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The diagonal coinvariant ring of
a complex reflection group

Stephen Griffeth

For an irreducible complex reflection group W of rank n containing N reflections, we put g = 2N/n
and construct a (g + 1)n-dimensional irreducible representation of the Cherednik algebra which is (as
a vector space) a quotient of the diagonal coinvariant ring of W . We propose that this representation
of the Cherednik algebra is the single largest representation bearing this relationship to the diagonal
coinvariant ring, and that further corrections to this estimate of the dimension of the diagonal coinvariant
ring by (g + 1)n should be orders of magnitude smaller. A crucial ingredient in the construction is the
existence of a dot action of a certain product of symmetric groups (the Namikawa–Weyl group) acting on
the parameter space of the rational Cherednik algebra and leaving invariant both the finite Hecke algebra
and the spherical subalgebra; this fact is a consequence of ideas of Berest and Chalykh on the relationship
between the Cherednik algebra and quasiinvariants.

1. Introduction

1A. Coinvariant rings. Given a finite linear group W ⊆ GL(h), where h is a finite-dimensional complex
vector space, the group W acts by automorphisms on the ring C[h] of polynomial functions on h. It is
well known that the quotient variety h/W is smooth precisely when the ring C[h]W is isomorphic to
a polynomial ring, which happens exactly when the group W is generated by reflections. In this case,
letting JW be the ideal of C[h] generated by the positive-degree W-invariant polynomials, the coinvariant
ring of W is the ring C[h]/JW , which might be thought of as the ring of functions on the scheme-theoretic
fiber over 0 of the quotient map h → h/W , and is isomorphic to the regular representation of W . In
fact, it is a graded W-module, and the exponents of a given irreducible representation E of CW are the
degrees in which it occurs in this graded module. For reflection groups such as the symmetric group
with combinatorial structure encoded via partitions and various sorts of tableaux, these exponents may be
calculated via combinatorial statistics.
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1B. Diagonal coinvariant rings. The group W also acts on C[h∗
⊕h] by automorphisms, and, by analogy

with the preceding one, we may consider the quotient variety (h∗
× h)/W , which is an example of a

symplectic singularity. Its ring of functions is the invariant ring C[h∗
⊕h]W , which in the case where W is a

reflection group, has a more interesting structure than C[h]W . Likewise, letting IW be the ideal of C[h∗
⊕h]

generated by the positive degree elements of C[h∗
⊕ h]W , the diagonal coinvariant ring is the quotient

RW = C[h∗
⊕ h]/IW .

It may be thought of as the ring of functions on the scheme-theoretic fiber over 0 of the quotient map

h∗
× h → (h∗

× h)/W

(for this reason, and to avoid confusion with the coinvariants of a group action, perhaps the names zero-fiber
ring and diagonal zero-fiber ring are more suitable). The ring RW carries a bigrading, and in analogy with
the case of the coinvariant ring, one may ask for the bigraded character of this ring. However, the answer to
this question is known explicitly only for two classes of examples: the symmetric groups and the dihedral
groups. For most reflection groups W , we do not even have a conjectural formula for the dimension of RW .

However, for real reflection groups, Haiman [1994] conjectured, and Gordon [2003] proved, that there
is a quotient of RW of dimension (h+1)n , where h is the Coxeter number of W . Gordon predicted that this
phenomenon generalizes at least to the complex reflection groups of type G(ℓ, m, n), and Vale [2007a] and
the author [Griffeth 2010b] proved this. Later, Gordon and the author [Gordon and Griffeth 2012] showed
(assuming the freeness conjecture for Hecke algebras, which is now known) that a similar technique,
based on Rouquier’s theorem on the uniqueness of highest weight covers, would produce a quotient ring
of RW of dimension (h + 1)n , where now we define the Coxeter number h of an irreducible complex
reflection group by

h =
N +N ∗

n
,

where N is the number of reflections in W , N ∗ is the number of reflecting hyperplanes, and n = dim(h)

is the rank. Here we point out that, while these quotients are natural from the point of view of Catalan
combinatorics (as predicted in [Bessis and Reiner 2011]), they should not be regarded as the best
approximations available to the full diagonal coinvariant ring in the case where the group W contains
reflections of order greater than 2.

1C. Lower bounds via representation theory. Meanwhile, together with Ajila [Ajila and Griffeth 2021],
we have very recently observed that a more delicate application of the same techniques can be used to
improve the lower bound dim(RW ) ≥ (h +1)n for the type B Weyl groups. However, this improvement is
orders of magnitude smaller than (h + 1)n , which we argue should perhaps be regarded as the principal
term in an approximation of dim(RW ). Thus the first question to be answered is, do we already know the
analogous principal term for an irreducible complex reflection group?

Our main purpose here is to observe that for complex groups containing reflections of order greater
than 2, the approximation by (h + 1)n should not be regarded as the principal term. Rather, we have:
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Theorem 1.1. Let W be an irreducible complex reflection group of rank n containing N reflections. There
is a quotient of the diagonal coinvariant ring RW of dimension (g + 1)n , where g = 2N/n.

As usual, we prove this bound by exhibiting an irreducible representation L = Lc(triv) of the rational
Cherednik algebra of dimension (g + 1)n in which the determinant appears exactly once (see Lemma 3.1;
in [Ajila and Griffeth 2021], we have called such representations coinvariant type). We do this in three
ways, one of which is conjectural: firstly, we prove it in general using the philosophy from [Gordon
and Griffeth 2012]. The technical details must be modified substantially, due to the fact that g + 1 is
not prime to h in general. This proof requires as input some striking coincidences from the numerology
of complex reflection groups. Secondly, for the infinite family G(ℓ, m, n), we use the tools developed
in [Griffeth 2010a; 2010b; 2018; Fishel et al. 2021]. This method gives the most information; it gives
explicit bases and a practical graded character formula. For future work improving the bound in the
case where W = G(ℓ, m, n), this construction is likely to be the most useful of the three. Finally, we
sketch a construction of the required representation that depends on an elaboration of the beautiful
observations of Berest and Chalykh [2011] linking the Cherednik algebra to quasiinvariants; our proof
that this actually works depends, however, on calculations with Schur elements and thereby on the widely
believed symmetrizing trace conjecture for the Hecke algebra, which is currently known to hold only
for the infinite family, real groups, and a few of the exceptional complex reflection groups, as well as a
conjecture about how Heckman–Opdam shift functors interact with standard modules. The numerological
coincidences mentioned above would follow as corollaries to this method (assuming the needed conjectures
are established) rather than appearing as miraculously convenient ingredients in the proof.

