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Let T be a neutral Tannakian category over a field of characteristic zero with unit object 1, and equipped
with a filtration W• similar to the weight filtration on mixed motives. Let M be an object of T , and
u(M) ⊂ W−1Hom(M, M) the Lie algebra of the kernel of the natural surjection from the fundamental
group of M to the fundamental group of GrW M . A result of Deligne gives a characterization of u(M) in
terms of the extensions 0 → Wp M → M → M/Wp M → 0: it states that u(M) is the smallest subobject
of W−1Hom(M, M) such that the sum of the aforementioned extensions, considered as extensions of
1 by W−1Hom(M, M), is the pushforward of an extension of 1 by u(M). We study each of the above-
mentioned extensions individually in relation to u(M). Among other things, we obtain a refinement of
Deligne’s result, where we give a sufficient condition for when an individual extension 0 → Wp M →

M → M/Wp M → 0 is the pushforward of an extension of 1 by u(M). In the second half of the paper,
we give an application to mixed motives whose unipotent radical of the motivic Galois group is as large as
possible (i.e., with u(M) = W−1Hom(M, M)). Using Grothendieck’s formalism of extensions panachées
we prove a classification result for such motives. Specializing to the category of mixed Tate motives we
obtain a classification result for 3-dimensional mixed Tate motives over Q with three weights and large
unipotent radicals.

1. Introduction

1.1. About this paper. Let T be a neutral Tannakian category over a field K of characteristic zero,
equipped with a weight filtration W• similar to the weight filtration on mixed motives (functorial, increasing,
finite on every object, exact, and respecting the tensor structure). For example, one might keep in mind
the category of mixed Hodge structures. In fact, this is a concrete example that illustrates well the main
results.

Let M be an object of T , and u(M) the Lie algebra of the kernel of the natural map from the fundamental
group of M to that of GrW M . A result of Deligne describes u(M) in terms of extensions that arise naturally
from the weight filtration of M . For each integer p, let Ep(M) be the extension

0 → Wp M → M → M/Wp M → 0, (1)
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considered as an element in Ext1(1, W−1End(M)) (where End(M) means Hom(M, M), the latter being
the internal Hom). Deligne characterizes u(M) in terms of the sum

E(M) :=

∑
p

Ep(M) ∈ Ext1(1, W−1End(M)).

The first half of this paper refines this by developing conditions under which the individual extensions
Ep(M) can be related to u(M).

The second half of the paper specializes to the setting of mixed motives and gives an application of the
first half to mixed motives whose unipotent radical of the motivic Galois group is as large as possible (i.e.,
with u(M) = W−1End(M)). These motives are in particular interesting for the transcendence properties
of their periods: in view of Grothendieck’s period conjecture the field generated by their periods should
have the highest possible transcendence degree among all motives with the same associated graded.

A particularly striking implication of our result is that a suggestion of Euler about ζ(3) is incompatible
with Grothendieck’s period conjecture. Euler [1785] speculated that there may be rational numbers α and
β and an expression of the form

ζ(3) = α(log 2)3
+ βπ2(log 2).

See the article of Dunham [2021] which gives a very readable account of this statement and Euler’s
remarkable work on evaluating the Riemann zeta function at integer arguments.

In Section 6.8, we construct a mixed Tate motive with periods (essentially) ζ(3), log 2, π and a fourth
period. Moreover, we use our results to show that the dimension of the Galois group in this case is 4.
Thus, the period conjecture would predict that these four periods are algebraically independent, and this
is incompatible with Euler’s expectation stated above. A more detailed description of this mixed Tate
motive is given below.

1.2. u(M) and the extensions E p(M). To be more precise, u(M) is the subobject of W−1End(M) with
the property that if ω is any fiber functor over K , then

ωu(M) ⊂ ωW−1End(M) = W−1 End(ωM)

is the Lie algebra of

U(M, ω) := ker(G(M, ω)
restriction

−−−−−→ G(GrW M, ω)),

where G(−, ω) denotes the fundamental group of the indicated object with respect to ω. If GrW M is
semisimple (which will be the case if T is a category of motives), then U(M, ω) is the unipotent radical
of G(M, ω).

As stated above, Deligne (see [Jossen 2014, Appendix]) describes u(M) in terms of extensions that
arise naturally from the weight filtration on M : For each integer p, let Ep(M) be the p-th extension class
of M given by (1), considered as an extension of the unit object 1 by Hom(M/Wp M, Wp M). Pushing
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this extension forward along the natural injection

Hom(M/Wp M, Wp M) → W−1End(M)

we get an extension of 1 by W−1End(M), which we also denote by Ep(M). The total extension class of
M is then the extension

E(M) :=

∑
p

Ep(M) ∈ Ext1(1, W−1End(M)).

Deligne’s result asserts that u(M) is the smallest subobject of W−1End(M) such that E(M) is in the
image of the pushforward

Ext1(1, u(M)) → Ext1(1, W−1End(M)) (2)

under the inclusion u(M) ⊂ W−1End(M). Deligne proves this in part by exploiting the weight filtration
to construct an explicit extension of 1 by u(M) which pushes forward to E(M).

The first half of this paper is dedicated to the study of the relation between u(M) and the individual
extensions Ep(M), with a view to refining Deligne’s result. In general, the individual extensions Ep(M)

may not be in the image of the pushforward map (2); an example involving 1-motives can be given using
the work of Jacquinot and Ribet [1987] on deficient points on semiabelian varieties; see Section 6.10 and
the remarks at its end. The main result of the first half of the paper gives a sufficient condition for when
the extension Ep(M) is in the image of (2); see Theorem 5.3.1 and its corollaries.

1.3. A more detailed overview. We continue this introduction by giving a more detailed overview of the
contents of the paper, starting with the first half. Fix an integer p and an object M of T . It is natural to
expect Ep(M) to be related to the subobject

up(M) := u(M) ∩ Hom(M/Wp M, Wp M)

of u(M), where we have considered Hom(M/Wp M, Wp M) as a subobject of W−1End(M) via the natural
injection. This is indeed the case: Write Ep(M) explicitly as

0 → Hom(M/Wp M, Wp M) → Hom(M/Wp M, M)†
→ 1 → 0; (3)

see Section 4.5 for the explicit description of the middle object. Then by Theorem 3.3.1 of [Eskandari
and Murty 2021] (which is proved by a small modification of the proof of [Hardouin 2011, Theorem 2]),
we have:

up(M) is the smallest subobject of Hom(M/Wp M, Wp M) such that

Hom(M/Wp M, M)†/up(M) belongs to the subcategory ⟨Wp M, M/Wp M⟩
⊗.

(∗)

Here, as usual, the notation ⟨ ⟩
⊗ means the smallest full Tannakian subcategory containing the indicated

objects and closed under subobjects. The first contribution of the present article is to reformulate this
statement in a more natural way, in the language of extensions originating from subcategories (discussed
in Section 3). Given a full Tannakian subcategory S of T which is closed under subobjects, we say an
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extension E of 1 by an object A of T originates from S if there is an object A′ of S, an extension E′ of 1

by A′ in S, and a morphism A′
→ A under which E′ pushes forward to E. While this is a very natural

and simple generalization of the notion of splitting of sequences (as an extension splits if and only if
it originates from a semisimple S), it opens the door to refinements of (∗) and Deligne’s theorem. The
reformulated version of (∗) is given in Theorem 4.9.1. It asserts that up(M) is the smallest subobject
of Hom(M/Wp M, Wp M) such that the pushforward Ep(M)/up(M) of Ep(M) under the quotient map
originates from the subcategory

⟨Wp M, M/Wp M⟩
⊗. (4)

Note that one advantage of formulating the statement in this language is that here we may think of Ep(M)

as an extension of 1 by Hom(M/Wp M, Wp M) or by W−1End(M); see Section 4.
Our next goal is to find refinements of Theorem 4.9.1 in which the category (4) is replaced by smaller

categories. Ideally, this category can be replaced by a semisimple category, in which case the pushforward
Ep(M)/up(M) of Ep(M) along the quotient map will split. (By weight considerations and the long exact
sequence for Ext groups this is equivalent to Ep(M) being in the image of (2).) But from the examples of
1-motives mentioned earlier we know that in general, this will not be the case.

Let q ≤ p. The second contribution of this paper is to show that if M satisfies certain “independence
axioms”, then in the statement of Theorem 4.9.1 the category (4) can be replaced by the smaller category
⟨Wq M, GrW M⟩

⊗ (smaller because q ≤ p); this is Theorem 5.3.1 in Section 5. The independence axioms
are given in Section 5.2, and in fact, only depend on GrW M . Roughly speaking, they require the subobject

⊕
i, j

j>q,i

Hom(GrW
j M, GrW

i M) (5)

of W−1End(GrW M) to suitably decompose as a direct sum of two “independent” summands. In the weak
sense, here the word “independent” means not having any nonzero isomorphic subobjects, and in the strong
sense, it means having disjoint sets of weights; see the axioms (IA1){p,q} and (IA2){p,q} in Section 5.2.

An interesting consequence of Theorem 5.3.1 is the following refinement of Deligne’s theorem (see
Corollary 5.3.2): If GrW M is semisimple (e.g., if T is a category of motives) and the weak indepen-
dence axioms hold for all q ≤ p, then Ep(M)/up(M) splits. In particular, if GrW M is semisimple and
W−1End(M) has

(n
2

)
distinct weights where n is the number of weights of M (e.g., if M has weights

0, −1, −3, −7), then Ep(M)/up(M) splits for every p; see Corollary 5.3.3.
The proof of Theorem 5.3.1 is similar to the proof of (∗) (or rather, of Theorem 4.9.1), albeit with

two added ingredients. Let u≥q(M) be the Lie algebra of the kernel of the restriction map from the
fundamental group of M to that of Wq M ⊕GrW M . The first new component is thanks to the independence
axioms: they guarantee that GrW u≥q(M) (which is a subobject of (5)) decomposes according to the
decomposition of (5) into our independent objects; see Lemma 5.5.1. This is the only place in the proof
of Theorem 5.3.1 that the independence axioms play a part. Taking ω to be any fiber functor, this gives a
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decomposition of ω GrW u≥q(M). The second added ingredient is that we use the fundamental theorem of
Tannakian categories with ω◦GrW as the fiber functor (rather than using ω itself). Notice the difference in
the nature of this type of argument and Deligne’s argument in [Jossen 2014, Appendix], which explicitly
constructs an extension of 1 by u(M) that pushes forward to the total class of M . We should point out
that the idea of working with the associated graded fiber functor already appears in [Deligne 1994], and
since then has featured frequently in the literature, especially in the setting of categories of mixed Tate
motives; e.g., [Deligne and Goncharov 2005].

It would be interesting to give a more conceptual explanation (or geometric interpretation, in the case
of motives) for the fact that the independence axioms force the individual extension classes Ep(M)/u(M)

(or Ep(M)/up(M)) to split.
We now discuss the contents of the second half of the paper (Section 6). Let T be a Tannakian category

of mixed motives over a field K of characteristic zero, e.g., the Tannakian categories of Nori or Ayoub of
mixed motives over K , or Voevodsky’s Tannakian category of mixed Tate motives over a number field,
or categories of mixed motives defined in terms of realizations. We say u(M) is large (or that M has a
large u) if u(M) is equal to W−1End(M). As we pointed out earlier, such motives are interesting from
the point of view of the transcendence properties of their periods. Our original motivation for this part of
the paper was to study (or ideally, classify up to isomorphism) all objects M with large u and associated
graded isomorphic to

Q(n) ⊕ A ⊕ 1,

where A is a given pure object of weight p with −2n < p < 0. We then realized that much of the
discussion can be given in more generality, leading to the contents of this part of the paper as currently
presented (and reviewed below).

Suppose tentatively that M is an extension of 1 by an object L of highest weight p with p < 0. It is
easy to see that if u(M) is large, then so are u(L) and u(M/Wp−1(L)). The first main result of Section 6
(Theorem 6.3.1) gives a sufficient condition for the converse statement. The result asserts that if M
satisfies a suitable independence axiom, and if u(L) and u(M/Wp−1(L)) are large, then so is u(M).
This is an application of Corollary 5.3.2. As in the case of the latter corollary, examples involving
1-motives show that the conclusion of Theorem 6.3.1 is in general false without the hypothesis about the
independence axiom; see Section 6.10.

Theorem 6.3.1 suggests a way to obtain more complicated objects with large u by “patching together”
smaller such objects. More precisely, given an object L of highest weight p with p < 0 which has a
large u, and an object N which is an extension of 1 by GrW

p L and also has a large u, we can look for
objects M such that Wp M ≃ L and M/Wp−1 M ≃ N ; assuming the relevant independence axiom (which
only depends on GrW M ≃ GrW L ⊕ 1) holds, any such M has a large u. The answer to the question of
existence of such M is given by Grothendieck’s formalism of extensions panachées [SGA 7I 1972]: The
obstruction is an element of Ext2(1, Wp−1L). Moreover, the object M is unique up to isomorphism if
Ext1(1, Wp−1L) = 0; see Lemma 6.4.1.
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We consider the following classification problem in Sections 6.4–6.7: Given B of weights < p and
with a large u, and a nonzero pure object A of negative weight p, classify up to isomorphism all M with
large u satisfying

Wp−1 M ≃ B, GrW
p M ≃ A and M/Wp M ≃ 1

(with the isomorphisms not part of the data). We manage to give a complete solution to this problem when
B ⊕ A⊕1 satisfies an independence axiom and Ext1(1, B) = 0; the solution is summarized in Section 6.7,
just before Corollary 6.7.1. To get there, in Sections 6.4–6.6 we study the extensions panachées problem in
the setting of an abelian category with weights.1 The main result is summarized in Proposition 6.6.1; see
also Lemma 6.5.1. As a special case of these results, in Corollary 6.7.1 we give an answer to our original
motivating classification problem about objects with associated graded isomorphic to Q(n) ⊕ A ⊕ 1.

In Section 6.8 we specialize to the category MT(Q) of (say, Voevodsky) mixed Tate motives over Q.
The nice feature here is that the Ext groups are known. We use Corollary 6.7.1 to give a complete
classification, up to isomorphism, of all 3-dimensional mixed Tate motives over Q with large u and
associated graded isomorphic to Q(n) ⊕ Q(k) ⊕ 1 with n > k > 0 and n ̸= 2k; the very last condition is
the independence axiom in this situation.

