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We study multiplicities of jumping numbers of multiplier ideals in a smooth variety of arbitrary dimension.
We prove that the multiplicity function is a quasipolynomial, hence proving that the Poincaré series is a
rational function. We further study when the various components of the quasipolynomial have the highest
possible degree and relate it to jumping numbers contributed by Rees valuations. Finally, we study the
special case of monomial ideals.

1. Introduction

Let X be a smooth variety over an algebraically closed field of characteristic 0. Associated to each closed
subscheme Z of X is a family of ideals, called the multiplier ideals (Definition 2.2), that quantify the
singularities of Z . The multiplier ideals are indexed by a positive real parameter c (and are denoted
by J (c · Z)), and form a decreasing family of ideals of OX .

As c varies over the positive real numbers, the stalks J (c · Z)x of these ideals at any point x change
exactly at a discrete set of rational numbers ci called the jumping numbers of Z at x (Definition 2.3). So
we get a descending chain of ideals

OX,x ⊋ J (c1 · Z)x ⊋ J (c2 · Z)x ⊋ · · · . (1-1)

The jumping numbers, first defined and studied in [Ein et al. 2004], are interesting invariants of the
singularity of Z at x . For example, the smallest jumping number is the well-known log-canonical
threshold (lct) of the subscheme. The log-canonical threshold, and more generally any jumping number
in the interval [lct, lct + 1), is a root of bZ (−s), where bZ (s) is the famous Bernstein–Sato polynomial
of Z ; see [Kollár 1997; Ein et al. 2004; Budur et al. 2006]. Jumping numbers were connected to the
Hodge spectrum of a hypersurface by Budur [2003].

Jumping numbers have been studied extensively in the case when the dimension of X is two, starting
with [Smith and Thompson 2007]. For example, explicit formulas for the jumping numbers have been
calculated in [Kuwata 1999; Galindo et al. 2016; Järvilehto 2011; Naie 2009; Hyry and Järvilehto 2018].
More algorithms for computing jumping numbers can be found in [Tucker 2010; Alberich-Carramiñana
et al. 2016; 2017].
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The purpose of this paper is to study jumping numbers in higher dimensions. We do this by studying a
natural refinement of the jumping numbers, namely multiplicities of jumping numbers, first introduced in
[Ein et al. 2004]. More precisely, fix a closed subscheme Z of a smooth variety X , and an irreducible
component Z1 of Z . All the (stalks of) multiplier ideals of Z will have finite colength in the local ring
at Z1. So any jumping number c at Z1 has a natural multiplicity, m(c), that measures the change in the
multiplier ideal at c, namely

m(c) := λ(J (ac−ε)x/J (ac)x) for 0 < ε ≪ 1. (1-2)

Here, J (ac)x denotes the stalk of the multiplier ideal of Z at x , the generic point of Z1 in X , and λ

denotes the length as an OX,x module. If the real number c is not a jumping number, we define its
multiplicity to be zero, compatibly with (1-2).

For any jumping number c, we obtain another jumping number by adding any positive integer, so it is
natural to consider the sequence of multiplicities of the jumping numbers c + n, as n ranges through the
natural numbers. Our first main theorem is:

Theorem 3.3. Let Z be a closed subscheme of X and Z1 an irreducible component of Z. For any positive
real number c and natural number n, let m(c + n) denote the multiplicity of c + n of Z along Z1. Then
the sequence of multiplicities

(m(c + n))n∈N

is a polynomial function of n of degree less than the codimension of Z1 in X.

Theorem 3.3 allows us to interpret the multiplicity function m(c) as a quasipolynomial in c; see
Corollary 3.4.

Theorem 3.3 generalizes the work of Alberich-Carramiñana, Àlvarez Montaner, Dachs-Cadefau and
González-Alonso when X is a surface [Alberich-Carramiñana et al. 2017]. They compute the multiplicities
explicitly in terms of the intersection matrix of the exceptional divisors in a log resolution. In higher
dimension, we instead use the numerical intersection theory of divisors as developed by Kleiman [1966].

The polynomial of Theorem 3.3 encodes interesting information about the divisors relevant for com-
puting jumping numbers as developed in [Smith and Thompson 2007]. For example, its degree tells us
precisely whether (possibly some translate of) the jumping number is contributed by a Rees valuation:

Theorem 4.6. For a closed subscheme Z of X and any positive real number c, consider the multiplicity
polynomial m(c + n) along an irreducible component Z1 of codimension h in X. Then the degree of this
polynomial is equal to h − 1 if and only if c + h − 1 is a jumping number contributed — in the sense of
[Smith and Thompson 2007] — by some Rees valuation of Z centered at Z1.

Theorem 4.6 motivates the term Rees coefficient of the jumping number c for the coefficient of nh−1

in the polynomial m(c + n) from Theorem 3.3. The Rees coefficient is not necessarily the “leading
coefficient” of the polynomial m(c + n) because it can be zero; see Example 4.9.

We prove several applications of Theorem 4.6. For example, we show that certain jumping numbers
of Z can be computed directly from the normalized blowup of Z without finding a full log resolution; see
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Corollary 4.11 for a precise statement. As another consequence, we answer a question posed by Joaquín
Moraga: we prove that every divisorial valuation over X contributes a jumping number for some divisor;
see Theorem 4.15.

The Rees coefficient of a jumping number c is the same as the Rees coefficient of any translate of c
by an integer. So we can consider the Rees coefficient of a class of jumping numbers modulo Z; there
are finitely many such classes, by discreteness of jumping numbers. We prove in Theorem 4.17 that
the sum of the Rees coefficients for the distinct classes of jumping numbers modulo Z is equal to the
Hilbert–Samuel multiplicity of Z at Z1 (scaled by 1/(h − 1)!). So the Rees coefficients can be thought of
as refinements of the Hilbert–Samuel multiplicity.

In Section 5, we study the special case of point schemes defined by monomial ideals. We prove formulas
for the multiplicities and for the Rees coefficients of each jumping number in this case (Theorem 5.3). In
particular, we see that the Rees coefficient of every jumping number of a monomial scheme is positive
(Corollary 5.5). Thus, Theorem 4.6 implies that, for monomial ideals, all jumping numbers (after
translation by some integer) are contributed by Rees valuations.

Finally, in Section 6, we examine a generating function for multiplicities of a jumping number. For an
irreducible component Z1 of a fixed subscheme Z , we define a Poincaré series from the multiplicities m(c),
and prove that it is a rational function in a suitable sense; see Theorem 6.1. This generalizes the previous
results from [Galindo and Monserrat 2010] and [Alberich-Carramiñana et al. 2017], valid for point
schemes in dimension two. Theorem 6.1, which is valid in any dimension, was independently proved by
Àlvarez Montaner and Núñez-Betancourt [2022] using different methods.

2. Review of multiplier ideals and intersection theory

Throughout this paper, we work over an algebraically closed field k of characteristic zero.

2A. Multiplier ideals and jumping numbers. Let X be a smooth variety over k. Fix a coherent ideal
sheaf a of OX and let Z be the subscheme defined by a. We will now recall the definition of the multiplier
ideals J (c · Z), interchangeably denoted by J (ac), referring the reader to [Lazarsfeld 2004b] for details.

Definition 2.1. A log resolution of the ideal a is a projective, birational map µ : Y → X such that

(a) Y is smooth,

(b) a ·OY = OY (−F), where F is an effective divisor, and

(c) F +KY |X has simple normal crossing support, where KY |X denotes the relative canonical divisor of µ.

Such log resolutions exist by Hironaka’s theorem on resolution of singularities.

Definition 2.2. For any positive real number c, the multiplier ideal of a at c is defined as

J (ac) = µ∗(OY (KY |X − ⌊cF⌋)),

where µ : Y → X is any log resolution of a and F is an effective divisor with a ·OY = OY (−F). The
multiplier ideal is independent of the choice of the log resolution.
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As the positive real parameter c increases, the stalks of the multiplier ideal J (ac)x at any point x
decrease. The numbers c at which the stalks change are called the jumping numbers of the ideal a (or Z )
at x . More precisely:

Definition 2.3 [Ein et al. 2004]. A positive real number c is a jumping number of the subscheme Z at a
point x ∈ X if

J (ac)x ⊊ J (ac−ε)x for all ε > 0.

It follows from the definition of the multiplier ideal in terms of a log resolution that the jumping
numbers of any subscheme Z are discrete and rational (see Section 2A1 below).

2A1. Candidate jumping numbers. Let µ : Y → X be any log resolution of a with a ·OY = OY (−F) for
an effective divisor F . Suppose F =

∑
i ai Di for prime divisors Di . Then we call the numbers of the

form n/ai for natural numbers n the candidate jumping numbers of a. These are precisely the values of c
where the divisor KY |X −⌊cF⌋ changes, and hence the set of jumping numbers at any point is certainly
contained in the set of candidate jumping numbers. The candidate jumping numbers make it clear that the
set of jumping numbers is rational and discrete. Moreover, there is a uniform ε such that ci+1 − ci > ε

for any two consecutive jumping numbers ci and ci+1.
Note that this definition is slightly different from the candidate jumping numbers as defined in [Smith

and Thompson 2007], where they were defined to be the set of rational numbers where the divisor
KY |X − ⌊cF⌋ changes and is not effective. The main reason for this deviation is that now for every
candidate jumping number c, its fractional part {c} is also a candidate jumping number. Hence, every
jumping number c can be written as {c}+ ⌊c⌋, i.e., an integer translate of a candidate jumping number
that lies in the interval (0, 1].

