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Fitting ideals of class groups for CM abelian extensions
Mahiro Atsuta and Takenori Kataoka

Let K be a finite abelian CM-extension of a totally real field k and T a suitable finite set of finite primes
of k. We determine the Fitting ideal of the minus component of the T -ray class group of K , except for the
2-component, assuming the validity of the equivariant Tamagawa number conjecture. As an application,
we give a necessary and sufficient condition for the Stickelberger element to lie in that Fitting ideal.

1. Introduction

In number theory, the relationship between class groups and special values of L-functions is of great
importance. We discuss such a phenomenon for a finite abelian CM-extension K/k, that is, a finite abelian
extension such that k is a totally real field and K is a CM-field. We focus on the minus components of
the (ray) class groups of K , except for the 2-components, and study the Fitting ideals of them.

Let ClK denote the ideal class group of K . For a Z[Gal(K/k)]-module M , let M− denote the minus
component after inverting the multiplication by 2. When k = Q, Kurihara and Miura [2011] succeeded in
proving a conjecture of Kurihara [2003a] on a description of the Fitting ideal of Cl−K using the Stickelberger
elements. However, for a general totally real field k, the problem to determine the Fitting ideal of Cl−K is
still open.

There seems to be an agreement that the Pontryagin duals (denoted by (−)∨) of the class groups
are easier to deal with; see Greither and Kurihara [2008]. Greither [2007] determined the Fitting ideal
of Cl∨,−K , assuming that the minus component of the equivariant Tamagawa number conjecture for Gm

(eTNC for short) holds and that the group of roots of unity in K is cohomologically trivial. Subsequently,
Kurihara [2021] generalized the results of Greither on Cl∨,−K to results on ClT,∨,−

K , where ClT
K denotes

the T -ray class group, for a finite set T of finite primes of k. This enables us, by taking suitably large T ,
to remove the assumption that the group of roots of unity is cohomologically trivial, though we still need
to assume the validity of the eTNC. In recent work Dasgupta and Kakde [2023] succeeded in proving
unconditionally the same formula as Kurihara on the Fitting ideal of ClT,∨,−

K (see (1-2) below for the
formula).

In this paper, for a general totally real field k, we determine the Fitting ideal of ClT,−
K without the

Pontryagin dual, assuming the eTNC, except for the 2-component. This problem has been considered to
be harder than that on ClT,∨,−

K and actually our result is more complicated. Our main tool is the technique
of shifts of Fitting ideals, which was established by Kataoka [2020].
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As an application of the description, we will obtain a necessary and sufficient condition for the
Stickelberger element to be in the Fitting ideal of ClT,−

K (still assuming the eTNC). Note that the question
for the dualized version ClT,∨,−

K is called the strong Brumer–Stark conjecture and is answered affirmatively
by Dasgupta and Kakde [2023] unconditionally.

Though we mainly assume the validity of the eTNC in this paper, we also obtain interesting uncon-
ditional results. For instance, in Theorem 1.6 we will show that the Fitting ideal of ClT,−

K is always
contained in that of ClT,∨,−

K , and that the inclusion is often proper.
In the rest of this section, we give precise statements of the main results.

1A. Description of the Fitting ideal. Let K/k be a finite abelian CM-extension and put G = Gal(K/k).
Let S∞(k) be the set of archimedean places of k. Let Sram(K/k) be the set of places of k which are
ramified in K/k, including S∞(k). For each finite prime v ∈ Sram(K/k), let Iv ⊂ G denote the inertia
group of v in G and ϕv ∈ G/Iv the arithmetic Frobenius of v. We then define elements gv and hv by

gv = 1 −ϕ−1
v + #Iv ∈ Z[G/Iv], hv = 1 −

νIv

#Iv
ϕ−1
v + νIv ∈ Q[G],

where we put νIv =
∑

τ∈Iv τ . These elements are introduced in [Greither 2007, Lemmas 6.1 and 8.3] and
[Kurihara 2021, Section 2.2, Equations (2.7) and (2.10)] (though in [Kurihara 2021] the same symbols gv
and hv denote the involutions of ours). Note that gv = hv if v is unramified in K/k. Moreover, we define
a Z[G]-module Av by

Av = Z[G/Iv]/(gv).

We write Z[G]
−

= Z[1/2][G]/(1+ j), where j is the complex conjugation in G. For any Z[G]-module
M , we also define the minus component by M−

= M ⊗Z[G] Z[G]
−. Note that we are implicitly inverting

the action of 2. For any x ∈ M , we write x− for the image of x under the natural map M → M−.
In general, for a set S of places of k, we write SK for the set of places of K which lie above places

in S. We take and fix a finite set T of finite primes of k satisfying the following:

• T ∩ Sram(K/k)= ∅.

• K ×

T = {x ∈ K ×
| ordw(x − 1) > 0 for all primes w ∈ TK } is torsion free. Here, ordw denotes the

normalized additive valuation.

Note that, if we fix an odd prime number p and are concerned with the p-components, the last condition
can be weakened to that K ×

T is p-torsion-free. We consider the T -ray ideal class group of K defined by

ClT
K = Cok

(
K ×

T
⊕ ordw
−−−→

⊕
w/∈TK

Z

)
,

where w runs over the finite primes of K which are not in TK .
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For a character ψ of G, we write L(s, ψ) for the primitive L-function for ψ . For any finite prime v
of k, we put N (v)= #Fv , where Fv is the residue field of v. We then define the T -modified L-function by

LT (s, ψ)=

(∏
v∈T

(1 −ψ(ϕv)N (v)1−s)

)
L(s, ψ).

We define
ωT =

∑
ψ

LT (0, ψ)eψ−1 ∈ Q[G], (1-1)

whereψ runs over the characters of G and eψ =
1

#G

∑
σ∈G ψ(σ)σ

−1 is the idempotent of theψ-component.
We actually have ωT ∈ Q[G] instead of ωT ∈ C[G], thanks to the Siegel–Klingen theorem.

Now the first main theorem of this paper is the following, whose proof will be given in Section 3.

Theorem 1.1. Assume that the eTNC for K/k holds. Then we have

FittZ[G]−(ClT,−
K )=

( ∏
v∈Sram(K/k)\S∞(k)

h−

v Fitt[1]

Z[G]−
(A−

v )

)
ω−

T ,

where Fitt[1]

Z[G]−
is the first shift of the Fitting ideal (see Definition 2.3).

In the second main result below, we will obtain a concrete description of h−
v Fitt[1]

Z[G]−
(A−

v ), which
completes the description of the Fitting ideal of ClT,−

K . We do not review the precise statement of the
eTNC; see e.g., [Burns et al. 2016, Conjecture 3.6].

In order to compare with Theorem 1.1, we recall the result for the dualized version:

FittZ[G]−(ClT,∨,−
K )=

( ∏
v∈Sram(K/k)\S∞(k)

(
νIv , 1 −

νIv

#Iv
ϕ−1
v

)−)
ω−

T . (1-2)

As already mentioned, Kurihara [2021, Corollary 3.7] showed this formula under the validity of the eTNC,
and recently Dasgupta and Kakde [2023, Theorem 1.4] removed the assumption. Here, for a general
G-module M , we equip the Pontryagin dual M∨ with the G-action by (σ f )(x) = f (σ x) for σ ∈ G,
f ∈ M∨, and x ∈ M . This convention is the opposite of [Kurihara 2021] and [Dasgupta and Kakde 2023],
so the right-hand side of the formula (1-2) differs from those by the involution.