Let us consider an example from Section 6.8 here. Let r be an integer > 1 and N the Kummer 1-motive
[Z

1 7→r
−→ Gm], considered as an object of MT(Q). Let n be an even integer ≥ 4, and L an object which is a

nontrivial extension of 1 by Q(n − 1) (so with (2π i)1−nζ(n − 1) as a period). Since Ext2 groups vanish
in MT(Q) and Ext1(1, Q(n)) = 0, the two objects L(1) and N can be patched together to form an object
M of MT(Q), unique up to isomorphism, such that W−2 M ≃ L(1) and M/Q(n) ≃ N .2 Moreover, M
satisfies the required independence axiom (as n ̸= 2), so that it follows from Theorem 6.3.1 that u(M) is
large. According to Grothendieck’s period conjecture, the field generated over Q by the periods of M
should have transcendence degree equal to

dim(G(M, ωB)) = dim(ωBu(M)) + dim(G(GrW M, ωB)) = 3 + 1 = 4

(where ωB = Betti realization). The nonzero entries of the period matrix of M with respect to suitably cho-
sen bases of de Rham and Betti realizations are (2π i)−n, (2π i)−nζ(n − 1), (2π i)−1 (coming from L(1)),
(2π i)−1 log(r), 1 (coming from N ), and a “new period”. So Grothendieck’s period conjecture predicts that

2π i, ζ(n − 1), log(r), and the new period of M

must be algebraically independent over Q.
The new period discussed above seems rather mysterious, and it would be very interesting to somehow

calculate it.3 When r is 2 (or a power of it), M is a mixed Tate motive over Z
[ 1

2

]
, and hence by Deligne’s

1Actually, a slight variation of it; see the beginning of Section 6.4.
2This object is denoted by Mn,r in Section 6.8.
3Ideally, one would like to do this by giving a geometric construction of M , but this may be too difficult especially when

n > 4. In general, giving geometric constructions of mixed Tate motives with a few weights is a difficult problem; see [Brown
2016, Section 1.4].
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work [2010] the new period will be a linear combination of alternating multiple zeta values, which one
should be able to calculate using the formula of Goncharov [2005] and Brown [2012] for the motivic
coaction on iterated integrals.4 On the other hand, for general r , at least a priori, the new period may not
be an iterated integral on the projective line P1 minus {0, ∞} ∪ µr . (This is related to the question of
whether the category of mixed Tate motives over Z[1/r ] is generated by the fundamental groupoid of
P1

\ ({0, ∞} ∪ µr ), and for r > 2 one expects the answer to this question to be in general negative; see
Section 3 of [Dan-Cohen and Wewers 2016] for a discussion of this question.)

After the discussion of 3-dimensional mixed Tate motives with large u, in Section 6.9 we briefly
consider some 4-dimensional examples; this leads again to some interesting questions about periods. One
difference between the 4-dimensional and 3-dimensional examples is that in the former case (at least,
a priori) one gets a family of motives with a large u when patching together a 3-dimensional L and a
2-dimensional N .

We end this introduction with some words on the organization of the paper. In Section 2 we review
some basic material about Tannakian categories. The notion of extensions originating from subcategories
of a Tannakian category is discussed in Section 3. Here we prove a few lemmas on this concept that will
be useful throughout the paper. Starting from Section 4 we work in a Tannakian category with a weight
filtration. In Section 4 we introduce the relevant objects and give the reformulation of (∗) (Theorem 4.9.1).
The goal of Section 5 is to give the main results of the first part of the paper (Theorem 5.3.1 and its
corollaries), in which we show that the independence axioms introduced in the same section result in
refinements of Theorem 4.9.1 and Deligne’s theorem. At the end of Section 5 we also prove a variant of
Theorem 5.3.1 for q > p case; see Theorem 5.7.1. Section 6 contains the application to motives with
large unipotent radicals of motivic Galois groups, as discussed above. We should point out that prior to
Section 6.8 we use the term “motive” only because we find it more suggestive: the discussion is valid in
any Tannakian category with a weight filtration as long as the word “motive” is interpreted as “an object
with a semisimple weight associated graded”. In discussions where the Tate objects Q(n) play a role, we
also need to assume that there is a pure object Q(1) of weight -2 such that the functor −(1) := −⊗ Q(1)

is invertible. Sections 6.8 and 6.9 take place in the setting of a Tannakian category of mixed Tate motives
over Q with the “correct” Ext groups. Finally, Section 6.10 uses 1-motives to give counterexamples to
several statements in the paper, if the hypotheses regarding the independence axioms are omitted.

2. Preliminaries on Tannakian categories

The goal of this section is to review certain generalities about fundamental groups in Tannakian categories
and fix some notation. None of the results in this section are new. The reader can refer to [Deligne and
Milne 1982] for the basics of Tannakian categories, for instance. Throughout the paper, by a Tannakian
subcategory we always mean a Tannakian subcategory that is closed under taking subobjects.

4This was told to us by Clément Dupont.
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2.1. Notation. For any commutative ring R, we denote the category of R-modules (resp. commutative
R-algebras) by ModR (resp. AlgR). We often denote the Hom and End groups in a category of modules
simply by Hom and End, with the coefficient ring being understood from the context.

Throughout, K is a field of characteristic zero. If V is a vector space over K , we denote the general linear
group of V by GL(V ); it is an algebraic group over K . If G is an algebraic group over K , we denote the Lie
algebra of G by Lie(G), and the category of finite-dimensional representations of G (over K ) by Rep(G).

As usual, given a morphism α : ω → ω′ of functors, for any object M of the domain category the
corresponding morphism ωM → ω′M in the target category is denoted by αM .

Finally, in various contexts, we use the notation f |X for the restriction of f to X (whatever f and X are).

2.2. By a Tannakian category over K we mean a neutral Tannakian category over K , i.e., in the language
of [Deligne and Milne 1982], a rigid abelian K -linear tensor category with K as the endomorphism
algebra of the unit object, for which a fiber functor over K (= an exact faithful K -linear tensor functor
from the category to ModK ) exists.5

If T is a Tannakian category over K and ω : T → ModK is a fiber functor (over K ), we denote the
fundamental group of T with respect to ω by G(T , ω) (= Aut⊗(ω) in the standard notation); thus (by the
fundamental theorem of Tannakian categories) this is an affine group scheme over K with

G(T , ω)(R) =


the group of automorphisms of the functor

ω ⊗ 1R : T → ModK → ModR

respecting the tensor structures

for any K -algebra R. For any object M of T , we have a representation

ρM : G(T , ω) → GL(ωM), σ 7→ σM

and (again by the fundamental theorem) the functor

T → Rep(G(T , ω)), M 7→ (ωM, ρM),

which with abuse of notation we also denote by ω, is an equivalence of categories.

2.3. Let T be a Tannakian category over K with unit object denoted by 1. Let

ω : T → ModK

be a fiber functor. For any full Tannakian subcategory S of T , the inclusion S ⊂ T gives a surjective
restriction map

G(T, ω) → G(S, ω|S)

(surjective because S is assumed to be closed under taking subobjects; see [Deligne and Milne 1982,
Proposition 2.21]).

5Actually including faithfulness here is redundant, as it follows from the rest of the requirements; see [Deligne 1990,
Sections 2.10 and 2.11].
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2.4. Given any objects M1, . . . , Mn of T , let ⟨M1, . . . , Mn⟩
⊗ be the Tannakian subcategory generated by

M1, . . . Mn; by definition, ⟨M1, . . . , Mn⟩
⊗ is the smallest full Tannakian subcategory of T which contains

the Mi . Every object of ⟨M1, . . . , Mn⟩
⊗ is obtained from M1, . . . Mn and 1 by finitely many iterations of

taking direct sums, tensor products, duals, and subobjects. We have

⟨M1, . . . , Mn⟩
⊗

=
〈 ⊕

1≤i≤n Mi
〉⊗

.

2.5. Let M be an object of T . Given a fiber functor ω over K , we set

G(M, ω) := G(⟨M⟩
⊗, ω|⟨M⟩⊗) = Aut⊗(ω|⟨M⟩⊗);

we call this the fundamental group of M with respect to ω. Since every object of ⟨M⟩
⊗ is obtained from

M and 1 by finitely many iterations of taking direct sums, tensor products, duals and subobjects, the map

ρM : G(M, ω) → GL(ωM)

(sending σ to σM ) is injective. In particular, G(M, ω) is an algebraic group over K .
Let g(M, ω) be the Lie algebra of G(M, ω). In view of the equivalence of categories

⟨M⟩
⊗

→ Rep(G(M, ω))

given by ω, the adjoint representation of G(M, ω) defines an object g(M, ω) in ⟨M⟩
⊗ such that

ωg(M, ω) = g(M, ω)

as representations of G(M, ω), where the G(M, ω)-action on ωg(M, ω) corresponds to g(M, ω) (i.e., is
ρg(M,ω)) and the G(M, ω)-action on g(M, ω) is given by the adjoint representation.

Identify G(M, ω) as a subgroup of GL(ωM) via ρM . This identifies

g(M, ω) ⊂ Lie(GL(ωM)) = End(ωM). (6)

Denote End(M) := Hom(M, M) (the internal Hom in T ). Then we can identify ωEnd(M) = End(ωM),
with the action of G(M, ω) on End(ωM) corresponding to End(M) being by conjugation. The inclusion
(6) is compatible with the actions of G(M, ω), making

g(M, ω) ⊂ End(M).

2.6. For any object N of ⟨M⟩
⊗, let G(M, N , ω) be the kernel of the surjection

G(M, ω) → G(N , ω)

induced by the inclusion ⟨N ⟩
⊗

⊂ ⟨M⟩
⊗ (so for instance, G(M, 1, ω) = G(M, ω)). The Lie subalgebra

g(M, N , ω) := Lie(G(M, N , ω))

of g(M, ω) is invariant under the adjoint action of G(M, ω), giving rise to a subobject

g(M, N , ω) ⊂ g(M, ω) ⊂ End(M).
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2.7. The subobjects g(M, N , ω) of End(M) do not depend on the choice of the fiber functor ω. More
precisely, for every object N of ⟨M⟩

⊗, there is a canonical subobject

g(M, N ) ⊂ End(M)

such that for every ω over K ,

ωg(M, N ) = g(M, N , ω) ⊂ End(ωM).

This can be seen via the machinery of algebraic geometry over a Tannakian category [Deligne 1989,
Section 5 and 6] and is well-known, but in the interest of keeping the paper more self-contained, we
include a proof.

Proposition 2.7.1. Suppose ω and ω′ are two fiber functors T → ModK . Then for any objects M of T
and N of ⟨M⟩

⊗,

g(M, N , ω) = g(M, N , ω′)

(as subobjects of End(M)).

Proof. By a theorem of Deligne [1990, Section 1.12 and 1.13], there exists a K -algebra R such that the
two functors ω ⊗ 1R and ω′

⊗ 1R are isomorphic as ⊗-functors. Let

α : ω ⊗ 1R → ω′
⊗ 1R

be an isomorphism respecting the tensor structures. Then conjugation by α|⟨M⟩⊗ gives an isomorphism

cα : G(M, ω)R → G(M, ω′)R.

On the other hand, conjugation by

αM : ωM ⊗ 1R → ω′M ⊗ 1R

gives an isomorphism

cαM : GL(ωM)R → GL(ω′M)R.

The maps cα and cαM are compatible with one another, i.e., we have a commutative diagram

G(M, ω)R G(M, ω′)R

GL(ωM)R GL(ω′M)R,

cα,≃

cαM ,≃

⊂ ⊂
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where the vertical inclusions are by the identifications via ρM for ω and ω′ (i.e., are given by σ 7→ σM ).
Going to the Lie algebras by taking derivatives we get a commutative diagram

ωg(M, ω)⊗ R = g(M, ω)⊗ R g(M, ω′) ⊗ R = ω′g(M, ω′) ⊗ R

ωEnd(M) ⊗ R = End(ωM) ⊗ R End(ω′M) ⊗ R = ω′End(M).

Dcα,≃

DcαM ,≃

⊂ ⊂

The horizontal arrow in the second row is again just conjugation by αM , so that

DcαM = αEnd(M).

On recalling that g(M, ω) is a subobject of End(M) and by commutativity of the previous diagram, we
get

ω′g(M, ω)⊗ R = αEnd(M)(ωg(M, ω)⊗ R) = ω′g(M, ω′) ⊗ R (7)

(as subspaces of End(ω′M) ⊗ R). This shows that

ω′g(M, ω) = ω′g(M, ω′)

and hence g(M, ω) = g(M, ω′).
If N is any object of ⟨M⟩

⊗, by considering the analogous map to cα for N one easily sees that cα maps
G(M, N , ω)R onto G(M, N , ω′)R . Thus

Dcα(g(M, N , ω)⊗ R) = g(M, N , ω′) ⊗ R,

and as in (7) we get

ω′g(M, N , ω) = ω′g(M, N , ω′)

as subspaces of End(ω′M). □

3. Extensions originating from a subcategory

The goal of this section is to introduce and prove a few lemmas about the basic but useful notion of
extensions originating from subcategories of Tannakian categories. This concept will provide a natural
language for the results of the paper. As in the previous section, K is a field of characteristic zero. Recall
that by a Tannakian subcategory we mean one that is closed under taking subobjects.

3.1. Let G be an affine group scheme over K . Let H be a subgroup of G. Let V be an object of Rep(G).
Denote by V H the (K -) subspace of V which is fixed by H . More precisely,

V H
:= {v ∈ V : ∀R ∈ AlgK , ∀σ ∈ H(R), σ (v ⊗ 1R) = v ⊗ 1R}.

Suppose H is normal in G. Then V H is a G-subrepresentation of V (i.e., a subobject of V in Rep(G)).
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The restriction functor

Rep(G/H) → Rep(G)

identifies Rep(G/H) as the full subcategory of Rep(G) consisting of those representation of G on which
H acts trivially. It is evident that for every object V of Rep(G), the object V H is the largest subobject of
V which belongs to the subcategory Rep(G/H).

3.2. Let T be a Tannakian category over K , with ω a fiber functor T → ModK . Let S be a full Tannakian
subcategory of T . The inclusion S ⊂ T gives a surjection

G(T , ω) → G(S, ω|S). (8)

Denote the kernel of this map by H.
Using the map (8) we may identify the category Rep(G(S, ω|S)) as the full subcategory of Rep(G(T , ω))

consisting of all the objects on which H acts trivially. One has a commutative diagram

S Rep(G(S, ω|S))

T Rep(G(T , ω)),

ω|S,≃

ω,≃

⊂ ⊂ (9)

where the horizontal arrows are the equivalences of categories given by the fundamental theorem of
Tannakian categories. On recalling that S is closed under subobjects and hence in particular isomorphisms,
it follows that any object A of T belongs to the subcategory S if and only if H acts trivially on ωA.

