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We study towers of varieties over a finite field such as y2
= f (xℓ

n
) and prove that the characteristic

polynomials of the Frobenius on the étale cohomology show a surprising ℓ-adic convergence. We prove
this by proving a more general statement about the convergence of certain invariants related to a skew-
abelian cohomology group. The key ingredient is a generalization of Fermat’s little theorem to matrices.
Along the way, we will prove that many natural sequences of polynomials (pn(x))n≥1 ∈ Zℓ[x]N converge
ℓ-adically and give explicit rates of convergence.
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Notation 1. We will work throughout over a fixed finite field Fq . A curve C over Fq refers to a smooth,
projective, geometrically connected scheme of dimension 1. The base change to the algebraic closure
Fq is denoted by C . We denote its étale cohomology with Zℓ coefficients by H 1

ét(C,Zℓ). By standard
functoriality arguments, it comes endowed with a linear action of the geometric Frobenius σq . We fix an
auxiliary prime ℓ throughout and for simplicity assume that ℓ > 2 and q ≡ 1 (mod ℓ).1

1. Introduction

The eigenvalues of the Frobenius on the étale cohomology of a smooth, projective variety over a finite
field carry significant arithmetic information. By the Weil conjectures, these eigenvalues are algebraic
integers and their absolute values under any complex embedding are understood.

We draw inspiration from Iwasawa theory to study the asymptotic behavior of these eigenvalues in
an “Iwasawa tower” and in particular, we show that there is a strong ℓ-adic convergence statement to be
made in many natural examples. The Iwasawa algebras arising in this study are noncommutative due

MSC2020: primary 11R23; secondary 11G20.
Keywords: Iwasawa theory, L-functions over finite fields.

1As usual, the theorems go through if ℓ = 2 with appropriately stronger hypothesis. For instance, if ℓ = 2 then we need
q ≡ 1 (mod ℓ2).
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to the nontrivial action of the Frobenius on this monodromy group and we hope that this perspective is
interesting too. Let us begin with an example.

Example 2. Consider the smooth projective curves Cn corresponding to the equations

Y 2
= X2n

+ 1 over F5.

They define a tower · · · → C2 → C1 with maps Cn+1 → Cn defined by (X, Y ) → (X2, Y ). The
characteristic polynomial of σ5 on H 1

ét(Cn,Zℓ) is

fn(x) := det(1− σ2x | H 1
ét(Cn,Zℓ))= (1− 2x + 5x2)

n−2∏
i=1

(1+ x2i
52i−1

)2.

Note that fn−1(x) divides fn(x) and the inverse of the roots of gn(x)= fn(x)/ fn−1(x) are of the form
√

5ζ for ζ a root of unity of order 2n−1 for n ≥ 3. In Section 4, we show that for n sufficiently large,
the normalized (by α→ α/|α| so that the complex absolute value is 1) roots of gn+1(x) are exactly all
possible ℓ-th roots of the normalized roots of gn(x).2

In fact, we prove the same statement for towers of Fermat curves (from which the above follows) and
Artin–Schreier curves. The proof of this statement follows from realizing the roots of gn(x) as Jacobi
sums and using results of Coleman [1987] on identities for Gauss sums (coming from the Gross–Kubota
p-adic Gamma function [Gross and Koblitz 1979]).

1.1. A congruence on characteristic polynomials. This prompts the question of what happens in a more
general context. For instance, we could take a map f : C→ P1 or f : C→ A for A an abelian variety of
dimension d and pull back by the following diagrams:

Cn P1

C P1

πn

fn

t→tℓ
n

f

or
Cn A

C A

πn

fn

[ℓn
]

f

We denote the first family of examples by Case A and the second family by Case B. Note that in both
the families, the Cn→ C are geometrically (branched) Galois extensions with an abelian Galois group
Gn ∼= (Z/ℓ

nZ)b for b = 1 or 2d in Cases A and B respectively. Note that the Gn themselves have an
action of σq and this will be crucial.

We define Mn = H 1
ét(Cn,Zℓ)/H 1

ét(C,Zℓ), fn(x) to be the characteristic polynomial of σq on Mn and
gn to be the characteristic polynomial det(1− σq x | Mn/Mn−1). It does not seem to be true that gn

determines gn+1 as in Example 2. Nonetheless, the following weaker convergence statement is true.
Let kn be the order of σq acting on µℓn = Gm[ℓ

n
] in Case A while in Case B, kn is a close relative of

the order of σq acting on A[ℓn
]. In particular, it is independent of C and can be made completely explicit.

In either case kn is of the form max{1, ℓn−n0} with n0 depending on which case we are considering.

2we note that the complex norm |α| is independent of the embedding to C by the Weil conjectures
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Theorem (Theorem 19). In the above set up (with some mild assumptions on f and q):

(1) We have a factorization into monic polynomials

fm(x)=
∏
n≤m

gn(x)

where the gn are independent of m.

(2) There exist polynomials hn(y), h̃n(y) ∈ Z[y] such that, in Case A

gn(x)= hn(xkn ).

while in Case B
gn(x)= h̃n(xkn ).

(3) In Case A, for n sufficiently large so that kn+1 = ℓkn (Lemma 21), we have the ℓ-adic convergence

hn+1(y)≡ hn(y) (mod ℓn).

In particular, the following ℓ-adic limit exists in Zℓ[y]:

h∞(y)= lim
n→∞

hn(y).

In Case B, for n ≥ n0 sufficiently large so that kn+1 = ℓkn , we have the congruence

h̃n+1(y)≡ h̃ℓ
(b−1)

n (y) (mod ℓn).

In particular, the following ℓ-adic limit exists in Zℓ[y] with exp, log defined formally as power series:

h̃∞(y)= exp
(

lim
n→∞

1
ℓ(n−n0)(b−1) log(h̃n(y))

)
.

The first two properties of the theorem are fairly standard and follow from understanding the structure
of Mn as a module over Zℓ[Gn, σq ] and in particular, depends on σq having “large” orbits when acting
upon the characters of Gn .3 The main body of the paper proves a more abstract statement (Theorem 26)
about the convergence of certain invariants of a nonabelian cohomology group which implies the third
part of the above theorem on the towers of curves.

We note that this more abstract statement can be applied to many more geometric contexts than just
our two examples of towers of curves above although we do not pursue this in our paper. It applies to any
tower of varieties with an action of an abelian group such that the Frobenius action on the cohomology
has a “large” orbit. For instance, we could take hypersurfaces of the form

f (xℓ
n

0 , . . . , xℓ
n

n )= 0⊂ Pn
Fq
.

3As a reviewer pointed out, part 2 has been “known for a long time and rediscovered several times”, for instance see [Gordon
1979, Lemma 1.1]. For completeness, we give our own proof too.
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All the interesting cohomology is concentrated in the middle dimensional cohomology and the above
theorem holds for the characteristic polynomial of the Frobenius action on this middle dimensional
cohomology group.

We will see in Section 3 that M∞= lim
←−−n Mn is a free module for a certain skew-abelian Iwasawa algebra

and in particular, the characteristic polynomials we study are all determined by a Galois cohomology
class with coefficients in matrices over a ring of power series. The bulk of this paper consists in studying
the ℓ-adic properties of these power series.

