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Polynomial bound for the nilpotency index
of finitely generated nil algebras

Mátyás Domokos

Working over an infinite field of positive characteristic, an upper bound is given for the nilpotency index
of a finitely generated nil algebra of bounded nil index n in terms of the maximal degree in a minimal
homogenous generating system of the ring of simultaneous conjugation invariants of tuples of n-by-n
matrices. This is deduced from a result of Zubkov. As a consequence, a recent degree bound due to
Derksen and Makam for the generators of the ring of matrix invariants yields an upper bound for the
nilpotency index of a finitely generated nil algebra that is polynomial in the number of generators and
the nil index. Furthermore, a characteristic free treatment is given to Kuzmin’s lower bound for the
nilpotency index.

1. Introduction

Throughout this note F stands for an infinite field of positive characteristic. All vector spaces, tensor
products and algebras are taken over F. The results of this paper are valid in arbitrary characteristic, but
they are known in characteristic zero (in fact stronger statements hold in characteristic zero, see Formanek
[1991], giving in particular an account of relevant works of Razmyslov [1974] and Procesi [1976]).

Write Fm :=F〈x1, . . . , xm〉 for the free associative F-algebra with identity 1 on m generators x1, . . . , xm ,
and let F+m be its ideal generated by x1, . . . , xm (so F+m is the free nonunitary associative algebra of rank m).
For a positive integer n denote by In,m the ideal in Fm generated by {an

| a ∈F+m }. A theorem of Kaplansky
[1946] asserts that if a finitely generated associative algebra satisfies the polynomial identity xn

= 0, then
it is nilpotent. Equivalently, there exists a positive integer d such that for all i1, . . . , id ∈ {1, . . . ,m} the
monomial xi1 · · · xid belongs to In,m . Denote by dF(n,m) the minimal such d. In other words, dF(n,m)
is the minimal positive integer d such that all F-algebras that are generated by m elements and satisfy the
polynomial identity xn

= 0 satisfy also the polynomial identity y1 · · · yd = 0. This is a notable quantity
of noncommutative ring theory; Jacobson [1945] reduced the Kurosh problem for finitely generated
algebraic algebras of bounded degree to the case of nil algebras of bounded degree. We mention also
that proving nilpotency of nil rings under various conditions is a natural target for ring theorists, see for
example the paper of Guralnick, Small and Zelmanov [2010].
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The number dF(n,m) is tightly connected with a quantity appearing in commutative invariant theory
defined as follows. Consider the generic matrices

Xr = (xi j (r))1≤i. j≤n, r = 1, . . . ,m.

These are elements in the algebra An×n of n× n matrices over the mn2-variable commutative polynomial
algebra A = F[xi j (r) | 1 ≤ i, j ≤ n, 1 ≤ r ≤ m]. The general linear group GLn(F) acts on A via F-
algebra automorphisms; for g ∈ GLn(F) we have that g · xi j (r) is the (i, j)-entry of the matrix g−1 Xr g.
Set Rn,m = AGLn(F), the subalgebra of GLn(F)-invariants. This is the algebra of polynomial invariants
under simultaneous conjugation of m-tuples of n× n matrices. The polynomial ring A is graded in the
standard way, and since the GLn(F)-action preserves the grading, the subalgebra Rn,m is generated by
homogeneous elements. Being the algebra of invariants of a reductive group, Rn,m is finitely generated
by the Hilbert–Nagata theorem (see for example [Newstead 1978]). We write βF(n,m) for the minimal
positive integer d such that the F-algebra Rn,m is generated by elements of degree at most d. The main
result of the present note is the following inequality:

Theorem 1.1. dF(n,m)≤ βF(n,m+ 1).

Remark 1.2. In the reverse direction it was shown in [Domokos 2002, Theorem 3] that for n ≥ 2 we have

βF(n,m)≤
⌊n

2

⌋
dF(n,m).

Theorem 1.1 is derived from a theorem of Zubkov [1996] (for which Lopatin [2013] gave versions and
improvements), see Theorem 2.1. Using a result of Ivanyos, Qiao and Subrahmanyam [2017], Derksen and
Makam [2017b] found strong bounds on the degrees of invariants defining the null-cone of m-tuples of n×n
matrices under simultaneous conjugation, and derived from this the following upper bound on βF(n,m):

Theorem 1.3 [Derksen and Makam 2017a, Theorem 1.4]. We have the inequality

βF(n,m)≤ (m+ 1)n4.

