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We use Macaulay’s inverse system to study the Hilbert series for almost complete intersections generated
by uniform powers of general linear forms. This allows us to give a classification of the weak Lefschetz
property for these algebras, settling a conjecture by Migliore, Miró-Roig, and Nagel.

1. Introduction

Let k be a field of characteristic zero and let ℓ1, ℓ2, . . . , ℓr ∈ k[x1, x2, . . . , xn] be general linear forms. For
positive integers d1, d2, . . . , dr , consider the quotient k[x1, x2, . . . , xn]/⟨ℓ

d1
1 , ℓ

d2
2 , . . . , ℓdr

r ⟩. This algebra
ties together several areas of contemporary mathematics.

From the algebraic point of view, it is in a natural way linked to the long-standing conjectures by
Fröberg [1985] and Iarrobino [1997] on the Hilbert series of generic forms.

Powers of general linear forms are also tightly connected to the study of fat-points schemes via
Macaulay’s inverse system, as was noticed by Emsalem and Iarrobino [1995]. This bridge to geometry
relates the study of powers of general linear forms to the Alexander–Hirschowitz theorem [Alexander
and Hirschowitz 1995; Chandler 2002] and the Segre–Gimigliano–Harbourne–Hirschowitz (SGHH)
conjecture [Ciliberto 2001].

In this paper we consider the uniform almost complete intersection case, that is, algebras of the form
k[x1, x2, . . . , xn]/(ℓ

d
1 , ℓd

2 , . . . , ℓd
n+1), from the perspective of the weak Lefschetz property.

Recall that a graded algebra A satisfies the weak Lefschetz property (WLP) if there exists a linear
form ℓ such that the multiplication map ×ℓ : Ai → Ai+1 has maximal rank for all degrees i , while A
satisfies the strong Lefschetz property (SLP) if the multiplication map ×ℓ j

: Ai → Ai+ j has maximal
rank for all i and all j . For an introduction to the Lefschetz properties, see, e.g., [Harima et al. 2013;
Migliore and Nagel 2013].

The WLP for the class of algebras that we consider holds for n = 1 and n = 2, since all graded artinian
quotients in one or two variables have the SLP, the argument being trivial for the univariate case, while
the case of two variables, which requires characteristic zero, is attributed to Harima, Migliore, Nagel,
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and Watanabe [Harima et al. 2003]. For n = 3, Schenck and Seceleanu [2010] showed that the WLP
holds for any quotient by an artinian ideal generated by powers of linear forms. Migliore, Miró-Roig, and
Nagel [Migliore et al. 2012] showed that for even n ≥ 4, the WLP fails for almost complete intersections
generated by uniform powers, except in the case (n, d) = (4, 2). They also gave results in the odd uniform
case and in the mixed-degree case, and provided a conjecture for the unproven part of the odd uniform case.

To simplify the statement of the conjecture and the presentation in this paper in general, we let Rn,m,d

denote the ring k[x1, x2, . . . , xn]/⟨ℓ
d
1 , ℓd

2 , . . . , ℓd
m⟩, where ℓ1, ℓ2, . . . , ℓm are general linear forms and k is

a field of characteristic zero.

Conjecture 1 [Migliore et al. 2012, Conjecture 6.6]. Let n ≥ 9 be an odd integer. Then Rn,n+1,d =

k[x1, x2, . . . , xn]/⟨ℓ
d
1 , ℓd

2 , . . . , ℓd
n+1⟩ fails the WLP if and only if d > 1. Furthermore, if n = 7, then

Rn,n+1,d fails the WLP when d = 3.

Independently, Harbourne, Schenck, and Seceleanu [Harbourne et al. 2011] gave a more general but
less precise conjecture.

Conjecture 2 [Harbourne et al. 2011, Conjecture 1.5]. Let r + 1 ≥ n ≥ 5. Then the algebra Rn,r,d =

k[x1, x2, . . . , xn]/⟨ℓ
d
1 , ℓd

2 , . . . , ℓd
r ⟩ fails the WLP if d ≫ 0.

Since then, the main focus have been on Conjecture 1. Miró-Roig [2016] has shown the failure of the
WLP when d = 2, Nagel and Trok [2019] have shown the failure when both n and d are large enough,
and also when n ≥ 9, d −2 ≫ 0, and d −2 is divisible by n. Ilardi and Vallès [2019] have settled the case
(n, d) = (7, 3), while Miró-Roig and Tran [2020] have shown the failure in the cases 9 ≤ n = 2m +1 ≤ 17
and d ≥ 4, and in the cases d = 2r , 1 ≤ r ≤ 8, and 9 ≤ n ≤ 4r(r + 2) − 1.

We cover all the remaining cases, settling Conjecture 1, and provide the following classification.

Theorem 1.1. Let d, n ≥ 1. Then Rn,n+1,d = k[x1, x2, . . . , xn]/⟨ℓ
d
1 , ℓd

2 , . . . , ℓd
n+1⟩ fails the WLP except

when n ≤ 3, d = 1 or (n, d) ∈ {(4, 2), (5, 2), (5, 3), (7, 2)}, and in these cases, the WLP holds.

In Section 2, we introduce some notation. In Section 3, we use the theory for inverse systems to
determine the degree of the Hilbert series for Rn,n+2,d . In Section 4, we give an upper bound for the
degree of the Hilbert series for Rn,n+2,d under the assumption that Rn+1,n+2,d has the WLP. By comparing
this upper bound with the actual degree, we can draw the conclusion that Rn+1,n+2,d fails the WLP in all
but a finite number of cases. The remaining cases are then dealt with separately in Section 5.

