F)→Maps(VEk , I (Ek, Sk)).

Proposition 5.1.3. There exists a family ( N
√
βk)N≥1,k≥0, where

N
√
βk : Gal(Ek/F)→Maps(VEk , I(F, Sk ∪ N ))

such that

(1) for all k ≥ 0, 1
√
βk = βk ,

(2) for all k ≥ 0 and N , N ′ ≥ 1 such that N divides N ′, N ′
√
βk

N ′/N
=

N
√
βk ,

(3) for all k ≥ 0 and N ≥ 1, AWES1
k(

N
√
βk+1)=

N
√
βk .

Proof. Only the third condition is nontrivial, and the proof proceeds as in Propositions 5.1.1 and 5.1.2. �

Fix a family ( N
√
βk)N≥1,k≥0 as in the proposition. Note that d( N

√
βk) :Gal(F Sk∪N/F)×Gal(Ek/F)→

Maps(VEk , I(F, Sk ∪ N )).

Definition 5.1.4. For k ≥ 0 and N ≥ 1, let

δk(N )=
N
√
αk

N
√
α′k d( N

√
βk)
: Gal(F Sk∪N/F)×Gal(Ek/F)→Maps(VEk , I(F)[N ]),

where I(F)[N ] is the subgroup of N -torsion elements in I(F).

By construction, we have:

• For all k ≥ 0, N ≥ 1 and w ∈ VEk , there exists a finite Galois extension K of F containing Ek such
that δk(N )(w) factors through Gal(K/F)×Gal(Ek/F).

• For all k ≥ 0, N ≥ 1, σ ∈ Gal(F Sk∪N/F), τ ∈ Gal(Ek/F), v ∈ V and w ∈ {v}Ek ,

δk(N )(σ, τ )(w) ∈ I(F, Sk ∪ {v} ∪ N )[N ].

• For all k ≥ 0 and N , N ′ ≥ 1 such that N divides N ′, we have δk(N ′)N ′/N
= δk(N ).

• For all k ≥ 0 and N ≥ 1, AWES2
k(δk+1(N ))= δk(N ).
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5.2. Generalized Tate–Nakayama morphism for the global tower. Using the compatible families of
cochains constructed in the previous section, we now want to recast several of Kaletha’s constructions in
cohomology, but for actual cochains. First we describe the extension PV̇ → EV̇ → Gal(F/F) explicitly
as a projective limit of extensions P(Ek, Ṡ′Ek

, N )→ Ek(S′, N )→Gal(F S′∪N/F) constructed using N
√
αk ,

for varying k, S′, N. This is the global analogue of [Kaletha 2016, §4.5]. Then we make explicit the
morphism ιV̇ of [Kaletha 2018, Theorem 3.7.3] using this projective limit. To avoid repeating similar
calculations we deduce these two constructions from Lemma 5.2.1 below.

Let us recall notation from [Kaletha 2018, Lemma 3.1.7]. Suppose that S′⊂V. If M is an abelian group,
define !k : M[S′Ek

] → M[S′Ek+1
] by !k(3)(ζk,v(w)) =3(w) for v ∈ S′ and w ∈ {v}Ek , and !k(3)(u) = 0

if u 6∈ {ζk,v(w) | v ∈ S′, w ∈ {v}Ek }. Here ζk,v is the section of the natural projection {v}Ek+1 → {v}Ek

defined in Section 4.2.
Recall also the notion of unbalanced cup product t from [Kaletha 2016, §4.3].

Lemma 5.2.1. Let T be a torus defined over F. Denote Y = X∗(T ). Let k be big enough so that Ek

splits T. Let N ≥ 1 be an integer. Let S′ be a finite subset of V containing Sk+1. Let 3 ∈ Y [S′Ek
]

NEk /F

0 =

Ẑ−1(Gal(Ek/F), Y [S′Ek
]0). Then we have an equality of maps Gal(F S′∪N/F)→ T (OS′∪N ):

N
√
αk t

Ek/F
3= N

√
αk+1 t

Ek+1/F
!k(3).

Note that if Sk ⊂ S′′ ⊂ S′ and the support of 3 is contained in S′′Ek
, then the left hand side is inflated

from a map Gal(F S′′∪N/F)→ T (OS′′∪N ).

Proof. For σ ∈ Gal(F S′∪N/F) we have

( N
√
αk t

Ek/F
3)(σ)=

∏
τ∈Gal(Ek/F)

N
√
αk(σ, τ )⊗ στ(3)=

∏
τ∈Gal(Ek/F)

∏
w∈S′Ek

N
√
αk(σ, τ )(w)⊗ στ(3)(w).

Note that in this last expression, the tensor products land in I(F, S′∪N )⊗Z Y, but the product over S′Ek
be-

longs to O×S′∪N⊗ZY =T (OS′∪N ) because
∑

w∈S′Ek
3(w)=0, using the third condition in Proposition 5.1.2.

Compare with the pairing [Kaletha 2018, (3.24)]. Recall that N
√
αk =AWES2

k(
N
√
αk+1) by construction in

Theorem 4.4.2, so that

( N
√
αk t

Ek+1/F
3)(σ)=

∏
τ∈Gal(Ek/F)

∏
v∈S′

∏
w∈{v}Ek

∏
n∈Gal(Ek+1/Ek)

α(σ, nτ̃ )(σk+1nτ̃ · ζk,v(w))

α(σ, n)(σk+1n · ζk,v(τ ·w)
⊗ στ(3(w)),

where σk+1 is the image of σ in Gal(Ek+1/F). We recognize ( N
√
αk+1tEk+1/F !k(3)) at the numerator,

by writing the product over τ ∈ Gal(Ek/F) and n ∈ Gal(Ek+1/Ek) as a product over τ ′ ∈ Gal(Ek+1/F)
with τ ′ = nτ̃ . We obtain

( N
√
αk+1 t

Ek+1/F
!k(3))(σ )/(

N
√
αk t

Ek/F
3)(σ)

=

∏
τ∈Gal(Ek/F)

∏
v∈S′

∏
w∈{v}Ek

∏
n∈Gal(Ek+1/Ek)

N
√
αk+1(σ, n)(σn · ζk,v(τ ·w))⊗ στ(3(w)).
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To simplify this expression we use the change of variable u = τ ·w to get∏
v∈S′

n∈Gal(Ek+1/Ek)

∏
u∈{v}Ek

N
√
αk+1(σ, n)(σn · ζk,v(u))⊗ σ

( ∑
τ∈Gal(Ek/F)

τ(3(τ−1
· u))

)

and the sum over τ vanishes since NEk/F (3)= 0 by assumption. �

Let k ≥ 0 and N ≥ 1, and let S′ be a finite subset of V containing Sk . Recall the finite Gal(Ek/F)-
submodule M(Ek, Ṡ′Ek

, N ) of Maps
(
Gal(Ek/F)× S′Ek

, 1
N Z/Z

)
defined in [Kaletha 2018, §3.3], and the

finite commutative algebraic group P(Ek, Ṡ′Ek
, N ) such that X∗(P(Ek, Ṡ′Ek

, N ))= M(Ek, Ṡ′Ek
, N ). For

any finite commutative algebraic group Z over F such that exp(Z) | N and the Galois action on A :=
X∗(Z) factors through Gal(Ek/F), we have an identification 9(Ek, S′, N ) : Hom(P(Ek, Ṡ′Ek

, N ), Z)'
A∨[Ṡ′Ek

]
NEk /F

0 (see Lemma 3.3.2 there). Recall also the 2-cocycle ξk ∈ Z2(Gal(F S′∪N/F), P(Ek, Ṡ′Ek
, N ))

from (3.5) of the same work, defined using an unbalanced cup product:

ξk(S′, N )= d( N
√
αk) t

Ek/F
cuniv(Ek, S′, N ) (5.2.1)

where cuniv(Ek, S′, N ) ∈ M(Ek, Ṡ′Ek
, N )∨[Ṡ′Ek

]
NEk /F

0 is the image of IdP(Ek ,Ṡ′Ek
,N ) under 9(Ek, S′, N ).

Explicitly, for w ∈ S′Ek
and f ∈ M(Ek, Ṡ′Ek

, N ), cuniv(Ek, S′, N )(w)( f ) = f (1, w). The restriction of
d( N
√
αk) to S′Ek

is a 3-cocycle

Gal(F S′∪N/F)×Gal(Ek/F)2→Maps(S′Ek
, I(F, S′ ∪ N )[N ])

such that
d( N
√
αk)(σ1, σ2, σ3)(w1)

d( N
√
αk)(σ1, σ2, σ3)(w2)

∈ µN (F)⊂ I(F, S′ ∪ N )[N ].

This property allows us to pair d( N
√
αk)(σ1, σ2, σ3) with an element of M(Ek, Ṡ′Ek

, N )∨[Ṡ′Ek
]0 to get an

element of P(Ek, Ṡ′Ek
, N ), as in [Kaletha 2018, Fact 3.2.3]. This is the pairing used in the definition of

ξk(S′, N ) (5.2.1). The 2-cocycle ξk(S′, N ) is universal in the sense that for any morphism of algebraic
groups f : P(Ek, Ṡ′Ek

, N )→ Z over F we have

f∗(ξk(S′, N ))= d( N
√
αk) t

Ek/F
9(Ek, S′, N )( f ). (5.2.2)

Definition 5.2.2. Let k ≥ 0 and N ≥ 1, and let S′ be a finite subset of V containing Sk . Define Ek(S′, N )
as the central extension P(Ek, Ṡ′Ek

, N )�ξk(S′,N ) Gal(F S′∪N/F).

Recall that set-theoretically this is P(Ek, Ṡ′Ek
, N )×Gal(F S′∪N/F), with group law

(x � σ)(y � τ)= xσ(y)ξk(S′, N )(σ, τ )� στ.

Suppose Z ↪→ T is an injective morphism of commutative algebraic groups over F with Z finite,
exp(Z) | N and T a torus split by Ek . Denote A = X∗(Z), Y = X∗(T ) and Y = X∗(T/Z), so that we
have a short exact sequence 0→ Y → Y → A∨→ 0. Recall from [Kaletha 2018, §3.7] the subgroup
Y [S′Ek

, Ṡ′Ek
] of Y [S′Ek

] consisting of all elements whose image in A∨[S′Ek
] is supported on Ṡ′Ek

. Also let
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Y [S′Ek
, Ṡ′Ek
]0 = Y [S′Ek

, Ṡ′Ek
] ∩ Y [S′Ek

]0 and Y [S′Ek
, Ṡ′Ek
]

NEk /F

0 = Y [S′Ek
, Ṡ′Ek
] ∩ Y [S′Ek

]
NEk /F

0 . As shown in
[Kaletha 2018, Proposition 3.7.8], we have a morphism

ιk(S′, N ) : Y [S′Ek
, Ṡ′Ek
]

NEk /F

0 →Z1(P(Ek, Ṡ′Ek
, N )→ Ek(S′, N ), Z→ T (OS′∪N ))

3 7→(x � σ 7→9(Ek, S′, N )−1([3])(x)× ( N
√
αk t

Ek/F
N3)(σ))

where [3] is the image of 3 in A∨[Ṡ′Ek
]

NEk /F

0 . As explained in the proof of [Kaletha 2018, Proposition
3.7.8], the fact that ιk(S′, N )(3) is a 1-cocycle is essentially equivalent to

d( N
√
αk) t

Ek/F
N3= d( N

√
αk) t

Ek/F
[3]. (5.2.3)

Note that different pairings are used to form cup products in this equality: [Kaletha 2018, (3.24)] on the
left, [Kaletha 2018, (3.3)] on the right. To be rigorous we should point out that Proposition 3.7.8 there is
stated with additional assumptions on S′, but it is easy to check that the first point in this proposition does
not use these assumptions.

As N and S′ vary, there are natural morphisms between the extensions Ek(S′, N ), compatible with
ιk(S′, N ). Verifying this is purely formal, so we omit this verification.