3.3. Let A be an object of T . Then (ωA)H is a G(T , ω)-subrepresentation of ωA; hence there is a
canonical subobject

AS ⊂ A

such that

ω(AS) = (ωA)H.

Since (ωA)H is the largest subobject of ωA ∈ Rep(G(T , ω)) which belongs to the subcategory
Rep(G(S, ω|S)), it follows that AS is the largest subobject of A which belongs to S.

Taking H-invariants gives a left exact functor

Rep(G(T , ω)) → Rep(G(S, ω|S)).

Thus we have a left exact functor

−S : T → S

which on objects acts like A 7→ AS (and on morphisms acts by restriction of domain and codomain).
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3.4. Let A be an object of T . Let E in Ext1T (1, A) (= Yoneda Ext1 group in T ) be the class of the short
exact sequence

0 → A → E → 1 → 0.

We say the extension E originates from or comes from S if there is a commutative diagram in T

0 A′ E ′ 1 0

0 A E 1 0

(10)

where the rows are exact and the objects in the top row are in S. In other words, we say E originates from
S if there is an object A′ of S and a morphism A′

→ A such that E is in the image of the pushforward
map

Ext1S(1, A′) → Ext1T (1, A).

We now give a few lemmas on the notion of extensions originating from subcategories which are useful
in the later sections. The lemmas take place in the above setting (i.e., with E, S, and H as above). The
first lemma highlights that the notion of extensions originating from subcategories is a generalization of
the notion of splitting of sequences.

Lemma 3.4.1. The following statements are equivalent:

(i) The extension E splits.

(ii) The extension E originates from some semisimple S.

(iii) The extension E originates from every S.

Proof. The implications (iii) =⇒ (ii) =⇒ (i) are trivial. As for (i) =⇒ (iii), note that if E splits, then it is
the pushforward of the extension

0 → 0 → 1 → 1 → 0. □

Lemma 3.4.2. The following statements are equivalent:

(i) The extension E originates from S.

(ii) The extension ωE

0 → ωA → ωE → K → 0

splits in the category of representations of H.

(iii) The sequence

0 → (ωA)H
→ (ωE)H

→ K → 0

(obtained by taking H-invariants of ωE) is exact.
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(iv) The sequence in S
0 → AS → ES → 1 → 0

obtained by applying −S to the defining sequence of E is exact.

Proof. The equivalence of (iii) and (iv) is clear, as the sequence in (iii) is obtained by applying ω to the
sequence in (iv). Note that since the functors −

H and −S are left exact, the statements in (iii) and (iv) are
really just statements about surjectivity of (ωE)H

→ K and ES → 1. The implication (iv) =⇒ (i) is also
clear, as we can use the extension given in (iv) as the top row in (10).

(i) =⇒ (iv): Suppose E originates from S, with a commutative diagram as in (10), with exact rows and
the top row in S. Since S is closed under taking subquotients, by replacing A′ and E ′ if necessary by
their images in A and E , we may assume without loss of generality that A′

⊂ A and E ′
⊂ E , with the

vertical arrows being considered as inclusion maps. Since E ′ is in S, we have E ′
⊂ ES. This proves that

the restriction of the surjection E → 1 to ES is still surjective, thus giving (iv).

(iii) =⇒ (ii): There is a commutative diagram of G(T , ω)-representations

0 (ωA)H (ωE)H K 0

0 ωA ωE K 0

where the bottom row is ωE, the vertical arrows are inclusion, and the rows are exact. Consider this
diagram in the category of representations of H. The top row splits, hence so does the bottom row (= the
pushout of the top row).

(ii) =⇒ (iii): Suppose (ii) holds. Choose a section s of ωE → K in Rep(H). Then s(1) is fixed by H and
thus belongs to (ωE)H. It follows that (ωE)H

→ K is surjective. □

Lemma 3.4.3. Suppose A is an object of S. Then E originates from S if and only if E is an object of S.

Proof. The “if” implication is trivial. As for the “only if” implication, suppose we have a diagram as in
(10), with exact rows and the objects of the top row in S. Then E is isomorphic to the fibered coproduct
of A and E ′ over A′. Since A and E ′ are in S, so is E . □

Lemma 3.4.4. Let A′ be a subobject of A such that the pushforward map

Ext1T (1, A′
+ AS) → Ext1T (1, A)

(along the inclusion A′
+ AS → A) is injective. Suppose E is the pushforward of an extension

E′
∈ Ext1T (1, A′)

along the inclusion map A′
→ A. Then E originates from S if and only if E′ does.

Proof. If E′ originates from S, then clearly so does E. Suppose E originates from S. Then E is the
pushforward of the extension ES given in statement (iv) of Lemma 3.4.2 under the inclusion AS → A.
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Let i : AS → A′
+ AS and i ′

: A′
→ A′

+ AS be inclusion maps. Apply the δ-functor HomT (1, −) to the
short exact sequence

0 → A′
∩ AS → A′

⊕ AS
i−i ′

−→ A′
+ AS → 0

(where the injective arrow is the diagonal embedding). We get exact

Ext1T (1, A′
∩ AS) → Ext1T (1, A′) ⊕ Ext1T (1, AS)

i∗−i ′
∗−−→ Ext1T (1, A′

+ AS),

where the lower stars denote pushforwards. The pushforward of the extension

i∗(ES) − i ′

∗
(E′) ∈ Ext1T (1, A′

+ AS)

in Ext1T (1, A) is zero. By the injectivity hypothesis in the statement, i∗(ES) − i ′
∗
(E′) is already zero. It

follows that there is an extension E′′

0 → A′
∩ AS → E ′′

→ 1 → 0

which pushes forward (under inclusion maps) to both E′ and ES. But then A′
∩AS and E ′′, being subobjects

of AS and ES, belong to S. Since E′′ pushes forward to E′, the latter extension originates from S. □

Remark. Note that the injectivity hypothesis in the statement of the previous lemma is guaranteed if

HomT (1, A/(A′
+ AS)) = 0

(and this will be the case whenever we use the result in the paper). This can be seen from the long exact
sequence obtained by applying HomT (1, −) to

0 → A′
+ AS → A → A/(A′

+ AS) → 0.

4. Extension classes and subgroups of the fundamental group, part I

4.1. From this point on we suppose that T is a Tannakian category over a field K of characteristic zero,
equipped with a functorial exact finite increasing filtration W•, compatible with the tensor structure. We
refer to W• as the weight filtration. Here, the expression “functorial exact finite increasing filtration W•”
means that for every integer n, we have an exact functor Wn : T → T , such that for every object M of T ,
we have

Wn−1 M ⊂ Wn M (∀n)

Wn M = 0 (∀n ≪ 0)

Wn M = M (∀n ≫ 0),

and such that the inclusions Wn M ⊂ M for various M give a morphism of functors from Wn to the identity
(and hence the Wn form an inductive system of functors). Compatibility with the tensor product means
that for every objects M and N , we have

Wn(M ⊗ N ) =

∑
p,q

p+q=n

Wp M ⊗ Wq N . (11)
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The associated graded functor GrW is the functor defined on objects by

GrW M :=

⊕
n

GrW
n M,

where GrW
n M := Wn M/Wn−1 M , and on morphisms in the obvious way using the fact that we have

morphisms of functors Wn−1 → Wn . By the snake lemma, the associated graded functor (in fact, each
GrW

n ) is also exact. Also GrW is a graded tensor functor, in the sense that (via a canonical isomorphism)
we have

GrW (M ⊗ N ) = GrW (M) ⊗ GrW (N ),

with this identification being compatible with weights, i.e., being the direct sum of identifications

GrW
n (M ⊗ N ) =

⊕
p,q

p+q=n

GrW
p M ⊗ GrW

q M

induced by (11).
As it is customary, we call an object M with Wn−1 M = 0 and Wn M = M a pure object of weight n.

Note that unless otherwise indicated, we do not assume that an object of the form GrW M (i.e., a direct
sum of pure objects) is necessarily semisimple.

Given any fiber functor ω (over K ) and any object M , set

W•ωM := ω(W• M).

This defines an exact ⊗-filtration on ω, in the language of Saavedra Rivano [1972, Chapter IV, Section 2],
(note that Saavedra Rivano works with decreasing filtrations instead, and that his Condition FE 1) is
guaranteed here because K is a field).

Given any objects M and N , we identify

ωHom(M, N ) = Hom(ωM, ωN ).

One can then show that

ωWnHom(M, N ) = { f ∈ Hom(ωM, ωN ) : f (W•ωM) ⊂ W•+nωN }.

4.2. Here and elsewhere in the paper, we shall use the notation and conventions of Section 2 for Tannakian
fundamental groups and their Lie algebras.

Let M be an object of T . Given any fiber functor ω, let P(M, ω) be the parabolic subgroup of GL(ωM)

which stabilizes the filtration W•. Then

Lie(P(M, ω)) = W0 End(ωM).

The elements of G(M, ω) (= the fundamental group of M with respect to ω) preserve subobjects of M ,
so that

G(M, ω) ⊂ P(M, ω).
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Going to the Lie algebras we have
g(M) ⊂ W0End(M).

Every element of P(M, ω) induces an automorphism of GrW ωM , giving rise to a homomorphism

P(M, ω) → GL(GrW ωM).

Let U (M, ω) be the kernel of this map; then U (M, ω) is the unipotent radical of P(M, ω). It is easy to
see that

Lie(U (M, ω)) = W−1 End(ωM).

Set
U(M, ω) := G(M, GrW M, ω)

(= the kernel of the restriction map G(M, ω)→G(GrW M, ω) induced by the inclusion ⟨GrW M⟩
⊗

⊂⟨M⟩
⊗).

Then
U(M, ω) = G(M, ω)∩ U (M, ω). (12)

In particular, U(M, ω) is a unipotent group. If G(GrW M, ω) happens to be reductive (i.e., if GrW M is
semisimple), then U(M, ω) will be the unipotent radical of G(M, ω).

We set
u(M) := g(M, GrW M) and u(M, ω) := Lie U(M, ω)

(= g(M, GrW M, ω) in the notation of Section 2). Then (for every ω),

ωu(M) = u(M, ω).

By (12), we have
u(M) = g(M) ∩ W−1End(M).

4.3. A result of Deligne (written by Jossen in the appendix of [Jossen 2014]) describes the subobject
u(M) of W−1End(M) as follows.6 From now on, if there is no ambiguity, we shall simply write Hom
(resp. Exti ) for the Hom groups HomT (resp. the Yoneda ExtiT groups) in T .

Recall from the Introduction that for each integer p, the p-th extension class

Ep(M) ∈ Ext1(1, Hom(M/Wp M, Wp M))

of M is the extension corresponding to the sequence

0 → Wp M → M → M/Wp M → 0 (13)

under the canonical isomorphism

Ext1(M/Wp M, Wp M) ∼= Ext1(1, Hom(M/Wp M, Wp M)). (14)

6We thank Peter Jossen for patiently explaining to us some parts of Deligne’s argument from [Jossen 2014, Appendix].
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Applying Hom(M/Wp M, −) to the inclusion Wp M → M we get an injection

Hom(M/Wp M, Wp M) → Hom(M/Wp M, M).

On the other hand, applying Hom(−, M) to the quotient map M → M/Wp M we get an injection

Hom(M/Wp M, M) → End(M).

Composing the two injections, we get a map

Hom(M/Wp M, Wp M) → End(M). (15)

After applying a fiber functor ω, this simply sends an element

f ∈ Hom(ωM/ωWp M, ωWp M)

to the composition

ωM quotient
−−−−→ ωM/ωWp M f

−→ ωWp M inclusion
−−−−→ ωM. (16)

From this it is clear that indeed, the image of the map (15) is contained in W−1End(M). We shall identify
Hom(M/Wp M, Wp M) as a subobject of W−1End(M) via the map (15). Note that Hom(M/Wp M, Wp M)

is an abelian Lie subalgebra of W−1End(M).
Pushing forward extensions along the inclusion map we get a map

Ext1(1, Hom(M/Wp M, Wp M)) → Ext1(1, W−1End(M)), (17)

which is injective, as (by weight considerations),

Hom
(

1,
W−1End(M)

Hom(M/Wp M, Wp M)

)
= 0.

To simplify the notation, we shall identify

Ext1(1, Hom(M/Wp M, Wp M))

with its image under (17).
Deligne defines the (total) extension class of M to be

E(M) :=

∑
p

Ep(M) ∈ Ext1(1, W−1End(M))

(this is denoted by cl(M) in [Jossen 2014]), and proves that the extension E(M) can be used to de-
scribe u(M). More precisely, he proves the following result:

Theorem 4.3.1 (Deligne, Appendix of [Jossen 2014]). The subobject u(M) ⊂ W−1End(M) is the smallest
subobject of W−1End(M) such that the extension E(M) is the pushforward of an element of Ext1(1, u(M))

under the inclusion u(M) → W−1End(M).
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It is worth highlighting that the theorem asserts that u(M) is the smallest subobject with the stated
property, not just the smallest Lie subobject with the property. Also note that by weight considerations,
the pushforward map

Ext1(1, u(M)) → Ext1(1, W−1End(M)) (18)

is injective, so that the element pushing forward to E(M) is indeed unique.

Remark. As we pointed out in the Introduction, in general, the individual extensions Ep(M) may not be
in the image of the pushforward map (18). See Section 6.10 (and Remark (2) therein) for examples in the
category of mixed Hodge structures using the Jacquinot–Ribet deficient points on semiabelian varieties.

4.4. We adopt the following notation for pushforwards of extensions along quotient maps. If E is an
extension of an object A by B, then for any subobject B ′ of B we denote the pushforward of E along the
quotient B → B/B ′ by E/B ′.

Given any subobject A ⊂ W−1End(M), applying the functor Hom(1, −) to the short exact sequence

0 → A → W−1End(M) → W−1End(M)/A → 0

we get a long exact sequence. In particular, we have exact

Ext1(1, A) → Ext1(1, W−1End(M)) → Ext1(1, W−1End(M)/A),

where the arrows are pushforwards along inclusion and quotient maps. Thus Deligne’s result can be
equivalently stated as that u(M) is the smallest subobject of W−1End(M) such that the pushforward

E(M)/u(M) ∈ Ext1(1, W−1End(M)/u(M))

of E(M) splits.
The formulation of Theorem 4.3.1 as given in the statement is more natural for Deligne’s proof, as his

argument goes by constructing an explicit extension of 1 by u(M) which pushes forward to E(M). The
formulation in terms of E(M)/u(M) is however more natural when one wants to study the individual
extensions Ep(M), as we shall see.