A key role in the study of the study of these algebraic properties is played by the following generalization
of Fermat’s little theorem (conjectured by Arnold [2006] and proven by Zarelua [2008]):

Theorem (Arnold and Zarelua, Theorem 29). Let A be a r × r matrix over Zℓ. Then, the congruence

tr(Aℓ
n+1
)≡ tr(Aℓ

n
) (mod ℓn+1)

holds for any prime ℓ and any n ∈ N.

Arnold’s conjecture goes back to before Arnold (Jänichen [1921] and Schur [1937]). For a more recent
expository survey and applications to topology and dynamics; see Zarelua [2008]. Arnold’s conjecture
has since been proven many times in the literature; for instance, see [Mazur and Petrenko 2010]. We
give a new proof of a slightly refined statement since we will use a similar technique in proving our main
theorem.4

To keep notation simple, we state a special (yet nontrivial) case of our general ℓ-adic convergence
theorem.

Theorem (Theorems 23 and 26). Let F(t) be a r × r matrix with entries in Zℓ[t]. Suppose that q is a
prime such that q − 1 is divisible by ℓ but not ℓ2. For each n ≥ 1, we define the matrix

An =

ℓn−1∏
i=1

F(ζ q i

ℓn )

with characteristic polynomial pn(x). Then, the limit p∞(x) = limn pn(x) exists and we have the
congruence

pn+1(x)≡ pn(x) (mod ℓn).

We note that even in the simplest case where r = 1, the above theorem is not obvious.

1.2. Some questions for future work. We pose a few questions suggested by this work.

Question 3. Our main theorem establishes the existence of ℓ-adic limits h∞(x), h̃∞(x) in the two cases.
In some simple cases, the hn(x) are independent of n for n large enough and by the proof of the Weil
conjectures, are known to in fact be polynomials over Z while a-priori h∞(x) is only defined over Zℓ.

Are the roots of h∞(x) always transcendental numbers (except in the cases where hn is eventually
constant)?

4In the course of writing this paper, we found essentially the same proof by Qiaochu Yuan in a blog post from 2009.

https://rjlipton.wpcomstaging.com/2009/08/07/fermats-little-theorem-for-matrices/
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Question 4. Even if the roots of h∞(x) are transcendental, is it possible to describe them using simple
ℓ-adic transcendental functions?

Question 5. What information about the original morphism f : C→ P1 does h∞(x) remember? In the
classical Iwasawa theory set up, the limiting characteristic polynomials turn out to be equal to various
ℓ-adic L-functions up to a unit (by the main conjecture of Iwasawa theory), can we hope for something
similar in this case?

Question 6. Let (3, σq) be as in Section 3 and M a finite, free 3 module with a σq semilinear endo-
morphism 8 : M→ M . It might be possible and interesting to completely classify such endomorphisms
8 in the hope of a more conceptual proof of the main results. This question is reminiscent of Manin’s
classification of Dieudonne modules [Manin 1963]. Indeed, the (M ⊗33n(v),8) form a “compatible”
system of an “ℓ-adic analogue of Dieudonne modules” over the “compatible” system of cyclotomic local
rings with endomorphism (3n(v), σq) as n varies - this final sentence is purely impressionistic!

Question 7. Let Q : Zn
ℓ→ Zn

ℓ be a linear automorphism and for v ∈ Zn
ℓ , let kn(v) be the smallest positive

integer so that Qkn(v)v ≡ v (mod ℓn). Let λ : Zn
ℓ→ Zℓ be an arbitrary linear form. Does the sequence

Sn(λ, v) :=

kn(v)∑
j=1

ζ
λ(Q− jv)
ℓn

defined in Remark 32 converge to 0 as n→∞? If so, what is the rate of convergence and is it uniform as
v ranges over primitive vectors?

Outline of the paper. For expository reasons, the paper is not presented in strictly logical order. Section 3
is independent of the rest of the paper and its main results (Theorems 23 and 26) are used in proving our
main geometric result (Theorem 19). The reader interested in the geometry and willing to take the ℓ-adic
analysis on faith can skip Section 3. The reader interested only in the ℓ-adic convergence results can skip
Section 2.

2. On the cohomology of a tower of curves

In this section, we reduce Theorem 19 to an abstract statement about the convergence of characteristic
polynomials of a sequence of matrices.

We fix an odd prime ℓ and a finite field Fq with q large enough to be specified soon. For a variety
X/Fq , the notation H i

ét(X ,Zℓ) denotes as usual the étale cohomology of the variety X ×Fq Fq with Zℓ

coefficients. The Frobenius σq acts on it through a linear automorphism.

2.1. Two families of Iwasawa towers.

Definition 8. Let C/Fq be a curve. We will be interested in the following two classes of towers:
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Case A: Given a nonconstant map f : C→ P1, we can construct extensions πn : Cn→ C by the pull
back diagram:

Cn P1

C P1

πn

fn

t→tℓ
n

f

The Cn form an inverse system with an action by the group

0n = Z/ℓnZ⋊Z

where we denote a generator for the first factor by θ (corresponding to θ(t)= ζℓn t) and a generator for
the second factor by σq corresponding to the Frobenius operation. They satisfy the commutation identity

σqθ = θ
qσq .

We require the πn : Cn→ C to be totally ramified over the preimage f −1({0,∞})— for instance, this is
satisfied if f is unramified over 0,∞ or more generally, if the ramification indices of f over 0,∞ are
coprime to ℓ. This guarantees that the Cn are geometrically irreducible.

Case B: Given an abelian variety A/Fq of dimension d and a map f :C→ A, we construct πn :Cn→C
by the pullback diagram:

Cn A

C A

πn

fn

[ℓn
]

f

We require the Cn to be geometrically irreducible, this is achieved for instance if the induced map
π ét

1 ( f ) : π ét
1 (C)→ π ét

1 (A) on the étale fundamental groups is surjective. In this case, the Cn are acted
upon by (with b = 2d)

0n = (Z/ℓ
nZ)b ⋊Z.

The first factor can be identified with A[ℓn
] and we denote a basis of it by α1, . . . , αd , β1, . . . , βd so that

the Frobenius σq (corresponding to the second factor) acts by a b× b matrix Q as

σqv = Qv

for v ∈ A[ℓn
]. The congruence Q ≡ I (mod ℓ) is equivalent to σq acting as the identity on A[ℓ]. This can

always be achieved by a finite extension of the base field Fq and we suppose that q is large enough so
that Q ≡ I (mod ℓ).5 Note that 1 is not an eigenvalue of Q since σq − 1 : A→ A has finite degree equal
to A(Fq).

5If ℓ= 2, we would need Q ≡ I (mod ℓ2).
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Remark 9. These aren’t the only cases our main theorem applies to and in fact, we can even generalize
to higher dimensions. What is important is that our tower of varieties has an action by a pro-ℓ abelian
group as above and that the growth in cohomology is “regular” in the tower so that as a module over
the group algebra, the rank of the cohomology groups are constant. For example, we could take Fermat
hypersurfaces of the form

Xn :

d∑
j=0

xℓ
n

j = 0⊂ Pb+1

with action by Gn = (Z/ℓ
nZ)b. The only interesting cohomology group is in degree i = b, in which

case it is a rank 1 module over Zℓ[Gn] ([Anderson 1987, Theorem 6] for instance) and a straightforward
variant of Theorem 14 shows that growth in cohomology is regular.