The more challenging and interesting compatibility is when k varies. This is the main goal of this
paper, and we can finally harvest the fruit of our labor. Assume that S′ also contains Sk+1. Recall [Kaletha
2018, (3.7)] the natural injection M(Ek, Ṡ′Ek

, N ) ↪→ M(Ek+1, Ṡ′Ek+1
, N ) mapping f to

(σ,w) 7→

{
f (σ ,w) if σ−1

·w ∈ V̇Ek+1,

0 otherwise.

where σ (resp. w) is the image of σ in Gal(Ek/F) (resp. VEk ), and the dual surjective morphism
ρk(S′, N ) : P(Ek+1, Ṡ′Ek+1

, N )→ P(Ek, Ṡ′Ek
, N ).

It is formal to check that for any finite commutative algebraic group Z over F such that exp(Z) | N
and the Galois action on A := X∗(Z) factors through Gal(Ek/F) and any finite s ′ ⊂ V, the following
diagram is commutative.

Hom(P(Ek, Ṡ′Ek
, N ), Z) A∨[Ṡ′Ek

]
NEk /F

0

Hom(P(Ek+1, Ṡ′Ek+1
, N ), Z) A∨[Ṡ′Ek+1

]
NEk+1/F

0

9(Ek ,S′,N )

ρk(S′,N )∗ !k

9(Ek+1,S′,N )

(5.2.4)

Proposition 5.2.3. Let k ≥ 0 and N ≥ 1, and let S′ be a finite subset of V containing Sk+1.

(1) Composition with ρk(S′, N ) maps ξk+1(S′, N ) to ξk(S′, N ). In particular, we have a natural surjec-
tive morphism of extensions

Ek+1(S′, N )→ Ek(S′, N ), x � σ 7→ ρk(S′, N )(x)� σ.
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(2) Let Z ↪→ T be an injective morphism of commutative algebraic groups over F with Z finite and T a
torus split by Ek . Assume that exp(Z) | N. Let Y = X∗(T ) and Y = X∗(T/Z). Then the following
diagram commutes

Y [S′Ek
, Ṡ′Ek
]

NEk /F

0 Z1(P(Ek, Ṡ′Ek
, N )→ Ek(S′, N ), Z→ T (OS′∪N ))

Y [S′Ek+1
, Ṡ′Ek+1

]
NEk+1/F

0 Z1(P(Ek+1, Ṡ′Ek+1
, N )→ Ek+1(S′, N ), Z→ T (OS′∪N ))

ιk(S′,N )

!k

ιk+1(S′,N )

where the right vertical map is the inflation map induced by the morphism of extensions defined
above.

Proof. (1) We use an argument similar to the proof of [Kaletha 2018, Lemma 3.2.8]. We will
apply Lemma 5.2.1. This way we avoid explicit computations with 3-cocycles d( N

√
αk). Denote

Z = P(Ek, Ṡ′Ek
, N ) and A= X∗(Z). Fix a surjective morphism X→ A where X is a free Z[Gal(Ek/F)]-

module, and let X be the kernel. Associated to X, X are tori T, T and a short exact sequence 1→
Z → T → T → 1. Let Y = X∗(T ) = HomZ(X,Z) and Y = X∗(T ) = HomZ(X ,Z). We have a
short exact sequence 0→ Y [S′Ek

]0→ Y [S′Ek
]0→ A∨[S′Ek

]0→ 0, where A = Hom(X∗(Z),Q/Z). The
Gal(Ek/F)-modules Y and Y [S′Ek

] are cohomologically trivial (for Tate cohomology) and we have a
short exact sequence 0→ Y [S′Ek

]0→ Y [S′Ek
]→ Y → 0, therefore Y [S′Ek

]0 is also cohomologically trivial.
This implies in particular that there exists 3 ∈ Y [S′Ek

]
NEk /F

0 mapping to the class of cuniv(Ek, S′, N ) in
A∨[S′Ek

]
NEk /F

0 /IEk/F (A∨[S′Ek
]0). Since IEk/F (Y [S′Ek

]0) surjects to IEk/F (A∨[S′Ek
]0), we can even assume

that the image [3] of3 in A∨[S′Ek
]

NEk /F

0 equals cuniv(Ek, S′, N ). Then3∈Y [S′Ek
, Ṡ′Ek
]

NEk /F

0 , and applying
Lemma 5.2.1 to N3 ∈ Y [S′Ek

]
NEk /F

0 and taking the coboundary, we obtain the identity between 2-cocycles
taking values in Z

d( N
√
αk) t

Ek/F
N3= d( N

√
αk+1) t

Ek+1/F
!k(N3).

Using identity (5.2.3) on both sides, we obtain

ξk(S′, N )= d( N
√
αk+1) t

Ek+1/F
[!k(3)].

Moreover

[!k(3)] =!k([3])=!k(cuniv(Ek, S′, N ))=!k(9(Ek, S′, N )(IdP(Ek ,Ṡ′Ek
,N )))

equals 9(Ek+1, S′, N )(ρk(S′, N )) by commutativity of diagram (5.2.4). Therefore

ξk(S′, N )= d( N
√
αk+1) t

Ek+1/F
9(Ek+1, S′, N )(ρk(S′, N ))= ρk(S′, N )∗(ξk+1(S′, N )).

(2) Let 3 ∈ Y [S′Ek
, Ṡ′Ek
]

NEk /F

0 . The inflation of ιk(S′, N )(3) is the element of

Z1(P(Ek+1, Ṡ′Ek+1
, N )→ Ek+1(S′, N ), Z→ T (OS′∪N ))
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mapping x � σ ∈ Ek+1(S′, N ) to

9(Ek, S′, N )−1([3])(ρk(S′, N )(x))× ( N
√
αk t

Ek/F
N3)(σ).

By (5.2.4) we have 9(Ek, S′, N )−1([3])◦ρk(S′, N )=9(Ek+1, S′, N )(!k([3])) and moreover !k([3])=
[!k(3)]. The conclusion then follows from Lemma 5.2.1 applied to N3. �

Thanks to the first part of Proposition 5.2.3 and obvious compatibilities with respect to enlarging S′

and replacing N by a multiple, we can now define the extension P→ E of Gal(F/F) as the projective
limit of the extensions P(Ek, Ṡ′Ek

, N )→ Ek(S′, N ) over triples (k, N , S′) such that S′ ⊃ Sk .
Let Z ↪→ T be an injective morphism of commutative algebraic groups over F with Z finite and T a

torus. Let Y = X∗(T ) and Y = X∗(T/Z), and denote

Y [VF , V̇ ]N/F
0 = lim

−−→
k,S′

Y [S′Ek
, Ṡ′Ek
]

NEk /F

0 ,

where the limit is over pairs k, S′ such that Ek splits T and S′ ⊃ Sk .

Corollary 5.2.4. Let Z ↪→ T be an injective morphism of commutative algebraic groups over F with Z
finite and T a torus. Let T = T/Z and let Y = X∗(T ), Y = X∗(T ). Then the morphisms (ιk(S′, N ))k,S′,N ,
for k, S′, N such that Ek splits T, exp(Z) | N and S′ ⊃ Sk , splice into a morphism

ι : Y [VF , V̇ ]N/F
0 → Z1(P→ E, Z→ T (F)). (5.2.5)

In Section 5.5 we will check that the class of the extension P→ E coincides with Kaletha’s “canonical
class” from [Kaletha 2018]. Granting this, it is clear that ι in (5.2.5) lifts the cohomological isomorphism
ιV̇ of Theorem 3.7.3 there.

5.3. Generalized Tate–Nakayama morphism for the local towers. In this section we fix v ∈ V. We want
to study the relation of the map ι defined in Corollary 5.2.4 with the localization map locv defined in
[Kaletha 2018, §3.6]. This will necessitate defining locv (for varying k, S′, N ) for cochains rather than in
cohomology. The first step is to recall several constructions from [Kaletha 2016]. We choose notation
similar to the global case instead of notation used there. For k ≥ 0 and N ≥ 1, we have a central extension

P(Ek,v̇, N )→ Ek,v(N )→ Gal(Fv/Fv),

where P(Ek,v̇, N ) :=ResEk,v̇/Fv (µN )/µN . In particular, M(Ek,v̇, N ) := X∗(P(Ek,v̇, N )) can be identified
with Z/NZ[Gal(Ek,v̇/Fv)]0. The central extension

Ek,v(N ) := P(Ek,v̇, N ) �
ξk,v(N )

Gal(Fv/Fv)

is defined using the 2-cocycle

ξk,v(N ) := d( N
√
αk,v) t

Ek,v̇/Fv
cuniv(Ek,v̇, N ),

where cuniv(Ek,v̇, N ) ∈ X∗(P(Ek,v̇, N ))∨ is killed by NEk,v̇/Fv , and is defined as f 7→ f (1).
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Suppose Z ↪→ T is an injective morphism of commutative algebraic groups over Fv with Z finite,
exp(Z) | N and T a torus split by Ek,v̇. Denote Y = X∗(T ) and Y = X∗(T/Z). We have a morphism

ιk,v(N ) : Y
NEk,v̇ /Fv →Z1(P(Ek,v̇, N )→ Ek,v(N ), Z→ T (Fv))

3 7→
(
x � σ 7→9(Ek,v̇, N )−1([3])(x)× ( N

√
αk,v t

Ek,v̇/Fv
N3)(σ)

)
The following lemma and proposition, using formulations analogous to those of Lemma 5.2.1 and

Proposition 5.2.3, are essentially proved in [Kaletha 2016, Lemmas 4.5 and 4.7]. Note that we have
arranged for the 1-cochain denoted αk in Lemma 4.5 there to be trivial. This slightly simplifies formulae.
Then Kaletha’s proof becomes a simpler analogue of that of Lemma 5.2.1, using AW2

k(
N
√
αk+1,v)= N

√
αk,v

instead of AWES2
k(

N
√
αk+1)= N

√
αk .

Lemma 5.3.1. Let T be a torus defined over Fv. Denote Y = X∗(T ). Let k be big enough so that Ek,v̇

splits T. Let N ≥ 1 be an integer. Let 3 ∈ Y NEk,v̇ /Fv. Then we have an equality of maps Gal(Fv/Fv)→
T (Fv):

N
√
αk,v t

Ek,v̇/Fv
3= N

√
αk+1,v t

Ek+1,v̇/Fv
3.

As in the global case, there are natural morphisms ρk,v(N ) : P(Ek+1,v̇, N )→ P(Ek,v̇, N ), denoted p
in [Kaletha 2016, (3.2)]. There are also natural morphisms as N varies, which we do not bother to name.
As in the global case (5.2.4), for any finite commutative algebraic group Z over Fv such that exp(Z) | N
and the Galois action on A := X∗(Z) factors through Gal(Ek,v̇/Fv), we have a commutative diagram:

Hom(P(Ek,v̇, N ), Z) (A∨)NEk,v̇ /Fv

Hom(P(Ek+1,v̇, N ), Z) (A∨)NEk+1,v̇ /Fv

9(Ek,v̇,N )

ρk,v(N )∗

9(Ek+1,v̇,N )

(5.3.1)

Proposition 5.3.2. Let k ≥ 0 and N ≥ 1.

(1) Composition with ρk,v(N ) maps ξk+1,v(N ) to ξk,v(N ). In particular, we have a natural morphism of
extensions

Ek+1,v(N )→ Ek,v(N ), x � σ 7→ ρk,v(N )(x)� σ.

(2) Let Z ↪→ T be an injective morphism of commutative algebraic groups over Fv with Z finite and T a
torus split by Ek,v̇. Assume that exp(Z) | N. Let Y = X∗(T ) and Y = X∗(T/Z). Then the following
diagram commutes

Y NEk,v̇ /Fv Z1(P(Ek,v̇, N )→ Ek,v(N ), Z→ T (Fv))

Y NEk+1,v̇ /Fv Z1(P(Ek+1,v, N )→ Ek+1,v(N ), Z→ T (Fv))

ιk,v(N )

ιk+1,v(N )

where the right vertical map is inflation for the morphism of extensions defined above.
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Proof. The proof is similar to that of Proposition 5.2.3, in fact slightly easier, so we omit it. �

Let Z ↪→ T be an injective morphism of commutative algebraic groups over Fv with Z finite and T a
torus. Let Y = X∗(T ) and Y = X∗(T/Z). Denote Y N/Fv = Y NEk,v̇ /Fv for any k such that Ek,v̇ splits T.