1D. KZ twists and the duality in the exponents. The parameter space C for the rational Cherednik
algebra consists of W-invariant tuples of numbers c = (cH, j )H∈A, 0≤ j≤nH −1 indexed by pairs (H, j)
consisting of a reflecting hyperplane H ∈ A for W and an integer 0 ≤ j ≤ nH − 1. The corresponding
finite Hecke algebra is the quotient of the group algebra of the braid group of W by relations of the form

nH −1∏
j=0

(TH − e2π i(cH, j + j/nH )) = 0,

where H ∈ A is a reflecting hyperplane, TH is a generator of monodromy around H , and nH is the order
of the cyclic reflection subgroup of W fixing H pointwise. This quotient is invariant by the group CZ

of translations by integer parameters, as well as by the group GW of permutations of the parameters
cH, j + j/nH . Thus, the parameter space for the Hecke algebra is effectively the quotient C/(CZ ⋊GW ),
and this together with the relationship between the Hecke algebra and the Cherednik algebra implies
that the group CZ ⋊GW acts by permutations (KZ twists) on the set of irreducible representations of W .
Let σ0 be the longest element of the subgroup of GW fixing the indices 0, and let τ be the translation
by 1 of all cH, j , with j ̸= 0. The composite σ = τσ0 thus induces a permutation κ of the irreducible
representations of W (see Section 3K for the precise definition).
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We should remark that the group GW is the Namikawa–Weyl group of the symplectic singularity
(h∗

× h)/W (see [Namikawa 2010; 2011; 2015] for the general theory and Lemma 4.1 of [Bellamy et al.
2018] for the agreement with GW in our case). It is, therefore, tempting to refer to CZ ⋊GW as the affine
Namikawa–Weyl group of W .

In the first construction proving Theorem 1.1 above, a certain duality for the exponents plays a key
role. Since it may be of independent interest, we state the result here:

Theorem 1.2. Let κ be the permutation of the irreducible representations of W induced by σ . Then

ei (h) + en−i+1(κ(h∗)) = g for all 1 ≤ i ≤ n,

where ei (E) are the exponents of the irreducible representation E of W , which are the degrees in which it
appears in the ordinary coinvariant ring. In particular, g = 2N/n is an integer.

We note that when the group is real, κ(h∗) = h, h = g, and this duality reduces to the usual one. On
the other hand, when W is one of the groups G(ℓ, 1, n) or is a primitive group containing reflections of
order greater than 2, we also have κ(h∗) = h, and the duality becomes

di + dn−i+1 = g + 2.

We obtain Theorem 1.2 via the technique of [Berest and Chalykh 2011, Section 8.3], as explained below.
In the conjectural construction of the principal coinvariant type representation, a version of a result of

Berest and Chalykh [2011] plays a key role. Because it will be of use in future work on related problems
and the study of the Cherednik algebra itself, we state it separately here (in the body of the paper, it is
Theorem 3.6). We write D(h◦) for the algebra of polynomial coefficient differential operators on the
complement h◦ to the set of reflecting hyperplanes for W , and D(h◦)⋊ W for the algebra of operators
generated by it and W . We recall that the Cherednik algebra Hc and its spherical subalgebra eHce, where
e is the symmetrizing idempotent of W , are both subalgebras (the latter nonunital) of D(h◦)⋊ W . The
following theorem appears as Theorem 3.6 below, where precise definitions and conventions are specified:

Theorem 1.3. For all c ∈ C and g ∈ GW , we have an equality of (nonunital ) subalgebras of the algebra
D(h◦)⋊ W :

eHce = eHg·ce.

Thus the Namikawa–Weyl group GW preserves not only the finite Hecke algebra, but the spherical
subalgebra as well. In Proposition 5.4 of [Berest and Chalykh 2011], this same equality is proved for g
in a certain cyclic subgroup of GW and is the key point in their construction of Heckman–Opdam shift
functors. We emphasize that no new ideas beyond what is contained in [Berest and Chalykh 2011] are
necessary for the proof of this more general theorem (just very careful bookkeeping), and that another
proof using different ideas recently appeared — this is Corollary 2.22 of [Bellamy et al. 2021] (see also
Theorem 3.4 of [Losev 2022], which replaces equality with isomorphism but works in more generality).
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1E. More mysterious numerology. There is a connection here to a conjecture of Stump [2010], that
the number of occurrences of the determinant representation of W in the diagonal coinvariant ring for a
well-generated complex reflection group W is given by the W-Catalan number

Cat(W ) =

n∏
i=1

h + di

di
.

For the groups G(ℓ, 1, n) and the primitive groups containing reflections of order greater than 2, our
results imply that the number of occurrences of the determinant in the diagonal coinvariant ring is at least

n∏
i=1

g + d∗

i + 1
di

,

where d∗

i are the codegrees of W . But it turns out that, thanks to another instance of mysteriously favorable
numerology, we actually have

g + d∗

i + 1 = h + di for all 1 ≤ i ≤ n

for such groups. This coincidence deserves further thought and gives a bit of evidence for Stump’s
conjecture: for although we have improved our estimation of the diagonal coinvariant ring, the number of
occurrences of the determinant representation we have discovered has not increased.

1F. An asymptotic version of the (n + 1)n−1 conjecture. In order to make more concrete our hope that
the number (g + 1)n is the principal term in an approximation to dim(RW ), we state the result for the
monomial group W = G(ℓ, m, n), for which

g = ℓ(n − 1) + 2
(

ℓ

m
− 1

)
,

more explicitly:

Theorem 1.4. Let ℓ, m, and n be positive integers with m dividing ℓ, and let W = G(ℓ, m, n) be the group
of n × n matrices with entries that are either 0 or ℓ-th roots of 1, so that each row and each column has
precisely one nonzero entry, and so that the product of the nonzero entries is an (ℓ/m)-th root of 1. Then

dim(RW ) ≥

(
ℓ(n − 1) +

2ℓ

m
− 1

)n

.

In fact, we will give a construction of the relevant representation Lc(triv) for these groups G(ℓ, m, n)

which depends on the techniques from [Griffeth 2010b] and gives somewhat more detailed information
on its graded character.

Now we can make more precise the hope that (g + 1)n is almost the dimension of RW .

Conjecture 1.1. Suppose ℓ and m are positive integers with ℓ ≥ 2 and m dividing ℓ. Then

lim
n→∞

dim(RG(ℓ,m,n))(
ℓ(n − 1) + 2ℓ/m − 1

)n = 1.
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Admittedly, the evidence for the conjecture is rather thin: it consists solely of the fact that we have so
far been unable to improve the lower bound by anything of the same order of magnitude.

There is another sort of limit one can take to obtain reasonable combinatorics: as suggested by
Bergeron [2013], one might work with the analog of the diagonal coinvariant ring for the product of
m copies of the reflection representation h×m and let m tend to infinity. But as far as we know, there is no
connection between the two.