We now briefly outline the proof of Theorem 1.1. An important ingredient is an exact sequence of
Z[G]

−-modules of the form
0 → A−

→ W −

S∞
→ ClT,−

K → 0

as in Proposition 3.2, where A− is a projective module of finite rank #S′. Here, S′ is an auxiliary finite
set of places of k. This sequence was constructed by Kurihara [2021], based on preceding work such
as Ritter and Weiss [1996] and Greither [2007], and played a key role in proving (1-2) under the eTNC.
Our novel idea is to construct an explicit injective homomorphism from W −

S∞
to (Z[G]

−)⊕#S′

whose
cokernel is isomorphic to the direct sum of A−

v for v ∈ S′
\ S∞(k). Moreover, assuming the eTNC,

we will compute the determinant of the composite map A− ↪→ W −

S∞
↪→ (Z[G]

−)⊕#S′

. By using these
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observations, we obtain an exact sequence to which the theory of shifts of Fitting ideals can be applied,
and then Theorem 1.1 follows.

1B. Computation of the shift of Fitting ideal. In order to make the formula of Theorem 1.1 more explicit,
in Section 4, we will compute Fitt[1]

Z[G]
(Av). This will be accomplished by using a method similar to

Greither and Kurihara [2015, Section 1.2], which was actually a motivation for introducing the shifts of
Fitting ideals in [Kataoka 2020].

As the problem is purely algebraic, we deal with a general situation as follows (it should be clear
from the notation how to apply the results below to the arithmetic situation; simply add subscripts v
appropriately). Let G be a finite abelian group. Let I and D be subgroups of G such that I ⊂ D ⊂ G and
that the quotient D/I is a cyclic group. We choose a generator ϕ of D/I and put

g = 1 −ϕ−1
+ #I ∈ Z[G/I ], h = 1 −

νI

#I
ϕ−1

+ νI ∈ Q[G],

which are not a zero divisor. We define a finite Z[G]-module A by

A = Z[G/I ]/(g).

In order to state the result, we introduce some notations. We choose a decomposition

I = I1 × · · · × Is (1-3)

as an abelian group such that Il is a cyclic group for each 1 ≤ l ≤ s. Here, we do not assume any
minimality on this decomposition, so we allow even the extreme case where Il is trivial for some l.

For each 1 ≤ l ≤ s, we put νl = νIl =
∑

σ∈Il
σ ∈ Z[G]. We also put ID = Ker(Z[G] → Z[G/D]).

Definition 1.2. For 0 ≤ i ≤ s, we define Zi as the ideal of Z[G] generated by νl1 · · · νls−i where
(l1, . . . , ls−i ) runs over all tuples of integers satisfying 1 ≤ l1 < · · ·< ls−i ≤ s, that is,

Zi = (νl1 · · · νls−i | 1 ≤ l1 < · · ·< ls−i ≤ s).

We clearly have Z0 = (νI )⊂ Z1 ⊂ · · · ⊂ Zs = (1). We then define an ideal J of Z[G] by

J =

s∑
i=1

ZiI i−1
D .

Note that the definition of Zi does depend on the choice of the decomposition (1-3). On the other
hand, it can be shown directly that the ideal J is independent from the choice. We omit the direct proof
because, at any rate, the independency can be deduced from the discussion in Section 4.

Example 1.3. When s = 1, we have
J = (1).

When s = 2, we have
J = (ν1, ν2)+ ID.
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When s = 3, we have
J = (ν1ν2, ν2ν3, ν3ν1)+ (ν1, ν2, ν3)ID + I2

D.

In this setting, we can describe Fitt[1]

Z[G]
(A) as follows. It is convenient to state the result after multiplying

by h.

Theorem 1.4. We have

h Fitt[1]

Z[G]
(A)=

(
νI ,

(
1 −

νI

#I
ϕ−1

)
J

)
as fractional ideals of Z[G].

1C. Stickelberger element and Fitting ideal. As an application of Theorems 1.1 and 1.4, we shall discuss
the problem whether or not the Stickelberger element lies in the Fitting ideal of ClT,−

K .
We return to the setup in Section 1A. Let p be a fixed odd prime number and we shall work over Zp.

Let G ′ denote the maximal subgroup of G of order prime to p. We put kp = K G ′

, which is the maximal p-
extension of k contained in K . For each character χ of G ′, we regard Oχ =Zp[Im(χ)] as a Zp[G ′

]-module
via χ , and put Zp[G]

χ
= Zp[G] ⊗Zp[G ′] Oχ . For a Zp[G]-module M , we put Mχ

= M ⊗Zp[G] Zp[G]
χ ,

which is a Zp[G]
χ -module. For an element x ∈ M , we write xχ for the image of x by the natural

map M → Mχ . We note that Zp[G] is isomorphic to the direct product of Zp[G]
χ if χ runs over the

equivalence classes of characters of G ′.
From now on, we fix an odd character χ of G ′. We define Kχ = K Ker(χ). Then Kχ is a CM-field,

Kχ ⊃ kp, and Kχ/kp is a cyclic extension of order prime to p.
We put Sχ = Sram(Kχ/k) and consider the χ -component of the Stickelberger element defined by

θ
χ

K/k,T =

∑
ψ |G′=χ

L Sχ ,T (0, ψ)eψ−1 ∈ Zp[G]
χ , (1-4)

where ψ runs over characters of G whose restriction to G ′ coincides with χ and we write

L Sχ ,T (s, ψ)=

( ∏
v∈Sχ\S∞(k)

(1 −ψ(ϕv))

)(∏
v∈T

(1 −ψ(ϕv)N (v)1−s)

)
L(s, ψ).

Note that, comparing (1-1) and (1-4), we have

θ
χ

K/k,T =

( ∏
v∈Sχ\S∞(k)

(
1 −

νIv

#Iv
ϕ−1
v

)χ)
ω
χ

T . (1-5)

Concerning the dualized version, by the work of Dasgupta and Kakde [2023, Theorem 1.3], we always
have

θ
χ

K/k,T ∈ FittZp[G]χ ((ClT
K ⊗Zp)

∨,χ ).

This is called the strong Brumer–Stark conjecture. More precisely, the displayed claim is a bit stronger
than [Dasgupta and Kakde 2023, Theorem 1.3] as we took Sχ instead of Sram(K/k) in the definition of
the Stickelberger element, but in any case it is an immediate consequence of the formula (1-2).
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On the other hand, the corresponding claim without dual is known to be false in general; see [Greither
and Kurihara 2008]. However, we had only partial results and an exact condition was unknown. The
following theorem is strong as it gives a necessary and sufficient condition.

Theorem 1.5. Assume that the eTNC for K/k holds (indeed, the p-part of the eTNC suffices). Then, for
each odd character χ of G ′, the following are equivalent:

(i) We have θχK/k,T ∈ FittZp[G]χ ((ClT
K ⊗Zp)

χ ).

(ii) We have either θχK/k,T = 0 or, for any v ∈ Sχ \ S∞(k), one of the following holds.

(a) v does not split completely in Kχ/kp.
(b) The inertia group Iv is cyclic.