We now recall two of the main results from the theory of multiplier ideals in the form that we will use
them. The reference for these results is [Lazarsfeld 2004b, Chapter 9].

Theorem 2.4 (local vanishing theorem). Let a ⊂ OX be an ideal, and µ : Y → X be a log resolution
of a and let a ·OY = OY (−F) for an effective divisor F. Then for any c > 0, the following higher direct
images vanish:

R jµ∗OY (KY |X − ⌊cF⌋) = 0 for j > 0.

Theorem 2.5 (Skoda’s theorem). Let a⊂OX be an ideal, c > 0 be any real number and m ≥ d := dim(X)

be an integer. Then we have

J (ac+m) = a · J (ac+m−1).

2B. Numerical intersection theory. Now we review Kleiman’s numerical intersection theory of divisors
as developed in [Kleiman 1966] and also explained in [Debarre 2001]. We only state the main facts that
we need here.

Let Y be a proper scheme of dimension d over a field L . Let L1, . . . , Lr be line bundles on Y and F

a coherent sheaf on Y . Then we have the following theorem that Kleiman [1966] attributes to Snapper:
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Theorem 2.6. Consider the function f (m1, . . . , mr ) = χ(F ⊗ L
m1
1 ⊗ · · · ⊗ L mr

r ) for m1, . . . , mr ∈ Z,
where χ denotes the Euler characteristic (over L). Then there is a polynomial P(x1, . . . , xr ) with
coefficients in Q and of total degree ≤ dim Supp(F ) such that P(m1, . . . , mr ) = f (m1, . . . , mr ) for
all m1, . . . , mr ∈ Z.

Definition 2.7 [Kleiman 1966, Section 2, Definition 1]. Suppose that dim Supp(F ) ≤ r , and then define
the intersection number (F ; L1 · . . . · Lr ) to be the coefficient of the term x1 · · · xr in the polynomial
P(x1, . . . , xr ) as in Theorem 2.6. In particular, if dim Supp(F ) < r , then (F ; L1 · . . . · Lr ) = 0, since
the degree of P(x1, . . . , xr ) is strictly less than r by Theorem 2.6.

For any coherent sheaf F with dim(Supp(F )) ≤ r , this defines an integer-valued multilinear form
on Pic(Y )r . If a line bundle L is defined by a Cartier divisor D, then we sometimes write D instead
of L in the intersection form. We will use the following properties of the intersection numbers:

Proposition 2.8. Let Y be a proper scheme over a field L of dimension d. Let L1, . . . , Lr be line bundles
on Y , D an effective Cartier divisor and F a coherent sheaf on Y . Suppose dim Supp(F ) = r . Then:

(1) If F is a locally free sheaf (in this case r = d), then

(F ; L1 · . . . · Ld−1 ·OY (D)) = (F |D; L1|D · . . . · Ld−1|D).

(2) If F ′ and F ′′ are two other coherent sheaves and there is an exact sequence

0 → F ′
→ F → F ′′

→ 0,

then (F ; L1 · . . . · Lr ) = (F ′
; L1 · . . . · Lr ) + (F ′′

; L1 · . . . · Lr ).

(3) If L is any line bundle on Y and P(x) is the polynomial such that P(n) = χ(F ⊗ L n) for n ∈ Z

(which exists by Theorem 2.6 above), then

(F ; L · . . . · L︸ ︷︷ ︸
r times

) = αr !,

where α is the coefficient of xr in P(x).

(4) Let V = Supp(F ), and let V1, . . . , Vs be its irreducible components. Let li = length(F ⊗ OVi ),
where OVi is the stalk of OY at the generic point of Vi . Then, assuming r ≥ dim(V ), we have

(F ; L1 · . . . · Lr ) =

s∑
i=1

li (L1|Vi · . . . · Lr |Vi ).

In particular, if F is an invertible sheaf , then (F ; L1 · . . . · Ld) = (L1 · . . . · Ld).

(5) Let π : Y ′
→ Y be a map of finite type of integral projective varieties of dimension d. Then

(π∗L1 · . . . · π∗Ld)Y ′ = deg(π)(L1 · . . . · Ld)Y .

Proof. Parts (1), (2), (4) and (5) are proved in [Kleiman 1966, Section 2] as Propositions 4, 3, 5 and 6,
respectively. Note that even though it is assumed that the ground field L is algebraically closed in
[Kleiman 1966], the hypothesis is not required in Section 2 there. For instance, see [Debarre 2001].



88 Swaraj Pande

(3) If Q(x1, . . . , xr ) is the polynomial such that Q(m1, . . . , mr ) = χ(F ⊗ L m1 ⊗ · · · ⊗ L mr ), then
Q(x1, . . . , xr ) = P(x1 + · · · + xr ). Since P(x) has a degree at most r , the coefficient of x1 · · · xr in
P(x1 + · · · + xr ) is αr !, which by definition is the required intersection number. □

3. The polynomial nature of multiplicities

In this section, we prove Theorem 3.3 on the polynomial behavior of multiplicities of jumping numbers.
We begin with some preliminary definitions.

Notation 3.1. We fix the following notation throughout this section: Let X be a smooth variety of
dimension d over k. We fix a closed subscheme Z of X and an irreducible component Z1 of Z . Let x
be the generic point of Z1 in X and (A,m, L) the local ring at x in X . The Krull dimension of A — or,
equivalently, the codimension of Z1 in X — will be denoted by h. Let a ⊂ OX denote the ideal of Z , and
observe that the stalk of a at x is an m-primary ideal of A. Abusing notation, we often write a and J (ac)

for the stalks of the ideal sheaf a and the multiplier ideal at x , respectively, and think of these as ideals in A.

Definition 3.2 [Ein et al. 2004]. For any real number c>0 of a at x , the multiplicity of c at x is defined to be

m(c) := λ(J (ac−ε)x/J (ac)x), (3-1)

for sufficiently small positive ε. Here, λ denotes the length as an A-module.

The multiplicity is well defined, because J (ac) is either A or an m-primary ideal for all c since a

is m-primary and J (ac) ⊃ J (a⌈c⌉) ⊃ a⌈c⌉. Note that even though we define m(c) for any positive real
number c by expression (3-1), it will be nonzero if and only if c is a jumping number, by the definition of
jumping number.

Our focus in this section is on the function m(c+n), where c > 0 is any fixed real number and n varies
over the natural numbers Z≥0. So we define

fc(n) := m(c + n).

The main theorem about fc(n) is the following:

Theorem 3.3. Let Z be a closed subscheme of a smooth variety X and Z1 be an irreducible component
of Z. Then for each c > 0, the function fc(n) is a polynomial function of n of degree less than the
codimension h of Z1 in X.

Recall that a function g : R>0 → R is called a quasipolynomial if g can be written as

g(x) = ar (x)xr
+ · · · + a0(x),

where each ai (x) is a periodic function of x with integral period.

Corollary 3.4. Let Z be a closed subscheme of a smooth variety X. The multiplicity function m(c) of Z
along one of its components Z1 is a quasipolynomial in c.

Proof. By Theorem 3.3, for each c in the interval (0, 1], the multiplicity m(c + n) can be written as a
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polynomial Pc(c+n) of degree less than h, where h is the codimension of Z1 in X . So we can write m(c) as

m(x) = ah−1(x)xh−1
+ · · · + a0(x),

where ai (x) is the coefficient of x i in the polynomial Pc, for c the fractional part c = x − ⌊x⌋ of x . Note
that each ai is a periodic function with period 1. □

Before we prove the theorem, it will be convenient to introduce some notation and the notion of
jumping divisor of a candidate jumping number:

Definition 3.5. Let c be positive real number c and a an ideal sheaf on the smooth variety X . Fix a log
resolution µ : Y → X of a, and let F be the unique effective exceptional divisor such that a·OY =OY (−F).
For ε > 0 small enough, the divisor ⌊cF⌋− ⌊(c − ε)F⌋ is reduced and does not change as ε → 0. The
jumping divisor Ec of c is

Ec
= ⌊cF⌋ − ⌊(c − ε)F⌋, (3-2)

where ε is a sufficiently small positive number.

The jumping divisor Ec is a reduced nonzero divisor whenever c is a candidate jumping number of a,
by definition of candidate jumping number (see Section 2A1). Otherwise, Ec is zero. Further note that
Ec

= Ec+n for any natural number n, as follows from formula (3-2) by properties of rounding down.

Remark 3.6. The notion of a jumping divisor was introduced as the maximal jumping divisor in [Alberich-
Carramiñana et al. 2016] along with its minimal variant in the two-dimensional case. For simplicity, we
drop the adjective “maximal” from the name and do not discuss the minimal jumping divisor here.

Remark 3.7. Let µ : Y → X be any log resolution of the closed subscheme Z defined by a. Let
a ·OY = OY (−F). Since we do not assume X to be a projective variety (in fact, we will assume it to be
affine), the divisor F or its components are not necessarily projective varieties. However, we can realize
each prime component of the divisor F as a projective variety over a suitable field, after a suitable base
change, as guaranteed by the next lemma.

