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We show how to attach to any rigid analytic variety V over a perfectoid space P a rigid analytic motive
over the Fargues–Fontaine curve X (P) functorially in V and P . We combine this construction with the
overconvergent relative de Rham cohomology to produce a complex of solid quasicoherent sheaves over
X (P), and we show that its cohomology groups are vector bundles if V is smooth and proper over P or
if V is quasicompact and P is a perfectoid field, thus proving and generalizing a conjecture of Scholze.
The main ingredients of the proofs are explicit B1-homotopies, the motivic proper base change and the
formalism of solid quasicoherent sheaves.
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1. Introduction

The aim of this article is twofold. On the one hand, we define a relative version of the overconvergent
de Rham cohomology for rigid analytic varieties over an (admissible) adic space S in characteristic zero,
generalizing the work of Große-Klönne [2000; 2002; 2004] for rigid varieties over a field. We prove that
this cohomology theory can be canonically defined for any variety X locally of finite type over S, takes
values in the infinity-category of solid quasicoherent OS-modules, in the sense of Clausen and Scholze
[2020], is functorial, has étale descent and is B1-invariant. In particular, we deduce that it is motivic, i.e.,
it can be defined as a contravariant realization functor

dRS : RigDA(S)→ QCoh(S)op
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on the (unbounded, derived, stable, étale) category RigDA(S) of rigid analytic motives over S with values
in the infinity-category of solid quasicoherent OS-modules. As a matter of fact, in order to prove the
properties above we make extensive use of the theory of motives, and more specifically of their six-functor
formalism [Ayoub et al. 2022] and of a homotopy-based relative version of Artin’s approximation lemma
(Theorem 3.9) inspired by the absolute motivic proofs given in [Vezzani 2018]. If X is a proper smooth
rigid variety over S, dRS(X) is a perfect complex, whose cohomology groups are vector bundles. To prove
this finiteness result, we combine the characterization of dualizable objects in QCoh(S) due to Andreychev
[2021] (see also [Scholze 2020]), the motivic proper base change and the “continuity” property for rigid
analytic motives (see [Ayoub et al. 2022]). The latter result, which is based on the use of explicit rigid
homotopies, states that whenever one has a weak limit of adic spaces (in the sense of Huber) X ∼ lim

←−−
X i ,

any compact motive over X has a model over some X i . We apply this fact to reduce ourselves to the case
S = Spa A with A being a classical Tate algebra, and eventually to the case of a field S = Spa(K , K ◦), by
considering the limit x ∼ lim

←−−x∈U U whenever x is a closed point (a technique that was already exploited
in [Scholze 2012]).

On the other hand, in the second part of this paper, we define a motivic version of a pullback functor
along the relative Fargues–Fontaine curve that works for smooth rigid analytic varieties over a perfectoid
space P in positive characteristic. More specifically, we define a monoidal functor D from rigid analytic
motives over P to the category of rigid analytic motives over the relative Fargues–Fontaine curve X (P).
This lets us associate to an adic space V which is locally of finite type over P the motive of a rigid
analytic variety over X (P) (and not a relatively perfectoid space!). Let us sketch the simple idea of the
construction in the case where P = Spa(C,C◦), with C a complete algebraically closed nonarchimedean
field of characteristic p. The adic space Y[0,∞)(C), as defined by Fargues and Fontaine, is equipped
with an action of Frobenius ϕ such that, for any quasicompact neighborhood U of the point C , one has
U ⊂ ϕ(U ). By motivic continuity applied to Spa C ∼ lim

←−−ϕ∗
U we can extend any motive V over C to

some motive U (V ) defined on U . We may also extend the (motivically invertible!) geometric Frobenius
map ϕ∗V ∼= V to some gluing datum U (V )∼= (ϕ∗U (V ))|U enabling us to stretch U (V ) to Y[0,∞)(C) and
eventually to X (C).

This motivic take on Dwork’s trick (see, for example, [de Jong 1998; Kedlaya 2005]) admits an explicit
description when applied to varieties with good reduction and, in general, gives a “globalization” of the
motivic tilting equivalence RigDA(C) ∼= RigDA(C♯) of [Vezzani 2019a] at the level of each classical
point C♯ of X (C). The functor D above can be considered as being the avatar of the pullback p∗ along
the map p : Y(0,∞)(C)→ C as if it existed in adic spaces (and not just diamonds).

Putting the two main results above together, we are led to consider the composition

RigDA(P) D
−→ RigDA(X (P)) dRX (P)

−−−→ QCoh(X (P))op

giving rise to a functorial cohomology theory for adic spaces which are locally of finite type over a
perfectoid space P in positive characteristic that takes values in the category of solid quasicoherent
sheaves on the relative Fargues–Fontaine curve X (P). When P is a geometric point, this is closely
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related to a conjecture which was formulated in [Fargues 2018, Conjecture 1.13] and in [Scholze 2018,
Conjecture 6.4] that we prove below; but the construction makes good sense for any P . More precisely
(see Theorem 6.3):

Theorem. Let P be an admissible perfectoid space of characteristic p. There is a functor

RigDA(P)→ QCoh(X (P)), M 7→ dRFF
P (M),

where QCoh(X (P)) is the category of solid quasicoherent sheaves over the relative Fargues–Fontaine
curve X (P) with the following properties:

(1) It satisfies étale descent, B1-invariance and a Künneth formula.

(2) For any untilt P♯ of P , the pullback of dRFF
P (M) along P♯ → X (P) is isomorphic to the over-

convergent de Rham cohomology dRP♯(M♯) of the motive M♯ corresponding to M via the motivic
equivalence RigDA(P)∼= RigDA(P♯).

(3) The object dRFF
P (M) is a perfect complex of OX (P)-modules whose cohomology sheaves are vector

bundles, whenever M is (the motive of ) a smooth proper variety over P or whenever M is compact
and P is a perfectoid field.

Examples of admissible perfectoid spaces include those which are pro-étale over rigid analytic varieties,
and examples of compact motives over a field include motives of quasicompact smooth varieties or
analytifications of algebraic varieties. The cohomology theory induced by dRFF

P will be called the
de Rham–Fargues–Fontaine cohomology. Its construction is purely made at the level of the generic fibers,
makes no use of log-geometry and requires weak hypotheses on the base P . It is expected to enhance the
de Rham and the de Rham–Fargues–Fontaine realizations with coefficients, in a compatible way with the
motivic six-functor formalism.

One may precompose this realization functor with the motivic tilting equivalence

RigDA(P)∼= RigDA(P♭)

allowing P to be a perfectoid space in characteristic zero as well (in this case, the target category would be
obviously QCoh(X (P♭)) or with the analytification functor. On the other hand, if P is a characteristic p
perfectoid space, one can postcompose it with specialization along a chosen untilt P♯→ X (P) and get a
perfect complex of OP♯-modules. By doing so when P = C is an algebraically closed perfectoid field of
characteristic p, we recover a construction from [Vezzani 2019b] and also Bhatt, Morrow and Scholze’s
B+dR(C

♯)-cohomology [Bhatt et al. 2018, Section 13] for each untilt C♯ of C . This proves that dRFF

satisfies all the requirements of conjecture 6.4 in [Scholze 2018]. There is also a connection to rigid
cohomology that we sketch at the end of the article.

In Section 2 we begin by recalling the properties of rigid analytic motives and we give a proof of their
pro-étale descent. This allows us to define motives over any (admissible) diamond. In Section 3 we give a
definition of relative dagger varieties (or relative varieties with an overconvergent structure) and we show
that up to homotopy, any smooth relative variety can be equipped with such a structure. In Section 4
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we introduce the de Rham complex of a relative dagger space and prove that it gives rise to a motivic
realization with values in solid modules, or even perfect complexes, under suitable hypotheses.

In the second part, we build the motivic rigid-analytic version of the relative Fargues–Fontaine curve
and we compare it to the usual construction in Section 5. Finally, in Section 6 we put together the
ingredients of the previous sections introducing the de Rham–Fargues–Fontaine cohomology and its
properties, including its relation to the cohomology theories mentioned above.

2. Adic étale motives

We start by laying down the main definitions and properties of the type of adic spaces we consider and
the homotopy theory associated to them.

Definitions and formal properties. Our conventions and notation are mostly taken from [Ayoub 2015;
Ayoub et al. 2022] even if we typically omit any visual reference to the étale topology and the ring of
coefficients in what follows.

Definition 2.1. We say that a Tate Huber pair (A, A+) over Zp is stably strongly uniform if for any
n ∈N and any map (A⟨T1, . . . , Tn⟩, A+⟨T1, . . . , Tn⟩)→ (B, B+) obtained as a composition of rational
localizations and finite étale maps (as defined in Definition 7.1(i) of [Scholze 2012]), the space Spa(B, B+)
is uniform, that is, the ring B+ is (open and) bounded. An adic space is stably strongly uniform
if it is locally the spectrum of a stably strongly uniform pair. Examples of stably strongly uniform
spaces include diamantine spaces [Hansen and Kedlaya 2020, Theorem 11.14], sous-perfectoid spaces
(such as perfectoid spaces) [Scholze and Weinstein 2020, Proposition 6.3.3], and reduced rigid analytic
varieties over nonarchimedean fields [Bosch et al. 1984, Theorem 6.2.4/1]. We let Adic be the full
subcategory of quasiseparated adic spaces over Zp which consists of stably strongly uniform spaces
having a cover of affinoid open spaces with finite (topological) Krull dimension (see, for example, [Stacks
2018, Section 0054]). Its objects will be sometimes referred to as admissible adic spaces. For any full
subcategory C of Adic we let Cqcqs be the subcategory of C of quasicompact quasiseparated morphisms
(referred to as qcqs from now on). We let Bn and Tn be the adic spaces

Bn
= Spa(Zp⟨T1, . . . ,Tn⟩,Zp⟨T1, . . . ,Tn⟩) and Tn

= Spa(Zp⟨T±1
1 , . . . ,T±1

n , ⟩,Zp⟨T±1
1 , , . . . ,T±1

n ⟩).

We remark that Bn
S = S×Zp Bn and Tn

S = S×Zp Tn lie in Adic for any S ∈ Adic and any n ∈ N.

Remark 2.2. We point out that reduced rigid analytic varieties over a nonarchimedean field K are
admissible. Also their perfection (assuming K has characteristic p) is an admissible perfectoid space,
and as we will remark later (Remark 5.2) the Fargues–Fontaine curves associated to such perfectoid
spaces are admissible too. As a matter of fact, in all that follows one can replace the category Adic with
any subcategory of adic spaces over Zp which are locally of finite Krull dimension that is stable under
open immersions, finite étale extensions as well as relative discs, and that contains reduced rigid analytic
varieties and relative Fargues–Fontaine curves. Alternatively, one may consider the (larger) category of
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rigid spaces as defined by [Fujiwara and Kato 2018] and considered in [Ayoub et al. 2022]. In this article,
we stick to an adic perspective and we leave it to the reader to extend the statements and definitions of
the present article to any more general setting.

Definition 2.3. Let f : X→ S be a morphism in Adic.

• We say that f is étale if it is, locally on X and S, the composition of an open immersion and a finite
étale morphism. A collection of étale maps {X i → S} is an étale cover if it is jointly surjective on
the underlying topological spaces.

• We say f is smooth (or even, by abuse of notation, that X is a smooth rigid analytic variety over S)
if it is, locally on X , the composition of an étale map X→BN

S and the canonical projection BN
S → S

for some N . The category of smooth rigid analytic varieties over S is denoted by Sm/S.

We point out that if S is in Adic and f is smooth (using the above definition) then X lies in Adic as
well. Also, we remark that pullbacks of smooth (resp. étale) maps exist in Adic and they are again smooth
(resp. étale).

Definition 2.4. Let S be in Adic.

• For any X ∈ Sm/S we let QS(X) be the (free) presheaf of Q-modules represented by X . That is
0(Y,QS(X))=Q[HomS(Y, X)].

• We let Psh(Sm/S,Q) be the infinity-category of presheaves on the category Sm/S taking values on the
derived infinity-category of Q-modules, and we let RigDAeff(S,Q) be its full stable infinity-subcategory
spanned by those objects F such that:

(1) For any X ∈ Sm/S the canonical map F(X ×S B1
S)→ F(X) is an equivalence (we refer to this

property as B1-invariance).

(2) For any Cech étale hypercover U → X in Sm/S the canonical map F(X)→ holimF(U) is an
equivalence (we refer to this property as étale descent).

We will typically omit Q in the notation. The category RigDAeff(S) is equipped with the structure of a
symmetric monoidal infinity-category and a localization functor

L : Psh(Sm/S,Q)→ RigDAeff(S)

which is symmetric monoidal and left adjoint to the canonical inclusion.

• For any X ∈Sm/S we use the notation QS(X) also to refer to the object LQS(X) in RigDAeff(S). There
is a symmetric monoidal structure on RigDAeff(S) which is such that QS(X)⊗QS(Y )∼=QS(X ×S Y ).

• We let TS be the object of Psh(S,Q) which is the split cofiber of the morphism QS(S)→ QS(T
1
S)

induced by 1 and we set RigDA(S,Q)=RigDAeff(S,Q)[T−1
S ] in PrL (see [Robalo 2015, Definition 2.6]).

We will typically omit Q in the notation. The (extension of the) endofunctor M 7→M⊗T⊗n
S in RigDA(S)

will be denoted by M 7→ M(n) and its quasi-inverse by M 7→ M(−n). We still denote by QS(X) the
images of these objects by the natural functor RigDAeff(S)→ RigDA(S).
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• When we write RigDA(eff)(S) in a statement, we mean that the statement holds both for RigDAeff(S)
(sometimes called the category of effective motives) and for RigDA(S).

Remark 2.5. In [Ayoub et al. 2022], the category RigDA(eff)(S) is denoted by RigSH(eff)(S,Q). We use
the notation DA which is more customary in the case of sheaves of 3-modules for a ring 3. All adic
spaces in Adic are rigid analytic spaces in the sense of [Ayoub et al. 2022, Notation 1.1.8] by [Ayoub
et al. 2022, Corollary 1.2.7]. Contrary to [Ayoub et al. 2022], we use the notation RigDA(eff)(S) to refer
both to the presentable category in PrL as well as to the structure RigDA(eff)(S)⊗ of symmetric monoidal
category in CAlg(PrL) it is equipped with.

Remark 2.6. We now give a triangulated, more down-to-earth definition of RigDAeff(S). One can consider
the derived category of étale sheaves on Sm/S with values in Q-modules. Its full subcategory given
by complexes of sheaves F such that R0(X,F)∼= R0(B1

X ,F) is (the triangulated category underlying)
RigDAeff(S). We remark that there is a left adjoint to the canonical inclusion, and that these categories
are actually DG-categories. Similarly, we can give a more down-to-earth definition of RigDA(S): its
objects are collections {Fi }i∈N of complexes of sheaves in RigDAeff(S) together with quasi-isomorphisms
Fi → Hom(TS,Fi+1).

Remark 2.7. We now give a more blue-sky definition of RigDAeff(S). By [Lurie 2017, Proposi-
tion 4.8.1.17] one can consider the (presentable) infinity-category Shét(Sm/S) of simplicial étale sheaves
on Sm/S as well as its tensor product Shét(Sm/S)⊗Ch Q with the derived infinity category of (chain
complexes of) Q-modules and let RigDAeff(S) be its full infinity-subcategory of B1

S-invariant objects
(one may equivalently consider étale hypersheaves by [Ayoub et al. 2022, Corollary 2.4.19]). We can
also define RigDA(S) as the homotopy colimit lim

−−→
RigDAeff(S) following the functor F 7→ F ⊗ TS ,

computed in the category of presentable infinity-categories and left adjoint functors PrL. Equivalently, it
is the homotopy limit lim

←−−
RigDAeff(S) following the functor F 7→Hom(TS,F), computed in the category

of presentable infinity-categories and right adjoint functors PrR (or computed in infinity-categories) by
[Robalo 2015, Corollary 2.22].

Remark 2.8. By definition, (a suitable localization of) the projective model structure on presheaves
makes the natural functor Sm/S→ RigDA(S) universal among functors R : Sm/S→Q-enriched model
categories M satisfying the requirements

(i) R(X)∼= holim R(U) for any Cech étale hypercover U→ X ;

(ii) the maps R(B1
X )→ R(X) are invertible in the homotopy category;

(iii) R(M) 7→ R(T 1
⊗M) is an automorphism on the homotopy category.

The same is true by replacing M with an arbitrary infinity-category with small colimits (see [Robalo
2015, Theorem 2.30]). We remark that, as we take coefficients in Q, the condition on Cech hypercovers
extends automatically to arbitrary étale hypercovers (see [Ayoub et al. 2022, Proposition 2.4.19]).
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Remark 2.9. We use the fact that coefficients are in Q already in Theorems 2.10 and 2.15. Nonetheless,
for most of the results in this article, it is possible to replace Q with Z[1/p] or even more general ring
spectra, by eventually restricting the category Adic to its full subcategory of objects having a suitably
bounded pointwise cohomological dimension (see, for example, [Ayoub et al. 2022, Proposition 2.4.22]).
As we are mostly interested in a rational cohomology theory here, we leave this task to the reader.

The following statement follows from the results of [Ayoub et al. 2022]. For the definition of the
category of (symmetric monoidal) presentable infinity-categories and (symmetric monoidal) left adjoint
functors PrL (resp. CAlg(PrL)), as well as the definition of compactly generated (symmetric monoidal)
presentable categories and (symmetric monoidal) compact-preserving left adjoint functors PrL

ω (resp.
CAlg(PrL

ω)) we refer to Definitions 5.5.3.1 and 5.5.7.5 in [Lurie 2009] (resp. to Proposition 4.8.1.15 and
Lemma 5.3.2.11(2) in [Lurie 2017]).

Theorem 2.10. (1) For any S ∈ Adic the category RigDA(eff)(S) is a compactly generated stable sym-
metric monoidal category, in which a set of compact generators is given by QS(X)(n) with X ∈ Sm/S
affinoid and n ∈ Z. Also, QS(X)(n)⊗QS(X ′)(n′)∼=QS(X ×S X ′)(n+ n′).

(2) For any morphism f : S′ → S in Adic the pullback functor X 7→ X ×S S′ induces a symmetric
monoidal left (Quillen) adjoint functor f ∗ : RigDA(eff)(S)→ RigDA(eff)(S′) whose right adjoint will be
denoted by f∗. If f is quasicompact and quasiseparated, then f ∗ is compact-preserving.

(3) One can define contravariant functors RigDA(eff)∗ from Adic to the infinity-category CAlg(PrL) of
symmetric monoidal, presentable infinity-categories and left adjoint symmetric monoidal functors, sending
S to RigDA(eff)(S) and a morphism f to f ∗. Their restrictions to Adicqcqs take values in CAlg(PrL

ω).

(4) For any smooth morphism f : S′→ S in Adic the “forgetful” functor (X→ S′) 7→ (X→ S′→ S)
induces a compact-preserving left (Quillen) adjoint functor f♯ : RigDA(eff)(S′)→ RigDA(eff)(S) whose
right adjoint coincides with f ∗.

(5) The functors RigDA(eff)∗ satisfy étale hyperdescent. This means that for any étale hypercover U→ S
in Adic which is levelwise representable, one has the following equivalence in CAlg(PrL):

RigDA(eff)(S)∼= lim RigDA(eff)(U).