2. Preliminaries

We begin by giving some background on Hilbert series, Fröberg’s conjecture, and inverse systems.
The Hilbert series for a standard graded algebra A =

⊕
i≥0 Ai is the power series

∑
dimk Ai t i and is

denoted by HS(A, t). The Hilbert function of A is the function i 7→ dimk Ai .
If A is an artinian graded algebra and f is a form in A of degree d such that the map × f : Ai → Ai+d

has maximal rank for all i , then it is an easy exercise to check that the Hilbert series for A/( f ) is equal to
[HS(A, t)·(1−td)]. The bracket notation means that we truncate the series before the first nonpositive term.
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Fröberg [1985] has conjectured that if A is the polynomial ring modulo an ideal generated by
general forms, then the map induced by multiplication by a general form of degree d has maximal
rank. Normally, this conjecture is expressed equivalently as follows: if f1, . . . , fr are general forms in
k[x1, x2, . . . , xn] of degrees d1, d2, . . . , dr , then the Hilbert series for k[x1, x2, . . . , xn]/⟨ f1, f2, . . . , fr ⟩

equals
[∏

(1 − tdi )/(1 − t)n
]
.

Fröberg [1985] also proves that
[∏

(1−tdi )/(1−t)n
]

is a lower bound for possible Hilbert series among
forms of degrees d1, d2, . . . , dr in the lexicographic sense, so for a fixed signature (n, d1, d2, . . . , dr ), the
conjecture can be verified with an example.

The conjecture is, except for a few cases, open for r −1 > n ≥ 4. For some recent results, see [Nenashev
2017]. The case r = n + 1 is due to Stanley [1980] and is of particular importance for this paper.

Let A be a monomial complete intersection, i.e., A = k[x1, . . . , xn]/⟨x
d1
1 , xd2

2 , . . . , xdn
n ⟩. Stanley

showed that the multiplication map ×(x1 + x2 + · · · + xn)
d

: Ai → Ai+d has full rank for every i and d,
not only settling the n+1 case of the Fröberg conjecture, but also opening up the area of the Lefschetz
properties for graded algebras. If we perform a linear change of coordinates, Stanley’s result is equivalent
to the fact that complete intersections generated by powers of general linear forms have the SLP.

When restricted to the equigenerated case d = d1 = · · · = dn+1, this implies that

HS(Rn,n+1,d , t) =

[
(1 − td)n+1

(1 − t)n

]
.

Suppose now that Rn,n+1,d satisfies the WLP. Then the map induced by multiplication by a general
linear form ℓ has maximal rank in every degree, so the Hilbert series for Rn,n+1,d/(ℓ) equals[

(1 − t)
[
(1 − td)n+1

(1 − t)n

]]
=

[
(1 − t)

(1 − td)n+1

(1 − t)n

]
=

[
(1 − td)n+1

(1 − t)n−1

]
,

where the first equality follows from [Fröberg 1985, Lemma 4].
Since Rn,n+1,d/(ℓ) is isomorphic to Rn−1,n+1,d , this gives that Rn,n+1,d has the WLP if and only if the

Hilbert series of Rn−1,n+1,d is the one expected by Fröberg’s conjecture, that is,

Rn,n+1,d has the WLP if and only if HS(Rn−1,n+1,d , t) =

[
(1 − td)n+1

(1 − t)n−1

]
. (1)

For an ideal I in k[x1, x2, . . . , xn], we consider the dual polynomial ring k[X1, X2, . . . , Xn], where xi

acts like ∂/∂ X i for i = 1, 2, . . . , n, and the inverse system of I , denoted by I −1, is the submodule
annihilated by I under this action. We use the notation f ◦F for the action of the form f ∈k[x1, x2, . . . , xn]

on the form F ∈ k[X1, X2, . . . , Xn]. By duality,

dimk[I −1
]d = dimk[k[x1, x2, . . . , xn]/I ]d , (2)

and this will enable us to use the inverse system in order to obtain lower bounds for the Hilbert series.
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Finally, the action of the d-th power of a general linear form ℓ on a form F in k[X1, X2, . . . , Xn] will
be of particular importance to us, and we therefore recall the general Leibniz rule,

ℓd
◦ Fn

=

∑
d1+d2+···+dn=d

d!

d1!d2! · · · dn!
(ℓd1 ◦ F)(ℓd2 ◦ F) · · · (ℓdn ◦ F).

3. The degree of the Hilbert series for Rn,n+2,d

By definition, the degree of the Hilbert series for an artinian graded algebra A is equal to max{ j | A j ̸= 0}.
Since A is artinian and nonzero, this number also agrees with the Castelnuovo–Mumford regularity of A;
see [Eisenbud 2005].

Let

s(n, d) =

{
1
2(n + 1)(d − 1) if n is odd,⌊ 1

2 n(n + 2)(d − 1)/(n + 1)
⌋

if n is even.

We will show that deg(HS(Rn,n+2,d , t)) = s(n, d) for all n, d ≥ 1.
Sturmfels and Xu [2010] have shown that deg(HS(Rn,n+2,2,, t)) = s(n, 2), and that the dimension

of Rn,n+2,2 in degree s(n, 2) is equal to 2n/2 if n is even, and equal to 1 if n is odd.
Nagel and Trok [2019] proved that deg(HS(Rn,n+2,d , t)) ≤ s(n, d). They also proved that equality

holds when n is odd, in which case the dimension of Rn,n+2,d in degree s(n, d) is equal to 1, and when n
is even and n+1 divides d −1 or d ≥ n2

+n+2, in which case the dimension of Rn,n+2,d in degree s(n, d)

is equal to a binomial coefficient.
By (2), we have

dimk[⟨ℓd
1 , ℓd

2 , . . . , ℓd
n+2⟩

−1
]s ̸= 0 =⇒ deg(HS(Rn,n+2,d , t)) ≥ s,

so in order to show that s(n, d) is a lower bound, it is enough to show that the inverse system is nonzero
in degree s(n, d).