Remark 10. Note that the automorphism groups 0n aren’t abelian but they are very close to being abelian,
being the extension of an abelian group by the Frobenius action. Therefore one could view this as an
example of skew-abelian Iwasawa theory.

In the remainder of this subsection we prove some basic results about the cohomology of these towers
(ignoring the Frobenius action initially).

Lemma 11. For a finite extension of curves f : X→ Y , H 1
ét(Y ,Zℓ) is a direct factor of H 1

ét(X ,Zℓ).

Proof. Since H 1
ét(Y ,Zℓ) is dual to the Tate module Tℓ(Y ), it suffices to show the corresponding fact for

the Tate modules of X and Y , i.e., we need to show that the natural map f : Tℓ(X)→ Tℓ(Y ) is surjective
and that the kernel is torsion free.

One easily checks the following composite map

Jac(Y ) f ∗
−→ Jac(X) f∗

−→ Jac(Y )

is simply multiplication by the degree of f , for instance by using an isomorphism Jac(X)∼= Pic(X) and
computing the map explicitly in terms of divisors supported away from the ramification locus. This shows
that the second map is surjective which in turn implies that the map on Tate modules Tℓ( f ) :Tℓ(X)→Tℓ(Y )
is surjective.

Moreover, the kernel of Tℓ( f ) is torsion free since if [Pn]n≥1 ∈ Tℓ(X)mapped to zero, then Pn ∈ ker( f )
which would imply that deg( f )≥ ℓn for all n which is a contradiction. □

When the extension is generically Galois, we can say more.

Lemma 12. Suppose f : X→ Y is a generically Galois (branched) extension of (smooth, proper) curves
with Galois group G. Then, H 1

ét(Y ,Zℓ) is exactly the submodule of H 1
ét(X ,Zℓ) fixed by the G action.

Proof. Let us first suppose that X, Y are not necessarily proper but that f : X→ Y is unramified. By the
Hochschild–Serre spectral sequence,

H r (G, H s
ét(X ,Zℓ))⇒ H r+s

ét (Y ,Zℓ).
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If we want to let r + s = 1, then we have either r = 0, s = 1 or r = 1, s = 0. But, H 0
ét(X ,Zℓ)= Zℓ with

the trivial G action and therefore

H 1(G, H 0
ét(X ,Zℓ))= Hom(G,Zℓ)= 0

since G is torsion and Zℓ is torsion free. This causes the spectral sequence to degenerate at the (1, 1)
term and we have the required isomorphism

H 1
ét(Y ,Zℓ)∼= H 0(G, H 1

ét(X ,Zℓ)).

Now, for a general (branched) f : X→ Y , let T ⊂ Y be the ramification divisor on Y and f −1(T )= S⊂ X
its preimage in X with U = X− S, V = Y −T . With this set-up, we have following commutative diagram:

H 1
ét(X ,Zℓ) H s

ét(U ,Zℓ)

H 1
ét(Y ,Zℓ) H 1

ét(V ,Zℓ)

Note that the cokernels along the horizontal rows have weight 2 (i.e., σq acts by q on the cokernel) as
can be seen either from the excision long exact sequence or from the Lefschetz fixed point theorem for
compactly supported cohomology along with Poincaré duality. On the other hand H 1

ét(Y ,Zℓ), H 1
ét(Y ,Zℓ)

are both of weight 1 (by the Weil conjectures, for instance).
The above diagram is G-equivariant since S, T are. Therefore, the G-invariants of H 1

ét(X ,Zℓ) are
contained in H 1

ét(V ,Zℓ) but the above weight argument shows that it is in fact contained in H 1
ét(Y ,Zℓ) as

required. □

Let us return to our specific towers above.

Definition 13. In Case A, let Gn = Z/ℓnZ with generator θ while in Case B, let Gn = (Z/ℓ
nZ)b with

generators αi , β j as discussed before. We also define the group algebra Rn = Zℓ[Gn].

By Lemma 11 and 12, Mn= H 1
ét(Cn,Zℓ)/H 1

ét(C,Zℓ) is a free Zℓ module with an action of Rn described
by the following theorem with g0 the genus of C .

Theorem 14. Let us define

r =
{

2g0+ s− 2 in Case A,
2g0− 2 in Case B,

where in Case A, s is the number of preimages of 0,∞ for the defining map f : C→ P1.
As Rn modules, we have an exact sequence

0→ Zr
ℓ→ Rr

n→ Mn→ 0,

where Gn acts trivially on the first term.

As a preliminary to the above theorem, we use Riemann–Hurwitz to compute the dimensions of Mn .
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Lemma 15. Let gn be the genus of Cn . Mn is a free Zℓ module of rank 2(gn− g0) and in Case A, we have

dimZℓ Mn = (ℓ
n
− 1)(2g0+ s− 2)

while in Case B, we have

dimZℓ Mn = (ℓ
bn
− 1)(2g0− 2).

Proof. By Lemmas 11 and 12, Mn is a free Zℓ module. It remains to compute its Zℓ rank (= 2(gn − g0)).
In Case A, let S0, S∞ ⊂ C(Fq) be the preimages of 0,∞ under f so that s = |S0| + |S∞|. Note that πn

is only ramified over S0, S∞ and by assumption, it is totally ramified to order ℓn over these points. By
Riemann–Hurwitz, we then have

2gn − 2= ℓn(2g0− 2)+ s(ℓn
− 1)=⇒ 2(gn − g0)= (ℓ

n
− 1)(2g0+ s− 2).

In Case B, πn is unramified and of degree ℓbn and therefore, we simply have

2gn − 2= ℓbn(2g0− 2)=⇒ 2(gn − g0)= (ℓ
bn
− 1)(2g0− 2). □

We finish the proof of Theorem 14 by using the Lefschetz fixed point theorem to compute the character
of M in terms of fixed points.

Proof. In Case A, let g ∈ Gn be nontrivial. Since g is not the identity, the only points it fixes on Cn are
the points lying over 0,∞ under the map Cn→ P1. In the notation of the previous lemma, there are s
such points in total and the local index at each point is +1. Moreover, g acts trivially on the degree 0, 2
cohomology groups. Therefore, by the Lefschetz fixed point formula

tr(g | H 1
ét(Cn,Zℓ))= 2− s

and since G acts trivially on C0,

tr(g | H 1
ét(Cn,Zℓ))− tr(g | H 1

ét(C,Zℓ))=−(2g0+ s− 2)=−r.

On the other hand, the identity id ∈ Gn of course acts trivially so that

tr(id | H 1
ét(Cn,Zℓ))− tr(id | H 1

ét(C,Zℓ))= 2(gn − g0)= r(ℓn
− 1)

where the final equality is by the previous lemma.
In Case B, any g ̸= id ∈ Gn acts on the abelian variety A by a nontrivial translation and hence has no

fixed points on either Cn or A. As before, by the Lefschetz fixed point theorem

tr(g | H 1
ét(Cn,Zℓ))− tr(g | H 1

ét(C,Zℓ))= 2− 2g0 =−r.