2. Quotients of C[h] by systems of parameters

2A. Reflection groups. Throughout this paper, we will write W ⊆ GL(h) for an irreducible complex
reflection group acting on an n-dimensional vector space h, R ⊆ W for the set of reflections in W , and A

for the set of reflecting hyperplanes of W . Given H ∈ A, we let WH be the pointwise stabilizer of H ,
which is a cyclic reflection subgroup of W . We write det : W → C× for the determinant character of W ,
which is the restriction of the determinant on GL(h) to W . Putting nH = |WH |, we write

eH, j =
1

nH

∑
w∈WH

det− j (w)w

for the primitive idempotents of the group algebra CWH . For a CW-module E , we put

EH, j = dimC(eH, j E), for H ∈ A and 0 ≤ j ≤ nH − 1,

and call the collection EH, j of numbers the local data of E . The Coxeter number h of W is

h =
N +N ∗

n
, where N = |R| and N ∗

= |A|,

and we also define the number g = 2N/n as in Section 1. We will see that g is, in fact, an integer
(when we prove Theorem 1.2). This also follows from Corollary 6.98 of [Orlik and Terao 1992], and the
same number appears in Remark 8.10 of [Chapuy and Douvropoulos 2023] in the context of reflection
factorizations of Coxeter elements (see Definition 3.1 from [Chapuy and Douvropoulos 2022]); I thank
Theo Douvropoulos for pointing me to these references.

2B. W-equivariant homogeneous systems of parameters and the Koszul complex. Suppose E ⊆ C[h]d

is an n-dimensional W-submodule in the degree d piece C[h]d of C[h] such that the quotient C[h]/C[h]E
by the ideal generated by E is finite-dimensional. That is, a basis for E is a homogeneous system of
parameters in C[h]. In this case, it follows that the Koszul complex

0 → C[h] ⊗3n E → C[h] ⊗3n−1 E → · · · → C[h] ⊗ E → C[h] → C[h]/C[h]E → 0

is exact, where the map C[h] ⊗3k E → C[h] ⊗3k−1 E is given by the formula

f ⊗ e1 ∧ e2 ∧ · · · ∧ ek 7→

k∑
j=1

(−1) j−1e j f ⊗ e1 ∧ · · · ∧ ê j ∧ · · · ∧ ek for f ∈ C[h] and e1, . . . , ek ∈ E,
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in which the hat over a factor in a product indicates, as usual, that the factor is to be omitted. Evidently
these are maps of graded CW-modules, provided that we equip C[h] ⊗ 3k E with the grading for which
the degree of f ⊗ e1 ∧ · · · ∧ ek is

deg( f ⊗ e1 ∧ · · · ∧ ek) = deg( f ) + kd.

2C. Graded traces. Suppose w ∈ W and we fixed eigenbases x1, . . . , xn of h∗ and e1, . . . , en of E for
the w-action, with wxi = ζi xi and wei = µi ei for certain roots of unity ζi and µi . Now the expressions
xi1 xi2 · · · xik ⊗ e j1 ∧ · · · ∧ e jm for weakly increasing 1 ≤ i1 ≤ i2 ≤ · · · ≤ ik ≤ n and strictly increasing
1 ≤ j1 < j2 < · · · jm ≤ n are a basis of C[h]k

⊗ 3m E . The trace of w on C[h]k
⊗ 3m E is therefore,

tr(w, C[h]k
⊗ 3m E) =

∑
1≤i1≤i2≤···≤ik≤n

1≤ j1< j2< ···< jm≤n

ζi1ζi2 · · · ζik µ j1µ j2 · · · µ jm ,

which is the coefficient ckm of tkqm in the expansion

det(1 + qw)

det(1 − tw)
=

∑
0≤k<∞

0≤m≤n

ckm tkqm .

2D. Reflection representations and amenable representations of W. Let E be an irreducible CW-
module of dimension m. We say that E is a reflection representation of W if each r ∈ R acts as a reflection
on E . For H ∈ A, we put

C(H, E) =

nH −1∑
j=0

j EH, j , where we recall that EH, j = dim(eH, j E).

Following [Lehrer and Taylor 2009, Definition 10.14 and Lemma 10.15], we say E is amenable if

C(H, E) ≤ nH − 1 for all H ∈ A.

It is immediate (as in Corollary 10.16 of [Lehrer and Taylor 2009]) that if E is a reflection representation,
then E and E∗ are amenable. The important point for us is the following, which is Theorem 10.18 of
[Lehrer and Taylor 2009]:

Theorem 2.1. Let E be an amenable CW-module of dimension m with exponents e1, . . . , em . Then there
are homogeneous elements ω1, . . . , ωm ∈ (C[h] ⊗ E∗)W of degrees e1, . . . , em such that

(C[h] ⊗3• E∗)W
=

⊕
0≤p≤m

1≤i1<i2<···<i p≤m

C[h]W ωi1ωi2 · · · ωi p ,

where, as usual, a product with zero factors should be interpreted as a 1.
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2E. The determinant appears exactly once. We suppose we have an occurrence of an n-dimensional
representation E in degree g +1 of C[h], with the property that the quotient L = C[h]/EC[h] of C[h] by
the ideal generated by E is finite-dimensional. We further suppose that E is an n-dimensional irreducible
reflection representation of W satisfying

g + 1 = di + en−i+1 for 1 ≤ i ≤ n, where e1 ≤ · · · ≤ en are the exponents of E .

Then using the previous material on the Koszul resolution and arguing as in Theorem 3.2 of [Griffeth
2010b] shows that there is a single occurrence of the determinant representation of W in L , which occurs
in degree e1 + e2 + · · · + en . Later, we will use this to establish the hypotheses of Lemma 3.1 below.

3. Proof of Theorem 1.1: the Cherednik algebra, the Hecke algebra, and KZ twists

3A. Outline. In this section, we first give the definitions of Cherednik and Hecke algebras corresponding
to W , and then present what we believe to be the natural level of generality for the beautiful constructions
of Berest and Chalykh [2011]. In the level of generality we need, this latter material is technically new
but requires no new ideas, so we omit the proofs whenever they are completely parallel to those of Berest
and Chalykh. We finish by deducing Theorem 1.1 from these ingredients.

3B. The parameter space. We write C for the set of tuples c = (cH, j )H∈A, 0≤ j≤nH −1 of complex num-
bers cH, j ∈ C indexed by pairs (H, j) consisting of a reflecting hyperplane H for W and an integer
0 ≤ j ≤ nH − 1, subject to the condition

cH, j = cw(H), j for all w ∈ W, H ∈ A, and 0 ≤ j ≤ nH − 1.