Lemma 3.8. With notation as in Remark 3.7:

(1) The pushforward µ∗OY (−F) is the integral closure of the ideal a.

(2) If E ⊂ Y is an irreducible component of F , then µ(E) is contained in Z. Conversely, all prime
divisors that are mapped inside Z by µ occur as irreducible components of F.

(3) If Z is supported at a closed point x , then each component of F is a smooth projective variety over k
and is contracted by µ to x.

(4) More generally, if E ⊂ Y is a prime component of F and p ∈ Z is the center of E on X (i.e., generic
point of µ(E)), then

E ′
= E ×X Spec(OX,p)

is a smooth projective variety over the residue field κ(p) of p ∈ X.

(5) The dimension of E ′ is h − 1, where h is the dimension of OX,p.
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Proof. (1) See [Lazarsfeld 2004b, Remark 9.6.4].

(2) The forward implication follows from part (1) and the converse from the fact that µ−1(a) = OY (−F).

(3) This is a special case of part (4).

(4) Since we are assuming our log resolutions are projective maps, E ′ is projective over Spec(OX,p).
Further, the fiber over p is a projective variety over κ(p). Hence, so is every closed subvariety of the
fiber. Since E ′ is contracted to x ∈ Spec(OX,p) by µ, E ′ is a projective variety over κ(p). Smoothness
follows from the fact that E is smooth over k.

(5) Let κ(E) = κ(E ′) denote the function field (over k) of the variety E and κ(p) denote the residue
field of X at p. Then

dimκ(p) E ′
= tr. deg.κ(p)κ(E ′) = tr. deg.kκ(E ′) − tr. deg.kκ(p) = d − 1 − dimk(Z1) = h − 1,

where Z1 denotes the closure of p in X and tr. deg.κ denotes the transcendence degree of a field over κ . □

Notation 3.9. For any effective divisor D ⊂ F and a point p in X , we denote by Dp the scheme
D ×X Spec(OX,p) over Spec(OX,p). In particular, Ec

x denotes the base change of the jumping divisor Ec

to Spec(OX,x). Note Ec
x can be empty. But in that case, it follows from (3-4) below that the multiplicity

of c at x is zero, and hence c can not be a jumping number.

We can now prove Theorem 3.3.

Proof of Theorem 3.3. Since the multiplicities m(c) depend only on the stalk of the multiplier ideal at x ,
we may assume X is the local affine scheme Spec(OX,x).

Let µ : Y → X be any log resolution of the closed subscheme Z defined by the ideal a. Let a ·OY =

OY (−F). We now prove that for any c>0, the multiplicity m(c) can be calculated as an Euler characteristic
on Y . To see this, we start with the exact sequence

0 → OY (−Ec) → OY → OEc → 0.

Let L be the line bundle on Y corresponding to the divisor KY |X + Ec
− ⌊cF⌋ = KY |X − ⌊(c − ε)F⌋.

Tensoring with the invertible sheaf associated to L , we get

0 → OY (L ) ⊗OY (−Ec) → OY (L ) → OEc(L |Ec) → 0. (3-3)

Observing that OY (L )⊗OY (−Ec) ∼= OY (KY |X −⌊cF⌋), the local vanishing theorem (Theorem 2.4)
tells us that the sequence remains exact after applying µ∗. Thus we have the exact sequence

0 → J (ac) → J (ac−ε) → H 0(Ec, L |Ec) → 0, (3-4)

where the first map is just the inclusion of the ideal J (ac) inside J (ac−ε).
Since X is affine, applying the local vanishing theorem (Theorem 2.4) again, we have that the first

two sheaves in the short exact sequence (3-3) have vanishing higher cohomology. Using the long exact
sequence for (3-3) of sheaf cohomology groups, we get

H p(Ec, L |Ec) = 0 for all p > 0. (3-5)
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Since Ec is reduced, by Lemma 3.8, it is a projective variety over L (the residue field at x). Putting
this together with (3-3) and (3-5), we get

m(c) = λ(J (ac−ε)/J (ac)) = λ(H 0(Ec, L |Ec)) = dimL(H 0(Ec, L |Ec)) = χL(L |Ec), (3-6)

where the third equality holds because the OX,x -module H 0(Ec, L |Ec) is already a vector space over L ,
since Ec is a projective variety over L .

By (3-6), we have

fc(n) = χL
(
OY (KY |X − ⌊(c − ε)F⌋)|Ec ⊗OY (−nF)|Ec

)
(3-7)

for all n ≥ 0. Since we are fixing c and varying n, we may apply Theorem 2.6 on the complete scheme Ec

over L with r = 1, F = OY (KY |X − ⌊(c − ε)F⌋)|Ec and L1 = OY (−F)|Ec to get a polynomial Qc(x)

of degree at most the dimension of Ec such that Qc(n) = χ(F ⊗ L n
1 ) = fc(n) for all n ≥ 0. The proof

is now complete by noting that the dimension of Ec is equal to h − 1 by Lemma 3.8, where h is the
codimension of Z1. □

We can also explicitly determine the coefficient of nh−1 in the polynomial m(c + n):

Theorem 3.10. Fix c > 0. With notation as before, the coefficient ρc of the term nh−1 in the polynomial
fc(n) describing the multiplicities m(c + n) can be computed on the log resolution Y using the formula

ρc =
(−1)h−1

(h − 1)!
(F |Ec

x
· . . . · F |Ec

x︸ ︷︷ ︸
h−1 times

), (3-8)

where Ec
x = Ec

×X Spec(OX,x) is a projective variety over L. When the subscheme Z is supported only
at a closed point x in X , the formula for ρc may be written as follows (where d is the dimension of X ):

ρc =
(−1)d−1

(d − 1)!
(F · . . . · F︸ ︷︷ ︸

d−1 times

·Ec). (3-9)

Proof. Let Fc = OY (KY |X − ⌊(c − ε)F⌋) and L = OY (−F). Then fc(n) = χ(F |Ec
x
⊗ L |

n
Ec

x
) by (3-7).

Using part (3) of Proposition 2.8, we have ρc = (Fc|Ec
x
; L |Ec

x
· . . . · L |Ec

x
)/(h − 1)! . Since Fc is a line

bundle on Y and by definition L = OY (−F), using part (4) of Proposition 2.8, we have

ρc = (−1)h−1 (F |Ec
x
· . . . · F |Ec

x
)

(h − 1)!
.

If Z is supported only at a closed point x , then Ec
x = Ec and is projective over k. By part (1) of

Proposition 2.8, we can compute ρc on any projective closure of Y as

(L |Ec · . . . · L |Ec)

(d − 1)!
=

(L · . . . · L · Ec)

(d − 1)!
= (−1)d−1 (F · . . . · F · Ec)

(d − 1)!
. □

Definition 3.11. Given Z and Z1, we define the Rees coefficient of c > 0 (denoted by ρc) to be the
coefficient of the term nh−1 in the polynomial fc(n). Equivalently, in light of Theorem 3.3, ρc is the
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unique number such that

m(c + n) = ρcnh−1
+ o(nh−2) as n → ∞,

where h is the codimension of Z1 in X .

The Rees coefficient of a jumping number will be studied in more detail in the next section.

Remark 3.12. When dim(X) = 2 and Z is a point scheme, the polynomial fc(n) has degree at most 1.
In this case, we have

m(c + n) = m(c) + ρcn, where ρc = −F · Ec.

This recovers the linear formula for m(c + n) proved in [Alberich-Carramiñana et al. 2017].

Remark 3.13. In higher dimensions and when Z is still a point scheme, the polynomials fc(n) have
other coefficients that can be computed as follows:

If fc(n) = m(c) + αc
1n + · · · +αc

d−1nd−1, then

αc
j =

1
j !

∫
Ec

c1(L |Ec) j
∩ τEc, j (Fc|Ec), (3-10)

where Fc = OY (KY |X −⌊(c − ε)F⌋) and L = OY (−F), c1 denotes the first Chern class of a line bundle
and τEc, j denotes the degree j component of the Todd class of a sheaf. This formula comes from (3-7)
and the Riemann–Roch theorem for singular varieties. See [Fulton 1998, Example 18.3.6] for the details.

The interpretation of the multiplicity m(c) as the dimension of global sections as in (3-6) also implies
that the function under consideration, fc(n), is a nondecreasing function, which we now note:

Proposition 3.14. Let Z be a closed subscheme of a smooth variety X and Z1 an irreducible component
of Z with generic point x. Fix any c > 0. Then m(c + 1) ≥ m(c).

Proof. As before, we assume X is the local scheme Spec(OX,x). It is sufficient to deal with the case
when c is a jumping number since otherwise m(c) = 0 and m(c + 1) ≥ 0 by definition. So we assume
that c is a jumping number, in which case m(c) > 0. By (3-6), we need to show that

dimL H 0(Ec,OY (KY |X − ⌊(c + 1 − ε)F⌋)|Ec
)
≥ dimL H 0(Ec,OY (KY |X − ⌊(c − ε)F⌋)|Ec

)
.

Denoting by F and L the invertible sheaves OY (KY |X −⌊(c − ε)F⌋) and OY (−F) on Y , respectively,
we need to prove that

dimL H 0(Ec, F |Ec ⊗ L |Ec) ≥ dimL H 0(Ec, F |Ec).

