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A classification of modular compactifications of
the space of pointed elliptic curves by Gorenstein curves

Sebastian Bozlee, Bob Kuo and Adrian Neff

We classify the Deligne–Mumford stacks M compactifying the moduli space M1,n of smooth n-pointed
curves of genus one under the condition that the points of M represent Gorenstein curves with distinct
smooth markings. This classification uncovers new moduli spaces M1,n(Q), which we may think of
as coming from an enrichment of the notion of level used to define Smyth’s m-stable spaces. Finally,
we construct a cube complex of Artin stacks interpolating between the M1,n(Q)’s, a multidimensional
analogue of the wall-and-chamber structure seen in the log minimal model program for Mg .

1. Introduction

The moduli stack Mg,n of smooth genus g algebraic curves with n marked points is not proper, so one
searches for compactifications, that is, proper Deligne–Mumford stacks M such that Mg,n embeds as a
dense open substack of M. In this paper we construct a new family of modular compactifications of M1,n .
We then show that these moduli spaces exhaust the semistable modular compactifications of M1,n with
Gorenstein singularities and distinct markings.

Let us now set up some notation in order to give the definition of these new moduli spaces.

Definition 1.1. Given a positive integer n, let Part(n) be the set of partitions of {1, . . . , n}. Give Part(n)
a partial order by P1 ⪯ P2 if the partition P1 is refined by the partition P2.

Denote by Qn the collection of subsets Q ⊆ Part(n) such that

(i) Q is downward closed;

(ii) Q does not contain the discrete partition {{1}, . . . , {n}}.

Definition 1.2. Let p be a closed point of an algebraic curve C over an algebraically closed field k, and
let ν : C̃→ C be the normalization. The number of branches at p is

m(p)= |ν−1(p)|.

The delta invariant of p is
δ(p)= dimk(ν∗OC̃/OC).

The genus of p is
g(p)= δ(p)−m(p)− 1.
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The genus of a singularity captures its contribution to the genus of C . In particular, if C is connected
and proper, p1, . . . , pe are the singularities of C , and C̃1, . . . , C̃v are the irreducible components of C̃ ,
then the arithmetic genus of C is

g(C)=
e∑

i=1

g(pi )+

v∑
j=1

g(C̃ j )+ b1(1C),

where b1(1C) is the first Betti number of the simplicial complex 1C with vertices C̃1, . . . , C̃v and, for
each pi , an (m(pi )−1)-simplex whose vertices are glued to the components meeting ν−1(pi ).

Definition 1.3. A closed point p of an algebraic curve C over an algebraically closed field is an elliptic
Gorenstein singularity if OC,p is Gorenstein and g(p)= 1.

It is shown in [Smyth 2011a] that the elliptic Gorenstein singularities are classified by their number of
branches, m. If m = 1, p is a cusp; for m = 2, p is a tacnode; for m ≥ 3, p is the union of the coordinate
axes of Am−1 with one more line transverse to each of the coordinate hyperplanes of Am−1. Given such a
singularity, we will call the irreducible components to which p belongs the branches of p.

Definition 1.4. A subcurve Z of a proper algebraic curve C over an algebraically closed field is a
connected reduced closed subscheme of C .

Let (C, p1, . . . , pn) be a curve of arithmetic genus one together with n marked closed points over an
algebraically closed field. Let Z be a subcurve of C of genus one and let 6 be the divisor of markings.
We define the level of Z , lev(Z), to be the partition of {1, . . . , n} where a, b ∈ {1, . . . , n} lie in the same
subset if and only if the markings pa and pb lie in the same connected component of (C − Z)∪6.

If q ∈ C is an elliptic Gorenstein singularity, we say the level of q , lev(q) is the partition of {1, . . . , n}
where a, b ∈ {1, . . . , n} lie in the same subset if and only if the markings pa and pb lie in the same
connected component of the normalization of C at q (i.e., if the rational tails containing pa and pb are
connected via a nodal path to the same branch of the singularity).

Remark 1.5. If Z1 and Z2 are two genus one subcurves of C and Z1 ⊆ Z2, then lev(Z1)⪯ lev(Z2).

Remark 1.6. The level of C considered in [Smyth 2011a] is the cardinality |lev(Z)|, where Z is the
minimal subcurve of C of genus one.

The level of an elliptic Gorenstein singularity q defined here was called the “combinatorial type of C”
in [Smyth 2011b, Definition 2.15].

Definition 1.7. Let Q ∈Qn . A Q-stable curve over a scheme S consists of

(i) π : C→ S, a flat and proper morphism of schemes, and

(ii) σ1, . . . , σn : S→ C , sections of π with disjoint images,

such that, for each geometric fiber (Cs, p1, . . . , pn),

(i) Cs is a connected reduced Gorenstein scheme of dimension 1 with arithmetic genus one;

(ii) (level condition on subcurves) if Z ⊆ Cs is a subcurve of genus one, then lev(Z) ̸∈ Q;
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(iii) (level condition on singularities) if q ∈ Z is a genus one singularity, then lev(q) ∈ Q;

(iv) H 0(C, �∨C(−6))= 0.

We define the moduli space M1,n(Q) of Q-stable n-marked curves of genus one to be the stack
over Z

[ 1
6

]
whose S-points are the Q-stable curves over S.

Our first main result is that this defines a modular compactification of M1,n .

Theorem 5.1. For each Q ∈Qn , M1,n(Q) is a proper irreducible Deligne–Mumford stack over Z
[1

6

]
containing M1,n .

When Q = {S ∈ Part(n) : |S| ≤ m} for some m, we recover the m-stable compactification M1,n(m) of
Smyth [2011a]. We may regard the spaces M1,n(Q) as “combinatorial remixes” of the m-stable spaces,
since each of the curves of M1,n(Q) for some Q belong to some M1,n(m) for various m. Despite this,
the Q-stable spaces are surprisingly plentiful: for n = 5, there are only 5 m-stable spaces, but 79,814,831
Q-stable spaces.

All of the Q-stable spaces arise from compatible choices of how to contract the universal curve of
the moduli space of radially aligned log curves (defined in [Ranganathan et al. 2019] and [Santos-Parker
2017]), analogously to the “extremal assignments” of [Smyth 2013]. It was systematic enumeration of such
contractions using the log-geometric techniques of [Bozlee 2020] that led to the discovery of the Q-stable
spaces. This leads to a resolution of the rational map between the Deligne–Mumford–Knudsen space and
each Q-stable space.

Theorem 4.13. For each Q ∈Qn , there is a diagram of stacks

Mrad
1,n

|| $$

M1,n M1,n(Q)

such that both arrows are proper and restrict to an isomorphism on M1,n .

We will also find the construction of contractions of families of curves to be helpful sporadically
throughout the paper.

Our next main theorem is that the Q-stable spaces account for all sufficiently nice modular compactifi-
cations in genus one, taking us one step further in the classification of modular compactifications of the
moduli space of pointed algebraic curves. To that end, we introduce some definitions.

Definition 1.8. Let U1,n be the stack of Gorenstein, connected, reduced curves of genus one with n
distinct smooth marked points and no infinitesimal automorphisms. For the purposes of this paper, a
modular compactification is an open Deligne–Mumford substack M of U1,n , proper over Spec Z

[ 1
6

]
.

In the language of [Smyth 2013], a modular compactification in our sense is a semistable modular
compactification whose curves are Gorenstein with distinct smooth markings, except that the base is
chosen as Spec Z

[ 1
6

]
instead of Spec Z.



130 Sebastian Bozlee, Bob Kuo and Adrian Neff

Theorem 1.9. If M is a modular compactification of M1,n , then M=M1,n(Q) for some Q.

We prove this classification theorem over the course of Section 6.
Finally, in Section 7, we construct a cube complex of mildly nonseparated Artin stacks interpolating

between the M1,n(Q)’s. This complex yields a multidimensional analogue of the wall-and-chamber
structure seen in the log minimal model program for Mg.

This paper gives the first general classification of Gorenstein modular compactifications of Mg,n in
genus greater than 0. In future work we hope to use similar ideas to construct and classify modular
compactifications of Mg,n . For instance, Battistella [2022] has constructed a sequence of modular
compactifications of M2,n parametrized by a level analogous to that of [Smyth 2011a], and our more
flexible notion of level should also yield combinatorial variations of Battistella’s moduli spaces.

It would also be natural to search for similar results on modular compactifications in which the marked
points are permitted to come together, as in the spaces of weighted stable curves of [Hassett 2003]. The
thesis of Andy Fry [2021] suggests that it is necessary to consider more general collisions of markings
than those permitted by weights. This will be pursued in future work with Vance Blankers.

2. Examples

In this section we give some examples to illustrate the nature and variety of Q-stable spaces. We start by
describing how to count Q-stability conditions.

Definition 2.1. An antichain in a partially ordered set P is a subset A⊆ P such that no distinct elements
of A are comparable.

Proposition 2.2. Let P be a finite partially ordered set. There is a bijection

{Q ⊊ P : Q downward closed} ↔ {A ⊆ P : A is a nonempty antichain}

given left-to-right by taking Q to the set of minimal elements of P − Q, and right-to-left by taking A to
the complement of the upward closure of A.

Proof. Omitted. □

The number of nonempty antichains of the lattice of partitions of n elements are counted in OEIS
sequence A302251 [Machacek 2018]. We learn that there are

• 9 Q-stable compactifications of M1,3,

• 346 Q-stable compactifications of M1,4,

• 79,814,831 Q-stable compactifications of M1,5.

By contrast, for a given n, there are only n compactifications of M1,n by m-stable spaces.
Since the properties of being downward closed and of being a proper subset are preserved by finite

union and intersection, the set Qn forms a lattice under union and intersection.
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Part(3) downward closed proper subsets of Part(3)

Figure 1. The partially ordered set of partitions of {1, 2, 3} and the lattice of Q-stability
conditions for n = 3. An orange dot indicates that the corresponding partition on the left
is included in Q.

Example 2.3. Consider the case n = 3. The Hasse diagram of Part(3) and the corresponding lattice of
Q-stability conditions for n = 3 are displayed in Figure 1. Visually, Q3 consists of a cube and a whisker:
we will show later that the lattice is always a “union of cubes” and consider a way to fill in the interior of
the cube.

We see that there are 9 Q-stable spaces for n = 3, in agreement with the count just above. Three of
those are m-stable spaces: M1,3 corresponds to the subset at the bottom of the diagram, M1,3(1) to the
subset just above, and M1,3(2) to the subset at the top of whole diagram.

In Figure 2 we give some examples of 3-pointed curves and the Q’s for which they are considered stable.

Example 2.4. For n = 3 none of the new stability conditions — that is, the Q’s such that M1,n(Q) is not
an m-stable space — are symmetric with respect to the markings. This is a coincidence for low n.

Say that a proper downward closed subset Q of Part(n) is symmetric if Q is fixed by the natural Sn

action. The orbits of partitions of {1, . . . , n} are in bijection with the integer partitions of n, so we may
equivalently think of a symmetric Q as a proper downward closed subset of the partially ordered set of
integer partitions of n ordered by refinement. Since the property of being symmetric is preserved under
intersection and union, the set of symmetric Q-stable conditions for n also form a lattice under union and
intersection.
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g = 1 g = 1 g = 1 g = 1

Figure 2. Some Gorenstein 3-pointed curves of genus one. Next to each curve we
indicate for which choices of Q the curve is Q-stable: an orange dot means that the curve
is stable with respect to the corresponding point in the diagram of downward closed
subsets in Figure 1.