Given this result Derksen and Makam conjectured [2017a, Conjecture 1.5] that there exists an upper
bound on dF(n,m) that is polynomial in n and m. Combining Theorem 1.1 and Theorem 1.3 we obtain
the following affirmative answer to this conjecture:

Corollary 1.4. dF(n,m)≤ (m+ 2)n4.

Remark 1.5. Corollary 1.4 is a drastic improvement of the earlier known general upper bounds on
dF(n,m):

(1) dF(n,m)≤ n6mn+1 by Belov [1992].

(2) dF(n,m)≤ 1
6 n6mn by Klein [2000].

(3) dF(n,m)≤ 218mn12 log3(n)+28 by Belov and Kharitonov [2012].
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It is easy to see that dF(2,m)≤m+1. We note that for the case n=3 exact results on dF(3,m)were obtained
by Lopatin [2005]. Moreover, Lopatin [2012] proved that if char(F) > n

2 then dF(n,m)≤ n1+log2(3m+2)

and dF(n,m)≤ 22+n/2m.

Remark 1.6. When char(F) > n2
+ 1, we have βF(n,m)≤ n2. Indeed, the proof presented by Formanek

[1986] (following the original arguments of Razmyslov [1974] and Procesi [1976]) for the zero character-
istic case of the corresponding inequality goes through without essential changes when char(F) > n2

+ 1.
Thus by Theorem 1.1 we get that dF(n,m)≤ n2 when char(F) > n2

+ 1.

In Section 3 we show that the following lower bound for dF(n,m) due to E. N. Kuzmin [1975] when
char(F)= 0 or char(F) > n holds in arbitrary characteristic:

Theorem 1.7. The monomial x2x1x2x2
1 x2x3

1 · · · x2xn−1
1 is not contained in the ideal In,2. In particular,

for m ≥ 2 we have dF(n,m)≥ n(n+ 1)/2.

Remark 1.8. It is well known that when 0< char(F)≤ n, the element x1x2 · · · xm is not contained in In,m ,
see for example [Nagata 1952, 5. Remark (I)]. So in this case for m ≥ 2 we have

max
{

m+ 1,
n(n+ 1)

2

}
≤ dF(n,m)≤ (m+ 2)n4.

2. Identities of matrices with forms

The map xi 7→ X i (i = 1, . . . ,m) extends to a unique F-algebra homomorphism ϕ1 : Fm→ An×n . We
have ϕ1(1)= I , the n× n identity matrix. Consider the commutative polynomial algebra

Pn,m = F[sl(a) | a ∈ F+m , l = 1, . . . , n]

generated by the infinitely many commuting indeterminates sl(a). Define the F-algebra homomorphism

ϕ2 : Pn,m→ Rn,m, ϕ2(sl(a))= σl(ϕ1(a)),

where for B ∈ An×n we have

det(t I + B)=
n∑

l=0

t lσn−l(B),

so σl(B) is the sum of the principal l × l minors of B. A theorem of Donkin [1992] asserts that ϕ2 is
surjective onto Rn,m . Combining ϕ1 and ϕ2 we get an F-algebra homomorphism

ϕ : Pn,m ⊗Fm→ An×n, b⊗ a 7→ ϕ2(b)ϕ1(a).

The subalgebra Cn,m = ϕ(Pn,m ⊗Fm) is called the algebra of matrix concomitants. It can be interpreted
as the algebra of GLn(F)-equivariant polynomial maps (Fn×n)m→ Fn×n , where GLn(F) acts on Fn×n by
conjugation and on the space (Fn×n)m of m-tuples of matrices by simultaneous conjugation. For a ∈ F+m
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define an element χn(a) in Pn,m ⊗Fm as follows:

χn(a)=
n∑

l=0

(−1)lsl(a)⊗ an−l

(where s0(a)= 1). We need the following result of Zubkov [1996] (see also Lopatin [2013, Theorem 2.4]):

Theorem 2.1 [Zubkov 1996]. The ideal ker(ϕ) is generated by

{b⊗ 1, χn(a) | b ∈ ker(ϕ2), a ∈ F+m }.

Remark 2.2. The papers [Zubkov 1996; Lopatin 2013] use different commutative polynomial algebras
than our Pn,m , however, it is straightforward that Theorem 2.1 is an immediate consequence of the versions
stated there. We note that those works give descriptions of the ideal ker(ϕ2) as well. A self-contained
approach to the theorem of Zubkov can be found in the recent book by De Concini and Procesi [2017].