Thus, C is a finite-dimensional C-vector space. We put

CZ = {c ∈ C | cH, j ∈ Z for all H ∈ A and 0 ≤ j ≤ nH − 1}.

3C. The Dunkl operators. Given c ∈ C and y ∈ h, we define the Dunkl operator yc ∈ D(h◦)⋊ W by

yc( f ) = ∂y( f ) −

∑
H∈A

αH (y)

αH

nH −1∑
j=0

nH cH, j eH, j ,

where we have fixed αH ∈ h∗ with zero set equal to H . We note that since we do not require cH,0 = 0,
these Dunkl operators do not necessarily preserve the space of polynomial functions. They do, however,
commute with one another, and preserve the space C[h◦

] of polynomial functions on h◦.

3D. The rational Cherednik algebra. Given c ∈ C, the rational Cherednik algebra Hc is the subalgebra
of D(h◦)⋊W generated by C[h], the group W , and the Dunkl operators yc for all y ∈ h. It has a triangular
decomposition

Hc ∼= C[h] ⊗ CW ⊗ C[h∗
],

where we identify C[h∗
] with the subalgebra of Hc generated by the Dunkl operators. Taking δ =

∏
αr ,

and adjoining the inverse of δ to Hc, gives the algebra Hc[δ
−1

] = D(h◦)⋊ W , independent of c ∈ C.
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3E. Category Oc. The category Oc is the full subcategory of Hc-mod consisting of finitely generated
Hc-modules on which each Dunkl operator yc acts locally nilpotently. Among the objects of Oc are the
standard modules 1c(E), indexed by E ∈ Irr(CW ) and defined by

1c(E) = IndHc
C[h∗]⋊W (E),

where C[h∗
]⋊ W is the subalgebra of Hc generated by W and the Dunkl operators, which act on E by 0.

3F. The Euler element and the c-function. Fix dual bases x1, . . . , xn and y1, . . . , yn of h∗ and h. A short
calculation shows that the Euler vector field eu on h may be written in terms of the Dunkl operators as

eu =

n∑
i=1

xi∂yi =

∑
xi (yi )c +

∑
H∈A

0≤ j≤nH −1

nH cH, j eH, j .

In particular, its action on the standard module 1c(E) is easy to describe: it acts by the scalar d + cE

on the polynomial degree d piece C[h]d
⊗ E of 1c(E), where

cE =
1

dim(E)

∑
H∈A

0≤ j≤nH −1

nH cH, j EH, j

depends on the parameter c and the local data EH, j = dim(eH, j E) of E .

3G. Coinvariant type representations. We recall from [Ajila and Griffeth 2021] that a coinvariant type
representation of Hc is an irreducible Hc-module L such that upon restricting L to the group algebra CW ,
the determinant representation of W occurs with multiplicity one in L . Each such representation carries a
canonical filtration: take the filtration on Hc defined by placing h∗ and h in degree 1 and W in degree 0,
and define

L≤d
= H≤d

c Ldet,

where Ldet is the isotypic component of L for the determinant representation. The following lemma is the
key point relating coinvariant type representations of Hc to the diagonal coinvariant ring RW . The proof
is straightforward, but we include it because of the central role it plays in all that follows. We define
a somewhat unusual bigrading on RW as follows: take f to be homogeneous of bidegree (a, b) if it is
of total degree a in the x’s and y’s and if its x degree minus its y degree is b (this second grading is
compatible with the Euler grading on Hc and L).

Lemma 3.1. Let L be a coinvariant type representation of Hc, and let δ be a basis element of Ldet.
The map gr(Hc) → gr(L) defined by f 7→ f · δ induces a surjective map of bigraded CW-modules
RW ⊗ det → gr(L).

Proof. Since dim(Ldet) = 1 is equal to the multiplicity of the determinant representation in L≤0
= Cδ, it

follows that det does not occur in L≤d/L≤d−1 for any d > 0. Hence, if f ∈ C[h∗
⊕ h]W is homogeneous
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of positive degree, then working in gr(L), we have f · δ = 0. Therefore, the map C[h∗
⊕ h] → gr(L)

defined by f 7→ f · δ factors through RW . Since L is irreducible and CW · δ = Cδ, we have

L = Hc · δ = C[h]C[h∗
]CW · δ = C[h]C[h∗

] · δ,

which implies that the map f 7→ f · δ is surjective. Tensoring RW by det makes it W-equivariant, and
observing that δ is homogeneous (of a certain degree k) for the Euler grading on L implies that it is a
bigraded map sending f of bidegree (a, b) to an element of bidegree (a, b + k). □

3H. The fiber functors and the braid group. Given an object M ∈ Oc and a point p ∈ h, we define the
fiber of M at p to be the vector space

M(p) = M/I (p)M,

where I (p) ⊆ C[h] is the ideal of functions vanishing at p. In fact, M(p) is a finite-dimensional
CWp-module. In general the functor M 7→ M(p) is only right-exact.

Writing δ =
∏

r∈R αr , we put
M◦

= C[h][δ−1
] ⊗C[h] M.

The functor M 7→ M◦ is exact, and in fact M◦ is a Hc[δ
−1

] = D(h◦) ⋊ W-module which is finitely
generated as a C[h◦

] = C[h][δ−1
]-module. That is, M◦ is a W-equivariant vector bundle on h◦ equipped

with a W-equivariant flat connection. Since M(p) = M◦(p) for p ∈ h◦, it therefore follows that the fiber
functor M 7→ M(p) is exact for p ∈ h◦, and the braid group BW = π1(h

◦/W, p) acts by automorphisms
on this fiber functor.

3I. The Hecke algebra and the KZ functor. In fact, the braid group action factors through the Hecke
algebra Hc, which is the quotient of the group algebra CBW by the relations

0 =

nH −1∏
j=0

(TH − e2π i( j/nH +cH, j )) for all H ∈ A,

where TH is a generator of monodromy around H . We will write KZ(M) = M(p) for the fiber M(p)

regarded as an Hc module, and refer to M 7→ KZ(M) as the Knizhnik–Zamolodchikov functor or KZ
functor for short. Vale [2007b] proved (see also [Berest and Chalykh 2011, Theorem 6.6]) that Hc

is semisimple if and only if Oc is a semisimple category, which happens exactly when each standard
module 1c(E) is irreducible.