Consider the set of symmetric Q-stability conditions when n = 5. The Hasse diagram of the integer
partitions of 5 and the lattice of symmetric Q-stable conditions, colored by the corresponding subset of the
integer partitions of 5, is shown in Figure 3. The 5 m-stable spaces are given by the subsets down the middle
of the diagram on the right; the 4 remaining subsets on the sides of that diagram yield new moduli spaces.

Figure 3. On the left, the integer partitions of 5. On the right, the lattice of symmetric
Q-stability conditions when n = 5, thought of as subsets of the set of integer partitions.
An orange dot indicates that the corresponding integer partition in the diagram on the
left is included in Q.
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3. Preliminaries

Tropical curves. Our main tool is the log-geometric approach to tropical geometry. We will use the
framework of [Cavalieri et al. 2020]. All of our monoids will be commutative and we take N to include
zero. We will prefer additive notation for the operation of P .

Recall that a monoid P is

(i) sharp if its only invertible element is the identity,

(ii) integral if a+ b = a+ c implies b = c for all a, b, c ∈ P ,

(iii) finitely generated if there is a surjective monoid homomorphism Nr
→ P for some integer r ,

(iv) saturated if P is integral and for any a ∈ Pgp and n ∈ Z>0, n · a ∈ P implies a ∈ P ,

(v) fs if P is finitely generated, integral, and saturated.

We begin by recalling the definition of tropical curve, which is essentially a graph whose edges are
labeled with “lengths” from an fs sharp monoid.

Definition 3.1. An n-marked tropical curve 0 with edge lengths in an fs sharp monoid P consists of:

(i) A finite set X (0)= V (0)⊔F(0). The elements of V (0) are called the vertices of 0 and the elements
of F(0) are called the flags of 0.

(ii) A root map r0 : X (0)→ X (0) which is idempotent with image V (0).

(iii) An involution ι0 : X (0)→ X (0) that fixes V (0). The subsets { f, ι0( f )} of F(0) of size two are
called edges, and the set of all edges is denoted by E(0). The subsets { f, ι0( f )} of F(0) of size
one are called legs, and the set of all legs is denoted by L(0).

(iv) A bijection l : {1, . . . , n} → L(0).

(v) A function g : V (0)→ N. Given a vertex v, g(v) is called the genus of v.

(vi) A function δ : E(0)→ P . Given an edge e, δ(e) is called the length of e.

We imagine that each flag f is half of an edge starting at the vertex r0( f ). Given an edge e={ f, ι0( f )},
we say the vertices r0( f ) and r0(ι0( f )) are incident to e.

Definition 3.2. The genus of a tropical curve 0 is

g(0)= b1(0)+
∑

v∈V (0)

g(v),

where b1(0) is the first Betti number of 0, that is, |E(0)| − |V (0)| + n, where n is the number of
connected components of 0.

Definition 3.3. A tropical curve is stable if it is connected and not an isolated vertex of genus one, and
the valence of each of its vertices of genus 0 is at least 3.



134 Sebastian Bozlee, Bob Kuo and Adrian Neff

Definition 3.4. A piecewise linear function f on a tropical curve 0 with edge lengths in P consists of

(i) a value f (v) ∈ P for each vertex v ∈ V (0),

(ii) a slope m(l) ∈ N for each leg l ∈ L(0)

such that whenever e is an edge with ends v and w, f (v)− f (w) is an integer multiple of δ(e).
The set of all piecewise linear functions on 0 is denoted by PL(0).

Given a tropical curve 0 with edge lengths in P and a morphism of fs sharp monoids π ♯ : P→ P ′, we
may apply π ♯ to the edge lengths of 0 and contract edges of length zero to arrive at a new tropical curve.
Composing with an isomorphism gives us the notion of a weighted edge contraction, which we define
below.

Definition 3.5. Let 0 and 0′ be tropical curves with edge lengths in P and P ′, respectively. A weighted
edge contraction π : 0′→ 0 (note the variance!) consists of

(i) a function π : X (0)→ X (0′),

(ii) a morphism of monoids π ♯ : P→ P ′

such that

(i) π preserves ends of flags, that is, π ◦ r0 = r0′ ◦π ;

(ii) π preserves edges, that is, π ◦ ι0 = ι0′ ◦π ;

(iii) π sends legs of 0 bijectively to legs of 0′ and preserves their markings;

(iv) for each flag f ∈ F(0′), the preimage π−1( f ) has exactly one element (automatically a flag);

(v) for each vertex v ∈ V (0′), the preimage π−1(v) is a connected weighted graph of genus g(v);

(vi) the flags of an edge e ∈ E(0) are sent by π to a vertex of 0′ if and only if π ♯(δ(e))= 0;

(vii) for each edge e ∈ E(0) with π ♯(δ(e)) ̸= 0, the image of e is an edge e′ of length δ(e′)= π ♯(δ(e)).

We will call a weighted edge contraction a face contraction if there is a subset S ⊆ P such that the
map π ♯ is of the form

P→ S−1 P→ S−1 P/(S−1 P)∗ ∼−→ P ′,

where the first arrow is localization, the second is the quotient by the submonoid of invertible elements, and
the third is an isomorphism. (These are the edge contractions associated to face inclusions in the category
of rational polyhedral cones [Cavalieri et al. 2020, Definition 2.25].) In the case that P is a finite free
monoid Nr , the face contractions are those induced by the projections of Nr onto subsets of its coordinates.

Given a weighted edge contraction π : 0′→ 0 there is an induced map

π∗ : PL(0)→ PL(0′)

given by taking f with values f (v) and slopes m(l) to the piecewise linear function π∗ f with values
(π∗ f )(v)= π ♯( f (v)) for v ∈ V (0) and the same slopes.
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We take weighted edge contractions to be the morphisms in the category of tropical curves. In particular,
an isomorphism of tropical curves is an invertible weighted edge contraction.

Log curves and their tropicalizations. The natural notion of family of curves in logarithmic geometry
admits both an underlying family of pointed nodal curves and a tropicalization, connecting the tropical
and algebrogeometric worlds. F. Kato [2000] introduced the notion of a family of log curves.

Definition 3.6. (cf. [Kato 2000, Definition 1.2]) Let S be an fs log scheme. A log curve over S is a log
smooth and integral morphism π : C→ S of fs log schemes such that every geometric fiber of π is a
reduced and connected curve.

Kato [2000, Theorem 1.3] has shown that the underlying morphism of schemes of a log curve is a
family of nodal curves, and the data in the log structure records some marked points. We borrow this
statement of Kato’s local structure theorem from [Ranganathan et al. 2019].

Theorem 3.7. Let π : C → S be a family of proper log curves. If x ∈ C is a geometric point with
image s ∈ S, then there are étale neighborhoods V of x and U of s such that V→U has a strict morphism
to an étale-local model V ′→U ′, where V ′→U ′ is one of the following:

(i) The smooth germ: V ′ = A1
U ′→U ′ and the log structure on V ′ is pulled back from the base.

(ii) The germ of a marked point: V ′ = A1
U ′ → U ′ with the log structure pulled back from the toric log

structure on A1.

(iii) The node: V ′ = SpecOU ′[x, y]/(xy− t) for t ∈ OU ′ . The log structure on V is pulled back from the
multiplication map A2

→ A1 of toric varieties along the morphism U ′→ A1 of logarithmic schemes
induced by t.

The tropicalization of a log curve is the dual graph of its underlying nodal curve, enriched with the
data of the smoothing parameters from its log structure.

Definition 3.8. Given an n-marked log curve π : C → S, where S is a log point, the tropicalization
trop(C) of C is the n-marked tropical curve with edge lengths in 0(S,M S) which has

(i) a vertex for each component of C ;

(ii) an edge for each node of C , incident to the components of C which form the branches of the node;

(iii) a leg for each marked point of C , rooted at the component of C to which the marked point belongs;

and

(a) for each vertex v, the genus g(v) is the genus of the normalization of the corresponding component
of C ;

(b) for each edge e, the length δ(e) ∈ 0(S,M S) is the smoothing parameter of the node e.

See Figure 4 for an example of tropicalization. Note that the tropicalization may contain loops: consider
the nodal cubic.

Sections of the characteristic sheaf of C are interpreted tropically as piecewise linear functions.
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Figure 4. A typical log curve and its tropicalization.

Theorem 3.9. Let π : C → S be a log curve over the spectrum of an algebraically closed field. Then
there is a bijection

PL : 0(C,MC)
∼
−→ PL(trop(C)), σ 7→ PL(σ ),

where

(i) the value of PL(σ ) at a vertex v of 0(C) is the stalk of σ at the generic point of the corresponding
component of C ;

(ii) the slope of PL(σ ) at a leg l of 0(C) is the image of σ in (MC/π
−1 M S)p ∼= N, where p is the

marked point corresponding to l.

Proof. See, for example, [Cavalieri et al. 2020, Remark 7.3]. □

For a general log curve, this interpretation extends nicely over an étale neighborhood of each point.

Theorem 3.10. Let π : C→ S be a log curve and let s be a geometric point of S. Then there is an étale
neighborhood U of s in S such that

(i) 0(U,M S)→ M S,s and 0(C |U ,MC)→ 0(C |s,MC |s ) are isomorphisms;

(ii) for each geometric point t of U , there is a canonical face contraction

trop(Cs)→ trop(Ct)

induced by
M S,s

∼
←− 0(U,M S)→ M S,t .

Moreover, this face contraction respects associated piecewise linear functions in the sense that

0(C |s,MC |s )

PL
��

0(C |U ,MC)
∼
oo // 0(C |t ,MC |t )

PL
��

PL(trop(C |s)) // PL(trop(C |t))
commutes.

Proof. This follows, for example, from the existence of “uniform sets of charts”, constructed in [Bozlee
2020, Proposition 2.3.13]. □



Gorenstein modular compactifications of the space of pointed elliptic curves 137

It follows that to define a section of the characteristic sheaf of C it is equivalent to specify a piecewise
linear function on each geometric fiber of C so that the resulting piecewise linear functions are compatible
with generization.

Definition 3.11. An n-marked log curve is a log curve π : C → S equipped with disjoint sections
σ1, . . . , σn : S→C with image the marked points of C . An n-marked log curve is stable if its underlying
family of marked nodal curves is Deligne–Mumford stable.

Theorem 3.12 [Kato 2000, Theorem 4.5]. There is a log structure on Mg,n , called the basic log structure,
such that Mg,n represents the stack of stable n-marked log curves of genus g over the category of fs log
schemes.

We will generally regard Mg,n as a stack with the basic log structure and will freely confuse Mg,n

with its underlying algebraic stack. A stable log curve π : C→ S is said to have the basic log structure
if its log structure is pulled back from that of the universal stable log curve of Mg,n . In the case that S
is a geometric point, π has the basic log structure if and only if the characteristic monoid M S is freely
generated by the edge lengths of trop(C).

Radially aligned curves. We now build up the terminology to work with radially aligned curves. These
were introduced by Santos-Parker [2017] under the name of ordered log curves and then popularized
in [Ranganathan et al. 2019].

Definition 3.13. Let 0 be a tropical curve. A path W in 0 is a sequence v0e1v1e2 · · · ekvk of vertices
and edges in 0 such that the vertices vi are distinct and vi−1 and vi are the ends of the edge ei for all i .
Given subsets A and B of V (0), we say that W is a path from A to B if v0 ∈ A, vk ∈ B, and vi ̸∈ A∪ B
for i ̸= 0, k.

Definition 3.14. Given a proper curve C over the spectrum of an algebraically closed field, a subcurve
of C is a union of irreducible components of C , possibly empty.

The core of C is the minimal connected subcurve of C with the same genus as C . Analogously the
core of a tropical curve 0 is the minimal connected vertex-induced subgraph of the same genus as 0.