Corollary 5.3.3. Let Z ↪→ T be an injective morphism of commutative algebraic groups over Fv with Z
finite and T a torus. Let Y = X∗(T ) and Y = X∗(T/Z). Then the morphisms (ιk,v(N ))k,N , for k, N such
that Ek,v̇ splits T and exp(Z) | N, splice into a morphism

ιv : Y N/Fv → Z1(Pv→ Ev, Z→ T (Fv))

lifting the morphism in cohomology of [Kaletha 2016, Theorem 4.8].

5.4. Localization. In this section fix v ∈ V . We want to study the relationship between ι (Corollary 5.2.4),
ιv (Corollary 5.3.3) and locv [Kaletha 2018, §3.6]. We study it for fixed k ≥ 0 first.

Recall [Kaletha 2018, (3.11)] the morphisms lock,v(S′, N ) : P(Ek,v̇, N )→ P(Ek, Ṡ′Ek
, N ). If v ∈ S′ it

is dual to f 7→ (σ 7→ f (σ, v̇)). We define it to be trivial if v 6∈ S′. It is Gal(Ek,v̇/Fv)-equivariant, and
there are obvious commuting diagrams as S′ and N vary.

For M a Gal(Ek/F)-module, recall the morphism lk,v :M[S′Ek
]

NEk /F→M NEk,v̇ /Fv (denoted lk
v in Lemma

3.7.2 there) defined by

lk,v(3)=
∑

r∈R′k,v

r−1(3(r · v̇k))

if v ∈ S′, and zero otherwise.

Lemma 5.4.1. Let T be a torus defined over F. Denote Y = X∗(T ). Let k be big enough so that Ek

splits T. Let N ≥ 1 be an integer. Let S′ be a finite subset of V containing Sk . Let 3 ∈ Y [S′Ek
]

NEk /F

0 .
Let i ≥ 0 be big enough so that N

√
αk,v takes values in E×k+i,v̇. Then we have an equality of maps

Gal(F/F)→ T (F ⊗F Fv):

prv( N
√
αk t

Ek/F
3)= ES1

R′k+i,v
( N
√
αk,v t

Ek,v̇/Fv
lk,v(3))× d(prv(

N
√
βk) t

Ek/F
3)× (prv(δk(N )) t

Ek/F
3).

In particular, upon restriction to Gal(Fv/Fv) and projection to T (Fv):

prv̇( N
√
αk t

Ek/F
3)= ( N

√
αk,v t

Ek,v̇/Fv
lk,v(3))× d(prv̇(

N
√
βk) t

Ek/F
3)× (prv̇(δk(N )) t

Ek/F
3).

Note that the first equality implicitly uses the identification

IndGal(Ek+i/F)
Gal(Ek+i,v̇/Fv)(E

×

k+i,v̇)
∼
−→ (Ek+i ⊗F Fv)×, f 7→

∏
g∈Gal(Ek+i,v̇/Fv))\Gal(Ek+i/F)

g−1( f (g))

to see ES1
R′k+i,v

( N
√
αk,v tEk,v̇/Fv lk,v(3)) as a map Gal(Ek+i/F)→ T (Ek+i ⊗F Fv).
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Proof. Recall that by definition of δk(N ), we have N
√
αk=

N
√
α′k d( N

√
βk)δk(N ), and we compute unbalanced

cup products with these three terms separately. In the case of δk(N ) there is nothing to prove, so we first
consider d( N

√
βk). By [Kaletha 2016, Fact 4.3] we have

d( N
√
βk) t

Ek/F
3= d( N

√
βk t

Ek/F
3)

and thus upon restriction to Gal(Fv/Fv),

prv̇(d(
N
√
βk) t

Ek/F
3)= d(prv̇(

N
√
βk t

Ek/F
3)).

Let us now consider N
√
α′k . For σ ∈ Gal(Ek/F) we have

prv
((

N
√
α′k tEk/F

3
)
(σ )

)
=

∏
γ∈R′k,v

∏
τ∈Gal(Ek/F)

N
√
α′k(σ, τ )(στγ · v̇k)⊗ στ(3(γ · v̇k)).

Write τγ = rτ ′ and σr = r ′σ ′, where r, r ′ ∈ R′k,v and τ ′, σ ′ ∈ Gal(Ek,v̇/Fv) are functions of (σ, γ, τ ).
For σ and γ fixed the map τ 7→ (r, τ ′) is bijective onto R′k,v ×Gal(Ek,v̇/Fv). We obtain

prv
((

N
√
α′k tEk/F

3
)
(σ )
)
=

∏
γ∈R′k,v

∏
r∈R′k,v

∏
τ ′∈Gal(Ek,v̇/Fv)

N
√
α′k(r

′σ ′r−1, rτ ′γ−1)(r ′·v̇k)⊗r ′σ ′τ ′γ−1(3(γ ·v̇k)),

where r ′σ ′ = σr , r ′ ∈ R′k,v and σ ′ ∈ Gal(Ek,v̇/Fv) being functions of r . Recall that by definition,

N
√
α′k(r

′σ ′r−1, rτ ′γ−1)(r ′ · v̇k)= r ′( jk,v( N
√
αk,v(σ

′, τ ′))).

Therefore

prv
((

N
√
α′k tEk/F

3
)
(σ )

)
=

∏
γ∈R′k,v

∏
r∈R′k,v

∏
τ ′∈Gal(Ek,v̇/Fv)

r ′
(

jk,v( N
√
αk,v(σ

′, τ ′))⊗ σ ′τ ′γ−1(3(γ · v̇k))
)

=

∏
r∈R′k,v

r ′
( ∏
τ ′∈Gal(Ek,v̇/Fv)

jk,v( N
√
αk,v(σ

′, τ ′))⊗ σ ′τ ′(lk,v(3))

)
.

The map r 7→ r ′ from R′k,v to itself is bijective, so we can write this as∏
r ′∈R′k,v

r ′
( ∏
τ ′∈Gal(Ek,v̇/Fv)

jk,v( N
√
αk,v(σ

′, τ ′))⊗ σ ′τ ′(lk,v(3))

)
,

where σ ′ depends on r ′ and is the unique element of Gal(Ek,v̇/Fv) such that σ−1r ′σ ′ ∈ R′k,v. Choose
i ≥ 0 such that for any τ ′ ∈ Gal(Ek,v̇/Fv), N

√
αk,v(σ

′, τ ′) ∈ E×k+i,v̇. Using (5.1.1) we obtain

prv
((

N
√
α′k tEk/F

3
)
(σ )

)
=

∏
r ′∈R′k+i,v

r ′
( ∏
τ ′∈Gal(Ek,v̇/Fv)

jk+i,v( N
√
αk,v(σ

′, τ ′))⊗ σ ′τ ′(lk,v(3))

)

and it is easy to check that this is equal to ES1
R′k+i,v

( N
√
αk,v tEk/F lk,v(3))(σ ). �
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It is formal to check that for any finite commutative algebraic group Z over F such that exp(Z) | N
and the Galois action on A := X∗(Z) factors through Gal(Ek/F), and any finite set of places S′ of F
such that S′ ⊃ Sk , the following diagram is commutative.

Hom(P(Ek, Ṡ′Ek
, N ), Z) A∨[Ṡ′Ek

]
NEk /F

0

Hom(P(Ek,v̇, N ), Z) (A∨)NEk,v̇ /Fv

9(Ek ,S′,N )

(lock,v(S′,N ))∗ lk,v

9(Ek,v̇,S′,N )

(5.4.1)

Definition 5.4.2. For k≥0, N ≥1 and S′ a finite subset of V containing Sk , let ηk,v(S′, N ) :Gal(Fv/Fv)→
P(Ek, Ṡ′Ek

, N ) be the restriction of prv̇(δk(N ))tEk/F cuniv(Ek, S′, N ) to Gal(Fv/Fv).

Proposition 5.4.3. Let k ≥ 0, N ≥ 1 and S′ a finite subset of V containing Sk .

(1) The restriction of the 2-cocycle ξk(S′, N ) to Gal(Fv/Fv) equals

(lock,v(S′, N ))∗(ξk,v(N ))× d(ηk,v(S′, N ))

and so the morphism lock,v(S′, N ) : P(Ek,v̇, N )→ P(Ek, Ṡ′Ek
, N ) can be extended to a morphism

of extensions

lock,v(S′, N ) : Ek,v(N )→ Ek(S′, N ), x � σ 7→
lock,v(S′, N )(x)
ηk,v(S′, N )(σ )

� σ.

(2) Let Z ↪→ T be an injective morphism of commutative algebraic groups over F with Z finite and
T a torus split by Ek . Assume that exp(Z) | N. Let Y = X∗(T ) and Y = X∗(T/Z). Then for any
3 ∈ Y [S′Ek

, Ṡ′Ek
]

NEk /F

0 , the following identity holds in Z1(P(Ek,v̇, N )→ Ek,v(N ), Z→ T (Fv)):

prv̇(ιk(S
′, N )(3) ◦ lock,v(S′, N ))= ιk,v(N )(lk,v(3))× d(prv̇(

N
√
βk) t

Ek/F
N3). (5.4.2)

Proof. The proof is similar to that of Proposition 5.2.3, and we will be more concise.

(1) Let Z = P(Ek, Ṡ′Ek
, N ) and A= X∗(Z). As in the proof of Proposition 5.2.3 we can find an embedding

Z ↪→ T where T is a torus over F, split over Ek and such that Y := X∗(T ) is a free Z[Gal(Ek/F)]-module.
Let Y = X∗(T/Z). There exists 3 ∈ Y [S′Ek

, Ṡ′Ek
]

NEk /F

0 such that its image [3] in A∨[Ṡ′Ek
]

NEk /F

0 equals
cuniv(Ek, S′, N ). Applying Lemma 5.4.1 to N3 ∈ Y and taking the coboundary, we obtain the identity
between 2-cocycles Gal(Fv/Fv)2→ T (Fv)

d( N
√
αk) t

Ek/F
N3= (d( N

√
αk,v) t

Ek,v̇/Fv
Nlk,v(3))× d(prv̇(δk(N )) t

Ek/F
N3).

Since d( N
√
αk)

N
= 1, d( N

√
αk,v)

N
= 1 and δk(N )N

= 1 all three terms take values in Z ⊂ T (Fv) and the
equality can be written

d( N
√
αk) t

Ek/F
[3] =

(
d( N
√
αk,v) t

Ek,v̇/Fv
lk,v([3])

)
× d(prv̇(δk(N )) t

Ek/F
[3])
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using the pairing µN × A∨→ Z . Using the fact that

lk,v(cuniv(Ek ,S′,N ))=9(Ek,v̇,S′,N )(lock,v(S′, N ))

thanks to (5.4.1), we obtain the desired equality.

(2) This is a direct consequence of Lemma 5.4.1 applied to N3, using also the commutative diagram
(5.4.1) with [3] in the top right corner. �

Lemma 5.4.4. Let T be a torus defined over F. Denote Y = X∗(T ). Let k be big enough so that Ek

splits T. Let N ≥ 1 be an integer. Let S′ be a finite subset of V containing Sk+1. Let 3 ∈ Y [S′Ek
]

NEk /F

0 .
Then we have an equality of maps Gal(F S′∪N/F)→ Y ⊗Z I(F, S′ ∪ N )[N ]:

δk(N ) t
Ek/F

3= δk+1(N ) t
Ek+1/F

!k(3) (5.4.3)

and an equality in Y ⊗Z I(F, S′ ∪ N ):

N
√
βk t

Ek/F
3= N

√
βk+1 t

Ek+1/F
!k(3). (5.4.4)

Note that in (5.4.4) the left hand side belongs to Y ⊗Z I(F, Sk ∪ N ).