The identity element has trace equal to

dim H 1
ét(Cn,Zℓ)− dim H 1

ét(C,Zℓ)= 2(gn − g0)= r(ℓbn
− 1).
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If we then examine the exact sequence

0→ Zr
ℓ→ Rr

n→ X→ 0,

we see that X has the character we computed above in both cases for Mn proving that X ∼= Mn as Gn

representations. □

Remark 16. As an immediate corollary of the above theorem, we notice that in both Case A and B,
for every nontrivial character χ : Gn→ Z×, the corresponding eigenspace Mn(χ) of Mn ⊗Zℓ[ζℓn ] is of
dimension 2g0+ s− 2 and 2g0− 2 in the two cases respectively. In particular it is independent of n and
we call the characters appearing in Pn = Mn/Mn−1 “new” or “primitive” characters of level n.

We fix a set of generators t1, . . . , tb for Gn ∼= (Z/ℓ
nZ)b and identify characters χ of Gn by vectors

v = (v1, . . . , vb) ∈ (Z/ℓ
nZ)b by defining χv(ti ) = tvi

i . Under this identification, primitive characters
correspond exactly to primitive vectors as defined below in Definition 18. We denote the eigenspace of
χv by Mn(v).

The exact sequence in the above theorem implies that Mn is not a free Rn module but nevertheless, the
inverse limit M∞ := limn Mn is a free module over 3= Zℓ[[T1, . . . , Tb]] = limn Rn .

Lemma 17. Let θ1, . . . , θb be the generators of Gn = (Z/ℓ
nZ)b as above. Then the projective limit

M∞ := lim
←−−n Mn is a free module of rank r over 3= Zℓ[[T1, . . . , Tb]]. The Frobenius σq acts semilinearly

on M∞, i.e., σq is Zℓ linear and satisfies

σq ◦ (1+ Ti )= σq(1+ Ti ) ◦ σq

where we identify 1+ Ti with θi so that σq acts on 1+ Ti through its action on lim
←−−n Gn .

Proof. By the above theorem, we have the following identification as Zℓ[Gn]-modules

Mn ∼=

(
Zℓ[θ1, . . . , θb]

θℓ
n

1 = 1, . . . , θℓn

b = 1,
∏b

i=1
(∑ℓn−1

j=0 θ
j

i

))r

since
∏b

i=1
(∑ℓn

−1
j=0 θ

j
i

)
generates the unique 1-dimensional Zℓ submodule of Zℓ[Gn] with trivial Gn

action. Using this explicit presentation, we define a map

3r
= (Zℓ[[T1, . . . , Tb]])

r
→ M∞

by mapping, for each factor, the Ti → θi − 1 in each term in the projective limit. We will prove that this
map is an isomorphism. Since the map is defined on each factor, we can assume henceforth that r = 1.
The kernel of the induced map to Mn is generated by the elements

(1+ Ti )
ℓn
− 1=

ℓn∑
j=1

(
ℓn

j

)
T j

i for i = 1, . . . , b
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and
b∏

i=1

(
(1+ Ti )

ℓn
− 1

Ti

)
=

b∏
i=1

( ℓn∑
j=1

(
ℓn

j

)
T j

i

)
.

As n→∞, these elements tend to 0 in the (ℓ, T1, . . . , Tb)-adic topology of 3 so that the map 3→ M∞
is injective. On the other hand, surjectivity is also clear since the θi generate Gn , and consequently the
θi − 1 generate Z[Gn]. The Frobenius action is induced through this morphism, thus completing the
proof. □

2.2. On the distribution of Frobenius eigenvalues in towers of curves. In this subsection, we prove
that the characteristic polynomials fn(x) of σq on H 1

ét(Cn,Zℓ) in our two cases satisfy some striking
congruences. We will treat the cases uniformly by letting Q = q, b = 1 in Case A.

Definition 18. For R a discretely valued ring (DVR) or a quotient of a DVR, we call v ∈ Rb primitive if
at least one of its coordinates is a unit. We denote the space of primitive vectors by P(Rb).

For a primitive vector v ∈ H 1
ét(Cn,Zℓ), we define kn(v) to be the smallest positive integer such that

Qkn(v)v ≡ v (mod ℓn). We define kn to be the minimum of kn(v) as v ranges over primitive vectors.
Lemma 21 shows the existence of a positive integer βv such that kn(v)= ℓ

n−βv for n ≥ βv. Moreover,
n0 =maxv primitive βv is finite so that kn = ℓ

n−n0 for n ≥ n0.

Theorem 19. Let Cn be as in Case A or B of Definition 8 and

fn(x)= det(1− σq x | Mn)

be the characteristic polynomial of the Frobenius σq acting on Mn = H 1
ét(Cn,Zℓ)/H 1

ét(C,Zℓ). It satisfies
the following properties:

(1) We have a factorization into monic polynomials

fm(x)=
∏
n≤m

gn(x) (1)

where the gn are independent of m.

(2) There exist polynomials hn(y), h̃n(y) such that, in Case A

gn(x)= hn(xkn ). (2)

While in Case B

gn(x)= h̃n(xkn ). (3)

(3) In Case A, for n ≥ n0 (Lemma 21), we have the ℓ-adic convergence

hn+1(y)≡ hn(y) (mod ℓn). (4)
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In particular, the following ℓ-adic limit exists in Zℓ[y]:

h∞(y)= lim
n→∞

hn(y).

In Case B, for n ≥ n0, we have the congruence

h̃n+1(y)≡ (h̃n(y))ℓ
(b−1)

(mod ℓn). (5)

In particular, the following ℓ-adic limit exists in Zℓ[y] with exp, log defined formally as power series:

h̃∞(y)= exp
(

lim
n→∞

1
ℓ(n−n0)(b−1) log(h̃n(y))

)
.

Remark 20. The Frobenius σq is known to act semisimply on the étale cohomology of a curve and
conjectured to act semisimply with rational coefficients on any variety over Fq .6 While the following
proof simplifies slightly if we use the semisimplicity of σq on Mn , we do not assume this so that the
following proof can be adapted more easily to cases where semisimplicity is not known.

Proof. Part 1, i.e., equation (1) is an immediate consequence of Lemma 11 once we define gn(x) to be
the characteristic polynomial of σq on Pn = Mn/Mn−1.

To prove Part 2, i.e., equations (2) and (3), we treat the two cases simultaneously by taking b= 1, Q= q
in Case A. Recall the notation that, for v ∈Zb

ℓ , Mn(v) is the eigenspace of Gn for the character χv(ti )= tvi
i .

The eigenspaces Mn(v) get permuted by σq in the following manner:

σq : Mn(v)→ Mn(Q−1v)

and therefore σ kn(v)
q is an automorphism of Mn(v). We will prove that a Jordan block of σ kn(v)

q acting
on Mn(v)⊂ Pn (with eigenvalue λ ̸= 0) corresponds to kn(v) distinct Jordan blocks of σq acting on Pn

(with eigenvalues µ1/kn(v)). Since this claim is independent of passing to an extension, we replace Pn by
Pn ⊗Zℓ Qℓ.

To that end, let m1, . . . ,ms ∈ Mn(v) be some generalized eigenvectors of σ kn
q corresponding to a pure

Jordan block of eigenvalue λ (possibly defined over an extension Zℓ) so that

σ kn
q (mi+1)= λmi+1+mi

(with the convention that m0 = 0). We will first show that the eigenvector m1 for σ kn(v)
q corresponds to

kn(v) distinct eigenvectors for σq . For mi ∈ Mn(v), let mi, j = σ
j−1

q (mi ) for j = 1, . . . , kn(v). Note that

σq(mi+1,kn(v))= σ
kn(v)
q (mi+1)= λmi+1,1+mi,1.