This theorem will be proved in Section 5 as an application of Theorems 1.1 and 1.4. Note that there is
an elementary equivalent condition for θχK/k,T = 0 as in Lemma 5.3.

Theorem 1.5 indicates that the failure of the inertia groups to be cyclic is an obstruction for studying
the Fitting ideal of the class group without dual. The same phenomenon will appear again in Theorem 1.6
below. We should say that this kind of phenomenon had been observed in preceding work, such as
[Greither and Kurihara 2008]. Nickel [2011, Section 4] studied much the same subject when all the
p-adic primes are tamely ramified. In that case, the inertia groups are indeed cyclic, so a main result
[Nickel 2011, Section 4.2, Theorem 5] is now a part of Theorem 1.5.

It is also remarkable that the obstruction does not occur in the absolutely abelian case (i.e., when
k = Q), since in that case the inertia groups are automatically cyclic, apart from the 2-parts. This seems to
fit the fact that Kurihara [2003a] and Kurihara and Miura [2011] succeeded in studying the class groups
without dual in the absolutely abelian case.

Let us outline the proof of Theorem 1.5. We assume that χ is a faithful character of G ′ (i.e., Kχ = K );
actually we can deduce the general case from this case. Since ωχT is a not a zero divisor of Zp[G]

χ , by
Theorem 1.1 and (1-5), we have θχK/k,T ∈ FittZp[G]χ ((ClT

K ⊗Zp)
χ ) if and only if

∏
v

(
1 −

νIv

#Iv
ϕ−1
v

)χ
⊂

∏
v

(hv Fitt[1]

Zp[G]
(Av ⊗ Zp))

χ (1-6)

holds as fractional ideals of Zp[G]
χ , where on both sides v runs over the elements of Sram(K/k)\ S∞(k).

Obviously we may assume that θχK/k,T ̸= 0. The proof of (ii) ⇒ (i) is the easier part. We will show
that, under the assumption (ii), the inclusion of (1-6) holds even for every v before taking the product.
On the other hand, the opposite direction (i) ⇒ (ii) is the harder part. That is because, roughly speaking,
we have to work over the ring Zp[G]

χ , whose ring theoretic properties are not very nice. A key idea to
overcome this issue is to reduce to a computation in a discrete valuation ring. More concretely, we make
use of a character ψ of G which satisfies ψ |G ′ = χ and a certain additional condition, whose existence is
verified by Lemma 5.3, and then we consider the Zp[G]

χ -algebra Oψ = Zp[Im(ψ)]. By investigating the
ideals in (1-6) after base change from Zp[G]

χ to Oψ , we will show (i) ⇒ (ii).
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1D. Unconditional consequences. Even if we do not assume the validity of the eTNC, our argument
shows the following.

Theorem 1.6. We have an inclusion

FittZ[G]−(ClT,−
K )⊂ FittZ[G]−(ClT,∨,−

K ).

Moreover, the inclusion is an equality if Iv is cyclic for every v ∈ Sram(K/k) \ S∞(k).

This theorem follows immediately from Corollaries 3.7 and 4.2. Furthermore, by similar arguments as
the proof of Theorem 1.5, we can observe that the inclusion is often proper.

As already remarked, Dasgupta and Kakde [2023] proved the formula (1-2) unconditionally. Therefore,
if Iv is cyclic for every v∈ Sram(K/k)\S∞(k), we can also deduce from Theorem 1.6 that FittZ[G]−(ClT,−

K )

also coincides with that ideal, and this removes the assumption on the eTNC in Theorem 1.1. However,
in Theorem 1.1 we still need to assume the eTNC when Iv is not cyclic for some v.

2. Definition of Fitting ideals and their shifts

In this section, we fix our notations concerning Fitting ideals.

2A. Fitting ideals. Let R be a noetherian ring.

Definition 2.1 [Northcott 1976]. We define the Fitting ideals as follows:

(i) Let A be a matrix over R with m rows and n columns. For each integer 0 ≤ i ≤ n, we define
Fitti,R(A) as the ideal of R generated by the (n − i)× (n − i) minors of A. For each integer i > n,
we also define Fitti,R(A)= (1).

(ii) Let X be a finitely generated R-module. We choose a finite presentation A of X with m rows and n
columns, that is, an exact sequence

Rm ×A
−→ Rn

→ X → 0.

Here and henceforth, as a convention, we deal with row vectors, so we multiply matrices from the
right. Then, for each i ≥ 0, we define the i-th Fitting ideal of X by

Fitti,R(X)= Fitti,R(A).

It is known that this ideal does not depend on the choice of A. When i = 0, we also write
FittR(X)= Fitt0,R(X) and call it the initial Fitting ideal.

We will later make use of the following elementary lemma. We omit the proof; see [Kurihara 2003b,
Lemma 3.3].
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Lemma 2.2. Let X be a finitely generated R-module and I be an ideal of R. If X is generated by n
elements over R, then we have

Fitt0,R(X/I X)=

n∑
i=0

I i Fitti,R(X).

2B. Shifts of Fitting ideals. In this subsection, we review the definition of shifts of Fitting ideals
introduced by Kataoka [2020].

Although we can deal with a more general situation, for simplicity we consider the following. Let 3
be a Dedekind domain (e.g., 3= Z, Z

[1
2

]
, or Zp). Let 1 be a finite abelian group and consider the ring

R =3[1].
We define C as the category of R-modules of finite length. We also define a subcategory P of C by

P = {P ∈ C | pdR(P)≤ 1},

where pdR denotes the projective dimension over R. Note that any module M in C satisfies pd3(M)≤ 1.

Definition 2.3. Let X be an R-module in C and d ≥ 0 an integer. We take an exact sequence

0 → Y → P1 → · · · → Pd → X → 0

in C with P1, . . . , Pd ∈ P . Then we define

Fitt[d]

R (X)=

( d∏
i=1

FittR(Pi )
(−1)i

)
FittR(Y ).

The well-definedness (i.e., the independence from the choice of the d-step resolution) is proved in [Kataoka
2020, Theorem 2.6 and Proposition 2.7].

We also introduce a variant for the case where d is negative.

Definition 2.4. Let X be an R-module in C and d ≤ 0 an integer. We take an exact sequence

0 → X → P−d → · · · → P1 → Y → 0

in C with P1, . . . , P−d ∈ P . Then we define

Fitt⟨d⟩

R (X)=

( −d∏
i=1

FittR(Pi )
(−1)i

)
FittR(Y ).

The well-definedness is proved in [Kataoka 2020, Theorem 3.19 and Propositions 2.7 and 3.17].

3. Fitting ideals of ideal class groups

In this section, we prove Theorem 1.1, which describes the Fitting ideal of ClT,−
K using shifts of Fitting

ideals. We keep the notation in Section 1A.
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3A. Brief review of work of Kurihara. We first review necessary ingredients from [Kurihara 2021],
which in turn relies on preceding work, in particular [Ritter and Weiss 1996] and [Greither 2007].

For each place w of K , let Dw and Iw denote the decomposition subgroup and the inertia subgroup of
w in G, respectively. These subgroups depend only on the place of k which lies below w.

Let us introduce local modules Wv . For any finite group H , we define 1H as the augmentation ideal
in Z[H ].