3J. The group GW . It follows from the definition of Hc that if c is a parameter such that for each H ∈ A,
the numbers j/nH + cH, j are a permutation of the numbers j/nH (for 0 ≤ j ≤ nH − 1) modulo Z, then
Hc ∼= CW is isomorphic to the group algebra of W . More generally, two parameters c and c′ give the
same Hecke algebra provided the multisets

{ j/nH + cH, j mod Z | 0 ≤ j ≤ nH − 1} and { j/nH + c′

H, j mod Z | 0 ≤ j ≤ nH − 1}

are equal for all H ∈ A.
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This may be rephrased as follows: define ρ ∈ C by

ρH, j = j/nH

and the group GW by

GW =

{
(sH )H∈A ∈

∏
H∈A

Sym({0, 1, . . . , nH − 1}) | sH = sw(H) for all H ∈ A and w ∈ W
}
.

Thus, an element of GW may be regarded as a list of permutations sH of {0, 1, 2, . . . , nH − 1}, one for
each W-orbit on A. By construction GW acts on C, but the interesting action for us is the dot action
of GW on C, which is defined by the formula

s · c = s(c + ρ) − ρ for s ∈ GW and c ∈ C.

Recalling the lattice CZ of integral parameters, the semidirect product group CZ ⋊GW acts on C, and the
quotients Hc and Hg(c) are equal for all c ∈ C and g ∈ CZ ⋊GW . As we will never again use any other
action of GW on C, in all formulas below we will drop the dot.

3K. The KZ twists. By the preceding observations, the Hecke algebras Hg(0) for g ∈ CZ ⋊GW are all
equal to CW , and the KZ functor gives an equivalence KZg(0) : Oc → CW-mod for all such g. We obtain:

Lemma 3.2. Let g ∈ CZ ⋊GW . Then there is a unique permutation κ−1
g of Irr(CW ) such that

KZg(0)(1g(0)(E)) ∼= κ−1
g (E) in CW-mod for all E ∈ Irr(CW ).

We refer to κ−1
g as the KZ twist associated with g. The particular case in which g ∈ CZ is simply a

translation by an element of the lattice CZ has been studied previously by Opdam [1998] and Berest and
Chalykh [2011]. So the added generality here is allowing an additional permutation of the indices by
some σ ∈ GW . Just as in [Berest and Chalykh 2011, Corollary 7.12], the map g 7→ κg is a homomorphism
from CZ ⋊GW to the group of permutations of Irr(CW ) (here we note that the inverse appears in κ−1

g in
order that this defines a homomorphism), and as in [Berest and Chalykh 2011, Theorem 7.11] (defining
the set C◦ of regular parameters to be those for which Oc is semisimple), we have more generally:

Lemma 3.3. For c ∈ C◦ regular and g ∈ CZ ⋊GW , we have

KZg(c)(1g(c)(E)) ∼= KZc
(
1c(κ

−1
g (E))

)
.

3L. KZ twists preserve local data. Corollary 7.18 of [Berest and Chalykh 2011] shows that for τ ∈ CZ,
the KZ twist by τ preserves local data,

EH, j = κτ (E)H, j for all H, j .

Let σ ∈ GW , and let c ∈ C◦ be regular. By taking g = σ and replacing E by κσ (E) in Lemma 3.3,
we obtain 1c(E)◦ ∼= 1σ(c)(κσ (E))◦, so there is a space of isotype κσ (E) singular vectors for the σ(c)-
Dunkl operators in 1c(E)◦ = C[h◦

]⊗ E . As in the proof of [Berest and Chalykh 2011, Corollary 7.18],
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its homogeneous degree m does not vary with c, implying that

m = σ(c)κσ (E) − cE =
1

dim(E)

∑
H, j

(
nH cH,σ−1( j) + σ−1( j) − j

)
κσ (E)H, j − nH cH, j EH, j

is constant. This implies

κσ (E)H,σ ( j) = EH, j ,

which is the sense in which κσ preserves local data.

3M. A particular KZ twist we will use. In order to apply the preceding material to the proof of
Theorem 1.1, we must choose a particular element of CZ ⋊ GW . There are many possible choices
that would work for us. Here we fix one.

For c ∈ C, put

σ(c)H, j =

{
cH,0, if j = 0,

cH,nH − j + 2(nH − j)/nH , if j ̸= 0.

This is the product σ = τσ0 of the longest element σ0 of GW with the transformation τ defined by

τ(c)H, j = cH, j−1 +
nH − 1

nH
.

Alternatively, it is the product of the longest element of the subgroup of GW fixing (H, 0) for all H with
the translation

cH, j 7→

{
cH,0, if j = 0,

cH, j + 1, if j ̸= 0.

Thus, in the case where all reflections have order 2 and cH,0 = 0, this σ is simply the translation c 7→ c+1.
But it is more complicated in general, and the extra complication is definitely necessary for the proof
of Theorem 1.1.

3N. Preservation of c-order. Consider the hyperplane of parameters c ∈ C satisfying the condition

ch∗ = 1.

There is at least one c on this hyperplane such that, in addition, there is a positive real number c0 with

cH, j = 2 jc0 for all H ∈ A and 0 ≤ j ≤ nH − 1.

Fix such a choice of c and suppose E , F are irreducible W-modules with cE − cF > 0. We then have

0 < cE − cF =
1

dim(E)

∑
nH cH, j EH, j −

1
dim(F)

∑
nH cH, j FH, j

= c0

(
1

dim(E)

∑
nH 2 j EH, j −

1
dim(F)

∑
nH 2 j FH, j

)
.
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Hence, by using Section 3L,

σ(c)κσ (E) − σ(c)κσ (F)

=
1

dim(E)

∑
j ̸=0

(
nH cH,nH − j + 2(nH − i)

)
EnH −i −

1
dim(F)

∑
j ̸=0

(
nH cH,nH − j + 2(nH − i)

)
FnH −i

= cE − cF +
1

dim(E)

∑
nH 2 j EH, j −

1
dim(F)

∑
nH 2 j FH, j > 0.

It follows that the bijection κσ intertwines the c-order on Irr(CW ) with the σ(c)-order. Moreover, the
same is true for any parameter c on the hyperplane ch∗ = 1 sufficiently close to such a choice.

3O. Quasiinvariants. A multiplicity function is a collection m = (m H, j )H∈A,0≤ j≤nH −1 of integers indexed
by pairs H ∈ A and 0 ≤ j ≤ nH − 1 with the property that m H, j = mw(H), j for all w ∈ W , H ∈ A, and
0 ≤ j ≤ nH − 1. Given a multiplicity function m and a CW-module E , we define the space Qm(E) of
E-valued quasiinvariants as in Berest and Chalykh [2011, (3.12)] to be the space of f ∈C[h◦

]⊗E such that

vH (1 ⊗ eH,i · f ) ≥ m H,i for all H ∈ A and 0 ≤ i ≤ nH − 1,

where vH is the valuation on C[h◦
] ⊗ E that gives the order of vanishing along H (and where, e.g.,

vH ( f ) ≥ −2 means f has at most a pole of order 2 along H ). Given a multiplicity function m and a
parameter c ∈ C, we say that m and c are compatible if

nH cH,i−m H,i = m H,i for all H ∈ A and 0 ≤ i ≤ nH − 1.