Proof. As S is locally of finite Krull dimension by hypothesis, it is (Q, ét)-admissible in the sense of [Ay-
oub et al. 2022, Definition 2.4.14]. Points (1)–(3) follow then from [Ayoub et al. 2022, Propositions 2.1.21
and 2.4.22], Point (4) can be deduced from (1) and [Ayoub et al. 2022, Proposition 2.2.1] while point (5)
is proved in [Ayoub et al. 2022, Theorem 2.3.4]. □

Remark 2.11. The formal properties above hold true already for the infinity categories of hypersheaves
Shét(Sm/S) and are easily inherited by RigDAeff(S) and its stabilization RigDA(S). Homotopies play
therefore no special role in their proofs.
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Continuity and pro-étale descent. We now list further properties which are satisfied by rigid motives. In
all that follows, the role of homotopies over B1 is crucial, and the analogous statements for the categories
of (hyper)sheaves are not expected to hold in general. We start by a “spreading out” result.

Theorem 2.12 [Ayoub et al. 2022, Theorem 2.8.14 and Remark 2.3.5]. Let {Si } be a cofiltered diagram
in Adic with quasicompact and quasiseparated transition maps, and let S ∈ Adic be such that S ∼ lim

←−−
Si

in the sense of Huber (see [Huber 1996, Definition 2.4.2] and [Ayoub et al. 2022, Definition 2.8.9]). The
pullback functors induce an equivalence in CAlg(PrL):

lim
−−→

RigDA(eff)(Si )∼= RigDA(eff)(S).

Remark 2.13. If the maps S→ Si are also quasicompact and quasiseparated, then the equivalence holds
true in CAlg(PrL

ω), as colimits in PrL
ω can be computed in PrL by [Lurie 2017, Lemma 5.3.2.9].

Remark 2.14. The algebraic analog of the spreading out result above is also true, and it is much more
straightforward as it holds at the level of sheaves, without the need of using A1-homotopies (see, for
example, [Ayoub et al. 2022, Proposition 2.5.11]). In the adic setting, this is no longer true: even
if S ∼ lim

←−−
Si , the (big) étale topos Shét(Sm/S) may not be equivalent to Shét(lim−−→Sm/Si ). The main

difference is that here a completion of the underlying topological rings is performed.

The continuity property above strongly suggests that the étale sheaf RigDA is also a pro-étale sheaf.
This is indeed the case, and is the content of the next theorem. We remark nonetheless that its proof is
more complicated than the analogous statement for sheaves of sets or groups (see, for example, [Scholze
2017, Proposition 8.5]) as RigDA takes values in the infinity-category PrL in which the cosimplicial Cech
diagrams appearing in the descent criterion cannot be truncated on the right.1 In the proof, we will use
crucially some results on pro-étale sheaves from [Scholze 2017, Section 14].

Theorem 2.15. The functors RigDA(eff)∗
:Adicop

→CAlg(PrL) satisfy pro-étale descent. This means that
for any bounded pro-étale hypercover U→ S in Adic, one has the following equivalence in CAlg(PrL):

RigDA(eff)(S)∼= lim RigDA(eff)(U).

Proof. The proof will be split into some intermediate steps. In what follows, whenever (C, τ ) is a site,
we will use the symbol Dτ (C) to refer to the derived infinity-category of τ -sheaves of Q-vector spaces,
for brevity.

Step 1: Since the functor CAlg(PrL) → PrL is limit-preserving and conservative (see [Lurie 2017,
Corollary 3.2.2.5 and Lemma 3.2.2.6]) we might as well prove the statement for RigDA(eff) as functors
with values in PrL. We first consider the case of RigDAeff.

Step 2: As we already know that RigDAeff is an étale hypersheaf, we may prove the claim for its restriction
to the subcategory Aff of Adic made of affinoid spaces. It suffices to show then that if p : P∼ lim

←−−i∈I Pi→ X

1The same proof shows that an étale sheaf with a “spreading out” property, taking values in an n-category with n <∞ in
which filtered colimits commute with finite limits, has pro-étale descent.
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is a pro-étale affinoid cover of an affinoid X with pi : Pi → X étale surjective, then

RigDAeff(X)∼= lim
(

RigDAeff(P)→→ RigDAeff(P ×X P)→→
→
· · ·

)
. (⋆)

Step 3: From now on we consider the category Proét Aff Sm/X of pro-objects in affinoid smooth varieties
over X with étale transition maps with a quasicompact weak limit. We will use the letter P̃ to refer to the
object lim

←−−
Pi in this category. We say that a map in Proét Aff Sm/X is smooth (resp. étale) if it is of the

form lim
←−−

T0×S0 Si → lim
←−−

Si for some smooth (resp. étale) map T0→ S0, we say it is pro-étale if it has a
strictification which is levelwise étale, and pro-smooth if it is a composition of a pro-étale map, followed
by a smooth map. We say it is a cover if the map on the underlying topological spaces lim

←−−
|Ti | → lim

←−−
|Si |

is surjective. In particular, we may consider the full subcategory Pro Sm/P̃ whose objects are pro-smooth
maps over P̃ , and equip it with the pro-étale topology. We remark that P̃→ X is a cover by assumption, and
that there are continuous equivalences (Pro Sm/X)/P̃ ∼= Pro Sm/P̃ giving rise to the following diagram
(see [Ayoub et al. 2022, Proposition 2.3.7] which is essentially [Lurie 2009, Proposition 6.3.5.14]):

Dproét(Pro Sm/X)∼= lim
(
Dproét(Pro Sm/P̃)→→ Dproét(Pro Sm/P̃ ×X P̃)→→

→
· · ·

)
.

Step 4: By definition, the étale topos on Sm/P̃ is equivalent to the one on lim
−−→

Sm/Pi (these toposes
are not equivalent to the one on Sm/P!). By the proof of [Ayoub et al. 2022, Proposition 2.5.8] we
deduce that Dét(Sm/P̃) ∼= lim

−−→
Dét(Sm/Pi ) and that RigDAeff(P) ∼= RigDAeff(P̃) ∼= lim

−−→
RigDAeff(Pi )

(using Theorem 2.12 for the first equivalence) where the colimits are taken in PrL. Note that the map of
sites ν : (Pro Sm/P̃, proét)→ (Sm/P̃, ét) induces a functor ν∗ :Shét(Sm/P̃,Q)→Shproét(Pro Sm/P̃,Q).
By adapting the proof of [Scholze 2017, Proposition 14.10] this functor can be described explicitly as

ν∗F(lim
←−−

Qi )= lim
−−→

F(Qi ×Pi P̃)

and induces a fully faithful inclusion ν∗ :D+ét (Sm/P̃)→D+proét(Pro Sm/P̃). We may extend this inclusion
by left-completion (we are using that any object has a finite rational étale cohomological dimension; see
[Ayoub et al. 2022, Corollary 2.4.13]) to a fully faithful inclusion ν∗ : Dét(Sm/P̃)→ Dproét(Pro Sm/P̃).

Step 5: We claim that Dét(Sm/X) fits in the pullback square

Dét(Sm/X)
p∗

//
� _

ν∗

��

Dét(Sm/P̃)� _

ν∗

��

Dproét(Pro Sm/X)
p∗
// Dproét(Pro Sm/P̃)

i.e., we claim that for any F in Dproét(Pro Sm/X), one has F ∼= ν∗ν∗F provided that p∗F ∼= ν∗ν∗ p∗F .
Note that the analogous claim for the small (pro-)étale sites holds [Scholze 2017, Proposition 14.10] and
we now show that we can reduce to it. As any object in Pro Sm/X is locally pro-étale over some affinoid
variety Y in Sm/X , we may prove the equivalence F ∼= ν∗ν∗F by restricting to each one of the small
sites Pro Et /Y with Y as before. In other words, it suffices to check that ι∗F ∼= ι∗ν∗ν∗F with ι being



2106 Arthur-César Le Bras and Alberto Vezzani

the natural map of sites Pro Sm/X→ Pro Et /Y . By construction, we have ι′
∗

p∗ ∼= p′∗ι∗, ι∗ν∗ ∼= ν ′∗ι
′
∗

and
ι∗ν
∗ ∼= ν ′∗ι′∗ with p′ being P̃ ×X Y → Y and ν ′ (resp. ι′) being the map of sites ν ′ : Pro Et /Y → Et /Y

(resp. ι′ : Sm/X→ Et /Y ). In particular, we can deduce the claim from the analogous claim on the small
(pro-)étale sites as claimed. We can reproduce this proof also for each one of the pro-étale maps of
pro-objects δ : P̃×X n+1

→ P̃×X n . This also proves the equivalence

Dét(Sm/X)∼= lim
(
Dét(Sm/P̃)→→ Dét(Sm/P̃ ×X P̃)→→

→
· · ·

)
and implies in particular that the map p∗ : Dét(Sm/X)→ Dét(Sm/P̃) is conservative.

Step 6: We show that the functor p∗ :Dét(Sm/X)→Dét(Sm/P̃) sends a class of compact generators to a
class of compact generators. As we have Dét(Sm/P̃)= lim

−−→
Dét(Sm/Pi ), it suffices to show that the functors

p∗i send compact generators to compact generators. In other words (see [Ayoub et al. 2022, Lemma 2.8.3])
we need to show that the functor e∗ is conservative whenever e :Y→ X is an étale map of affinoid varieties.
The statement is étale-local on X so we may assume e is given by a trivial finite étale cover Y = X⊔X→ X
and e∗ is thus the functor Dét(Sm/Y ) ∼= Dét(Sm/X)×Dét(Sm/X)→ Dét(Sm/X), (F,F ′) 7→ F ⊕F ′,
which is obviously conservative. The same proof shows also that p∗ :RigDAeff(X)→RigDAeff(P) sends
a class of compact generators to a class of compact generators.

Step 7: We now claim that RigDAeff(X) fits in the pullback square

RigDAeff(X) //
� _

��

RigDAeff(P)∼= lim
−−→

RigDAeff(Pi )� _

��

Dét(Sm/X) // Dét(Sm/P̃)

This amounts to saying that an object F in Dét(Sm/X) is B1-invariant if and only if it is so after applying
the pullback functor p∗, i.e., we claim that F ∼= π∗π∗F provided that p∗F ∼= π∗π∗ p∗F where π denotes
the natural projection B1

X → X (as well as its pullback over P̃). From step 5 we already know that the
functor p∗ : Dét(Sm/X)→ Dét(Sm/P̃) is conservative, so it suffices to show that it commutes with π∗

(which is obvious) and with π∗. To this aim, by step 6, we fix a compact object M in RigDAeff(X) and
we prove that Map(p∗M, p∗π∗F)∼=Map(p∗M, π∗ p∗F) for any F in Dét(Sm/B1

P̃
)∼= lim
−−→

Dét(Sm/B1
Pi
).

This follows from the sequence of equivalences

Map(p∗M, p∗π∗F)∼= lim
−−→

Map(p∗i M, p∗i π∗F)
∼= lim
−−→

Map(p∗i M, π∗ p∗i F)
∼= lim
−−→

Map(p∗i π
∗M, p∗i F)

∼=Map(p∗π∗M, p∗F)
∼=Map(p∗M, π∗ p∗F), (⋆⋆)
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where we used the obvious commutation π∗ p∗ ∼= p∗π∗ and the commutation π∗ p∗i ∼= p∗i π∗ which
follows from the natural equivalence π∗ pi♯ ∼= pi♯π

∗ (see [Ayoub et al. 2022, Proposition 2.2.1]). The
same proof shows more generally that RigDAeff(P×X n) is the pullback of RigDAeff(P×X n+1) along
δ∗ : Dét(Sm/P̃×X n)→ Dét(Sm/P̃×X n+1). We have then finally deduced (⋆), i.e., descent for effective
motives RigDAeff.

Step 8: We now move to proving the statement for RigDA. Just like in the proof of [Ayoub et al. 2022,
Theorem 2.3.4] this follows formally from the commutation Hom(T,−) ◦ p∗ ∼= p∗ ◦Hom(T,−) which
can be deduced from the commutation Hom(T,−) ◦ p∗i ∼= p∗i ◦Hom(T,−) using a similar argument to
the one used in step 7 for the sequence (⋆⋆). □

Pro-étale descent implies the possibility to extend motives to diamonds (provided that we impose the
same conditions on their Krull dimension as in Definition 2.1).

Definition 2.16. We say a diamond is admissible if it is pro-étale locally a perfectoid space in Adic (i.e.,
locally of finite Krull dimension).

Corollary 2.17. Consider the restrictions of the functors RigDA(eff) to the category Adic/Fp . They can be
extended uniquely as pro-étale sheaves to the category of admissible diamonds.

Proof. This follows (see [Lurie 2009, Lemma 6.4.5.6] or [Ayoub et al. 2022, Lemma 2.1.4]) from
pro-étale descent and the equivalence between the pro-étale toposes on perfectoid spaces over Fp and on
diamonds. □

Remark 2.18. At this stage, we can’t say that the construction of RigDA is compatible with the
“diamondification” functor from adic spaces to diamonds. In other words, it is not yet clear that
RigDA(S)∼= RigDA(S⋄) if S is an adic space in Adic/Qp . We will show this only in Theorem 5.13.

Frobenius-invariance and perfectoid motives. We continue to inspect the formal properties of RigDA
which depend on homotopies, now focusing on the behavior of the functor RigDA under the action of
Frobenius which is studied in [Ayoub et al. 2022, Section 2.9].

Theorem 2.19. Let S′→ S be a universal homeomorphism in Adic. The pullback functor induces an
equivalence RigDA(eff)(S) ∼= RigDA(eff)(S′). In particular, if S is in Adic/Fp then the pullback along
SPerf
→ S induces an equivalence in CAlg(PrL

ω):

RigDA(eff)(S)∼= RigDA(eff)(SPerf)

which is compatible with the functors f ∗.

Proof. By [Ayoub et al. 2022, Corollary 2.9.10] only the last sentence needs to be proved, and that follows
from Theorem 2.12. □

Remark 2.20. The same is true for algebraic motives, provided that we consider their stable version.
On the other hand, there is no need for any hypothesis on the Krull dimension of the base scheme; see
[Ayoub et al. 2022, Theorem 2.9.7; Ayoub 2014, Théorème 3.9; Elmanto and Khan 2020].
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Corollary 2.21. Let S be in Adic and let f : X ′→ X be a universal homeomorphism in RigSm/S. The
induced map of motives QS(X ′)→QS(X) is invertible in RigDA(eff)(S).

Proof. Let p and p′ be the structural smooth morphisms X→ S and X ′→ S, respectively. The map of
motives in the statement can be written as (p′♯ ◦ f ∗)(QX )→ p♯QX . But p′♯ ◦ f ∗ is canonically equivalent
to p♯ as they are both left adjoint functors to p∗ by Theorem 2.19. □

Corollary 2.22. Let S be a perfectoid space over a perfectoid field K of characteristic p. The base change
along Frobenius defines an endofunctor ϕ∗ : RigDA(eff)(S)→ RigDA(eff)(S) and the relative Frobenius
morphisms X→ X (1)

:= X ×S,Frob S induce a natural transformation id⇒ ϕ∗ which is an equivalence.

Proof. We are left to prove that the transformation is pointwise invertible (in the homotopy category). It
suffices to show this for the generators of the form QS(X)(n) with p : X→ S in Sm/S and this follows
from Corollary 2.21. □

Definition 2.23. Let C be a presentable infinity-category and F : C→ C an endofunctor with a right adjoint.

(1) The category of homotopically stable F-objects ChF is the pullback

ChF //

��

C

0F
��

C 1
// C× C

More concretely, its objects are given by pairs (X, α) with X in C and α an equivalence X ∼
−→ F X

(or, equivalently, an equivalence F X ∼
−→ X ).

(2) Suppose that C is compactly generated and that F preserves compact objects. The category ChF
ω is

the pullback of the diagram above, computed in the category PrL
ω.

(3) By means of [Lurie 2017, Corollary 3.2.2.5] we may use the same notation when C is a (compactly
generated) symmetric monoidal presentable category, F is also symmetric monoidal and the pullback
is computed in CAlg(PrL) (resp. in CAlg(PrL

ω)).

Remark 2.24. Our notation is justified by the following remark: ChF is the category of homotopically
fixed points ChN by letting the monoid N act on C via F .

Remark 2.25. Even if C is compactly generated and F preserves compact object, it may not be true
that ChF is compactly generated. Nonetheless, by [Lurie 2009, Lemma 5.4.5.7(2)] its full subcategory
generated (under filtered colimits) by compact objects is ChF

ω . In particular, whenever ChF is compactly
generated, the natural functor ChF

ω ⊂ ChF in PrL is an equivalence.

Corollary 2.26. Let S be a perfectoid space in Adic/Fp and ϕ∗ be the automorphism of RigDA(eff)(S)
induced by pullback along Frobenius. There is a natural functor

RigDA(eff)(S)→ RigDA(eff)(S)hϕ
∗

ω
∼= RigDA(eff)(S)hϕ

−1∗

ω
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sending each motive M to the datum M ∼
−→ ϕ∗M given by the relative Frobenius functor. This gives rise

to a natural transformation of étale hypersheaves with values in CAlg(PrL):

RigDA(eff)∗
→ (RigDA(eff)∗)hϕ

∗

ω

defined on the category of perfectoid spaces over Fp.

Proof. For the first claim, it suffices to consider the diagram

RigDA(S) RigDA(S)

0ϕ∗

��

RigDA(S)
1

//

∼

2:

RigDA(S)×RigDA(S)

where the natural transformation is defined by the relative Frobenius functor (see Corollary 2.22).
In order to prove functoriality with respect to S, we fix a morphism f : S′→ S and denote by ϕS

and ϕS′ the relative Frobenius functor over S and S′, respectively. We first remark that the canonical
natural transformation ϕ∗S′ f

∗
⇒ f ∗ϕ∗S is an equivalence: when tested on compact generators of the form

QS(X)(n) with X/S smooth, it corresponds to a universal homeomorphism; hence it is invertible by
means of Theorem 2.19. With this remark, it is possible to define a lax functor from Adicop

/Fp
×BN to

relative categories which, by usual strictification techniques (see, for example, [May 1980, Theorem 3.4])
induces a functor from Adicop

/Fp
×BN to relative categories, and hence to infinity-categories (see [Barwick

and Kan 2012]). This promotes ϕ∗S into an automorphism of the functors RigDA(eff)∗ and the natural
transformation id⇒ ϕ∗S into a map between automorphisms of these functors, concluding the claim.
Alternatively, to prove the functoriality of RigDA(−)hϕ

∗

one may use the explicit model-theoretical
description of such categories given in [Bergner 2011]. □

Perfectoid motives over a perfectoid field were introduced in [Vezzani 2019a]. We now easily extend
their definitions and some properties to the relative setting.

Definition 2.27. We let Perf be the full subcategory of Adic made of perfectoid spaces over some perfectoid
field, and we let S be in Perf. We let PerfSm /S be the full subcategory of Adic /S whose objects are
locally étale over B̂n

S := S ×Zp Spa Zp⟨T
1/p∞

1 , . . . , T 1/p∞
n ⟩ (sometimes called geometrically smooth

perfectoid spaces over S). We let T̂n
S be S×Zp Spa Zp⟨T

±1/p∞

1 , . . . , T±1/p∞
n ⟩ and T̂S be the cokernel of

the split inclusion of presheaves QS(S)→QS(T̂
1
S) induced by the unit. We let Psh(PerfSm /S,Q) be the

infinity-category of presheaves on the category PerfSm /S taking values on the derived infinity-category
of Q-modules, and we let PerfDAeff(S) be its full stable infinity-subcategory spanned by those objects F
which are B̂1-invariant and with ét-descent. Finally, we set PerfDA(S,Q)= PerfDAeff(S,Q)[T̂−1

S ] in PrL

(see [Robalo 2015, Definition 2.6]). These categories are endowed with a symmetric monoidal structure
for which QS(X)⊗QS(Y )∼=QS(X ×S Y ).
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Remark 2.28. The Krull dimension of an adic space X (which is a spectral space) can be computed by
the maximal height of the valuations at each point x of X . As such (see, for example, [Ayoub et al. 2022,
Definition 2.8.10 and Example 2.8.11] or [Scholze and Weinstein 2013, Proposition 2.4.2]) pro-étale
maps can only decrease the topological Krull dimension and therefore any perfectoid space that is locally
pro-étale above a rigid analytic variety lies in Perf.