But, since a ·OY = OY (−F), L is generated by its global sections (by the generators of a) on Y , the
same is true for L |Ec on Ec. In particular, L |Ec has a nonzero global section. Hence, choosing a nonzero
global section of L |Ec , we have an injective map

OEc ↪→ OEc(L ).
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Tensoring with F |Ec preserves injectivity since F was invertible. Hence, we have

OEc(F ) ↪→ OEc(L ⊗ F ).

Since taking global sections also preserves injectivity, our claim is proved. □

Remark 3.15. This proposition implies that if c is a jumping number of Z at Z1, then so is c + 1.
This also follows directly from the definition of multiplier ideals and jumping numbers. Though this
proposition says that if we fix a “c” then m(c + n) is nondecreasing with n, this does not imply that the
multiplicity m(c) increases with c (i.e., as c varies over the jumping numbers). In fact, this is not true. As
we will see in the next section, m(c + n) increases at different rates for different jumping numbers c.

Theorem 3.3 can be thought of as a finiteness statement for multiplier ideals of a subscheme at its
irreducible components. For example, we can use Theorem 3.3 to deduce a well-known periodicity result
for jumping numbers:

Proposition 3.16. Let c be a positive real number, and let Z1 be an h-dimensional component of a
subscheme Z of a smooth variety X. If c > h − 1, then c is a jumping number of Z at Z1 if and only
if c + 1 is a jumping number of Z at Z1.

Proof. By Proposition 3.14, if c is a jumping number, then c + 1 is also a jumping number (without any
assumptions on c). So it is enough to prove that if c + 1 is a jumping number of Z at Z1 then so is c.
If c is not a jumping number, then by Proposition 3.14, m(c − n) = 0 for all n such that 0 ≤ n ≤ h − 1.
By Theorem 3.3, m(c + n) is a polynomial of degree at most h − 1. Since m(c + n) has h zeroes, this
implies that m(c + n) is identically zero. So c + 1 can not be a jumping number either. □

4. Properties of the Rees coefficient

In this section, we investigate some properties of the Rees coefficient of a jumping number (Definition 3.11).
In Section 4A, we prove some criteria for the positivity of the Rees coefficient. Next, we relate the Rees
coefficients to the Hilbert–Samuel multiplicity (Section 4B). We begin with some preliminary observations
about the Rees coefficients.

Recall that the Rees coefficient ρc of c is defined to be the coefficient of nh−1 in the polynomial
m(c + n), where m(c) denotes the multiplicity of c of a closed subscheme Z along one of its irreducible
components Z1 and h denotes the codimension of Z1 in X .

Proposition 4.1. Let X be a smooth variety and fix a closed subscheme Z of X and an irreducible
component Z1 of Z. Fix a positive real number c. Then the Rees coefficient satisfies the following:

(1) ρc ≥ 0 for all c > 0.

(2) ρc ∈ (1/(h − 1)!)N≥0.

(3) ρc = ρc+n for any positive integer n.

(4) ρc = 0 if c is not a candidate jumping number of a (see Section 2A1).

(5) ρc is positive implies that c + n is a jumping number at Z1 for some n.
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Proof. By Theorem 3.3, m(c + n) is a polynomial in n of degree at most h − 1. Since ρc is the coefficient
of nh−1, parts (1), (2) and (3) follow from the fact that m(c + n) is a nonnegative integer for all n.
Parts (4) and (5) follow from the fact that m(c+n) is positive exactly when c+n is a jumping number. In
particular, if m(c+n) > 0 for some n, then c (equivalently c+n) must be a candidate jumping number. □

Since ρc is the same as ρc+n for any natural number n, we think of ρc as a Q-valued function on Q/Z.
This function is an invariant of the subscheme Z along a component Z1 and describes interesting properties
of jumping numbers at Z1 (or rather their classes in Q/Z). We turn to explaining these properties.

4A. Criteria for positivity. We first discuss the issue of when the Rees coefficient ρc is positive. More
precisely, for any closed subscheme Z and an irreducible component Z1, we ask for which classes in Q/Z

of jumping numbers c is the Rees coefficient ρc positive? Equivalently, for which jumping numbers c
at Z1 does the multiplicity m(c +n) along Z1 grow like nh−1 as n → ∞ (where h = codimX Z1)? In this
subsection, we prove several criteria for when the Rees coefficient is positive. Theorem 4.2 is a summary
of the results of this section:

Theorem 4.2. Let Z be a closed subscheme of X (with ideal a) and Z1 be an irreducible component of Z
with generic point x in X. Let h be the codimension of Z1 in X and fix any c > 0. Then the following are
equivalent:

(i) The Rees coefficient ρc is positive.

(ii) The polynomial m(c + n) has degree h − 1 in n.

(iii) The jumping divisor Ec (Definition 3.5) contains a Rees valuation of a centered at x on some
(equivalently any) log resolution of a.

(iv) c + h − 1 is a jumping number contributed by some Rees valuation of a centered at x.

(v) The class of c in Q/Z is contributed by some Rees valuation of a centered at x.

We explain the statement of the theorem and the various terms appearing in it before giving the proof.

Jumping numbers contributed by divisors. The notion of a jumping number contributed by a divisor
on a log resolution was defined by Smith and Thompson [2007]. This notion was studied further in
[Tucker 2010] and [Baumers et al. 2018]. This definition naturally generalizes to classes of jumping
numbers in Q/Z. In this terminology, Theorem 4.2 characterizes the classes contributed by the Rees
valuations on any log resolution as exactly the classes whose Rees coefficient is positive (hence the choice
of name). We now review the definition of contribution by a divisor here. Recall that Ec

x is the base
change of the jumping divisor Ec (Definition 3.5), defined as Ec

x = (⌊cF⌋−⌊(c − ε)F⌋)×X Spec(OX,x).

Definition 4.3. Let µ : Y → X be a log resolution of an ideal a ⊂ OX with a · OY = OY (−F), and
let E ⊂ F be a prime divisor. Then, for any point x of X , a jumping number c of a at x is said to be
contributed by E if

(1) Ex is nonempty,
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(2) Ex ⊂ Ec
x and

(3) J (ac)x = µ∗(OY (KY |X − ⌊cF⌋))x ⊊ µ∗(OY (KY |X − ⌊cF⌋ + E))x .

We say that a class [c] ∈ Q/Z is contributed by E if c+n is contributed by E for some natural number n.

The condition that Ex is nonempty is saying that E is centered on Spec(OX,x) and Ex ⊂ Ec
x is just

saying that c is a candidate jumping number for E . We also note that contribution by a prime divisor
depends only on the valuation defined by E and not on the chosen log resolution. So we say that a
jumping number is “contributed by a valuation ν” if it is contributed by a divisor on a log resolution
whose associated valuation is ν.

Rees valuations. Let a ⊂ OX be an ideal. If ν : X̃ → X denotes the normalization of the blowup of X
along a, then a ·OX̃ = OX̃ (−E), for an effective divisor E on X̃ . Then the valuations corresponding to
the prime components of E are called the Rees valuations of a.

Let (A,m) be a local ring and a be an ideal. The set of Rees valuations of a is a minimal set of discrete,
rank-one valuations ν1, . . . , νr of A satisfying the property that:

For all n ∈ N, the integral closure an equals
r⋂

i=1
(anVi ∩ A), where Vi is the valuation ring of νi .

In other words, the Rees valuations are a minimal set of valuations that determine the integral closure of
all the powers of the ideal a. We refer to [Huneke and Swanson 2006, Chapter 10] for details about Rees
valuations. This is also explained in [Lazarsfeld 2004b, Section 9.6].

Given the normalized blowup X̃ , or more generally any normal variety Y mapping properly and
birationally to X , we abuse terminology by saying “E is a Rees valuation of a” to refer to a prime
divisor E on Y corresponding to a Rees valuation of a.

We now turn to the proof of Theorem 4.2.

Proof of Theorem 4.2. We first note the following easy implications in the theorem: The equivalence
between (i) and (ii) is clear from Definition 3.11 of the Rees coefficient. That (iv) implies (iii) follows
from Definition 4.3 of jumping numbers contributed by divisors (so does (v) implies (iii)). We have
that (iv) implies (v) immediately from Definition 4.3 of classes of jumping numbers contributed by a
divisor. So to complete the proof, we will prove that (i) is equivalent to (iii) and (iii) implies (iv). These
will be proved as the two main theorems of this subsection.

We first prove part (i) is equivalent to part (iii) of Theorem 4.2:

Theorem 4.4. Let Z be a closed subscheme of X and Z1 an irreducible component of Z with generic
point x in X. Fix any c > 0. Then, the Rees coefficient ρc at x is positive if and only if on some (equivalently
every) log resolution, the jumping divisor Ec (Definition 3.5) contains a Rees valuation of Z centered at x.

Let µ : Y → X be a log resolution of the ideal a with a · OY = OY (−F). When X is a surface
and a is supported at a closed point, it follows from the results of Lipman [1969] that, for any irreducible
exceptional curve E ⊂ Y , (−F · E) is nonnegative and is positive exactly when E corresponds to a Rees
valuation of a. It follows from the formula (3-8) that the Rees coefficient ρc is positive if and only if a



96 Swaraj Pande

Rees valuation appears in the jumping divisor Ec. Theorem 4.4 can be thought of as a generalization of
Lipman’s result in this context to higher dimensions. To prove this theorem, we need a key lemma which
is a generalization to higher dimensions of a version of [Lipman 1969, Lemma 21.2].