This relationship may seem complicated, but we note that if c ∈ CZ then defining m H,i = nH cH,i , we
have m compatible with c, and if g ∈ GW and c ∈ CZ then by defining

m H,i = nH cH,i + i − g(i),

we have m compatible with g · c. Thus, each element of the orbit CZ ⋊ GW (0) is compatible with a
(unique) multiplicity function m.

Just as in [Berest and Chalykh 2011, Proposition 3.10] , one checks:

Lemma 3.4. If m and c are compatible, then Qm(E) is a Hc-submodule of C[h◦
] ⊗ E , where Hc acts

on C[h◦
] ⊗ E via the inclusion Hc ⊆ D(h◦)⋊ W .

In fact, when m is the unique multiplicity function compatible with a parameter g(0) with g ∈ CZ⋊GW ,
the module Qm(E) of E-valued quasiinvariants is an irreducible object of category Og(0) with localization
Qm(E)[δ−1

] equal to C[h◦
] ⊗ E as D(h◦)⋊ W-modules. It follows that

KZg(0)(Qm(E)) ∼= E =⇒ Qm(E) ∼= 1g(0)(κg(E)).

We define the space of quasiinvariants Qm ⊆ C[h◦
] by f ∈ Qm if and only if

vH (eH,−i f ) ≥ m H,i for all H ∈ A and 0 ≤ i ≤ nH − 1.

Note that Qm is different from Qm(triv). As in [Berest and Chalykh 2011, Theorem 3.4], the relationship is:
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Theorem 3.5. We have
e(Qm ⊗ 1) = eQm(CW )

as subsets of C[h◦
] ⊗ CW , and hence Qm is a eHce-module if c and m are compatible. Moreover,

eHce is equal to the algebra D(Qm)W e of W-invariant differential operators on Qm
(
both regarded as

subalgebras of e(D(h◦)⋊ W )e
)
.

Finally, by noting that Qm = Qk if m and k are multiplicity functions satisfying⌈
m H,i − i

nH

⌉
=

⌈
kH,i − i

nH

⌉
for all H ∈ A and 0 ≤ i ≤ nH − 1, (3-1)

one checks that for c ∈ CZ and g ∈ GW , the multiplicity functions compatible with c and with g(c)
produce the same space of quasiinvariants, implying eHce = eHg(c)e. Now, applying a density argument
as in [Berest and Chalykh 2011, Proposition 5.4] gives the version that we will use (as mentioned in the
introduction, this is Corollary 2.22 from [Bellamy et al. 2021], who give a completely different proof):

Theorem 3.6. For g ∈ GW and c ∈ C, we have

eHce = eHg(c)e and f (yc)e = f (yg(c))e for all f ∈ C[h∗
]
W .

This last inequality is to be interpreted as follows: for a symmetric polynomial f , evaluating f on
the Dunkl operators yc and then multiplying by e gives the same result as evaluating f on the Dunkl
operators yg(c) and then multiplying by e.

In fact, for multiplicity functions m and k satisfying (3-1), we have

eQm(E) = eQk(E) for all E ∈ CW-mod. (3-2)

Just as in [Berest and Chalykh 2011], this produces a host of consequences for the numerology of the
fake degrees of complex reflection groups, some of which are intimately related to the numerology of
diagonal coinvariants we are exploring here. We record the most general version of this now.

3P. Symmetries of the exponents. Here we record the version of the symmetries of the exponents (referred
to as symmetries of the fake degrees in [Berest and Chalykh 2011] and [Opdam 1998]) we will need.

Theorem 3.7. Let κ = κσ be the KZ twist associated with the element σ ∈ CZ ⋊GW defined above and as
above write e1(E), e2(E), . . . for the exponents of an irreducible W-module E. Then

ei (h) + en−i+1(κ(h∗)) = g for all 1 ≤ i ≤ n.

We note that for real reflection groups, we always have g = h = dn , where dn is the largest degree
and κ(h∗) = h∗, so that this reduces to the classical symmetry di + dn−i+1 = dn + 2.

Proof. We now prove Theorem 3.7. For each W-orbit S ⊆ A of hyperplanes, we put

δS =

∏
H∈S

αH
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and we fix an integer mS . Defining the multiplicity function m by m H,i = mS for all H ∈ S, we have

Qm(E) =

∏
S∈A/W

δ
mS
S (C[h] ⊗ E).

Let c ∈ C be compatible with m, let σ0 ∈ GW , and let k be the multiplicity function compatible with σ0 · c.
Let τ ∈ CZ ⋊GW be determined by τ(0) = σ0(c). We note that

cH,i = m H/nH for all H ∈ A and 0 ≤ i ≤ nH − 1.

Then
eQm(E) = eQk(E).

We compute the graded character of the space in two ways by means of this equality: with M =deg
(∏

δ
mS
S

)
,

the graded character of eQm(E) is

ch(eQm(E)) = ch
( ∏

S∈A/W

δ
mS
S (C[h] ⊗ E)

)W

= t M
dim(E)∑

i=1

tei

n∏
i=1

1
1−tdi

,

where e1 ≤ e2 ≤ · · · are the exponents of the representation (χ ⊗ E)∗, with χ the linear character of W
afforded by

∏
S∈A/W δ

mS
S .

On the other hand, we have eQk(E) ∼=
(
1τ(0)(κτ (E))

)W . This has graded character

tτ(0)κτ (E)ch
(
(C[h] ⊗ κτ (E))W )

= tτ(0)κτ (E)

dim(E)∑
i=1

te′

i

n∏
i=1

1
1−tdi

,

where e′

1 ≤ e′

2 ≤ · · · are the exponents of κτ (E)∗. We conclude

τ(0)κτ (E) + e′

i = M + ei for 1 ≤ i ≤ dim(E). (3-3)

The special case in which mS = −(nH − 1) for H ∈ S is especially interesting: here −M = N is the
number of reflections in W , χ is the inverse determinant representation of W , and the exponents of χ ⊗ E
may be related to those of E∗ as follows: there is a C-linear isomorphism C[h∗

]W onto C[h]W given by

f 7→ f (∂) · δ.