Denote by η : Cn,m→ Cn,m/R+n,mCn,m the natural surjection (ring homomorphism), where R+n,m is the
sum of the positive degree homogeneous components of Rn,m .

Corollary 2.3. The kernel of η ◦ϕ1 is the ideal In,m = (an
| a ∈ F+m ) in Fm .

Proof. We have ker(η ◦ ϕ1) = ker(η ◦ ϕ) ∩Fm (where we identify Fm with the subalgebra 1⊗Fm in
Pn,m ⊗Fm). The ideal (sl(a)⊗ 1 | a ∈ F+m , 1≤ l ≤ n) is mapped surjectively onto R+n,mCn,m by [Donkin
1992]. Therefore we have

ker(η◦ϕ)=ϕ−1(R+n,mCn,m)=ker(ϕ)+(sl(a)⊗1 |a∈F+m , 1≤ l≤n)=(sl(a)⊗1, 1⊗an
|a∈F+m , 1≤ l≤n),

(the last equality follows from Theorem 2.1 and the fact that 1⊗ an
− χn(a) belongs to (sl(a)⊗ 1 |

a ∈ F+m , 1≤ l ≤ n)). Obviously the ideal (sl(a)⊗1, 1⊗an
| a ∈ F+m , 1≤ l ≤ n) intersects Fm in In,m . �

Remark 2.4. Corollary 2.3 implies that the relatively free algebra Fm/In,m is isomorphic to Cn,m/R+n,mCn,m .
When char(F)= 0, this statement is due to Procesi [1976, Corollary 4.7].

The algebras Rn,m and Cn,m are Zm-graded:

degm(X i1 · · · X id )= (α1, . . . , αm) where αk = |{ j | i j = k}|

and

degm(σl(X i1 · · · X id ))= l · degm(X i1 · · · X id ).

Proof of Theorem 1.1. Set d = βF(n,m+ 1). We have to show that xi1 · · · xid ∈ In,m for all i1, . . . , id ∈

{1, . . . ,m}. Recall that by [Donkin 1992] the algebra Rn,m+1 is generated by the elements σl(W ), where
W is a word in X1, . . . , Xm+1, and l ∈ {1, . . . , n}. The total degree of the element Tr(X i1 · · · X id Xm+1) ∈

Rn,m+1 is strictly greater than βF(n,m+ 1), whence we have a relation

Tr(X i1 · · · X id Xm+1)=
∑
λ∈3

aλ fλ, (1)
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where3 is a finite index set, aλ ∈F, and each fλ ∈ Rn,m+1 is a product fλ=σl1(W1) · · · σlr (Wr ) with r ≥ 2
and W1, . . . ,Wr nonempty words in X1, . . . , Xm+1. The Zm+1-multidegree of Tr(X i1 · · · X id Xm+1) is

degm+1(Tr(X i1 · · · X id Xm+1))= (degm(Tr(X i1 · · · X id )), 1).

The terms fλ are all Zm+1-homogeneous, whence we may assume that each has the above Zm+1-degree
(since the other possible terms on the right-hand side of (1) must cancel each other). It follows that for
each fλ exactly one of its factors σl1(W1), . . . , σlr (Wr ) has Zm+1-degree of the form (α1, . . . , αm, 1), say
this is σl1(W1), and the remaining factors have Zm+1-degree of the form (γ1, . . . , γm, 0). Necessarily
we have l1 = 1 and so σl1(W1) = Tr(Xm+1 Z) for some (possibly empty) word Z in X1, . . . , Xm , and
W2, . . . ,Wr are nonempty words in X1, . . . , Xm . Set

gλ = σl2(W2) · · · σlr (Wr )Z ∈ Cn,m,

and note that fλ = Tr(gλXm+1). Using linearity of Tr(−) relation (1) can be written as

Tr
(

Xm+1

(
X i1 · · · X id −

∑
λ∈3

aλgλ

))
= 0 ∈ Rn,m+1. (2)

Substituting Xm+1 7→ Ei j (the matrix whose (i, j)-entry is 1 and all other entries are 0) we get from (2)
that the ( j, i)-entry of X i1 · · · X id −

∑
λ∈3 aλgλ is 0. This holds for all (i, j), thus we have the equality

X i1 · · · X id =

∑
λ

aλgλ. (3)

The right-hand side of (3) is obviously contained in R+n,mCn,m , therefore it follows from (3) that the element
xi1 · · · xid ∈Fm belongs to the kernel of η◦ϕ1. Thus by Corollary 2.3 we conclude that xi1 · · · xid ∈ In,m . �

3. Lower bound

Kuzmin’s proof of the case char(F)= 0 or char(F) > n of Theorem 1.7 (it is presented also in the survey
of Drensky in [Drensky and Formanek 2004]) uses crucially Lemma 3.1 below, relating the complete
linearization of xn , namely

Pn(x1, . . . , xn)=
∑

π∈Sym{1,...,n}

xπ(1)xπ(2) · · · xπ(n) ∈ Fn.