Although it is sufficient to show that s(n, d) is a lower bound for deg(HS(Rn,n+2,d , t)) in the unproven
part of the case n even, we show, for completeness, that s(n, d) is a lower bound for all n.

We begin with an alternative proof of the case n odd. The argument is short and also gives the main
idea behind the more involved proof for the even case.

Proposition 3.1. Let n ≥ 1 be odd, and let d ≥ 1. Then the value of the Hilbert function of Rn,n+2,d is
nonzero in degree s(n, d).

Proof. When d = 1, we have s(n, 1) = 0, and the value of the Hilbert function in degree 0 is equal
to 1. The case d = 2 follows from the result by Sturmfels and Xu; in particular, there is a form F of
degree s(n, d) such that ℓ2

i ◦ F = 0 for i = 1, . . . , n +2. For the case d > 2, it follows from the pigeonhole
principle in conjunction with the general Leibniz rule that ℓd

i ◦ Fd−1
= 0 for i = 1, . . . , n + 2. Finally,

the degree of Fd−1 equals

(d − 1)s(n, 2) = (d − 1)
n − 1

2
= s(n, d). □
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We now turn to the even case. Also here we are able to reduce the argument to the result by Sturmfels
and Xu in degree 2.

Lemma 3.2. Let n be even and let 1 ≤ d ≤ 3. Then the value of the Hilbert function of Rn,n+2,d is nonzero
in degree s(n, d).

Proof. The cases d = 1 and d = 2 are dealt with similarly as in Proposition 3.1.
We now consider the case d = 3. Let F be a form such that ℓ2

i ◦ F = 0 for all i . Since F is in the inverse
system of the ideal generated by n +2 squares of general linear forms, we can choose F of degree s(n, 2).

By the pigeonhole principle and the general Leibniz rule, we have ℓ3
i ◦ F2

= 0. The degree of F2

is 2s(n, 2). Since

s(n, 2) =

⌊
n(n + 2)

2(n + 1)

⌋
=

⌊
n(n + 1)

2(n + 1)
+

n
2(n + 1)

⌋
=

⌊
n
2

+
n

2(n + 1)

⌋
=

n
2

and

s(n, 3) =

⌊
n(n + 2)

n + 1

⌋
=

⌊
n +

n + 1
n + 2

⌋
= n,

we get that the degree of F2 equals s(n, 3), which shows that the value of the Hilbert function is nonzero
in degree s(n, 3). □

Lemma 3.3. Let n be even and let 4 ≤ d ≤ n + 1. Then the value of the Hilbert function of Rn,n+2,d is
nonzero in degree s(n, d).

Proof. Let Fi be such that ℓi ◦ Fi = 0 and ℓ2
j ◦ Fi = 0 for all j . Since Fi is in the inverse system of the

ideal generated by one general linear form and n +1 squares of general linear forms, we can choose Fi to
be of degree s(n − 1, 2).

Next, let G be such that ℓi ◦ G = 0 for i ≥ d , and ℓ2
i ◦ G = 0 for all i . Now G is in the inverse system

of the ideal generated by n + 2 − d + 1 general linear forms and d − 1 squares of general linear forms, so
we can choose G of degree s(n − (n + 2 − d + 1), 2) = s(d − 3, 2).

It follows by the pigeonhole principle and the general Leibniz rule that ℓd
i ◦ G F1 · · · Fd−1 = 0

for i = 1, . . . , n + 2, and we are done if we can show that the degree of the form G F1 · · · Fd−1 is
equal to s(n, d), that is, that s(d − 3, 2) + (d − 1)s(n − 1, 2) = s(n, d).

Suppose first that d is odd and write d − 1 = 2c. We get

s(d − 3, 2) =

⌊
(d − 1)(d − 3)

2(d − 2)

⌋
=

⌊
c(2c − 2)

2c − 1

⌋
=

⌊
c −

c
2c − 1

⌋
= c − 1,

(d − 1) · s(n − 1, 2) = cn,

s(n, d) =

⌊
(n + 2)nc

n + 1

⌋
=

⌊
nc +

nc
n + 1

⌋
= nc +

⌊
c −

c
n + 1

⌋
= nc + c − 1,

where we in the last step have used that c < n + 1. This proves the case d odd.
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Suppose now that d is even. We get

s(d − 3, 2) =
d − 2

2
,

(d − 1) · s(n − 1, 2) =
n(d − 1)

2
,

s(n, d) =

⌊
(n + 2)n(d − 1)

2(n + 1)

⌋
=

⌊
n(d − 1)

2
+

n(d − 1)

2(n + 1)

⌋
=

n(d − 1)

2
+

⌊
n(d − 1)

2(n + 1)

⌋
=

n(d − 1)

2
+

⌊
d − 1

2
−

d − 1
2(n + 1)

⌋
=

n(d − 1)

2
+

⌊
d
2

−
1
2

−
d − 1

2(n + 1

⌋
=

n(d − 1)

2
+

d
2

− 1,

where we in the last step have used that d − 1 < n + 1. This finishes the proof. □

Theorem 3.4. The degree of the Hilbert series for Rn,n+2,d equals s(n, d).