Proof. For (5.4.3) the proof is identical to that of Lemma 5.2.1. For (5.4.4) the proof is similar and easier,
so we omit it. �

The localization maps lk,v are compatible with increasing k, i.e., lk+1,v ◦ !k = lk,v. This is proved in
[Kaletha 2018, Lemma 3.7.2]. Thus for any embedding Z ↪→ T of commutative algebraic groups over F
with Z finite and T a torus, they splice into

lv : Y [VF , V̇ ]N/F
0 → Y N/Fv ,

where Y = X∗(T/Z).
The localization morphisms lock,v(S′, N ) : P(Ek,v̇, N )→ P(Ek, Ṡ′Ek

, N ) are also compatible with
varying k. We formulate this compatibility, together with (5.2.4), (5.3.1) and (5.4.1), using a commutative
cubic diagram below. For any finite commutative algebraic group Z over F such that exp(Z) | N and the
Galois action on A := X∗(Z) factors through Gal(Ek/F), and any finite set of places S′ of F such that
S′ ⊃ Sk+1, the following cubic diagram is commutative.

Hom(P(Ek, Ṡ′Ek
, N ), Z) A∨[Ṡ′Ek

]
NEk /F

0

Hom(P(Ek,v̇, N ), Z) (A∨)NEk,v̇ /Fv

Hom(P(Ek+1, Ṡ′Ek+1
, N ), Z) A∨[Ṡ′Ek+1

]
NEk+1/F

0

Hom(P(Ek+1,v̇, N ), Z) (A∨)NEk+1,v̇ /Fv

9(Ek ,S′,N )

ρk(S′,N )∗
lock,v(S′,N )∗

!k

lk,v

9(Ek,v̇,N )

ρk,v(N )∗
9(Ek+1,S′,N )

lock+1,v(S′,N )∗

lk+1,v9(Ek+1,v̇,N )

(5.4.5)
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In fact the commutativity of the left face follows from the commutativity of the other faces and the fact
that the morphisms 9 are isomorphisms.

Proposition 5.4.5. (1) For any k ≥ 0, N ≥ 1 and S′ a finite subset of V containing Sk+1 we have
ηk,v(S′, N )= ρk(S′, N )∗(ηk+1,v(S′, N )), and a commutative diagram of central extensions

Ek+1,v(N ) Ek+1(S′, N )

Ek,v(N ) Ek(S′, N )

lock+1,v(S′,N )

lock,v(S′,N )

(5.4.6)

Therefore as k, S′, N vary, the morphisms lock,v(S′, N ) yield locv : Ev→ E .

(2) Let Z ↪→ T be an injective morphism of commutative algebraic groups over F with Z finite and T a
torus. Let Y = X∗(T ) and Y = X∗(T/Z). Let 3 ∈ Y [VF , V̇ ]N/F

0 . For k, S′, N such that Ek splits T,
N ≥ 1 is divisible by exp(Z), S′ contains Sk and 3 comes from an element 3k ∈ Y [S′k, Ṡ′Ek

]
NEk /F

0 , let
κv(3)= prv̇(

N
√
βk)tEk/F N3k ∈ T (Fv). As the notation suggests, it does not depend on the choice

of k, S′, N. Then the following identity holds in Z1(Pv→ Ev, Z→ T (Fv)):

prv̇(ι(3) ◦ locv)= ιv(lv(3))× d(κv(3)). (5.4.7)

Proof. (1) The equality ηk,v(S′, N )= ρk(S′, N )∗(ηk+1,v(S′, N )) follows from (5.4.3) in Lemma 5.4.4,
using the same argument as in the proof of Proposition 5.2.3. Commutativity of diagram (5.4.6) follows
from this equality and the equality lock,v(S′, N )◦ρk,v(N )=ρk(S′, N )◦lock+1,v(S′, N ), which is equivalent
to commutativity of the left face of (5.4.5) for Z = P(Ek, Ṡ′Ek

, N ).

(2) The fact that κv(3) does not depend on the choice of k, S′, N follows from (5.4.4) in Lemma 5.4.4,
and (5.4.7) is (5.4.2) in Proposition 5.4.3. �

5.5. Comparison with Kaletha’s canonical class. We follow the convention in [Kaletha 2018] and define,
for a projective system (Qk)k≥0, (Qk+1 → Qk)k≥0 of commutative algebraic groups over F and R a
F-algebra, (lim

←−−k Qk)(R)= lim
←−−k Qk(R). In particular

lim
−−→

E/F finite
((lim
←−−

k
Qk)(E))→ (lim

←−−
k

Qk)(F)

is not surjective in general. For Gal(F/F)- or Gal(Fv/Fv)-modules which arise naturally as projective
limits (such as Q(F), Q(Fv) or Q(A) for Q = lim

←−−k Qk as above), we will only consider continuous
cochains, for the topology on projective limits induced by the discrete topology on each term.

As in that work, we let P = lim
←−−k,S′,N P(Ek, Ṡ′Ek

, N ). Each term P(Ek, Ṡ′Ek
, N ) is finite, so that we

can also simply consider the profinite Gal(F/F)-module P(F), which equals P(Fv) for any v ∈ V.
The 2-cocycles ξk(S′, N ) are compatible by Proposition 5.2.3, and so we obtain a 2-cocycle ξ ∈

Z2(F, P) which corresponds to the extension P→ E of Gal(F/F) introduced at the end of Section 5.2.
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The goal of this section is to check that ξ represents the canonical class in H 2(Gal(F/F), P) defined in
[Kaletha 2018, §3.5], so that our P→ E is isomorphic to Kaletha’s, canonically by Proposition 3.4.6 there.

As in §3.3 there, fix a cofinal sequence (Nk)k≥0 in Z>0 (for the partial order defined by divisibility) with
N0 = 1 and such that for any k ≥ 0, Sk contains all places dividing Nk (this is possible up to enlarging the
finite sets Sk). To simplify notation we write Pk = P(Ek, Ṡk,Ek , Nk), Mk = M(Ek, Ṡk,Ek , Nk)= X∗(Pk),
ρk : Pk+1 � Pk and cuniv,k = cuniv(Ek, Sk, Nk).

First we need to go back to the construction of a resolution of P by pro-tori in [Kaletha 2018, Lemma
3.5.1].

Lemma 5.5.1. There exists a family of resolutions, for k ≥ 0,

1→ Pk→ Tk→ T k→ 1

of Pk by tori Tk, T k defined over F and split by Ek , and morphisms rk : Tk+1→ Tk and r k : T k+1→ T k ,
such that

(1) For all k ≥ 0, the diagram

Pk+1 Tk+1 T k+1

Pk Tk T k

ρk rk r k (5.5.1)

is commutative and rk, r k are surjective with connected kernels.

(2) Letting Yk= X∗(Tk) and Y k= X∗(T k), there exists a family (3k)k≥0 where3k ∈Y k[Sk,Ek , Ṡk,Ek ]
NEk /F

0

maps to cuniv,k ∈ M∨k [Ṡk,Ek ]
NEk /F

0 and !k(3k)= r k(3k+1) in Y k[Sk+1,Ek+1, Ṡk+1,Ek+1]
NEk+1/F

0 .

Proof. For k≥ 0 let X ′k =Z[Gal(Ek/F)][Mk], so that there is a canonical surjective map of Z[Gal(Ek/F)]-
modules X ′k → Mk . Let X0 = X ′0, and for k ≥ 0 let Xk+1 = Xk ⊕ X ′k+1. We have a natural surjective
morphism Xk → Mk , which for k > 0 is obtained as the sum of Xk−1→ Mk−1 ↪→ Mk and X ′k → Mk .
Let Tk be the torus over F such that X∗(Tk)= Xk , and let Uk = Tk/Pk . Compared to the construction
in [Kaletha 2018, Lemma 3.5.1], the only difference is that X ′k+1 is free with basis Mk+1 instead of
Mk+1 r Mk . Let Yk = X∗(Tk) and Y k = X∗(Uk), so that we have an exact sequence

0→ Yk→ Y k→ M∨k → 0.

Let X ′k = ker(X ′k→ Mk), Y ′k = HomZ(X ′k,Z) and Y ′k = HomZ(X ′k,Z) Since X ′k is a free Z[Gal(Ek/F]-
module, using the same argument as in Proposition 5.2.3 we can find ϒk ∈ Y ′k[Sk,Ek , Ṡk,Ek ]

NEk /F

0 mapping
to cuniv,k . For all k ≥ 0 we can identify Y k+1 with the group of f ⊕ g ∈ Y k ⊕ Y ′k+1 such that [ f ] = [g]
in M∨k . We use these identifications to construct 3k inductively from ϒk . Let 30 = ϒ0, and for
k ≥ 0 let 3k+1 =!k(3k) ⊕ ϒk+1 ∈ (Y k ⊕ Y ′k+1)[Sk+1,Ek+1, Ṡk+1,Ek+1]

NEk+1/F

0 . Thanks to the equality
!k(cuniv,k)= ρk(cuniv,k+1), we have that 3k+1 ∈ Y k+1[Sk+1,Ek+1, Ṡk+1,Ek+1]

NEk+1/F

0 . �
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Let us now recall how Kaletha pins down the canonical class ξ in [Kaletha 2018, Proposition 3.5.2].
For v ∈ V, let k0,v be the minimal k ≥ 0 such that v ∈ Sk . For k ≥ k0,v let Pk,v = P(Ek,v̇, Nk). As in
the global case (ξk,v)k≥k0,v induce a continuous 2-cocycle ξv ∈ Z2(Gal(Fv/Fv, Pv) where Pv = lim

←−−k Pk,v .
Note that unlike in the global case, the cohomology class of ξv is simply characterized by the property that
its image in H 2(Gal(Fv/Fv), Pk,v) is that of ξk,v for every k ≥ k0,v . Uniqueness follows from vanishing
of lim
−−→

1
k H 1(Gal(Fv/Fv), Pk,v).

For v ∈ V denote R′v = (R′k,v)k≥0. Consider a projective system (Qk)k≥0, (Qk+1 → Qk)k≥0 of
commutative algebraic groups over F, and let Q = lim

←−−k Qk . The Eckmann–Shapiro maps, for k, i, j ≥ 0,

ES j
R′k+i,v
: C j (Gal(Ek+i,v̇/Fv), Qk(Ek+i,v̇))→ C j (Gal(Ek+i/F), Qk(Ek+i ⊗F Fv))

are compatible (for k fixed and varying i , and then also for varying k) and yield a pro-Eckmann–Shapiro
map

ES j
R′v
: C j (Fv, Q(Fv))→ C j (F, Q(F ⊗F Fv)).

This is explained in Appendix B of the same work, although notations differ: our set of right coset
representatives R′k,v corresponds to the image of the composition in Lemma B.1, 1 there, by mapping
r ∈ R′k,v to r−1.

Define xk ∈ Z2(Gal(F/F), Pk(A)) by xk =
∏
v∈Sk

ES2
R′v
(lock,v(ξk,v))∈ Z2(A, Pk). The family (xk)k≥0

is easily seen to be compatible and so it defines a continuous 2-cocycle x ∈ Z2(Gal(F/F), P(A)). Kaletha
checks that the class of x in H 2(Gal(F/F), P(A)) does not depend on the choice of sets of representatives
Rk,v, nor does it depend on the choice of ξv in its cohomology class.

Kaletha shows [2018, Proposition 3.5.2] that there is a unique class cl(ξcan) ∈ H 2(Gal(F/F), P(F))
such that

(1) for any k ≥ 0, the image of cl(ξcan) in H 2(F, Pk) is cl(ξk);

(2) the image of cl(ξcan) in H 2(A, T → T ) coincides with the image of cl(x).

Adelic cohomology groups of complexes of tori were defined and studied in [Kottwitz and Shelstad 1999,
Appendix C], see [Kaletha 2018, §3.5] for the case of projective systems of complexes of tori satisfying a
Mittag-Leffler condition. The class cl(ξcan) does not depend on the choice of a suitable pro-resolution
T → T of P by pro-tori, but for the following proposition it will be convenient to use the pro-resolution
introduced in Lemma 5.5.1.

Proposition 5.5.2. The 2-cocycle ξ belongs to the canonical class cl(ξcan)∈ H 2(F, P) defined in [Kaletha
2018, Definition 3.5.4].