Definition 3.15. Given a tropical curve 0 of genus one, we define a piecewise linear function λ on 0
measuring “distance from the core” as follows. If v is a vertex in the core of 0, we set

λ(v)= 0.

If v is a vertex outside of the core of 0, we let W = v0e1v1e2 · · · ekvk be the unique path from the core
of 0 to v and set

λ(v)=

k∑
i=1

δei .

Finally, we set the slope of λ to be 1 at all marked points.
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This is compatible with generization, so for any stable log curve (π :C→ S; σ1, . . . , σn) of genus one,
we let λ ∈ 0(S,M S) be the unique section of the characteristic bundle whose restriction to geometric
fibers has corresponding piecewise linear function as in the last paragraph.

Definition 3.16. If P is any fs sharp monoid, we give the elements of P a partial order by the rule p ≤ q
if and only if there exists r ∈ P with q = p+ r .

Definition 3.17. A stable n-marked tropical curve of genus one with edge lengths in P is radially aligned
if, for each pair of vertices v,w of 0, λ(v) is comparable to λ(w) in P .

Given such a radially aligned curve, let

0< ρ1 < · · ·< ρk

be the distinct values of λ(v) as v varies over the components of C , and let δ1, . . . , δl be the lengths of
the edges of trop(C) internal to the core of 0. Let e1 = ρ1, e2 = ρ2− ρ1, . . . , ek = ρk − ρk−1. If P is
freely generated by

{e1, . . . , ek} ∪ {δ1, . . . , δl},

then we say that 0 is a basic radially aligned tropical curve. An element of P is said to have no
contribution from the core if it lies in the submonoid generated by e1, . . . , ek .

A stable log curve (π : C→ S; σ1, . . . , σn) of genus one with n markings is radially aligned or has a
basic radially aligned log structure if the tropicalizations of its geometric fibers with their pulled back
log structure are respectively radially aligned or basic radially aligned. An element ρ ∈ 0(S,M S) has no
contribution from the core if the same holds of its stalks at the geometric points of S.

There is a moduli stack with log structure parametrizing radially aligned log curves.

Theorem 3.18 [Ranganathan et al. 2019, Proposition 3.3.4]. (i) There is a Deligne–Mumford stack with
locally free log structure Mrad

1,n whose S-points for S an fs log scheme are the n-marked radially
aligned curves π : C→ S over S. We say its log structure is the basic radially aligned log structure.

(ii) There is a natural map Mrad
1,n → M1,n induced by a logarithmic blowup and it restricts to an

isomorphism on M1,n .

A stable log curve (π : C→ S; σ1, . . . , σn) has a basic radially aligned log structure precisely when
the log structure on π : C→ S is that pulled back from the universal curve Crad

1,n→Mrad
1,n along the map

S→Mrad
1,n . We remark that a fixed family of nodal curves may be enhanced to a family of basic radially

aligned log curves in more than one way, which we illustrate with an example.

Example 3.19. Let π : C→ S = Spec k be a stable curve with the basic log structure over the spectrum
of an algebraically closed field, and suppose that its tropicalization is

β α
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α

β

α

β

α

β

α > β α = β α < β

S×M1,4
Mrad

1,4
∼= P1

Figure 5. The P1 of radial alignments of a basic stable log curve with two edges.

There is an associated map S→M1,4. The basic log structure on S comes from the chart

Nα̃⊕Nβ̃→ k

sending α̃, β̃ 7→ 0. The edge lengths α and β are the respective images of α̃ and β̃ in the characteristic
sheaf. Locally in M1,4 near the image of S, the map Mrad

1,4→M1,4 is given by the log blowup of the log
ideal generated by α and β, as these are the distances that we wish to make comparable. We refer the
interested reader to [Ogus 2018, Chapter III, Section 2.6] for details on log blowups.

We may compute all of the basic radially aligned log structures on C by computing the restriction of
this blowup to S. We construct the blowup by first freely adjoining the element α̃− β̃ to the log structure
of S, adjoining an element to k for α̃− β̃ to map to, doing likewise for β̃ − α̃, and finally gluing over
the overlap. That is, S×M1,4

Mrad
1,4 possesses a cover by two open sets U = Spec k[t] (where α ≥ β) and

V = Spec k[t−1
] (where β ≥ α) with log structure on U induced by

N(α̃− β̃)⊕Nβ̃→ k[t], α̃− β̃ 7→ t and β̃ 7→ 0,

and log structure on V induced by

Nα̃⊕N(β̃ − α̃)→ k[t−1
], α̃ 7→ 0 and β̃ − α̃ 7→ t−1.

The two charts are glued in the obvious way. Notice that on the intersection U ∩ V = Spec k[t, t−1
], the

sections α̃− β̃ and β̃− α̃ of the log structure restrict to units, so that their images in the characteristic sheaf
are 0. It follows that α and β are equal over a Gm’s worth of possible basic radially aligned enhancements
of C . See Figure 5.

Definition 3.20. Let 0 be a radially aligned tropical curve with ordered radii 0< ρ1 < · · ·< ρk .
Given a radius ρ, we may form a tropical curve 0̃(ρ) by subdividing the edges and legs of 0 where

λ= ρ, then deleting the locus where λ < ρ. We define the partition associated to the radius ρ to be the
partition of {1, . . . , n} induced by the components of 0̃(ρ), and we denote it by part(ρ).
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e1

e2+ e3

e2

1

2

3

4

Figure 6. A basic radially aligned curve with partition type {{1, 2, 3, 4}}≺{{1, 2}, {3, 4}}≺
{{1, 2}, {3}, {4}}. We draw a torus to indicate a vertex of genus one.

We say that the resulting strict chain of partitions

part(ρ1)≺ part(ρ2)≺ · · · ≺ part(ρk)

is the partition type of 0. See Figure 6 for an example.

It would be natural to include the partition part(0) in the partition type as well, but we choose not to
for a few reasons. The first is that we always have part(0)= {{1, 2, . . . , n}}, since part(0) is the partition
of the markings induced by deleting no components. So including part(0) in the list does not convey
more information. For another, unlike the other comparisons, the comparison part(0)⪯ part(ρ1) need not
be strict: it may be that both are the indiscrete partition. For example, see Figure 6.

4. Contractions of the universal radially aligned curve

Part of the utility of families of radially aligned curves is that they are easy to contract to families of
curves with Gorenstein singularities, even at the level of a universal curve. By exploring the possible
contractions of the universal curve of Mrad

1,n we find regular birational maps Mrad
1,n→M1,n(Q) for each Q.

It was this computation that identified the Q-stable moduli spaces.
The following theorem says that in order to contract a family of radially aligned curves, all we

need is the data of a tropical radius for each curve in the family. This idea was key for the results of
[Santos-Parker 2017] and [Ranganathan et al. 2019] and can be done using their language; see [Santos-
Parker 2017, Section 5] and [Ranganathan et al. 2019, Section 3.7]. We give a proof using the language
of [Bozlee 2020] for its convenience and generality.

Theorem 4.1. Let π : C→ S be a family of n-marked radially aligned log curves. Let ρ ∈ 0(S,M S) be
a section of the characteristic monoid such that “ρ is a radius at all geometric points of s”; that is, for
each geometric point s of S, there is a vertex v of trop(C |s) such that λ(v)= ρ|s .

Then there is a diagram
C̃

τ

��

ϕ

��

C

π
��

C

π��

S
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where

(i) ϕ is a log blowup inducing the subdivision at the locus where λ= ρ on tropicalizations;

(ii) π : C→ S is a flat and proper family of Gorenstein curves of genus one;

(iii) τ is a surjective map whose restriction to geometric fibers contracts the locus (if nonempty) where
λ < ρ to an elliptic singularity of level part(ρ|s) and restricts further to an isomorphism in the
complement of this locus.

Moreover, formation of the diagram commutes with base change in S.

Proof. The construction of ϕ is standard. Using the language of [Bozlee 2020], we then define a mesa
λ ∈ 0(C̃,M C̃) on the resulting family of log curves C̃→ S with the formula

λ=max{ρ− λ, 0}.

It is easy to check that λ defines a steep mesa with support on the locus where λ < ρ, so the main
theorem of [Bozlee 2020] yields the claimed diagram with the required properties. To see that the elliptic
singularities of C have the claimed level, we note that the branches of the singularity will be the images of
the connected components of the locus in C̃ where λ≥ ρ. These are precisely the connected components
considered in the definition of part(ρ). □

We want to apply this theorem to the universal curve of Mrad
1,n . Our next task is to reduce the problem

of enumerating the possible radii ρ ∈ 0(M1,n,MMrad
1,n
) to something manageable.

Lemma 4.2. Let 0 be a basic radially aligned curve. Then:

(i) If the core of 0 consists of a vertex with a self-loop, then the only nontrivial automorphism of 0 is
the automorphism reversing the loop, but the identity on everything else.

(ii) If the core of 0 consists of a pair of vertices with two edges, the only nontrivial automorphism of 0
is the automorphism exchanging the edges of the core, and the identity on everything else.

(iii) Otherwise, 0 has no nonidentity automorphisms.

Proof. Suppose 0 is a basic radially aligned tropical curve. Let ϕ : 0→ 0 be an invertible weighted edge
contraction.

We argue that ϕ is the identity on the vertices of 0. Let v be a vertex of 0. Notice that the complement
of the core of 0 consists of a forest of trees, each of which we can root at the vertex that attaches to the
core. Furthermore, due to stability,

(i) if v is a vertex outside of the core of 0, then v is uniquely identified by the markings that lie on v
and the descendants of v;

(ii) if v is a vertex inside the core of 0, there is at least one tree attached to v, and those trees are uniquely
identified by their markings.
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An automorphism of 0 must in particular preserve the markings. Therefore, ϕ fixes all of the vertices
of 0. This implies that ϕ fixes all edges except possibly those who share incident vertices. This implies
the result. □

Remark 4.3. For a fixed n, there are only finitely many isomorphism classes of n-marked tropical curves
with the basic radially aligned log structure.

Lemma 4.4. Let 0 be an n-marked basic radially aligned tropical curve with edge lengths in P. Write
Mrad

0 for the substack of Mrad
1,n of curves whose tropicalizations are isomorphic to 0. Then Mrad

0 is an
irreducible locally closed substack of Mrad

1,n .

Proof. Write M0 for the locally closed substack of stable n-marked curves of genus one whose dual
graph is the underlying graph of 0. Recall that M0

∼=
∏
v∈V (0)Mg(v),val(v), where the valence val(v) is

the number of flags incident to v. Since the Mg(v),val(v)’s are geometrically irreducible, so is M0 . There
is a forgetful map Mrad

0 →M0 given by forgetting the log structure.
We recall from [Ranganathan et al. 2019, Proposition 3.3.4] that the map Mrad

1,n →M1,n is locally
given as follows. Suppose given a map S→M1,n such that S admits a global chart by a monoid Q.
This induces a map S→ V = Spec Z[Q]. Let σ be the rational polyhedral cone dual to Q. Let 6 be the
fan obtained by subdividing σ along the hyperplanes where λ(v)= λ(w) as v and w range among the
vertices of trop(Cs), and let W be the toric variety associated to 6. Then

S×M1,n
Mrad

1,n
∼= S×V W.