4.5. The canonical isomorphism (14) is given by first applying the functor

Hom(M/Wp M, −)

to an element of Ext1(M/Wp M, Wp M), and then pulling back along the canonical map

1 → End(M/Wp M)

(which after applying a fiber functor ω, sends 1 to the identity map on ω(M/Wp M)). Going through this,
we see that assuming M/Wp M ̸= 0, the extension

Ep ∈ Ext1(1, Hom(M/Wp M, Wp M))
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is the class of

0 → Hom(M/Wp M, Wp M) → Hom(M/Wp M, M)†
→ 1 → 0, (19)

where Hom(M/Wp M, M)† is the subobject of Hom(M/Wp M, M) characterized by

ωHom(M/Wp M, M)†

= Hom(ωM/ωWp M, ωM)†

:= { f ∈ Hom(ωM/ωWp M, ωM) : f mod ωWp M = λ( f )I dωM/ωWp M for some λ( f ) ∈ K }

for any fiber functor ω. The injective (resp. surjective) arrow in (19) is, after applying ω, the natural
inclusion (resp. the map f 7→ λ( f ), with λ( f ) ∈ K as in the definition of Hom(M/Wp M, M)† above).

If M/Wp M = 0, set Hom(M/Wp M, M)†
:= 1; then Ep is again given by the sequence (19), with the

surjective arrow being the identity map on 1.7

4.6. Fix an integer p. After applying a fiber functor ω to the identification

Hom(M/Wp M, Wp M) ⊂ W−1End(M)

we get an identification

Hom(ωM/ωWp M, ωWp M) ⊂ W−1 End(ωM),

which thinks of f : ωM/Wp M → ωWp M as the composition (16). This way,

Hom(ωM/ωWp M, ωWp M) (20)

becomes an abelian Lie subalgebra of W−1 End(ωM). The exponential map

exp : W−1 End(ωM) → U (M, ω)(K ) ⊂ GL(ωM)(K )

is given by the usual exponential series. On the Lie subalgebra (20), it is simply given by

exp( f ) = I + f.

4.7. In this subsection we shall introduce certain Lie subalgebras of u(M) and subgroups of U(M, ω)

(for any ω) which play a crucial role in the paper. For any integer p, let

up(M) := u(M) ∩ Hom(M/Wp M, Wp M)

7Equivalently, one can define Hom(M/Wp M, M)† in the following way, which works in all cases: Hom(M/Wp M, M)† is
the subobject of Hom(M/Wp M, M) ⊕ 1 whose image under any fiber functor ω is

{( f, λ) ∈ Hom(ωM/ωWp M, ωM) ⊕ K : f mod ωWp M = λI dωM/ωWp M }.

That is, Hom(M/Wp M, M)† is the kernel of the appropriate morphism Hom(M/Wp M, M) ⊕ 1 → End(M). The injective
(resp. surjective) arrow in (19) is then induced by the inclusion (resp. projection) map into (resp. from) the direct sum. We shall
however work with the first definition, as it will simplify the expressions in our proofs.
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and for any ω,

up(M, ω) := ωup(M) = u(M, ω)∩ Hom(ωM/ωWp M, ωWp M).

Then up(M, ω) is an abelian Lie subalgebra of u(M, ω).
For any Lie subalgebra l of W−1 End(ωM), we denote the subgroup of U (M, ω) whose Lie algebra is

l by ex p (l) (thus ex p (l)(K ) = exp(l)). Set

Up(M, ω) := ex p (up(M, ω))

= U(M, ω)∩ ex p (Hom(ωM/ωWp M, ωWp M))

= G(M, ω)∩ ex p (Hom(ωM/ωWp M, ωWp M)).

This is an abelian unipotent subgroup of U(M, ω).

Lemma 4.7.1. Up(M, ω) is the kernel of the restriction homomorphism

G(M, ω) → G(Wp M ⊕ (M/Wp M), ω)

(induced by ⟨Wp M ⊕ (M/Wp M)⟩⊗ ⊂ ⟨M⟩
⊗).

Proof. Tentatively, let us refer to the kernel of the homomorphism given in the statement of the lemma
as U ′. It is clear that U ′ is contained in U(M, ω). In particular, U ′ is also unipotent and thus it is enough
to show that U ′ and Up(M, ω) have the same K -valued points. We have

Up(M, ω)(K ) = G(M, ω)(K ) ∩ exp(Hom(ωM/ωWp M, ωWp M)).

Let σ ∈ G(M, ω)(K ). Then σ ∈ U ′(K ) if and only if σWp M = I and σM/Wp M = I . Under the identification
G(M, ω) ⊂ P(M, ω) (via σ 7→ σM ), σWp M is simply the restriction σ |ωWp M of σ to ωWp M , and σM/Wp M

is the map σ that σ , as an element of the parabolic subgroup P(M, ω), induces on ωM/ωWp M (given
by σ(v + ωWp) = σ(v) + ωWp, where v ∈ ωM). On recalling that

exp(Hom(ωM/ωWp M, ωWp M)) = I + Hom(ωM/ωWp M, ωWp M),

it is easy to see that the subgroup of P(M, ω)(K ) which acts as identity on both ωWp M and ωM/ωWp M is

exp(Hom(ωM/ωWp M, ωWp M)).

The claim follows. □

Remark. Our examples in Section 6.10 (also see item (3) of the remark therein) show that in general,
u(M) may not be generated by the up(M), even as a Lie algebra. It is however true that if Ep(M)/u(M)

splits for every p, then u(M) =
∑

p up(M). See item (2) of the remark at the end of Section 5.1. (Note
that the sum

∑
p up(M) in general may not be a Lie subalgebra of u(M).)
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4.8. Let us recall (∗) from the Introduction.

Proposition 4.8.1. For any subobject A of Hom(M/Wp M, Wp M), we have up(M) ⊂ A if and only if
the quotient

Hom(M/Wp M, M)†/A

belongs to the subcategory ⟨Wp M, M/Wp M⟩
⊗.

This follows from Theorem 3.3.1 of [Eskandari and Murty 2021],8 with L , N , and U(M) of [loc. cit.]
being respectively Wp M , M/Wp M , and Up(M, ω) here. However, in the interest of keeping the paper
more self-contained, let us recall the argument: The statement is trivial if M/Wp M = 0 so we may
assume otherwise. To simplify the notation, let us tentatively denote the subcategory ⟨Wp M, M/Wp M⟩

⊗

by C . Let A be a subobject of Hom(M/Wp M, Wp M) and ω a fiber functor. In view of Section 3.2 and
Lemma 4.7.1, the quotient

Hom(M/Wp M, M)†/A

belongs to C if and only if Up(M, ω) acts trivially on

ω(Hom(M/Wp M, M)†/A) = ωHom(M/Wp M, M)†/ωA. (21)

Choose a section of the natural surjection ωM → ωM/ωWp M to identify

ωM = ωWp M ⊕ ωM/ωWp M

(as vector spaces). This also gives a decomposition of ωHom(M/Wp M, M). In view of the sequence
(19) and on noting that Hom(M/Wp M, Wp M) belongs to C , the group Up(M, ω) acts trivially on (21)
if and only if it (or equivalently, Up(M, ω)(K )) fixes the image of the element

(0, I ) ∈ Hom(ωM/ωWp M, ωM)†
⊂ Hom(ωM/ωWp M, ωM)

= Hom(ωM/ωWp M, ωWp M) ⊕ End(ωM/ωWp M)

in (21). Identifying Hom(ωM/ωWp M, ωM) as a subspace of End(ωM) in the obvious way, given any
σ ∈ Up(M, ω)(K ), in view of the fact that σ fixes ωWp M and ωM/ωWp M , one calculates that

σ · (0, I ) − (0, I ) = log(σ ).

Thus Up(M, ω)(K ) fixes (0, I ) mod ωA if and only if ωA contains up(M, ω).

4.9. Proposition 4.8.1 can be reformulated in the language of extensions originating from subcategories
of T (see Section 3.4) as follows:

Theorem 4.9.1. Let A be a subobject of Hom(M/Wp M, Wp M). Then the extension Ep(M)/A, viewed
as an extension of 1 by W−1End(M)/A or Hom(M/Wp M, Wp M)/A, originates from the subcategory
⟨Wp M, M/Wp M⟩

⊗ if and only if A contains up(M).

8Theorem 3.3.1 of [Eskandari and Murty 2021] is obtained by a slight modification of Hardouin’s argument for Theorem 2 of
[Hardouin 2011] and Théorème 2.1 of the unpublished article [Hardouin 2006].
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In other words, up(M) is the smallest subobject of Hom(M/Wp M, Wp M) such that the extension
Ep(M)/up(M), viewed as an extension of 1 by W−1End(M)/up(M) or by Hom(M/Wp M, Wp M)/up(M),
originates from ⟨Wp M, M/Wp M⟩

⊗.

Proof of Theorem 4.9.1. Let A be a subobject of Hom(M/Wp M, Wp M). By Lemma 3.4.4 (also see
the remark after the same lemma), and in view of the facts (1) that the extension Ep(M)/A of 1 by
W−1End(M)/A is the image of its namesake as an extension of 1 by Hom(M/Wp M, Wp M)/A under
the obvious pushforward map

Ext1(1, Hom(M/Wp M, Wp M)/A) → Ext1(1, W−1End(M)/A),

and (2) that (by weight considerations) there are no nonzero morphisms from 1 to objects of weight < 0,
the following statements are equivalent for any full Tannakian subcategory S of T :

(i) The extension Ep(M)/A, viewed as an element of

Ext1(1, W−1End(M)/A),

originates from S.

(ii) The extension Ep(M)/A, viewed as an element of

Ext1(1, Hom(M/Wp M, Wp M)/A),

originates from S.

In view of Lemma 3.4.3 and on recalling the explicit description of

Ep(M) ∈ Ext1(1, Hom(M/Wp M, Wp M))

from Section 4.5, Statement (ii) with S taken to be the subcategory ⟨Wp M, M/Wp M⟩
⊗ is equivalent to

the following statement:

(iii) The object
Hom(M/Wp M, M)†/A

belongs to ⟨Wp M, M/Wp M⟩
⊗.

Thus Theorem 4.9.1 is equivalent to Proposition 4.8.1 (or (∗) of the Introduction). □

5. Extension classes and subgroups of the fundamental group, part II

In the previous section we saw that up(M) is the smallest subobject of Hom(M/Wp M, Wp M) such that
the extension Ep(M)/up(M) originates from ⟨Wp M, M/Wp M⟩

⊗. Our goal in this section is to give
criteria under which the subcategory ⟨Wp M, M/Wp M⟩

⊗ in this statement can be replaced by smaller
subcategories. Of particular interest will be the case in which we can replace it with a semisimple category,
as then Ep(M)/up(M) will split.
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5.1. Let us first make an observation regarding the pushforwards of the extension Ep(M). Recall that we
are using the same notation for

Ep(M) ∈ Ext1(1, Hom(M/Wp M, Wp M))

and its image in Ext1(1, W−1End(M)) under the pushforward map (17).

Lemma 5.1.1. Let S be a full Tannakian subcategory of T . Then the following statements are equivalent:

(i) The extension

Ep(M)/up(M) ∈ Ext1(1, Hom(M/Wp M, Wp M)/up(M))

originates from S.

(ii) The extension

Ep(M)/up(M) ∈ Ext1(1, W−1End(M)/up(M))

originates from S.

(iii) The extension

Ep(M)/u(M) ∈ Ext1(1, W−1End(M)/u(M))

originates from S.

Proof. That (i) implies (ii) and (ii) implies (iii) is clear, as under the obvious maps the extension in
(i) pushes forward to the extension in (ii) and then to the one in (iii) (in fact, we already observed the
equivalence of (i) and (ii) in the proof of Theorem 4.9.1). That (iii) implies (i) follows similarly as in the
proof of Theorem 4.9.1 from Lemma 3.4.4 on recalling that

u(M) ∩ Hom(M/Wp M, Wp M) = up(M)

(so that the obvious map

Hom(M/Wp M, Wp M)/up(M) → W−1End(M)/u(M)

is injective). □

Remark. (1) In particular, by taking S to be the semisimple subcategory ⟨1⟩
⊗ we see that the three

extensions in the lemma split at the same time.

(2) The lemma together with Deligne’s Theorem 4.3.1 implies that if every Ep(M)/u(M) splits (i.e.,
if every Ep(M) is in the image of (18)), then u(M) =

∑
p up(M). Indeed, let us tentatively set u′

=∑
p up(M). If Ep(M)/u(M) splits for every p, then so does Ep(M)/up(M) and hence Ep(M)/u′ (the

latter as an extension of 1 by W−1End(M)/u′). It follows that E(M)/u′ splits, so that by Deligne’s
theorem u(M) ⊂ u′.



On unipotent radicals of motivic Galois groups 189

i

j

i = j

j
=

q

j
=

p

i = p

Figure 1. The set of lattice points in the region marked by solid (resp. thick dashed)
lines is J {p,q}

1 (resp. J {p,q}

2 ).

5.2. For any integers p and q with q ≤ p, define

J {p,q}

1 := {(i, j) ∈ Z2
: i ≤ p < j},

J {p,q}

2 := {(i, j) ∈ Z2
: i < j and (q < j ≤ p or i > p)}.

Figure 1 shows the two sets. In the figure, the axes are oriented according to the standard labeling of
entries of a matrix (the pair (i, j) is placed where the entry i j of a matrix sits).

We consider the following independence axioms for an object M of T :

• (IA1){p,q}: The two objects⊕
(i, j)∈J {p,q}

1

Hom(GrW
j M, GrW

i M) and
⊕

(i, j)∈J {p,q}

2

Hom(GrW
j M, GrW

i M)

have no nonzero isomorphic subobjects. Note that if q ′
≤ q ≤ p, then (IA1){p,q ′} implies (IA1){p,q}.

• (IA2){p,q}: The two sets

J {p,q}

1 (M) := {i − j : (i, j) ∈ J {p,q}

1 , GrW
i M ̸= 0, GrW

j M ̸= 0}

and

J {p,q}

2 (M) := {i − j : (i, j) ∈ J {p,q}

2 , GrW
i M ̸= 0, GrW

j M ̸= 0}

are disjoint. (Note that J {p,q}

1 (M) and J {p,q}

2 (M) are respectively the set of weights of the two object
in (IA1){p,q} above.)