Proof. The case n odd was established by Nagel and Trok, so we only need to consider the case n even.
Moreover, by [Nagel and Trok 2019, Theorem 4.4], the degree of the Hilbert series of Rn,n+2,d is less
than or equal to s(n, d), so it is sufficient to prove that the Rn,n+2,d is nonzero in degree s(n, d).

Write d = c + a(n + 1), where 1 ≤ c ≤ n + 1. By Lemmas 3.2 and 3.3, there is a form Fc of degree
s(n, c) such that ℓc

i ◦ Fc = 0 for i = 1, . . . , n + 2. Let F = F1 · · · Fn+2, where Fi is such that ℓi ◦ Fi = 0
and ℓ2

j ◦ Fi = 0 for all j . Then, by the pigeonhole principle and the general Leibniz rule, we have that
ℓ(n+1)+1

◦ F = 0, or more generalized, that ℓa(n+1)+1
◦ Fa

= 0.
It follows that ℓ

c+a(n+1)
i ◦ Fc Fa

= 0. Thus we are done if we can show that the degree of Fc Fa is equal
to s(n, d), that is, that s(n, c) + (n + 2)a · s(n − 1, 2) = s(n, d), which we verify by the calculation

s(n, d) =

⌊
(n + 2)n(c + a(n + 1) − 1)

2(n + 1)

⌋
=

⌊
(n + 2)n(a(n + 1))

2(n + 1)
+

(n + 2)n(c − 1)

2(n + 1)

⌋
=

(n + 2)na
2

+

⌊
(n + 2)n(c − 1)

2(n + 1)

⌋
= (n + 2)a · s(n − 1, 2) + s(n, c). □

4. An upper bound for the smallest inflection point of the Hilbert function of a complete intersection

In order to use the results from the previous section to draw conclusions about the WLP, we need an
upper bound for the degree of the expected Hilbert series[

(1 − td)n+2

(1 − t)n

]
(3)

for Rn,n+2,d given by Fröberg’s conjecture. Since

(1 − td)n+2

(1 − t)n = (1 − t)2(1 + t + · · · + td−1)n+2,

we are interested in the lowest degree where the coefficients of the polynomial (1−t)2(1+t+· · ·+td−1)n+2
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are nonpositive. We will provide the necessary bounds by induction on n. The induction step is Lemma 4.1
below and the base of the induction is given in Lemma 4.2.

For the statements of these lemmas, we introduce the following notation. For a sequence a0, a1, . . . , an

of integers, let 1(a) be the sequence of differences 1(a)= a0, a1−a0, . . . , an −an−1, −an . For simplicity
we will assume that all sequences are zero outside the range of indices for which they are defined. The
generating series of this sequence is

∑n+1
i=0 1(a)i t i

= (1 − t)
∑n

i=0 ai t i . Instead of looking at the range
of indices for which the coefficients of the polynomial in (3) are nonpositive, we will look at where the
first difference of the coefficients of (1 + t + · · · + td−1)n+2 are decreasing.

Lemma 4.1. Let n ≥ 4, let d ≥ 1, and let
n(d−1)∑

i=0

ai t i
= (1 + t + · · · + td−1)n and

(n+1)(d−1)∑
i=0

bi t i
= (1 + t + · · · + td−1)n+1.

Suppose that for some s ∈
1
2 N with 1

2 n(d − 1) − s ≥
1
2(d − 1) we have that

1(a)i ≥ 1(a)i+1 for s ≤ i ≤ (d − 1)n − s (4)

and
1(a)s− j ≥ 1(a)s+ j+1 for 0 ≤ j ≤ s. (5)

Then
1(b)i ≥ 1(b)i+1 for s +

1
2(d − 1) ≤ i ≤ (d − 1)(n + 1) −

(
s +

1
2(d − 1)

)
(6)

and
1(b)s+(d−1)/2− j ≥ 1(b)s+(d−1)/2+ j+1 for 0 ≤ j ≤ s +

1
2(d − 1). (7)

In all cases, the index j ∈
1
2 N takes only values that make the indices integers.

Proof. For simplicity, we will denote 1
2(d − 1) by m, which is an integer when d is odd and a half

integer for even d. Observe that the sequences 1(a)i and 1(b)i are antisymmetric around mn +
1
2

and m(n + 1) +
1
2 respectively and that they are positive in the first half and negative in the second half.

In particular, this gives that it is sufficient to prove (6) for i < m(n + 1).
We have that (1 − t)(1 + t + · · · + td−1)n+1

= (1 − td)(1 + t + · · · + td−1)n , which shows that
1(b)i = ai − ai−d and

1(b)i − 1(b)i+1 = ai − ai−d − ai+1 + ai+1−d = 1(a)i+1−d − 1(a)i+1 = 1(a)i−2m − 1(a)i+1. (8)

Hence we can use (4) to prove (6) when i −2m ≥ s and i ≤ 2mn−s, i.e., in the range s+2m ≤ i ≤ 2mn−s.
Since, by the antisymmetry of 1(b)i , we do not need to look at i ≥ m(n + 1) and since we have that

2mn − s ≥ m(n + 1) by the assumption that mn − s ≥ m, it only remains to prove (6) for i in the range
s + m ≤ i < s + 2m. In order to do this, we use (5), and for 0 ≤ j ≤ m, we have that

1(a)s−m+ j ≥ 1(a)s+m− j+1.