For each µ a kn root of λ, nµ =
∑kn(v)

j=1 µ
− j m1, j is an eigenvector of σq . Indeed, we have

σq(nµ)=
kn(v)−1∑

j=1

µ− j m1, j+1+ λµ
−kn(v)m1,1 = µnµ.

6Semisimplicity for abelian varieties.

https://mathoverflow.net/a/104105/58001
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Therefore, the nµ are each an eigenvector of σq and the subspace N = span(nµ : µkn(v) = λ) is stable
under σq and contains

m1, j =
1

kn(v)

∑
µkn (v)=λ

µ j nµ for j = 1, . . . , kn(v).

Passing to the quotient Pn/N therefore corresponds to replacing the m1, . . . ,ms by m2, . . . ,ms (with
m2 now an eigenvalue of σ kn(v)

q ) and we continue inductively to show that each mi corresponds to kn(v)

distinct generalized eigenvectors ni,µ with eigenvalue µ.
Let gn,v(x) = det(I−σq x) be the characteristic polynomial of σq on Nn(v) =

⊕kn(v)−1
i=0 Mn(Qi (v)).

This module has dimension exactly kn(v) times the dimension of Mn(v) and since for each generalized
eigenvector mi of Mn(v), we have constructed kn(v) distinct generalized eigenvectors ni,µ of Nn(v)

corresponding to the kn(v) distinct roots of λ, the ni,µ together in fact span Nn(v).
The identity

kn(v)∏
j=1

(1− xµζ j
kn(v)

)= 1− xkn(v)µkn(v)

then shows that gn,v(x)= hn,v(xkn(v)) for some polynomial hn,v(y) with roots y = λ= µkn(v). We note
that the above proof in fact computes the hn,v(x) to be exactly the characteristic polynomial of σ kn(v)

q on
Mn(v). Since

gn(x)=
∏

v∈P(Z/ℓnZ)/∼

gn,v(x)

where the product is over a set of representatives for the σq action on primitive vectors, the proof of
part (2) in Case A is completed by defining

hn(y)=
∏

v∈P(Z/ℓnZ)/∼

hn,v(y)

and setting y = xkn .
For Case B, we define (again as a product over a similar set of representatives for the σq action on

primitive vectors)
h̃n(y)=

∏
v∈P(Z/ℓnZ)b/∼

hn,v(ykn(v)/kn )

so that (with y = xkn )

gn(x)=
∏

v∈P(Z/ℓnZ)b/∼

gn,v(x)=
∏

v∈P(Z/ℓnZ)b/∼

hn,v(xkn(v))= h̃n(xkn ).

Finally, we prove Part (3), i.e., equations (4) and (5). Let us fix a generating set m1, . . . ,mr for Mn

over Zℓ[Gn] ∼= Zℓ[t1, . . . , tb]/(tℓ
n

i −1 : i = 1, . . . , b). Since Mn is not a free Zℓ[Gn] module, it might not
be completely clear what a generating set should mean. For our purposes, it suffices to choose m1, . . . ,mr

so that under any specialization that maps the ti to ℓn roots of unity, the mi specialize to a genuine basis
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over the induced specialization of Mn . That this is indeed possible follows from the explicit description of
the Mn as Gn modules in Lemma 17. Such a specialization corresponds to a representation χv : Gn→Q

for v ∈ Zb
ℓ and we denote the induced specialization also by χv : Mn→ Mn(v)

In terms of the m1, . . . ,mr , σq acting on Mn can be represented by some invertible matrix F(t1, . . . , tb).
From this point on, we will be concerned only with this matrix F(t1, . . . , tb). Since σq skew commutes
with the ti , we have

σ kn(v)
q =

kn(v)∏
i=1

F(t Qkn (v)−iv).

Therefore, with respect to the basis χv(m1), . . . , χv(mr ) of Mn(v), the action of σ kn(v)
q corresponds to

evaluating the above product using the character χv and is represented by the matrix

An(v)=

kn(v)∏
i=1

F(ζ Qkn (v)−iv
ℓn )

of Section 3 (and we note that An(v) is independent of our choice of F or the m1, . . . ,mr ). As noted
above, the hn,v(y) are the characteristic polynomials of σ kn(v)

q on Mn(v) and therefore, correspond to the
pn,v(y) in Section 3. We further see that the h̃n(y) correspond to the polynomials rn(y) of Theorem 26
and by this theorem, we have the required congruence:

h̃n+1(y)≡ h̃n(y) (mod ℓn). □

3. On the convergence of a skew-abelian Iwasawa theoretic invariant

In this section, we prove a general, abstract result about the convergence of a certain cohomological
invariant defined for a skew commutative Iwasawa algebra. The set up is as follows.

We fix an odd prime ℓ and positive integers b, r throughout this section.7 All cohomology groups in
this section represent group cohomology unless indicated otherwise. All congruences in this paper are in
Zℓ (and hence only concerned with the ℓ-adic valuation) unless explicitly mentioned otherwise.

Let 3= Zℓ[[T1, . . . , Tb]] be the b dimensional Iwasawa algebra and set ti = 1+ Ti . It is a local ring
with maximal ideal m= (ℓ, T1, . . . , Tb). Note that for λ ∈ Zℓ, the expression

tλi = (1+ Ti )
λ
=

∑
k≥0

(
λ

k

)
T k

i

converges in 3. For v = (v1, . . . , vb) ∈ (Zℓ)
b, we define tv = (tv1

1 , . . . , tvb
b ). We suppose that 3 has an

endomorphism σq acting through a matrix Q = Qi j ∈ GLb(Zℓ) in the following way:

σq(tv)= t Qv
⇐⇒ σq(Ti )=

[∏
j

(1+ T j )
Q j i

]
− 1 for all i.

7As usual, the arguments of this paper go through if ℓ= 2 with minor, standard modifications.
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We note that the action is well defined since σq(Ti ) ∈m. For v ∈ Zb
ℓ , we denote the size of the orbit of

v under Q in (Zℓ/ℓnZℓ)
b by kn(v).8 We also define

kn = min
v primitive

kn(v).

Assumption. We suppose henceforth that Q ≡ I (mod ℓ) and that Q fixes no vectors.9

Lemma 21. Let v be a primitive vector. Then there exist integers α ≥ 1, βv ≥ 0 so that

kn(v)=

{
ℓn−α−βv if n ≥ α+βv,
1 otherwise.

Moreover, there is some (minimal) β0 such that βv ≤ β0 for all primitive v.
In particular, we have

kn =

{
ℓn−α−β0 if n ≥ n0 := α+β0,

1 otherwise.

Proof. Since Q ≡ I (mod ℓ), we have log Q = ℓαX for α ≥ 1 with X ∈ Mb(Zℓ) not divisible by ℓ. Since
ℓ≥ 3,

(Qm
− I)v = exp(m log Q)v− v = mℓαXv+

(mℓα)2

2
X2v+ · · · .

Since Q does not fix any vectors, Xv ̸= 0 so let βv be the largest value such that Xv ≡ 0 (mod ℓβv ). We
see that kn(v) is the smallest m so that (Qm

− I)v is divisible by ℓn . Since X kv ≡ 0 (mod ℓβv ) for any
k ≥ 1 too, the ℓ-adic valuation of (Qm

− I)v is determined by the leading term mℓαXv so that

kn(v)=

{
ℓn−α−βv if n ≥ α+βv,
1 otherwise.