• (IA3): The numbers

i − j (i < j, GrW
i M ̸= 0, GrW

j M ̸= 0)

are all distinct. (Equivalently, if M has n distinct weights, then W−1End(M) has
(n

2

)
distinct weights.)



190 Payman Eskandari and V. Kumar Murty

It is clear that (IA2){p,q} implies (IA1){p,q}, and (IA3) implies (IA2){p,q} for every p and q. Also
note that whether or not M satisfies any of these axioms only depends on GrW M .

5.3. We can now state the main result of this part of the paper:

Theorem 5.3.1. Let q ≤ p. Consider the following statements:

(i) M satisfies (IA1){p,q} and GrW M is semisimple (= completely reducible).

(ii) M satisfies (IA2){p,q}.

If either of the statements holds, then the extension Ep(M)/up(M) originates from the subcategory
⟨Wq M, GrW M⟩

⊗.

The proof of Theorem 5.3.1 shall be given in the Sections 5.4–5.6 below. Here we consider some
consequences of the theorem:

(1) Since q ≤ p, the subcategory ⟨Wq M, GrW M⟩
⊗ is contained in the subcategory ⟨Wp M, M/Wp M⟩

⊗.
Thus combining Theorems 4.9.1 and 5.3.1 we get the following refinement of Theorem 4.9.1: If state-
ments (i) or (ii) above hold for some q ≤ p, then up(M) is the smallest subobject of Hom(M/Wp M, Wp M)

such that Ep(M)/up(M) originates from ⟨Wq M, GrW M⟩
⊗.

(2) Perhaps the most interesting application of Theorem 5.3.1 is in the following scenario: Fix p. Suppose
GrW M is semisimple; for instance, this will be the case if T is a category of motives, or if T is the category
of mixed Hodge structures and GrW M is polarizable. Suppose M satisfies (IA1){p,q} for all q ≤ p (this
holds for instance, if M satisfies (IA3)). Then up(M) is the smallest subobject of Hom(M/Wp M, Wp M)

such that Ep(M)/up(M) originates from the semisimple subcategory ⟨GrW M⟩
⊗, i.e., splits. In particular,

Ep(M)/u(M) splits. For future referencing, we record this as a corollary.

Corollary 5.3.2. Fix p. Suppose GrW M is semisimple and that M satisfies (IA1){p,q} for all q ≤ p. Then
up(M) is the smallest subobject of Hom(M/Wp M, Wp M) such that Ep(M)/up(M) splits. In particular,

Ep(M)/u(M)

splits.

As a special case, we obtain:

Corollary 5.3.3. If GrW M is semisimple and (IA3) holds, then for every p the extension Ep(M)/u(M)

splits.

Remark. Recall that by Deligne’s Theorem 4.3.1, the extension∑
p

Ep(M)/u(M)

splits. As we pointed out earlier, in general, the individual extensions Ep(M)/u(M) may not split (see
Section 6.10 and item (2) of the remark therein for examples). The above results give sufficient conditions
for when an individual Ep(M)/u(M) splits.
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5.4. From this point until the end of Section 5.6 our goal is to prove Theorem 5.3.1. Given any fiber
functor ω, let U≥q(M, ω) be the kernel of the surjection

G(M, ω) → G(Wq M ⊕ GrW M, ω)

induced by the inclusion ⟨Wq M ⊕ GrW M⟩
⊗

⊂ ⟨M⟩
⊗. Then U≥q(M, ω) is the subgroup of U(M, ω)

which acts trivially on ωWq M . Let U≥q(M, ω) be the subgroup of GL(ωM) consisting of the elements
which fix the weight filtration, and act trivially on GrW ωM and ωWq M :

U≥q(M, ω) := {σ ∈ U (M, ω) : σ |ωWq M = I }.

Then

U≥q(M, ω) = U(M, ω)∩ U≥q(M, ω).

We have

Lie(U≥q(M, ω)) = Hom(ωM/ωWq M, ωM) ∩ W−1 End(ωM),

where Hom(ωM/ωWq M, ωM) is identified as the subspace of End(ωM) consisting of the elements
which vanish on ωWq M . Then

u≥q(M, ω) := Lie(U≥q(M, ω)) = u(M, ω)∩ Hom(ωM/ωWq M, ωM).

Finally, set

u≥q(M) := u(M) ∩ Hom(M/Wq M, M).

Here

Hom(M/Wq M, M)

is thought of as a subobject of End(M) via the obvious injection induced by the quotient map M →

M/Wq M (note that this is compatible with the previous identification of Hom(ωM/ωWq M, ωM) as a
subspace of End(ωM)). We then have

u≥q(M, ω) = ωu≥q(M).

5.5. Identifying

GrW End(M) = End(GrW M) =

⊕
i, j

Hom(GrW
j M, GrW

i M), (22)

we have

GrW W−1End(M) =

⊕
i, j

i< j

Hom(GrW
j M, GrW

i M).

Then for every q ,

GrW u≥q(M) ⊂ GrW Hom(M/Wq M, M) ∩ GrW W−1End(M) =

⊕
i, j

i,q< j

Hom(GrW
j M, GrW

i M). (23)
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The following lemma is the only place in the proof of Theorem 5.3.1 that conditions (i) and (ii) of the
theorem play a part.

Lemma 5.5.1. Let q ≤ p. Suppose statement (i) or (ii) of Theorem 5.3.1 holds. Then GrW u≥q(M)

decomposes as the direct sum of

GrW u≥q(M) ∩

⊕
(i, j)∈J {p,q}

1

Hom(GrW
j M, GrW

i M)

and

GrW u≥q(M) ∩

⊕
(i, j)∈J {p,q}

2

Hom(GrW
j M, GrW

i M).

Proof. The direct sum in (23) is over all pairs (i, j) in J {p,q}

1 ⊔ J {p,q}

2 , so that we can rewrite (23) as

GrW u≥q(M) ⊂

(I)︷ ︸︸ ︷⊕
(i, j)∈J {p,q}

1

Hom(GrW
j M, GrW

i M) ⊕

(II)︷ ︸︸ ︷⊕
(i, j)∈J {p,q}

2

Hom(GrW
j M, GrW

i M) .

First suppose GrW M is semisimple and M satisfies (IA1){p,q}. Then the object GrW u≥q(M) (living in
the semisimple category ⟨GrW M⟩

⊗) is a direct sum of simple objects. By (IA1){p,q}, each simple direct
factor either lives in (I) or (II).

On the other hand, if (IA2){p,q} holds, then each nonzero graded component Gr W
n u≥q(M) must live

in (I) or (II) (whichever has a nonzero weight n part). □

5.6. We are ready to give the proof of Theorem 5.3.1. We may assume that M/Wp M is not zero.
Consider Ep(M) as an extension of the unit object by Hom(M/Wp M, Wp M), given by (19). In view of
Section 5.4 and Lemma 3.4.2, it is enough to check right exactness of the sequence obtained by applying
U≥q(M, ω)-invariance to ω(Ep(M)/up(M)) for a suitably chosen fiber functor ω. Let ω0 be an arbitrary
fiber functor. We shall take the composition

ωgr
: T GrW

−→ T ω0
−→ ModK

as our fiber functor ω.
Via the identification

Hom(M/Wp M, M) ⊂ End(M),

we think of the image under ωgr of every subobject of Hom(M/Wp M, M) as a subspace of ωgrEnd(M).
Throughout, we shall write the elements of

ωgrEnd(M) = End(ωgr M) = End
(⊕

n

ω0 GrW
n M

)
=

⊕
i, j

Hom(ω0 GrW
j M, ω0 GrW

i M)
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as 2 by 2 block matrices with rows (resp. columns) broken up as {i : i ≤ p} ∪ {i : i > p} (resp. the same
with j replacing i). Then an element

f ∈ ωgrHom(M/Wp M, M)†
= Hom(ωgr(M/Wp M), ωgr M)†

looks like (
0 ∗

0 λ( f )I

)
.

The surjective arrow

Hom(ωgr(M/Wp M), ωgr M)†
→ K

in ωgrEp sends f to λ( f ).
Consider the element

f0 =

(
0 0
0 I

)
∈ Hom(ωgr(M/Wp M), ωgr M)†.

We will show that if conditions (i) or (ii) of Theorem 5.3.1 hold (and q ≤ p), then the element f0+ωgrup(M)

of
Hom(ωgr(M/Wp M), ωgr M)†

ωgrup(M)

is fixed by U≥q(M, ωgr); this proves surjectivity of(
Hom(ωgr(M/Wp M), ωgr M)†

ωgrup(M)

)U≥q (M,ωgr)

→ K

and hence the theorem. Since U≥q(M, ωgr) is unipotent, it is enough to verify that f0 + ωgrup(M) is
fixed by every σ ∈ U≥q(M, ωgr)(K ) ⊂ GL(ωgr M). Given such a σ , we must show that

σ f0σ
−1

− f0 ∈ ωgrup(M) = up(M, ωgr). (24)

Writing

σ =

(
σ1 A
0 σ2

)
,

we have

log(σ ) =

(
log σ1 ∗

0 log σ2

)
∈ u≥q(M, ωgr) = ω0 GrW u≥q(M).

Applying ω0 to the decomposition of GrW u≥q(M) given in Lemma 5.5.1, it follows that(
log σ1 0

0 log σ2

)
∈ u≥q(M, ωgr),

so that

δ :=

(
σ1 0
0 σ2

)
∈ U≥q(M, ωgr)(K ).
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We thus have

σ f0σ
−1

− f0 =

(
0 Aσ−1

2
0 0

)
= log(σδ−1) ∈ u≥q(M, ωgr).

We have shown that σ f0σ
−1

− f0 is in u(M, ωgr). Being an element of the form
( 0

0
∗

0

)
, it will be actually

in up(M, ωgr), as desired.

5.7. We end this section with a variant of Theorem 5.3.1 for q > p, which again gives a sufficient
condition to guarantee that Ep(M)/up(M) originates from the category ⟨Wq M, GrW M⟩

⊗.9 two categories
⟨Wq M, GrW M⟩

⊗ and ⟨Wp M, M/Wp M⟩
⊗ necessarily contains the other.

For q > p, consider the following three sets:

J ′{p,q}

1 := {(i, j) ∈ Z2
: i ≤ p, j > q}.

J ′{p,q}

2 := {(i, j) ∈ Z2
: p < i ≤ q < j}.

J ′{p,q}

3 := {(i, j) ∈ Z2
: q < i < j}.

Say an object M of T satisfies (IA1′){p,q} if the objects⊕
(i, j)∈J ′{p,q}

k

Hom(GrW
j M, GrW

i M)

for k = 1, 2, 3 have no nonzero isomorphic subobjects. We say M satisfies (IA2′){p,q} if the sets of
weights of these objects are disjoint. Then (IA2′){p,q} implies (IA1′){p,q}, and (IA3) implies (IA2′){p,q}

for every p, q.

Theorem 5.7.1. Let q > p. Suppose one of the following statements holds:

(i) GrW M is semisimple and M satisfies (IA1′){p,q}.

(ii) M satisfies (IA2′){p,q}.

Then the extension Ep(M)/up(M) originates from ⟨Wq M, GrW M⟩
⊗.

Proof. The proof is similar to the proof of Theorem 5.3.1. Note that the pairs (i, j) appearing in (23)
are those in J ′{p,q}

1 ∪ J ′{p,q}

2 ∪ J ′{p,q}

3 . Similar to Lemma 5.5.1, hypothesis (i) or (ii) above imply that
GrW u≥q(M) is the direct sum of its intersections with the three objects⊕

(i, j)∈J ′{p,q}

k

Hom(GrW
j M, GrW

i M) (25)

for k = 1, 2, 3. Taking ωgr and f0 as in the proof of Theorem 5.3.1, we shall show that for every
σ ∈ U≥q(M, ωgr)(K ),

σ f0σ
−1

− f0 ∈ u(M, ωgr)

9The content of this subsection will not be used anywhere else in the paper. A reader mainly interested in the application to
motives may skip to Section 6.
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(it will then automatically be in up(M, ωgr)). Decompose

log σ = τ1 + τ2 + τ3,

where τk is the component in (25); each τk is in u≥q(M, ωgr), thanks to hypothesis (i) or (ii). Writing
the elements of End(ωgr M) as 3 × 3 block matrices with the rows (resp. columns) broken up as
{i : i ≤ p} ∪ {i : p < i ≤ q} ∪ {i : i > q} (resp. the same with j replacing i), we have

log(σ ) =

0 τ1

0 τ2

τ3


(with zero missing entries), so that

σ =

I τ1(exp(τ3) − 1)/τ3

I τ2(exp(τ3) − 1)/τ3

exp(τ3)

 and σ−1
=

I τ1(exp(−τ3) − 1)/τ3

I τ2(exp(−τ3) − 1)/τ3

exp(−τ3)

 ,

where for brevity, for a nilpotent map N we have set

(exp(N ) − 1)/N :=

∑
n≥0

N n/(n + 1)!.

Then one calculates

σ f0σ
−1

− f0 =

0 τ1(1 − exp(−τ3))/τ3

0 0
0

 .

This belongs to u(M, ωgr) because τ1, τ3 are in the Lie algebra u(M, ωgr) and

[τ1, τ3] = τ1τ3, [[τ1, τ3], τ3] = τ1τ
2
3 , . . . . □

6. Motives with large unipotent radicals of motivic Galois groups

6.1. In this section, unless otherwise indicated, T is any reasonable Tannakian category of mixed motives
in characteristic zero, or the category of mixed Hodge structures. Examples of the former include the
(now known to be equivalent [Choudhury and Gallauer Alves de Souza 2017]) Tannakian categories
of mixed motives over a subfield of C due to Nori [Huber and Müller-Stach 2017] and Ayoub [2014a;
2014b], Voevodsky’s category of mixed Tate motives over Q (or those over Z, etc.), and categories of
mixed motives defined via realizations (see [Deligne 1989] or [Jannsen 1990]). See the remark at the end
of this section for what we exactly need of T . We shall use the word motive to refer to any object of T
whose weight associated graded is semisimple. Of course, in the case that T is a reasonable category
of mixed motives, this will simply mean an arbitrary object of T . In the case of the category of mixed
Hodge structures, this will include (graded-) polarizable objects, and in particular, the Hodge realizations
of mixed motives.
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Let M be a motive. We say u(M) is large (or that M has a large u) if

u(M) = W−1End(M).