Moreover, by (4), we have
1(a)s+m− j+1 ≥ 1(a)s+m+ j+1,
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which with i = s + m + j in (8) now gives

1(b)s+m+ j ≥ 1(b)s+m+ j+1 for 0 ≤ j ≤ m,

where we only consider the j that make j + m an integer. This finishes the proof of (6).
For (7) we have two cases, j ≥ m and j ≤ m. In the first case we write

1(b)s+m− j ≥ 1(b)s+m+ j+1 ⇐⇒ as+m− j − as−m− j−1 ≥ as+m+ j+1 − as−m+ j ,

and the latter can be written

1(a)s+m− j + · · · +1(a)s−m− j ≥ 1(a)s+m+ j+1 + · · · +1(a)s−m+ j+1.

This holds termwise because of (5) if j ≥ m.
For the second case, we write

1(b)s+m− j ≥ 1(b)s+m+ j+1 ⇐⇒ as−m+ j − as−m− j−1 ≥ as+m+ j+1 − as+m− j ,

and the latter can be written as

1(a)s−m− j + · · · +1(a)s−m+ j ≥ 1(a)s+m+ j+1 + · · · +1(a)s+m− j+1,

and again this holds termwise because of (5) when j ≤ m. This finishes the proof of (7). □

Even though we do have the WLP for R3,4,d , we start the induction with this as the base case. The
following lemma gives us the value of s that can be used in the induction step of Lemma 4.1.

Lemma 4.2. For d > 1, let a0 +a1t +· · ·+a4(d−1)t4(d−1)
= (1+ t +· · ·+ td−1)4. Then for s =

⌊ 4
3(d −1)

⌋
,

1(a) j ≥ 1(a) j+1 for s ≤ j ≤ 4(d − 1) − s and 1(a)s− j ≥ 1(a)s+ j+1 for 0 ≤ j ≤ s.

Proof. The coefficients of the polynomial (1 − td)3/(1 − t)3
= (1 + t + · · · + td−1)3 are unimodal and

symmetric around degree 3
2(d − 1). Hence the coefficients of the polynomial

(1 − td)4/(1 − t)3
= 1(a)0 + 1(a)1t + · · · +1(a)4d−3

are antisymmetric around 1
2(4(d − 2)+ 1) = 2d − 2, having positive coefficients up to degree 2d − 2 and

thereafter negative coefficients satisfying 1(a)2d−2−i = −1(a)2d−1+i for 0 ≤ i ≤ 2d − 2.
We can write down an explicit formula for the positive coefficients as

1(a) j =

{( j+2
2

)
for 0 ≤ j ≤ d − 1,( j+2

2

)
− 4

( j+2−d
2

)
for d ≤ j ≤ 2d − 2.

The second expression can be written as a quadratic polynomial in j as

g( j) =

(
j + 2

2

)
− 4

(
j + 2 − d

2

)
= −

3
2

(
j2

−

(
8d
3

− 3
)

j +
4d2

3
− 4d + 2

)
,

which is symmetric around j =
4
3 d −

3
2 . Thus we have that 1(a) j ≥ 1(a) j+1 when

1
2( j + ( j + 1)) ≥

4
3 d −

3
2 ⇐⇒ j ≥

4
3 d − 2 ⇐⇒ j ≥ s
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for the positive coefficients. For the negative coefficients, we use the antisymmetry to conclude that
1(a) j ≥ 1(a) j+1 when j ≤ s + 2 · (2d − 2 − s) = 4(d − 1) + s.

Moreover, for 0 ≤ j ≤ s, we have 1(a)s− j ≥ g(s − j) and 1(a)s+ j+1 = g(s + j +1) when 1(a)s+ j+1

is positive. Thus it is enough to verify that g(s − j) ≥ g(s + j + 1). Indeed,

(s − j) + (s + j + 1)

2
≥

4d
3

−
3
2

⇐⇒ s ≥
4d
3

− 2 =

⌊
4(d − 1)

3

⌋
. □

We now use Lemmas 4.1 and 4.2 to give an upper bound on the degree of the expected Hilbert series
for n + 2 general forms of degree d.

Proposition 4.3. An upper bound for the smallest inflection point of the Hilbert function of a complete
intersection generated by n + 2 forms of degree d in n + 2 ≥ 4 variables is given by

⌊ 4
3(d − 1)

⌋
+

1
2(n − 2)(d − 1); that is, for n ≥ 2, we have

deg
([

(1 − td)n+2

(1 − t)n

])
≤

⌊
4(d − 1)

3

⌋
+

(n − 2)(d − 1)

2
.

Proof. Induction on n with Lemma 4.2 as the base case and with Lemma 4.1 as the induction step proves
the statement about the inflection point. As seen before, this inflection point corresponds to the degree of
the expected Hilbert series, since[

(1 − td)n+2

(1 − t)n

]
=

[
(1 − t)2 (1 − td)n+2

(1 − t)n+2

]
. □

The upper bound in Proposition 4.3 is far from being sharp, and in the proof of Theorem 4.5 we will
need a better bound in some cases. For this purpose we will in Lemma 4.4 below give a more general
version of Proposition 4.3 that could be used with a different base case than Lemma 4.2. Lemma 4.4 also
gives the connection to the WLP that will be used in Theorem 4.5.

Lemma 4.4. Let n ≥ 4 and d ≥ 1, and suppose that s̃ is an integer such that the assumptions in Lemma 4.1
are satisfied. If s̃ < s(n − 2, d), then

deg
([

(1 − td)n+k

(1 − t)n−2+k

])
< s(n − 2 + k, d) for all even integers k ≥ 0,

and in particular, Rn−1+k,n+k,d fails the WLP for all even integers k ≥ 0.