Definition 3.1. For each finite prime w of K , we define a Z[Dw]-module WKw
by

WKw
= {(x, y) ∈1Dw ⊕ Z[Dw/Iw] | x̄ = (1 −ϕ−1

v )y},

where x̄ denotes the image of x in Z[Dw/Iw]. For each finite prime v of k, we define the Z[G]-module
Wv by taking the direct sum as

Wv =

⊕
w|v

WKw
,

where w runs over the finite primes of K which lie above v. Alternatively, Wv can be regarded as the
induced module of WKw

from Dw to G, as long as we choose a place w of K above v.

We take an auxiliary finite set S′ of places of k satisfying the following conditions:

• S′
⊃ Sram(K/k).

• S′
∩ T = ∅.

• ClT
K ,S′ = 0, where ClT

K ,S′ = Cok(K ×

T
⊕ ordw
−−−→

⊕
w/∈S′

K ∪TK
Z).

• G is generated by the decomposition groups Dv of v for all v ∈ S′.

We define a Z[G]-module WS∞
by

WS∞
=

⊕
w∈S∞(K )

1Dw ⊕

⊕
v∈S′\S∞(k)

Wv.

By using local and global class field theory, Kurihara constructed an exact sequence of the following
form.

Proposition 3.2 [Kurihara 2021, Section 2.2, sequence (2.5)]. We have an exact sequence

0 → A−
→ W −

S∞
→ ClT,−

K → 0,

where A− is a projective Z[G]
−-module of rank #S′.

Remark 3.3. Kurihara [2021] took the linear dual of this sequence, and the resulting sequence played
an important role to study ClT,∨,−

K . In this paper, we do not take the linear dual but instead study the
sequence itself for the proof of Theorem 1.1.
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3B. Definition of fv . Our key ingredient for the proof of Theorem 1.1 is the following homomorphism fv .

Definition 3.4. For a finite prime w of K , we define a Z[Dw]-homomorphism

fw : WKw
→ Z[Dw]

by fw(x, y)= x + νIw(y) (recall the definition of WKw
in Definition 3.1). For a finite prime v of k, we

then define a Z[G]-homomorphism fv : Wv → Z[G] by

fv : Wv =

⊕
w|v

WKw

⊕ fw
−−→

⊕
w|v

Z[Dw] ≃ Z[G],

where the last isomorphism depends on a choice of w.

In Section 1A we introduced a finite Z[G]-module Av = Z[G/Iv]/(gv) with gv = 1 −ϕ−1
v + #Iv . It is

actually motivated by the following.

Lemma 3.5. For any finite prime v of k, the map fv is injective and

Cok fv ≃ Av.

Proof. It is enough to show that fw is injective and Cok fw ≃ Z[Dw/Iw]/(gv) for any finite prime w of
K . Put Jw = Ker(Z[Dw] → Z[Dw/Iw]). We define a homomorphism αw : Jw → WKw

by αw(x)= (x, 0).
Let us consider the following commutative diagram:

0 −−−→ Jw
αw

−−−→ WKw
−−−→ Cokαw −−−→ 0∥∥∥ y fw

y f ′
w

0 −−−→ Jw −−−→ Z[Dw] −−−→ Z[Dw/Iw] −−−→ 0

where the lower sequence is the trivial one, the commutativity of the left square is easy, and the right
vertical arrow is the induced one. By the definition of WKw

, we have

Cokαw = {(x̄, y) ∈1(Dw/Iw)× Z[Dw/Iw] | x̄ = (1 −ϕ−1
v )y}.

Since Dw/Iw is a cyclic group generated by ϕ−1
v , the Z[Dw/Iw]-module Cokαw is free of rank 1 with a

basis (1 −ϕ−1
v , 1). Moreover, f ′

w sends this basis to gv = 1 −ϕ−1
v + #Iv . Therefore, f ′

w is injective with
cokernel isomorphic to Z[Dw/Iw]/(gv). Then by the diagram fw also satisfies the desired properties. □

For any v ∈ S′
\ S∞(k), we consider the homomorphism f −

v : W −
v → Z[G]

− which is the minus
component of fv. For any v ∈ S∞(k), we have (⊕w|v1Dw)

−
≃ Z[G]

− by choosing w, so we fix this
isomorphism and write f −

v for it. Using these f −
v , we consider the following commutative diagram:

0 −−−→ A−
−−−→ W −

S∞
−−−→ ClT,−

K −−−→ 0∥∥∥ y⊕v∈S′ f −
v

y
0 −−−→ A−

ψ
−−−→

⊕
v∈S′ Z[G]

−
−−−→ Cokψ −−−→ 0,
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where the upper sequence is that in Proposition 3.2 and the map ψ is defined by the commutativity. By
Lemma 3.5 and the snake lemma, we get the following proposition.

Proposition 3.6. We have an exact sequence

0 → ClT,−
K → Cokψ →

⊕
v∈S′\S∞(k)

A−

v → 0.

Moreover, the Z[G]
−-module Cokψ is finite with pdZ[G]−(Cokψ)≤ 1.

Then we can describe the Fitting ideals of ClT,−
K and of ClT,∨,−

K as follows.

Corollary 3.7. We have

FittZ[G]−(ClT,−
K )= FittZ[G]−(Cokψ)

∏
v∈S′\S∞(k)

Fitt[1]

Z[G]−
(A−

v )

and
FittZ[G]−(ClT,∨,−

K )= FittZ[G]−(Cokψ)
∏

v∈S′\S∞(k)

Fitt⟨−1⟩

Z[G]−
(A−

v ).

Proof. The first formula follows directly from Proposition 3.6 and Definition 2.3. For the second formula,
by [Kataoka 2020, Proposition 4.7], we have

FittZ[G]−(ClT,∨,−
K )= Fitt⟨−2⟩

Z[G]−
(ClT,−

K ).

By Proposition 3.6 and Definition 2.4, we also have

Fitt⟨−2⟩

Z[G]−
(ClT,−

K )= FittZ[G]−(Cokψ)
∏

v∈S′\S∞(k)

Fitt⟨−1⟩

Z[G]−
(A−

v ).

This completes the proof. □

3C. Fitting ideal of Cokψ . Recall the definitions of ωT and of hv in Section 1A.

Theorem 3.8. Assume that the eTNC for K/k holds. Then we have

FittZ[G]−(Cokψ)=

(( ∏
v∈S′\S∞(k)

h−

v

)
ω−

T

)
.

Proof. For each v ∈ S′
\ S∞(k), we define a basis ev of HomQ[G](Wv ⊗ Q,Q[G]) as in [Kurihara 2021,

Section 2.2, Equation (2.9)] (we do not recall the precise definition here). Then we can see that its dual
basis e′

v of Wv ⊗ Q is given by

e′

v =
1

1 − ϕ̃v
−1

+ NIv
(1 − ϕ̃v

−1, 1),

where ϕ̃v is a lift of ϕv . Then, by the definition of fv , this element satisfies fv(e′
v)= 1, where by abuse of

notation fv denotes the homomorphism Wv⊗Q → Q[G] induced by fv : Wv → Z[G]. For v ∈ S∞(k), as
a basis over Z[G]

−, we take the element e′,−
v of

(⊕
w|v 1Dw

)− which is characterized by f −
v (e

′,−
v )= 1.
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Let us consider the isomorphism 9 : A−
⊗ Q → W −

S∞
⊗ Q induced by the sequence in Proposition 3.2.