Moreover, there is a W-equivariant nondegenerate pairing of C[h∗
]W with C[h]W given by

( f, g) = f (∂)(g)(0),

which implies that the occurrences of F in C[h]W are in the same degrees as the occurrences of F∗

in C[h∗
]W . Putting this together implies that E∗

⊗det occurs in C[h]W in a degree d each time E∗ occurs
in C[h∗

]W in degree N −d , which happens when E occurs in C[h]W in degree N −d . So the occurrences
of E in degree N − d are in bijection with the occurrences of E∗

⊗ det in degree d , and the exponents ei

above are given by
ei = N − edim(E)−i+1(E).
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Thus, (3-3) becomes

ei (κτ (E)∗) + edim(E)−i+1(E) = −τ(0)κ−1
τ (E) for 1 ≤ i ≤ dim(E). (3-4)

We take E = κ−1
τ (h∗) here to obtain

ei (h) + en−i+1(κ
−1
τ (h∗)) = −τ(0)h∗ . (3-5)

Finally, observing that taking the longest element in GW produces τ = σ−1, a calculation then shows that
the right-hand side is g. □

3Q. Rouquier’s theorem and the BMR freeness conjecture. In the proof of Theorem 1.1, we will apply
[Rouquier 2008, Theorem 4.49] to produce an equivalence Oc → Oσ(c). To be able to apply this theorem
to Oc regarded as a highest weight cover of Hc-mod, we must use the fact that Hc is of dimension |W |,
which appeared as a hypothesis in [Gordon and Griffeth 2012], but which is now known in general (see
[Etingof 2017] for an overview).

3R. Proof of Theorem 1.1. Finally we complete the proof of Theorem 1.1. By Lemma 3.1, it suffices
to construct a coinvariant type representation L of dimension (g + 1)n . We choose a parameter c as in
Section 3N, and let σ be as defined in Section 3M; Proposition 4.1 of [Etingof and Stoica 2009] shows that
with this choice of c, we have a map 1c(h

∗) → 1c(triv) with cokernel Lc(triv) of dimension 1. Using
Section 3N, together with Rouquier’s theorem 4.49 [2008] as in the proof of Theorem 2.7 from [Gordon
and Griffeth 2012], shows that there is an equivalence of highest weight categories Oc → Oσ(c) sending
1c(E) to 1σ(c)(κσ (E)) for all E ∈ Irr(CW ) (here, we note first that we may choose c as above so that, in
addition, the rank one Hecke subalgebras are semisimple; we note second that there are regular parameters
c′ arbitrarily close to c, so that we may apply Lemma 3.3 to see that κσ is the correct bijection). By using
Section 3L, it follows that this particular choice of σ has κσ (triv) = triv. We obtain a short exact sequence

1σ(c)(κσ (h∗)) → 1σ(c)(triv) → Lσ(c)(triv) → 0.

By [Ginzburg et al. 2003, Corollary 4.14], the module Lσ(c)(triv) is finite-dimensional (this corollary im-
plies that finite-dimensionality is invariant by highest-weight equivalences between different categories O).

Now a calculation using Section 3L gives σ(c)κσ (h∗) = g + 1, so that the image of κσ (h∗) in C[h] =

1σ(c)(triv) is a homogeneous sequence of parameters in degree g+1. The symmetry of the exponents from
Theorem 3.7, together with Section 2E, implies that the determinant appears exactly once in Lσ(c)(triv),
which is of dimension (g + 1)n as required. This proves Theorem 1.1.

4. Two more constructions: Heckman–Opdam shift functors and
representation-valued Jack polynomials

4A. Outline. In this section, we give two more constructions of the coinvariant-type representation L of
dimension (g + 1)n . First, as in [Gordon 2003] for the case of a real group W and [Vale 2007a] for the
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groups W = G(ℓ, m, n), we construct it as a tensor product

L = Hσ(c) f ⊗eHce C,

where C = eLc(triv) is a one-dimensional representation of eHce and f is the determinant idempotent
of W . We note that Theorem 4.1 below allows us to regard Hσ(c) f as an eHce-module. Then we give a
construction similar to that of [Griffeth 2010b], based on the techniques from [Griffeth 2010a; 2010b;
2018; Fishel et al. 2021].

4B. Heckman–Opdam shift functors.

Theorem 4.1. Let c ∈ C and recall that δ =
∏

r∈R αr . As (nonunital) subalgebras of D(h◦)⋊W , we have

δeHceδ−1
= f Hσ(c) f,

where, as in Section 3M, the shifted parameter σ(c) is defined by σ(c)H,0 = 0 and

σ(c)H,i = cH,nH −i +
2(nH − i)

nH
for i ̸= 0.

Proof. This is obtained from Theorem 3.6 by taking g0 ∈ GW to be the longest element. □

This equality allows us to define a functor F from Hc-mod to Hσ(c)-mod by

F(M) = Hσ(c) f ⊗eHce eM. (4-1)

Following the terminology from [Berest and Chalykh 2011], we refer to F as the Heckman–Opdam shift
functor. In fact, F preserves category O’s, and therefore induces a functor, which we also denote by F ,
from Oc to Oσ(c). The functor F is similar to the Heckman–Opdam shift functor employed by Gordon for
real reflection groups, but in the generality in which we require it, belongs purely to the world of complex
reflection groups and has no direct real analog.

4C. The symmetrizing trace conjecture. Below we will use the Schur elements as stored by the computer
algebra package GAP. In order to justify the conclusions we draw from this, we need to know that the
symmetrizing trace conjecture holds for the Hecke algebra Hc. For very recent work in this direction and
further references, see [Boura et al. 2020a; 2020b].

4D. Equivalences. The following theorem of Etingof (obtained by twisting [Etingof 2012, Theorem 5.5]
by a linear character) makes our lives easier:

Theorem 4.2. Let e ∈ CW be the idempotent for a linear character of W . The functor M 7→ eM from
Hc-mod to eHce-mod is an equivalence if and only if eHce is of finite global dimension.

When e is the trivial idempotent for W , we call c aspherical if the functor M 7→ eM is not an
equivalence and spherical if it is. Combining this theorem with Theorem 3.6 shows that the set of
aspherical (respectively, spherical) parameters c is stable by the dot action of GW on C.
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Furthermore, by Theorem 4.1 from [Bezrukavnikov and Etingof 2009], whether or not M 7→ eM is an
equivalence can be checked on the category Oc:

Theorem 4.3. For an idempotent e ∈ CW of a linear character of W , the functor M 7→ eM is not an
equivalence if and only if there exists L ∈ Irr(Oc) with eL = 0.

The next lemma is a key technical point, and the only place we will appeal to the classification of
irreducible complex reflection groups and the hypothesis that the Hecke algebra is symmetric.

Lemma 4.4. For a parameter c ∈ C subject to ch∗ = 1 but otherwise generic, the functor M 7→ eM is an
equivalence from Hc-mod to eHce-mod.