Proof. The first property above is obviously satisfied. The second property is equivalent to the existence
of a compatible family (ak, bk)k≥0 where ak ∈ C1(F, Tk) and bk ∈ T k(AF ) are such that ak = d(bk) in
C1(A, T k) and

ξk =
∏
v∈Sk

ES2
R′k+i,v

(lock,v(ξk,v))× d(ak)
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in Z2(A, Tk), for i ≥ 0 large enough.
By Lemma 5.4.1 and thanks to the fact that 3k has support in the finite set Sk,Ek , for i ≥ 0 big enough

we have
Nk

√
α′k tEk/F

Nk3k =
∏
v∈Sk

ES1
R′k+i,v

( Nk
√
αk,v t

Ek,v̇/Fv
Nklk,v(3k))

as maps Gal(Ek/F)→ Tk(AEk+i ). Using an argument similar to the proof of Proposition 5.4.3, we deduce

d
(

Nk

√
α′k tEk/F

Nk3k

)
=

∏
v∈Sk

ES2
R′k+i,v

(
d( Nk
√
αk,v t

Ek,v̇/Fv
Nklk,v(3k))

)
=

∏
v∈Sk

ES2
R′k+i,v

(lock,v(ξk,v))

in Z2(Gal(F/F), ker(Tk(AF )→ T k(AF ))). This leads us to define

ak =
Nk
√
αk

Nk
√
α′k

t
Ek/F

Nk3k ∈ C1(Gal(Ek/F), Tk(AEk+i )).

Then
ak =

αk

α′k
t

Ek/F
3k = d(bk),

where bk = βk tEk/F 3k ∈ T (AEk ).
The fact that r k(bk+1) = bk for all k ≥ 0 follows directly from (5.4.4) in Lemma 5.4.4. Using

Nk+1
√
αk

Nk+1/Nk = Nk
√
αk and Lemma 5.2.1 we find

Nk
√
αk t

Ek/F
Nk3k =

Nk+1
√
αk t

Ek/F
Nk+13k =

Nk+1
√
αk+1 t

Ek+1/F
Nk+1!k(3k).

Lemma 5.2.1 also holds with N
√
α? replaced by N

√
α′? because this family also satisfies AWES2

k
(

N
√
α′k+1

)
=

N
√
α′k , and so we similarly find

Nk

√
α′k tEk/F

Nk3k =
Nk+1

√
α′k+1 t

Ek+1/F
Nk+1!k(3k).

The fact that rk(ak+1) = ak for all k ≥ 0 follows from these two equalities and r k(3k+1) =!k(3k)

(Lemma 5.5.1). �

6. On ramification

6.1. A ramification property. We deduce a ramification property for Kaletha’s generalized Galois cocy-
cles from our explicit construction. Such a property is important to state Arthur’s multiplicity formula in
[Kaletha 2018, §4.5], namely to guarantee that the global adelic packets 5ϕ are well defined; see Lemma
4.5.1 there.

Proposition 6.1.1. Let G be a connected reductive group over F, and Z a finite central subgroup
defined over F. For any z ∈ Z1(P → E, Z → G), there exists a finite subset S′ of V containing all
archimedean places such that for any v ∈ V r S′, prv̇(z ◦ locv) is unramified, i.e., inflated from an element
of Z1(Gal(K (v)/Fv),G(O(K (v)))) for some finite unramified extension K (v)/Fv.



Akizuki–Witt maps and Kaletha’s global rigid inner forms 869

Proof. Let us first check that for z′ ∈ Z1(P → E, Z → G) in the same class as z, this ramification
property holds for z if and only if it holds for z′ (in general for distinct finite sets of places). There exists
g ∈ G(F) such that for any w ∈ E , z′(w) = g−1z(w)w(g). Note that the action of E on G(F) factors
through Gal(F/F). There exists a finite set S′′ ⊂ V containing all archimedean places and a finite Galois
extension E/F unramified away from S′′ such that g ∈ G(O(E, S′′)). Thus if z satisfies the ramification
property for S′, z′ satisfies it for S′ ∪ S′′.

Thanks to [Kaletha 2018, Lemma 3.6.2] it is enough to prove the statement in the case where G is
a torus T. We remark that this reduction could force us to enlarge S′. As usual let Y = X∗(T/Z). Let
N = exp(Z). There exists k ≥ 0 such that Ek splits T and a finite S′ ⊂ V containing all places dividing
N and Sk such that z is inflated from a unique element of Z1(P(Ek, Ṡ′Ek

, N )→ Ek(S′, N ), Z→ T (OS′)),
which we also denote by z. By Proposition 3.7.8, 3 there, up to replacing z with a cohomologous cocycle
we can assume that z= ιk(S′, N )(3) for some3∈ Y [S′Ek

, Ṡ′Ek
]

NEk /F

0 , up to enlarging S′ so that Conditions
3.3.1 there are satisfied.

For v ∈ V r S′, the morphism lock,v(S′, N ) : Ek,v(N )→ Ek(S′, N ) is trivial on P(Ek,v̇, N ) and so
it factors through Gal(Fv/Fv). Thanks to ramification properties of δk(N ) (see Definition 5.1.4) and
by definition of ηk,v(S′, N ) (see Definition 5.4.2), ηk,v(S′, N ) : Gal(Fv/Fv)→ P(Ek, Ṡ′Ek

, N ) factors
through Gal(Fnr

v /Fv). By construction in Proposition 5.1.3, N
√
βk takes values in I(F, Sk ∪ N ). Thus by

definition of κv(3) in Proposition 5.4.5, κv(3) ∈ T (O(Fnr
v )). The equality (5.4.7) in Proposition 5.4.5,

which is inflated from (5.4.2) in Proposition 5.4.3, shows that prv̇(z ◦ locv) is unramified. �

Note that it does not seem possible to choose K (v)= Kv for some finite extension K/F.

6.2. Alternative proof. As announced in the introduction to this paper, we now give an alternative proof
of Proposition 6.1.1, which relies solely on Kaletha’s definition of the canonical class, and not on
constructions in the present paper.

Alternative proof of Proposition 6.1.1. For v ∈ V temporarily let ξv ∈ Z2(Gal(Fv/Fv), Pv) be any
element of Z2(Gal(Fv/Fv), Pv) representing the class defined in [Kaletha 2016]. Choose a tower of
resolutions (1→ Pk → Tk → Uk → 1)k≥0 as in [Kaletha 2018, Lemma 3.5.1], and as before write
T (A) = lim

←−−k Tk(A) and U (A) = lim
←−−k Uk(A). Temporarily let ξ be any element of Z2(Gal(F/F), P)

representing the canonical class defined in §3.5 there. Of course the 2-cocycles constructed in this paper
are examples of elements of these cohomology classes, but we want to emphasize that the present proof
does not require constructions in previous sections.

By definition of the canonical class there exists a ∈ C1(A, T ) and b ∈U (A) such that

ξ =
∏
v∈V

ES2
R′v
(locv(ξv))× d(a)

in Z2(A, T ) and a = d(b) in C1(A,U ). In particular for any v ∈ V we have

resv(ξ)= locv(ξv)× d(av),
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where resv denotes restriction to Gal(Fv/Fv) and av = prv̇(resv(a)). This equality holds in Z2(Fv, T ),
but ξ and locv(ξv) both take values in P. Let bv = prv̇(b), and choose a lift b̃v of bv in T (Fv). This is
possible thanks to the surjectivity of all maps Pk+1→ Pk , by a simple diagram chasing argument (or
more conceptually using vanishing of lim

←−−

1
k Pk). Let a′v = av/ d(b̃v). Then a′v ∈ C1(Fv, P), and we have

the equality
resv(ξ)= locv(ξv)× d(a′v) in Z2(Fv, P).

Fix k ≥ 0. For v ∈ V denote by ak,v (resp. bk,v, b̃k,v, a′k,v) the image of av (resp. bv, b̃v, a′v) in
C1(Fv, Tk) (resp. Uk(Fv), Tk(Fv), C1(Fv, Pk)). Let us check that there is a finite set S′ of places of
F such that for all v 6∈ S′, a′k,v ∈ C1(Fv, Pk) is unramified. There exists a finite set S′ ⊃ Sk and a
finite Galois extension K of F containing Ek , splitting Tk and unramified away from S′ such that
ak ∈ C1(K/F, Tk(AK )S′) and bk ∈ Uk(AK )S′ where Tk(AK )S′ is defined as X∗(Tk)⊗Z I (K , S′). So
for v 6∈ S′, ak,v ∈ C1(K v̇/Fv, Tk(O(K v̇))) is unramified. The group Pk = ker(Tk → Uk) is killed by
Nk , and so there is a unique morphism Uk → Tk such that the composition Uk → Tk → Uk is the
Nk-power map. Thus for any v 6∈ S′, b̃k,v ∈ Tk(O(K v̇)

(Nk)) where O(K v̇)
(Nk) is the finite étale extension

of O(K v̇) obtained by adjoining all Nk-th roots of elements in O(K v̇)
×. We conclude that for v 6∈ S′,

a′k,v ∈ C1(Gal(O(K v̇)
(Nk)/O(Fv)), Pk) and

resv(ξk)= d(a′k,v) in Z2(Fv, Pk),

where ξk is ξ composed with the surjection P→ Pk . This easily implies Proposition 6.1.1. �

Note that the fact that for a fixed k, resv(ξk) is the coboundary of an unramified 1-cochain for almost
all v ∈ V is straightforward from the definition. What the proof above shows is that the cochain a′k,v
coming from “infinite level”, which is unique up multiplication by a 1-coboundary, is unramified for
almost all v ∈ V.

6.3. A noncanonical class failing the ramification property.

Proposition 6.3.1. Assume that N1 = 2 and that S1 is big enough so that P1 is nontrivial. Then there
exists ξ bad

∈ Z2(F, P) which coincides with the canonical class in lim
←−−k H 2(F, Pk) and such that for

infinitely many places v of F, the 1-cochain av ∈ C1(Fv, P) such that resv(ξ bad)= locv(ξv) d(av) is such
that its image a1,v ∈ C1(Fv, P1) is ramified.

Note that av is unique up to a 1-coboundary by [Kaletha 2018, Proposition 3.4.5], and so the property
“a1,v is unramified” is well defined at all places v ∈ V r S1.

Proof. Fix a tower of resolutions (Tk→Uk)k≥0 of Pk by tori as in §3.5 of that work, and denote by πk

the morphism (Tk+1→Uk+1)→ (Tk→Uk). Recall (discussion before Proposition 3.5.2 in that work
and [Weibel 1994, Theorem 3.5.8]) that for any j ≥ 0 the following short sequences are exact:

1→ lim
←−−

k

1 H j (F, Pk)→ H j+1(F, P)→ lim
←−−

k
H j+1(F, Pk)→ 1

1→ lim
←−−

k

1 H j (A, Tk→Uk)→ H j+1(A, T →U )→ lim
←−−

k
H j+1(A, Tk→Uk)→ 1.

(6.3.1)



Akizuki–Witt maps and Kaletha’s global rigid inner forms 871

For any k ≥ 0 and j ≥ 0 the natural map H j (F, Pk)→ H j (F, Tk→Uk) is an isomorphism because

1→ Pk(F)→ Tk(F)→Uk(F)→ 1

is exact (whereas Tk(A)→Uk(A) is not surjective in general). By the five lemma this implies that the
first short exact sequence (6.3.1) is isomorphic to

1→ lim
←−−

k

1 H j (F, Tk→Uk)→ H j+1(F, T →U )→ lim
←−−

k
H j+1(F, Tk→Uk)→ 1.

One could also check that H j (F, P)→ H j (F, T→U ) is an isomorphism more directly by manipulating
cocycles.

By [Kaletha 2018, Lemma 3.5.3] the natural morphism

lim
←−−

k

1 H 1(F, Pk)→ lim
←−−

k

1 H 1(A, Tk→Uk) (6.3.2)

is an isomorphism. So let us first define a nontrivial element of lim
←−−k

1 H 1(A, Tk→Uk). Choose, for any
k ≥ 1, a place vk ∈ V r S1 such that Ek/F is split above vk and the vk are distinct. For any k ≥ 1, the tori
Tk , Uk , T1 and U1 are split over Fvk , and the surjective morphism of tori Uk→U1 splits over Fvk since it
has connected kernel. Therefore

H 1(Fvk , Pk)= H 1(Fvk , Tk→Uk)'Uk(Fvk )/Tk(Fvk )

maps onto

H 1(Fvk , P1)= H 1(Fvk , T1→U1)'U1(Fvk )/T1(Fvk ).