Then, under the eTNC, Kurihara [2021, Theorem 3.6] proved that A− is a free Z[G]
−-module (a priori

we only know A− is projective) and

det(9)=

( ∏
v∈S′\S∞(k)

h−

v

)
ω−

T

with respect to a certain basis of A− as a Z[G]
−-module and the basis (e′,−

v )v∈S′ of W −

S∞
. Actually this is

an easy reformulation of the result of Kurihara, which concerns the determinant of the linear dual of 9.
Therefore, the determinant of the composite map ψ of 9 and

⊕
v∈S′ f −

v , with respect to the basis
of A− and the standard basis of (Z[G]

−)⊕#S′

, also coincides with
(∏

v∈S′\S∞(k) h−
v

)
ω−

T . This shows the
theorem. □

We are now ready to prove Theorem 1.1.

Proof of Theorem 1.1. By Corollary 3.7 and Theorem 3.8, we have

FittZ[G]−(ClT,−
K )=

( ∏
v∈S′\S∞(k)

h−

v Fitt[1]

Z[G]−
(A−

v )

)
ω−

T .

For v ∈ S′
\ Sram(K/k), we have Av = Z[G]/(hv), so

Fitt[1]

Z[G]−
(A−

v )= (h−

v )
−1.

Then Theorem 1.1 follows. □

Remark 3.9. Similarly, under the validity of the eTNC, Corollary 3.7 and Theorem 3.8 also imply a
formula

FittZ[G]−(ClT,∨,−
K )=

( ∏
v∈Sram(K/k)\S∞(k)

h−

v Fitt⟨−1⟩

Z[G]−
(A−

v )

)
ω−

T .

Combining this with Proposition 4.1 below, we can recover the formula (1-2). This argument may be
regarded as a reinterpretation of the work [Kurihara 2021] by using the shifts of Fitting ideals.

4. Computation of shifts of Fitting ideals

In this section, we prove Theorem 1.4 on the description of Fitt[1]

Z[G]
(A). We keep the notations as in

Section 1B.

4A. Computation of Fitt⟨−1⟩

Z[G]
(A). Before Fitt[1]

Z[G]
(A), we determine Fitt⟨−1⟩

Z[G]
(A), which is actually much

easier.
We choose a lift ϕ̃ ∈ D of ϕ and put

g̃ = 1 − ϕ̃−1
+ #I ∈ Z[G],

which is again a not a zero divisor. Obviously, g is then the natural image of g̃ to Z[G/I ].
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Proposition 4.1. We have

Fitt⟨−1⟩

Z[G]
(A)= (1, νI g−1).

Therefore, we also have

h Fitt⟨−1⟩

Z[G]
(A)=

(
νI , 1 −

νI

#I
ϕ−1

)
.

Proof. We have an exact sequence

0 → Z[G/I ] νI
−→ Z[G] → Z[G]/(νI )→ 0.

Since multiplication by g̃ is injective on each of these modules, applying the snake lemma, we obtain an
exact sequence

0 → A → Z[G]/(g̃)→ Z[G]/(g̃, νI )→ 0.

By Definition 2.4, we then have

Fitt⟨−1⟩

Z[G]
(A)= (g̃)−1(g̃, νI )= (1, νI g−1).

This proves the former formula of the proposition.
Since we have νI g = νI h, the former formula implies h Fitt⟨−1⟩

Z[G]
(A)= (νI , h). Then the latter formula

follows from h ≡ 1 −
νI
#I ϕ

−1 (mod (νI )). □

Before proving Theorem 1.4, we show a corollary.

Corollary 4.2. We have an inclusion

Fitt[1]

Z[G]
(A)⊂ Fitt⟨−1⟩

Z[G]
(A).

Moreover, if I is a cyclic group, the inclusion is an equality.

Proof. By Definition 1.2, the ideal J is contained in Z[G] and we have J = Z[G] if I is cyclic. Hence
this corollary immediately follows from Theorem 1.4 and Proposition 4.1. □

4B. Computation of Fitt[1]

Z[G]
(A). This subsection is devoted to the proof of Theorem 1.4.

We fix the decomposition (1-3) of I . For each 1 ≤ l ≤ s, we choose a generator σl of Il and put
τl = σl −1 ∈ Z[G]. Note that we then have νl = 1+σl +σ

2
l +· · ·+σ

#Il−1
l and τlνl = 0. As in Section 4A,

we put g̃ = 1 − ϕ̃−1
+ #I after choosing ϕ̃.

We recall ID = Ker(Z[G] → Z[G/D]) and also put II = Ker(Z[G] → Z[G/I ]). Then we have
II = (τ1, . . . , τs) and ID = (II , 1 − ϕ̃−1).

We begin with a proposition.

Proposition 4.3. We have

Fitt[1]

Z[G]
(A)=

s∑
i=0

g̃i−1 Fitti,Z[G](II ).
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Proof. We have the tautological exact sequence

0 → II → Z[G] → Z[G/I ] → 0.

Since multiplication by g̃ is injective on each of these modules, by applying snake lemma, we obtain an
exact sequence

0 → II /g̃II → Z[G]/(g̃)→ A → 0.

Then Definition 2.3 implies

Fitt[1]

Z[G]
(A)= g̃−1 FittZ[G](II /g̃II ).

Since II is generated by the s elements τ1, . . . , τs , we have

FittZ[G](II /g̃II )=

s∑
i=0

g̃i Fitti,Z[G](II )

by Lemma 2.2. Thus we obtain the proposition. □

Our next task is to determine Fitti,Z[G](II ) for 0 ≤ i ≤ s. The result will be Proposition 4.9 below.
For that purpose, we construct a concrete free resolution of Z over Z[I ], using an idea of Greither and
Kurihara [2015, Section 1.2]; one may also refer to [Kataoka 2020, Section 4.3]. We will have to deal
with a large matrix denoted by Ms(ν1, . . . , νs, τ1, . . . , τs), but it is not surprising; in a relevant study
Greither, Kurihara and Tokio [Greither et al. 2020] dealt with an even more complicated matrix.

For each 1 ≤ l ≤ s, we have a homological complex

C l
: · · ·

τl
−→ Z[Il]

νl
−→ Z[Il]

τl
−→ Z[Il] → 0

over Z[Il], concentrated at degrees ≥ 0. Let C l
n be the degree n component of C l , so C l

n = Z[Il] if n ≥ 0
and C l

n = 0 otherwise. Then the homology groups are Hn(C l)= 0 for n ̸= 0 and H0(C l)≃ Z.
We define a complex C over Z[I ] by

C =

s⊗
l=1

C l,

which is the tensor product of complexes over Z (we do not specify the sign convention as it does not
matter to us; we define it appropriately so that the descriptions of d1 and d2 below are valid). Explicitly,
the degree n component Cn of C is defined as

Cn =

⊕
n1+···+ns=n

C1
n1

⊗ · · · ⊗ C s
ns
.

Clearly the tensor product is zero unless n1, . . . , ns ≥ 0, and in that case

C1
n1

⊗ · · · ⊗ C s
ns

= Z[I1] ⊗ · · ·⊗ Z[Is] ≃ Z[I ].
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It is convenient to write xn1
1 · · · xns

s for the basis of C1
n1

⊗ · · · ⊗ C s
ns

for each n1, . . . , ns ≥ 0, following
[Greither and Kurihara 2015]. Then, for each n ≥ 0, the module Cn is a free module on the set of
monomials of x1, . . . , xs of degree n.