Lemma 3.1. If char(F) = 0 or char(F) > n, then In,m is spanned as an F-vector space by the elements
Pn(w1, . . . , wn), where w1, . . . , wn range over all nonempty monomials in x1, . . . , xm .

Remark 3.2. The assumption on char(F) in Lemma 3.1 is necessary, its statement obviously fails if
0< char(F)≤ n (as it can be easily seen already in the special case m= 1). Now we modify the arguments
of Kuzmin to obtain Theorem 1.7 in a characteristic free manner. It turns out that although Lemma 3.1
can not be applied, the main combinatorial ideas of Kuzmin’s proof do work.
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Consider the free Z-algebra Z = Z〈x, y〉+ without unity. Write M for the set of nonempty monomials
(words) in x and y. For a positive integer k write Z(k) for the Z-submodule of Z generated by the w ∈M
whose total degree in y is k−1. It will be convenient to use the following notation, for (a1, . . . , ak)∈Nk

0 set

[a1, . . . , ak] = xa1 yxa2 y · · · yxak ∈M.

The symmetric group Sk = Sym{1, . . . , k} acts on the right linearly on Z(k), extending linearly the
permutation action on Z(k)∩M given by

[a1, . . . , ak]
π
= [aπ(1), . . . , aπ(k)] for π ∈ Sk .

Let B denote the Z-submodule of Z generated by all the elements [a1, . . . , ak] (k ∈ N) such that ai ≥ n
for some i ∈ {1, . . . , k} or ai = a j for some 1 ≤ i < j ≤ k, and by all the elements of the form
[a1, . . . , ak]+[a1, . . . , ak]

(i j) where (i j) denotes the transposition interchanging i and j for 1≤ i < j ≤ k.
We shall use the following obvious properties of B:

Lemma 3.3. (i) The Z-submodule B∩Z(k) of Z(k) is Sk-stable.

(ii) We have the inclusions yB ⊂ B, Z yB ⊂ B, By ⊂ B, and ByZ ⊂ B.

(iii) Let k be a positive integer, u1, . . . , uk−1 ∈M monomials such that ui ∈ yZ ∩ Z y or ui = y for
i = 1, . . . , k− 1. Then B contains the image of the Z-module map on B∩Z(k) given by

[a1, . . . , ak] 7→ xa1u1xa2u2xa3 · · · uk−1xak .

(iv) For any positive integer a, the Z-submodule B of Z is preserved by the derivation δa on Z defined by
δa(x)= xa and δa(y)= 0.

(v) The factor Z/B is a free Z-module freely generated by the images under the natural surjection
Z→ Z/B of the monomials

M̂= {[a1, . . . , ak] | k ∈ N and 0≤ a1 < a2 < · · ·< ak ≤ n− 1}.

Proof. Statements (i), (ii), (iii), (iv) are immediate consequences of the construction of B. To prove (v)
note that Z =

⊕
Z(c1, . . . , ck) where the direct sum is taken over k ∈ N and 0 ≤ c1 ≤ · · · ≤ ck , and

Z(c1, . . . , ck) stands for the Z-submodule generated by [c1, . . . , ck]
π as π ranges over Sk . Moreover,

B =
⊕

B(c1, . . . , ck) where B(c1, . . . , ck) = B ∩Z(c1, . . . , ck). Now Z(c1, . . . , ck) ⊂ B if ci = c j for
some i 6= j or if ci ≥ n for some i . It is also clear that for 0 ≤ a1 < · · ·< ak we have Z(a1, . . . , ak)=

Z · [a1, . . . , ak]+B(a1, . . . , ak), so the monomials inM̂ generate the Z-module Z modulo B. Suppose
that some nontrivial Z-linear combination of the elements in M̂ belongs to B. The above direct sum
decompositions of Z and B imply then that there exist q, k ∈N, and 0≤ a1 < · · ·< ak ≤ n− 1 such that
q[a1, . . . , ak] ∈ B(a1, . . . , ak). This means that

q[a1, . . . , ak] =

s∑
i=1

εi (wi +w
πi
i ), (4)
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where εi = ±1, wi ∈ Z(a1, . . . , ak)∩M and πi ∈ Sk is a transposition for i = 1, . . . , s. Suppose that
s in (4) is minimal. Without loss of generality we may assume that w1 = [a1, . . . , ak] and ε1 = 1. The
word wπ1