Proposition 2.29. One can define contravariant functors PerfDA(eff)∗ on Perf with values in CAlg(PrL)

such that any morphism f : S′→ S in Perf is mapped to the functor PerfDA(eff)(S)→ PerfDA(eff)(S′)
induced by pullback along f . They satisfy étale hyperdescent and their restrictions to Perfqcqs take values
in CAlg(PrL

ω).

Proof. The proofs of [Ayoub et al. 2022, Proposition 2.1.21, Theorem 2.3.4 and Proposition 2.4.22] can
be easily adapted to the perfectoid context. □

Remark 2.30. It is clear that PerfDA(eff)(P)∼= PerfDA(eff)(P♭) for any perfectoid space P , functorially
in P , by [Scholze 2012].

Theorem 2.31. Let S be an object of Perf/Fp . The functor induced by relative perfection Perf :RigSm/S→
PerfSm /S gives an equivalence

Perf∗ : RigDA(eff)(S) ∼−→ PerfDA(eff)(S).

More generally, the relative perfection induces an equivalence of presheaves RigDA(eff)∗ ∼= PerfDA(eff)∗

on Perf/Fp with values in CAlg(PrL).

Proof. The natural transformation of functors can be defined as in [Robalo 2015]. By étale hyperdescent,
it suffices to prove Perf∗ is an equivalence whenever S is an affinoid perfectoid. The case S= Spa(K , K ◦)
has been proved in [Vezzani 2019a] and the same proof works for any affinoid base; see [Vezzani 2022]. □

Corollary 2.32. Let f : S′→ S be a map of admissible diamonds that, pro-étale locally on S, lies in
PerfSm /S. Then the functor f ∗ : RigDA(eff)(S)→ RigDA(eff)(S′) has a left adjoint given by

RigDA(eff)(S′)∼= PerfDA(eff)(S′) f♯
−→ PerfDA(eff)(S)∼= RigDA(eff)(S)

with f♯ defined as the functor induced by

PerfSm /S′→ PerfSm /S, (X→ S′) 7→ (X→ S′→ S).

Proof. If S is itself a perfectoid space, the proof is straightforward and similar to Theorem 2.10(4). We
remark that in this case, by construction, if one has a cartesian diagram of perfectoid spaces

T ′
g′
//

f ′

��

S′

f
��

T
g
// S

with f ∈ PerfSm /S, then g∗ f♯ ∼= f ′♯g
′∗.
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Let P→ S be a perfectoid pro-étale hypercover and P ′→ S′ be the hypercover of S induced by base
change. By the previous part of the proof, there are functors of diagrams RigDA(eff)(P ′)→RigDA(eff)(P)
which are levelwise left adjoint to the base-change functors. They then induce a functor f♯ between the
two homotopy limits (computed by pro-étale descent; see Theorem 2.15) RigDA(eff)(S′)→RigDA(eff)(S)
which is a left adjoint to the base-change functor (see [Lurie 2017, Proposition 4.7.4.19]) as wanted. □

Definition 2.33. We may and do extend the functor PerfDA(eff)(−) from Perf/Fp to diamonds, by consider-
ing its pro-étale sheafification. For any S ∈Adic we write PerfDA(eff)(S) for the category PerfDA(eff)(S⋄).
By Theorem 2.31, it is canonically equivalent to RigDA(eff)(S⋄).

Remark 2.34. There is an alternative “naive” definition of PerfDA(eff)(S) in the case S ∈ Adic is not
necessarily perfectoid: we may consider the category PerfSmn /S (n standing for naive) as being the
full subcategory of Adic/S which are locally étale over some space B̂N

× S, equip it with the étale
topology and consider the induced category of (effective) motives PerfDA(eff)

n (S). This construction
defines functors PerfDA(eff)

n with values in CAlg(PrL) which are equipped with natural transformations
σ : PerfDA(eff)

n → PerfDA(eff) ∼= RigDA(eff). We note that σ is invertible when restricted to the category
of perfectoid spaces and it therefore exhibits PerfDA as the pro-étale sheaf associated to PerfDA(eff)

n .

3. Relative overconvergent varieties and motives

We now introduce the category of overconvergent motives, generalizing the situation of [Vezzani 2018].
To this aim, we first define the category of smooth dagger rigid analytic varieties Sm†/S (or smooth
varieties with an overconvergent structure) over a base S which is in Adic/Qp .

Relative overconvergent rigid varieties. Our definition is based on the absolute notion introduced in
[Große-Klönne 2000] (see also [Vezzani 2018, Appendix A] for an adic perspective). We remark that we
do not put any overconvergent structure on the base S, so that Et† /S = Et /S and that for any open U of
S we have Sm†/U = (Sm†/S)/U .

Definition 3.1. Let U → S be a morphism in Adic which is locally qcqs and topologically of finite
type, and let U ⊂ V be an open inclusion. We write U ⋐S V if the morphism U ⊂ V extends to a
morphism of adic spaces U /S

⊂ V where U /S is the universal compactification of U/S (see [Huber 1996,
Theorem 5.1.5]). In the affinoid setting, say for a map f : (R, R+)→ (R′, R′+) over (A, A+) this means
that f (R+) is included in the algebraic closure of A++ R′◦◦ in R′.

Remark 3.2. Even though in [Huber 1996] every adic space is assumed to be noetherian (in order to
ensure the sheafyness property), this hypothesis is not used in the proof of [Huber 1996, Theorem 5.1.5].

Definition 3.3. Let S be in Adic/Qp . We let Sm†/S be the subcategory of (Sm/S)× Pro(Sm/S) whose
objects are given by pairs (X̂ , {Xh}) with X̂ ∈ Sm/S and {Xh} is a cofiltered system of open inclusions
X̂ ⋐V Xh ⊂ Xh′ in Sm/S such that X̂/V

∼ lim
←−−

Xh , where we let V be the open subvariety of S given by
Im(X̂→ S). Morphisms are defined levelwise and required to be compatible with the inclusions X̂ ⊂ Xh .
For an object X = (X̂ , {Xh}) in Sm†/S we let O†(X) be lim

−−→h O(Xh) and O+†(X) be lim
−−→h O

+(Xh).
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Fix a map (X̂ , {Xh})→ (Ŷ , {Yh}) in Sm†/S. We say it is an open immersion (resp. étale) if the map
of pro-objects has a strictification which is made of morphisms Xh→ Yh that are open immersions (resp.
étale). We remark that under these hypotheses, the map X̂ → Ŷ is automatically an open immersion
(resp. étale). A collection of morphisms {(Ûi , {Uhi })→ (X̂ , {Xh})} is a cover if for every x ∈ X̂/V there
is some i for which x lies in the image of each Uhi .

Remark 3.4. A choice of a strict inclusion X̂ ⋐V X0 of smooth rigid analytic varieties over S with
V = Im(X̂→ S) defines an object of Sm†/S by taking the filtered diagram of open subsets of X0 containing
the closure of X̂ . Any morphism, open immersion, étale map of strict inclusions (X̂→ X0)→ (Ŷ → Y0)

induces a morphism, open immersion, étale map in Sm†/S, respectively. Up to replacing X0 with X0×S V
one may assume that V = Im(X0→ S). We can actually define Sm†/S to be the category of such strict
inclusions, up to refinement, where maps are morphisms X̂→ Ŷ extending to Xh→ Y0 for some strict
neighborhood Xh of X̂ in X0 (i.e., containing its closure).

Remark 3.5. By [Huber 1996, Proposition 2.4.4] (which holds even without the noetherianity hypothesis
imposed in [Huber 1996]; see, for example, [Ayoub et al. 2022, Corollary 1.4.20]) if X̂ is qcqs, any
étale cover of (X̂ , {Xh}) consisting of a finite number of étale maps can be refined by one of the form
{(Ûi , {Uih})}i=1,...,N such that all indices h vary in the same category, that we can suppose to be directed,
and each map of pro-objects comes from a map of diagrams, with each {Uih→ Xh} being an étale cover.

Proposition 3.6. The big étale site on the category Sm†/S is equivalent to the site whose objects are pairs
X = (X̂ ,O†(X)) with X̂ a smooth variety over S of the form

Spa
(
O(V )⟨x, y⟩/(p1, . . . , pm),O(V )⟨x, y⟩/(p1, . . . , pm)

+
)

with V being an affinoid subset of S which is the image of X̂ , x and y some sets of variables x =
(x1, . . . , xn), y = (y1, . . . , ym), pi are in O(V )[x, y] such that det(∂pi/∂y j ) is invertible in O(X̂) and
O†(X) is a subring of O(X̂) of the form

O†(X)= lim
−−→

O(V )⟨π1/h x, π1/h y⟩/(p1, . . . , pm).

Morphisms X→ X ′ are defined as being the maps X̂→ X̂ ′ sending O†(X ′) to O†(X) and étale covers
are families {X i → X} such that the maps X̂ i → X̂ are étale and jointly surjective.

Proof. We first prove that the category above is a full subcategory of Sm†/S. Let X = (X̂ ,O†(X)) as in the
statement. We remark that since d :=det(∂pi/∂y j )∈O†(X) is invertible in O(X̂) in which O†(X) is dense,
and X̂ is quasicompact, we have d is invertible in some ring Rh :=O(V )⟨π1/h x, π1/h y⟩/(p1, . . . , pm)

and therefore X̂ ⋐V Spa Rh =: Xh defines an object of Sm†/S (see Remark 3.4).
We now show that morphisms X→ Y computed in Sm†/S amount to morphisms X̂→ Ŷ such that

the images s, t of x, y lie in O†(X)∩O+(X̂). It suffices to show that an (R, R+)-morphism from X†

to B
1†
Spa(R,R+) = (B

1
Spa(R,R+), R⟨x⟩†) amounts to a choice of an element in O+(X̂)∩O†(X). Fix such an

element s. We may suppose that it lies in O(X0). But then we have X̂ ⊂U (s/1)⋐X0 U (πs/1) which
implies that Xh ⊂ U (πs/1) for h≫ 0 so that πs ∈ O+†(X) showing that the map X̂ → B1 extends to
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some map Xh → SpaR⟨πx⟩ as wanted. Conversely, if the map X̂ → B1
(R,R+) defined by s ∈ O+(X̂)

extends to Xh→ Spa R⟨πx⟩ then πs ∈O+(Xh) so that s ∈O†(X)∩O+(X̂).
We now show that the subcategory of the statement is dense in Sm†/S. This is analogous to [Vezzani

2018, Corollary 3.4]. Indeed, locally with respect to the analytic topology, any object X = (X̂ ⋐ X0) is
such that X̂ is of the form prescribed. We now show that there is an automorphism of X̂ identifying the two
(dense) subrings lim

−−→
O(Xh) and O†(X) of the statement. By [Vezzani 2019a, Corollary A.2] we can find

some power series F in O(X̂)[[σ − x]] (σ being some variable as in [Vezzani 2018, Corollary 3.4]) with
a positive radius of convergence such that (x, y) 7→ (s̃, F(s̃)) defines an endomorphism of X̂ for every
s̃ sufficiently close to x . By density, we may take s̃ in lim

−−→
O(Xh)∩O+(X̂). We remark that under this

hypothesis, F(s̃) lies in lim
−−→

O(Xh)∩O+(X̂). This follows from the equivalence Et /X̂/V ∼= lim
←−−

Et /Xh

of [Huber 1996, Proposition 2.4.4] by considering the étale morphism SpaO(Xh)⟨τ ⟩/(p(s̃, τ ))→ Xh (τ
being some variable) that splits above X̂/V . This shows that there is an endomorphism ψ of X̂ which
is close to the identity (in the sense that ∥ψ( f )− f ∥ ≤ |π2

| whenever ∥ f ∥ ≤ 1 with respect to some
Banach norm ∥ · ∥ of O(X̂)) mapping O†(X̂) to lim

−−→
O(Xh). Any endomorphism which is close to the

identity is invertible; hence the claim.
We are left to prove that the small étale site over X†

= (X̂ ⋐V X0) is equivalent to the small étale site
on X̂ via the functor mapping (Û ⋐VU U0) to Û . Indeed, if Û ⊂ X̂ is a rational open, we may lift it to
U = (Û ⋐VU X0), and if Ê→ X̂ is finite étale between affinoids, we may extend it to a finite étale map
Ê/V
→ X̂/V and hence to some finite étale map Eh → Xh with Ê ⋐V Eh . This shows that any étale

dagger space over X̂ has a cover made of objects descending to X†. Since
(⋃

Ûi
)/V
=

⋃
(Û /Vi

i ) we also
deduce that a family {Ûi ⋐Vi Ui } of étale maps over X† is a cover if and only if the family {Ûi } covers X̂ ,
proving the claim. □

Relative overconvergent motives. It is straightforward to generalize the definition of motives to the dagger
setting.

Definition 3.7. Let S be an object of Adic/Qp . We let B
1†
S (resp. T

1†
S ) be the object of Sm†/S induced by

the inclusions B1
S ⋐S P1

S (resp. T1
S ⋐S P1

S) and T †
S be the quotient of the split inclusion QS(S)→QS(T

1†
S )

in Psh(Sm†/S,Q). We let Psh(Sm†/S,Q) be the infinity-category of presheaves on the category Sm/S
taking values on the derived infinity-category of Q-modules, and we let RigDAeff †(S) be its full stable
infinity-subcategory spanned by those objects F which are B1†-invariant and with ét-descent. Finally, we
set RigDA†(S,Q)= RigDAeff †(S,Q)[T †−1

S ] in PrL (see [Robalo 2015, Definition 2.6]).

The following result is essentially formal; see Theorem 2.10.

Proposition 3.8. There are contravariant functors RigDA(eff)†∗ defined on Adic/Qp with values in
CAlg(PrL) such that any f : S′→ S in Adic/Qp is sent to the functor f ∗ :RigDA(eff)†(S)→RigDA(eff)†(S′)
induced by pullback along f . They satisfy étale hyperdescent and their restrictions to Adicqcqs

/Qp
take values

in CAlg(PrL
ω).
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Proof. One can adapt the proofs of [Ayoub et al. 2022, Propositions 2.1.21 and 2.4.22, Theorem 2.3.4 and
Remark 2.3.5] to the dagger setting. □

The following theorem allows one to equip any motive with an overconvergent structure, if needed.
It is a generalization of [Vezzani 2018] to a base S with no overconvergent structure. Once again, we
crucially use some explicit homotopies in the proof of the statement.

Theorem 3.9. Let S be in Adic/Qp . The functor l : X 7→ X̂ induces an equivalence

l∗ : RigDA†(eff)(S)∼= RigDA(eff)(S).

Proof. The proof will be divided into several steps, most of which follow closely the proof of [Vezzani
2019a, Proposition 4.5].

Step 1: It suffices to prove the claim for effective motives. By Proposition 3.6 we may and do use
as models for RigDA† eff(S) (resp. RigDAeff(S)) the category of spectra on the (ét,B1)-localization of
complexes of étale presheaves on C† (resp. C) which is the (dense) subcategory of RigSm†/S (resp.
RigSm/S) whose objects are of the form X = (X̂ ,O†(X)) (resp. l∗X ) described in Proposition 3.6. The
functor l induces a Quillen pair (l∗, l∗) between these two model categories; hence a pair of (derived)
functors (Ll∗,Rl∗) between the associated infinity-categories. Moreover, Rl∗ = l∗ is exact as it commutes
with étale sheafification and preserves B1-weak equivalences. We then remark that it suffices to prove
that the functor Ll∗ between the B1-localizations Ch

B
1†
S

Psh(C†,Q) and ChB1
S

Psh(C,Q) is an equivalence.
Since it sends a class of compact generators to a class of compact generators, we are left to prove it is
fully faithful.

Step 2: We show the following claim. Fix varieties X = (Spa(R, R+), R†) and X ′ = (Spa(R′, R′+), R′†)
in C† and a morphism f : X̂ ′ = Spa(R′, R′+)→ X̂ = Spa(R, R+) over S. Then there exists a map
H : B1

X̂ ′
∼= Spa(R′⟨χ⟩, R′+⟨χ⟩)→ X̂ such that H ◦ i0 = f and H ◦ i1 lies in Hom(X, X ′). Explicitly, if

f is induced by the map σ 7→ s, τ 7→ t , the map H can be defined via

(σ, τ ) 7→
(
s+ (s̃− s)χ, F(s+ (s̃− s)χ)

)
,

where F is the unique array of formal power series (implicit functions) with positive radius of convergence
in R′[[σ − s]] associated by [Vezzani 2019a, Corollary A.2] to the polynomials p(σ, τ ) which are such
that F(s)= t and p(σ, F(σ ))= 0, and s̃ are elements in R′† such that the radius of convergence of F is
larger than ∥s̃− s∥ and F(s̃) lies in R+. As R′† is dense in R′+ we can find elements s̃i ∈ R′0 ∩ R′+ such
that ∥s̃− s∥ is smaller than the convergence radius of F . As F is continuous and R′+ is open, we can
also assume that the elements t̃ j := F j (s̃) lie in R′+. We are left to prove that they actually lie in R′†. We
consider the R′0-algebra E defined as E = R′0⟨τ ⟩/(p(s̃, τ )) which is étale over R′h , and over which the
map R′0→ R′ factors. In particular, the étale morphism Spa(E, E+)×X ′

0̄
X̂ ′→ X̂ ′ splits. In light of the

equivalence between the étale toposes on X̂ ′ and on X ′ (see the end of the proof of Proposition 3.6), if we
let Y be the étale map in C†

/X ′ induced by (E, E+), Yoneda ensures that Y → X ′ splits as well, proving
that t̃ j lies in R′h as wanted.
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Step 3: We show the following claim. For a given finite set of maps { f1, . . . , fN } in HomS(X̂ ′×S Bn
S, X̂)

we can find corresponding maps {H1, . . . , HN } in HomS(X̂ ′×S Bn
S ×S B1

S, X̂) such that

(1) for all 1≤ k ≤ N we have i∗0 Hk = fk and i∗1 Hk has a model in Hom(X ′×SBn
S, X);

(2) if fk ◦ dr,ϵ = fk′ ◦ dr,ϵ for some 1≤ k, k ′ ≤ N and some (r, ϵ) ∈ {1, . . . , n}× {0, 1} then Hk ◦ dr,ϵ =

Hk′ ◦ dr,ϵ ;

(3) if for some 1≤ k≤ N the map fk◦d1,1∈Hom(X̂ ′×S Bn−1
S , X̂) has a model in Hom(X ′×S B

(n−1)†
S , X)

then the element Hk ◦ d1,1 of HomS(X̂ ′×S Bn−1
S ×S B1

S, X̂) is constant on B1
S equal to fk ◦ d1,1;

where we denote by dr,ϵ the morphisms Bn−1
→ Bn induced by the evaluation of the r -th coordinate of

Bn at ϵ. We may suppose that each fk is induced by maps (σ, τ ) 7→ (sk, tk) from R to R′⟨θ1 . . . , θn⟩ for
some m-tuples sk and n-tuples tk in R′⟨θ⟩. Moreover, by step 2 there exists a sequence of power series
Fk = (Fk1, . . . , Fkm) associated to each fk such that

(σ, τ ) 7→
(
sk + (s̃k − sk)χ, Fk(sk + (s̃k − sk)χ)

)
∈ R′⟨θ, χ⟩

defines a map Hk satisfying the first claim, for any choice of s̃k ∈ R′⟨θ⟩† such that s̃k is in the convergence
radius of Fk and Fk(s̃k) is in R′⟨θ⟩+. Let ϵ be a positive real number, smaller than all radii of convergence
of the series Fk j and such that F(a) ∈ R′⟨θ⟩+ for all |a− s|< ϵ. Denote by s̃ki the elements associated
to ski by applying [Vezzani 2019a, Proposition A.5] with respect to the chosen ϵ. In particular, they
induce a well-defined map Hk and the elements s̃ki lie in R′⟨θ⟩h̄ for some index h̄. We show that the
maps Hk induced by this choice also satisfy the second and third claims of the proposition. Suppose
that fk ◦ dr,ϵ = fk′ ◦ dr,ϵ for some r ∈ {1, . . . , n} and ϵ ∈ {0, 1}. This means that s̄ := sk |θr=ϵ = sk′ |θr=ϵ

and t̄ := tk |θr=ϵ = tk′ |θr=ϵ . This implies that both Fk |θr=ϵ and Fk′ |θr=ϵ are two m-tuples of formal power
series F̄ with coefficients in O(X̂ ′×Bn−1) converging around s̄ and such that p(σ, F̄(σ ))= 0, F̄(s̄)= t̄ .
By the uniqueness of such power series stated in [Vezzani 2019a, Corollary A.2], we conclude that they
coincide. Moreover, by our choice of the elements s̃k it follows that ¯̃s := s̃k |θr=ϵ = s̃k′ |θr=ϵ . In particular
one has

Fk((s̃k − sk)χ)|θr=ϵ = F̄(( ¯̃s− s̄)χ)= Fk′((s̃k′ − sk′)χ)|θr=ϵ

and therefore Hk ◦ dr,ϵ = Hk′ ◦ dr,ϵ proving the second claim. The third claim follows immediately since
the elements s̃ki satisfy the condition (iv) of [Vezzani 2019a, Proposition A.5].