A basic property of tensor products of complexes implies that Hn(C)= 0 for n ̸= 0 and H0(C)≃ Z.
Therefore, C is a free resolution of Z over Z[I ].

It will be necessary to investigate some components of C of low degrees. Note that C0 is free of rank
one with a basis 1(= x0

1 · · · x0
s ), C1 is a free module on the set

S1 = {x1, . . . , xs},

and C2 is a free module on the set S2 ∪ S′

2 where

S2 = {x2
1 , . . . , x2

s }, S′

2 = {xl xl ′ | 1 ≤ l < l ′ ≤ s}.

Moreover, the differential dn : Cn → Cn−1 for n = 1, 2 are described as follows. We have

d1(xl)= τl · 1

for each 1 ≤ l ≤ s,

d2(x2
l )= νl xl

for each 1 ≤ l ≤ s, and

d2(xl xl ′)= τl xl ′ − τl ′ xl

for each 1 ≤ l < l ′ ≤ s.
Let M denote the presentation matrix of d2. For clarity, we define M formally as follows.

Definition 4.4. We define a matrix

M = Ms(ν1, . . . , νs, τ1, . . . , τs)

with the columns (resp. the rows) indexed by S1 (resp. S2 ∪ S′

2), by
the (x2

l , xl) component is νl for 1 ≤ l ≤ s,
the (xl xl ′, xl) component is −τl ′ for 1 ≤ l < l ′ ≤ s,
the (xl xl ′, xl ′) component is τl for 1 ≤ l < l ′ ≤ s,
and the other components are zero.

Here, we do not specify the orders of the sets S1 and S2 ∪ S′

2. The ambiguity does not matter for our
purpose.

For later use, we also define a matrix

Ns(τ1, . . . , τs)
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as the submatrix of M with the rows in S2 removed. More precisely, we define the matrix Ns(τ1, . . . , τs)

with the columns (resp. rows) indexed by S1 (resp. S′

2), by
the (xl xl ′, xl) component is −τl ′ for 1 ≤ l < l ′ ≤ s,
the (xl xl ′, xl ′) component is τl for 1 ≤ l < l ′ ≤ s,
and the other components are zero.

Therefore, by choosing appropriate orders of rows and columns, we have:

Ms(ν1, . . . , νs, τ1, . . . , τs)=


ν1

. . .

νs

Ns(τ1, . . . , τs)


Example 4.5. When s = 3, we have:

M =



ν1

ν2

ν3

−τ3 τ2

−τ3 τ1

−τ2 τ1


Here, we use the order x2x3, x1x3, x1x2 for the set S′

2.

Proposition 4.6. The matrix Ms(ν1, . . . , νs, τ1, . . . , τs), over Z[G], is a presentation matrix of the mod-
ule II .

Proof. By the construction, M is a presentation matrix of Ker(Z[I ] → Z) over Z[I ]. Since Z[G] is flat
over Z[I ], we obtain the proposition by base change. □

Proposition 4.7. For each 0 ≤ i ≤ s, we have

Fitti,Z[G](M)=

s−i∑
j=0

∑
a⊂{1,2,...,s}

#a= j

νa1 · · · νa j Fitti,Z[G](Ns− j (τa j+1, . . . , τas )).

Here, for each j , in the second summation a runs over subsets of {1, 2, . . . , s} of j elements, and for each
a we define a1, . . . , as by requiring

a = {a1, . . . , a j }, {a1, . . . , as} = {1, 2, . . . , s}, a1 < · · ·< a j , a j+1 < · · ·< as .

The matrix Ns− j (τa j+1, . . . , τas ) is defined as in Definition 4.4 for s − j and τa j+1, . . . , τas instead of s
and τ1, . . . , τs .

Proof. By the definition of higher Fitting ideals, Fitti,Z[G](M) is generated by det(H) for square subma-
trices H of M of size s − i . Such a matrix H is in one-to-one correspondence with choices of a subset



Fitting ideals of class groups for CM abelian extensions 1917

Acolumn
H ⊂S1={x1, . . . , xs} with #Acolumn

H =s−i and a subset Arow
H ⊂S2∪S′

2={x2
1 , . . . , x

2
s , x1x2, . . . , xs−1xs}

with #Arow
H = s − i . We only have to deal with H satisfying det(H) ̸= 0.

For each H , we define j and a by

j = #(Arow
H ∩ S2)

(so clearly 0 ≤ j ≤ s − i) and

Arow
H ∩ S2 = {x2

a1
, . . . , x2

a j
}.

Recall that the x2
l row in the matrix M contains a unique nonzero component νl in the xl column. Therefore,

the assumption det(H) ̸= 0 forces xa1, . . . , xa j ∈ Acolumn
H and

det(H)= ±νa1 · · · νa j det(H ′),

where H ′ is the square submatrix of H of size (s − i)− j , with rows in Arow
H ′ = Arow

H \ {x2
a1
, . . . , x2

a j
} =

Arow
H ∩ S′

2 and columns in Acolumn
H ′ = Acolumn

H \ {xa1, . . . , xa j }.
Let Na denote the submatrix of Ns(τ1, . . . , τs) obtained by removing the xa1, . . . , xa j columns. Then it

is clear that the det(H ′) (for fixed j and a) as above generate Fitti,Z[G](Na). The argument so far implies

Fitti,Z[G](M)=

s−i∑
j=0

∑
a⊂{1,2,...,s}

#a= j

νa1 · · · νa j Fitti,Z[G](Na).

By the formula τlνl = 0, we may remove the components ±τa1, . . . ,±τa j from the matrix Na in the right
hand side. It is easy to check that the resulting matrix is nothing but Ns− j (τa j+1, . . . , τas ) (with several
zero rows added). This completes the proof. □

Proposition 4.8. For s ≥ 0 and i ≥ 0, we have

Fitti,Z[G](Ns(τ1, . . . , τs))=


(1) (i ≥ s),
0 (s ≥ 1, i = 0),
(τ1, . . . , τs)

s−i (1 ≤ i < s).

Proof. Since Ns(τ1, . . . , τs) has s columns, the case for i ≥ s is clear.
We show the vanishing when s ≥ 1 and i = 0. Let R = Z[T1, . . . , Ts] be the polynomial ring over

Z. Then we have a ring homomorphism f : R → Z[G] defined by sending Tl to τl . We define a matrix
Ns(T1, . . . , Ts) over R in the same way as in Definition 4.4, with τ• replaced by T•. Then, by the base
change via f , we have

FittZ[G](Ns(τ1, . . . , τs))= f (FittR(Ns(T1, . . . , Ts)))Z[G].

Hence the left hand side would vanish if we show that FittR(Ns(T1, . . . , Ts))= 0.
For each 1 ≤ l ≤ s, we consider the complex

C̃ l
: 0 → Z[Tl]

Tl
−→ Z[Tl] → 0,
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over Z[Tl], which satisfies Hn(C̃ l)= 0 for n ̸= 0 and H0(C̃ l)≃ Z. Similarly as previous, by taking the
tensor product of the complexes C̃ l over Z, we obtain an exact sequence

· · · → C̃2
Ns(T1,...,Ts)

−−−−−−→ →C̃1

T1
.
.
.