Suppose that S→Mrad
1,n factors through Mrad

0 . Then Q is the free monoid on the edges of 0. By
construction, there is a cone of 6 associated to each possible choice of ordering of the distances λ(v)
as v varies over V (0). Since 0 is basic radially aligned, these distances are ordered, and their ordering
determines a cone τ of 6. Let Wτ ⊆W be the torus orbit associated to τ . One may check that the locus
in S×V W in which the tropicalization is isomorphic to 0 is precisely the locus S×V Wτ : this is the
locus in which the stalks of the characteristic sheaf agree with P . Letting S vary over a smooth cover
of Mrad

0 , we see that Mrad
0 →M0 is smooth-locally a Wτ -bundle. Since the target is irreducible and Wτ

is irreducible, Mrad
0 is irreducible. Moreover it is a locally closed substack of Mrad

1,n as this is true of Wτ

inside W . □

Lemma 4.5. Let I be the set of isomorphism classes of n-marked basic radially aligned tropical curves.
Fix a representative 0 with edge lengths in P0 for each isomorphism class.

Giving a section ρ of the characteristic sheaf of Mrad
1,n with no contribution from the core is equivalent

to specifying for each isomorphism class of basic radially aligned tropical curves an element ρ0 ∈ P0
with no contribution from the core such that whenever 0,0′ ∈ I and π : 0→ 0′ is a face contraction with
π ♯ : P0→ P0′ a quotient map, then π∗ρ0 = ρ0′

Proof. For brevity, write M for the characteristic sheaf of Mrad
1,n . Since Mrad

1,n is a Deligne–Mumford stack,
we may choose an étale cover U →Mrad

1,n by a scheme U . For each point x of U , choose an algebraic
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closure k̄(x) of the residue field k(x), and write x̄U
: Spec k̄(x)→U for the natural map to U and x̄ for its

composite with Mrad
1,n . Write 0x̄ for the tropicalization of the basic radially aligned log curve associated

to x̄ and write Px̄ for its associated monoid, i.e., M x̄ .
We may apply Theorem 3.10 to find an étale neighborhood Ux̄ of x̄U in U over which the pullback

of the universal curve of Mrad
1,n has the properties of the theorem. Since U is an étale cover of Mrad

1,n

and the log structure on Mrad
1,n is divisorial, the maps Px̄

∼
←− 0(Ux̄ ,M)→ M t vary through all of the

quotients of Px̄ by its generators as t varies through the geometric points of Ux̄ . Then, since the Ux̄ ’s
form a cover, we may identify the global sections of M with elements (ρx̄) of

∏
x̄ 0(Ux̄ ,M)∼=

∏
x̄ Px̄ ,

suitably compatible on overlaps.
Now, for a pair of points x̄ and ȳ, sections ρx̄ ∈ 0(Ux̄ ,M) and ρȳ ∈ 0(U ȳ,M) agree on Ux̄,ȳ :=

Ux̄×Mrad
1,n

U ȳ if and only if their stalks at geometric points z̄ of Ux̄,ȳ agree. This translates to the statement
that whenever 0z̄ is a face contraction of both 0x̄ and 0ȳ , and ϕ : 0z̄→ 0z̄ is an automorphism, the stalk
of ρx̄ at z̄ is ϕ♯ applied to the stalk of ρȳ at z̄.

Suppose x̄ and ȳ are points, 0 ∈ I and 0x̄ ∼= 0 ∼= 0ȳ . Then, in the notation of the previous lemma,
since Mrad

0 is irreducible, Ux̄,ȳ must contain a point z̄ that also maps into Mrad
0 . Then the elements

corresponding to ρx̄ and ρȳ on P0 must differ by at most an automorphism of 0. By Lemma 4.2, they
are actually equal, so we have a well-defined element ρ0 of P0. The agreement of stalks at other points
implies that the ρ0’s are compatible with edge contraction. We obtain the converse by reversing this
construction. □

In view of Lemma 4.5, we introduce the notion of universal radius.

Definition 4.6. An n-marked universal radius consists of the data of an element ρ0 ∈ P0 for each
n-marked basic radially aligned curve 0 so that

(i) for each 0, ρ0 = λ(v) for some vertex v of 0;

(ii) if 0 and 0′ are two n-marked radially aligned curves and π : 0→ 0′ is a face contraction, then
π∗ρ0 = ρ0′ .

We use the shorthand notation (ρ0) for the tuple of radii making up a universal radius, and denote
by Runi

n the set of n-marked universal radii.

Remark 4.7. Condition (i) implies each ρ0 has no contribution from the core. Condition (ii) implies
that we only need to keep track of the finite data of a choice of radius ρ0 for each isomorphism class
of n-marked basic radially aligned curves. The maps P0→ P0′ induced by face contractions are just the
coordinate projections. Therefore all we have to worry about to satisfy condition (ii) is what happens
when we set various subsets of the generators of P0 (that is, δ1, . . . , δl and e1, . . . , ek in the notation of
Definition 3.17) to zero.

We have therefore reduced the problem of finding a section of the characteristic sheaf of Mrad
1,n to

giving the finite collection of tropical data that make up a universal radius. This is still a fair amount of
data: see Figure 7 for an example when n = 3. We will see that we can reduce the data of a universal
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ρ0 = e1 ρ0 = e1+ e2 ρ0 = e1

Figure 7. An example of the subdivided universal curve C̃ on Mrad
1,3 associated to a

universal radius. A torus indicates a vertex of genus one. We have labeled the nonzero ρ0’s
on the most degenerate tropical curves using the notation of Definition 3.17. The radii on
other tropical curves can be deduced by following the indicated face contractions. The
red edges of a particular curve have equal length: they come about by subdividing at the
radius ρ0. The blue components are those to be contracted.

radius further to that of a downward closed subset Q of partitions on {1, . . . , n}. In Figure 7, for example,
the corresponding downward closed subset will be

Q =
{
{{1, 2, 3}}, {{2}, {1, 3}}, {{3}, {1, 2}}

}
.

This can be read off from the second row of the figure.

Definition 4.8. We say that 0 is a k-layer tree if 0 is an n-marked basic radially aligned tropical curve
with k nonzero radii 0< ρ1 < · · ·< ρk and smooth core.

Lemma 4.9. Let 0 be a basic radially aligned tropical curve with k nonzero radii 0 < ρ1 < · · · < ρk .
Then, for each index i < k, there is a strict refinement part(ρi )≺ part(ρi+1).
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Proof. Notice that if 0 is replaced by the tropical curve in which all edges of the core are contracted, the
sequence of partitions remains the same. Therefore we may assume that 0 is a k-layer tree.

Orient the tree 0 by taking its core as a root. Resuming the notation of Definition 3.20, let Vi be
the set of roots of the forest 0̃(ρi ) for each i . Observe that for each i , there are bijections between Vi ,
the connected components of 0̃(ρi ), and the parts of the partition part(ρi ). Notice that the connected
components of 0̃(ρi+1) factor through the connected components of 0̃(ρi ), so the partition of {1, . . . , n}
induced by the connected components of 0̃(ρi+1) refines that induced by the components of 0̃(ρi ).

To see that the refinement is strict, let v be a vertex of 0 such that λ(v)= ρi . By stability, there must
be at least two flags leaving v in the direction of increasing λ. Then there are at least two vertices of Vi+1

that belong to the component of 0(ρi ) containing v. It follows that the refinement is strict. □

Proposition 4.10. 1-layer trees are in bijection with the nondiscrete partitions of {1, . . . , n}.

Proof. Given a nondiscrete partition p of {1, . . . , n}, we can construct a 1-layer tree 0(p) as follows.
Let p = {p1, . . . , pr }. Start with a genus 1 vertex v and then for each 1 ≤ i ≤ r attach a vertex vi to v
such that

(i) vi is distance ρ1 from v, and

(ii) the elements of pi are precisely the legs attached to vi .

After stabilizing, we obtain 0(p).
If 0 is a 1-layer tree, then 0 7→ part(ρ1) gives a map from 1-layer trees to nondiscrete partitions. The

maps p 7→ 0(p) and 0 7→ part(ρ1) are inverses. □

Definition 4.11. Let 0 be a radially aligned tropical curve with monoid

Ne1⊕ · · ·⊕Nek ⊕Nδ1⊕ · · ·⊕Nδl,

and let 0ei denote the tropical curve corresponding the monoid map P→ N taking ei 7→ 1 and e j 7→ 0
for all j ̸= i , and δ j 7→ 0 for all j . We define 0δi similarly; it is the tropical curve corresponding to the
monoid map P→ N taking δi 7→ 1 and all other generators to 0.

Consider the map α :Runi
n →Qn defined by

(ρ0)0 7→ {part(0) : 0 is a 1-layer tree and ρ0 > 0}.

Given a collection of partitions Q, we obtain an assignment of radii to radially aligned curves by assigning
the radius ρr to 0 if r is the largest number such that part(ρr ) ∈ Q. This gives a map β :Qn→Runi

n .

Proposition 4.12. The maps α :Runi
n →Qn and β :Qn→Runi

n are well defined and are inverses.

Proof. To show α is well defined, it suffices to show that its image is contained in Qn . We do this by
contradiction. Suppose that Q = α((ρ0)0) is not downward closed. We show that (ρ0)0 is not universal.
We can find some P ∈ Q such that a minimal coarsening of P is not in Q. Specifically, there will be
a P = {p1, . . . , pk} ∈ Q such that (up to reordering) P ′ = {p1 ∪ p2, p3, . . . , pk} ̸∈ Q, as otherwise Q
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Figure 8. The tropical curves associated to the partition types P , P ′, and P ′ ≺ P , where
P = {{1, 2}, {3, 4}} and P ′ = {{1, 2, 3, 4}}.

will be downward closed. Let the 1-layer trees 0 and 0′ correspond to the partition P and the coarsened
partition P ′, respectively. Say 0 has edge length r and radius r and 0′ has edge length s and radius 0.
There is a 2-layer curve, say 0̃, that contracts to both 0 and 0′, and has edge lengths s and r and
radius s+r (see Figure 8). If the radius was universal, then we see that by contracting the edge of length r ,
0′ must have a radius of s, not 0. Thus the radius is not universal, as claimed.

We now show that β is well defined. First, note that given a basic radially aligned curve 0, ρ0 will be
determined by the contractions to 0δi and 0ei . To see this, note that the contraction 0δi → 0 will send ρ j

to 0 for all j , and the contraction 0ei → 0 will send ρ j to ei if j ≥ i and 0 if j < i . As these maps arise
from projections from a product, ρ0 is uniquely determined by these contractions. Now pick Q ∈Qn . For
any radially aligned 0, Lemma 4.9 and the fact that ρ0 is determined by the contractions 0ei → 0 imply
that ρ0 is actually a distance to the core. To see that this is universal, we need only check that single
edge contractions are compatible, i.e., if 0 has edge lengths {e1, . . . , en}, then the contraction 0′→ 0

sending e j to 0, where 0′ has edge lengths {e1, . . . , ê j , . . . , en}, is compatible. This compatibility follows
immediately from contracting both 0 and 0′ to each of the 0ei ’s.

Finally, note that α is injective because the assignment of a radius to a radially aligned curve 0 is
uniquely determined by 1-layer trees. Furthermore, the discussion at the start of the previous paragraph
shows that if Q is the collection of partitions corresponding to the 1-layer trees with nonzero radii in a
universal radius, then ρr is the radius determined by contractions to 1-layer trees. This shows β=α−1. □

Theorem 4.13. For each Q ∈Qn , there is a diagram of stacks

Mrad
1,n

|| $$

M1,n M1,n(Q)

such that both arrows are proper and restrict to an isomorphism on M1,n .
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Proof. Theorem 3.18 gives us the arrow on the left; we only have to show that the arrow on the right has
the claimed properties.