Similarly, we say up(M) is large if

up(M) = Hom(M/Wp M, Wp M).

Then u(M) is large if and only if up(M) is large for every p. The interest in motives with large u is partly
because of Grothendieck’s period conjecture. If T is a good category of motives over a number field,
among the motives with a fixed associated graded, the periods of a motive with large u should generate a
field with the largest possible transcendence degree. We refer the reader to [André 2004] for a detailed
discussion of Grothendieck’s period conjecture.

Our main goal in this section is to use the earlier results of the paper to obtain motives with large u

and three weights. We will be particularly interested in motives M with three weights −2n < p < 0,
associated graded isomorphic to

Q(n) ⊕ A ⊕ 1

where A is a given pure motive of weight p, and such that u(M) is large. We shall prove a precise
classification result for such motives in terms of homological algebra, which completely classifies such
motives up to isomorphism when n ̸= −p and Ext1(1, Q(n)) = 0 (e.g., for even n if T is any reasonable
category of motives over Q). The condition n ̸= −p here is an independence axiom (referring to the
language of the previous section). See Corollary 6.7.1 for the precise statement of the classification result.
As an example, in Section 6.8 we shall consider the case where A is the simple Tate motive Q(k) and
construct certain interesting mixed Tate motives over Q.

It turns out that the machinery we shall need works in more generality with little extra effort. So we
have decided to develop the results in more generality first and then apply them to the case of motives
with three weights. We shall however start with the simplest case below, i.e., motives with only two
weights; the observations made in this case will be useful when we deal with more than two weights.

Remark. Our restriction to the categories of motives and mixed Hodge structures here is for reasons to
do with motivation and applications. Unless we explicitly say otherwise, the discussions can be assumed
to take place in the following setting: Take T to be any Tannakian category over a field K of characteristic
zero, equipped with a weight filtration (as in previous sections), and interpret the word “motive” as an
object of T whose associate graded with respect to the weight filtration is semisimple. In discussions
where the Tate objects Q(n) make an appearance, Q(n) may denote any object of weight −2n and
dimension 1 (even if K ̸= Q).

6.2. We shall use the following terminology: an extension of 1 by an object L is totally nonsplit if its
pushforward to any nonzero quotient of L is nontrivial (= nonsplit); dually, we say an extension of an
object L by 1 is totally nonsplit if its pullback to any nonzero subobject of L is nontrivial. Note that if L
is simple, then “totally nonsplit” and “nonsplit” are equivalent.
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Suppose M is an object with two weights, fitting in a short exact sequence

0 → L → M → 1 → 0, (26)

where L is a pure motive of weight p < 0.10 Then

W−1End(M) = Hom(1, L) ∼= L .

By Theorem 4.9.1 (or Deligne’s Theorem 4.3.1 or [Hardouin 2011, Theorem 2], see also the latter’s
predecessors, [Bertrand 2001, Theorem 1.1] and [Hardouin 2006, Théorème 2.1]), u(M) (= up(M)) is the
smallest subobject of L such that the pushforward of the extension (26) to Ext1(1, L/u(M)) splits. (Indeed,
note that via the identification of Hom(1, L) and L , the extension Ep(M) appearing in Theorem 4.9.1 is
simply (26). Also note that the total class E(M) of M is a nonzero multiple of Ep(M).) Thus u(M) is
large if and only if (26) is totally nonsplit. In particular, if L is simple, then

u(M) =

{
L if M is not semisimple,
0 if M is semisimple.

Remark. Let T be any Tannakian category over K with a weight filtration. Then for any object M of T
with semisimple GrW M the following statements are equivalent:

(i) u(M) is zero.

(ii) M is semisimple.

(iii) M is isomorphic to GrW M .

Indeed, choosing a fiber functor one easily sees (i) ⇒ (ii) ⇒ (iii) ⇒ (i) (note that among these the
implication (i) ⇒ (ii) is the only one that needs the assumption of semisimplicity of GrW M). This gives
another argument for the characterization of u(M) given above when L is simple.

6.3. In this section we will use the results of Sections 4 and 5 to give a criterion for a motive to have a
large u in terms of its subobjects and subquotients.

Theorem 6.3.1. Let p < 0 and M be a motive such that

M/Wp M ≃ 1, GrW
p M ̸= 0 (27)

(so that in particular, 0 and p are the highest two weights of M). Suppose moreover that:

(i) u(Wp M) is large.

(ii) u(M/Wp−1 M) is large.

(iii) M satisfies (IA1){p,q} for all q ≤ p.

Then u(M) is large.

10Note that this makes M also a motive (as GrW M ≃ L ⊕ 1 is semisimple).
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Proof. Note that since M/Wp M is pure, for any choice of fiber functor ω, we have U≥p(M, ω) =

Up(M, ω). Indeed, if σ is in G(M, ω), then σGrW M and σWp M are both identity if and only if σGrW (M/Wp M)

and σWp M are both identity, and by purity GrW (M/Wp M) ≃ M/Wp M . Thus the kernel of the surjection

u(M) → u(Wp M)

induced by the inclusion ⟨Wp M⟩
⊗

⊂ ⟨M⟩
⊗ is up(M). In light of purity of M/Wp M , from this it follows

that u(M) is large if and only if u(Wp M) and up(M) are both large.
In view of hypothesis (iii) and the fact that M is a motive, Corollary 5.3.2 tells us that up(M) is

the smallest subobject of Hom(M/Wp M, Wp M) such that Ep(M)/up(M) splits. Fix an isomorphism
between M/Wp M and 1 to identify the two objects. Then

up(M) ⊂ Hom(M/Wp M, Wp M) = Hom(1, Wp M) ∼= Wp M.

Via the latter identification, the extension

Ep(M) ∈ Ext1(1, Hom(1, Wp M)) = Ext1(1, Wp M)

is simply the canonical extension

0 → Wp M → M → 1 → 0, (28)

where the surjective arrow is the quotient map M → M/Wp M = 1. Let A be any subobject of Wp M
such that Ep(M)/A splits. The goal is to show that A = Wp M .

Modding out by Wp−1 M , the extension (28) pushes forward to

0 → GrW
p M → M/Wp−1 M → 1 → 0. (29)

By Section 6.2, u(M/Wp−1 M) is large if and only if this extension is totally nonsplit. In view of
hypothesis (ii), it follows that we must have

A + Wp−1 M = Wp M. (30)

Indeed, otherwise, by modding out (28) by A + Wp−1 M we see that the pushforward of (29) to a nonzero
subquotient of GrW

p M splits, contradicting the fact that (29) is totally nonsplit.
Now consider the diagram:

A

0 Wp−1 M Wp M GrW
p M 0

⊂

We just saw that diagonal arrow is surjective. It follows that the extension in the diagram is the pushforward
of an extension of GrW

p M by A ∩ Wp−1 M (under inclusion map). Thus the extension

Ep−1(Wp M) ∈ Ext1(1, Hom(GrW
p M, Wp−1 M))
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is the pushforward of an extension of 1 by

Hom(GrW
p M, A ∩ Wp−1 M) ⊂ Hom(GrW

p M, Wp−1 M),

i.e., that
Ep−1(Wp M)/Hom(GrW

p M, A ∩ Wp−1 M)

splits. By Theorem 4.9.1, we get

up−1(Wp M) ⊂ Hom(GrW
p M, A ∩ Wp−1 M).

But since u(Wp M) is large, so is up−1(Wp M). Thus

Hom(GrW
p M, A ∩ Wp−1 M) = Hom(GrW

p M, Wp−1 M).

Since GrW
p M is nonzero, this implies that Wp−1 M ⊂ A. Combining with (30) we get that A = Wp M , as

desired.11 □

Remark. (1) As pointed out in the proof, hypothesis (ii) of Theorem 6.3.1 is equivalent to the extension
(29) being totally nonsplit. If we assume moreover that Grp M is simple, then this is equivalent to
M/Wp−1 M not being semisimple.

(2) Let M be a motive which satisfies (27) (with p < 0). It is easy to see that if up(M) is large, then so
is u(M/Wp−1 M). Indeed, if the latter is not large, then the pushforward of (29) to a nonzero quotient of
GrW

p M splits. The same split extension is then the pushforward of (28) to a nonzero quotient of Wp M ,
so that by Theorem 4.9.1 up(M) is not large.

Now suppose that u(M) is large. As we observed in the beginning of the proof of Theorem 6.3.1, this
implies that both u(Wp M) and up(M) are large. We record the conclusion:

If M is a motive satisfying (27) (with p < 0) and u(M) is large, then both u(Wp M) and u(M/Wp−1 M)

are large.
Note that here we did not need to assume M satisfies any independence axiom. Theorem 6.3.1 asserts

that if we further assume that M satisfies the independence axiom given in hypothesis (iii) of the theorem,
then the converse to the statement above is also true.

(3) Hypothesis (iii) of the theorem (which was used in the proof to guarantee that Ep(M)/up(M) splits)
is actually important: the statement of the theorem is false if we remove Hypothesis (iii). See Section 6.10
for an example.

6.4. In view of Theorem 6.3.1 one may hope to form motives with large u by patching together suitable
smaller such motives. The goal of the next few subsections is to try to classify, up to isomorphism, all
motives M with large u which satisfy (27) and which, up to isomorphism, have a fixed Wp−1 M (with

11Note that the assumption that GrW
p M is nonzero is actually important for the proof. Thus when we want to apply

Theorem 6.3.1 to show that a given motive M has a large u, we do not have a choice about what to take as p; it is determined by
the motive M .
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large u) and GrW
p M (with the isomorphisms not part of the data). To this end, let us first consider a

related problem. For the discussion in this subsection, T can be any abelian category (we will eventually
apply the discussion to our category of motives).

Throughout, we fix objects A, B and C in T (in our final application, these will be respectively
(the fixed objects which are to be isomorphic to) GrW

p M , Wp−1 M , and 1). Grothendieck considers the
following problem in [SGA 7I 1972, Section 9.3 of Exposé 9]: Classify all tuples

(M; (Mi )−3≤i≤0; γ0, γ−1, γ−2)

where

M = M0 ⊃ M−1 ⊃ M−2 ⊃ M−3 = 0

are objects of T and

M/M−1 = M0/M−1
γ0

−→ C, M−1/M−2
γ−1
−→ A, M−2/M−3 = M−2

γ−2
−→ B

are isomorphisms. The classification is to be done up to isomorphisms of such tuples, defined in the
obvious way. Here it is convenient for us to consider a slight variant of this problem, where we do not
include the data of the isomorphisms γi in the tuple, but instead just require that the quotients M0/M−1,
M−1/M−2 and M−2/M−3 = M−2 are isomorphic to C , A and B, respectively.

We say that a pair of extension classes

(L, N) ∈ Ext1(A, B) × Ext1(C, A)

is compatible if there is a commutative diagram in T

0 0

0 B L A 0

0 B M N 0

C C

0 0

(31)

where the rows and columns are exact, the first (complete) row represents L, and the second (complete)
column represents N. We say an object M is attached to the pair (L, N) if it fits in a diagram as above.
Note that if we have a diagram as above, (by adjusting the maps when needed) we may replace the first
row (resp. second column) by any other representative of L (resp. N).
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In [SGA 7I 1972], a diagram as above is called an extension panachée of the second column sequence
by the top row sequence.12 Thus to say the pair (L, N) is compatible amounts to saying that an extension
panachée of (an or every representative of) N by (an or every representative of) L exists, or that (L, N)

is “panachable”, in the language of [Bertrand 2013].
The theory of Yoneda extensions gives a simple characterization of compatible pairs. Let

◦ : Ext1(A, B) × Ext1(C, A) → Ext2(C, B)

be the Yoneda (composition) pairing; it sends the pair (L, N) with L given by

0 → B → L π
−→ A → 0 (32)

and N given by

0 → A ι
−→ N → C → 0

to the extension L ◦ N given by

0 → B → L ι◦π
−→ N → C → 0.

Lemma 6.4.1. (a) The pair (L, N) is compatible if and only if L ◦ N = 0.

(b) Suppose Ext1(C, B) = 0. If (L, N) is compatible, then up to isomorphism there is a unique object
attached to it.

Proof. This is Lemma 9.3.8 of [SGA 7I 1972]. Fix the extension (32) representing L. If M is attached to
the pair, fitting into a diagram as in (31), then the class

M ∈ Ext1(C, L)

of the first column in the diagram pushes forward to N under π . Conversely, if N is in the image of the
pushforward

π∗ : Ext1(C, L) → Ext1(C, A),

with M represented by

0 → L → M → C → 0

in the preimage of N, then the object M is attached to our pair. Thus the pair (L, N) is compatible if and
only if N is in the image of π∗. Now by the general theory of Yoneda extensions, applying the functor
Hom(C, −) to (32) we get an exact sequence

Ext1(C, B) → Ext1(C, L)
π∗

−→ Ext1(C, A)
δ=L◦−

−−−−→ Ext2(C, B);

see [Buchsbaum 1959, Section 3] or [Yoneda 1960, page 561]. This proves part (a).

12Or as Bertrand translates in [Bertrand 1998], a blended extension.



202 Payman Eskandari and V. Kumar Murty

As for the statement in part (b), if M and M ′ are attached to (L, N), fitting into diagrams as in (31)
with the classes of the corresponding first columns denoted by M and M′ (both in Ext1(C, L)) respectively,
then it follows from the above long exact sequence that M and M′ differ by an element in the image of
Ext1(C, B). If this Ext group is zero, then M = M′, and hence in particular M and M ′ are (noncanonically)
isomorphic. □

Remark. In a reasonable Tannakian category of mixed motives over a number field it is expected that
one should have Ext2(X, Y ) = 0 for every objects X and Y . So in that context, every pair should be
compatible. See the remark in the end of Section 6.7 for a more detailed discussion of the Ext groups in
our particular categories of interest.

6.5. We shall continue in the setting of the previous subsection (T any abelian category, and B, A, C
three fixed objects of T ). Our goal in this subsection is to see when the same object is attached to two
compatible pairs of extensions.