Proof. If n is even, a computation reveals that s(n + k, d)− s(n − 2 + k, d) ≥ d − 1, and if n is odd, then
s(n+k, d)−s(n−2+k, d)= d−1. From this we conclude that s(n−2, d)+ 1

2(k+2)(d−1)≤ s(n+k, d).
On the other hand, repeated use of Lemma 4.1 gives deg([(1− td)n+k/(1 − t)n−2+k

]) ≤ s̃ +k ·
1
2(d −1).

Thus we have

deg
([

(1 − td)n+k

(1 − t)n−2+k

])
≤ s̃ + k ·

d − 1
2

< s(n − 2, d) + ((k − 2) + 2) ·
d − 1

2
≤ s(n + k − 2, d).

The second part of the proposition follows since by (1), the WLP for Rm+1,m+2,d fails if the Hilbert
series for Rm,m+2,d does not equal [(1 − td)m+2/(1 − t)m

]. □
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Theorem 4.5. Let n ≥ 4 and d ≥ 2. Then Rn,n+1,d fails the WLP except possibly for

(n, d) ∈ {(4, 2), (5, 2), (5, 3), (5, 5), (7, 2), (7, 3), (9, 2), (9, 3), (11, 2), (11, 3)}.

Proof. According to Proposition 4.3, we have

deg
([

(1 − td)n+2

(1 − t)n

])
≤

⌊
4(d − 1)

3

⌋
+ (n − 2)

d − 1
2

,

and by Lemma 4.4, the WLP fails for Rn+1,n+2,d if

s(n, d) >

⌊
4(d − 1)

3

⌋
+ (n − 2)

d − 1
2

.

Thus for even n the WLP fails for Rn+1,n+2,d if⌊
n(n + 2)(d − 1)

2(n + 1)

⌋
−

⌊
4(d − 1)

3

⌋
≥ (n − 2)

d − 1
2

+ 1.

In order to show this, it is sufficient to show that

n(n + 2)(d − 1)

2(n + 1)
−

4(d − 1)

3
≥ (n − 2)

d − 1
2

+ 2,

which can be written as

d ≥ 2 + 12 ·
n + 1
n − 2

,

which for n = 4 gives d ≥ 32.
In the same way, for odd n > 2, we want to show that

(n + 1)(d − 1)

2
−

⌊
4(d − 1)

3

⌋
≥ (n − 2)

d − 1
2

+ 1,

and here it is sufficient to show that

(n + 1)(d − 1)

2
−

4(d − 1)

3
≥ (n − 2)

d − 1
2

+ 1,

which is equivalent to d ≥ 7.
Thus to this point we have by Lemma 4.4 that Rn+1,n+2,d fails for even n ≥ 4 and d ≥ 32, and for

odd n ≥ 3 and d ≥ 7.
For the remaining cases we introduce the notation

s̃(n, d) = min{s : s satisfies the hypotheses in Lemma 4.1}.

For n = 3, we check with [Macaulay2] that, in the range 2 ≤ d < 7 except for d = 2, we have
s(3, d) > s̃(3, d), so by Lemma 4.4, the WLP for Rn+1,n+2,d fails for all odd n ≥ 3 and d > 2. Since
s(5, 2) = 3 > s̃(5, 2) = 2, we also get that the WLP for Rn+1,n+2,d fails for all odd n ≥ 5 and d = 2.

For n = 4, we check that s(4, d) > s̃(4, d) in the range 2 ≤ d < 32 except for d ∈ {2, 3, 5}. Since
s(6, 5)=13> s̃(6, 5)=12, we have that the WLP for Rn+1,n+2,d fails for all even n ≥6 and d >3 according
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to Lemma 4.4. For d ∈ {2, 3} and even n, we need to go to n = 12 to get s(12, 2) = 6 > s̃(12, 2) = 5 and
s(12, 3) = 12 > s̃(12, 3) = 11.

Thus we have shown that the WLP for Rn,n+1,d fails for all n ≥ 4 and d ≥ 2 except possibly for

(n, d) ∈ {(4, 2), (5, 2), (5, 3), (5, 5), (7, 2), (7, 3), (9, 2), (9, 3), (11, 2), (11, 3)}. □

5. Explicit formulas, the remaining cases, and the proof of Theorem 1.1

As we saw from the previous section there are ten cases to consider in order to finish the proof of our main
theorem. Four of them do satisfy the WLP, and now we have to deal with the remaining cases, which are

(n, d) ∈ {(5, 5), (7, 3), (9, 2), (9, 3), (11, 2), (11, 3)}.

The case (5, 5) was handled by Migliore, Miró-Roig and Nagel in [Migliore et al. 2012], the case (7, 3)

by Ilardi and Vallès [2019] and the cases (9, 2) and (11, 2) by Sturmfels and Xu [2010]. Thus there are
two remaining cases: (n, d) = (9, 3) and (n, d) = (11, 3). We will now deal with these two cases, but
we will also give new arguments for the other four since the method we use is the same.

We will for each case provide a set of elements of generators for the inverse system in the top degree
that shows that the Hilbert function of Rn−1,n+1,d is not the one expected from the Fröberg conjecture.

We start by establishing an explicit formula for the form of degree 1
2(n + 1) in k[X1, X2, . . . , Xn] that

is annihilated by the squares of n + 2 general linear forms when n is odd. We will do this in two different
ways with different sets of parameters. The two versions are useful in different situations. In the first
version, we observe that for n + 2 general forms we can, by a change of variables, assume that n are the
variables and one is the sum of the variables. The last form will have general coefficients.

Observe that the references to the result by Sturmfels and Xu [2010] in Section 3 can be replaced by
the use of Theorem 5.1 to get a completely self-contained proof of our main result.