Let (ρ0)= β(Q) be the universal radius associated to Q. Note that for all 0, ρ0 is a radius of 0 and
part(ρ0)∈ Q, by construction. By Lemma 4.5, the ρ0’s define a global section ρ of the characteristic sheaf
of Mrad

1,n . Let π : C→Mrad
1,n be the universal curve. Theorem 4.1 constructs a Q-stable family of curves

π :C→Mrad
1,n associated to ρ, inducing the map Mrad

1,n→M1,n(Q). This map restricts to an isomorphism
on M1,n as the maps C← C̃→ C of Theorem 4.1 are isomorphisms where ρ restricts to 0. □

5. Construction of the Q-stable moduli spaces

Theorem 5.1. For each Q ∈Qn , M1,n(Q) is a proper irreducible Deligne–Mumford stack over Z
[1

6

]
containing M1,n .

Our argument is brief since we may reuse much of the proof for the analogous result for m-stable
spaces in [Smyth 2011a, Theorem 3.8]. In particular, to show that we have a Deligne–Mumford stack,
it is enough to show that the moduli functor M1,n(Q) is deformation-open, bounded, and satisfies the
valuative criterion for properness. Boundedness is immediate from [Smyth 2011a, Lemma 3.9], since
every Q-stable curve is m-stable for some m < n. It is clear that M1,n(Q) contains M1,n . The resulting
stack is therefore irreducible, since every Q-stable curve is m-stable for some m, and all m-stable curves
are limits of curves in M1,n .

Theorem 5.2 (deformation-openness). Let S be a noetherian scheme and let π :C→ S be a flat, projective
morphism with one-dimensional fibers and let σ1, . . . , σn be n sections. Then the set

T =
{
s ∈ S | (π |s̄ : C |s̄→ s̄, {σi (s̄)}ni=1) is Q-stable

}
is open.

Proof. As in [Smyth 2011a, Lemma 3.10], we may assume that the geometric fibers Cs̄ of π are reduced,
connected, of arithmetic genus one, with only Gorenstein singularities, and that H 0(Cs, �

∨

C(−6))= 0
since these are open conditions.

It remains to show that the locus in S over which the level conditions hold is open. Since S is Noetherian,
we may establish openness by showing that this locus is constructible and stable under generization. It is
constructible since satisfaction of the level conditions is constant on combinatorial types (defined slightly
ahead in Definition 6.1) and the curves with a given combinatorial type form a locally closed subset of S.

So assume S is the spectrum of a DVR with closed point 0 ∈ S and generic point η ∈ S. We must
show that if (C0̄, σ1(0̄), . . . , σn(0̄)) satisfies the level conditions, then so does (Cη, σ1(η), . . . , σn(η)).
Replacing S by a finite base change if necessary, we may assume that the irreducible components of Cη
are in bijection with the irreducible components of C .

Since level increases with the size of a subcurve, it is enough to check the subcurve level condition
on minimal genus one subcurves. Let Eη be a minimal genus one subcurve of Cη. Then the limit Z
of Eη in C0̄ contains the minimal genus one subcurve E0 of C0̄. Because lev(E0̄) ̸∈ Q by hypothesis,
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lev(E0̄)⪯ lev(Z), and Q is downward closed, we have lev(Z) ̸∈Q. Finally, taking limits of the components
of (Cη− Eη)∪6, we see that lev(Eη)= lev(Z), so lev(Eη) ̸∈ Q as required.

The level condition on singularities holds trivially if Cη has only nodes, so suppose that Cη has an
elliptic l-fold singularity qη. Since elliptic l1-fold singularities generize only to l2-fold singularities
with l2 ≤ l1 or nodes, and nodes only generize to nodes and smooth points, the limit of qη in C0̄ must
be an elliptic m-fold singularity q0̄ with m ≥ l. For each i = 1, . . . , l set Z i

η to be the union of the i-th
rational branch Bi

η of qη with all rational tails attached to this branch. Next, set Z i and Bi to be the
closures of Z i

η and Bi
η in C and write Z i

lim and Bi
lim for their restrictions to C0̄. Similarly, let B j

0̄
and Z j

0̄
be respectively the j -th branch of q0̄ and the union of B j

0̄
with its rational tails for j = 1, . . . ,m. Observe

that the partition of {1, . . . , n} induced by the markings in the Z i
lim agrees with the level of qη, and the

partition of {1, . . . , n} induced by the Z j
0̄

agrees with the level of q0̄.
We claim that each Z j

0̄
factors through exactly one of the Z i

lim. Note that the limit of at most one
branch Bi

η of qη can contain B j
0̄

since B j
0̄

is irreducible and each Bi is an irreducible component of C .
Observe that each irreducible component of C0̄ is connected via a nodal path to exactly one of the branches
of q0̄. The remaining components of Z j

0̄
are connected to the B j

0̄
via a nodal path, so we conclude that

these belong to Z i
lim as well. The claim follows.

Therefore the level of qη is a coarsening of the level of q0̄, that is, lev(qη)≺ lev(q0̄). Since lev(q0̄) ∈ Q
and Q is downward closed, qη ∈ Q too, and we are done. □

Theorem 5.3. The stack M1,n(Q) is universally closed.

Proof. Since M1,n is dense in M1,n(Q), it is enough to show that limits of families of smooth n-pointed
curves admit Q-stable limits. Suppose S is the spectrum of a discrete valuation ring with generic point η
and πη :Cη→η is a smooth and proper family of n-pointed curves. Since Mrad

1,n is proper, after replacing S
by a finite cover if necessary, we may find a limit basic radially aligned log curve π rad

:C rad
→ S extending

Cη→ η. The image of C rad
→ S under the map of Theorem 4.13 corresponding to Q gives the required

limit Q-stable curve. □

We now recall the definition of balanced subcurve [Smyth 2011a, Definition 2.11].

Definition 5.4. Given a connected nodal curve E and connected subcurves F1 and F2, we say that the
nodal distance l(F1, F2) from F1 to F2 is the least number of edges in a path from F1 to F2 in the dual
graph of E . If p ∈ E is a smooth point, then there is a unique irreducible component F of E containing p,
and we write l(−, p) instead of l(−, F).

Definition 5.5. If (E, {pi }
m
i=1) is a semistable curve of arithmetic genus one, we say that (E, {pi }

m
i=1) is

balanced if
l(Z , p1)= l(Z , p2)= · · · = l(Z , pm),

where Z ⊆ E is the minimal elliptic subcurve of E .

We remark that the nodal distance is an integer, while the distances λ(v) defined for genus one log
curves take values in the characteristic monoid of the base. The two notions are related by the fact that if
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(i) A is the spectrum of a DVR with uniformizer t ,

(ii) S = Spec A is given the log structure associated to the chart Nδ→ A sending δ 7→ t ,

(iii) π : C→ S is a log curve of genus one with smooth generic fiber,

(iv) C has regular total space, and

(v) Z ⊆ C is the minimal genus one subcurve,

then all smoothing parameters of the nodes of C0 are equal to δ and λ(F)= l(Z , F)δ for all irreducible
components F of C .

Theorem 5.6. The stack M1,n(Q) is separated.

Proof. We must show that given a pair of Q-stable families π :C→ S and π ′ :C ′→ S over the spectrum
of a discrete valuation ring with generic point η and special point x , an isomorphism ψ : C |η→ C ′|η
of pointed curves extends to all of S. As in [Smyth 2011a, 3.3.2], we may assume that there is a flat
and proper pointed semistable nodal curve C ss

→ S with regular total space and a diagram of pointed
S-schemes

C ϕ
←− C ss ϕ′

−→ C ′,

where ϕ and ϕ′ are proper birational morphisms, and it will be enough to show that the exceptional loci
of ϕ and ϕ′ coincide.

If C |x̄ or C ′|x̄ is nodal, then we may argue exactly as in [Smyth 2011a, 3.3.2] to conclude. Therefore
we may assume that C |x̄ and C ′|x̄ possess elliptic Gorenstein singularities p and p′ respectively. Let
E = ϕ−1(p) and E ′ = ϕ−1(p′). As in [Smyth 2011a], we know that E and E ′ are balanced, with E
(resp. E ′) consisting of all components of C ss

|x̄ with nodal distance to the core of C ss
|x̄ less than l

(resp. less than l ′). Without loss of generality we may assume E ⊆ E ′. If the containment is proper, then
ϕ(E ′)⊆ C |x̄ is a subcurve of genus one containing p and all of its branches. Examining the dual graphs
of the various curves over x̄ , we have lev(p′)= lev(ϕ(E ′)). Then, since C is Q-stable, lev(ϕ(E ′)) ̸∈ Q.
On the other hand, lev(p′) ∈ Q, since C ′ is Q-stable. This is a contradiction, so we have E = E ′.

The remainder of the argument follows as in [Smyth 2011a, 3.3.2]. □

6. Classification of semistable Gorenstein modular compactifications of M1,n

Our goal in this section is to prove Theorem 1.9, classifying the modular compactifications of M1,n .
To aid our classification, we introduce the notion of the combinatorial type of a curve in U1,n . This is
analogous to the dual graph of a nodal curve, with the difference that the combinatorial type also keeps
track of elliptic m-fold singularities.

Definition 6.1. Let C be a connected, proper, reduced, 1-dimensional scheme over an algebraically closed
field k with (at worst) nodes and elliptic Gorenstein singularities. The combinatorial type of C consists of
the following data:
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(i) A set V of vertices, equal to the set of components of C .

(ii) A set E of singularities, equal to the set of singular points of C .

(iii) A genus function g : V ∪ E → N taking a component of C to the genus of its normalization and
taking each singularity of C to its genus as a singularity.

(iv) An incidence function i : V × E→ {0, 1} taking (v, e) 7→ 1 if e ∈ v and to 0 otherwise.

(v) A marking function x : V → 2{1,...,n} taking a component v to the set of indices of the markings
incident to v.

Two combinatorial types 01 = (V1, E1, g1, i1, x1) and 02 = (V2, E2, g2, i2, x2) are isomorphic if there
is a bijection f : V1 ∪ E1→ V2 ∪ E2 such that

(i) f (V1)⊆ V2 and f (E1)⊆ E2;

(ii) x1 = x2 ◦ f ;

(iii) g1 = g2 ◦ f ;

(iv) i1(v, e)= i2( f (v), f (e)) for all (v, e) ∈ V1× E1.

Let Z0 be the locus in U1,n of curves with combinatorial type 0. These loci have a natural structure of
locally closed substack of U1,n . (This follows from the fact that the deformations of a curve preserving
its singularities form a closed subspace of the full deformation space of the curve. See [Smyth 2011b,
Lemma 2.1], for example.) Note that for each n, there is a finite set of isomorphism classes of combinatorial
types of curves in U1,n and altogether the Z0’s form a stratification of U1,n into locally closed substacks.

Let M be a modular compactification in our sense. Since M is assumed to be an open substack of U1,n ,
it is uniquely determined by its points. Our strategy is to show that M must be a union of the Z0’s. Then,
analyzing the possible limits of curves, we will find that the choices of combinatorial types making up M
necessarily agree with a Q-stability condition.

Lemma 6.2. U1,n is the union of the M1,n(m)’s.

Proof. Suppose that (π : C→ S, σ1, . . . , σn) is a family in U1,n . We want to show that S possesses an
open cover such that the restriction of C to each part of the cover factors through some M1,n(m). Let s̄
be a geometric point of S. Then the fiber Cs̄ of π over s̄ is a Gorenstein curve of genus one with n distinct
marked points and no infinitesimal automorphisms. Recall that the only Gorenstein singularities of genus
less than or equal to one are the elliptic Gorenstein singularities and the node. If Cs̄ has an elliptic m-fold
singularity for some m, then since C has no infinitesimal automorphisms, the number of markings and
nodes on the minimal genus one subcurve must be at least m+ 1. It follows that Cs̄ ∈M1,n(m). If Cs̄

does not have an elliptic Gorenstein singularity, then Cs̄ ∈M1,n =M1,n(0). Since the M1,n(m)’s are
deformation-open [Smyth 2011a], for each s̄ there is an open neighborhood Us of the image of s̄ in S
such that C |Us factors through one of the stacks M1,n(m). □

Lemma 6.3. Let 0 be a combinatorial type. Then Z0 is irreducible.
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Proof. If 0 possesses no m-fold points, then Z0 is a product of copies of Mg,n’s coming from the vertices
of 0. Since each of the stacks Mg,n is geometrically irreducible, so is Z0.