Proof. For the groups in the infinite family G(ℓ, m, n), this follows from the main theorem of [Dunkl and
Griffeth 2010], upon observing that the equation ch∗ = 1 is

d0 − dℓ−1 + ℓ(n − 1)c0 = 1

in the coordinates for C used there. For the exceptional groups, one checks using GAP that the Schur
elements for the exterior powers of h∗ are the only ones which are zero when the parameters c are chosen
with cH,0 = 0 and cH,i = 1/h for i ̸= 0, and moreover, that in this case, the Schur elements for the exterior
powers vanish to order one. This implies that we are in the block of defect one case studied by Rouquier,
and hence that every irreducible object of Oc other than Lc(triv) is fully supported. Thus, c is a spherical
parameter, and one checks that it belongs to the hyperplane ch∗ = 1. □

Fixing a parameter c ∈ C subject to ch∗ = 1 but otherwise generic, we define the Heckman–Opdam
equivalence F : Oc → Oσ(c) as above by

F(M) = Hσ(c) f ⊗eHce eM,

where we view Hσ(c) f as a right eHce-module via the isomorphism eHce ∼= f Hσ(c) f from Theorem 4.1,
sending ehe ∈ eHce to δeheδ−1

∈ f Hσ(c) f .

4E. Shifting and KZ. The results just summarized imply that if c is a spherical value, then F defines an
equivalence from Oc to Oσ(c); and if regular, then so is σ(c).

Lemma 4.5. If F is an equivalence, the functor F commutes with the KZ functor: there is an isomorphism
KZσ(c) ◦F ∼= KZc for all spherical parameters c ∈ C.

Proof. We first observe that the dimension of the generic fiber of F(M) is equal to the dimension of the
generic fiber of M . This follows from the fact that for p ∈ h◦, we have

dim(M(p)) = rkC[h](M) = rkC[h]W (eM) = rkC[h]W ( f F(M)) = rkC[h] F(M) = dim(F(M)(p)),

since f F(M) ∼= eM as C[h]W-modules and rkC[h]W f F(M) = rkC[h](F(M)). Now since F is an equiv-
alence, it takes the indecomposable projective objects of Oc to the indecomposable projective objects
of Oσ(c). The KZ functor is represented by the projective object

PKZ,c = ⊕Pc(E)⊕dE , where dE = dim(Lc(E)(p)),
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and hence,
F(PKZ,c) ∼= ⊕F(Pc(E))⊕dE ,

where dE is the dimension of Lc(E)(p), which is, by the preceding argument, the dimension of
F(Lc(E))(p) = dim

(
top

(
F(Pc(E))

)
(p)

)
. It follows that F(PKZ,c) ∼= PKZ,σ (c), and the lemma follows

from this. □

This lemma should also follow from the ideas in [Simental 2017] (see, especially, the proof of
Lemma 4.9). The following conjecture is then the final ingredient for this approach:

Conjecture 4.1. If F is an equivalence, then it is an equivalence of highest weight categories with
F(1c(E)) ∼= 1s(c)(κσ (E)).

Given the conjecture, we have a short exact sequence

1σ(c)(κσ (h∗)) → 1σ(c)(triv) → Lσ(c)(triv) = F(C) → 0,

where C= Lc(triv) is actually one-dimensional thanks to our condition ch∗ =1, and the determinant appears
exactly once in F(C)= Lσ(c)(triv) by construction. The calculation of the c-function implies that the image
of κσ (h∗) lies in degree g+1, which implies that the dimension of F(C) is (g+1)n , just as before. José Si-
mental has pointed out that the conjecture will follow if one checks that F and its inverse preserve the class
of standardly filtered modules, which can also be characterized as those objects of Oc that are free as mod-
ules over the polynomial ring C[h]. It seems likely to me that this observation can be turned into a proof.

4F. The classical groups. Finally, we present our third construction of the module approximating RW in
the case where W = G(ℓ, m, n). For these groups, we will use the coordinates (d0, d1, . . . , dℓ−1, c0) on C,
as in [Griffeth 2010a]. We define the set 0(triv) as in [Griffeth 2018]: it consists of pairs (P, Q), where P
is a bijection from the boxes of the trivial partition (n) to the integers {1, 2, . . . , n}, Q is a function from
the boxes of (n) to the nonnegative integers which is weakly increasing from left to right, and whenever
b1 and b2 are boxes with b1 appearing to the left of b2 and Q(b1) = Q(b2), then we have P(b1) > P(b2)

(thus, for instance, if Q is the zero function then P is strictly decreasing from left to right).

4G. The principal coinvariant type representation. We take parameters c = (c0, d0, d1, . . . , dℓ−1)

generic, subject only to the condition

d0 − d1−2ℓ/m + ℓ(n − 1)c0 = ℓ(n − 1) +
2ℓ

m
− 1.

Then by [Griffeth 2018, Theorem 1.1], the module L = Lc(triv) has basis fP,Q indexed by those pairs
(P, Q) ∈ 0(triv), with

Q(b) ≤ ℓ(n − 1) +
2ℓ

m
− 2 for all b ∈ triv.

Here, as explained in [Griffeth 2018, Section 2.13], instead of using 0(triv), the basis elements fP,Q may
alternatively be indexed by µ ∈ Z≥0, and the condition is simply

µi ≤ ℓ(n − 1) +
2ℓ

m
− 2 for all 1 ≤ i ≤ n.
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Hence, L has basis

L = C
{

fµ
∣∣ µi ≤ ℓ(n − 1) +

2ℓ

m
− 2, ∀1 ≤ i ≤ n

}
,

where fµ are the nonsymmetric Jack polynomials of type G(ℓ, 1, n). In particular, the dimension of L is

dim(L) =

(
ℓ(n − 1) +

2ℓ

m
− 1

)n
.

By using the machinery from [Fishel et al. 2021], we can compute its graded W-character; for the moment,
we will just note that, as in [Ajila and Griffeth 2021], copies of the determinant representation in L are in
bijection with the set of Q’s appearing in some pair (P, Q) as above, with Q strictly increasing from left
to right, Q(b) = Q(b′) mod ℓ for all b, b′, and with Q(b) = ℓ/m − 1 modulo ℓ/m.

4H. Proof that L is of G(ℓ, m, n)-coinvariant type. For the unique Q with these properties (in [Ajila
and Griffeth 2021], we use the notation Q ∈ Tabc(triv)), which produces a copy of the determinant
representation of G(ℓ, m, n) given by the Q with sequence

ℓ

m
− 1, ℓ+

ℓ

m
− 1, 2ℓ +

ℓ

m
− 1, . . . , (n − 1)ℓ +

ℓ

m
− 1.

Thus, using the character formula from [Fishel et al. 2021], as in [Ajila and Griffeth 2021], shows that
the determinant appears exactly once in L .
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