Lemma 4.5. If E ⊂ Y is an irreducible component of F (and x is the generic point of Z1, an irreducible
component of Z ), then

(−F |Ex · . . . · −F |Ex︸ ︷︷ ︸
h−1 times

) ≥ 0,

where Ex = E ×X Spec(OX,x) and h is the codimension of Z1 in X. Moreover, the intersection number
(−F |Ex · . . . · −F |Ex ) is positive if and only if the divisor E is a Rees valuation of a centered at x.

Proof. Since the relevant intersection numbers depend only on the local ring at x in X , we assume X is
the local scheme Spec(OX,x). Recall that by Lemma 3.8, Ex (henceforth denoted just by E) is a smooth
projective variety over L (the residue field of X at x) of dimension h − 1. So the intersection numbers
make sense.

The setup of the proof is as follows: Let µ̃ : X̃ → X be the normalized blowup of a, the ideal of Z in X .
Since Y is normal (it is smooth) and a ·OY is locally principal, the universal property of normalization
and of blowing-up provides a factorization

µ : Y π
−→ X̃ µ̃

−→ X,

i.e., µ = µ̃ ◦ π . Let L denote the invertible sheaf OY (−F) = a · OY on Y and L̃ be the invertible
sheaf a ·OX̃ on X̃ , and we have L = π∗(L̃ ). Then, since L̃ is relatively ample for µ̃, if D ⊂ X̃ is any
effective divisor, then L̃ |D is ample.

Let B = {G j } denote the finite set of prime divisors on X̃ in the support of a ·OX̃ and C = {Ei } denote
the finite set of irreducible components of F on Y . Then, a divisor Ei from the set C corresponds to a
Rees valuation of a if and only if π maps Ei birationally onto some divisor G j from B. And if Ei does
not correspond to a Rees valuation, then π maps Ei onto a proper subset of G j from some j . In any case,
for each Ei in B, we have a G j in C such that π restricts to a map

Ei G j

Y X̃

π |Ei

π

with π birational exactly when Ei corresponds to a Rees valuation of a. Now, we want to understand the
intersection number (L |Ei · . . . · L |Ei ). By Proposition 2.8(5), we have

(L |Ei · . . . · L |Ei︸ ︷︷ ︸
h−1 times

) = deg(π |Ei ) × (L̃ |G j · . . . · L̃ |G j︸ ︷︷ ︸
h−1 times

). (4-1)

If Ei is not centered at x then Ei does not appear on Y since we are over Spec(OX,x), and if Ei does
not correspond to a Rees valuation then deg(π |Ei ) is zero. Therefore, in both cases, the intersection
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number (L |Ei · . . . ·L |Ei ) is zero. The only case when (L |Ei · . . . ·L |Ei ) can be nonzero is when Ei is a
Rees valuation centered at x . But in that case, π |Ei is birational onto G j and L̃ is ample on G j . Hence,
by (4-1), we get that (L |Ei · . . . · L |Ei ) is positive. This completes the proof of the lemma. □

Proof of Theorem 4.4. The theorem now follows from Lemma 4.5 and Theorem 3.10:

ρc = (−1)h−1 (F |Ec
x
· . . . · F |Ec

x
)

(h − 1)!
=

∑
E⊂Ec

(−1)h−1 (F |Ex · . . . · F |Ex )

(h − 1)!
,

where the second equality holds because of Proposition 2.8(4). Lemma 4.5 tells us that each intersection
number on the right-hand side is nonnegative and is positive exactly when Ex corresponds to a Rees
valuation of a centered at x . □

Finally, we conclude the proof of Theorem 4.2, by proving that part (iii) implies (iv).

Theorem 4.6. Let Z be a closed subscheme of X (with ideal a) and Z1 an irreducible component of Z
with generic point x in X. Fix a positive real number c. Suppose on some log resolution µ : Y → X of a,
the jumping divisor Ec (Definition 3.5) contains a Rees valuation E of a centered at x. Then c + h − 1 is
a jumping number at x contributed by E (where h = codimX Z1).

The proof of this theorem has two main steps:

• First, we reinterpret the notion of a jumping number contributed by a divisor D in terms of non-
vanishing of the space of global sections of a certain sheaf on the divisor D.

• Next, we prove the nonvanishing of the required space of global sections by pushing the sheaf
forward to the normalized blowup of a and using a theorem of Mumford.

Both steps crucially rely on vanishing theorems, namely the Kawamata–Viehweg vanishing theorem and
the local vanishing theorem (Theorem 2.4). We now recall the main theorems we need for the proof in
the form that we will use them.

Theorem 4.7 (Kawamata–Viehweg vanishing theorem [Lazarsfeld 2004b, Theorem 9.1.18]). Let X be a
smooth projective variety of dimension n and let N be an integral divisor on X. Assume that

N ≡num B + 1,

where B is a big and nef Q-divisor and 1 =
∑

ai1i is a Q-divisor with simple normal crossings support
and such that 0 ≤ ai < 1 for each i . Then

H i (X,OX (K X + N )) = 0 for all i > 0.

Theorem 4.8 (Mumford’s theorem [Lazarsfeld 2004a, Theorem 1.8.5]). Let X be a projective variety
and L a globally generated ample line bundle on X. Suppose a coherent sheaf F on X is m-regular with
respect to L, i.e.,

H i (X,F ⊗Lm−i ) = 0 for i > 0 .

Then, F ⊗Lm is generated by its global sections.

Proof of Theorem 4.6. Contribution by divisors at x depends only on the local ring at x (see Definition 4.3).
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So we may replace X by the affine local scheme Spec(OX,x). Further, since by assumption E ⊂ Ec

and E is centered at x , Ec
x contains Ex (henceforth denoted by E), so Ec

x is nonempty and c is a candidate
jumping number (defined in Section 2A1).

Step 1: Let q > 0 be a candidate jumping number and G be a prime divisor on Y with G ⊂ Eq . Then we
claim that q is a jumping number contributed by G if and only if H 0(G,OG(KG − ⌊q F⌋|G)) ̸= 0. To
see this, consider the following exact sequence on Y :

0 → OY (−G) → OY → OG → 0.

Tensoring with OY (KY |X − ⌊q F⌋ + G), we get

0 → OY (KY |X − ⌊q F⌋) → OY (KY |X − ⌊q F⌋ + G) → OG((KY |X − ⌊q F⌋ + G)|G) → 0.

Applying µ∗, using the local vanishing theorem (Theorem 2.4) and the fact that X is affine by
assumption, we see that

µ∗(OY (KY |X − ⌊q F⌋ + G))/µ∗(OY (KY |X − ⌊q F⌋)) ∼= H 0(G,OG(KY |X − ⌊q F⌋ + G)|G). (4-2)

Further, since G is a smooth divisor, we have

OG(KY |X − ⌊q F⌋ + G)|G ∼= OG(KG − µ∗K X |G − ⌊q F⌋|G), (4-3)

where we have used the adjunction formula for G ⊂ Y . Using (4-2) and (4-3), we obtain that q is a
jumping number at x contributed by G (Definition 4.3) if and only if

H 0(G,OG(KG − ⌊q F⌋|G)) ̸= 0. (4-4)

Here we are using the following observation: since G maps to x (see Lemma 3.8), the canonical bundle ωX

pulls back to the trivial bundle on G. Note also that since G is a smooth projective variety over L (the
residue field of x), KG denotes the canonical divisor of G over L . This is justified by the following
argument:

Let ϕ denote the structure map G → Spec(L). We have the following exact sequence coming from
the first exact sequence for differentials [Hartshorne 1977, Chapter II, 8.11]:

0 → ϕ∗�K |k → �G|k → �G|L → 0.

This sequence is exact on the left because ϕ∗�L|k is a free sheaf on G of rank equal to the transcendence
degree of L over k (= d − h) and the sequence is exact at the generic point of G. Since G is smooth
over L , the other two sheaves are locally free of ranks d − 1 and h − 1. Taking top exterior powers and
using the freeness of the first sheaf, we get the required isomorphism:

ωG|k
∼= ωG|L .

This completes Step 1 of the proof, where we have proved that the statement that q + n is a jumping
number contributed by G for a natural number n is equivalent to the statement

the invertible sheaf OG(KG − ⌊q F⌋|G) ⊗OG(−nF |G) has a nonzero global section. (4-5)
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Step 2: Now, we use the hypothesis that the divisor E ⊂ Ec is a Rees valuation centered at x to conclude
that the sheaf OE(KE − ⌊cF⌋|E) ⊗OE(−(h − 1)F |E) has a nonzero global section.