Next, let 0 be a combinatorial type consisting of a single elliptic m-fold point with k rational branches
E1, . . . , Ek with n1, . . . , nk markings, respectively. Let n = n1+ · · ·+ nk .

Let

A =
{
( fi (ti ))mi=1 ∈

m∏
i=1

Z
[ 1

6 , ti
] ∣∣∣ fi (0)= f j (0) for all i and

m∑
i=1

f ′i (0)= 0
}
.

This gives a standard affine model of the m-fold point with rational branches. Form a proper curve
D → Spec Z

[ 1
6

]
by gluing Spec Z

[ 1
6 , t−1

i

]
to the i-th branch of Spec A for each i . If C is a minimal

unmarked Gorenstein curve of genus one over an algebraically closed field with an m-fold point, then C
appears as a geometric fiber of D.

Now let

S =
m∏

i=1

(
Spec Z

[ 1
6 , si,1, . . . , si,ni

]
−1ni

)
,

where 1ni is the locus where any pair of coordinates of A
ni
Z[1/6] = Spec Z

[1
6 , si,1, . . . , si,ni

]
coincide. We

construct a family of pointed curves D× S→ S by taking the j -th marking on the i-th branch of D to be
located at t−1

i = si, j .
Now, every pointed curve of type 0 appears as some geometric fiber of the family D × S → S.

Therefore, the image of S in U1,n under the map induced by D × S→ S is precisely Z0. Since S is
irreducible, the result follows.

Finally, consider a general 0. Let 0min be the combinatorial type of the minimal genus one subcombi-
natorial type of 0 with markings at the outgoing edges. Clearly, Z0 is a product of M0,n’s and Z0min , all
of which are already known to be geometrically irreducible, so Z0 is irreducible too. □

The following lemma is the crucial one: it reduces the classification of Gorenstein compactifications to
combinatorics.

Lemma 6.4. M is a union of the Z0’s.

Proof. It suffices to show that if M shares a geometric point with Z0 for some 0, then M contains all points
of Z0 . By the previous lemma, for any pair of geometric points C p ∈Z0(Spec k(p)), Cq ∈Z0(Spec k(q)),
there are families of curves CS ∈ Z0(S), CT ∈ Z0(T ), where S and T are spectra of discrete valuation
rings, such that

(i) S and T have isomorphic geometric generic points,

(ii) CS is isomorphic to CT over this common geometric generic point,

(iii) there is a map Spec k(p)→ S onto the special point of S along which CS pulls back to C p,

(iv) there is a map Spec k(q)→ T onto the special point of T along which CT pulls back to Cq .
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We know M is closed under generization and has a specialization for any 1-dimensional family. It
follows that if M contains C p, then M(S) contains CS . To conclude, we show that M(T ) contains CT too.

Let η be the generic point of T , and replacing T by a finite base change if necessary, let C ′T ∈M(T ) be
the unique limit of CT |η in M. We have an isomorphism of η-schemes C ′T |η∼=CT |η. Since U1,n is a union
of the open substacks M1,n(m), there is some m such that C ′T lives in M1,n(m)(T ). Considering C ′T |η,
we conclude that curves of combinatorial type 0 are m-stable. In particular, both CT and C ′T are families
in M1,n(m). Since M1,n(m) is separated, we conclude that C ′T ∼= CT over T , completing the proof. □

Our strategy now is to produce families of curves witnessing enough of the relationships between the
loci Z0 that M is forced to be Q-stable.

Definition 6.5. Let

P : P1 ≺ P2 ≺ · · · ≺ Pk

be a strictly increasing chain of partitions of {1, . . . , n} not including the partition {{1}, . . . , {n}}. We say
that a family of radially aligned curves π : C→ S is a test curve of type P centered at a geometric point s
of S if

(i) (π : C→ S, s) satisfies the conclusions of Theorem 3.10;

(ii) the tropicalization of the central fiber trop(C |s) has a basic radially aligned log structure;

(iii) the log structure on S is divisorial, that is, it is the log structure associated to a normal crossings
divisor [Kato 1989, (1.5)];

(iv) the tropicalization of the central fiber has partition type P (Definition 3.20).

Lemma 6.6. For any strictly increasing chain of partitions of {1, . . . , n}

P : P1 ≺ P2 ≺ · · · ≺ Pk

not including the partition {{1}, . . . , {n}}, there is a test curve of type P .

Proof. Choose an algebraically closed field κ . Pick a smooth genus one curve E over κ arbitrarily. Add a
rational component Z (1)A for each part A of P1 and attach them nodally to E at distinct smooth points.
Repeat this process for each i = 2, . . . , k, adding components Z (i)A for each part A ∈ Pi , where Z (i)A is
nodally attached to the unique component Z (i−1)

B where B ∈ Pi−1 is the part containing A. Finally, mark
points p1, . . . , pn , where each pi is a smooth point of the component Z (k)A , where A is the part of Pk

containing i . Call the whole pointed nodal curve we have constructed C0. Give S0 = Spec κ the log
structure associated to the map

⊕k
i=1 Nei → κ sending everything to 0 except for the identity element.

Choose a log structure on π0 : C0→ S0 compatible with the log structure on S0 making π0 : C0→ S0

into a log curve so that

(i) the edges between the Z (1)A ’s and E are all of length e1;

(ii) for i = 2, . . . , k, the edges between the Z (i)A ’s and Z (i−1)
A ’s are all of length ei .
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Stabilize to obtain a log curve π s
0 :C

s
0→ S0. Since π s

0 is radially aligned with the basic radially aligned
log structure, there is an associated map f : S0→Mrad

1,n . Choose a factorization of it through an étale
chart U →Mrad

1,n . Now, set S to be a neighborhood of the image s of S0 in U using Theorem 3.10.
We now claim that the pullback of the universal curve of Mrad

1,n to S gives the desired test curve.
Properties (i) and (ii) hold by construction. Property (iii) holds since S was chosen to be an étale
neighborhood of a point of the chart U , which has a divisorial log structure.

It remains to check property (iv). If i is an integer with 1 ≤ i < k, there is at least one Z (i)A with at
least two descendants, since Pi ̸= Pi+1. If i = k, all of the Z (i)A ’s possess at least three marked points.
Either way, for each integer i = 1, . . . , k, there is a component Z (i)A that survives the stabilization step,
and it lives at radius λ(Z (i)A ) = e1 + · · · + ei by construction. Conversely, every radius is of this form.
Now, if we subdivide trop(C |s) where λ= e1+ · · ·+ ei , the effect is to reintroduce the components Z (i)A

for A ∈ Pi . Deleting the locus where λ < e1+ · · ·+ ei leaves us with the trees rooted at the Z (i)A ’s as A
varies through the elements of Pi . By construction, for each A ∈ Pi the tree rooted at Z (i)A contains the
markings indexed by A. Therefore, the partition type of trop(C |s) is precisely P . □

With test curves in hand, we may form several families of contracted curves. Exactly one of these will
be Q-stable for any Q.

Lemma 6.7. Let π : C → S be a test curve of type P centered at s. Let ρ0 = 0 < ρ1 < · · · < ρk be
the distinct radii of the tropicalization of the central fiber. For each i = 0, . . . , k, let C i → S be the
contraction of C→ S associated to the steep mesa with radius ρi and let 0i be the combinatorial type of
the fiber of C i over s.

Let Q ∈Q1,n be a downward closed set of partitions. Then there is exactly one index i such that 0i is
Q-stable, namely the greatest index i for which Pi ∈ Q.

Proof. Observe that

(i) C0|s is nodal and its minimal elliptic subcurve has level P1;

(ii) for 0< i < k, C i |s possesses an elliptic singularity of level Pi and its minimal elliptic subcurve has
level Pi+1;

(iii) for i = k, C i |s possesses an elliptic singularity of level Pk and its minimal elliptic subcurve
(namely Ck |s) has level {{1}, . . . , {n}}.

The result follows immediately. □

With some more work, we see that exactly one of the contracted curves belongs to our arbitrary modular
compactification M as well.

Lemma 6.8. Choose notation as in Lemma 6.7. Then M contains exactly one of the families C i → S and
exactly one of the loci Z0i .

Proof. Choose t to be a point of S generizing s over which C is smooth. Let T → S be a map from the
spectrum of a DVR with special point x mapping to s and generic point η mapping to t .
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Replacing T by a finite base change if necessary, find the limit curve CM→ T in M of the smooth
curve C |η. After a second base change if necessary, pick a regular family of semistable curves C ss

→ T
dominating CM→ T and each of the families C i |T → T , formed by subdividing and contracting the
i-th radius of C . Note that C0 = C |T . Let E be the exceptional locus of ϕ : C ss

→ CM and let Ei be the
exceptional locus of ϕi : C ss

→ C i |T for each i .
If CM is stable then both C |T and CM are stable limits of C |η, so they must agree.
Otherwise, CM possesses a unique elliptic m-fold point p. By [Smyth 2011a, Proposition 2.12], ϕ−1(p)

is a balanced subcurve of C ss
|x , with ϕ−1(p) consisting of all components of C ss

|x whose nodal distance
from the core of C ss

|x is less than some integer l. Since CM possesses no infinitesimal automorphisms, at
least one of the components of C ss

|x of distance exactly l from the core of C ss
|x has at least three special

points. Then E is the union of ϕ−1(p) with the semistable components of C ss
|x disjoint from ϕ−1(p).

We may repeat this argument for each of the exceptional loci Ei for i > 0. Therefore, for each i ,

(i) there is a balanced subcurve Fi of C ss
|x consisting of all components of nodal distance from the

core of C ss
|x less than some integer li ,

(ii) there is a component of C ss
|x of distance exactly li from the core with at least three markings, and

(iii) Ei is the union of Fi with the semistable components of C ss
|x disjoint from Fi .

Moreover, we claim that the loci Ei exhaust the subcurves of C ss
|x with these properties. To see this,

suppose F ′ is a balanced subcurve of C ss
|x whose components are those with nodal distance less than l ′,

and so that there is a stable component G of C ss
|x of distance l ′ from the core. Then ϕ(G) maps to a

stable component of C |x . The component G lives at the distance ρi from the core of C |x for some i .
Then, for this same i , we have that l ′ = li and the rest follows.

Therefore E = Ei for some i > 0. Since both CM and C i |T are normal and obtained from contracting
the same locus of C ss, they are isomorphic.

This exhibits a curve, namely C i |x , in Z0i in M. By Lemma 6.4, M contains the whole locus. By
separatedness, M cannot contain any of the other C j |T for j ̸= i . Therefore M cannot contain Z0 j for
any j ̸= i .

Finally, we wish to show that in fact M contains the entire family C i → S. This will follow from
the closure of M under generization. Write

⊕
i ei ⊕

⊕
j δ j for M S,s ∼= 0(S,M S) so that the ei ’s are

the differences between consecutive radii, as in Definition 3.17. The base S of C → S possesses a
stratification by locally closed subsets {WI } indexed by subsets I ⊆ {1, . . . , k}, where

WI =
⋂
j∈I

Supp(e j )∩
⋂
j∈I c

(S−Supp(e j )).