Since we have assumed N1 = 2, over Fvk the multiplicative group P1 is isomorphic to µr
2 for some

r > 1. For each k ≥ 1 let ck,vk ∈ Z1(Fvk , Pk)⊂ Z1(Fvk , Tk→Uk) be such that its image in H 1(Fvk , P1)

is ramified. Recall that H 1(A, Tk → Uk) decomposes as a restricted direct product over places in V
[Kottwitz and Shelstad 1999, Lemma C.1.B]. Define ck ∈ Z1(A, Tk→Uk) by

prv(ck)=

{
1 if v 6= vk,

ES1
R′v
(ck,vk ) if v = vk .

If c̃k ∈ C1(A, T → U ) lifts ck , then d(c̃k) ∈ Z2(A, T → U ) has trivial image in Z2(A, Tk → Uk). The
family (ck)k≥1 defines an element of lim

←−−

1
k H 1(A, Tk→Uk), whose image in H 2(A, T →U ) is the class

of the convergent product
∏

k≥1 d(c̃k), for any choice of lifts (c̃k)k≥1. For simplicity we choose a lift
c̃k,vk ∈ C1(Fv, T →U ) of ck,vk and define c̃k by

prv(c̃k)=

{
1 if v 6= vk,

ES1
R′v
(c̃k,vk ) if v = vk .

By surjectivity of (6.3.2), there exists a family (bk)k≥1 with bk ∈ Z1(A, Tk → Uk) such that for every
k ≥ 1, the class of ckbk/πk(bk+1) belongs to the image of H 1(F, Tk → Uk)→ H 1(A, Tk → Uk). This
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means that there exists ek ∈ C0(A, Tk→Uk)= Tk(A) such that for every k ≥ 0,

fk := ck
bk

πk(bk+1)
d(ek) ∈ Z1(F, Tk→Uk).

Choose lifts b̃k ∈ C1(A, T →U ) of bk , ẽk ∈ C0(A, T →U )= T (A) of ek , and f̃k ∈ C1(F, T →U ) of
fk . Then

gk := c̃k
b̃k

b̃k+1
d(ẽk) f̃ −1

k ∈ C1(A, T →U )

takes values in the complex

ker(T (A)→ Tk(A))→ ker(U (A)→Uk(A))

and so
∏

k≥1 gk is convergent in C1(A, T →U ). Let q =
∏

k≥1 d( f̃k) ∈ Z2(F, T →U ), which converges
because fk is a cocycle. In Z2(A, T →U ) we have a factorization

q = d(b̃1)×

(∏
k≥1

d(c̃k)

)
× d

(∏
k≥1

g−1
k

)
.

Moreover q defines a class in H 2(F, T → U ) = H 2(F, P). Choose a(1) ∈ C1(F, T → U ) such that
q × d(a(1)) ∈ Z2(F, P).

Let ξbad = ξ × q × d(a(1)) in Z2(F, P), where ξ ∈ Z2(F, P) belongs to the canonical class. For any
v ∈ V, by vanishing of lim

←−−

1
k H 1(Fv, P) = lim

←−−

1
k H 1(Fv, T → U ) we know a priori that resv(q) is the

trivial class in H 2(Fv, P). The point of the diagonal construction above is that we can write resv(q)
more explicitly as a coboundary. Let a(2) = b̃1

∏
k≥1 g−1

k ∈ C1(A, T →U ). Then for any place v, letting
a(2)v = prv̇(resv(a(2))),

resv(q)=
{

d(a(2)v ) if v 6∈ {vk | k ≥ 1},
d(a(2)v × c(v)k ) if v = vk .

Since ξ belongs to the canonical class, as in the alternative proof in Section 6.2 there exists a(3) ∈
C1(A, T→U ) such that for any place v, resv(ξ)= locv(ξv)×d(a(3)v ). Let a=a(1)a(2)a(3)∈C1(A, T→U ).
Then for every place v, letting av = prv̇(resv(a)),

resv(ξbad)/ locv(ξv)=
{

d(av) if v 6∈ {vk | k ≥ 1},
d(av × c(v)k ) if v = vk .

By the same argument as in Section 6.2, in this equality we can replace av ∈ C1(Fv, T → U ) by
a′v ∈C1(Fv, P), and for almost all places v the image a′1,v of a′v in C1(Fv, P1) is unramified. We conclude
that for almost all k ≥ 1, resvk (ξbad)/ locvk (ξvk ) is the coboundary of an element of C1(Fvk , P) whose
image in C1(Fvk , P1) is ramified. �

This example shows that for [Kaletha 2018, Lemma 4.5.1], it is important to use the canonical class and
not an arbitrary lift in H 2(F, P) of the canonical element of lim

←−−k H 2(F, Pk). More precisely, suppose
that we form an extension Ebad of Gal(F/F) by P using a noncanonical class ξ bad as above. Suppose
that G is a reductive group that is an inner form of a quasisplit reductive group G∗ over F. Realize G as
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a global rigid inner form (4, z) of G∗ with z ∈ Z1(P→ Ebad, Z→ G∗) for some finite central subgroup
Z of G∗. Let k ≥ 0 be big enough so that

(1) G∗ and G admit reductive models over O(F, Sk), that we fix,

(2) G∗ admits a global Whittaker datum w compatible with this model at all v 6∈ Sk in the sense of
[Casselman and Shalika 1980],

(3) the restriction of z to P factors through a morphism P(Ek, Ṡ′Ek
, Nk)→ Z , and for any v 6∈ Sk the

localization zv ∈ Z1(Fv,G∗) is cohomologically trivial.

It can happen that the set V bad of finite places v 6∈ Sk such that the conjugacy classes of hyperspecial
maximal compact subgroups G(OFv ) and G∗(OFv ) are not conjugate under the trivialization of (4v, zv)
is infinite. Using Proposition 6.3.1 one can easily give such examples with G∗ = Sp2n for any n ≥ 1.
Suppose for simplicity that G∗ is split and that for a finite place v of F there are exactly two conjugacy
classes of hyperspecial maximal compact subgroups in G∗(Fv), as is the case for G∗= Sp2n . Suppose that
ϕ is a global discrete Langlands parameter for G and that for every place v of F, ϕv is relevant for GFv ,
i.e., that the local L-packet 5ϕv is nonempty. Let V bad

ϕ be the set of v ∈ V bad such that the local parameter
ϕv is unramified and endoscopic, i.e., the centralizer of ϕ(Frobv) in Ĝ is not connected. For every
such v, 5ϕv has two elements and the base point of this set for the rigidifying datum (G∗Fv , 4v, zv,wv)

is not G(OFv )-spherical. If V bad
ϕ is infinite, no element of the adelic L-packet considered in [Kaletha

2018, §4.5] is admissible, which is a problem to formulate a multiplicity formula for automorphic
representations. In Example 6.3.2 below we point out that by [Elkies 1987] there are infinitely many
examples of (unconditional substitutes for) global Langlands parameters ϕ such that ϕv is endoscopic for
infinitely many v. We do not know if there are examples with V bad

ϕ infinite, but Proposition 6.3.1 and
Example 6.3.2 certainly justify caution.

Example 6.3.2. Consider first a prime number p and the group SL2(Qp). There are two conjugacy
classes of hyperspecial maximal compact subgroups of SL2(Qp), represented by K1 = SL2(Zp) and its
conjugate K2 under diag(p, 1) ∈ GL2(Qp). Therefore, for any Satake parameter c = cl(diag(x, 1)), a
semisimple conjugacy class in PGL2(C), a priori there are two associated unramified representations of
SL2(Qp), say π1,x , π2,x such that dimC π

Ki
i,x = 1. Let T = {diag(t, t−1) | t ∈ Q×p }, a maximal torus in

SL2(Qp), and χx the unramified character diag(t, t−1) 7→ xvp(t) of T, where vp is the p-adic valuation
such that vp(p) = 1. Let B be a Borel subgroup of SL2(Qp) containing T. Then IndSL2(Qp)

B (χx) is
irreducible and isomorphic to π1,x ' π2,x if x 6∈ {−1, p, p−1

}, whereas IndSL2(Qp)

B (χ−1)' π1,−1⊕π2,−1

with π1,−1 6' π2,−1. This is related to the fact that diag(−1, 1) is, up to conjugation, the only semisimple
element of PGL2(C) whose centralizer is not connected (it has two connected components).

Now let E be an elliptic curve over Q. Let f =
∑

n≥1 anqn be the associated [Breuil et al. 2001]
newform. By [Elkies 1987] there are infinitely many primes p such that ap = 0. In terms of the cuspidal
automorphic representation π =

⊗
′

v πv corresponding to f , this means that for infinitely many primes p,
the Satake parameter of the unramified representation πp of GL2(Qp) (a semisimple conjugacy class in
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GL2(C)) has trace zero. Equivalently, its image in PGL2(C) is cl(diag(−1, 1)). Consider the conjectural
associated Langlands parameter ϕE : LQ→GL2(C) of π , where LQ is the hypothetical Langlands group
of Q. Then its projection ϕE to PGL2(C) is such that for infinitely many unramified primes p, ϕE(Frobp)

is conjugated to diag(−1, 1).
This phenomenon has the following unconditional consequence. Let G̃ be an inner form of GL2 /Q, i.e.,

the group of invertible elements of a central simple algebra of degree 2 over Q. Assume that E is relevant
for G̃, i.e., that for any prime p such that G̃Qp is not split, πp is a twist of the Steinberg representation
or a supercuspidal representation of GL2(Qp). By the Jacquet–Langlands correspondence [Jacquet and
Langlands 1970], there is a unique automorphic cuspidal representation π ′ for G̃ corresponding to π . Let
G be the derived subgroup of G̃, an inner form of SL2 /Q. By [Labesse and Langlands 1979] and [Ramakr-
ishnan 2000], the restriction of π ′ to G(A) (at the real place, one should consider (g, K )-modules) embeds
in the space of cuspidal automorphic forms for G. This restriction is admissible but has infinite length: for
any prime p > 3 such that GQp is split and E has good supersingular reduction, π ′p|G(Qp) has length 2.

Interestingly, the algorithm in [Elkies 1987] uses primes which do not split in certain quadratic
extensions of Q, while the counterexample in 6.3.1 is constructed using primes split in arbitrarily large
extensions of the base field.

7. Effective localization

We conclude by explaining how the constructive proof of the existence of a family of “local-global
compatibility” cochains (βk)k≥0 at the end of Section 4.4 allows one to explicitly compute all localizations
of a global rigidifying datum, as promised in the introduction to this article.

7.1. A general procedure. Let G∗ be a quasisplit connected reductive group over F. Fix a global
Whittaker datum w of G∗, i.e., choose a Borel subgroup B∗ of G∗ defined over F, let U be the unipotent
radical of B∗, let χ be a generic unitary character of U (A)/U (F), and let w be the G∗(F)-conjugacy
class of (B∗, χ). Let T a maximal torus of G∗ defined over F, and E a finite Galois extension of F
splitting T. Let S be a finite set of places of F such that

(1) S contains all archimedean places of F and all places of F which ramify in E , and the (always
injective) morphism I (E, S)/O(E, S)×→ C(E) is surjective (i.e., Pic(O(E, S))= 1).

(2) G∗ admits a reductive model G∗ over O(F, S) in the sense of [SGA 3 III 1970, Exposé XIX, Défini-
tion 2.7] such that the schematic closure T of T in G∗, which is a flat group scheme over O(F, S)
since this ring is Dedekind, is a torus in the sense of [SGA 3 II 1970, Exposé IX, Définition 1.3].

(3) For any v 6∈ S, the Whittaker datum w is compatible with the G∗(Fv)-conjugacy class of the
hyperspecial maximal compact subgroup G∗(O(Fv)), in the sense of [Casselman and Shalika 1980].

Let Z be a finite central subgroup of G, N = exp(Z) and T = T/Z . Let Z be the schematic closure of
Z in T (or G), then Z is a group scheme of multiplicative type over O(F, S). Moreover T := T /Z is a
maximal torus of the reductive group scheme G∗/Z ; see [SGA 3 III 1970, Exposé XXII, Corollaire 4.3.2].
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Let ṠE be a set of representatives for the action of Gal(E/F) on SE . Finally, choose 3 ∈ Y [SE , ṠE ]
NE/F
0 .