Step 4: We remark that (see [Vezzani 2018, Proposition 4.22] or [Vezzani 2019a, Proposition 4.5]) the
claim proved in step 3 admits the following interpretation: the natural map

φ : (SingB
1†
S Q(X))(X ′)→ (SingB1

S QS(X̂))(X̂ ′)

is a quasi-isomorphism, where for any complex of presheaves F we let SingB
1†
S F be the singular complex

associated to the cocubical complex Hom(QS(B
•†
S ),F) which is B1†-equivalent to F . Indeed, the lifting

property of step 3 allows one to prove directly that the homology groups of the normalized complexes
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associated to the cocubical complexes above are isomorphic; we refer to the proof of [Vezzani 2018,
Proposition 4.22] for details. This implies that, considering the Quillen adjunction

Ll∗ : Ch
B

1†
S

Psh(C†,Q)⇄ ChB1
S

Psh(C,Q) : Rl∗ = l∗,

we have

Rl∗Ll∗QS(X)= l∗ SingB1
S QS(X̂)∼= SingB1

S QS(X).

Since SingB1
S QS(X)∼=QS(X) (see, for example, [Vezzani 2018, Proposition 4.10]) this proves that Ll∗

is fully faithful; hence the claim by step 1. □

4. The relative overconvergent de Rham cohomology

The aim of this section is to define the analog of the overconvergent de Rham cohomology in the relative
setting. One of the main problems of its “naive” definition is that a nice category of quasicoherent
sheaves over an adic space wasn’t available until very recently. Clausen and Scholze’s formalism of
condensed mathematics [Scholze 2019; 2020] allows one to define such a category with a symmetric
monoidal structure. Although this category is big, its dualizable objects are nothing but (classical) perfect
complexes, as proved in [Andreychev 2021] for the case of interest to us. By upgrading the relative
de Rham cohomology to the condensed level, we are then able to formulate and prove a base change
formula and the Künneth formula for it. Combined with the above characterization of dualizable objects,
this produces some finiteness statements for relative de Rham cohomology.

The relative de Rham complex. We initially give the definition of the module of differentials of a smooth
map in Adic, and prove its basic properties. As far as we know, the current literature treats mainly the case
of a noetherian base (see [Huber 1996], for example) and we make here some straightforward extensions
of this case.

Definition 4.1. Let f : X→ S be a smooth morphism in Adic. Let IX/S ⊂OX×S X be the ideal sheaf of
the diagonal 1 f : X→ X ×S X . The sheaf of differentials of X over S is

�1
X/S := IX/S/I2

X/S,

seen as an OX -module through the identification OX ≃OX×S X/IX/S .

Note that by construction, �1
X/S comes with an OS-linear derivation d :OX→�1

X/S , sending a section
s to 1⊗ s− s⊗ 1.

Definition 4.2. Let d ≥ 0. Let f : X→ S be a smooth morphism in Adic. We say that f is of dimension d
if locally on X and S the morphism factors as the composition of an étale morphism X→ Bd

S with the
projection Bd

S→ S.

Since the dimension of a smooth morphism f : X → S is locally constant on X , it is no loss of
generality in practice to assume that f is of fixed dimension.
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The following statement is proved in [Fargues and Scholze 2021]. We recall how the argument goes,
in order to fix some notation.

Proposition 4.3. Let f : X→ S be a smooth morphism in Adic. The OX -module �1
X/S is a vector bundle.

If f is of dimension d, it is of constant rank d.

Proof. Since this is a local assertion, we can assume that f is the composite of an étale morphism
g : X→Bd

S with the projection h :Bd
S→ S. We can also assume that S=Spa(A, A+) and X =Spa(B, B+)

are both affinoid. In this case, we will prove that �1
X/S is in fact a free OX -module of rank d . For brevity,

write Y := Bd
S . The diagonal map 1 f : X→ X ×S X can be decomposed as the composition of

X 1g
−→ X ×Y X = Y ×Y×SY (X ×S X)→ X ×S X,

where the second map is obtained by base changing 1h : Y → Y ×S Y along X ×S X→ Y ×S Y . Since g
is étale, the map 1g is an open immersion. Therefore, the OX×S X -module IX/S is the pullback of the
OY×SY -module IY/S along the map X ×S X→ Y ×S Y .

The map Y → Y ×S Y is of the form

Spa(A⟨T ⟩, A+⟨T ⟩)→ Spa(A⟨T , T ′⟩, A+⟨T , T ′⟩)

for some sets of variables T = (T1, . . . , Td) and T ′ = (T ′1, . . . , T ′d), and IY/S is the ideal sheaf given by
the ideal (T1− T ′1, . . . , Td − T ′d). To conclude the proof, it suffices to check that T1− T ′1, . . . , TN − T ′N
define a regular sequence in B⊗̂A B and that the ideal (T1−T ′1, . . . , Td−T ′d) · B⊗̂A B is closed in B⊗̂A B.
This is the content of [Fargues and Scholze 2021, Proposition IV.4.12]. □

Definition 4.4. Let f : A→ B a be morphism of complete Huber rings. A universal A-derivation of B is
a continuous A-derivation dB/A : B→�B/A such that for any continuous A-derivation d : B→ M from
B to a complete topological B-module M , there is a unique continuous B-linear map g : �B/A→ M
such that d = g ◦ dB/A.

Proposition 4.5. Let f : X → S be a smooth morphism in Adic. Locally on X , X = Spa(B, B+),
S = Spa(S, S+) and �1

X/S is the OX -module attached to the finite projective B-module �B/A := I/I 2,
where I is the kernel of the multiplication map B⊗̂A B→ B. The map dB/A : B→�B/A, induced by the
map b 7→ 1⊗ b− b⊗ 1, is a universal A-derivation of B.

Proof. The first part follows from the proof of Proposition 4.3. Moreover, this proof shows that the ideal I
is closed and finitely generated, therefore a complete B-module of finite type. Choose a finite subset N
of B such that the subring A[N ] is dense in B. The proof of [Huber 1996, Proposition 1.6.2(ii)] shows
that the ideal J generated by the elements 1⊗ n − n⊗ 1, n ∈ N , is dense in I . Thus, by [Bhatt et al.
2019, Lemma 1.1.13], we must have J = I (note that the topology on I induced by the topology on B is
necessarily the natural topology, by [Bhatt et al. 2019, Corollary 1.1.12]). From there, the same proof as
the usual algebraic proof shows that �B/A is a universal A-derivation of B. □

This allows us to check that �1
X/S has the expected properties listed in the following proposition.



2118 Arthur-César Le Bras and Alberto Vezzani

Proposition 4.6. Let f : X→ S be a smooth morphism in Adic.

(1) Let g : S′→ S be a map in Adic, and let f ′ : X ′ := X ×S S′→ S′ be the base change of f , which is
again smooth. Then �1

X ′/S′ is the pullback of �1
X/S along g′ : X ′→ X.

(2) Let g : Y → X be a smooth morphism. Then one has a short exact sequence

0→ g∗�1
X/S→�1

Y/S→�1
Y/X .

(3) Let g : Y → S be a smooth morphism. There is a natural isomorphism

�1
(X×SY )/S

∼= g′∗�1
X/S ⊕ f ′∗�1

Y/S,

where g′ : X ×S Y → X , f ′ : X ×S Y → Y denote the two projections.

Proof. The proofs of (1) and (2) are the same as in the algebraic case, using the universal property, given
Proposition 4.5. The assertion (3) follows from (1) and (2). □

Definition 4.7. Let f : X → S be a smooth morphism in Adic of dimension d. For each i ≥ 1, write
�i

X/S=
∧i

�1
X/S . The derivation d :OX→�1

X/S extends naturally to a complex of sheaves of OS-modules
on X :

OX
d
−→�1

X/S
d
−→ · · ·

d
−→�d

X/S,

(with OX sitting in degree 0) called the de Rham complex of X over S and denoted by �•X/S .

Recollection on solid quasicoherent sheaves. Clausen and Scholze have developed a formalism allowing
one to attach to any analytic adic space X an infinity-category QCoh(X) of solid quasicoherent sheaves
on X , serving the same purposes as the category of quasicoherent sheaves in algebraic category (and even
more, since it allows one to build a full 6-functor formalism; see [Scholze 2019]). If f : X → S is a
smooth (dagger) morphism in Adic, the (overconvergent) de Rham complex naturally defines an object of
QCoh(S) and it will be important for us to adopt this point of view in the following. This is what we
explain in this subsection. We start by recalling several properties of analytic rings attached to complete
Huber pairs that we gather essentially from [Scholze 2020; Andreychev 2021] and that we summarize
here for the convenience of the reader.

Definition 4.8. For the basic notation on condensed abelian groups we refer to [Scholze 2019]. We will
typically consider them as abelian sheaves on the site of extremally disconnected sets with covers given
by finite collections of jointly surjective maps (see [Scholze 2019, Proposition 2.7]).

(1) If A is a topological abelian group we denote by A the condensed abelian group defined by A(S)=
Hom(S, A) (the group of continuous maps) for any extremally disconnected set S. If A has a topological
ring structure, then A is a condensed ring.

(2) If R is a condensed ring (for example, R = A for some topological ring A) and S is an extremally
disconnected set, we denote by R[S] the condensed R-module representing the functor M 7→ M(S) on
condensed R-modules.
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(3) An analytic ring is given by a condensed ring R, a functor MR taking an extremally disconnected
set S to some R-module MR[S] in condensed abelian groups, and a natural transformation R[S]→MR[S]
satisfying some extra properties (see [Scholze 2020, Definition 6.12]). The category of (R,MR)-modules
MR -Mod is the full abelian subcategory with products and sums inside condensed R-modules generated
by the objects MR[S]. The natural transformation which is part of the definition gives rise to a localization
functor R -Mod→MR -Mod that is denoted by M 7→M⊗R (R,MR) and is the unique colimit-preserving
extension of the functor R[S]→MR[S]. More generally, any map of analytic rings (defined as in [Scholze
2019, Lecture VII]) f : (A,MA)→ (B,MB) induces a base-change functor f ∗ : MA -Mod→ MB -Mod,
M 7→ M ⊗(A,MA) (B,MB), which is a left adjoint to the “forgetful” functor f∗. If R is commutative, the
category MR -Mod is endowed with a symmetric monoidal tensor product ⊗(R,MR) making the functor
M 7→ M ⊗R (R,MR) symmetric monoidal. One says (R,MR) is complete or normalized (see [Scholze
2020, Definition 12.9]) if MR[∗] ∼= R.

(4) We recall that an animated analytic ring is given by a condensed animated ring R, a functor MR

taking an extremally disconnected set S to some R-module MR[S] in condensed animated abelian
groups, and a natural transformation R[S]→MR[S] satisfying some extra properties (see [Scholze 2020,
Definition 12.1]). The category D(R,MR) is the stable infinity-category generated under sifted colimits
by the shifts of MR[S] in (unbounded) derived condensed R-modules (see [Scholze 2020, Definition 12.3
and Remark 12.5]). The natural transformation which is part of the definition gives rise to a localization
functor D(R)→D(MR) that is denoted by M 7→ M⊗R (R,MR). More generally, any map of analytic
rings (defined as in [Scholze 2020, Lecture XII]) f : (A,MA)→ (B,MB) induces a base-change functor
f ∗ :D(MA)→D(MB), M 7→ M⊗(A,MA) (B,MB), which is a left adjoint to the “forgetful” functor f∗.
If R is a condensed animated commutative ring, there is a unique symmetric monoidal structure ⊗(R,MR),
making the functor −⊗R (R,MR) symmetric monoidal. Any analytic ring structure (R,MR) can be
seen as an animated ring structure MR on R[0].

Remark 4.9. In [Andreychev 2021] the adjective animated is often dropped. What we call here analytic
rings are there called 0-truncated (animated) analytic rings.

Remark 4.10. Beware that the functor −⊗R[0] (R[0],MR) may not be the left derived functor of the
functor −⊗R (R,MR) (see [Scholze 2019, Warning 7.6]) but it is so in all the examples we are interested
in (see Proposition 4.12 below).

Example 4.11. • If R is a condensed animated ring, the functor S 7→R[S] defines a (“trivial”) analytic
ring structure on R, which we denote by Rtriv.

• The pair (Z,Z■) with Z■[lim←−− Si ] := lim
←−−

Z[Si ] defines an analytic ring structure on the condensed
discrete ring Z (see [Scholze 2019, Theorem 5.8]). Similarly, if R is a finitely generated discrete
ring, the datum (R, R■) with R■[S] := lim

←−−
R[Si ] defines an analytic ring structure on R (see

[Scholze 2019, Theorem 8.1]). More generally, if R is a (discrete, 0-truncated) ring, the functor
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S 7→ R■[S] := lim
−−→R′ R′■[S], as R′ runs among finitely generated subrings of R, is an analytic ring

structure on R. From now on, the analytic ring structure (R, R■) will simply be denoted by R■.

All the analytic rings that we will consider lie above Z■. The following fact is therefore particularly
convenient for us.

Proposition 4.12 [Andreychev 2021, Proposition 2.11 and Corollary 2.11.2]. If (R,MR) is an analytic
ring over Z■ then MR[S] ⊗L

(R,MR)
MR[T ] is concentrated in degree zero for any pair of extremally

disconnected sets (S, T ). In particular, the tensor product in D(MR) coincides with the derived tensor
product of MR -Mod.

There is a convenient way to produce animated analytic ring structures given in [Scholze 2020].

Proposition 4.13 [Scholze 2020, Proposition 12.8]. Let (R,MR) be an animated analytic ring and
R→R′ a map of condensed animated rings. The functor

S 7→R′[S]⊗R (R,MR)

defines an animated analytic ring structure on R′, which is the pushout (R,MR)⊗Rtriv R′triv in animated
analytic rings.

Under suitable hypotheses, the recipe above is internal to normalized analytic rings. The proof of the
following fact is immediate.

Proposition 4.14 [Andreychev 2021, Proposition 2.16]. Let (R,MR) be a normalized analytic ring. Let
R→ R′ be a map of condensed rings such that R′ is an (R,MR)-module and such that R′[S]⊗L

R (R,MR)

lies in degree zero for any extremally disconnected set S. The functor

S 7→ R′[S]⊗R (R,MR)

defines a structure of a normalized analytic ring on R′ above (R,MR) whose associated animated analytic
ring structure is R′[0]triv⊗R[0]triv (R[0],MR).

We shall refer to the (animated) analytic structure introduced in the previous propositions as the one
induced by MR and the map R→R′.

Example 4.15. The analytic ring structure induced by Z■ and the map (of discrete rings) Z→ Z[T ] will
be denoted by (Z[T ],Z)■.

Another example of this situation, which is crucial to our setting, has been studied by [Andreychev
2021]. Let (A, A+) be a complete Huber pair. Recall that the discrete ring A+disc (the ring A+ endowed
with the discrete topology) is equipped with a (normalized) analytic ring structure denoted by (A+disc)■

(see Example 4.11).

Definition 4.16. Let (A, A+) be a complete Huber pair. We define (A, A+)■ as the animated ring
structure given by A[0]triv⊗A+disc[0]triv

(A+disc)■.
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Proposition 4.17 [Andreychev 2021, Lemmas 3.24 and 3.25]. The map A+disc→ A satisfies the hypotheses
of Proposition 4.14. In particular, there is an analytic ring structure on A associated to (A, A+)■.

We will use the same notation (A, A+)■ to refer both to the analytic ring structure on A and the
animated one. The (A, A+)■-modules are also called solid (A, A+)-modules. We note that in particular
one has, for any complete Huber pair (A, A+), an infinity-category

QCoh(Spa(A, A+)) := D((A, A+)■),

which is the infinity-category of (unbounded derived) solid (A, A+)-modules. Whenever we write
⊗(A,A+)■ or f ∗, for a morphism f : (A, A+)→ (B, B+) of complete Huber pairs, we will always mean
it in the animated sense.

One of the main results of Andreychev is the following theorem.

Theorem 4.18 [Andreychev 2021, Theorem 4.1]. Let X be an analytic adic space. The functor U 7→
QCoh(U ) from rational open subsets of X to infinity-categories has rational descent.

Definition 4.19. For any X ∈Adic we will denote by QCoh(X) the infinity-category obtained by rational
descent from the functor QCoh defined on affinoid subspaces U ⊂ X . It is endowed with a symmetric
monoidal structure ⊗QCoh(X).

Remark 4.20. There is a natural t-structure on QCoh(X) when X = Spa(A, A+), whose heart is the
abelian category of solid (A, A+)-modules, but there is no canonical t-structure on QCoh(X) in general.

Some pushouts in normalized animated analytic rings were introduced in Proposition 4.13 but actually,
general pushouts in the category of normalized (animated) analytic rings exist, even though they are defined
rather unexplicitly (see [Scholze 2020, Proposition 12.12]). However, there is a condition that turns them
into something more tractable: we recall that a map of normalized analytic rings f : (A,MA)→ (B,MB)

is steady (see [Scholze 2020, Definition 12.13]) if for any other map g : (A,MA)→ (C,MC) of normalized
analytic rings, the pushout (B,MB)⊗(A,MA) (C,MC) is given by the functor

ME [S] =MC[S]⊗(A,MA) (B,MB)

defining an analytic ring structure on the normalization E of B⊗A C.
The following fact is essentially proved in [Scholze 2020].

Lemma 4.21. Let (A, A+)→ (B, B+) be an adic map of Huber pairs. The induced map of analytic rings
(A, A+)■→ (B, B+)■ is steady.