Ts


−−−→ →C̃0 → Z → 0

over R. (Alternatively, this exact sequence is obtained from the Koszul complex for the regular sequence
T1, . . . , Ts .) This implies that FittR(Ns(T1, . . . , Ts)) is the Fitting ideal of the augmentation ideal of R.
Since s ≥1, the augmentation ideal of R is generically of rank one, so we obtain FittR(Ns(T1, . . . , Ts))=0,
as desired.

Finally we show the case where 1 ≤ i < s. Since the components of the matrix Ns(τ1, . . . , τs) are
either 0 or one of τ1, . . . , τs , the inclusion ⊂ is clear. In order to show the other inclusion, we use the
induction on s.

For a while we fix an arbitrary 1 ≤ l ≤ s. Then, by permuting the rows and columns, the matrix
Ns(τ1, . . . , τs) can be transformed into:

Ns−1(τ1, . . . , τ̌l, . . . , τs)

−τl

−τl
. . .

−τl

−τl

τ1
...

τ̌l
...

τs


(The symbol ˇ(−) means omitting that term.) Here, the xl column is placed in the right-most, and the
x1xl, . . . , xl−1xl, xl xl+1, . . . , xl xs rows are placed in the lower. We also reversed the signs of some rows
for readability as that does not matter at all.

This expression implies

Fitti,Z[G](Ns(τ1, . . . , τs))⊃ (τ1, . . . , τ̌l, . . . , τs)Fitti,Z[G](Ns−1(τ1, . . . , τ̌l, . . . , τs)).

By the induction hypothesis (note that 1 ≤ i ≤ s − 1), we have

Fitti,Z[G](Ns(τ1, . . . , τs))⊃ (τ1, . . . , τ̌l, . . . , τs)(τ1, . . . , τ̌l, . . . , τs)
s−1−i

= (τ1, . . . , τ̌l, . . . , τs)
s−i .

Now we vary l and then obtain

Fitti,Z[G](Ns(τ1, . . . , τs))⊃

s∑
l=1

(τ1, . . . , τ̌l, . . . , τs)
s−i

= (τ1, . . . , τs)
s−i ,

where the last equality follows from s − i < s. This completes the proof of the proposition. □

Now we incorporate Propositions 4.6, 4.7 and 4.8 to prove the following.
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Proposition 4.9. For 0 ≤ i ≤ s, we define an ideal Ji of Z[G] by

Ji =

{
(ν1 · · · νs)= (νI ) (i = 0),∑s−i

j=0 Zi+ jI
j
I = Zi + Zi+1II + · · · + ZsIs−i

I (1 ≤ i ≤ s).

Then we have

Fitti,Z[G](II )= Ji .

Proof. By Propositions 4.6 and 4.7, we have

Fitti,Z[G](II )= Fitti,Z[G](M)

=

s−i∑
j=0

∑
a⊂{1,2,...,s}

#a= j

νa1 · · · νa j Fitti,Z[G](Ns− j (τa j+1, . . . , τas )).

When i = 0, Proposition 4.8 implies

Fitt0,Z[G](Ns− j (τa j+1, . . . , τas ))=

{
(1) ( j = s),
0 (0 ≤ j < s).

Clearly, j = s forces a = {1, 2, . . . , s}, so we obtain

Fitt0,Z[G](II )= (ν1 · · · νs)= J0.

When 1 ≤ i ≤ s, since 1 ≤ i ≤ s − j by the choice of j , Proposition 4.8 implies

Fitti,Z[G](Ns− j (τa j+1, . . . , τas ))= (τa j+1, . . . , τas )
s−i− j .

Then we obtain

Fitti,Z[G](II )=

s−i∑
j=0

∑
a⊂{1,2,...,s}

#a= j

νa1 · · · νa j (τa j+1, . . . , τas )
s−i− j .

Using the relation νlτl = 0, for each 0 ≤ j ≤ s − i , we have∑
a⊂{1,2,...,s}

#a= j

νa1 · · · νa j (τa j+1, . . . , τas )
s−i− j

=

∑
a⊂{1,2,...,s}

#a= j

νa1 · · · νa jI
s−i− j
I = Zs− jI

s−i− j
I .

These formulas imply Fitti,Z[G](II )= Ji . □

We are ready to prove Theorem 1.4.

Proof of Theorem 1.4. By Propositions 4.3 and 4.9, we have

Fitt[1]

Z[G]
(A)=

s∑
i=0

g̃i−1 Ji .
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Then, noting J0 = (νI ), we can deduce

h Fitt[1]

Z[G]
(A)=

(
νI ,

(
1 −

νI

#I
ϕ−1

) s∑
i=1

g̃i−1 Ji

)
in the same way as in the proof of Proposition 4.1. Then it is enough to show

J =

s∑
i=1

g̃i−1 Ji . (4-1)

We claim that
(II , #I )Ji+1 ⊂ Ji (4-2)

holds for 1 ≤ i ≤ s − 1. We first see

II Ji+1 = II

s−i−1∑
j=0

Zi+1+ jI
j
I =

s−i∑
j=1

Zi+ jI
j
I ⊂ Ji .

We also have νI Ji+1 ⊂ (νI )⊂ J0 ⊂ Ji . Since (II , #I )= (II , νI ) as an ideal, these show the claim (4-2).
Using (4-2), we next show

s∑
i=1

g̃i−1 Ji =

s∑
i=1

(1 − ϕ̃−1)i−1 Ji . (4-3)

More generally we actually show

s′∑
i=1

g̃i−1 Ji =

s′∑
i=1

(1 − ϕ̃−1)i−1 Ji

by induction on s ′, for each 0 ≤ s ′
≤ s. The case s ′

= 0 is trivial. For 1 ≤ s ′
≤ s, we have

s′∑
i=1

g̃i−1 Ji = g̃s′
−1 Js′ +

s′
−1∑

i=1

g̃i−1 Ji

=

( s′∑
i=1

(1 − ϕ̃−1)i−1(#I )s
′
−i

)
Js′ +

s′
−1∑

i=1

(1 − ϕ̃−1)i−1 Ji .

Here, the second equality follows from the induction hypothesis and expanding the power g̃s′
−1. By (4-2),

for 1 ≤ i ≤ s ′
− 1, we have (#I )s

′
−i Js′ ⊂ Ji . Therefore, we obtain

s′∑
i=1

g̃i−1 Ji = (1 − ϕ̃−1)s
′
−1 Js′ +

s′
−1∑

i=1

(1 − ϕ̃−1)i−1 Ji

=

s′∑
i=1

(1 − ϕ̃−1)i−1 Ji .

This completes the proof of (4-3).
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The right hand side of (4-3) can be computed as

s∑
i=1

(1 − ϕ̃−1)i−1 Ji =

s∑
i=1

s−i∑
j=0

Zi+ jI
j
I (1 − ϕ̃−1)i−1

=

s∑
k=1

k∑
j=0

ZkI
j
I (1 − ϕ̃−1)k− j−1

=

s∑
k=1

ZkIk−1
D = J .