If

αE/F ∈ Z2(Gal(E/F),Hom(Z[SE ]0,O(E, S))×)

is any Tate cocycle (as in [Tate 1966]), then taking the cup product of αE/F with 3 yields

z ∈ Z1(Gal(O(E, S)/O(F, S)), T (O(E, S))
)
, (7.1.1)

i.e., a Čech cocycle for the étale sheaf T and the covering Spec(O(E, S))→ Spec(O(F, S)). In particular
we obtain a reductive group G over O(F, S) by twisting G∗ with the image z of z in

Z1(Gal(O(E, S)/O(F, S)),G∗ad(O(E, S))
)
.

This realizes the generic fiber G of G as an inner twist (4, z) of G∗.

Remark 7.1.1. The fact that any connected reductive group G over F arises in this way is a consequence
of [Kaletha 2018, Lemmas A.1 and 3.6.1].

More directly, that is without making use of Lemma A.1 there, Steinberg’s theorem on rational
conjugacy classes in quasisplit semisimple simply connected algebraic groups [Steinberg 1965] implies
that if we start with a reductive group G and a maximal torus T of G, then it can be realized as an inner
twist (G∗, 4, z) with z taking values in 4−1(Tad(F)).

We now use the constructive proof of Theorem 4.4.2 at the end of Section 4.4. Let E1 = E and S1 = S
and choose a finite Galois extension E2 of F which is totally complex and such that for every v ∈ S
nonarchimedean,

NE2/E

(∏
w|v

O(E2,w)
×

)

is contained in the subgroup of N -th powers in
∏
w|v O(Ew)

×. Finally, let E3 be any finite Galois
extension of F containing the Hilbert class field of E2. Choose global fundamental classes α1, α2, α3

such that αk =AW2
k(αk+1) for k ∈ {1, 2} and α3 is normalized, i.e., α3(1, 1)= 1. Fix finite sets of places

S3 ⊃ S2 ⊃ S as in Section 2. For each v ∈ S3 fix a place v̇3 ∈ SE3 . Choose local fundamental classes αk,v

for v ∈ S and k ∈ {1, 2, 3}. Choose sets of representatives (Rk,v)1≤k≤3,v∈S as in Section 4.2, or rather,
choose their image Rk,v in Gal(E3/F). These families (Sk)k≤3, (αk)k≤3, (αk,v)k≤3,v∈S , (Rk,v)k≤3,v∈S can
be extended to k ≥ 0 and v ∈ V, as explained in sections 4.1, 4.2 and 4.4. Moreover {v̇3}v∈S can be lifted
and extended to yield V̇ as in Section 2.

Now choose β(0)3 : Gal(E3/F) → Maps(SE3,C(E3)) such that d(β(0)3 ) = α3/α
′

3. Choose β(1)2 :

Gal(E2/F)→Maps(SE2, I (E2, S2)) lifting AWES1
2(β

(0)
3 ) such that β(1)2 (1)= 1 and β(2)1 :=AWES1

1(β
(1)
2 )

takes values in Maps(SE1, I (E, S)). Let α1 = α
′

1 × d(β(2)1 ). At the end of Section 4.4 we constructed
a family (βk)k≥0 such that there exists ε′2 ∈Maps(SE2, Ô(E2)

×

) satisfying β2|SE2
= β

(1)
2 × d(ε′2), more
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precisely ε′2 is the restriction to SE2 of

lim
n→+∞

∏
2≤i≤n

AWES0
2 ◦ · · · ◦AWES0

i−1(εi ).

Therefore β1|SE = AWES1
1(β2)= β

(2)
1 × d(x) where x = AWES0

1(ε
′

2) is a map

SE → NE2/E(Ô(E2)
×

).

In particular, for every nonarchimedean v ∈ S there exists a map yv : SE →
∏
w|v O(Ew)

× such that
yN
v = prv(x). For v ∈ S archimedean, simply let yv = 1. Recall that N = exp(Z). Going back to the

construction of N ′-th roots in Propositions 5.1.1, 5.1.2 and 5.1.3, we see that for any choice of N -th root
N
√
β
(2)
1 : Gal(E/F)→Maps(SE , I(E, S ∪ N )), we can choose the N -th root N

√
β1 so that for all v ∈ S,

prv(
N
√
β1)|SE = prv

(
N
√
β
(2)
1

)
× d(yv).

If α1 is chosen to form z in (7.1.1), the generic fiber G of G is endowed with a global rigidifying
datum (G∗, 4, z,w) where z = ι(3). For v ∈ V, the localization of this rigidifying datum at v is
(G∗Fv , 4v, zv,wv) where 4v =4Fv and zv = prv̇(z ◦ locv).

Let z′v = ιv(lv(3)) and fix a rigid inner twist (G ′v, 4
′
v) of G∗Fv by z′v, which is well defined up to

conjugation by G ′v(Fv) (see [Kaletha 2016, Fact 5.1]). We now compare the rigid inner twists (GFv , 4v)

and (G ′v, 4
′
v) of G∗Fv . Recall (Proposition 5.4.5) that

prv̇(z ◦ locv)= ιv(lv(3))× d(κv(3)),

where κv(3)=prv̇(
N
√
β1) t

E/F
N3∈ T (Fv). Therefore we have an isomorphism of rigid inner twists of G∗Fv

( fv, κv(3)) : (GFv , 4v, zv)
∼
−→ (G ′v, 4

′

v, z′v),

where fv is obtained from 4′v ◦Ad(κv(3)) ◦4−1
v by Galois descent. Thus fv : GFv ' G∗Fv identifies the

rigidifying datum (G∗Fv , 4v, zv,wv) for GFv with the rigidifying datum (G∗Fv , 4
′
v, z′v,wv) for G ′v.

• For v ∈ V r S, lv(3v) = 0 and we can simply take G ′v = G∗Fv and 4′v = Id. In particular GFv is
quasisplit and we can simply take as rigidifying datum the pullback f ∗v (wv) of the Whittaker datum
wv. The image κv(3) of κv(3) in T (Fv) equals

prv̇(β1) t
E/F

3 ∈ T (O(Ev̇))

and so Ad(κv(3)) is an automorphism of the reductive group scheme G∗O(Ev̇). Since4v is obtained as
the generic fiber of an isomorphism G∗O(Ev̇)'GO(Ev̇), we see that fv descends from an isomorphism
GO(Ev̇) ' G∗O(Ev̇) and so fv can be extended to an isomorphism of reductive models GO(Fv) '

G∗O(Fv). This shows that f ∗v (wv) is compatible with the G(Fv)-conjugacy class of hyperspecial
maximal compact subgroups represented by G(O(Fv)). Note that this holds even for v 6∈ S dividing N.
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• For v ∈ S, one can compute the element κv(3) up to an element of T (Fv), since

d(yv) t
E/F

N3= NE/F (yv t
E/F

N3) ∈ T (Fv),

and so d(κv(3))= d(κ ′v(3)), where

κ ′v(3)= prv̇
(

N
√
β
(2)
1

)
t

E/F
N3

is computable. Thus ( fv, κ ′v(3)) is also an isomorphism of rigid inner twists of G∗Fv . Note that to
compute fv it is enough to compute the image of κ ′v(3) in T (Fv), i.e.,

prv̇(β
(2)
1 ) t

E/F
3 ∈ T (Ev̇),

and so in practice it is not necessary to compute an N -th root of β(2)1 .

7.2. A simple example. Let us illustrate this on a simple example, where almost no computation of
cocycles is needed.

Definition of the group G. Let F =Q(s) with s2
= 3. Let D be a quaternion algebra over F such that D

is definite at both real places of F, and split at all nonarchimedean places of F. Let ND ∈ Sym2(D∗) be
the reduced norm, and G the reductive group scheme over F defined by

G(R)= {x ∈ R⊗F D | ND(x)= 1 in R}

for any F-algebra R.

A reductive model of G. The class group of F is trivial, and the narrow class group of F is Z/2Z,
corresponding to the totally complex and everywhere unramified extension E = F(ζ ) of F, where
ζ 2
− sζ + 1= 0 (ζ is a primitive 12-th root of unity). The class group of E is also trivial. Write σ for the

nontrivial O(F)-automorphism of O(E). Let S be the set of real places of F, so that S = {v+, v−}, where
the image of s in Fv+ = R is positive. We still denote by v+, v− the unique complex places of E above
v+, v−. The group O(E)× is generated by ζ and ζ − 1, which has infinite order. The group O(F)× is
generated by −1 and 2− s = NE/F (ζ − 1), which has infinite order.

Let G∗ = SL2 over O(F) and let T ⊂ G∗ be the torus defined by

T (R)=
{(

x −y
y x + sy

)
| x, y ∈ R, x2

+ sxy+ y2
= 1

}
for any O(F)-algebra R. Then T splits over O(E). Let Z ' µ2 be the center of G∗ and T = T /Z . The
element (x = s, y = −2) ∈ T (OF ) maps to the unique element of order 2 in T (F), and so we have a
1-cocycle

z : σ 7→ (x = s, y =−2) ∈ PGL2(O(F)).
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Since PGL2 is also the automorphism group of the matrix algebra M2, we obtain an Azumaya algebra
O(D) over O(F) by twisting M2(O(F)) using z. Explicitly, it has basis (1, Z , I, Z I ) over O(F), where

Z =
(

0 −1
1 s

)
, I =

(
0 2ζ − s

2ζ − s 0

)
.

We have Z12
= 1 and I 2

=−1. Let D = F ⊗O(F)O(D). Let G be the inner twist of G∗ by z, so that

G(R)= {x ∈ R⊗O(F)O(D) | ND(x)= 1}

for any O(F)-algebra R.

The group G as a rigid inner twist. If we identify Y = X∗(T ) with Z, then Y = X∗(T ) is identified with
1
2 Z. Let 3 ∈ Y [ṠE ]

NE/F
0 be defined by 3(v+) = 1

2 and 3(v−) = − 1
2 . An easy computation shows that

one can choose the Tate cocycle α1 for E/F such that

α1(σ, σ )(v+)/α1(σ, σ )(v−)=−1,

and so z = α1 tE/F 3. Using z = ι(3), we obtain a realization of G as a rigid inner twist (4, z) of G∗.

Choice(s) of Whittaker data. Let ψ be the unitary character of AQ/Q such that ψ∞(x) = exp(2iπx),
so that for every prime p we have ker(ψp) = Zp. Fortunately the different ideal of F/Q is principal,
generated by 2s, and so for any choice of sign the global Whittaker datum w for G∗(

1 x
0 1

)
∈U (AF ) 7→ ψ

(
±TrF/Q(x/(2s))

)
(7.2.1)

is compatible with the model G∗O(Fv) at every finite place v of F. Therefore the global rigidifying datum
D = (G∗, 4, z,w) for G is such that for any finite place v of F, the localization Dv is unramified and
compatible with the G(Fv)-conjugacy class of hyperspecial maximal compact subgroups G(O(Fv)).

Real places. At any real place v of F, we could compute explicit coboundaries expressing local-global
compatibility, but this is not necessary since the parametrization of Arthur–Langlands packets for the
compact Lie groups G(Fv)' SU(2) is simply determined by the Whittaker datum wv and the cohomology
class of zv in H 1(Pv→ E, Z→ T ) (see [Kaletha 2016, §5.6] and [Taïbi 2015, §3.2]), which only depends
on lv(3). This simplification is particular to anisotropic real groups, for which Langlands packets have at
most one element.