Proof. We may decompose the map into two maps

(A, A+)■→ (B, B+A )■→ (B, B+)■

with B+A being the smallest ring of integers for B containing the image of A+. We remark that (B, B+A )■=
(B, A+)■, i.e., the analytic ring structure is the one induced by (A, A+)■ and the map A→ B. Since A→
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B is adic, we deduce that the map (A, A+)■→ (B, B+A )■ is steady by [Scholze 2020, Proposition 13.14
and page 102].

The map (B, B+A )■→ (B, B+)■ is an ind-steady open immersion defined by putting | f | ≤ 1 for all
f ∈ B+ and as such (see [Scholze 2020, Proposition 12.15 and Example 13.15(3)]) it is steady.

We can then conclude the lemma, as compositions of steady maps are steady by [Scholze 2020,
Proposition 12.15]. □

The following proposition will be used freely in what follows, and shows some compatibility between
base change maps of adic spaces, and base change maps of their relative analytic spaces. It relies on
results in [Andreychev 2021]. We say that a rational open immersion U ⊂ Spa(A, A+) is Laurent if it is
of the form U =U (1/ f ) or U =U ( f/1) for some f ∈ A. We recall that any rational open immersion
U = U (( f1, . . . , fn)/g) ⊂ Spa(A, A+) of Tate algebras is a composition of Laurent open immersions
(see, for example, [Scholze 2012, Remark 2.8]).

Proposition 4.22. Let

f : X = Spa(B, B+)→ S = Spa(A, A+) and g : Y = Spa(C,C+)→ S = Spa(A, A+)

be maps in Adic such that f is smooth and can be written as a composition of rational open immersions,
finite étale maps and projections of the form Bd

T → T . The pushout of (animated) analytic rings
(B, B+)■ ⊗(A,A+)■ (C,C+)■ coincides with the analytic ring structure (B⊗̂AC, B+⊗̂A+C+)■ on the
completed tensor product of Huber pairs.

Proof. We may and do consider separately the cases in which f is a Laurent rational open immersion,
f is the projection of the unit disc and f is finite étale. In the first case, the result follows from
the compatibility of (steady) localizations with base change [Scholze 2020, Proposition 12.18]. More
explicitly, if B = A⟨a/1⟩ for some a ∈ A then by [Andreychev 2021, Proposition 4.11] and Lemma 4.21
we can write

(A⟨a/1⟩, A⟨a/1⟩+)■ ∼= (A, A+)■⊗(Z[T ],Z)■ Z[T ]■,

where the map (Z[T ],Z)■→ (A, A+) is the one induced by T 7→ a. We then deduce

(C⟨a/1⟩,C⟨a/1⟩+)∼= (C,C+)■⊗(Z[T ],Z)■ Z[T ]■
∼= (C,C+)■⊗(A,A+)■ ((A, A+)■⊗(Z[T ],Z)■ Z[T ]■)
∼= (C,C+)■⊗(A,A+)■ (A⟨a/1⟩, A⟨a/1⟩+).

The case B = A⟨1/a⟩ is dealt with similarly, by writing

(A⟨1/a⟩, A⟨1/a⟩+)■ ∼= (A, A+)■⊗(Z[T ],Z)■ (Z[T
±1
],Z[T−1

])■.

Suppose f is the projection B1
S→ S. By [Andreychev 2021, Lemma 4.7] we have that (A⟨T ⟩, A+⟨T ⟩)■

coincides with the (steady) rational localization at |T | ≤ 1 (see Proposition 4.14) of the analytic structure
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(A[T ] ⊗A (A, A+)■) induced by the map of rings A→ A[T ] which is (A, A+)■⊗Z■ (Z[T ],Z)■. By
what was shown in the first part, we deduce that

(C⟨T ⟩,C+⟨T ⟩)∼= (C,C+)■⊗Z■ Z[T ]■
∼= (C,C+)■⊗(A,A+)■ ((A, A+)■⊗Z■ Z[T ]■)
∼= (C,C+)■⊗(A,A+)■ (A⟨T ⟩, A+⟨T ⟩)

as wanted. The case in which f is finite étale is immediate, as in this case (B, B+)■ is again induced by
some (finite) map A→ B. □

An important consequence of the previous fact is the following base change result.

Corollary 4.23. Under the hypotheses of Proposition 4.22, we let f ′ : X ×S Y → Y , g′ : X ×S Y → X be
the base change of the maps f and g in Adic. For any object M of QCoh(X) the base change map

g∗ f∗M→ f ′
∗
g′∗M

is an isomorphism in QCoh(Y ).

Proof. The morphism g is adic; hence steady by Lemma 4.21. Therefore, by [Scholze 2020, Proposi-
tion 12.14], we know that

(M|A)⊗(A,A+)■ (C,C+)■ ∼= (M ⊗(B,B+)■ ((B, B+)■⊗(A,A+)■ (C,C+)■))|C ,

where on the right-hand side, (B, B+)■⊗(A,A+)■ (C,C+)■ denotes the analytic ring structure obtained by
pushout. But for f satisfying the geometric hypotheses of the proposition, we know by Proposition 4.22
that this pushout is the same as (B⊗̂AC, E+)■ with E+ being the smallest ring of integers containing
B+⊗̂A+C+, whence the claim. □

Let us spell out a corollary of this, which will be useful later.

Corollary 4.24. Under the hypotheses on Proposition 4.22, the modules B and C are solid (A, A+)-
modules, and B⊗(A,A+)■ C is isomorphic to (B⊗̂AC)[0] in QCoh(S). □

Proof. We may harmlessly replace (C,C+) with the Huber pair (C,C+A ) where C+A denotes the smallest
ring of integral elements containing A+. In this case, the analytic structure (C,C+A )■ coincides with
(A, A+)■⊗A C , i.e., to the one induced by (A, A+)■ and the continuous ring map A→ C . In particular,
the base change functor g∗ is given by the functor M 7→ M ⊗(A,A+)■ C .

We may then rewrite the module B ⊗(A,A+)■ C as g∗ f∗B which by Corollary 4.23 is canonically
isomorphic to f ′

∗
g′∗B = B⊗̂AC as claimed. □

Remark 4.25. From Corollary 4.24 we obtain in particular that the complex B⊗(A,A+)■ C is concentrated
in degree zero and as such, it coincides with the underived tensor product B⊗un

(A,A+)■
C in solid (A, A+)-

modules (see Proposition 4.12).
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The relative de Rham complex in the solid world. We would like to upgrade the de Rham cohomology
complex to a complex of solid quasicoherent sheaves. In fact, we will strictly speaking do so only when
everything in sight is affinoid and then glue using analytic descent. For most of this section we will then
restrict to the following special smooth maps.

Definition 4.26. Let S = Spa(A, A+) be an affinoid space in Adic. We say that a smooth map X→ S is
smooth with good coordinates if X → S can be factored into X f

−→ Bd
S

p
−→ S with d ∈ N, f being a

composition of rational open immersions and finite étale maps, and with p being the natural projection.
We remark that in this case �1

X/S is free. We denote by Smgc/S the full subcategory of Sm/S whose
objects are smooth with good coordinates.

Locally on X , any smooth map has good coordinates so that the analytic étale topos on Smgc/S is
equivalent to the one on Sm/S.

Definition 4.27. Let S = Spa(A, A+) be affinoid and X→ S be smooth with good coordinates. We let
�•(X/S) be the complex of solid (A, A+)-modules obtained by levelwise underlining the complex of
Banach A-modules given by global sections of the complex �•X/S of Definition 4.7 (note that since �1

X/S

is a finite free OX -module, �i
X/S(X) has a natural structure of a Banach A-module for each i). We denote

by R0dR(X/S)■ the object of D((A, A+)■)= QCoh(S) attached to the complex �•(X/S).

The notation R0dR(X/S)■ could a priori be confusing, as it may suggest that alternatively we see
�•X/S as a complex of sheaves valued in D((A, A+)■) (say, defined on Smgc/S) and compute its (hy-
per)cohomology on X . The following proposition shows that these two definitions agree, as a basic
consequence of Tate’s acyclicity.

Proposition 4.28. Let S = Spa(A, A+) be in Adic. The functor

R0dR(−/S)■ :U 7→ R0dR(U/S)■

from (Smgc/S) to QCoh(S) has étale descent. That is, if U→ X is an étale Cech-hypercover in Smgc/S,

R0dR(X/S)■ ∼= lim R0dR(U/S)■

in QCoh(S).

Proof. We shall prove that the statement follows from Tate’s acyclicity. The proof will be divided into
some intermediate steps.

Step 1: For any Cech hypercover U→ X in Smgc/S, the map colim Z(U)→Z(X) is an ét-local equivalence
in D(Psh(Smgc/S),Z) (see, for example, [SGA 42 1972, Théorème V.7.3.2]); hence so is the analogous
map between the two induced free presheaves of solid (A, A+)-modules. It therefore suffices to show
that R0dR(−/S)■ is ét-local in the category D

(
Psh(Smgc/S,QCoh(S))

)
, that is, the homology groups

H i0(X,R0dR(−/S)■) coincide with the hypercohomology groups Hi
ét(X,R0dR(−/S)■). To this aim, we

may show that R0dR(−/S)■ is a bounded complex of Cech-acyclic sheaves (of solid (A, A+)-modules),
that is, each �i

−/S is a Cech-acyclic sheaf.
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Step 2: Since �1
X/S is free for any X ∈ Smgc/S and O(U ) is a solid (A, A+)-module, it suffices to

show that O is a Cech-acyclic étale sheaf of condensed O(S)-modules in Smgc/S. We fix an étale cover
U = {Ui → X}i=1,...,n in this site. We are left to show that the (bounded) complex

0→O(X)→
⊕

O(Ui )→
⊕

O(Ui j )→ · · ·

is exact. By the classical Tate acyclicity theorem and the Banach open mapping theorem, we know that
the sequence

0→O(X)→
⊕

O(Ui )→
⊕

O(Ui j )→ · · ·

is a strict exact complex of Banach A-modules, so the claim follows from Lemma 4.29. □

We learnt the following fact, which was used in the previous proof, from Guido Bosco.

Lemma 4.29. Let S = Spa(A, A+) be in Adic. The functor M 7→ M from the (exact) category of Banach
A-modules and continuous maps to the category of condensed A-modules is exact.

Proof. Since the “underlining” functor is left exact, it is enough to prove that if f :M ′→M is a surjective
map between two Banach A-modules, the map f : M ′→ M remains surjective; in other words, that
whenever S is an extremally disconnected set and g : S→ M is a continuous map, there is a continuous
map g′ : S→ M ′ lifting g. But the image g(S) is compact, and thus by [Trèves 1967, Lemma 45.1]
(which we can apply, thanks to [Bhatt et al. 2019, Theorem 1.1.9]) it is the image f (K ) of a compact
subset K of M ′. This concludes the claim, since extremally disconnected sets are projective objects in
the category of compact Hausdorff spaces [Gleason 1958, Theorem 2.5]. □

Proposition 4.30. Let f : X → S = Spa(A, A+) be a smooth map with good coordinates and let
g : Y = Spa(C,C+)→ S be a map in Adic.

(1) There is a canonical equivalence g∗R0dR(X/S)■ ∼= R0dR(X ×S Y/Y )■.

(2) Suppose that g is also smooth with good coordinates. Then there is a canonical equivalence
R0dR(X/S)■⊗(A,A+)■ R0dR(Y/S)■ ∼= R0dR(X ×S Y/S)■.

Proof. We consider the first statement. We let f ′ (resp. g′) be the map X ×S Y → Y (resp. X ×S Y → X )
obtained by pullback. It suffices to prove that the levelwise one satisfies g∗ f∗�d

X/S
∼= f ′
∗
�d

X×SY/Y . This
follows from Corollary 4.23 together with Proposition 4.6(1).

Now we move to the second statement. By Proposition 4.6(3), we deduce the equivalence of complexes
of topological A-modules

0(X ×S Y, �•X×SY/S)
∼= Tot

(
(0(X, �•X/S)⊗B (B⊗̂AC))⊗B⊗̂AC ((B⊗̂AC)⊗C 0(Y, �•Y/S))

)
.

The right-hand side can be simplified and we get

0(X ×S Y, �•X×SY/S)
∼= Tot(0(X, �•X/S)⊗̂A0(Y, �•Y/S)).
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Underlining both sides, we deduce (using the notation of Definition 4.27)

�•(X ×S Y/S)∼= Tot(0(X, �•X/S)⊗̂A0(Y, �•Y/S)).

Since the terms of the complexes �•(X/S)= 0(X, �•X/S) and �•(Y/S)= 0(Y, �•Y/S) are finite locally
free B-modules and finite locally free C-modules, respectively, we deduce from Corollary 4.24 (see also
Remark 4.25) that

Tot(0(X, �•X/S)⊗̂A0(Y, �•Y/S))
∼= Tot(�•(X/S)⊗un

(A,A+)■
�•(Y/S)),

where the tensor product on the right is the underived tensor product of solid (A, A+)-modules. Moreover,
(see [EGA III2 1963, Proposition 6.3.2])

Tot(�•(X/S)⊗un
(A,A+)■

�•(Y/S))∼= R0dR(X/S)■⊗(A,A+)■ R0dR(Y/S)■,

proving the claim. □

The results above allow us to extend the definition of R0dR(X/S)■ to arbitrary smooth maps X→ S.

Definition 4.31. Let X→ S be a smooth map in Adic.

(1) Let S be affinoid. We define R0dR(X/S)■ to be the object in QCoh(S) defined by rational descent
(see Proposition 4.28) of the functor R0dR(−/S)■ : (Smgc/S)/X → QCoh(S)op.

(2) In the general case, we can define R0dR(X/S)■ by rational descent of the category QCoh(S),
i.e., we may chose an affinoid rational hypercover S•→ S, and let R0dR(X/S)■ be the object of
QCoh(S)∼= lim QCoh(S•) induced by the objects R0dR(Xn/Sn)■. The compatibility is ensured by
Proposition 4.30.

Remark 4.32. Infinity-categorically, one may rephrase the definition above as follows. If S is affinoid,
by rational descent of R0dR(−/S)■, we can extend it to a functor of infinity-categories Dan(Sm/S) ∼=
Dan(Smgc/S)→ QCoh(S)op. By letting S vary, the compatibility with pullbacks along open immersions
translates into a natural transformation between analytic sheaves of infinity-categories (see [Ayoub et al.
2022, Proposition 2.3.7] and Theorem 4.18) Dan(Sm/−)→ QCoh(−) on affinoid spaces open in S that
can then be extended to S.

We deduce formally from Proposition 4.30 the following extension.

Corollary 4.33. Let f : X→ S, g : S′→ S be maps in Adic with f smooth.

(1) Let U→ X be an étale Cech hypercover. Then R0dR(X/S)■ ∼= lim R0dR(U/S)■.

(2) If g is an open immersion, there is a canonical equivalence g∗R0dR(X/S)■ ∼= R0dR(X ′/S′)■ where
X ′ = X ×S S′.

(3) If f is qcqs, there is a canonical equivalence g∗R0dR(X/S)■ ∼= R0dR(X ′/S′)■ where X ′ = X ×S S′.

(4) Suppose that f, g are both smooth and qcqs. Then

R0dR(X/S)■⊗QCoh(S) R0dR(S′/S)■ ∼= R0dR(X ×S S′/S)■.
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Proof. The first point comes directly from the definition. All points are local on S so we can assume
that S is affinoid. By (1), if f is qcqs we can write R0dR(X/S)■ as a finite limit of objects R0dR(U/S)■
with U affinoid. We then deduce (3) and (4) from the affinoid case treated in Proposition 4.30, and
the commutation of g∗ and ⊗ with finite limits. In the case g is an open immersion, we claim that g∗

commutes with arbitrary limits, which will give us the compatibility with pullbacks along open immersions
in full generality. To justify this, we note that using [Andreychev 2021, Propositions 4.11 and 4.12(ii)]
(and the fact that forgetful functors are conservative and commute with limits) the claim can be deduced
from the commutation with limits of the functor j∗, where j is a localization of analytic rings which is
either j : (Z[T ],Z)■→ Z[T ]■ or j : (Z[T ],Z)■→ (Z[T±1

],Z[T−1
])■.

Assume first that j is (Z[T ],Z)■→Z[T ]■. In [Scholze 2019, Theorem 8.1] a left adjoint j! to j∗ is con-
structed. In particular, j∗ commutes with limits. Next, assume that j is (Z[T ],Z)■→ (Z[T±1

],Z[T−1
])■.

We decompose j into

(Z[T ],Z)
α
−→ (Z[T,U ],Z[U ]) ι

−→ (Z[T,U ]/(T U − 1),Z[U ]).

To keep notation simple, we will write A= Z[U ], B = Z[T,U ],C = Z[T,U ]/(T U −1) in what follows.
Then j∗ = ι∗ ◦α∗ = ι∗[−1] ◦α∗[1], and the statement will be proved if we can prove that both α∗[1] and
ι∗[−1] commute with limits. For ι, note that the forgetful functor ι∗ commutes with colimits and hence
has a right adjoint which by the Hom-tensor adjunction is given by RHomB(C,−) (which is solid). We
claim that the natural map

RHomB(C, B)⊗(C,A)■ ι
∗(−)→ RHomB(C,−)

is an equivalence. We may and do check this in the category QCoh((B, A)■). Using that C∼= (B T U−1
−−−→ B)

we deduce
RHomB(C, B)⊗(C,A)■ ι

∗(−)∼= C[−1]⊗(C,A)■ (C, A)■⊗(B,A)■ (−)
∼= C[−1]⊗(B,A)■ (−)
∼= RHomB(C,−),

whence our claim. Therefore, we see that ι∗[−1] agrees with the right adjoint of ι∗, and thus commutes
with limits.

Finally, we turn to α. The map α is the base change along Z■→ (Z[T ],Z)■ of the map α′ :Z■→Z[U ]■.
Using base change as above (which holds here: to see it, argue as in the proof of Corollary 4.23 using
that α′ is steady and that we can compute the pushout of analytic rings by Proposition 4.22, since α′ is
smooth), we reduce to showing that (α′)∗[1] commutes with limits. But [Scholze 2019, Pages 57–58]
shows that (α′)∗[1] has a left adjoint α! defined there, and thus commutes with limits, as desired. □

Overconvergent version and extension to rigid-analytic motives. It is straightforward now to give an
overconvergent version of R0dR(X/S)■ for dagger varieties over S in Adic/Qp .
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Definition 4.34. Let S be affinoid in Adic/Qp . We let Smgc †/S be the full subcategory of Sm†/S of those
objects (X̂ , Xh) with X̂ , Xh in Smgc/S. For any X = (X̂ , Xh) in Aff Sm†/S, we let R0†

dR(X/S)■ be the
object of QCoh(S) defined as colim R0dR(Xh/S)■.

Remark 4.35. Filtered colimits of solid modules are solid, and filtered colimits are exact in condensed
O(S)-modules. Therefore R0†

dR(X/S)■ is a bounded complex whose terms are lim
−−→

fh∗�
d
Xh/S ( fh being

the smooth map Xh→ S).

Proposition 4.36. Let S be affinoid in Adic/Qp and X be in Smgc †/S.

(1) Let U→ X be an étale Cech hypercover in Aff Sm†/S. Then R0†
dR(X/S)■ ∼= lim R0†

dR(U/S)■.

(2) Let g : S′→ S be a map of affinoid spaces in Adic. There is a canonical equivalence g∗R0†
dR(X/S)■∼=

R0†
dR(X

′/S′)■ where X ′ = X ×S S′.

(3) Let g : Y → S be another object of Smgc †/S. Then

R0†
dR(X/S)■⊗QCoh(S) R0†

dR(Y/S)■ ∼= R0†
dR(X ×S Y/S)■.