Here, the first equality follows from the definition of Ji , the second by putting i + j = k, the third by
ID = (II , 1 − ϕ̃−1), and the final by the definition of J . Then, combining this with (4-3), we obtain the
formula (4-1). This completes the proof of Theorem 1.4. □

5. Stickelberger element and Fitting ideal

In this section, we prove Theorem 1.5. As explained after the statement, we need to compare the ideals in
the both sides of (1-6) for each v before taking the product. That task will be done in Section 5A, and
after that we complete the proof of Theorem 1.5 in Section 5B.

In this section we fix an odd prime number p and always work over Zp.

5A. Comparison of ideals. In this subsection, we again consider the general algebraic situation as in
Section 1B. Our task in this subsection is to compare the two fractional ideals

A = h Fitt[1]

Zp[G]
(A ⊗ Zp), B =

(
1 −

νI

#I
ϕ−1

)
of Zp[G]. In Lemma 5.1 (resp. Lemma 5.2) below, we deal with the case where D is not (resp. is) a
p-group. We will make use of the concrete description of A in Theorem 1.4. As we always work over Zp

instead of Z, by abuse of notation, in this subsection we simply write II , ID , Zi , and J for the extensions
of those ideals from Z[G] to Zp[G]. We have no afraid of confusion due to this.

Let G ′ denote the maximal subgroup of G whose order is prime to p.

Lemma 5.1. Let χ be a faithful character of G ′ (note that this requires that G ′ be cyclic). Suppose that
D is not a p-group. Then we have

Aχ = Bχ

as fractional ideals of Zp[G]
χ .

Proof. We write D′
= D ∩ G ′ and I ′

= I ∩ G ′. We first note that IχD = (1). This is because χ is nontrivial
on D′ by the assumptions. Then we have J χ

= (1) by Definition 1.2, so Theorem 1.4 implies

Aχ =

(
νI ,

(
1 −

νI

#I
ϕ−1

))χ
.
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We have to show

ν
χ

I ∈

(
1 −

νI

#I
ϕ−1

)χ
.

When I ′ is nontrivial, then νχI = 0 as χ is nontrivial on I ′, so this is obvious. Let us suppose that I ′ is
trivial. Since ν2

I = (#I )νI , we have

νI

(
1 −

νI

#I
ϕ−1

)
= νI (1 −ϕ−1).

The element (1 − ϕ̃−1)χ of Zp[G]
χ is a unit since ID = (II , 1 − ϕ̃−1), IχD = (1), and IχI ⫋ (1). This

completes the proof. □

Lemma 5.2. Suppose that I is nontrivial and that D is a p-group. Let s = rankp(I ) be the p-rank of I ,
that is, the number of minimal generators of I (note that s ≥ 1):

(1) We have
A ⊃ Is−1

D B

as fractional ideals of Zp[G].

(2) Let ψ be a character of G such that ψ |G ′ is faithful on G ′ and that ψ is nontrivial on D. Then we
have

ψ(A)= ψ(ID)
s−1ψ(B)

as ideals of Oψ .

Proof. We may take a decomposition (1-3) of I so that s coincides with the p-rank of I as the lemma,
and then Il is nontrivial for each 1 ≤ l ≤ s:

(1) By Definition 1.2, we have Is−1
D ⊂ J (by the i = s term as Zs = (1)). Then Theorem 1.4 shows the

claim (1).

(2) We first show ψ(J )=ψ(ID)
s−1. By the claim (1) above, the inclusion ψ(J )⊃ψ(ID)

s−1 holds. For
each 1 ≤ l ≤ s, we observe (ψ(νl))⊂ (p) since ψ(νl) is either 0 or #Il . Moreover, we have (p)⊂ψ(ID)

since ψ is nontrivial on D and we have (p)⊂ (1−ζ ) if ζ is any nontrivial root of unity. These observations
imply ψ(Zi ) ⊂ ψ(ID)

s−i for 1 ≤ i ≤ s. By the definition of J , we then have ψ(J ) ⊂ ψ(ID)
s−1 as

claimed.
By Theorem 1.4 and the above claim, we have

ψ(A)= (ψ(νI ), ψ(B)ψ(ID)
s−1).

We have to show ψ(νI ) ∈ψ(B)ψ(ID)
s−1. This is obvious if ψ is nontrivial on I . If ψ is trivial on I , we

have
ψ(νI )= #I ∈ (ps)⊂ ψ(B)ψ(ID)

s−1,

where the last inclusion follows from ψ(B)= ψ(ID)= (1 −ψ(ϕ)−1)⊃ (p). This completes the proof
of (2). □
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5B. Proof of Theorem 1.5. Now we consider the setup in Section 1C. In particular, we fix an odd prime
number p and an odd character χ of G ′. Recall the χ-component of the Stickelberger element θχK/k,T

defined as (1-4)

Lemma 5.3. We have θχK/k,T ̸= 0 if and only if there exists a character ψ of G such that ψ |G ′ = χ and
that ψ is nontrivial on Dv for any v ∈ Sχ \ S∞(k).

Proof. By (1-5) and the fact that ωχT is a not a zero divisor, we have θχK/k,T ̸= 0 if and only if there exists
a character ψ of G such that ψ |G ′ = χ and, for every v ∈ Sχ \ S∞(k), we have ψ(1 − (νIv/#Iv)ϕ−1

v ) ̸= 0.
The last condition is equivalent to that ψ is nontrivial on Dv. This proves the lemma. □

We begin the proof of Theorem 1.5.

Proof of Theorem 1.5. As already remarked in the outline of the proof after Theorem 1.5, we may and do
assume that χ is a faithful character of G ′. This is because we have (ClT

K ⊗Zp)⊗Zp[G] Zp[Gal(Kχ/k)] ≃

ClT
Kχ

⊗Zp as the degree of K/Kχ is prime to p. Moreover, to simplify the notation, we write S = Sχ =

Sram(K/k) and Sfin = S \ S∞(k). Recall that, by Theorem 1.1, the condition (i) is equivalent to (1-6). As
in Section 5A, for each v ∈ Sfin, we consider the fractional ideals of Zp[G]

Av = hv Fitt[1]

Zp[G]
(Av ⊗ Zp), Bv =

(
1 −

νIv

#Iv
ϕ−1
v

)
.

We first suppose (ii) and aim at showing (i). The case where θχK/k,T = 0 is trivial, so we assume that,
for any v ∈ Sfin, either (a) or (b) holds. Then we obtain Bχv ⊂ Aχv for any v ∈ Sfin, by applying Lemma 5.1
(resp. Lemma 5.2(1)) if (a) (resp. (b)) holds. Thus (1-6) holds.

We now prove that (i) implies (ii). Suppose that both (i) and the negation of (ii) hold. Since θχK/k,T ̸= 0,
we may take a character ψ as in Lemma 5.3. By applying ψ to (1-6), we obtain∏

v∈Sfin

ψ(Bv)⊂

∏
v∈Sfin

ψ(Av).

On the other hand, by Lemmas 5.1 and 5.2(2), for each v ∈ Sfin, we have ψ(Av) ⊂ ψ(Bv). Moreover,
the inclusion is proper if and only if both the conditions (a) and (b) in (ii) are false. Therefore, by the
hypothesis that (ii) fails, we obtain ∏

v∈Sfin

ψ(Av)⫋
∏
v∈Sfin

ψ(Bv).

Thus we get a contradiction. This completes the proof of Theorem 1.5. □
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