In order to formulate the local Langlands correspondence at each real place v of F it is necessary
to identify an algebraic closure of the base field Fv, occurring in the definition of the Weil group WFv ,
with the coefficient field C. We have natural algebraic closures Ev+ and Ev− of Fv+ and Fv− . Choose
τ+ : ζ 7→ exp(2iπ/12) (resp. τ− : ζ 7→ exp(5× 2iπ/12)) identifying Ev+ (resp. Ev−) with C. There is a
natural identification θ+ (resp. θ−) of G∗Fv+ (resp. G∗Fv− ) with the usual split group SL2 over R, compatibly
with the canonical isomorphisms Fv+=R and Fv−=R. Let

√
3 be the positive square root of 3 in R, so that

τ+(s)=
√

3 and τ−(s)=−
√

3. In particular for any choice of sign in (7.2.1), the Whittaker data (θ+)∗(wv+)

and (θ−)∗(wv−) differ. Associated to w+ is a Borel subgroup B+ of G∗Fv+ ×Fv+ C containing TFv+ ×Fv+ C
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(see [Taïbi 2015]), corresponding to the generic discrete series representations of G∗(Fv+). Using τ+
we see B+ as a Borel subgroup of G∗Ev+ , and since T is defined over F and split over E we see that B+
comes from a well-defined Borel subgroup of G∗E containing TE , which we still denote by B+. Similarly,
we have a Borel subgroup B− of G∗E containing TE . Up to changing the sign in (7.2.1), we can assume
that B+ is such that the unique root of TE in B+ is α+ : (x, y) 7→ (x + ζ y)2. Let us determine B− using
θ+ and θ−. For this we need to conjugate θ+(TFv+ ) and θ−(TFv− ) by an element of SL2(R). The matrix

g =
(

1 −
√

3
0 1

)
∈ SL2(R)

conjugates θ−(TFv− ) into θ+(TFv+ ), mapping θ−(x, y) to θ+(x−
√

3y, y). Since (θ+)∗(w+) and (θ−)∗(w−)
differ, the root α− of TE in B− is not equal to

(τ−)
−1
◦ τ+ ◦α+ ◦ τ

−1
+
◦ (θ+)

−1
C
◦Ad(g) ◦ (θ−)C ◦ τ−,

which equals α+. Therefore α− 6= α+ and B− 6= B+. Note that other choices for τ+, τ− would lead to
other Borel subgroups, and some choices would give equal Borel subgroups.

Let us now consider Arthur–Langlands packets of unitary representations of G(Fv+) and G(Fv−). We
refer to [Taïbi 2015, §3.2.2] for the parametrization of “cohomological” Arthur–Langlands packets for
inner forms of symplectic or special orthogonal groups, following Shelstad, Adams–Johnson and Kaletha.
The present case is much simpler. Note also that since G(Fv+) and G(Fv−) are compact, any nonempty
Arthur–Langlands packet is “cohomological”, i.e., is a packet of Adams–Johnson representations. For
v ∈ {v+, v−} there is only one Arthur–Langlands parameter

WFv ×SL2(C)→
L G

which is nontrivial on SL2(C) and yields a nonempty packet, namely the principal representation

SL2(C)→ Ĝ ' PGL2(C),

with corresponding packet containing the trivial representation with multiplicity one. Any other Arthur–
Langlands parameter yielding a nonempty packet of representations is tempered and discrete, and so up
to conjugation by Ĝ it is of the form

ϕk+ :WFv+ → PGL2(C), z ∈ E×v+ 7→
(
τ+(z/z)k++1 0

0 1

)
, j 7→

(
0 1
1 0

)
for some k+ ∈ Z≥0, and similarly discrete tempered parameters for G Fv− are parametrized by integers
k− ≥ 0, using τ−. Above j is any element of WFv+ r E×v+ such that j2

=−1. Note that we have put ϕk+

in dominant form for the upper-triangular Borel subgroup B of Ĝ. Using B+ we have an identification
between the group T of diagonal matrices in PGL2(C) and T̂ = X∗(T )⊗Z C×. So we can identify
lv+(3)=3(v+) ∈ X∗(T )NE/F with an element of X∗(T ), where T is the preimage of T in Ĝ = SL2(C).
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The preimage S+ϕk+
of Sϕk+

= Cent(ϕk+, Ĝ) in Ĝ has 4 elements and is generated by(
i 0
0 −i

)
∈ T .

The class of lv+(3) modulo (1−σ)X∗(T ) defines a character of S+ϕk+
. There is a unique element πv+,k+ in

the Arthur–Langlands packet attached to (the Ĝ-conjugacy class of) ϕk+ , that is the unique irreducible rep-
resentation of G(Fv+) in dimension k++1. The character 〈 · , πv+,k+〉 of S+ϕk+

is the one defined by lv+(3).
Similarly, each discrete series L-packet for G Fv− has a unique element πv−,k− , and a character 〈 · , πv−,k−〉

of S+ϕk−
coming from the character lv−(3) = 3(v−) of T . Note that since B− and B+ differ and

3(v−)=−3(v+), the characters of T corresponding to 3(v+) and 3(v−) are equal.

Automorphic representations. To lighten notation we let K = G(Ô(F)). We can now formulate precisely
the endoscopic decomposition of the space of G(R⊗Q F)-finite functions on G(F) \G(AF )/K, with
commuting actions of G(R⊗Q F) and of the Hecke algebra in level K. Let V+ (resp. V−) be the irreducible
representation of G(Fv+) (resp. G(Fv−)) of dimension k++ 1 (resp. k−+ 1). Note that V± is obtained
by restricting an irreducible algebraic representation of G Ev± . Recall [Gross 1999] that we can cut
out the V+ ⊗ V−-isotypical subspace inside the space of all automorphic forms for G, and define the
space Mk+,k−(K ) of automorphic forms of weight (k+, k−) and level K as the space of G(F)-equivariant
functions

G(AF, f )/K → V+⊗ V−,

which is a finite-dimensional vector space over C endowed with a semisimple action of the commutative
Hecke algebra in level K. Moreover it is easy to check that Mk+,k−(K ) has a natural E-structure.

The automorphic multiplicity formula for SL2 and its inner forms was proved in [Labesse and Langlands
1979], although at the time there was no general definition of transfer factors, let alone Kaletha’s
normalization of transfer factors for inner forms. Formally we can use the main result of [Taïbi 2015], but
of course a careful reading of [Labesse and Langlands 1979] and a comparison of transfer factors with the
later definition in [Langlands and Shelstad 1987] and [Kaletha 2016], [Kaletha 2018] should give a more
direct proof. In the present case, automorphic representations for G in level K fall into three categories:

• the trivial representation,

• representations corresponding to self-dual automorphic cuspidal representations of PGL3 /F which
are algebraic regular at both infinite places and unramified at all finite places,

• representations “automorphically induced” from certain algebraic Hecke characters for E .

The multiplicity formula is nontrivial only in the third case. Making it explicit allows one to enumerate
representations in the (most interesting) second case.



Akizuki–Witt maps and Kaletha’s global rigid inner forms 881

Global endoscopic parameters. Let χ : C(E)→ C× be a continuous unitary character which is trivial on
C(F)= C(E)Gal(E/F). In particular, χσ = χ−1. Using χ we can form the parameter

ϕχ :WE/F → PGL2(C), z ∈ C(E) 7→
(
χ(z) 0

0 1

)
, σ̃ 7→

(
0 1
1 0

)
,

where σ̃ ∈WE/F is any lift of σ ∈ Gal(E/F). The parameters ϕχ and ϕχ−1 are conjugated by PGL2(C).
We only consider characters χ such that the restriction of ϕχ to the Weil groups at both real places of
F are discrete, i.e., we impose that χv+ = χ |E×v+ and χv− = χ |E×v− are nontrivial. Therefore there are
a+, a− ∈ Zr {0} such that

χv+(z)= τ+(z/z)
a+, χv−(z)= τ−(z/z)

a− .

Moreover we impose that χ is everywhere unramified, i.e., at every finite place w of E , χw is trivial on
O(Ew)×. Since E has class number 1 the map

E×v+ × E×v− ×
∏
w finite

O(Ew)×→ C(E)

is surjective, and its kernel is O(E)×. Thus for a+, a− ∈Zr{0} there is at most one everywhere unramified
χ as above, and there exists one if and only if χv+ ×χv− is trivial on O(E)×, which is generated by ζ
and ζ − 1. A simple computation shows that this is equivalent to

a++ 5a− = 0 mod 12.

For such a character χ , at a finite place w of E we have:

• If w is fixed by σ (inert case), then there is a uniformizer $w ∈O(F), and so χw is trivial.

• If w is not fixed by σ (split case), then if $w ∈O(E) is a uniformizer, we have

χw($w)= χv+($w)
−1χv−($w)

−1.

This concludes the description of all endoscopic global parameters for G which are discrete at both real
places and unramified at all finite places. They are parametrized by pairs (a+, a−) ∈ (Zr {0})2 such that
a++ 5a− = 0 mod 12, modulo (a+, a−)∼ (−a+,−a−).

Let χ be a character as above. Then the centralizer Sϕχ of ϕχ is{(
±1 0

0 1

)}
⊂ T

and so it coincides with the local centralizers at v+, v−. Up to replacing χ by χ−1, we are in exactly one
of the following cases:

• a+ > 0 and a− > 0, i.e., χv+(z) = τ+(z/z)
k++1 for k+ ≥ 0 and χv−(z) = τ−(z/z)

k−+1 for k− ≥ 0.
Then 〈 · , πv+,k+〉× 〈 · , πv−,k−〉 is the nontrivial character of Sϕχ .

• a+ > 0 and a− < 0, i.e., χv+(z)= τ+(z/z)
k++1 for k+ ≥ 0 and χv−(z)= τ−(z/z)

−k−−1 for k− ≥ 0.
Then 〈 · , πv+〉× 〈 · , πv−〉 is the trivial character of Sϕχ .
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By the multiplicity formula, in weight (k+, k−) and level G(Ô(F)), there is at most one endoscopic
automorphic representation, and there is one if and only if

(k++ 1)− 5(k−+ 1)= 0 mod 12. (7.2.2)

In low weight, we have computed Hecke operators for small primes and verified this condition.

Comments. The class number

card(G(F) \G(AF, f )/G(Ô(F)))= 1

as one can check when computing a Hecke operator at any finite place, by strong approximation. Note
that G is not the only reductive model of G, even up to the action of Gad(F). By splitting the Azumaya
algebra O(D) modulo (2)= (s−1)2, we can compute an (s−1)-Kneser neighbor of O(D), that is another
maximal order O′(D) of D, having basis over O(F)

1, Z + s I, (1− s)(s+ Z I ), (1− s)−1(1+ I + s Z I ).

It gives rise to a second model G ′ of G, which is not isomorphic to G since one can compute using
reduction theory that G(OF ) is a dihedral group of order 24 (generated by Z and I, with I Z I−1

= Z−1),
whereas G ′(O(F)) is isomorphic to SL2(F3) (an isomorphism is given by reduction modulo s). One can
also check that the class number

card(Gad(F) \Gad(AF, f )/Gad(Ô(F)))= 2,

and so G and G ′ are up to isomorphism the only two reductive models of G over O(F). So we have
two distinct notions of “level one” for automorphic representations for G, and although the relevant
Arthur–Langlands parameters are the same in both cases, the automorphic multiplicities differ. More
precisely, any algebraic Hecke character χ for E as above contributes an automorphic representation for
G either in level G(Ô(F)) or in level G ′(Ô(F)).

Higher rank. Alternatively, one could explicitly compute the geometric transfer factors defined in [Labesse
and Langlands 1979] for G and the endoscopic group H isomorphic to the unique anisotropic torus over
F of dimension 1 which is split by E . Although one would lose the interpretation in terms of characters
of centralizers of Langlands parameters, this would probably lead to a proof that the multiplicity formula
for G in level G(Ô(F)) reduces to (7.2.2).

Note however that the approach in the present paper generalizes easily to higher rank. For example,
using the embedding (SL2)

n ↪→ Sp2n , it is easy to generalize the above example to the case where G is
the inner form of G∗ = Sp2n over F which is definite (i.e., G(F ⊗Q R) is compact) and split at all finite
places. This does not require additional computation, and so one can make explicit Arthur’s multiplicity
formula (also known in this case; see [Taïbi 2015]) in “level one”. Moreover, using also pure inner forms
of quasisplit special orthogonal groups, namely definite special orthogonal groups obtained using copies
of (x, y) 7→ x2

+ sxy+ y2 and (in odd dimension) x 7→ x2, it is possible to carry out the same inductive
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strategy as in [Taïbi 2017], but using definite groups as in [Chenevier and Renard 2015], which makes
explicit computations much simpler. Therefore the above example makes it possible to explicitly compute
automorphic cuspidal self-dual representations for general linear groups over F which are unramified at
all finite places and algebraic regular at both real places.
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