Since C→ S satisfies the conclusions of Theorem 3.10, the tropicalization of the fibers of C is constant
on the subsets WI . It follows that the same holds of the combinatorial types of the fibers of C i→ S. Since
the log structure of S is divisorial, for each I ⊆ {1, . . . , k}, there is a generization ηI → s, where ηI ∈WI .
Since M is closed under generization and M contains C i |s , M must also contain C i |ηI . Then, since



Gorenstein modular compactifications of the space of pointed elliptic curves 155

membership in M is determined by combinatorial type, M contains all of C i |WI . We conclude that the
whole family C i → S belongs to M. □

Remark 6.9. At first glance, the conclusion of the lemma looks different for test curves whose chains of
partitions agree but whose cores have different combinatorial types, since their combinatorial types 00

will be distinct. Such pairs of test curves share combinatorial types 0i for i ≥ 1, so, comparing the
conclusion of the lemma for the various test curves, either M chooses to contract the core of all test
curves of type P or it contracts the core of none of them.

When the chain P consists of a single partition P , Lemma 6.8 tells us there are only two “choices”
that M could make: either M contains the contracted curve C1 or M contains the uncontracted curve C .
In the former case, say that M contracts P . Our next claim is that for any test curve C , the combinatorial
type of the contraction of C included by M is determined solely by the partitions which M contracts.

Lemma 6.10. Choose notation as in Lemma 6.8. Let i be the index of the family C i → S contained in M.
Let j be any integer with 1≤ j ≤ k. Then j ≤ i if and only if M contracts Pj .

Proof. Write
⊕

i ei⊕
⊕

j δ j for M S,s ∼=0(S,M S) so that the ei ’s are the differences between consecutive
radii of trop(C), as in Definition 3.17. Let C ′→ S′ be the restriction of C→ S to the complement of
the support of e1, . . . , ê j , . . . , ek . Choose s ′ to be a point of the support of e j inside S′. It is not difficult
to check that the resulting family is a test family of type Pj (i.e., the chain of partitions of length one
containing just the partition Pj ) whose log structure is generated by e j . The unique nonzero radius of this
test family is e j . Since the contraction of a family of mesa curves commutes with base change, C i |S′ will
be the contraction of C ′ with respect to ρ|S′ . Now, the restriction of ρi from S to S′ is either e j if j ≤ i
or 0 if i < j . In the first case, M contracts Pj . In the latter M does not. □

Lemma 6.11. Every combinatorial type 0 in U1,n is the combinatorial type of some contraction of a test
curve.

Proof. Choose a representative curve C0 for 0. Find a smoothing C→ T of C0 over the spectrum of a
discrete valuation ring with special point x and generic point η. Replacing T by a finite base change if
necessary, let C rad

→ T be the limit radially aligned curve of C |η→ η in Mrad
1,n with the basic radially

aligned log structure.
Arguing as in Lemma 6.6, we can find a family C test

→ S centered at s with central fiber C rad
|x by

choosing a sufficiently small étale neighborhood of C rad
|x in an étale chart for Mrad

1,n . This neighborhood
may be assumed to satisfy the conditions of Theorem 3.10 and its log structure will be divisorial since
it is pulled back from the log structure of Mrad

1,n along an étale morphism. This family C test
→ S is

therefore a test curve of some type, with the type given by the partitions induced by the various radii of
the tropicalization of its central fiber.

Moreover, replacing T by a finite base change if necessary, we may assume that C rad
→ T is pulled

back from C test
→ S. We are now in exactly the situation of the proof of Lemma 6.8, so we conclude

that C0 is one of the contractions of the central fiber of C test, as required. □
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Now that everything is in place, our classification result follows easily.

Proof of Theorem 1.9. Let QM be the set of nondiscrete partitions P of {1, . . . , n} such that M contracts P .
By Lemma 6.10, QM is downward closed.

By Lemmas 6.7 and 6.10, the combinatorial types that appear as contractions of test curves contained
in M and M1,n(QM) are the same. On the other hand, by Lemma 6.11, every combinatorial type appears
as 0i for some test curve C test. It follows that M contains precisely the QM-stable curves. □

7. Interpolation of Q-stable spaces

We learned in Section 4 that the choices of universal radii are in bijection with compatible choices of radii
on 1-layer trees. Each 1-layer tree 0 has two possible radii: the zero radius and a unique nonzero radius;
let’s call it e0. Thinking tropically, it is tempting to choose radii intermediate to 0 and e0 to contract.
If we do this and follow the image of the universal curve under the resulting contraction, we find Artin
stacks that interpolate between the Q-stable spaces. The moduli problems of these stacks admit an elegant
description, so we will define them and verify their algebraicity directly prior to a tropical construction.

We therefore imagine choosing an intermediate radius for each 1-layer tree 0 in the form c0e0
with c0 ∈ [0, 1]. The possible choices of such radii form a cube complex, which we now describe directly.

Definition 7.1. Let X1,n be the subset of [0, 1]Part(n) of tuples (cP)P∈Part(n) with the properties that

(i) whenever P1 and P2 are two partitions of {1, . . . , n} with P1 ≺ P2 and cP2 > 0, then cP1 = 1;

(ii) c{{1},...,{n}} = 0.

We give X1,n the structure of a cube complex whose open cells are the intersections of the open cells
of [0, 1]Part(n) with X1,n .

Note that the vertices of X1,n are in bijection with Qn: the correspondence is given by taking a subset Q
of Part(n) to its indicator function.

Example 7.2. X1,3 consists of the tuples

(x, y, z, w)= (c{{1,2,3}}, c{{1},{2,3}}, c{{2},{1,3}}, c{{3},{1,2}})

in [0, 1]4 where y = z = w = 0 unless x = 1. Then X1,3 consists of the 1-dimensional cube

{(x, 0, 0, 0) | x ∈ [0, 1]}

attached to the 3-dimensional solid cube

{(1, y, z, w) | y, z, w ∈ [0, 1]}.

The latter cube fills in the interior of the cube visible in Figure 1.

The stacks associated to these imagined universal radii are as follows.

Definition 7.3. Let (cP)P∈Part(n) be an element of X1,n . Let

Qsing = {P ∈ Part(n) | cP > 0} and Qcurve = {P ∈ Part(n) | cP < 1}.
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An n-pointed family of Gorenstein curves (π : C→ S, σ1, . . . , σn) is (cP)P∈Part(n)-stable if

(π :C→ S, σ1, . . . , σn) is a flat and proper family of connected, reduced, Gorenstein curves of
arithmetic genus one with n distinct marked points,

and for each geometric fiber Cs , the following conditions hold:

(i) If p ∈ Cs is an elliptic Gorenstein singularity, then lev(p) ∈ Qsing.

(ii) If Z ⊆ Cs is a connected subcurve of genus one, then lev(Z) ∈ Qcurve.

(iii) If Z1 ⊊ Z2 is a proper inclusion of connected subcurves of Cs of arithmetic genus one, then
lev(Z1)≺ lev(Z2).

(iv) If F is an irreducible component of the minimal genus one subcurve Zmin of Cs , then F meets
Cs − Zmin ∪ {σ1(s), . . . , σn(s)} in at least one point.

Let M1,n((cP)) be the stack whose S-points are the (cP)-stable families of curves over S.

Remark 7.4. Note that Qsing is downward closed, Qcurve is upward closed, and the two sets intersect in
the partitions P where 0< cP < 1.

The new feature of this definition is that a (cP)-stable curve C may have a minimal genus one subcurve Z
with an elliptic Gorenstein singularity p such that lev(p) = lev(Z), so long as lev(p) ∈ Qsing ∩ Qcurve.
If this happens, then each of the branches of the singularity p will have only one special point other
than p. By [Smyth 2011a, Corollary 2.4], C then has infinitesimal automorphisms. (In fact, it has
a Gm of automorphisms.) It follows that whenever Qsing ∩ Qcurve is nonempty, M1,n((cP)) is not a
Deligne–Mumford stack.

Theorem 7.5. If (cP) consists only of 1’s and 0’s, then M1,n((cP))=M1,n(Q), where

Q = {P ∈ Part(n) | cP = 1}.

Proof. The only differently stated conditions for membership in M1,n((cP)) and M1,n(Q) are those on
geometric fibers, so it suffices to show their geometric points coincide.

Suppose C is a Q-stable curve over some algebraically closed field. Then it is clear that conditions (i)
and (ii) hold since Q = Qsing and Part(n)−Q = Qcurve. Condition (iv) holds since C has no infinitesimal
automorphisms.

To see that condition (iii) holds, suppose that Z1 ⊊ Z2 is a proper inclusion of connected subcurves C
of arithmetic genus one. Then there is a rational component F of Z2 meeting Z1 in a point. Since F has
at least three special points, lev(Z1)≺ lev(Z1 ∪ F)⪯ lev(Z2).

Conversely, suppose that C is (cP)-stable. The level conditions for Q on C hold by (i) and (ii). It
remains to show that C has no infinitesimal automorphisms, that is, by [Smyth 2011a, Corollary 2.4],

(a) each irreducible component F of C with genus zero not meeting an elliptic Gorenstein singularity
has at least three special points;
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(b) if C has an elliptic Gorenstein singularity q , then each component B of the minimal elliptic subcurve
containing q has at least one special point other than q and there is at least such component with
two special points other than q.

To address (a), let F be an irreducible component of C with genus zero not meeting an elliptic
Gorenstein singularity. Then either C is nodal and F belongs to the core of C , or F is not a component
of the minimal subcurve of genus one. In the former case, we are done by (iv). In the latter, let Z1 be the
union of the minimal genus one subcurve E together with the components on the unique path from E
to F , not including F . Let Z2 = Z1 ∪ F . Then, since lev(Z1) ≺ lev(Z2), F must have at least three
special points.

To address (b), suppose that C has an elliptic Gorenstein singularity q . Let Zmin be the minimal genus
one subcurve of C . If B is an irreducible component of Zmin, then B has at least one other special point
by condition (iv). Next, since Qsing ∩ Qcurve =∅, we must have a proper refinement lev(q)≺ lev(Zmin).
This implies that there is at least one branch of q with two special points other than q . □

Theorem 7.6. The stack of (cP)-stable curves is deformation-open. That is, if S is a noetherian scheme
and π : C→ S is a flat, projective morphism with one-dimensional fibers and sections σ1, . . . , σn , then
the set

T =
{
s ∈ S | (πs : Cs̄→ s̄, {σi (s̄)}ni=1) is (cP)-stable

}
is open in S.

Proof. As in Theorem 5.2, we may assume that the geometric fibers Cs̄ of π are reduced, connected, and
of arithmetic genus one with only Gorenstein singularities, since these are open conditions.

Again as in Theorem 5.2, the locus T is constructible since satisfaction of the remaining conditions is
constant on combinatorial types and the curves with a given combinatorial type form a locally closed
subset of S. Therefore it suffices to check that the remaining conditions hold under generization.

So assume S is the spectrum of a DVR with closed point 0 ∈ S and generic point η ∈ S. We must show
that if (C0̄, σ1(0̄), . . . , σn(0̄)) satisfies the remaining conditions, then so does (Cη, σ1(η), . . . , σn(η)).
Write 6 for the divisor of markings. Since T is characterized by geometric fibers, we may apply a finite
base change to S so that restriction to the geometric generic fiber induces a bijection from the components
of C to the components of Cη. The level conditions on singularities and subcurves are stable under
generization by an identical argument to Theorem 5.2.