We use the notation End( ) (resp. Aut( )) for the endomorphism algebra (resp. automorphism group)
of an object in T . The endomorphism algebra End(A) of A acts on both Ext1(A, B) and Ext1(C, A).
Indeed, the action on Ext1(A, B) is a right action given by pullback: if f is an endomorphism of A, set
L · f := f ∗L ( f ∗ for pullback along f ). The action on Ext1(C, A) is a left action given by push forward:
f · N := f∗N (to see the bilinearity properties of these actions, see [Buchsbaum 1959] or [Yoneda 1960]).
If f is an automorphism of A, then L · f and f · N are simply obtained by twisting respectively the
surjective and injective arrows of L and N by f −1, i.e., L · f (resp. f · N) is the class of the extension
obtained by replacing the surjective (resp. injective) arrow π (resp. ι) in a representative of L (resp. N)
by f −1

◦ π (resp. ι ◦ f −1).
We restrict the two actions above on Ext1(A, B) and Ext1(C, A) to the actions of the group Aut(A).

We also modify the action on Ext1(C, A) so that it also becomes a right action, by setting N · f := f −1
∗

N.
Thus N · f is the class of the extension obtained by twisting the injective arrow of N by f . Similarly, we
have right actions of Aut(B) (resp. Aut(C)) on Ext1(A, B) (resp. Ext1(C, A)).

We now equip the product

Ext1(A, B) × Ext1(C, A) (33)

with the following right actions of Aut(B), Aut(A), and Aut(C): the group Aut(B) (resp. Aut(C)) acts
by acting on the first (resp. second) factor, and Aut(A) acts diagonally, i.e., by the formula

(L, N) · f := (L · f, N · f ) = ( f ∗L, f −1
∗

N).

The three actions commute with one another. Indeed, the actions of Aut(B) and Aut(C) trivially commute,
and the commutativity of the actions of Aut(A) with each of Aut(B) and Aut(C) is clear from the
description of the actions in terms of twisting the arrows, as different groups act by twisting different
arrows. Thus we get an action of Aut(B) × Aut(A)× Aut(C) on the product (33). We say two pairs of
extensions are equivalent if they are in the same orbit of this action.
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Lemma 6.5.1. Let (L, N) and (L′, N′) be in (33).

(a) Suppose (L, N) and (L′, N′) are equivalent. Then every object attached to the pair (L, N) is
also attached to the pair (L′, N′). (In particular, (L, N) is compatible if and only if (L′, N′) is
compatible.)

(b) Suppose every object of T is equipped with an exact functorial increasing filtration W• which is finite
on every object (we refer to this as the weight filtration). Suppose moreover that the highest weight
of B is less than the lowest weight of A, and that the highest weight of A is less than the lowest
weight of C. Then if there is an object M attached to both (L, N) and (L′, N′), then the two pairs
are equivalent.

Proof. (a) Let (L′, N′) = (L, N) · ( fB, f A, fC) for some fB ∈ Aut(B), f A ∈ Aut(A), and fC ∈ Aut(C).
Suppose M is attached to (L, N). In a diagram as in (31) (with the first row and second column respectively
representing L and N), twist the arrows B → L and B → M by fB , the arrow L → A by f −1

A , the
arrow A → N by f A, and the arrows M → C and N → C by fC , while keeping L → M and M → N
unchanged. The diagram remains commutative and with exact rows and columns, and its first row (resp.
second column) represents L′ (resp. N′).

(b) Suppose an object M is attached to both (L, N) and (L′, N′). We consider two diagrams as in (31), one
with objects L , N with the first row and second column representing L and N, and the other with objects
L ′, N ′ with the first row and second column representing L′ and N′. In the diagram for (L, N), we name
the maps as follows: In the first row, (resp. second row, second column) the injective arrow is ιL (resp.
ιM , ιN ) and the surjective arrow is πL (resp. πM , πN ). We refer to the maps L → M and M → C as α and
β, respectively. Accordingly, denote the maps in the diagram for (L′, N′) by ιL ′, πL ′, ι′M , π ′

M , ιN ′, πN ′, α′

and β ′ (each map being the analogue to its lookalike in the first diagram). (Note that the central object
in both diagrams in M .)

Let b, a and c be respectively the highest weights of B, A and C . Focusing on the first diagram, using
exactness of the weight filtration together with the hypothesis that every weight of B is less than every
weight of A, which in turn is less than every weight of C , we see that

Wb L = ιL(B), Wa L = L , Wb N = 0, Wa N = ιN (A), Wc N = N
and

Wb M = ιM(B), Wa M = α(L), Wc M = M.

We have similar equalities for the ′-adorned analogues coming from the second diagram. In particular,

ιM(B) = ι′M(B) = Wb M, α(L) = α′(L ′) = Wa M.

Thus we get isomorphisms

α−1α′
: L ′

→ L and ι−1
M ι′M : B → B

(uniquely) defined by the property that

α(α−1α′) = α′ and ιM(ι−1
M ι′M) = ι′M .
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We have a commutative diagram

0 B L ′ A 0

0 B L A 0,

ι−1
M ι′M

ιL′

α−1α′

πL′

=:γ

ιL πL

where the rows are exact and the vertical arrows are isomorphisms (to see the commutativity of the first
square further compose with α). Thus L′ is obtained from L by twisting ιL by ι−1

M ι′M and twisting πL

by γ −1.
On the other hand, since we have ιM(B) = ι′M(B) = Wb M , by exactness of the second rows in the

diagrams of the two pairs, πM and π ′

M induce isomorphisms

πM : M/Wb M → N , π ′

M : M/Wb M → N ′.

Similarly, thanks to exactness of the first columns (and on recalling α(L) = α′(L ′) = Wa M), we have
isomorphisms

β : M/Wa M → C, β ′ : M/Wa M → C,

induced by β and β ′, respectively. We now have a commutative diagram

0 A N ′ C 0

0 A N C 0,

=:λ

ιN ′

πMπ ′

M
−1

πN ′

ββ ′
−1

ιN πN

(34)

where the rows are exact and vertical arrows are isomorphisms (to see commutativity of the second square
precompose with π ′

M : M → N ′). It follows that N′ is obtained from N by twisting ιN by λ and twisting
πN by β ′β

−1
.

To complete the proof, it suffices to show that γ = λ, as then

(L′, N′) = (L, N) · (ι−1
M ι′M , γ, ββ ′

−1
).

Ignoring the dashed arrow, we have a commutative diagram

C M/Wa M C

N M/Wb M N ′

M

L L ′

A A,

β

≃

β ′

≃

πN

πM

≃

π ′

M

≃

πN ′

πM π ′

M

πL

α

α−1α′

≃

α′

πL′

ιN ιN ′
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where the vertical arrows in the middle are the obvious maps. The map γ is the unique map that if it
is included as the dashed arrow, it makes the bottom trapezoid of the diagram commute. But from the
diagram we easily see that λ also does this job. Indeed, to check commutativity of the trapezoid with λ as
the dashed arrow, it is enough to check commutativity after composing with ιN . Now using commutativity
of the rest of the diagram above and the left square in (34), we have

ιN πL(α−1α′) = πMα′
= ιN λπL ′ . □

6.6. We now combine the results of the previous two subsections on compatible pairs. We shall assume
that T is an abelian category equipped with a weight filtration (i.e., a functorial, exact, increasing filtration
which is finite on every object). As in the previous two subsections, B, A, C are fixed objects of T . The
following result, which for future reference we record as a proposition, has been mostly already proved in
the previous two subsections.

Proposition 6.6.1. Suppose every weight of B is less than every weight of A, and that every weight of A
is less than every weight of C. Let b, a, c be the highest weights of B, A, C , respectively.

(a) Any pair of extensions (L, N) in (33) is compatible if and only if

L ◦ N = 0 in Ext2(C, B).

(b) If M is an object that is attached to some pair of extensions in (33), then we have

B ≃ Wb M, A ≃ Wa M/Wb M, C ≃ M/Wa M. (35)

(c) Any object M satisfying (35) is attached to some pair (L, N) of extensions in (33). Moreover, M
is attached to any other pair (L′, N′) if and only if (L′, N′) is equivalent to (L, N). We have a
(well-defined) surjective map{

the collection of objects M satisfying
(35), up to isomorphism

}
→

{
the collection of compatible pairs

in (33), up to equivalence

}
which sends the isomorphism class of M to the equivalence class of any pair (or all pairs) (L, N) to
which M is attached.

(d) If Ext1(C, B) = 0, then the surjection above is a bijection.

Proof. (a) This is Lemma 6.4.1(a).

(b) This follows from the observations made at the beginning of the proof of Lemma 6.5.1(b) about the
weight filtration of M . (Note that the isomorphisms are noncanonical, as they depend on the particular
choice of diagram (31).)
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(c) Given M satisfying (35), we have a diagram

0 0

0 Wb M Wa M Wa M/Wb M 0

0 Wb M M M/Wb M 0

M/Wa M M/Wa M

0 0

(with obvious maps, exact rows and columns). Now use some choice of isomorphisms (35) to replace
Wb M , Wa M/Wb M , and M/Wa M respectively by B, A, and C . Take L (resp. N) to be the extension
class of the top row (resp. last column) in the new diagram. Then M is attached to the (compatible) pair
(L, N). By Lemma 6.5.1(b), M is attached to another pair (L′, N′) if and only if (L′, N′) is equivalent to
(L, N). On the other hand, if M ′ is isomorphic to M , then M ′ is clearly attached to the same pairs as M .
Thus we have a well-defined map as in the statement. It is surjective by the definition of compatibility
and Part (b).

(d) This follows from Lemmas 6.4.1(b) and 6.5.1(a). □

6.7. We now return to the discussion of motives with large u (with T again a Tannakian category of
mixed motives or the category of rational mixed Hodge structures). Given any two motives A and B, let
us say an extension class in Ext1(A, B) has a large u if the object in the middle of a representing short
exact sequence has a large u. This is clearly well-defined, and moreover, the property of having a large u

is invariant under the action of Aut(A)× Aut(B) (because the collection of the objects that can appear as
the middle object for two extension classes in the same orbit are the same, as by twisting the arrows we
can turn a representative of one extension class to a representative of another extension class in the same
orbit). Note that if A is simple (resp. pure), then an extension class in Ext1(1, A) has a large u if and
only if it is nonsplit (resp. totally nonsplit).

We say a pair of extensions (L, N) in (33) has a large u if both extensions L and N have a large u.
This property is invariant under our notion of equivalence of pairs.

We now fix an integer p < 0, and motives B and A with

B = Wp−1 B, A ∼= GrW
p A ̸= 0.

(In other words, all weights of B are < p, and A is nonzero and pure of weight p; note that B may be
mixed.) Proposition 6.6.1 gives a surjection (bijection if Ext1(1, B) = 0) from the collection of motives
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M satisfying

Wp−1 M ≃ B, GrW
p M ≃ A, M/Wp M ≃ 1 (36)

up to isomorphism to the collection of compatible pairs in

Ext1(A, B) × Ext1(1, A)

(= the kernel of the composition pairing into Ext2(1, B)) up to equivalence (i.e., the action of Aut(B) ×

Aut(A)×Aut(1)). By Theorem 6.3.1, if B ⊕ A ⊕1 satisfies the independence axiom (IA1){p,q} for every
q ≤ p, then given any compatible pair (L, N) with a large u, any object M attached to the pair also has
a large u. Conversely, if an object M satisfying (36) has a large u, then so does any pair (L, N) in the
equivalence class of the extension pairs corresponding to M (see item (2) after Theorem 6.3.1; note that
here no independence axiom needs to be satisfied).

We record the following special case as a corollary:

Corollary 6.7.1. Let −2n < p < 0 and p ̸= −n. Let A be a nonzero simple motive of weight p. Suppose
moreover that Ext1(1, Q(n)) = 0. Then there is a bijection

the collection of objects M
with GrW M ≃ Q(n) ⊕ A ⊕ 1

and large u(M), up to
isomorphism

 →


the collection of compatible pairs

of nonsplit extensions in
Ext1(A, Q(n)) × Ext1(1, A),

up to equivalence


which assigns to the isomorphism class of an object M the equivalence class of the compatible pairs to
which M is attached. If we omit the condition Ext1(1, Q(n)) = 0, this map is well-defined and surjective.

(Note that the condition p ̸= −n guarantees (IA3).)

Remark. (1) In any reasonable Tannakian category of mixed motives over a number field, all the Ext2

groups (and hence all the higher Ext group) are expected to vanish. The Ext1 groups in such a category
should be related to Chow groups and motivic cohomology (and algebraic K-theory). See for instance,
the beautiful articles of Nekovar [1994] and Jannsen [1994]. The only case of a Tannakian category of
motives where the Ext groups are actually known is the case of the category of mixed Tate motives. See
part (2) for a discussion of this case.

(2) Let MT(F) be Voevodsky’s category of mixed Tate motives over a number field F . The Ext2 groups
in MT(F) are zero, and the groups

Ext1MT(F)(1, Q(n))

are given by the K-theory of the field F modulo torsion, which in turn is described by theorems of Borel
and Soulé (and Dirichlet in the case of K1). In particular, if F is totally real and n is even, the Ext1 group
above vanishes. (See [Deligne and Goncharov 2005] for the precise description of the Ext groups in
MT(F) and the subcategory of mixed Tate motives over the ring of integers of F . Note that if MM(F)

is any category of mixed motives over F for which the full Tannakian subcategory generated by Q(1)
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and closed under extensions is equivalent to Voevodsky’s MT(F), then the Ext1 groups above are the
same in MM(F) and MT(F).)

(3) In the category MHS of rational mixed Hodge structures, the Ext2 groups vanish; see [Beı̆linson
1986]. The Ext1 groups in this category are described by the results of Carlson [1980].

6.8. In this subsection, we shall take T to be Voevodsky’s category MT(Q) of mixed Tate motives over Q.
As an application of the previous results, we shall classify (up to isomorphism) all 3-dimensional objects
of MT(Q) with three distinct weights, large u, and satisfying an independence axiom; see below for more
details.13 Note that for any 3-dimensional object M of MT(Q) with three distinct weights and large u,
the unipotent radical of the motivic Galois group G(M, ωB) (with ωB the Betti realization functor) has
dimension equal to 3 (= dim W−1 End(ωB M)). Since

G(GrW M, ωB) ≃ Gm,

the motivic Galois group G(M, ωB) has dimension 4. Thus Grothendieck’s period conjecture would
predict that the transcendence degree of the field generated by the periods of M should be 4.