To do this, like in the proof of Lemma 4.5, we consider the normalized blowup X̃ of the ideal a and by the
universal property of blowing-up and normalization, the map µ factors through X̃ . The Rees valuation E
on Y is the strict transform of a prime divisor Ẽ on X̃ and E maps birationally onto Ẽ (since X̃ is normal
and Ẽ is a divisor). Note that Ẽ is also a projective variety over L . This is summarized in this picture:

E Ẽ Spec(L)

Y X̃ X

f |E

f

Let L = OY (−F) = a ·OY and L̃ = a ·OX̃ . Then L̃ is very ample on X̃ and L = f ∗(L̃ ). So, using
the projection formula along f |E , we have

H 0(E,OE(KE − ⌊cF⌋|E) ⊗ L n) ∼= H 0(Ẽ, f |E∗(OE(KE − ⌊cF⌋|E)) ⊗ L̃ n).
So it is enough to show that H 0

(
Ẽ, f |E∗(OE(KE − ⌊cF⌋|E)) ⊗ L̃ h−1

)
is nonzero. We do this by

using Mumford’s theorem (Theorem 4.8). And to check the required cohomology vanishing conditions,
we use the Kawamata–Viehweg vanishing theorem (Theorem 4.7).

Note that L is a globally generated line bundle on Y . Hence, by Bertini’s theorem [Hartshorne 1977,
Chapter III, Corollary 10.9], we may choose a smooth divisor (possibly disconnected) D linearly equivalent
to −F . Further, we may also assume that D intersects E transversally (in particular, no component of D
is E). Having chosen such a D, we note that −⌊cF⌋ = ⌈−cF⌉ ∼Q cD +

∑
ai Ei as Q-divisors, with

0 ≤ ai < 1 and where the Ei are the irreducible components of F in some order. Let ∆ =
∑

ai Ei . Then,
since E ⊂ Ec, the coefficient of E in cF is already an integer, and hence the coefficient of E in ∆ is 0. So
we have −⌊cF⌋|E ∼Q cD|E +∆|E . Since the support of ∆ is the union of divisors in the support of F and
does not contain E , it follows that ∆|E has simple normal crossings support (since F was snc). Further,
all the coefficients of ∆|E are in the interval [0, 1). Next, L |E is the pullback of L̃ |Ẽ along f |E ; since
f |E : E → Ẽ is a projective birational map, and L̃ is very ample on Ẽ , L |E is big and nef on E . So cD|E

is a big and nef Q-divisor. Since E is smooth and projective over L and all the relevant hypotheses remain
true after base-changing to an algebraic closure of L , we can apply the Kawamata–Viehweg vanishing
theorem (Theorem 4.7) on E with N = −⌊cF⌋|E ≡num cD|E + ∆|E to conclude that

H i (E,OE(KE − ⌊cF⌋|E)) = 0 for all i > 0.

By the same argument, for all natural numbers n ∈ N≥0, we have

H i(E,OE(KE − ⌊(c + n)F⌋|E)
)
= 0 for all i > 0 and all n ≥ 0. (4-6)

Now, [Lazarsfeld 2004a, Lemma 4.3.10] implies that R j f |E∗OE(KE − ⌊(c + n)F⌋|E) = 0 for all j > 0
and all n ≥ 0. By the Leray spectral sequence, we then have isomorphisms

H i(E,OE(KE − ⌊(c + n)F⌋|E)
)
∼= H i(Ẽ, f |E∗OE(KE − ⌊(c + n)F⌋|E)

)
(4-7)
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for all i ≥0 and all n ≥0. So if F denotes the (coherent, since f |E is proper) sheaf f |E∗OE(KE −⌊cF⌋|E)

on Ẽ , then, putting together (4-6) and (4-7), we get

H i (Ẽ, F ⊗ L̃ n
|Ẽ) = 0 for all i > 0 and n ≥ 0. (4-8)

Finally, (4-8) implies that F ⊗ L̃ h−1
|Ẽ is 0-regular with respect to the very ample line bundle L̃ |Ẽ , i.e.,

H i (Ẽ, F ⊗ L̃ h−1
|Ẽ ⊗ L̃ −i

|Ẽ) = 0 for all i > 0.

This is because since the dimension of Ẽ is h − 1, we only need to check the vanishing of cohomology
groups till i = h −1. But if i ≤ h −1, then (4-8) gives the required vanishing. So, by Mumford’s theorem
(Theorem 4.8), we get that F ⊗ L̃ h−1

|Ẽ is globally generated and, in particular,

H 0(Ẽ, F ⊗ L̃ h−1
|E) ̸= 0.

So, using (4-5), we are done. This completes the proof of Theorem 4.6 and hence of Theorem 4.2. □

Example 4.9. The Rees coefficient ρc (Definition 3.11) of a jumping number c is not always positive.
Indeed, consider the ideal a= (x5

+y3, y4) in the polynomial ring k[x, y] defining a point scheme supported
at the origin in X = A2. This ideal has Rees coefficient zero for all of its jumping numbers less than one.

To check this, observe that since dimension of X is two, ρc can be computed on any log resolution
µ : Y → X of a, with a ·OY = OY (−F), as

ρc = −F · Ec,

where Ec is the jumping divisor of c as defined in Definition 3.5. This follows by specializing Theorem 3.10
to the surface case, although it is also proved in [Alberich-Carramiñana et al. 2017, Theorem 4.1].

A log resolution Y of a can be computed by hand and requires 9 successive blowups. Let E1, . . . , E9

denote the exceptional divisors obtained in the order they are labeled. Then, the intersection matrix for
the resolution is 

−3 0 1 0 0 0 0 0 0
0 −3 0 1 0 0 0 0 0
1 0 −2 1 0 0 0 0 0
0 1 1 −2 1 0 0 0 0
0 0 0 1 −2 1 0 0 0
0 0 0 0 1 −2 1 0 0
0 0 0 0 0 1 −2 1 0
0 0 0 0 0 0 1 −2 1
0 0 0 0 0 0 0 1 −1


The relative canonical divisor is

KY |X = E1 + 2E2 + 4E3 + 7E4 + 8E5 + 9E6 + 10E7 + 11E8 + 12E9.

If a ·OY = OY (−F), then

F = 3E1 + 5E2 + 9E3 + 15E4 + 16E5 + 17E6 + 18E7 + 19E8 + 20E9.
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Using this information, we compute that the jumping numbers of a less than one are 8
15 , 11

15 , 13
15 and 14

15 , for
example, by hand using the formula from [Alberich-Carramiñana et al. 2017] or by using the Macaulay2
package [MultiplierIdealsDim2]. We can then compute that the jumping divisors for each of these jumping
numbers turn out to be the same, namely E4. Therefore, using the intersection matrix above, we can
compute that −F · E4 is zero, and conclude that the Rees coefficient for each of the jumping numbers
8

15 , 11
15 , 13

15 and 14
15 is zero in this case. □

Theorem 4.2 and Example 4.9 suggest that the classes of jumping numbers in Q/Z naturally come
in various types depending on the type of growth of the multiplicities of its translates. The type of
jumping numbers for which the multiplicity grows fastest (i.e., for which the Rees coefficient is positive)
is described by Theorem 4.2. The next corollary states that the class of integer jumping numbers always
has maximal growth of its multiplicities — that is, ρ1 > 0:

Corollary 4.10. Let Z be a closed subscheme of the smooth variety X , with irreducible component Z1 of
codimension h. Then we have:

(1) The Rees coefficient ρ1 of the real number 1 along Z1 is always positive.

(2) There are at most (h − 1)! ρ1 Rees valuations of Z centered at Z1.

(3) The codimension h is always a jumping number of a contributed by each of the Rees valuations of a
centered at the generic point of Z1.

Part (3) of Corollary 4.10 recovers the fact that, for a regular local ring (A,m) of dimension h essentially
of finite type over k, h is always a jumping number of each m-primary ideal a.

Proof. Consider a log resolution µ : Y → X of Z with a ·OY = OY (−F).

(1) Since the jumping divisor E1 (Definition 3.5) is the same as Fred, it contains all the exceptional
divisors corresponding to the Rees valuations. So E1

x contains all the Rees valuations of a centered at x .
So ρ1 must be positive by Theorem 4.4.

(2) By Theorem 3.10, we have

ρc = (−1)h−1 (F |Ec
x
· . . . · F |Ec

x
)

(h − 1)!
=

∑
E⊂Ec

(−1)h−1 (F |Ex · . . . · F |Ex )

(h − 1)!
,

where the second equality holds by Proposition 2.8(4). Since the intersection numbers (−F |Ex ·. . .·−F |Ex )

are nonnegative integers (by Lemma 4.5) and are positive exactly for the Rees valuations at x , each such
valuation adds at least 1/(h − 1)! to ρ1. Hence the claim.

(3) The last statement follows immediately from Theorem 4.6 since E1 contains each of the Rees
valuations at x . □

For a closed subscheme Z of X with an irreducible component Z1, Theorem 4.2 and the polynomial
nature of the multiplicities m(c + n) guarantee more jumping numbers of Z along Z1 in the interval
(h − 1, h] (where h is the dimension of the local ring at Z1). The following observations generalize
similar ones made in [Alberich-Carramiñana et al. 2017] when dim X = 2.
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Corollary 4.11. Fix an irreducible component Z1 of a closed subscheme Z of the smooth variety X. Let
ν1, . . . , νr be all the Rees valuations of Z (see page 95) centered at the generic point x of Z1. Set ai to be
the order of vanishing of Z along the valuation νi , that is, set

ai = min{νi ( f )| f ∈ a},

where a is the ideal of Z. Then we have:

(1) Each rational number ℓ/ai (where ℓ ∈ Z) in the interval (h − 1, h] is a jumping number at x
contributed by νi (in the sense of Definition 4.3).