It remains to show that there is a uniform upper bound on βv.
Let π : Zb

ℓ → Fb
ℓ be the reduction map. The primitive vectors correspond to the subspace P =

π−1(Fb
ℓ −{0}) which is a closed (and open) subset of Zb

ℓ . Therefore P is compact and by continuity of
multiplication by X ,

XP = {Xv : v ∈ P} ⊂ Zb
ℓ

is compact and closed too. By assumption on Q, XP does not contain 0 (since this would correspond to
a fixed point of Q). This implies that XP is in fact bounded away from 0, i.e, there is some minimal β0

so that the image of XP in (Z/ℓβ0+1Zℓ)
b does not contain 0 so that βv ≤ β0 for every primitive v (and

β0 = βv for some primitive v). □

Remark 22. It is easy to see why we need to restrict to v primitive and to Q not having any fixed vectors.
If Qv = v, then kn(v)= 1 and if v = ℓsv0, then kn(v)= 1 for n ≤ s which is an obstruction to a uniform
bound on n.

8i.e., Qkn(v)v ≡ v (mod ℓn) and kn(v) is the least such positive integer.
9If ℓ= 2, then we would need to assume that Q ≡ 1 (mod 4).
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3.1. A cohomological interpretation. Let M be a free3module of rank r with a3-linear endomorphism
8 : M → M . Upon picking a basis m1, . . . ,mr for M , we express 8 as a matrix F(T1, . . . , Tb) with
entries in 3. We suppose that 8 skew commutes with σq in the following sense:

σq ◦ F = F(σq(T1), . . . , σq(Tb)) ◦ σq .

Note that σq acts on GLr (3) through its action on 3. This data of M and the endomorphism 8 as above
gives rise to an element η in the nonabelian cohomology group H 1(Zσq ,GLr (3)) in the following way:

Given a F as above, we can define a cocycle representative by η(σq) = F ∈ GLr (3). A change of
basis by a matrix P ∈ GLr (3) corresponds to F→ P(σq(T1), . . . , σq(Tb))F P−1 which is exactly the
boundary action. Therefore, the cohomology class η ∈ H 1(Zσq ,GLr (3)) depends only on (M,8).

For a positive integer n and v = (v1, . . . , vb) ∈ Zb
ℓ , note that since Ti = ζ

vi
ℓn − 1 is in the maximal ideal

of Zℓ[ζℓn ], we can define the quotient

3n(v)=
Zℓ[[T1, . . . , Tb]]

(t1 = ζ
v1
ℓn , . . . , tb = ζ

vb
ℓn )
.

We note that σ kn(v)
q fixes the ideal (t1 − ζ

v1
ℓn , . . . , tb − ζ

vb
ℓn ) ⊂ Zℓ[[T1, . . . , Tb]] and thus descends to an

endomorphism of 3n(v).
Henceforth, we fix η ∈ H 1(Zσq ,GLr (3)), v ∈ Zb

ℓ and define the following sequence of invariants
(implicitly depending on η) taking values in polynomials in one variable:

pn,−(y) : v ∈ H 1(Zσq ,GLr (3))
restriction
−−−−→ H 1(Zσ kn(v)

q ,GLr (3n(v)))
char poly
−−−−→3n(v)[y] ∋ pn,v(y)

where for the first map, we restrict along Zσ
kn(v)
q ⊂ Zσq and push forward along the quotient GLr (3)→

GLr (3n(v)) and for the second map, since σ kn(v)
q acts trivially on GLr (3n(v)), we have

H 1(Zσ kn(v)
q ,GLr (3n(v)))= Hom(Zσ kn(v)

q ,GLr (3n(v)))/conjugacy= GLr (3n(v))/conjugacy

which shows that the characteristic polynomial is a well defined invariant. Tracing through the definition
in terms of the value of F = η(σq) for η ∈ H 1(Zσq ,GLr (3)), pn,v(y) has the following explicit formula.
For v ∈ Zb

ℓ , we denote F(t1 = ζ
v1
ℓn , . . . , tb = ζ

vb
ℓn ) by F(ζ vℓn ) and define

An(v) := F(ζ Qkn (v)−1v
ℓn ) · · · F(ζ vℓn )=

kn∏
i=1

F(ζ Q−iv
ℓn ) (6)

where we implicitly use that Qkn(v)v ≡ v (mod ℓn) for the second equality. The characteristic polynomial
of An(v) is exactly

pn,v(y)= det(I−y An(v)).

Equivalently, it is the characteristic polynomial of σ kn(v)
q acting on 3n(v).

As the main results of this section, we will prove two ℓ-adic convergence results regarding the sequence
of polynomials pn,v(y) as n→∞.
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Theorem 23. Suppose that Q = q I is a scalar matrix. For n sufficiently large so that kn+1 = ℓkn , the
characteristic polynomials satisfy the congruence

pn+1,v(y)≡ pn,v(y) (mod kn+1).

Remark 24. Unfortunately, this strong congruence is not true in general if Q is not scalar (even if r = 1)
as the following example shows. Take ℓ= 5, q1= 6, q2= 11 and let Q be the diagonal matrix with entries
q1, q2. Take F(t1, t2)=1+t3

1 t2 and v= (1, 1)∈Z2
ℓ. Computation shows that A3(v)=49, A2(v)=7 so that

the difference is only divisible by 7 and not k3= 49 as the above theorem would suggest. Nevertheless, the
computational evidence also suggests that the An(v) still converge, just with a slower rate of convergence.
As we will see in Remark 32, this will be related to the vanishing of certain sums of roots of unity.

For our geometric applications, the following statement is sufficient. Recall that P((Z/ℓnZ)b) denotes
the space of primitive vectors. It is acted upon by Q and we denote a set of representatives for the orbits
of QZ acting on P((Z/ℓnZ)b) by P((Z/ℓnZ)b)/∼. For v′ = Qv, we note that pn,v ≡ pn,v′ so that pn,v

is independent of the choice of representative. The following polynomial depends only on the class η.

Definition 25. With An(v) and pn,v as before, define

rn(y) :=
∏

v∈P((Z/ℓnZ)b)/∼

pn,v(ykn(v)/kn ).

Theorem 26. Let Q be any matrix in the kernel of GLb(Zℓ)→ GLb(Fℓ). For n ≥ n0 so that kn+1 = ℓkn ,
We have

rn+1(y)≡ rℓ
b−1

n (y) (mod ℓn).

If Q = q I, we have the stronger congruence

rn+1(y)≡ rℓ
b−1

n (y) (mod ℓnb).

Remark 27. When b = 1, the two bounds agree since all matrices are scalar! Note that Theorem 23 only
implies the following weaker congruence for b = 1:

rn+1(y)≡ rn(y) (mod kn+1).