Next, we consider condition (iii). Suppose that Zη1 ⊂ Zη2 is a proper inclusion of genus one sub-
curves of Cη. Let Z 0̄

1 and Z 0̄
2 be the respective limits of Zη1 and Zη2 in C0̄. Then we must have a

proper inclusion Z 0̄
1 ⊂ Z 0̄

2 . Taking limits of the connected components of (Cη− Zη1 )∪6|η, we see that
lev(Z 0̄

1)= lev(Zη1 ). Similarly, lev(Z 0̄
2)= lev(Zη2 ). By (cP)-stability of the central fiber, lev(Z 0̄

1)≺ lev(Z 0̄
2).

Because lev(Z 0̄
1)= lev(Zη1 ) and lev(Z 0̄

2)= lev(Zη2 ), we have the desired refinement lev(Zη1 ) ≺ lev(Zη2 )
in the generic fiber too.

Finally, we show condition (iv) is stable under generization. Let

Zηmin = minimal genus one subcurve of Cη and Z 0̄
min = minimal genus one subcurve of C0̄.
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Given an irreducible component F0̄ of Z 0̄
min, there is a unique irreducible component Fη of Zη to which

F0̄ generizes. Moreover, as F0̄ varies over the components of Z 0̄
min, Fη varies over all the irreducible

components of Zηmin.
By axiom (iv), F0̄ either meets a marking or it meets a connected rational tail T contained in C0̄− Z 0̄

min.
If F0̄ itself contains a marking, we set Y 1

0̄
= F0̄ and let k = 1. If not, then we may find a path in the dual

graph of C0̄ from F0̄ to a marked component of T , i.e., a sequence Y 1
0̄
, . . . , Y k

0̄
of irreducible components

of C0̄, where Y 1
0̄
= F0̄, Y i+1

0̄
meets Y i

0̄
in a node for all 1 ≤ i < k, Y i

0̄
̸⊆ Z 0̄ for each i > 0, and Y k

0̄
contains a marking. For each i we let Y i

η be the unique irreducible component of Cη generizing Y i
0̄
. After

reindexing to omit repeats, the resulting sequence of components Y 1
η , . . . , Y l

η of Cη is again a sequence
of components connected by nodes, beginning with Fη, and ending in a component with a marking.

If all of the nodes of the path Y 1
0̄
, . . . , Y k

0̄
smooth out in the geometric generic fiber, then l = 1, and Fη

meets a marking, and we are done. If not, then let p ∈ C0̄ be the first node on the path that does not
smooth out in the family. Then, after a finite base change if necessary, there is a section P : S→ C
through the singular locus of C going through p and meeting Fη. Blowing up along P , we see that Y 2

η

does not belong to Zηmin, since P separates the limit of Y 2
η from Z 0̄

min in the central fiber. Then Fη meets
Cη− Fη in the point P|η, and we deduce that axiom (iv) holds in the generic fiber. □

Corollary 7.7. M1,n((cP)) is an Artin stack.

Proof. The preceding theorem shows that M1,n((cP)) is an open substack of the Artin stack of all
n-pointed curves. (See [Smyth 2013, Appendix B].) □

Our next result is that these various moduli spaces are related by containments induced by the
containment of faces in the cube complex X1,n . This strikes us as analogous to the containments of moduli
spaces seen at critical values of the log minimal model program in [Alper et al. 2017, Theorem 1.1],
except that the “larger” stacks here are associated with larger strata.

Theorem 7.8. Suppose that (cP), (dP) ∈ X1,n and (dP) lies in a face of the cube containing (cP), i.e.,
dP = cP whenever cP = 0 or cP = 1. Then there is a fully faithful inclusion functor

M1,n((dP)) ↪→M1,n((cP)).

Proof. Note that the sets Qsing and Qcurve associated to (dP) are subsets of the respective sets associated
to (cP). Then the result is clear from the definition. □

Corollary 7.9. The stacks M1,n((cP)) are universally closed.

Proof. Let Q = {P ∈ part(n) | cP = 1}. By Theorems 7.5 and 7.8, M1,n(Q) is a substack of M1,n((cP)).
Note that M1,n((cP)) contains M1,n as a dense open, since nodes and elliptic Gorenstein singularities

are smoothable. To check universal closedness it therefore suffices to verify that if S is the spectrum
of a DVR with generic point η, and Cη→ η a family of smooth n-marked curves of genus one, then
there is an extension of Cη to a family of (cP)-stable curves over S. Such an extension already exists as a
Q-stable limit. □
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A tropical resolution of the birational map from M1,n to M1,n((cP)). We now give the tropical
construction that motivated the definition of M1,n((cP)) above. For each (cP) ∈ X1,n we will build a
modification M̃rad

1,n→Mrad
1,n and a contraction inducing a morphism M̃rad

1,n→M1,n((cP)). The ideas are
essentially the same as in Section 4, so we are relatively brief.

Fix an element (cP)P∈Part(n) ∈ X1,n . Let Qmin={P ∈Part(n) | cP = 1}. Let P1, . . . , Pk be the partitions
for which 0< cPi < 1. Then let Qi = Qmin ∪ {Pi } for 1≤ i ≤ k. Consider the associated global sections
ρmin, ρ1, . . . , ρk of the characteristic sheaf of Mrad

1,n . Notice that ρi ≥ ρmin for each i , so the differences
δi = ρi − ρmin are again well-defined sections of the characteristic sheaf of Mrad

1,n .
We recall (see, for example, [Olsson 2003, Proposition 5.17] with P =N) that the stack [A1/Gm] may

be given a log structure so that [A1/Gm] represents the functor on log schemes

X 7→ 0(X,M X ).

Since this is a functor valued in commutative monoids, there is a morphism µ : [A1/Gm]× [A
1/Gm] →

[A1/Gm] induced by the multiplication of 0(X,M X ).
Take products and form the pullback square of fs log algebraic stacks

M̃rad
1,n

∏
i (δ

(1)
i ,δ

(2)
i )

//

p
��

([A1/Gm]× [A
1/Gm])

k

µk

��

Mrad
1,n

∏
i δi

// [A1/Gm]
k

Note that p∗δi factors into the sum δ(1)i + δ
(2)
i in the characteristic sheaf for each i . Moreover, M̃rad

1,n is
universal with respect to such factorizations in the sense that, given any g : T →Mrad

1,n and an expression
of each g∗δi as a sum α(1)i +α

(2)
i , there is a unique factorization h : T → M̃rad

1,n of g through M̃rad
1,n such

that α(1)i = h∗δ(1)i and α(2)i = h∗δ(2)i for each i .
The morphism µ is integral and saturated, so the underlying algebraic stack of M̃rad

1,n is the fiber product
of the underlying algebraic stacks of the rest of the diagram. The complement D(δ1, . . . , δk) in Mrad

1,n of
the vanishing of the Cartier divisors associated to δ1, . . . , δk is precisely the preimage of the non-stacky
point of [A1/Gm]

k . As µk restricts to an isomorphism over this point, it follows that p restricts to an
isomorphism over D(δ1, . . . , δk). In particular, since the δi ’s are nonvanishing on smooth curves, p
restricts to an isomorphism on M1,n . We identify M1,n with its image in M̃rad

1,n .

Lemma 7.10. Let T = Spec B be the spectrum of a discrete valuation ring with uniformizer t and field of
fractions K . Let b1, . . . , bk be nonzero elements of B, and let

A =
B[x (1)1 , x (2)1 , . . . , x (1)k , x (2)k ]

(x (1)i x (2)i − bi : i = 1, . . . , k)
.

Then S = Spec A is an integral scheme and its generic point maps to the generic point of T under the
natural map S→ T .
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Proof. Let S = Spec A and T = Spec B. Let η = D(t) be the generic point of T and U its preimage in S.
Then U ∼= Gk

m,K is an irreducible open of S. Recall that the multiplication map A1
×A1

→ A1 is flat, so
its k-fold product (A1

×A1)k→ (A1)k is also flat. Observe that S→ T is a pullback of this morphism,
so also flat. If x is any point of S not in U , the going-down theorem for flat morphisms implies that x
possesses a generization in U . Therefore, U is dense in S, and S is integral. Since U maps to the generic
point of T , we also have the claim about generic points. □

Proposition 7.11. The open substack M1,n is dense in M̃rad
1,n . In particular M̃rad

1,n is irreducible and p is
birational.

Proof. Give A1 the toric log structure. Recall that A1 represents the functor

(X, α : MX → OX ) 7→ 0(X,MX ).

There is a commutative square of fs log algebraic stacks

([A1/Gm]× [A
1/Gm])

k

µk

��

(A1
×A1)koo

��

[A1/Gm]
k (A1)koo

where each vertical map is induced by the monoid law, and the horizontal maps are induced by MX→M X .
The map of schemes underlying the right vertical map consists of k-copies of the multiplication map. By
[Olsson 2003, Proposition 2.1], a map X→ [A1/Gm] étale locally admits a lift to A1.

Let s = (Spec k, α) be a geometric fs log point, and let fs : s→ M̃rad
1,n be a log morphism. Our strategy

is to find a smoothing of fs in M1,n , then to lift this smoothing back to M̃rad
1,n using the commutative

square above.
Observe that since s is a geometric point, the composite s→ M̃rad

1,n→ ([A1/Gm]× [A
1/Gm])

k factors
through (A1

×A1)k .
Let t = (Spec k, β) denote the fs log point with log structure pulled-back from Mrad

1,n along the map
p ◦ fs : s→Mrad

1,n . Write gt for the induced map t→Mrad
1,n . Note that we have a commutative square

of fs log algebraic stacks

s
fs
//

��

M̃rad
1,n

p
��

t
gt
//Mrad

1,n

By construction, gt is strict. So we may use that M1,n is dense in the Noetherian algebraic stack Mrad
1,n to

find a strict map g : T →Mrad
1,n , where

(i) T is an fs log scheme with underlying scheme the spectrum of a discrete valuation ring;

(ii) gt factors through the special point of T ;
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(iii) η ⊆ T is the generic point;

(iv) g|η ∈M1,n(η).

Replacing T by a finite base change if necessary, we may assume that the composite T →Mrad
1,n →

[A1/Gm]
k factors through (A1)k . A diagram chase shows that there is an induced map f : S→ M̃rad

1,n and
fs : s→ M̃rad

1,n factors through it. By Lemma 7.10, S is irreducible and its generic point θ maps to the
generic point η of T . By construction, g(η) lies in the smooth locus of Mrad

1,n , so f (θ) lies in the smooth
locus of M̃rad

1,n . It follows that the image of s in M̃rad
1,n has a generization to a point factoring through

M1,n ⊆ M̃rad
1,n , as desired. □

Now let ρ = p∗ρmin+ δ
(1)
1 + · · · + δ

(1)
k in the characteristic sheaf of M̃rad

1,n . Let C1,n→ M̃rad
1,n be the

pullback of the universal family of Mrad
1,n to M̃1,n Notice that ρ is comparable with the radii of C1,n ,

so we may make a log modification C̃1,n→ C1,n subdividing tropicalizations at the locus where ρ = λ.
Then, as in Theorem 4.1, we may form a section λ ∈ 0(C̃,MC̃) by the formula

λ=max{ρ− λ, 0}.

Once again, it is easy to check that this is a mesa in the sense of [Bozlee 2020], so the main result there
yields a contraction of families of curves

C̃1,n
τ
//

π

��

C1,n

π||

M̃rad
1,n

Similar reasoning to that of Section 4 yields that C1,n→ M̃rad
1,n is a family of curves in M1,n((cP)). We

therefore have a diagram of birational morphisms of algebraic stacks

M̃rad
1,n

C1,n

%%

p

||

Mrad
1,n

||

M1,n((cP))

M1,n
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