(2) If c is a jumping number at x in the interval (h − 1, h] such that c is not an integer translate of a
smaller jumping number at x , then c is a rational number of the form in part (1).

(3) More generally, if c < h is a jumping number such that c is not an integer translate of a smaller
jumping number at x , then m(c + n) is polynomial (in n) of degree at least ⌊c⌋.

Proof. Clearly (3) implies (2). So we just prove (1) and (3):

(1) Let µ : Y → X be a log resolution of Z and let E1, . . . , Er denote the exceptional divisors on Y
corresponding to ν1, . . . , νr respectively. We see that for any number of the form ℓ/ai , Ei is contained in
the corresponding jumping divisor (Definition 3.5) and hence the Rees coefficient ρℓ/ai is positive by
Theorem 4.4. The claim now follows immediately from Theorem 4.6.

(3) If c is a jumping number such that c − n is not a jumping number for any n, then m({c} + n) is a
polynomial (Theorem 3.3) which is zero for 0 ≤ n ≤ ⌊c⌋− 1. Here {c} (= c −⌊c⌋) denotes the fractional
part of the real number c. This means the degree must be at least ⌊c⌋. □

Remark 4.12. Corollary 4.11 is interesting because it ensures that many jumping numbers in the interval
(h−1, h] can be computed easily from the normalized blowup of a closed subscheme Z (without computing
a full log resolution of Z ). Those that cannot are integer translates of a smaller jumping number.

In this context, we recall the result of Budur [2003] mentioned in the introduction which implies that
when Z is a point scheme, the jumping numbers (along with their multiplicity) of Z in the interval (0, 1)

can be interpreted as coming from the cohomology of the Milnor fiber of a general element of a (the ideal
of Z ). Putting this result together with Corollary 4.11 gives us an interpretation of essentially all jumping
numbers of a point scheme in a smooth surface. In higher dimension, this only gives us an understanding
of jumping numbers in the intervals (0, 1) and (d − 1, d]. We raise the following two questions towards
understanding all the other jumping numbers.

Question 4.13. For each integer j in the interval [0, h−2], how do we characterize the classes of jumping
numbers [c] such that m(c + n) grows like n j ? In particular, can we characterize such classes of jumping
numbers in terms of contribution by divisors?

Question 4.14. Given a class of jumping numbers [c] ∈ Q/Z contributed by a Rees valuation, how do we
find the smallest jumping number in [c]? More generally, how do we find the smallest jumping number
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in any given class of jumping numbers in Q/Z? Equivalently, how do we characterize the jumping
numbers c ≤ h − 1 of a such that c is not a translate of a smaller jumping number of a?

On the valuations contributing jumping numbers. As another consequence of Theorem 4.6, we prove the
following theorem:

Theorem 4.15. Let X be a smooth variety over k. Let ν be a divisorial valuation over X , i.e., a divisorial
valuation centered at a (not necessarily closed) point x in X. Then there is an effective integral divisor D
on X and a jumping number c of D at x such that c is contributed by ν.

Proof. Let (A,m) denote the local ring at x , and let h be the Krull dimension of A. First, suppose h = 1,
i.e., ν comes from a divisor E on X . Then taking D = E and c = 1 works. So we assume h > 1.

Next, we claim that there is an ideal a in A such that a is m-primary and ν is a Rees valuation of a
(defined on page 95). This follows immediately from [Huneke and Swanson 2006, Proposition 10.4.4].
So we may choose an ideal a ⊂ OX such that x corresponds to a minimal component of a and the stalk
of a at x has ν as a Rees valuation. Then, by Corollary 4.10, we know that h is a jumping number of a
at x contributed by ν. Now, choose a log resolution µ : Y → X of a and let a ·OY = OY (−F), where
F =

∑
ai Ei for prime components Ei . We may assume ν corresponds to E1 on Y . Now, the fact that h

is contributed by ν means (by definition) that

J (ah)x = µ∗(OY (KY |X − hF))x ⊊ µ∗(OY (KY |X − hF + E1))x . (4-9)

Now, if we choose D to be a general member of the ideal an (i.e., a general k-linear combination of its
generators) for any n > h, then a general enough D will be reduced (since h > 1), and further, it will
satisfy µ∗D = D̃ + nF , where D̃ is the strict transform of D. Now, we claim that h/n is a jumping
number of D at x contributed by E1. To verify this, we need to check that

J
(h

n
D

)
x
= µ∗

(
OY

(
KY |X −

⌊h
n
(nF + D̃)

⌋))
x
⊊ µ∗

(
OY

(
KY |X −

⌊h
n
(nF + D̃)

⌋
+ E1

))
x
,

which holds if and only if

µ∗(OY (KY |X − hF))x ⊊ µ∗(OY (KY |X − hF + E1))x ,

which holds because h/n is less than one and D̃ is reduced. So we are done by (4-9). □

Remark 4.16. Theorem 4.15 shows that the set of valuations that contribute some jumping number of
some divisor in X includes all divisorial valuations over X , in contrast to the valuations computing only
the log-canonical threshold of divisors, which are known to satisfy many special properties (see [Blum
2021]). This negatively answers a question raised by Joaquín Moraga, asking whether any valuation
contributing a jumping number also computes a log-canonical threshold. We thank him for asking this
question and useful related conversations.

4B. Relation to Hilbert–Samuel multiplicity. In this section, we relate the Hilbert–Samuel multiplicity
of the subscheme Z at an irreducible component Z1 to the Rees coefficients ρc associated to the jumping
numbers of a. We first recall the relevant definitions.
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Let (A,m) be the local ring of X at the generic point of Z1 and a be the ideal of Z in A. Let h denote
the Krull dimension of A. The Hilbert–Samuel multiplicity of (A,m) with respect to the m-primary
ideal a, denoted by ea(A), is defined to be the number

ea(A) = lim
n→∞

h! λ(A/an)

nh ,

where λ denotes the length as an A-module. The number ea(A) is always a positive integer.
Recall that for any real number c>0, the Rees coefficient ρc of Z along Z1 was defined in Definition 3.11

so that m(c + n) = ρcnh−1
+ o(nh−2) as n → ∞. Here m(c) denotes the multiplicity of the number c

(Definition 3.2).

Theorem 4.17. We have ∑
c∈(0,1]

ρc =
ea(A)

(h − 1)!
.

The main idea relating these two numbers is that the Hilbert–Samuel multiplicity can be computed
using multiplier ideals, which is a consequence of Skoda’s theorem:

Lemma 4.18. We have

ea(A) = lim
n→∞

h! λ(A/J (an))

nh .

Proof. If d is the dimension of the ambient variety X , for n ≥ d , we have

an
⊂ J (an) ⊂ an−d+1,

where the second containment holds because of Skoda’s theorem (Theorem 2.5). This gives us

λ(A/an−d+1) ≤ λ
(

A/(J (an))
)
≤ λ(A/an).

When we divide by nh and take limit as n → ∞, since both the first and third terms approach ea(A)/h!,
so does the middle term. □

Proof of Theorem 4.17. We first note that ρc can be nonzero only for the candidate jumping numbers
(defined in Section 2A1). Hence, the sum is finite. Now to prove the proposition, we use Lemma 4.18 to
compute ea(A) as follows:

ea(A)

h!
= lim

n→∞

λ(A/J (an))

nh = lim
n→∞

∑
c≤n m(c)

nh = lim
n→∞

∑
c∈(0,1]

∑n−1
j=0 m(c + j)

nh .

Since m(c + j) = ρc jh−1
+ o( jh−1) as j → ∞, by using the fact that

∑n
j=0 j i

= ni+1/(i + 1) + o(ni )

as n → ∞, we have
∑n−1

j=0 m(c + j) = (ρc/h)nh
+ o(nh−1) as n → ∞. Then we have

ea(A)

h!
= lim

n→∞

∑
c∈(0,1]

(ρc/h)nh
+ o(nh−1)

nh =

∑
c∈(0,1]

ρc

h
,

which concludes the proof. □
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5. Special case: monomial ideals

In this section, we derive an explicit formula for the multiplicities of jumping numbers and Rees coefficients
(Theorem 5.3) of an arbitrary cofinite monomial ideal (see Definitions 3.2 and 3.11). In particular, we see
that the Rees coefficient is positive for the class of any jumping number in this case (Corollary 5.5).

We introduce some notation. Let X = Ad and R = k[x1, . . . , xd ], and let a be an m-primary monomial
ideal, where m = (x1, . . . , xd). Fix the lattice M = Nd inside MR = Rd . For any v = (v1, . . . , vd) ∈ M ,
we write xv

= xv1
1 · · · xvd

d for the corresponding monomial. For any ideal generated by monomials a in R,
the Newton polyhedron P(a) ⊂ Rd of a is the convex hull of all vectors v ∈ M such that xv belongs to a.
Note that P(a) is an unbounded polyhedral (i.e., bounded by polygonal faces) region in the first orthant
of Rd . For any positive real number c, let P(c · a) denote the polyhedron obtained by scaling the vectors
in P(a) by a factor of c. A theorem of Howald [2001] provides a formula for the multiplier ideals of a:

Theorem 5.1 [Lazarsfeld 2004b, Theorem 9.3.27]. Fix a monomial ideal a in R and a positive real
number c. Then the multiplier ideal J (ac) is the monomial ideal generated by all monomials xv such that

v + 1 ∈ Int(P(c · a)),

where 1 is the vector (1, . . . , 1) and Int(P(c · a)) is the interior of the scaled Newton polyhedron P(c · a).