Proof. Just like in the proof of Proposition 4.28, it suffices to show that the sheaf of solid modules �i†

is Cech-acyclic. We let U be a Cech étale hypercover of X that we may assume to be arising from an
étale cover of X0. We let Uh be the corresponding Cech hypercover on each Xh . But then 0(U, �†i )∼=

lim
−−→

0(Uh, �
i ). As filtered colimits commute with finite limits in QCoh(S), the claim follows from the

acyclicity of �i . Properties (2) and (3) follow from Proposition 4.30 and the commutation of filtered
colimits with tensor products and base change functors. □

Corollary 4.37. The functor X 7→ R0†
dR(X/S)■ can be uniquely extended into a functor R0†

dR(−/S)■
from RigSm†/S to QCoh(S) for any S ∈ Adic/Qp such that:

(1) For any U→ X étale Cech hypercover in Aff Sm†/S one has R0†
dR(X/S)■ ∼= lim R0dR(U/S)■.

(2) For any open immersion j : U → S in Adic there is a canonical equivalence j∗R0†
dR(X/S)■ ∼=

R0dR(X ×S U/U )†■.

It satisfies the following properties.

(3) If X is qcqs in RigSm†/S and if g : S′→ S is a map in Adic, then g∗R0†
dR(X/S)■ ∼= R0dR(X ′/S′)†■

where X ′ = X ×S S′.

(4) If f : X→ S and g : Y → S are qcqs in Sm†/S then

R0†
dR(X/S)■⊗QCoh(S) R0†

dR(Y/S)■ ∼= R0†
dR(X ×S Y/S)■.

(5) The natural projection induces an equivalence R0†
dR(B

1†
X /S)■ ∼= R0†

dR(X/S)■.

(6) One has R0†
dR(T

1†
S /S)■ ∼= 1⊕ 1[−1] where 1 is the unit of the monoidal structure on QCoh(S).

Proof. As any smooth dagger space over S is locally in Smgc †/S, the first four claims follow formally
from Proposition 4.36 as in the proof of Corollary 4.33. We now move to the last two. Using (2)–(3), it
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is enough to compute R0†
dR(X/S)■ when S = Spa(Qp) and X = B

1†
Qp

(resp. X = T
1†
Qp

). We note that the
classical computations show that the underlying Qp-vector spaces are the expected ones, and we now have
to promote these computations to solid Qp-vector spaces. To this aim, we will use once again Lemma 4.29.

By cofinality, we may rewrite the complex R0†
dR(X/S)■ as

lim
−−→

O(X◦ϵ )→ lim
−−→

O(X◦ϵ )dT,

where O(X◦ϵ ) is the Fréchet algebra of functions on the open disc (resp. annulus) of radius 1+ϵ (and 1−ϵ)
with

√
|Qp| ∋ ϵ→ 0 inside Spa Qp⟨pT ⟩. We need to show that its cohomology in degree one is trivial

(resp. isomorphic to Qp). We show that the H 1 of each complex O(X◦ϵ )→O(X◦ϵ )dT is trivial (resp. Qp).
Noting that Lemma 4.29 also holds for Fréchet spaces (since the open mapping theorem holds for them

as well; see [Schneider 2002, Proposition 8.6]) and that the differential map is strict2 (it is so for any
smooth Stein space over a finite extension of Qp; see [Große-Klönne 2000, Lemma 4.7]) we conclude
that the solid vector space H 1 coincides with O(X◦ϵ )dT/dO(X◦ϵ ) which is zero (resp. Qp) by the standard
computations of the (overconvergent) de Rham cohomology of such Stein spaces [Monsky and Washnitzer
1968; Große-Klönne 2004]. □

Definition 4.38. We let RigDA(S)ct (ct standing for constructible) be the full idempotent complete subcat-
egory of RigDA(S) stable under shifts and finite colimits generated by the objects QS(X)(n) with X→ S
smooth and qcqs, and n ∈Z. It coincides with the category of compact objects RigDA(S)ω if S is itself qua-
sicompact and quasiseparated (see Theorem 2.10(1)) and it is stable under tensor products and pullbacks.

The infinity-categorical translation of the corollary above is the following (compare with Remark 4.32).

Corollary 4.39. Let S be in Adic/Qp .

(1) There is a unique functor

dRS : RigDA(S)∼= RigDA†(S)→ QCoh(S)op

associating to each motive QS(X) with X ∈ RigSm†/S the complex R0†
dR(X/S)■.

(2) The functor above is compatible with j∗ for any open immersion j :U → S.

(3) The restriction to constructible objects

RigDA(S)ct
→ QCoh(S)op

is symmetric monoidal and compatible with f ∗ for any morphism f : S′→ S, giving rise to a natural
transformation

dR : RigDA(−)ct
→ QCoh(−)op

between contravariant functors from Adic/Qp with values in symmetric monoidal infinity-categories.

2Recall that a morphism f : V →W of topological vector spaces is strict if the quotient topology on im( f ) induced from V
coincides with the subspace topology induced from W .
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Proof. For the first point, in light of Theorem 3.9, by the universal property of RigDA†(S) (see Remark 2.8)
it suffices to prove that the functor QS(X) 7→ R0†

dR(X/S)■ is B
1†
S -invariant, has étale descent and sends

the motive T †
S to an invertible one. All these properties were proved in Corollary 4.37. Corollary 4.37

also implies that dRS is symmetric monoidal and compatible with pullbacks on the full pseudoabelian
stable subcategory of RigDA(S) generated under finite colimits by the objects Q(X)(d) with X affinoid
and d ∈ Z, which is precisely RigDA(S)ct. □

Definition 4.40. Under the hypotheses of Corollary 4.39 we call the functor

dRS : RigDA(S)→ QCoh(S)op

the (relative) overconvergent de Rham realization. When M is the motive M =QS(X) of a smooth variety
X over S, or more generally if M = p! p!QS for some map p : X→ S which is locally of finite type (see
[Ayoub et al. 2022, Corollary 4.3.18]) we will often write dRS(X) instead of dRS(M).

Remark 4.41. We point out that the equivalence RigDA(S)∼=RigDA†(S) and the fact that dRS is motivic
imply in particular that the overconvergent de Rham complex R0†

dR(X/S)■ doesn’t depend on the choice
of a dagger structure on X .

Remark 4.42. In the case S is affinoid, we may take the cohomology groups H i
dR(M/S)† := H i (dRS(M))

with respect to the t-structure of Remark 4.20 and call them the i -th overconvergent de Rham cohomology
group of M over S. In the case M = p! p!QS for a map p : X→ S which is locally of finite type, we may
abbreviate them as H i

dR(X/S)†.

Just like in the absolute case, there is no need of an overconvergent structure for smooth proper varieties.

Proposition 4.43. Let X → S be a smooth proper map in Adic/Qp . The complex R0†
dR(X/S)■ is

equivalent to the complex R0dR(X/S)■.

Proof. We may and do assume S is affinoid. Let {U0, . . . ,UN } be a finite open cover of X made of
objects in Smgc/S. The inclusions Ui ⋐S X induce overconvergent structures Vi = (Ui ,Uih) which are
such that {U1h, . . . ,UNh} is again an open cover of X . But then we get

R0†
dR(X/S)■ ∼= lim R0†

dR(V•/S)■
∼= lim lim

−−→
h

R0dR(U•h/S)■

∼= lim
−−→

h
lim R0dR(U•h/S)■

∼= R0dR(X/S)■,

where we used the commutation of filtered colimits with finite limits and descent of R0dR(−/S)■ (see
Corollary 4.33). □

Remark 4.44. Even if the overconvergent setting is “superfluous” when dealing with smooth proper
maps X/S, we stress that it is crucial in order to have a realization dRS on motives RigDA(S) (and not
just “pure” ones). This allows one to use the motivic six-functor formalism and its consequences, which
give nontrivial results even when applied to “pure” motives (see, for example, Corollary 4.47).
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Finiteness. We would like to conclude the same finiteness results for the relative rigid de Rham cohomol-
ogy as the relative algebraic de Rham cohomology (see, for example, [Hartshorne 1975]), that is, the fact
that it defines vector bundles on the base in the case X/S is proper and smooth or whenever S is a field.

Definition 4.45. Let C be a symmetric monoidal infinity-category. We denote by Cfd the full subcategory
of C whose objects are (fully) dualizable in the sense of [Lurie 2017, Definition 4.6.1.7].

We now prove the main theorem of this section.

Theorem 4.46. Let S be an adic space in Adic/Qp . The relative overconvergent de Rham realization

dRS : RigDA(S)→ QCoh(S)op

sends dualizable motives to split perfect complexes. In particular, if M is a dualizable motive, then the
cohomology groups of dRS(M) (for the t-structure on the derived category of perfect complexes induced
by the natural t-structure on the derived category of OS-modules) are vector bundles on S and equal to 0
if |i | ≫ 0.

Proof. We may and do assume that S is affinoid. We divide the proof into various steps.

Step 1: As the unit object in RigDA(S) is compact, any dualizable object is compact. As the functor
dRS is symmetric monoidal when restricted to compact objects by Corollary 4.39(3), it sends dualizable
objects to dualizable objects. Since dualizable objects in QCoh(S) are perfect complexes by [Andreychev
2021, Theorem 5.9 and Corollary 5.51.1], we deduce that dR restricts to a functor RigDA(S)fd→ P(S)op

where we let P(S) be the full subcategory of perfect complexes in QCoh(S).

Step 2: Let f : S→ T be a morphism of affinoid spaces in Adic/Qp and suppose that a dualizable motive
M ∈RigDA(S) has a dualizable model N ∈RigDA(T ) (N is dualizable and f ∗N ∼= M). We then deduce
from Corollary 4.39 the commutative diagram

RigDA(T )fd //

��

P(O(T ))op

��

RigDA(S)fd // P(O(S))op

and hence that dRS(M)∼= f ∗ dRT (N ). As split perfect complexes are stable under base change, if we
know the statement holds for N , we can deduce it for M as well.

Step 3: Since O(S) is a uniform Tate–Huber ring, O(S)+ is a ring of definition and has the p-adic topology.
Write O(S)+ as the union of its finitely generated Zp-subalgebras R. Since O(S)+ is p-adically complete,
we therefore get a presentation of (O(S),O(S)+) as the filtered colimit of the complete affinoid rings
(R̂[1/p], R̂) for R as before. Applying [Scholze and Weinstein 2013, Proposition 2.4.2] (with ideals of
definition generated by p), we deduce that S ∼ lim

←−−
Spa(A, A+), with A= R̂[1/p] being a Tate algebra of

topologically finite type over Qp. By Theorem 2.12 we deduce that RigDA(S)∼= lim
−−→

RigDA(Spa(A, A+))
so that any dualizable motive M has a model NA ∈ RigDA(Spa(A, A+))fd for some A. By step 2, it
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suffices to prove the statement in the case S=Spa(A, A+) with A an affinoid Tate algebra of topologically
finite type over a finite extension K of Qp.

Step 4: Any perfect complex of A-modules with projective cohomology groups is split. As dRS(M)
is a perfect complex, and each cohomology group H i dRS(M) is a finite type module over A, we are
left to prove that they are free after base change to each stalk OSpec(A),s with s being a closed point of
Spec(A), corresponding to a maximal ideal m of A. Fix such an s. Since OSpec(A),s is noetherian, it
suffices in fact to do so after base change to the m-adic completion ÔSpec(A),s of OSpec(A),s , as the map
OSpec(A),s→ ÔSpec(A),s is faithfully flat. The completion ÔSpec(A),s agrees with the completion of the local
ring OS,s of the adic space S at s (now seen as a point of S). In particular, it suffices to show that for each
integer i , there exists some rational domain U over s such that H i dRS(M)⊗A O(U ) is projective. Since
A is an affinoid algebra of finite type, the natural map A→O(U ) is flat for any such U , and therefore
H i dRS(M)⊗A O(U ) is nothing but H i dR(MU ). Up to taking a finite étale cover of Spa A and enlarging
K we may assume that k(s)= K . By means of Theorem 2.12 we have lim

−−→s∈U RigDA(U )∼= RigDA(K )
where U runs among affinoid neighborhood of x . We remark that in this case, the functor from right to
left is induced by pullback 5∗ over the structure morphisms 5 :U → Spa K . We deduce that for some
open neighborhood U of s, the motive MU is isomorphic to 5∗Ms with Ms in RigDA(K ), which implies
by step 2 that the complex dRS(M)⊗A O(U ) ∼= dRU (MU ) is quasi-isomorphic to dRs(Ms)⊗K O(U ),
which is split, proving the claim. □

It is well known that the relative de Rham cohomology groups H i
dR(X/S) of a map f : X → S of

algebraic varieties in characteristic zero are vector bundles on the base, whenever f is smooth and proper.
We can prove the analogous statement for the overconvergent de Rham cohomology of adic spaces.

Corollary 4.47. Let f : X → S be a smooth and proper map in Adic/Qp . Then dRS(X) is a perfect
complex and its cohomology groups (see Theorem 4.46) are vector bundles on S, and equal to zero if
i ≫ 0.

Proof. By the six-functor formalism, the motive f! f !Q=QS(X) is dualizable in RigDA(S) with dual
f∗ f ∗Q as shown in [Ayoub et al. 2022, Corollary 4.1.8]. □

Remark 4.48. We also remark that Theorem 4.46 generalizes [Vezzani 2018] as any compact motive
in RigDA(K ) with K a complete nonarchimedean field is dualizable: this can be seen by [Ayoub 2020,
Proposition 2.31; Riou 2005].

Remark 4.49. We point out that Theorem 4.46 and Corollary 4.47 hold for any motivic realization which
is compatible with tensor products and pullbacks, taking values in solid quasicoherent sheaves.

5. A rigid analytic Fargues–Fontaine construction

In this section we construct a functorial motivic realization from rigid analytic motives over a base
in characteristic p with values in motives over the corresponding adic Fargues–Fontaine curve (in
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characteristic zero). This is akin to the usual perfectoid constructions of Fargues and Fontaine and of
Scholze, that we de-perfectoidify using homotopies via the motivic results shown in Section 2.

Motives on Fargues–Fontaine curves. We first apply the formalism of motives for a special kind of adic
space, namely Fargues–Fontaine curves associated to perfectoid spaces. We briefly recall how they are
constructed.

Definition 5.1. Let S be a perfectoid space in characteristic p with some pseudouniformizer π ∈O×(S).
We let Y[0,∞)(S) (resp. Y(0,∞)(S)) be the adic space S

•

× Spa Zp (resp. S
•

× Spa Qp) using the notation of
[Scholze and Weinstein 2020, Section 11.2]. In the case S is affinoid and S = Spa(R, R+), it coincides
with the open locus {|π | ̸= 0} (resp. {|pπ | ̸= 0}) in the spectrum Spa(W (R+),W (R+)) and is obtained by
gluing along affinoids in the general case. For any r = (a/b) ∈Q>0 we also let B[0,r ](S) (resp. B(0,r ](S))
be the open locus of Y[0,∞)(S) (resp. of Y(0,∞)(S)) defined by |p|b ≤ |π |a (resp. 0< |p|b ≤ |π |a).

The (invertible) Frobenius endomorphism O+S →O+S induces an automorphism

ϕ : Y[0,∞)(S) ∼−→ Y[0,∞)(S)

which restricts to the Frobenius automorphism on the ϕ-stable closed subspace S ∼= {p = 0} ⊂ Y[0,∞)(S).
One has ϕ(B[0,r ](S)) = B[0,pr ](S) (see, for example, [Scholze and Weinstein 2020, Page 136]) so that
the action on Y(0,∞)(S) is properly discontinuous; hence it makes sense to define the quotient adic space
X (S) := Y(0,∞)(S)/ϕZ which is the relative Fargues–Fontaine curve over S.

Remark 5.2. If S lies in Adic (i.e., it is admissible) then also the spaces Y[0,∞)(S),Y(0,∞)(S),X (S) are
admissible. Indeed, they are stably strongly uniform, as they are sous-perfectoid (see the proof of [Scholze
and Weinstein 2020, Proposition 11.2.1]). We are left to prove the condition on the Krull dimension.
To this aim, we may suppose that S has global Krull dimension d and show that the Krull dimension
of Y[0,∞)(S) is bounded. As this condition translates into a condition on the maximal height of the
valuations at the residue fields, we may consider separately the closed space S (of dimension d) and its
open complementary Y(0,∞)(S). For the latter, we can replace it by a pro-étale cover, since this does not
alter the Krull dimension, and consider Y(0,∞)(S)×Spa(Qp) Spa(Qcyc

p ). This is a perfectoid space, and its
tilt is isomorphic to the perfectoid punctured open unit disk over S. Since tilting and perfection do not
change the (topological!) Krull dimension, this space has the same dimension as the open disk over S,
which is finite by assumption on S.

We let U be an open neighborhood of S in Y[0,∞)(S) of the form U = B[0,r ](S) with r ∈ Z[1/p]>0.
The natural inclusion j : U ⊂ ϕ(U ) and the map ϕ : U ∼

−→ ϕ(U ) induce a triple of endofunctors (see
Theorem 2.10) j♯, j∗, j∗ on RigDAét(U,Q) defined as follows:

j♯ : RigDA(eff)(U ) j♯
−→ RigDA(eff)(ϕ(U )) ϕ∗

∼
−→ RigDA(eff)(U ),

j∗ : RigDA(eff)(U ) j∗
−→ RigDA(eff)(ϕ−1(U )) ϕ

−1∗

∼
−→ RigDA(eff)(U ),

j∗ : RigDA(eff)(U ) j∗
−→ RigDA(eff)(ϕ(U )) ϕ∗

∼
−→ RigDA(eff)(U ),
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and from the canonical equivalence ϕ∗ j∗ ∼= j∗ϕ∗ we deduce that they form a triple of adjoint functors
( j♯, j∗, j∗) such that j∗ j♯ ∼= id and j∗ j∗ ∼= id.

In the following proposition, we specialize some of the general motivic results of Section 2 to the
setting of the subspaces of the relative Fargues–Fontaine curves introduced above.

Proposition 5.3. Let S be a perfectoid space in Adic/Fp and let U be an open neighborhood of S in
Y[0,∞)(S) of the form U = B[0,r ](S) for some r ∈ Z[1/p]>0.

(1) The pullback to S induces an equivalence in CAlg(PrL
ω):

lim
−−→

j∗
RigDA(eff)(U )∼= RigDA(eff)(S).

Under the equivalence above, the endofunctor j∗ on the left-hand side corresponds to the endofunctor
ϕ−1∗ on the right-hand side.

(2) The pullbacks induce an equivalence in CAlg(PrL):

lim
←−−

j∗
RigDA(eff)(U )∼= RigDA(eff)(Y[0,∞)(S)).

Under the equivalence above, the endofunctor j∗ on the left-hand side corresponds to the endofunctor
ϕ−1∗ on the right-hand side.

(3) The canonical functors induce the following equivalences in CAlg(PrL):

RigDA(eff)(S)hϕ
∗

ω
∼= (lim
−−→

j∗
RigDA(eff)(U ))hj∗

ω
∼= RigDA(eff)(U )hj∗

ω ,

RigDA(eff)(Y[0,∞)(S))hϕ
∗
∼= (lim
←−−

j∗
RigDA(eff)(U ))hj∗ ∼= RigDA(eff)(U )hj∗ .

(4) If we let ι be the closed inclusion S ⊂ Y[0,∞)(S), the functor ι∗ induces an equivalence in CAlg(PrL
ω):

RigDA(eff)(Y[0,∞)(S))hϕ
∗

ω
∼= RigDA(eff)(S)hϕ

∗

ω .