Remark 28. Numerical evidence shows that these congruences are in fact sharp and the bounds in
Theorems 23 and 26 are realized in most cases (but not always!). For instance, with r = 1, b = 2, ℓ= 3
and Q = (1+ ℓ2) I a scalar matrix, the computation

A3

(
1

1− ℓ
,

1
1− ℓ

)
− A2

(
1

1− ℓ
,

1
1− ℓ

)
= 70ℓ

shows the sharpness of Theorem 23. The same example also shows the sharpness of part 2 of Theorem 26.
Let d ≥ 1 and τ3, τ2 ∈ Zℓ so that r3(y)= 1− τ3 y+ · · · and rℓ2(y)= 1− τ2 y+ . . . . Then

τ3− ℓτ2 = 560ℓ4.
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Both the theorems above will depend on the following generalization of Fermat’s little theorem to
matrices to deal with the case when r ≥ 1. This generalization of Fermat’s little theorem can be seen as
the degenerate case of Theorem 23 when F(T1, . . . , Tb)= F0 is constant in the Ti .

3.2. A generalization of Fermat’s little theorem to matrices. In this subsection we state and prove
a generalization of Fermat’s little theorem to the case of matrices. As noted in the introduction, this
generalization was conjectured by Arnold [2006] and proved by Zarelua [2008] (and many other following
works). Our proof is short and apparently new and therefore we present it here.10

Theorem 29 (Arnold and Zarelua). Let A ∈ Mr (Zℓ). Then

tr Aℓ
n+1
≡ tr Aℓ

n
(mod ℓn+1).

In fact, we also have
det(1− x Aℓ

n+1
)≡ det(1− x Aℓ

n
) (mod ℓn+1).

Proof. We fix a n. Since we are proving a congruence modulo ℓn+1, we can replace A by a r × r matrix
with nonnegative integer entries. Let G be the directed multigraph with adjacency matrix A, i.e it has r
vertices labeled from 1 to r and there are ai j many edges from i to j .

A closed path of length n on the graph corresponds to a sequence of edges e1, . . . , en−1 such that the
in-vertex of ei+1 is the out-vertex of ei and the path starts and ends at the same vertex. The quantity tr An

has the graph theoretic interpretation of being the number of closed paths of length n on G.
Now, consider a closed path P of length ℓn+1. The cyclic group of order ℓn+1 acts on the path by

permuting
(e1, . . . , en−1)→ (e2, . . . , en−1, e1).

Since we are working modulo ℓn+1, we can ignore those paths P where the orbit by this action has
size ℓn+1. The remaining paths P are exactly those which are concatenations of ℓ copies of a path of
length ℓn . These are exactly counted by tr(Aℓ

n
) and therefore we have shown the required congruence

tr(Aℓ
n+1
)≡ tr(Aℓ

n
) (mod ℓn+1).

To prove the corresponding congruence for characteristic polynomials, we use the well known determinant
to trace exponential identity (as formal power series in x)

det(1− x B)= exp
(
−

∑
d≥1

tr(Bd)xd

d

)
. (7)

Let d = d0ℓ
e for d0 coprime to ℓ. The congruence above on powers of Ad0 then implies that

tr(Adℓn+1
)≡ tr(Adℓn

) (mod dℓn+1).

Since ℓ > 2, α ≡ β (mod ℓn) for n ≥ 1 implies that exp(α)≡ exp(β) (mod ℓn).

10In the course of writing this paper, we found essentially the same proof by Qiaochu Yuan in a blog post from 2009.

https://rjlipton.wpcomstaging.com/2009/08/07/fermats-little-theorem-for-matrices/
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To see this, let t ∈ Zℓ such that ℓn
| t . We will show that et

≡ 1 (mod ℓn). Supposing this, we see that

α ≡ β (mod ℓn)=⇒ eα−β ≡ 1 (mod ℓn)=⇒ eα ≡ eβ (mod ℓn)

since eβ ∈ Zℓ[[x]] in our case.
To show that et

≡ 1 (mod ℓn), we argue by cases. The terms appearing in the Taylor expansion of
exp(t) are of the form tr/r !. If r = 1, then ℓn

| t . In general, Legendre’s formula shows that tr/r is
divisible by ℓδn,r for δn,r := nr − r/(ℓ− 1). For r ≥ 2, note that

δn,r ≥ n ⇐H nr − r
2
− n ≥ 0⇐⇒ 2n ≥ r

r−1
which is always true for n ≥ 1.

We finish our proof now by noting that the congruences on the traces implies (by the exponential
identity)

det(1− x Aℓ
n+1
)≡ det(1− x Aℓ

n
) (mod ℓn+1). □

3.3. A proof of the main congruences. In this subsection, we prove Theorems 23 and 26. It will help to
set up some notation and make some easy reductions first.

Recall that F(T1, . . . , Tb) is a power series in the Ti and to define An+1(v), we are required to evaluate
F at Ti = ζ

vi
ℓn+1 − 1 (for i = 1, . . . , b) which is in the maximal ideal for the local ring Zℓ[ζℓn+1]. Since we

are interested in a congruence modulo kn+1(v) (or kn+1), we can truncate the F at some finite degree d
so that (ζℓn+1 − 1)d ≡ 0 (mod kn+1(v)) and suppose that it is a polynomial in the ti = Ti + 1 of the form

F =
∑
I∈Nb

FI t i1
1 · · · t

tb
b

where the FI are r × r matrices over Zℓ.
Let ρ ≥ 1 and for a tuple J = (I1, . . . , Iρ) ∈ (N b)ρ , we define FJ =

∏ρ

j=1 FI j . Using the standard
notation ⟨ · , · ⟩ for inner products (and considering Nb

⊂ Zb
ℓ), we also define the linear form

λJ (v)=

ρ∑
j=1

⟨I j , Q− jv⟩.

In terms of this notation, we see that

Ad
n+1(v)=

∑
J∈(N b)dkn+1(v)

FJ ζ
λJ (v)

ℓn+1

where we have implicitly used that Qkn+1(v)v ≡ v (mod ℓn+1). We denote cyclic permutations by

τ(J )= (I2, I3, . . . , Iρ, I1)

and if kn(v) | ρ, we note that

λτ J (v)≡ λJ (Qv) (mod ℓn). (8)
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Notation 30. We will argue by considering each tuple along with its cyclic permutations. To that end, we
fix some notation that we will use repeatedly. Let K = (I1, . . . , Iρ) be a tuple of length ρ such that it
is nonperiodic.11 For any δ = rρ ∈ N, we define JK (δ)= (I1, . . . , Iδ) := (K , . . . , K ) to be the tuple of
length δ where K is concatenated to itself r times. We suppose that r = r0ℓ

s with r0 coprime to ℓ.

We need one more lemma (which will in fact control the rate of congruence) before the proof of
Theorem 23.

Lemma 31. For n ≥ 0, suppose ρ is an integer multiple of kn . For any w ∈ Zℓ,

Sρ,n(w) :=
ρ∑

i=1

ζ
q iw

ℓn ≡ 0 (mod ρ).

Proof. Let w = ℓmw0 with w0 a unit. Since qkn ≡ 1 (mod ℓn) and ρ/kn ∈ Z, we see that

Sρ,n(w)=
ρ∑

i=1

ζ
q iw0
ℓn−m =

ρ

kn−m
Skn−m ,n−m(w0)

where we use the convention that ζ−m = 1 if m ≥ 0. Therefore, we can suppose that w is a unit and
ρ = kn without loss of generality. Let log q = ℓαx with x a unit so that q i

− 1= iℓαx (mod ℓα+1). We
now have two cases to consider. Either α ≥ n in which case ζ q iw

ℓn = ζ
w
ℓn and

Sρ,n(w)= ρζwℓn ≡ 0 (mod ρ)

or α < n. In this second case, note that the ζ q iw

ℓn are all pairwise distinct for i ≤ kn = ℓ
n−α.