1 must be canceled by some summand εi (wi +w
πi
i ) with i ≥ 2 on the right-hand side of (4), so

after a possible renumbering we have ε2(w2+w
π2
2 )=−(w

π1
1 +w

π1π2
1 ). Now the term −wπ1π2

1 must be
canceled by w1 or by some summand εi (wi +w

πi
i ) with i ≥ 3. It means that the right-hand side of (4)

has a subsum of the form

(w1+w
π1
1 )− (w

π1
1 +w

π1π2
1 )+ (w

π1π2
1 +w

π1π2π3
1 )−+ · · ·+ (−1)r−1(w

π1···πr−1
1 +w

π1···πr
1 ), (5)

where wπ1···πr
1 =w1. This latter equality forces that π1 · · ·πr is the identity permutation, so r is even, and

then the sum (5) is zero. So all these terms can be omitted from (4). This contradicts the minimality of s.
This shows that q[a1, . . . , ak] is not contained in B. �

Lemma 3.4. Let k be a positive integer, a1 ≤ a2 ≤ · · · ≤ ak ∈N0, and r ∈N0 with a1+ k+ r > n. Then∑
c1+···+ck=r

∑
π∈Sk

[a1+ cπ(1), . . . , ak + cπ(k)] ∈ B. (6)

Proof. Apply induction on k. In the case k = 1 the element in question in (6) is xa1+r , which belongs to
B by the assumption a1+ 1+ r > n. Suppose next that k > 1, and the statement of the lemma holds for
smaller k. The terms [a1+ d1, . . . , ak + dk] in the sum (6) can be grouped into three classes:

(A) a1+ d1 < a2.

(B) a1+ d1 = a2+ d2.

(C) a1+ d1 ≥ a2 and a1+ d1 6= a2+ d2.

The sum of the terms of type (A) is a sum of expressions of the form

xa1+d1 y
∑

c2+···+ck=r−d1

∑
π∈Sym{2,...,k}

[a2+ cπ(2), . . . , ak + cπ(k)]. (7)

Here a2+ (k− 1)+ (r − d1)≥ a1+ k+ r > n, hence by the induction hypothesis∑
c2+···+ck=r−d1

∑
π∈Sym{2,...,k}

[a2+ cπ(2), . . . , ak + cπ(k)]

belongs to B. Now by Lemma 3.3(ii) we conclude that the element in (7) belongs to B. The terms of
type (B) belong to B by construction of B. Finally, a term [a1+d1, . . . , ak+dk] of type (C) can be paired
off with the term [a1+ e1, a2+ e2, a3+ d3, . . . , ak + dk] where e1 = a2− a1+ d2 and e2 = a1− a2+ d1

(so this is also of type (C)), and the sum of these two terms belongs to B by construction of B. �

Corollary 3.5. Let k be a positive integer, (a1, . . . , ak) ∈ Nk
0, and r ∈ N0 with r + k > n. Then∑

c1+···+ck=r

∑
π∈Sk

[a1+ cπ(1), . . . , ak + cπ(k)] ∈ B.



1240 Mátyás Domokos

Proof. Take a permutation ρ ∈ Sk such that aρ(1) ≤ · · · ≤ aρ(k). Applying ρ to the element in the statement
we get ∑

c1+···+ck=r

∑
π∈Sk

[aρ(1)+ cπ(1), . . . , aρ(k)+ cπ(k)],

which belongs to B∩Z(k) by Lemma 3.4. Our statement follows by Lemma 3.3(i). �

Lemma 3.6. Suppose 1≤ k ≤ n+ 1, w1, . . . , wk−1 ∈M are monomials having positive degree in y, and
a, b ∈ N0. Then

xa Pn(w1, . . . , wk−1, x, . . . , x)xb
∈ B. (8)

Proof. We have wi = xai ui xbi where ai , bi ∈ N0 and ui ∈ yZ ∩Z y or ui = y (i = 1, . . . , k− 1). Then
the element in (8) is∑
ρ∈Sk−1

(
(n− k+ 1)!