We will use V (y1, y2, . . . , ym) to denote the Vandermonde determinant in variables y1, y2, . . . , ym .

Theorem 5.1. Let n = 2k − 1 for a positive integer k. The form

F = det


X1 a1 X1 a2

1 X1 · · · ak−1
1 X1 a1 a2

1 · · · ak−1
1

X2 a2 X2 a2
2 X2 · · · ak−1

2 X2 a2 a2
2 · · · ak−1

2
...

...
...

. . .
...

...
...

. . .
...

Xn an Xn a2
n Xn · · · ak−1

n Xn an a2
n · · · ak−1

n


=

1
k!(k − 1)!

∑
σ∈Sn

sgn(σ )V (aσ1, aσ2, . . . , aσk )V (aσk+1, aσk+2, . . . , aσn )

n∏
j=k+1

aσ j

k∏
j=1

Xσ j

is the unique form of degree k in k[X1, X2, . . . , Xn] that is annihilated by the squares of the linear forms
x1, x2, . . . , xn , x1 + x2 + · · · + xn , and a1x1 + a2x2 + · · · + anxn .

Proof. By work of Nagel and Trok [2019], there is a unique such form and it is sufficient for us to prove
that this particular form is annihilated by the squares of the linear forms. The equality between the two
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formulas follows from the generalized Laplace expansion over the first k columns. Since the form is square-
free, it is annihilated by the squares of the variables and it remains for us to check that it is annihilated by
the squares of the last two linear forms, ℓn+1 = x1 + x2 + · · ·+ xn and ℓn+2 = a1x1 + a2x2 + · · ·+ anxn .

We can start by computing ℓ2
n+1 ◦ F = (x1 + x2 + · · · + xn)

2
◦ F , where we by the Leibniz rule

for determinants get a sum over terms where we substitute X i = 1 for i = 1, 2, . . . , n in two of the
first k columns. In all these terms, there will be a repeated column so all terms are zero.

In the same way we get that ℓ2
n+1 ◦ F = (a1x1 + a2x2 + · · · + anxn)

2
◦ F = 0. This time we substitute

X i = ai for i = 1, 2, . . . , n in two of the first k columns, which again results in repeated columns. □

For the second version of this formula, we observe that n + 2 general points in Pn−1 are on a rational
normal curve and we can, by a change of coordinates, assume that this curve is the moment curve with
parametrization (1 : t : t2

: · · · : tn−1). Thus we can assume that the n + 2 linear forms are given by
ℓi =

∑n
j=1 α

j−1
i x j for i = 1, 2, . . . , n + 2, where α1, α2, . . . , αn+2 are general elements of the field k.

Theorem 5.2. For n = 2k − 1, the form of degree k =
1
2(n + 1) that is annihilated by the squares of the

linear forms ℓi =
∑n

j=1 α
j−1
i x j for i = 1, 2, . . . , n + 2 is given by

F = det


x1 x2 · · · xk
x2 x3 · · · xk+1
...

...
. . .

...

xk xk+1 · · · xn

 .

Proof. Again we use that Nagel and Trok [2019] have shown that there is a unique such form and it is
sufficient for us to prove that this determinant is annihilated by the squares of the linear forms.

We observe that ℓ2
i ◦ F is given by a sum with signs over all ways of substituting x j with α

j−1
i

in two of the rows of the matrix. These two rows become linearly dependent and thus ℓ2
i ◦ F = 0

for i = 1, 2, . . . , n + 2. □

The advantage of this second version is that the formula does not depend on the parameters. Moreover,
we can also use it to find formulas for the unique forms that are annihilated by some of the linear forms
and the squares of the remaining linear forms.

Theorem 5.3. For 0 < k ≤
1
2(n+1), the unique form of degree k that is annihilated by the linear forms ℓi =∑n

j=1 α
j−1
i x j for i =1, 2, . . . , n−2k+1 and by the squares of the remaining 2k+1 linear forms is given by

F = det



1 α1 α2
1 · · · αn−k

1

1 α2 α2
2 · · · αn−k

2
...

...
...

. . .
...

1 αn−2k+1 α2
n−2k+1 · · · αn−k

n−2k+1

x1 x2 x3 · · · xn+1−k

x2 x3 x4 · · · xn+2−k
...

...
...

. . .
...

xk xk+1 xk+2 · · · xn


.
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Proof. The uniqueness is given by Nagel and Trok [2019] and it is enough for us to show the vanishing.
We have that ℓ2

◦ F = 0 for any linear form ℓ =
∑n

j=1 α j−1x j for the same reason as in the previous
theorem. Applying ℓi , where i = 1, 2, . . . , n − 2k + 1, to F gives a sum over the k determinants we get
by replacing x j with α

j−1
i in each of the k lowest rows. Hence ℓi ◦ F = 0 for i = 1, 2, . . . , n −2k +1. □

We can now treat the sporadic cases not covered by Theorem 4.5 where the WLP fails.