(5) The pullback functor defines the following equivalences in CAlg(PrL):

RigDA(eff)(X (S))∼= RigDA(eff)(Y(0,∞)(S))hϕ
∗
∼= RigDA(eff)(Y(0,∞)(S))hϕ

∗

ω .

Proof. The forgetful functors CAlg(PrL)→ PrL, CAlg(PrL
ω)→ PrL

ω (see [Lurie 2017, Lemma 3.2.26])
are conservative and detect filtered colimits and limits (see [Lurie 2017, Corollaries 3.2.2.5 and 3.2.3.2]).
Hence, as all the functors involved are monoidal, we may prove all statements by ignoring the monoidal
structure. We first prove (1). The diagram

RigDA(eff)(U ) j∗
−→ RigDA(eff)(U ) j∗

−→ RigDA(eff)(U ) j∗
−→ · · ·

is equivalent to the diagram

RigDA(eff)(U ) j∗
−→ RigDA(eff)(ϕ−1(U )) j∗

−→ RigDA(eff)(ϕ−2(U )) j∗
−→ · · · .
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Since |S| =
⋂
|U[0,r/pn]| the first claim follows from Theorem 2.12 and Remark 2.13. The second claim

follows from the definition and the fact that ϕ on Y(S) restricts to ϕ on S.
We also remark that, dually, the diagram

RigDA(eff)(U ) j♯
−→ RigDA(eff)(U ) j♯

−→ RigDA(eff)(U ) j♯
−→ · · ·

is equivalent to the diagram of inclusions of full subcategories of RigDA(eff)(Y[0,∞)(Y )):

RigDA(eff)(U ) j♯
−→ RigDA(eff)(ϕ(U )) j♯

−→ RigDA(eff)(ϕ2(U )) j♯
−→ · · · .

We point out that its union contains a set of compact generators of RigDA(eff)(Y[0,∞)(Y )) since Y[0,∞) =⋃
ϕn(U ). We then deduce lim

−−→ j♯ RigDA(eff)(U ) ∼= RigDA(eff)(Y[0,∞)(Y )) in PrL. On the other hand,
since j♯ is the left adjoint to j∗ and limits in PrL as well as in PrR are computed in infinity-categories
(see [Lurie 2009, Proposition 5.5.3.13 and Theorem 5.5.3.18]) we may rewrite lim

←−− j∗ RigDA(eff)(U ) as
lim
−−→ j♯ RigDA(eff)(U ) in PrL. The latter is a colimit of fully faithful inclusions (since j∗ j♯ ∼= id) which is
RigDA(eff)(Y[0,∞)(S)) as, indeed, any compact object here is defined over some ϕn(U ). We can then
deduce the equivalence in (2). By definition, the functor j♯ corresponds to ϕ∗; hence the final claim.

We now move to (3) and we start by the first row. We remark that the functors involved are monoidal, so
it suffices to prove the statement in PrL, and that colimits computed in PrL coincide with those computed
in PrL

ω by [Lurie 2017, Lemma 5.3.2.9]. The first equivalence follows immediately from (1). As PrL
ω is

compactly generated (for a proof of this folklore fact, see, e.g., [Ayoub et al. 2022, Proposition 2.8.4])
finite limits commute with filtered colimits (since it is the case for spaces). We deduce

(lim
−−→

j∗
RigDA(eff)(U ))hj∗

ω
∼= lim
−−→

j∗
(RigDA(eff)(U )hj∗

ω )∼= RigDA(eff)(U )hj∗
ω ,

where the last equivalence follows from the fact that the extension of j∗ to RigDAeff(U )hj∗ is an equiva-
lence.

Similarly, for the second row, we point out that the first equivalence follows from (2) and for the second
we may use the commutation of limits in PrL and conclude

(lim
←−−

j∗
RigDA(eff)(U ))hj∗ ∼= lim

←−−
j∗
(RigDA(eff)(U )hj∗)∼= RigDA(eff)(U )hj∗ .

By Remark 2.25, the category RigDA(eff)(U )hj∗
ω is the presentable subcategory of RigDA(eff)(U )hj∗

generated by compact objects. Using (3) we then deduce that RigDA(eff)(S)hϕ
∗

ω is equivalent to the pre-
sentable subcategory of RigDA(eff)(Y[0,∞)(S))hϕ

∗

generated by compact objects, which in turn coincides
with RigDA(eff)(Y[0,∞)(S))

hϕ∗
ω (using Remark 2.25 once again) and this proves (4).

Next, we prove (5). By étale descent for RigDA applied to the cover Y(0,∞)(S)→X (S)=Y(0,∞)(S)/ϕZ

we deduce (we denote here Y(0,∞)(S) by Y , for brevity)

RigDA(X (S))∼= lim
(

RigDA(Y)→→ RigDA(Y)×Z
→
→
→

RigDA(Y)×Z2→→
→
→
· · ·

)
,
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which computes RigDA(Y(0,∞)(S))hZ. This category, using Remarks 2.24 and 2.25, coincides with
RigDA(Y(0,∞)(S))

hϕ∗
ω . □

Remark 5.4. The homotopy limit appearing in (2) coincides with the homotopy limit of the Cech
hypercover generated by the cover {ϕN (U )} of Y[0,∞)(S). In particular, (2) is also a special instance of
analytic descent.

A motivic Dwork’s trick. We now give another interpretation of Proposition 5.3 giving rise to a method
to associate a motive over S to a motive over the (relative) Fargues–Fontaine curve X (S). This is
reminiscent of the so-called Dwork’s trick and produces a “universal” way to transform a rigid space in
equicharacteristic p to a mixed characteristic space (up to homotopy). We now give the formal, precise
definition of the functor D already mentioned in the introduction.

Corollary 5.5. Let S be in Adic/Fp . There is a functor

D(S) : RigDA(eff)(S)→ RigDA(eff)(X (SPerf))

defined as follows:

RigDA(eff)(S) ∼ RigDA(eff)(SPerf)

��

RigDA(eff)(SPerf)
hϕ∗
ω

∼ RigDA(eff)(Y[0,∞)(SPerf))
hϕ∗
ω

� _

��

RigDA(eff)(Y[0,∞)(SPerf))hϕ
∗

j∗

��

RigDA(eff)(Y(0,∞)(SPerf))hϕ
∗ ∼ RigDA(eff)(X (SPerf)).

It is compatible with tensor products and pullbacks, inducing a functor

D : RigDA(eff)
→ RigDA(eff)(X (−))

between étale hypersheaves on Perf/Fp with values in CAlg(PrL).

Proof. We can define a functor RigDA(eff)(S)→ RigDA(eff)(X (SPerf)) as in the statement, where the
first equivalence follows from Theorem 2.19, the first vertical map is defined in Corollary 2.26, the
second equivalence follows from Proposition 5.3(4), the second vertical map is the natural inclusion
(see Remark 2.25), and the third is simply given by j∗ with j : Y(0,∞)(SPerf)⊂ Y[0,∞)(SPerf) being the
ϕ-equivariant open inclusion, while the last equivalence follows from Proposition 5.3(5). All these maps
are monoidal. Compatibility with pullbacks follows from Corollary 2.26 and the commutativity of j∗

with pullbacks. □
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Remark 5.6. The recipe sketched above uses the specific formal properties of the categories of (adic)
motives in various instances. It is impossible to follow a similar strategy directly on the category of smooth
spaces over S in general (even the first step would not hold; see [Le Bras 2018]). As a consequence, even
when the motive M̄ is the motive of a smooth rigid variety over S, we cannot claim the motive MX to be
attached to a smooth rigid variety over X (S) in general (but see Proposition 5.11).

Remark 5.7. Consider now a Tate curve E = Gan
m /ϕ over a nonarchimedean field K with ϕ being the

automorphism x 7→ q · x of A1
K with 0 ̸= q ∈ K ◦◦. Following the proof of the previous corollary, one can

also construct a functor

RigDA(eff)(K )→ RigDA(eff)(K )h id ∼= RigDA(eff)(A1an
K )hϕ

∗

→ RigDA(eff)(E).

In this situation, this composition coincides with the pullback p∗ along the projection p : E→ Spa K
since ι∗ p∗ = id. We may then interpret the functor D(S) as playing the same role as the functor p∗ with
p being the (nonexistent) map p : X (S) 99K S. We will make this more precise in Proposition 5.17.

Remark 5.8. There is a perfectoid version of the previous constructions. We remark that in this case, the
functor obtained by Dwork’s trick

PerfDA(P) D(P)
−−−→ PerfDA(X (P))∼= RigDA(X (P)⋄)

(the category on the right is defined by pro-étale descent; see Corollary 2.17) coincides canonically with
the functor induced by the relative Fargues–Fontaine curve construction X 7→ X (X). This can be seen
from the fact that QS(X (X)) is naturally an object on PerfDAn(X (S)) (see Remark 2.34) using [Kedlaya
and Liu 2015, Lemma 8.7.15] and that X 7→ Y[0,∞)(X) defines an inverse to ι∗. This is compatible with
the idea that D(S) must be seen as a rigid-analytic model of the relative Fargues–Fontaine construction,
as we will prove in Proposition 5.17.

Remark 5.9. There is a more direct way to define a map from RigDA(S) to RigDA(Y[0,∞))hϕ
∗

, namely, by
using the functor ι∗ (the right adjoint to the pullback functor). Nonetheless, we remark that the composition

RigDA(S)hϕ
∗ ι∗
−→ RigDA(Y[0,∞)(S))hϕ

∗ j∗
−→ RigDA(Y(0,∞)(S))hϕ

∗
∼= RigDA(X (S))

is trivial, since the objects ι∗M are concentrated on S and hence are in the kernel of j∗. The functor
D(S) defined above is far from being trivial. Indeed, as it is a monoidal functor, it sends 1=QS(S) to
1=QX (S)(X (S)).

We can even be more precise by computing the image under D of motives of “good reduction”. We
recall some basic facts on formal motives.

Definition 5.10. As in [Ayoub et al. 2022, Remark 3.1.5(2)], whenever S is a formal scheme, we
denote by FDA(S,Q)= FDA(S) the infinity-category of (unbounded, derived, Q-linear, étale) formal
motives over S, i.e., the infinity-category arising as in Definition 2.4 from the étale site on smooth formal
schemes over S with coefficients in the ring Q (typically omitted) by imposing homotopy invariance,
and invertibility of the Tate twist. Suppose now that Sη is an adic space.
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The special fiber functor X 7→Xσ (resp. the generic fiber functor X 7→Xη) (see [Ayoub et al. 2022, Nota-
tion 1.1.6 and 1.1.8]) induces a natural map σ ∗ :FDA(S)→DA(Sσ ) (resp. η∗ :FDA(S)→RigDA(Sη))
and the former is even an equivalence (see [Ayoub et al. 2022, Theorem 3.1.10]).

In particular, whenever S = Spa(R, R+) is a perfectoid affinoid in Perf /Fp with pseudouniformizer π ,
we have FDA(Spf W (R+))∼=FDA(Spf R+)∼=DA(Spec R+/π). By Remark 2.20, the Frobenius endomor-
phism ϕ defines an invertible automorphism of FDA(Spf W (R+)) and, arguing as in Corollary 2.26, we
obtain a functor FDA(Spf W (R+))→FDA(Spf W (R+))hϕ

∗

that we can compose with η∗ and the pullback
along the inclusion Y(0,∞)(S)⊂ Y[0,∞](S)= Spf W (R+)η getting the composition (one may temporarily
lift any condition on Krull dimensions, as we do not use compact generators in this construction)

FDA(R+)
∼

RigDA(X (S))

FDA(W (R+)) // FDA(W (R+))hϕ
∗ η∗

// RigDA(W (R+)η)hϕ
∗ j∗

// RigDA(Y(0,∞)(S))hϕ
∗

∼

This produces a functor D̃(R+) : FDA(R+)→ RigDA(X (S)).

Proposition 5.11. Let S = Spa(R, R+) be a perfectoid affinoid in Perf/Fp and let M be a motive of
FDA(R+). Then M can be defined over W (R+) and the image of Mη in RigDA(Y(0,∞)(S)) via D(S) is
canonically isomorphic to M ×W (R+) Y(0,∞).

More precisely, the following diagram commutes up to a natural invertible transformation:

FDA(R+)

η∗

��

D̃(R+)

''

RigDA(S)
D(S)

// RigDA(X (S))

Proof. From the equivalence FDA(R+)∼= FDA(W (R+)) we know that M has a model over W (R+). In
order to prove the final claim, it suffices to prove the commutativity of the diagram

FDA(W (R+)) //

��

FDA(W (R+))hϕ
∗

ω

�� ((

RigDA(S) // RigDA(S)hϕ
∗

ω
∼ RigDA(U )hj∗

ω

which in turn follows from the commutativity of the ϕ∗-equivariant, compact-preserving diagram, whose
sides are all defined by pullback

FDA(W (R+))

''��

RigDA(U ) // RigDA(S)

which is straightforward. □
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Remark 5.12. We recall that RigDA(S) is generated by motives which are of good reduction over some
étale extension S′→ S by [Ayoub et al. 2022, Corollary 3.7.19]. Proposition 5.11 allows us then to have
an explicit description of D(S)(M) for any compact motive M ∈ RigDA(S) up to some étale extension
of the base.

(De)perfectoidification and rigid-analytic tilting. We now quickly show that the construction of the
functor D(S) given above allows one to “globalize” the motivic rigid-analytic tilting equivalence given in
[Vezzani 2019a], that is, to prove that RigDA(S)∼= RigDA(S⋄) for any space S ∈ Adic/Qp . This allows
one to give, a posteriori, another construction of D in terms of the relative Fargues–Fontaine curve, paired
up with motivic (de)perfectoidification.

Theorem 5.13. There are equivalences of presheaves on Adic/Qp with values in CAlg(PrL):

RigDA(−)∼= RigDA((−)⋄)∼= PerfDA((−)⋄)∼= PerfDA(−).

Proof. The proof is divided into various steps.

Step 1: By Theorem 2.31 it suffices to produce the first equivalence. By pro-étale descent we may restrict
to Perf qcqs

/Cp
and show RigDA(P)∼=RigDA(P♭) in CAlg(PrL

ω) functorially on P . We can produce a natural
transformation between the functors RigDA(−) and RigDA(−♭) by means of the composition

F : RigDA(P♭) D(P♭)
−−−→ RigDA(X (P♭)) ∞

∗

−→ RigDA(P).

We now restrict the two functors on the affinoid analytic site of P where they are analytic (hyper)sheaves
with values in PrL

ω (see Theorem 2.10). To show they are equivalent, it suffices to show that F is invertible
on analytic stalks (see [Ayoub et al. 2022, Lemma 2.8.4]), that is, on a fixed perfectoid space of the form
P =Spa(K , K+) with K a complete field (by Theorem 2.12; see also [Ayoub et al. 2022, Theorem 2.8.5]).
By pro-étale descent, we may then actually suppose that K is algebraically closed. We remark that we
are almost in the same setting as in [Vezzani 2019a], with the difference that K+ may not be equal to K ◦.
In particular, we can’t use duality as it is done in [Vezzani 2019a, Theorem 7.11]. We will replace this
ingredient with [Ayoub et al. 2022, Theorem 3.7.21].

Step 2: We consider the adjoint pairs

ξ : FDA(K+)⇄ RigDA(Spa(K , K+)) : η, ξ ♭ : FDA(K+)⇄ RigDA(Spa(K ♭, K ♭+)) : η♭.

We remark that, by means of Proposition 5.11, we have Fξ∼=ξ ♭. Using [Ayoub et al. 2022, Theorem 3.7.21]
we may replace the categories RigDA(Spa(K , K+)) and RigDA(Spa(K ♭, K ♭+)) with FDA(Spf K+, χ1)
and FDA(Spf K+, χ ♭1), respectively, which denote the categories of modules in formal motives over the
commutative algebra object χ1 and χ ♭1, respectively (see [Ayoub et al. 2022, Section 3.4]). Accordingly,
we may replace the functor F with the base change along the map χ ♭1→ χ1 which is induced by
Fξ ∼= ξ ♭. The fact that this morphism is invertible can be deduced if we prove G1∼= 1, where we denote
by G the right adjoint to F . Equivalently, we are left to prove that for any compact M ∈ FDA(W (K+)),
there is a canonical equivalence MapRigDA(K ,K+)(M(K ,K+), 1) ∼= MapRigDA(K ,K+)(M(K ♭,K ♭+), 1). From
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the equivalence MapRigDA(K ,K+)(M, 1)∼= lim
−−→

MapRigDAeff(K ,K+)(M(n), 1(n)) and since Q(1) is a direct
summand of Q(T1), it suffices to show an equivalence

MapRigDAeff(K ,K+)(M(K ,K+),Q(Tn))∼=MapRigDAeff(K ,K+)(M(K ♭,K ♭+),Q(Tn))

for any M ranging among a class of compact generators of FDAeff(W (K+)). Since universal homeomor-
phisms become invertible in FDA(W (K+)) (see [Ayoub et al. 2022, Theorems 2.9.7 and 3.1.10]) and hence
in RigDA(K , K+), we may and do invert formally on RigDAeff(K , K+) universal homeomorphisms of
formal schemes over K+ without changing the stable category RigDA(K , K+).

Step 3: We can now use the results of [Vezzani 2019a] which do not use the hypothesis K+ = K ◦ to
conclude. Assume M to be the motive of a variety X which is étale over the some affine space over
W (K+). We may use these coordinates to define a perfectoid pro-étale cover X̂(K ,K+)∼ lim

←−−
Xh of X(K ,K+)

and a perfectoid pro-étale cover X̂(K ♭,K ♭+) of X(K ♭,K ♭+) which coincides with its perfection. By [Vezzani
2019a, Proposition 4.5] we have Map(Q(X̂(K ,K+)),Q(Tn)) ∼= lim

−−→h Map(Q(Xh),Q(Tn)). As the maps
Xh→ X(K ,K+) are invertible in RigDAeff(K , K+) by construction, we deduce that Map(Q(X),Q(Tn))∼=

Map(Q(X̂(K ,K+)),Q(Tn)). On the other hand, by Theorem 2.31 we have

Map(Q(X(K ♭,K ♭+)),Q(Tn))∼=Map(Q(X̂(K ♭,K ♭+)),Q(T̂n))=Map(Q(X̂(K ,K+),Q(T̂n)).

The equivalence Map(Q(X̂(K ,K+)),Q(Tn))∼=Map(Q(X̂(K ,K+),Q(T̂n)) proved in [Vezzani 2019a, Propo-
sitions 7.5–7.6] then gives the desired equivalence. □

Remark 5.14. One could replace step 3 of the previous proof with the explicit description of the algebras
χ1 and χ ♭1 given in [Ayoub et al. 2022, Section 3.8]: when evaluated on each point v of SpfOC

(corresponding to some valuation ring K+v containing K+) they can be shown to be both isomorphic to
(1⊕1(−1)[−1])⊗n with n being the rank over Q of the valuation group 0v of the valuation (K , K+v ) (resp.
(K ♭, K ♭+

v )) via a map induced by the choice of some generators |ϖ1|, . . . , |ϖn| of 0. The morphism
χ ♭1→χ1 corresponds to the one induced byϖ 7→ϖ ♯ which fixes the Q-basis |ϖi | and is then invertible.

Remark 5.15. The result above is stated only for stable motives (as seen in the proof we made use of
this hypothesis). On the other hand, over points of the form (K , K ◦) it holds even for effective motives,
using [Vezzani 2019a, Theorem 7.10] together with [Ayoub et al. 2022, Remark 2.9.12].

The proof of Theorem 5.13 also shows the following.