Let us first recall the description of the Ext groups between simple objects in MT(Q) (see [Deligne
and Goncharov 2005], for instance)

dim Ext1(1, Q(n)) =

{
0 if n is even or ≤ 0
1 if n is odd and ≥ 3

Ext1(1, Q(1)) ∼= Q×
⊗ Q

(37)

moreover, Ext2 groups all vanish in MT(Q).
Back to our classification problem, we may assume that the highest weight of our motives is zero. We

shall classify all motives with an associated graded of the form

Q(n) ⊕ Q(k) ⊕ 1 (n > k > 0, n ̸= 2k)

which have a large u. (The condition n ̸= 2k is an independence axiom. The case where n = k is
complicated, as then one can no longer use Theorem 6.3.1.) For any such motive, the pair (L, N) in

Ext1(Q(k), Q(n)) × Ext1(1, Q(k)) (38)

associated to it by Corollary 6.7.1 (also see Proposition 6.6.1) has nonsplit entries. In view of the
description of the Ext1 groups in the category, we see that k must be odd and n must be even. We will
then have a bijection as in Corollary 6.7.1.

Let us consider the action of Aut(Q(n))×Aut(Q(k))×Aut(1) on (38). Since the automorphism group
of every Q(a) is Q∗, it follows from bilinearity of the actions of End(A) on Ext1(A, B) and Ext1(B, A)

(for any A, B in any K -linear category) that the action of Aut(Q(k)) can be absorbed into the actions of

13The classification is then valid in any Tannakian category MM(Q) of mixed motives over Q for which the smallest full
Tannakian subcategory containing Q(1) and closed under extensions is equivalent to MT(Q).
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the other two factors: (λ, γ, δ) acts the same as (λγ −1, 1, γ δ) (where λ, γ, δ ∈ Q∗). It follows that an
orbit of the action of Aut(Q(n)) × Aut(Q(k)) × Aut(1) on (38) coincides with an element of

(Ext1(Q(k), Q(n))/ Aut(Q(n))) × (Ext1(1, Q(k))/ Aut(1)) (39)

(with both actions made right actions, as before).

Case I: k = 1. Then n is ≥ 4 (and even), and

Ext1(Q(k), Q(n)) ∼= Ext1(1, Q(n − k))

is a 1-dimensional vector space over Q, and all its nonzero elements are in the same Aut(Q(n))-orbit.
The extensions of 1 by Q(1) are the Kummer motives. For each positive rational number r , let

[r ] ∈ Ext1(1, Q(1))

be the extension class arising from the weight filtration of the 1-motive (see [Deligne 1974])

Kr := [Z
17→r
−→ Gm] (40)

(considered as an object of MT(Q)). Then [r ] is the element of Ext1(1, Q(1)) corresponding to r ⊗ 1
under the isomorphism (37). Thus {[p] : p prime > 0} is a basis of Ext1(1, Q(1)) (over Q). A complete
inequivalent set of representatives for the nonzero orbits of the action of Q∗

= Aut(1) on Ext1(1, Q(1))

is formed by the elements [r ], where r runs through all rational numbers > 1 which are not of the form
sa for any s ∈ Q and a ∈ Z with a > 1. In view of Corollary 6.7.1, each such [r ] gives a (unique, up to
isomorphism) motive Mn,r with large u and associated graded isomorphic to

Q(n) ⊕ Q(1) ⊕ 1.

These motives are nonisomorphic, and are up to isomorphism, all the motives with associated graded as
above and large u.

A discussion of the periods of Mn,r is in order. By construction, W−2 Mn,r is a nontrivial extension of
Q(1) by Q(n). Being a twist (by Q(1)) of a nontrivial extension of 1 by Q(n − 1), the motive W−2 Mn,r

has the period matrix (
(2π i)−n (2π i)−nζ(n − 1)

0 (2π i)−1

)
with respect to suitably chosen bases of Betti and de Rham realizations. (Note that n − 1 is odd and ≥ 3.
That a nontrivial extension of 1 by Q(n − 1) has ζ(n − 1)/(2π i)n−1 as a period follows from the work of
Deligne [1989] in the setting of realizations, and later the work of Deligne and Goncharov [2005] in the
setting of Voevodsky motives.) One the other hand, Mn,r has the Kummer 1-motive Kr as a subquotient
(by W−2n Mn,r = W−3 Mn,r ). With respect to suitably chosen bases of Betti and de Rham realizations, Kr

has the period matrix (
(2π i)−1 (2π i)−1 log r

0 1

)
;
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see [Deligne 1974] for the explicit realizations of 1-motives. With respect to suitably chosen bases, the
matrix of periods of Mn,r looks like(2π i)−n (2π i)−nζ(n − 1) ∗

0 (2π i)−1 (2π i)−1 log r
0 0 1

 .

As mentioned earlier, Grothendieck’s period conjecture predicts the transcendence degree of the field
generated over Q by the periods of Mn,r to be 4. Thus assuming the period conjecture, the numbers

2π i, log r, ζ(n − 1), and the entry denoted by ∗

are algebraically independent over Q.
It would be very interesting to somehow calculate the entry ∗ in a period matrix of Mn,r as above. As

we discussed in the Introduction, when r ̸= 2, Deligne’s work [2010] (and a fortiori Brown’s [2012]) does
not predict the nature of ∗.

Case II: k > 1 and n ̸= k + 1 (so n ≥ k + 3). Then both quotients in (39) are singletons. Thus
up to isomorphism, there is a unique motive Zn,k with large u and associated graded isomorphic to
Q(n) ⊕ Q(k) ⊕ 1. The subobject W−2k Zn,k (resp. subquotient Zn,k/W−2k−1 Zn,k) of Zn,k is a nontrivial
extension of Q(k) by Q(n) (resp. 1 by Q(k)). The matrix of periods of Zn,k with respect to suitably
chosen bases is of the form (2π i)−n (2π i)−nζ(n − k) ∗

0 (2π i)−k (2π i)−kζ(k)

0 0 1

 .

The period conjecture predicts that 2π i, ζ(k), ζ(n − k) and the entry denoted by ∗ are algebraically
independent over Q. Again it would be interesting to find what the entry ∗ is. Note that the motive Zn,k

is in the subcategory MT(Z), as from the beginning we may have done the entire discussion of this case
in MT(Z) (as the relevant Ext groups in this case are the same in MT(Z) and MT(Q)). Thus by Brown’s
work [2012], all periods of Zn,k will be in the algebra generated by 2π i and the multiple zeta values.

Case III: k > 1 and n = k + 1. This case is the dual situation to Case I. Here the second factor of (39)
is a singleton, and the motives under investigation are classified up to isomorphism by Aut(1)-orbits of
Ext1(1, Q(1)). Consider the complete inequivalent set of representatives {[r ]} for these orbits as in Case I.
Then for each r , we get an object M ′

n,r corresponding to the element of (39) with the orbit of [r ] as its
first coordinate. The motives M ′

n,r are nonisomorphic and up to isomorphism, give all motives with large
u and associated graded isomorphic to Q(n) ⊕ Q(n − 1) ⊕ 1.

The motives obtained in this case are intimately related to the Mn,r of Case I. Indeed, M ′
n,r

∨(n) has a
large u (as the property of having a large u is invariant under dualizing and tensoring by Q(1)), and its
associated graded is isomorphic to Q(n)⊕Q(1)⊕1. Moreover, the quotient M ′

n,r
∨(n)/W−2n is isomorphic

to the 1-motive Kr given in (40) (as by construction we have W−2k M ′
n,r ≃ Kr (k), and Kr is isomorphic
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to its Cartier dual Kr
∨(1)). It follows that M ′

n,r
∨(n) is isomorphic to Mn,r (as they both correspond to the

same equivalence class of compatible pairs).

6.9. Let us continue to take T = MT(Q). The motives of Section 6.8 together with the earlier results of
the paper can be used to obtain 4-dimensional mixed Tate motives with 4 weights and a large u.14 We
illustrate this with an example. Let M be the motive M4,r of the previous section, which has associated
graded isomorphic to Q(4)⊕Q(1)⊕1. The weight filtration of M gives an element L in Ext1(1, W−2 M).
Let N a nonzero element of Ext1(1, Q(5)). Since Ext2 groups vanish in MT(Q), there is an object in
MT(Q) attached to the pair

(L(5), N) ∈ Ext1(Q(5), (W−2 M)(5)) × Ext1(1, Q(5)).

Note that here, at least a priori, there might be nonisomorphic objects attached to the pair, as
Ext1(1, (W−2 M)(5)) is not zero. Any object M̃ attached to the pair is 4-dimensional, with associated
graded isomorphic to

Q(9) ⊕ Q(6) ⊕ Q(5) ⊕ 1.

Such M̃ satisfies (IA3), and hence by Theorem 6.3.1, u(M̃) is large (note that both M and N have a
large u). The field generated over Q by the periods of M̃ contains 2π i, ζ(3), log r , the “new period” of M ,
and ζ(5). In fact, by the classification of Section 6.8, the quotient M̃/Q(9) (which is easily seen to also
have a large u) must be isomorphic to the motive M ′

6,r (of Case III of Section 6.8), so that the new period
of M ′

6,r will also be a period of M̃ . The period conjecture predicts that the field generated over Q by the
periods of M̃ should be of transcendence degree 7

(
=

(4
2

)
+ 1

)
, so that M̃ should have one more new

period, which together with the aforementioned six numbers should form an algebraically independent
set over Q.

Remark. Note that k = 5 is the smallest positive integer such that

GrW M(k) ⊕ 1

satisfies the independence axiom required to be able to use Theorem 6.3.1.

6.10. Hypothesis (iii) of Theorem 6.3.1 was used in the proof to conclude that Ep(M)/up(M) splits. This
hypothesis is actually important for the statement of the theorem to remain true. A counterexample to the
statement without this condition can be given in the category MHS of rational mixed Hodge structures
using the work of Jacquinot and Ribet [1987] on deficient (in the sense of [loc. cit.]) points on semiabelian
varieties, as we shall discuss below. We shall freely use the basics of the theory of 1-motives (including
the realizations of a 1-motive), as introduced by Deligne [1974].

14Inductively, one can obtain motives with more and more weights which have a large u.
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Consider a tuple (F, A, v, f ), where

- F is a number field,

- A is a simple abelian variety over F with rank(A(F)) > 0,

- v ∈ At(F) (where At is the dual abelian variety),

- and f : At
→ A is an isogeny over F ,

such that f (v) − f t(v) ∈ A(F) is a point of infinite order.15 Let V be a semiabelian variety over F , an
extension of A by Gm , which under the canonical isomorphism

Ext(A, Gm) ∼= At

corresponds to v ∈ At(F). Denote the projection map V → A by π . In [Jacquinot and Ribet 1987,
Section 4], a point x f ∈ V (F) is constructed such that

(i) π(x f ) = f (v) − f t(v), and

(ii) for every nonzero integer n the point x f is divisible by n in V (Fn), where Fn is the field obtained
from F by adjoining the n-torsion subgroup of V (such a point is called a deficient point in [Jacquinot
and Ribet 1987]).

Let M be the 1-motive [Z
17→x f
−−→ V ] over F . Fixing an embedding F ⊂ F ⊂ C, denote the Hodge

realization of any 1-motive N over F by T N . Thus T M has weights −2, −1, 0 and

W−2T M = H1(Gm) ≃ Q(1), W−1T M = H1(V ), GrW
0 T M = 1.

We shall see that (with T = MHS) u(T M) is not large, whereas both u(W−1T M) and u(T M/W−2T M)

are large. This would provide a counterexample to the statement of Theorem 6.3.1 with hypothesis (iii)
of the theorem omitted.

First, let us consider W−1T M and T M/W−2T M . The former is a nonsplit extension of the simple
Hodge structure H1(A) by Q(1) (because v has infinite order), and hence (by a similar argument as in
Section 6.2) has a large u. The latter is the Hodge realization of the 1-motive

[Z
17→π(x f )
−−−−→ A].

Since π(x f ) is a point of infinite order, T M/W−2T M is a nonsplit extension of 1 by H1(A), and hence
has a large u.

To see that u(T M) is not large, let ℓ be a prime number. Given any 1-motive N over F , denote the ℓ-
adic realization of N by TℓN , and let 5ℓ(N ) be the image of the natural map Gal(F/F)→ GL(TℓN )(Qℓ).
Then Property (ii) above implies that the natural (restriction) map

5ℓ(M) → 5ℓ(W−1 M) (41)

15For instance, take A = At to be an elliptic curve with complex multiplication by Z[i], F large enough so that complex
multiplication by i is defined over F and A(F) has positive rank, v a point of infinite order in At (F), and f = i (so that f t

= −i).
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(where W−1 M = [0 → V ])) is injective (as well as surjective). By the Mumford–Tate conjecture for
1-motives on the unipotent parts (proved by Jossen [2014, Theorem 1]), the Hodge theoretic analogue of
this map, i.e., the restriction map

G(T M, ωB) → G(T (W−1 M), ωB) (ωB = the forgetful fiber functor)

is also injective (the two groups above are calculated in MHS). Thus u−1(T M) is zero.

Remark. (1) Here we do not need the full power of the Mumford–Tate conjecture on the unipotent parts
to go from the injectivity of (41) to the vanishing of u−1(T M); just the more basic statement [Bertrand
1998, Theorem 1] is enough. Indeed, [Bertrand 1998, Theorem 1] and injectivity of (41) imply that
W−2u(T M) is zero. It follows that u(T M) and consequently u−1(T M) is a pure object of weight -1. On
the other hand,

u−1(T M) ⊂ Hom(T M/W−1T M, W−1T M) ∼= W−1T M.

It follows that u−1(T M) is zero (as otherwise, in light of simplicity of H1(A) the extension E−2(W−1T M)

would split).

(2) Note that the example given in this section shows that in general, without any independence axiom,
the individual extensions Ep/u need not split (see Corollaries 5.3.2 and 5.3.3 of Theorem 5.3.1, as well as
Deligne’s Theorem 4.3.1 and the remark after). Indeed, in the above example, E−1(T M)/u(T M)

does not split: If it did, then by Lemma 5.1.1 so would E−1(T M)/u−1(T M). But E−1(T M) (=
E−1(T M)/u−1(T M)) does not split as x f is a point of infinite order.

(3) In fact, the example given in this section also shows that in general, u may not be generated as
a Lie algebra by the subobjects up. Indeed, with M as above, u(T M) is not zero (because T M is
not semisimple), while both u−1(T M) and u−2(T M) are zero. (That the latter is zero can be seen
by an argument similar to the one given in part (1): u−2(T M) is pure of weight -1 and a subobject
of Hom(T M/W−2T M, W−2T M) ∼= (T M/W−2T M)∨(1); the latter object has no nonzero subobject of
weight -1.)
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