∑
c1+···+ck=n−k+1

∑
π∈Sk

xd1+cπ(1)uρ(1)xd2+cπ(2)uρ(2) · · · xdk−1+cπ(k−1)uρ(k−1)xdk+cπ(k)

)
,

where d1 = a+aρ(1), d2 = aρ(2)+bρ(1), d3 = aρ(3)+bρ(2), dk−1 = aρ(k−1)+bρ(k−2) and dk = bρ(k−1)+b.
The summand corresponding to ρ ∈ Sk−1 in the outer sum is contained in B by Corollary 3.5 and
Lemma 3.3(iii). �

Lemma 3.7. For any w1, . . . , wn ∈M, w0, wn+1 ∈M∪ {1} we have

w0 Pn(w1, . . . , wn)wn+1 ∈ B.

Proof. By Lemma 3.3(ii) it is sufficient to deal with the case w0 = xa , wn+1 = xb. We may assume that
w1, . . . , wk−1 have positive degree in y and wk−1+ j = xc j for j = 1, . . . , n−k+1. If n−k+1= 0 or all
the c j = 1 then we are done by Lemma 3.6. Suppose next that n−k+1> 0, c1, . . . , cl > 1 with l ≥ 1, and
cl+1=· · ·=cn−k+1=1. By induction on l we show that xaPn(w1, . . . , wk−1, xc1, . . . , xcl , x, . . . , x)xb

∈B.
By the induction hypothesis (or by Lemma 3.6 when l = 1)

f = xa Pn(w1, . . . , wk−1, xc1, . . . , xcl−1, x, . . . , x)xb
∈ B,

hence by Lemma 3.3(iv) δcl ( f ) ∈ B. We have

δcl ( f )= axa+cl−1 Pn(w1, . . . , wk−1, xc1, . . . , xcl−1, x, . . . , x)xb

+

k−1∑
i=1

xa Pn(w1, . . . , δcl (wi ), . . . , wk−1, xc1, . . . , xcl−1, x, . . . , x)xb

+

l−1∑
j=1

c j xa Pn(w1, . . . , wk−1, xc1, . . . , xc j+cl−1, . . . , xcl−1, x, . . . , x)xb

+ (n− k− l + 2)xa Pn(w1, . . . , wk−1, xc1, . . . , xcl , x, . . . , x)xb

+ bxa Pn(w1, . . . , wk−1, xc1, . . . , xcl−1, x, . . . , x)xb+cl−1.
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All terms other than (n − k − l + 2)xa Pn(w1, . . . , wk−1, xc1, . . . , xcl , x, . . . , x)xb on the right-hand
side above belong to B by the induction hypothesis. Taking into account that Z/B is torsion free by
Lemma 3.3(v) we conclude the desired inclusion

xa Pn(w1, . . . , wk−1, xc1, . . . , xcl , x, . . . , x)xb
∈ B. �

For λ= (λ1, . . . , λm) ∈Nm
0 denote by Pλ(x1, . . . , xm) ∈ Z〈x1, . . . , xm〉 the multihomogeneous compo-

nent of (x1+ · · ·+ xm)
n having Zm-degree λ.

Corollary 3.8. For any m ∈N, w1, . . . , wm ∈M, w0, wm+1 ∈M∪{1} and for any λ ∈Nm
0 we have that

w0 Pλ(w1, . . . , wm)wm+1 ∈ B.

Proof. We have the equality

Pλ(x1, . . . , xm)=
1∏m

i=1(λi !)
Pn(x1, . . . , x1︸ ︷︷ ︸

λ1

, . . . , xm, . . . , xm︸ ︷︷ ︸
λm

).

Therefore the statement follows from Lemma 3.7 by Lemma 3.3(v). �

Proposition 3.9. The ideal In,2 is contained in the subspace F⊗Z B of F〈x, y〉.

Proof. The ideal In,2 is spanned as an F-vector space by elements of the form

w0(c1w1+ · · ·+ cmwm)
nwm+1,

where the wi are monomials in x and y and they have positive total degree for i = 1, . . . ,m, and
c1, . . . , cm ∈ F. Since we have the equality

(c1w1+ · · ·+ cmwm)
n
=

∑
λ∈Nm

0 ,λ1+···+λm=n

cλ1
1 · · · c

λm
m Pλ(w1, . . . , wm),

our statement follows from Corollary 3.8. �

Proof of Theorem 1.7. By Lemma 3.3(v) the monomials

{xa1 yxa2 yxa3 · · · yxak | 0≤ a1 < a2 < · · ·< ak ≤ n− 1}

are linearly independent in F2 = F〈x, y〉 modulo the subspace F⊗Z B. Since F⊗Z B contains the ideal
In,2 by Proposition 3.9, our statement follows. �
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