Corollary 5.16. Let K be a perfectoid field of characteristic p and P be in Perf/K . For any closed point
x♯ of X (K ) associated to an untilt K ♯ of K the composition

RigDA(P) D(P)
−−−→ RigDA(X (P)) x♯∗

−→ RigDA(P♯)

is an equivalence and recovers the equivalence of [Vezzani 2019a] in the case P = Spa(K ). □

We end this section by linking the functor D to the base change along X (S)⋄→ S⋄.

Proposition 5.17. Let P be a perfectoid space in Perf/Fp .
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(1) The relative Fargues–Fontaine curve functor X ∈ PerfSm /P 7→ X (X) induces a functor

X : PerfDA(P)→ PerfDA(X (P))

and the following diagram, with vertical maps given by Theorem 5.13, is commutative (up to a canonical
invertible transformation):

RigDA(P)
D(P)

//

∼

��

RigDA(X (P))

∼

��

PerfDA(P) X
// PerfDA(X (P))

In particular, one can define D(P) as the functor induced by the relative Fargues–Fontaine curve
construction and motivic (de)perfectoidification.

(2) The pullback along 5 : Y(0,∞)(P)⋄→ P⋄ induces a functor

5∗ : RigDA(P⋄)→ RigDA(Y(0,∞)(P)⋄)

and the following diagram, with vertical maps given by Theorem 5.13, is commutative (up to a canonical
invertible transformation):

RigDA(P)
D(P)

//

∼

��

RigDA(X (P)) // RigDA(Y(0,∞)(P))

∼

��

RigDA(P⋄) 5∗
// RigDA(Y(0,∞)(P)⋄)

In particular, one can define the functor D(P) by means of the pullback along the diamond map
Y(0,∞)(P)⋄→ P⋄ and motivic (de)diamondification.

Proof. Since the functor 5∗ : PerfDA(P)→ PerfDA(Y(0,∞)(P)) obtained by pullback coincides with the
one induced by X 7→ Y(0,∞)(X), we easily see that the two claims are actually equivalent. We recall that,
if we put Q := Y(0,∞)(P)Cp , the map e : Q→ Y(0,∞)(P) is a pro-étale perfectoid cover and hence, by
pro-étale descent, it suffices to construct a Galois-equivariant invertible natural transformation between
the functors e∗ ◦ D̃ : RigDA(P)→RigDA(Q) and 5̃ : RigDA(P)→RigDA(Q♭) where we put D̃ to be
the composition of D with (Y(0,∞)(P)→ X (P))∗ and 5̃ to be Q⋄→ P .

This follows from the functoriality of D and the construction of the equivalence RigDA(Q) ∼=
RigDA(Q♭) showed in Theorem 5.13, which give the commutative diagram

RigDA(P) 5̃∗
//

D̃
��

RigDA(Q♭)

D̃
��

∼

��

RigDA(Y(0,∞)(P))
Y(5̃)∗

////

e∗

55
RigDA(Y(0,∞)(Q♭))

∞
∗

Cp
// RigDA(Q)
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This proves the statement (the commutativity of the lower part of the diagram is simply expressing the
adjunction between Witt vectors and tilting). For the final claim, we remark that one could then define D
using the composition

RigDA(P)→ RigDA(P)hϕ
∗ 5∗
−→ RigDA(Y(0,∞)(P)⋄)hϕ

∗
∼= RigDA(X (P)⋄)∼= RigDA(X (P)),

where the first map is induced by Corollary 2.26. □

6. The de Rham–Fargues–Fontaine cohomology

In this final section, we combine the results above, by merging the Fargues–Fontaine realization D with
the overconvergent de Rham realization, giving rise to a de Rham-like cohomology theory for analytic
spaces in positive characteristic with values in modules over the associated Fargues–Fontaine curves.

Definition and properties. We can juxtapose Corollary 4.39 and Corollary 5.5 as follows.

Definition 6.1. Let S be an adic space in Adic/Fp . The composition of the functors

dRFF
S : RigDA(S)

D(SPerf)
// RigDA(X (SPerf))

dRX (SPerf)
// QCoh(X (SPerf))op

will be called the de Rham–Fargues–Fontaine realization.
In the case M = QS(X) for some smooth map X → S, or more generally if M = p! p!QS for some

map p : X→ S which is locally of finite type (see [Ayoub et al. 2022, Corollary 4.3.18]), we alternatively
write dRFF

S (X) instead of dRFF
S (M).

Remark 6.2. In the case S is affinoid, we may define the cohomology groups H i
FF(M/X (S)) :=

H i (dRFF
S (M)) with respect to the t-structure of Remark 4.20 and call them the i -th de Rham–Fargues–

Fontaine cohomology group of M over X (S). In the case M = p! p!QS for a map p : X → S which is
locally of finite type, we may even use the symbol H i

FF(X/X (S)).

We recall that we denote by RigDA(S)fd the full subcategory of dualizable motives (see Definition 4.45)
and by P(S) the full subcategory of perfect complexes in QCoh(S).

Theorem 6.3. Let S be in Adic/Fp . The de Rham–Fargues–Fontaine realization dRFF
S restricts to a

symmetric monoidal functor compatible with pullbacks:

dRFF
S :RigDA(S)fd→ P(X (SPerf))op.

For any M in RigDA(S)fd, dRFF
S (M) is a split perfect complex of OX (SPerf)-modules over the relative

Fargues–Fontaine curve X (SPerf). In particular, its cohomology groups are vector bundles on S and equal
to 0 if |i | ≫ 0.

Proof. The functor D(S), being monoidal, preserves dualizable objects. The claim then follows from
Theorem 4.46. □
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One of the key features of the relative de Rham cohomology for algebraic varieties is that it defines a
vector bundle on the base whenever the map f : X→ S is proper and smooth. The analogous statement
holds for the de Rham–Fargues–Fontaine cohomology:

Corollary 6.4. If X→ S is a smooth proper morphism in Adic/Fp , then dRFF
S (X) is a split perfect complex

of OX (SPerf)-modules over the relative Fargues–Fontaine curve X (SPerf). In particular, its cohomology
groups are vector bundles on S and equal to 0 if |i | ≫ 0.

Proof. It suffices to point out that the motive QS(X) is dualizable, and this follows from [Ayoub et al.
2022, Corollary 4.1.8]. □

It is also well known that the absolute de Rham cohomology for algebraic varieties over a field (of
characteristic zero) is finite, for any sort of variety X . Once again, the same result holds for the de
Rham–Fargues–Fontaine cohomology, as the next corollary shows.

Corollary 6.5. Let K be a perfectoid field of characteristic p. If M is a compact motive (e.g., the motive
attached to a smooth quasicompact rigid variety over K ) in RigDA(K ), then dRFF

K (X) is a split perfect
complex of OX (K )-modules over the relative Fargues–Fontaine curve X (K ).

Proof. Whenever the base is the spectrum of a field K , any compact motive in DA(K ) is dualizable,
as proved in [Riou 2005] (we use the fact that we have rational coefficients). Since the image of the
(monoidal) functor DA(K )→ RigDA(K ) induced by analytification generates the target category (again,
since we have rational coefficients; see [Ayoub 2020, Proposition 2.31]) we deduce that also in RigDA(K )
any compact motive is dualizable. □

Remark 6.6. We stress that there is no “smoothness” nor “properness” condition on the motive M
above: for example, any (eventually singular or nonproper) algebraic variety p : X→ K has an attached
(homological) motive p! p!Q(K ) which is dualizable in DA(K ) (by [Ayoub 2014, Théorème 8.10]) and
hence in RigDA(K ), after analytification. It coincides with the homological motive of the analytified
variety by [Ayoub 2015, Théorème 1.4.40].

Remark 6.7. By precomposing D with other symmetric monoidal functors, we can deduce further
cohomology theories. For example, if S = Spa(A, A+) is affinoid, we may consider the analytification
functor (see [Ayoub et al. 2022, Proposition 2.2.13])

An∗ : DA(Spec A)→ RigDA(S),

getting a de Rham–Fargues–Fontaine realization for algebraic varieties over A.

Comparison with the B+

dR-cohomology of [Bhatt et al. 2018]. To conclude this text, we would like to
briefly discuss the relation between the de Rham–Fargues–Fontaine realization and some other cohomology
theories.

Let K be a perfectoid field of characteristic p. From Corollary 5.16 one deduces that, under the
hypotheses of Corollary 6.5, the specialization of dRFF

K (M) at some untilt K ♯ of K is isomorphic to
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the K ♯-overconvergent de Rham cohomology R0dR(M, K ♯) defined in [Vezzani 2019b, Definition 4.2].
Therefore, dRFF

K (M) is a perfect complex on the Fargues–Fontaine curve interpolating between the
overconvergent de Rham cohomologies of M at various untilts of K , which are parametrized by rigid
points of the curve.

Remark 6.8. Using the above notations, if X is the analytification of a smooth algebraic qcqs variety
over K ♯ (resp. a smooth proper rigid analytic variety over K ♯), the K ♯-overconvergent de Rham co-
homology R0dR(QK ♯(X), K ♯) coincides with the algebraic de Rham cohomology over K ♯ (resp. with
the analytic de Rham cohomology of X over K ♯); see [Vezzani 2018, Proposition 5.12]. However, we
stress that the Hodge filtration on the latter is not expected to be recovered by this rigid-analytic motivic
construction.

Suppose now that C is a perfectoid field of characteristic zero (or, more generally, an admissible
perfectoid space over it). We notice that the overconvergent de Rham cohomology over C extends to a
cohomology with values over QCoh(X (C)) via the composition

RigDA(C)∼= RigDA(C♭)
dRFF

−−−→ QCoh(X (C♭))op.

We now consider the particular case where C is algebraically closed. Let k be its residue field and B+dR be
Fontaine’s pro-infinitesimal thickening

B+dR :=W (O♭
C)[1/p]∧ξ θ

−→ C

with ξ denoting a generator of the kernel of the map θ : W (O♭
C)→ OC . We also pick a section of

OC/p→ k giving rise to a splitting k→OC♭ . The overconvergent de Rham cohomology over C can be
extended over B+dR as follows:

RigDA(C)fd ∼= RigDA(C♭)fd
dRFF

−−−→ P(X (C♭))op
→ P(B+dR)

op,

where the last arrow is induced by the section at∞ of the Fargues–Fontaine curve and the identification
ÔX (C♭),∞

∼= B+dR. We note that by Corollary 5.16, this is equivalent to considering a spreading out from
C to its open neighborhoods on the curve as follows:

RigDA(C)fd ∼= lim
−−→
∞∈U

RigDA(O(U ))fd dR
−→ lim

−−→
∞∈U

P(O(U ))op
→ P(B+dR)

op. (+)

In [Bhatt et al. 2018, Section 13] Bhatt, Morrow and Scholze also constructed, for proper smooth
rigid varieties over C , a deformation of de Rham cohomology along B+dR using a different spreading
out argument that we now recall in order to set some notation. By de Jong’s theorem (see the proof of
[Bhatt et al. 2018, Lemma 13.7]) we have Spa(C)∼ lim

←−−S,η S where S runs among affinoid spaces that are
smooth over the discrete valued field K :=W (k)[1/p] equipped with a C-rational point η : Spa C→ S.
By eventually taking an open neighborhood of η, we may also assume that S → Spa K factors as
S e
−→ BN

K → Spa K for some N ∈ N and some étale map e. If we let A be O(S), we remark that
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η : A→ C has a (nonunique) lift ℓ : A→ B+dR over C , by the smoothness of A/K . More precisely, we
have the following.

Proposition 6.9. With the notation above, there is an affinoid open neighborhood U of ∞ and a map
f :U → S such that η factors as Spa C ∞

−→U f
−→ S.

Proof. Choose a lift α :U → BN
K of the map e ◦ η and consider the étale map eU : S×BN

K
U →U . We

note that η defines a section of the map eC : S×BN
K

Spa C→ Spa C . Since∞∼ lim
←−−∞∈U U we deduce

that, up to shrinking U , there is also a section ηU to the map eU and hence a map f :U → S with the
required property. □

Let X/C be a smooth and proper variety. By [Bhatt et al. 2018, Corollary 13.16] there exists (S, η) as
above and a smooth and proper variety X̃/S such that X̃×S,ηC∼= X . The B+dR-cohomology is then given by

R0crys(X/B+dR) := R0dR(X̃/S)⊗A,ℓ B+dR,

and it can be made independent on the various choices made, as shown in [Bhatt et al. 2018, Section 13.1
and Theorem 13.19]. We also note that, by Proposition 4.43, the functor X̃ 7→ R0crys(X/B+dR) is easily
seen to be extended by the composition

RigDA(S)fd dR
−→ P(A)op ℓ∗

−→ P(B+dR)
op. (++)

Remark 6.10. In [Bhatt et al. 2018], the B+dR-cohomology is defined for arbitrary smooth varieties over C ,
but it is not B1-invariant. We may interpret (++) as being an overconvergent version of their construction.

Theorem 6.11. Let X be a smooth and proper variety over C. Then R0crys(X/B+dR) is canonically
equivalent to dRFF

C♭(MC(X)♭)⊗OX (C♭)
B+dR. In particular the de Rham–Fargues–Fontaine cohomology

over a complete algebraically closed field C is compatible with (an overconvergent version of ) the
B+dR-cohomology of [Bhatt et al. 2018].

Proof. By RigDA(C)∼= lim
−−→

RigDAS,η(S) we fix a (S, η) as above and show that for a given ℓ : A→ B+dR,
the functor (++) coincides with

RigDAfd(S)→ RigDAfd(C) (+)
−→ P(B+dR)

op.

To this aim, it suffices to choose a lift ℓ̃ :U → S as in Proposition 6.9 and put ℓ : A→ B+dR to be the one
induced by A ℓ̃

−→O(U )→ B+dR. The claim then follows from the commutative diagram below (which
also reproves that (++) is independent on the choice of ℓ):

RigDA(S)

η∗

**

ℓ̃∗
//

dR
��

RigDA(U )

dR
��

// lim
−−→

RigDA(U )
∼

dR
��

RigDA(C)

(+)
��

P(A)op ℓ̃∗
//

ℓ∗

44
P(O(U ))op // lim

−−→
P(O(U ))op // P(B+dR)

op

□
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Remark 6.12. This completes our proof that R0FFC (−) := dRFF
C♭(−

♭) satisfies all the requirements of
[Scholze 2018, Conjecture 6.4]. Notice that the description given in (++) shows that its completion at∞
is an overconvergent version of R0crys(−/B+dR) as defined in [Bhatt et al. 2018, Section 13].

Remark 6.13. de Jong’s theorem allows one to write Spa C ∼ lim
←−−(S,η) S with S being smooth over Qp.

By motivic continuity we deduce RigDA(C)fd ∼= lim
−−→

RigDA(S)fd so that one can spread out a compact
motive over C to some dualizable motive defined over Spa(A) with A smooth over Qp. This is the
motivic version of the spreading out arguments of Conrad and Gabber mentioned in [Bhatt et al. 2018,
Remark 13.17].

Comparison with rigid cohomology. We first describe the de Rham–Fargues–Fontaine realization on ob-
jects with good reduction. Let us do it in the affinoid case, for simplicity. Let S=Spa(R, R+)∈Perf/Fp . As
an immediate consequence of Proposition 5.11, we see, using the notation introduced there, the composition

FDA(Spf(R+)) η∗
−→ RigDA(S) dRFF

S−−−→ QCoh(X (S))op

is simply given by composing D̃(R+) with dRX (S). Informally speaking, formal motives over R+ uniquely
lift to the Witt vectors of R+, and the de Rham–Fargues–Fontaine realization of their generic fiber can
be deduced from the overconvergent de Rham cohomology of this lift after inverting p.

Here is a variant without topology, i.e., on discrete rings. Let A be a perfect Fp-algebra and S =
Spa(R, R+) ∈Aff Perf/A, that is, an affinoid perfectoid space with a map f : S→ Spa(A) (A is endowed
with the discrete topology). The composition

DA(Spec(A))∼= FDA(Spf(A)) f ∗
−→ FDA(Spf(R+)) η∗

−→ RigDA(S) dRFF
S−−−→ QCoh(X (S))op

defines a functor

RigFF
A,S : DA(Spec(A))→ QCoh(X (S))op

which is compatible with pullbacks along maps g : S′→ S in Aff Perf/A. By Theorem 6.3, the restriction
of the functor above to fully dualizable objects takes values in the infinity-subcategory P(X (S)) made of
perfect complexes on X (S). In particular, we obtain for each S ∈ Aff Perf/A a functor

RigFF
A,S : DA(Spec(A))fd→ P(X (S))op

which is compatible with base change in S. The category P(X (S)) satisfies v-descent with respect to S
(see [Anschütz and Le Bras 2021, Proposition 2.4]). We may then introduce the following.

Definition 6.14. We denote by P(X (Spa(A))) the category

lim
S∈AffPerf/A

P(X (S)),

that is, the category of global sections of the v-stack P(X (−)) restricted to AffPerf/A.



The de Rham–Fargues–Fontaine cohomology 2147

One may think of P(X (Spa(A))) as the category of perfect complexes over the nonexisting X (Spa(A)).
This category is a priori inexplicit, but receives a functor from a more familiar category, as we now
explain.

Definition 6.15. Set YA := Spa(W (A)[1/p],W (A)). It is a sheafy adic space ([Scholze and Weinstein
2020, Remark 13.1.2]), endowed with a Frobenius endomorphism ϕ. We let IsocA be the category
(P (YA))

hϕ of ϕ-equivariant perfect complexes on YA.

When A= k is a perfect field of characteristic p, objects of IsocA are bounded complexes of isocrystals
over k, whence the notation. We have for each S = Spa(R, R+) ∈ Aff Perf/A a functor

EA,S : IsocA→ P(X (S))

induced by the pullback functor on solid quasicoherent sheaves along the (ϕ-equivariant) map W (A)→
W (R+). It is functorial in S ∈ Aff Perf/A. Taking the limit over S, we deduce a functor

EA : IsocA→ P(X (Spa(A))).

Remark 6.16. In the case A = Fp, the functor EFp
is an equivalence, as proved in [Anschütz 2023,

Theorem 3.5].

Definition 6.17. We let RigFF
A be the functor

RigFF
A : DA(Spec(A))fd→ P(X (Spa(A)))op

obtained by taking the limit of the functors RigFF
A,S for S ∈ Aff Perf/A.

The functor RigFF
A is nothing surprising: it is simply rigid cohomology in disguise. To make this

precise, let us recall the definition of the latter.

Definition 6.18. Let A be a perfect Fp-algebra. The functor

DA(Spec(A))fd→ Isocop
A

obtained as the restriction to fully dualizable objects of the composition of the Monsky–Washnitzer-type
functor

DA(Spec(A))
σ ∗

∼= FDA(Spf(W (A)))→ FDA(Spf(W (A)))hϕ
∗ η∗
−→ RigDA(YA)

hϕ∗

with
dRhϕ∗

X A
: RigDA(YA)

hϕ∗
→ Isocop

A

is called rigid cohomology and denoted by R0rig
R .

Rigid cohomology of the motive of a proper smooth variety over R is simply crystalline cohomology
of its special fiber by Berthelot’s comparison result between crystalline cohomology and de Rham
cohomology of a lift (see [Bhatt and de Jong 2011, Corollary 3.8] for a short proof).

Again as an immediate consequence of the definitions and of Proposition 5.11, we get:
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Proposition 6.19. Let A be a perfect Fp-algebra. We have a natural isomorphism

EA ◦R0rig
A
∼= RigFF

A

of functors from DA(Spec(A))fd to P(X (Spa(A)))op. □

In particular, when A = Fp, by the equivalence of Remark 6.16, the functor RigFF
A is literally just rigid

cohomology.
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