We can now state our formula for the multiplicity and Rees coefficient of a jumping number.

Notation 5.2. We will use the following notation throughout this section.

• For any set S ⊂ Rd , #(S) denotes the number of lattice points in S.

• If P is a face of a d-dimensional polyhedron in Rd , then vol(P) denotes the (d−1)-volume of P .

Theorem 5.3. Fix an m-primary monomial ideal a and a positive real number c. Then the multiplicity
of c is given by

m(c) = #
{ ⋃

i

cP◦

i ∩ M
}
, (5-1)

where the Pi are all the bounded faces of the Newton polyhedron P(a) and

cP◦

i := cPi −

( ⋃
1≤ j≤d

j -th coordinate hyperplane
)

= cPi ∩ (1 + M).

Moreover, the Rees coefficient ρc is given by

ρc =

∑
cHi ∩M ̸=∅

vol(Pi ),

where Hi is the unique hyperplane containing the face Pi .

To prove Theorem 5.3, we need the following lemma:

Lemma 5.4. For each jumping number c of the monomial ideal a, the k-vector space J (ac−ϵ)/J (ac) is
isomorphic to the vector space generated by the monomials in ∂ P(c · a)∩ (1 + M), where ∂ P(c · a) is the
boundary of the dilated (by c) Newton polyhedron P(c · a).
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Proof. Howald’s theorem implies that a real number c > 0 is a jumping number of a if and only if cP◦

i ∩ M
is nonempty for some i . Moreover, the monomials that are contained in J (ac−ϵ) but not in J (ac) are
exactly the monomials xv such that v + 1 is on the boundary of P(c · a). Therefore, the k-vector space
J (ac−ϵ)/J (ac) is isomorphic to the vector space generated by the monomials in ∂ P(c ·a)∩(1+ M). □

Proof of Theorem 5.3. The condition that a is an m-primary monomial ideal is equivalent to the condition
that the region P(a) intersects each coordinate axis. In this case, the boundary of P(a) is the union of
the bounded faces P1, . . . , Pr and the unbounded faces exactly along the coordinate hyperplanes. The
faces P1, . . . , Pr are polytopes of dimension d −1 with vertices in M . Each polytope Pi is contained in a
unique hyperplane Hi ⊂ Rd .

For the first claim, we note that addition by 1 gives a one-to-one correspondence between vectors in M
and the vectors in M that do not lie on any of the coordinate hyperplanes. Hence, the vectors v in M
such that v + 1 ∈ ∂ P(c · a) are in one-to-one correspondence with the vectors in ∂ P(c · a) that do not lie
on any of the coordinate hyperplanes. But, since the components of the boundary that do not lie on the
coordinate hyperplanes are exactly the bounded components P1, . . . , Pr , this proves the first claim. So
the formula for the multiplicity follows from this and Lemma 5.4 above.

For c > 0, let cPi denote the polytope obtained by scaling each vector in Pi by c and let cHi be the
corresponding scaled hyperplane.

For the last claim, we use the following fact: Let Q be a convex polyhedron of dimension ℓ in Rℓ.
Then

vol(Q) = lim
t→∞

#(t Q ∩ Zℓ)

tℓ
.

We actually need a slightly more general version of this formula: Suppose {Qn}n≥1 is a sequence of
polyhedra of dimension ℓ in Rℓ such that Qn is some (possibly noninteger) translate of cn Q1, where {cn}

is a sequence of real numbers such that cn → ∞ as n → ∞. Then

vol(Q1) = lim
n→∞

#(Qn ∩ M)

cℓ
n

.

This statement actually follows immediately from the previous statement with the additional observation
that when we translate a polyhedron by any vector, the difference in the number of lattice points is bounded
above by a fixed multiple of volume of the boundary of the polyhedron. Hence, the difference does not
really matter for the limit.

Suppose cHi ∩ M ̸= ∅. Then the number points of (c + n)Hi ∩ M in P((c + n) · a) is the same as the
number of lattice points in a translate of ((c + n)/c)(cPi ) in cHi . This is because any lattice point on Pi

gives us a natural bijection between the lattice points in cHi and (c + n)Hi (by translating). Under this
translation, we can identify (c + n)Pi in (c + n)Hi with a translate of ((c + n)/c)(cPi ) in cHi . Hence,
using the formula above with ℓ = d − 1, Rd−1

= cHi , Qn = (c + n)Pi and cn = (c + n)/c, we have

vol(Pi ) =
1

cd−1 vol(cPi ) = lim
n→∞

#
(
((c + n)/c)Pi ∩ M

)
((c + n)/c)d−1 .
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Since the number of lattice points in the intersection of (c + n)Pi and the coordinate hyperplanes or
the intersection of (c + n)Pi and (c + n)Pj for j ̸= i grows at a rate of at most nd−2, the formula for ρc

follows. □

Corollary 5.5. If c is a jumping number of an m-primary monomial ideal a ⊂ k[x1, . . . , xd ], then the
Rees coefficient ρc is positive.

6. Poincaré series

Let X be a smooth variety. For any closed subscheme Z of X and an irreducible component Z1 of Z , we
can assemble the multiplicities of jumping numbers (Definition 3.2) into a generating function called the
Poincaré series of Z at Z1. More precisely, this is the generating function defined by

φZ ,Z1(T ) =

∑
c∈(0,∞)

m(c)T c
=

∑
c∈(0,1]

∞∑
n=0

m(c + n)T c+n.

This series is clearly only a countable sum, because the jumping numbers of Z are a discrete subset of
rational numbers. Moreover, there is an ℓ ∈ N such that every jumping number has a denominator a factor
of ℓ, i.e., every jumping number is of the form n/ℓ for n ∈ N. Then, having chosen such an ℓ and setting
z = T 1/ℓ, we see that φZ ,Z1(T ) is actually a power series in z. We use the polynomial nature of m(c + n)

proved in Theorem 3.3 to prove that this power series is actually a rational function:

Theorem 6.1. φZ ,Z1(z) is a rational function of z, where z = T 1/ℓ and ℓ is as above. In fact, we have the
formula

φZ ,Z1(T ) =

∑
c∈(0,1]

(
m(c)

(1 − T )
+

γc,1T
(1 − T )2 + · · · +

γc,h−2T
(1 − T )h−1 +

ρc(h − 1)!T
(1 − T )h

)
T c (6-1)

for some rational numbers γc,i , where h denotes the codimension of Z1 in X.

Proof. For any c ∈ (0, 1], by Theorem 3.3 we have

m(c + n) = α0,c + α1,cn + · · · +αh−1,cnh−1.

(Of course, αh−1,c = ρc and α0,c = m(c).) Now, the list of polynomials

p0(n) = 1, p1(n) = n, p2(n) =

(n+1
2

)
, . . . , ph−1(n) =

(n+h−2
h−1

)
has exactly one polynomial of each degree between 0 and h −1. So these polynomials form a basis over Q

of the space of rational polynomials of degree less than h. Thus, we can write the polynomial m(c + n)

in n in terms of the p(i)’s as follows:

m(c + n) =

h−1∑
i=0

γc,i pi (n) for some rational numbers γc,i . (6-2)
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Inspecting the constant and the leading coefficient, we get γc,0 = m(c) and γc,h−1 = (h − 1)! × ρc.
Thus,

φZ ,Z1(T ) =

∑
c∈(0,∞)

m(c)T c
=

∑
c∈(0,1]

∞∑
n=0

m(c + n)T c+n

=

∑
c∈(0,1]

T c
∞∑

n=0

(γc,0 po(n) + γc,1 p1(n) + · · · + γc,h−1 ph−1(n))T n

=

∑
c∈(0,1]

T c
(

γc,0

∞∑
n=0

po(n)T n
+ γc,1

∞∑
n=0

p1(n)T n
+ · · · + γc,h−1

∞∑
n=0

ph−1(n)T n
)

.

Now the theorem follows from the following elementary observation:
∞∑

n=0

pi (n)T n
=

{
1/(1 − T ) if i = 0,

T/(1 − T )i+1 if i ≥ 1.

When i = 0 the formula is clear. For i ≥ 1, the formula is equivalent to

1
(1 − T )i+1 =

∞∑
j=0

( j +i
i

)
T j ,

which is a well-known combinatorial identity counting degree j monomials in i + 1 variables. □

Remark 6.2. Theorem 6.1 was proved independently by Àlvarez Montaner and Núñez-Betancourt [2022]
using different methods. They also prove an analogous theorem for test ideals, which are positive-
characteristic counterparts of multiplier ideals. We are grateful to them for conveying the explicit form
for the Poincaré series as in (6-1).

Remark 6.3. The case of Theorem 6.1 when Z is a point scheme and X is a surface was proved by
Alberich-Carramiñana et al. [2017], generalizing the work of Galindo and Monserrat [2010] in the case
of simple complete ideals.
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