Theorem 5.4. The WLP fails for Rn,n+1,d = k[x1, x2, . . . , xn]/⟨ℓ
d
1 , ℓd

2 , . . . , ℓd
n+1⟩ in the cases (n, d) ∈

{(5, 5), (7, 3), (9, 2), (9, 3), (11, 2), (11, 3)}. In particular, the Hilbert series of R4,6,5, R6,8,3, R8,10,2,
R8,10,3, R10,12,2, and R10,12,3 are:

ring Hilbert series

R4,6,5 1 + 4t + 10t2
+ 20t3

+ 35t4
+ 50t5

+ 60t6
+ 60t7

+ 45t8
+ 14t9

R8,10,2 1 + 6t + 21t2
+ 48t3

+ 78t4
+ 84t5

+ 43t6

R8,10,2 1 + 8t + 26t2
+ 40t3

+ 16t4

R8,10,3 1 + 8t + 36t2
+ 110t3

+ 250t4
+ 432t5

+ 561t6
+ 492t7

+ 171t8

R10,12,2 1 + 10t + 43t2
+ 100t3

+ 121t4
+ 32t5

R10,12,3 1 + 10t + 55t2
+ 208t3

+ 595t4
+ 1342t5

+ 2431t6
+ 3520t7

+ 3916t8
+ 2860t9

+ 683t10

These differ in the leading term from, respectively, the 10t9, 42t6, 15t4, 135t8, 22t5 and 88t10 that are
expected by the Fröberg conjecture.

Proof. We consider the ring Rn,n+2,d and denote our set of n + 2 general linear forms by

L = {ℓ1, ℓ2, . . . , ℓn+2} =

{ n∑
i=1

ai−1
1 xi ,

n∑
i=1

ai−1
2 xi , . . . ,

n∑
i=1

ai−1
n+2xi

}
,

where a1, a2, . . . , an+2 are general elements of k.
Using Theorem 5.3, we can find a formula for the unique form of degree k that is annihilated by n−2k+1

of the n + 2 linear forms in L and by the squares of the remaining 2k + 1 linear forms in L. For S ⊆ L of
size n − 2k + 1, we denote this unique form by FS . Observe that the coefficients of FS are polynomials
in the parameters a1, a2, . . . , an+2. In each of the six cases of the theorem, we produce a set of forms
in the inverse system of Rn,n+2,d in the top degree such that the dimension of the subspace they span
agrees with the stated value of the Hilbert function in the socle degree. It will be enough to verify this for
a specialization of the parameters, since a specialization can only lower the dimension. Thus this gives
a lower bound for the Hilbert function in the socle degree. On the other hand, the computation of the
Hilbert function of Rn,n+2,d for a specialization provides an upper bound. Since they agree we can make
the desired conclusion.

In all the cases, we use the specialization ai = i − 1 for i = 1, 2, . . . , n + 2 to verify the dimension
using Macaulay2.

For R4,6,5 we need 14 linearly independent forms of degree 9. We use forms that can be written as
F = FS1 FS2 FS3 FS4 FS5 FS6 , where |S1] = |S2] = |S3] = 3 and |S4] = |S5] = |S6] = 1, such that each linear
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form in L is contained in exactly two of the six subsets. Observe that the three first factors are linear and
the three last are quadratic. For each ℓ ∈ L we get ℓ5

◦ F = 0 by the pigeonhole principle and the general
Leibniz rule since ℓ annihilates two of the factors and ℓ2 annihilates the remaining four factors.

For R6,8,3 we need 43 linearly independent forms of degree 6. We use forms that can be written
as FS1 FS2 FS3 FS4 , where |S1| = |S2| = 5 and |S3| = |S4| = 3, and each linear form in L is contained in ex-
actly two of the subsets. These forms are annihilated by the squares of all linear forms in L since each linear
form annihilates two of the factors and the square of the linear form annihilates the remaining two factors.

For R8,10,2 we need 16 linearly independent forms of degree 4. These can be obtained as F = FS FL\S

for subsets S of size five. These are products of two quadrics and they are annihilated by the squares of
the linear forms in L since for each ℓ in L we have that ℓ annihilates one of the factors and ℓ2 annihilates
the other.

For R8,10,3 we will produce a set of 171 linearly independent forms of degree 8 that are annihilated
by the cubes of the linear forms. These forms are obtained as F = FS1 FS2 FS2 FS2 , where |S1| =

|S2| = |S3| = |S4| = 5 and each linear form in L is contained in two of the subsets. Thus we get that
ℓ3

◦(FS1 FS2 FS2 FS2)= 0 for all ℓ∈L since ℓ annihilates two of the factors and ℓ2 annihilates the remaining
two.

For R10,12,2 we provide a set of 32 linearly independent forms of degree 5 that are annihilated by the
squares of the linear forms in L. We do this by forms F = FS FL\S for subsets S of size five. Each linear
form ℓ in L annihilates one of the factors and ℓ2 the other. Hence ℓ2

◦ FS FL\S = 0.
For R10,12,3 we provide a set of 683 linearly independent forms of degree 10 that are annihilated by

the cubes of the linear forms in L. We do this by forms F = FS1 FS2 FS3 FS4 , where |S1| = |S2| = 5,
|S3| = |S4| = 7, and every ℓ ∈ L is contained in two of the subsets. Now ℓ3

◦ (FS1 FS2 FS3 FS4) = 0 for
all ℓ ∈ L since ℓ annihilates two of the factors and ℓ2 annihilates the remaining two. □

We can now prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 4.5 we have that the WLP for Rn,n+1,d fails when n ≥ 4 and d ≥ 2
expect possibly for the cases

(n, d) ∈ {(4, 2), (5, 2), (5, 3), (5, 5), (7, 2), (7, 3), (9, 2), (9, 3), (11, 2), (11, 3)}.

In the cases (4, 2), (5, 2), (5, 3) and (7, 2), we can verify by one example that they do satisfy the WLP
and for the remaining cases Theorem 5.4 shows that they fail to satisfy the WLP.

Finally, we refer to the introduction for references to the cases n = 2 and n = 3, and for the cases n = 1
and d = 1, the WLP is trivially satisfied. □
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