If 1≤ j < i ≤ ℓn−α, then

i − j < ℓn−α
=⇒ ζ

(q i
−q j )w

ℓn = ζ
(i− j)wℓαx+···
ℓn ̸= 1.

In fact, the ζ q iw

ℓn are a complete set of roots for the polynomial zℓ
n−α
= ζwℓα and Sρ,n(w) is equal to the

linear term of this polynomial which is 0 thus completing the proof. □

Proof of Theorem 23. For this proof, recall that Q = q I is a scalar matrix so that kn(v) = kn for all
primitive v. We reduce the congruence on the characteristic polynomials pn,v to a congruence on traces
using the exponential identity (7)

pn,v(y)= exp
(
−

∑
d≥0

tr(Ad
n(v))

yd

d

)
as in the proof of Theorem 29. Upon fixing n such that kn+1 = ℓkn , it suffices to show the congruence

tn := tr(Ad
n+1(v))− tr(Ad

n(v))≡ 0 (mod dkn+1).

11i.e., the tuples τ i J are pairwise distinct for 1≤ i < ρ.
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We will consider the contributions to tn from each tuple and its cyclic permutations. In the notation of
Notation 30, we take δ = dkn+1 and J = JK (dkn+1) and if ℓ | r , J0 = JK (dkn). Note that

λJ (v)=

ρ∑
i=1

⟨Ii , q−i (1+ q−ρ + · · ·+ q−(r−1)ρ)v⟩ =
q−rρ
− 1

q−ρ − 1
λK (v).

Since q i
− 1= i log(q)+ 1

2(i log(q))2+ · · · is exactly divisible by i log(q), there exists some w ∈ Zℓ

so that
q−rρ
− 1

q−ρ − 1
=
ℓsρ

ρ
w = ℓsw =⇒ λJ (v)= ℓ

swλK (v). (9)

Moreover, there exists some y ∈ Zℓ so that q−dkn ≡ 1+ ℓn y (mod ℓn+1) and therefore

ℓ−1∑
i=1

q−idkn ≡ ℓ+ ℓn y
ℓ−1∑
i=0

i ≡ ℓ+ ℓn+1 y ℓ−1
2

(mod ℓn+1)=⇒ λJ (v)≡ ℓλJ0(v) (mod ℓn+1). (10)

We now have to consider two cases:

First, suppose s = 0. In this case, the only contributions from tuples that are repetitions of K and its
cyclic permutations comes from tr(Ad

n+1(v)) and is of the form

ρ∑
i=1

tr(Fτ i J )ζ
λ
τ i J (v)

ℓn+1 = tr(FJ )

ρ∑
i=1

ζ
λJ (q iv)

ℓn+1 = tr(FJ )

ρ∑
i=1

ζ
q iwλK (v)

ℓn+1

where for the first equality, we use that the trace is invariant under cyclic permutations and (8) while
for the second equality, we use (9) above and that s = 0 by assumption. Now, rρ = dkn+1 and since r
is coprime to ℓ, kn+1 being a ℓ-power necessarily divides ρ. In fact, ρ and dkn+1 have the same ℓ-adic
valuation. Thus, we can apply Lemma 31 to conclude

ρ∑
i=1

tr(Fτ i J )ζ
λ
τ i J (v)

ℓn+1 ≡ 0 (mod ρ)⇐⇒
ρ∑

i=1

tr(Fτ i J )ζ
λ
τ i J (v)

ℓn+1 ≡ 0 (mod dkn+1).

Next, suppose s > 0. In this case, we will have contributions from both tr(Ad
n+1(v)) and tr(Ad

n(v)) and
they are of the form

ρ∑
i=1

tr(Fτ i J )ζ
λ
τ i J (v)

ℓn+1 −

ρ∑
i=1

tr(Fτ i J0)ζ
λ
τ i J0

(v)

ℓn = (tr(Fr
K )− tr(Fr/ℓ

K ))

ρ∑
i=1

ζ
λJ (q iv)

ℓn

= (tr(Fr
K )− tr(Fr/ℓ

K ))

ρ∑
i=1

ζ
q iℓswλK (v)

ℓn+1

≡ 0 (mod rρ = dkn+1)

where the first equality follows from invariance of trace under cyclic permutations and (10) while the
second equation follows from (9). For the last congruence, Theorem 29 implies that

tr(Fr
K )− tr(Fr/ℓ

K )≡ 0 (mod r).
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Moreover, since dkn+1= rρ, we see that ρ is divisible by dkn+1ℓ
−s and in particular by kn+1−s . Therefore,

we can apply Lemma 31 to conclude

ρ∑
i=1

ζ
q iwλK (v)

ℓn+1−s ≡ 0 (mod ρ). □

Remark 32. We remark that the failure of this proof for the general case (see Remark 24) happens exactly
at Lemma 31. If Q is not scalar, it is no longer true that λJ (Qv)= QλJ (v) and consequently, there exist
examples (with λ a linear form) such that

Sn(λ; v) :=

kn(v)∑
j=1

ζ
λ(Q− jv)
ℓn ̸≡ 0 (mod kn(v)).

Nevertheless, the above proof shows that if the Sn(λJ ; v) → 0 as n → ∞, then the characteristic
polynomials pn,v(y) will also converge as n→∞. If λJ (log(Q)v) ̸= 0, a variation of Lemma 31 still
applies to Sn(λJ ; v). In fact, numerical evidence supports the vanishing of the limit (for λJ an arbitrary
linear form) but we do not know how to prove it.

From now on, we again let Q ≡ I (mod ℓ) be a general matrix. We recall some notation before the
proof of Theorem 26. We let V =Zb

ℓ be a free Zℓ module, Vn = V/ℓnV , P(Vn) to be the primitive vectors
in Vn and P(Vn)/∼ to be a set of representatives under the action by Q. The characteristic polynomials
we are interested in are

rn(y)=
∏

v∈P((Z/ℓnZ)b)/∼

pn,v(ykn(v)/kn ).

We also fix n sufficiently large and define (in the notation of Lemma 21)

Ve =

{
v ∈ V :

kn(v)

kn

∣∣∣ ℓe
⇐⇒ βv ≥ β0− e⇐⇒ Xv ≡ 0 (mod ℓβ0−e)

}
⊂ V .

By the last equivalent condition, we see that Ve is a (nonempty) submodule of V . Since Q commutes
with log(Q) and hence also X , we see that Q preserves Ve. When Q = q I, Ve = V since βv = β0 for
all primitive v. Also define Ve,n to be the image of Ve in V/ℓnV under the reduction map. Note that, in
general, Ve ̸∼= (Z/ℓ

nZ)c for some c and is only a-priori a finite Z/ℓnZ module.
So, let M be an arbitrary finite Zℓ module and n ≥ 0 be the smallest value such that ℓn M = 0. An

element v ∈ M is said to be primitive (generalizing our usual notion) when ℓn−1v ̸= 0 and the set of
primitive elements is denoted P(M). Our two definitions of primitive are compatible in the sense that

P(Ve,n)= P(V/ℓnV )∩ Ve,n.

We need one more lemma (analogous to Lemma 31 and also the determining factor for the rate of
convergence) before the proof of Theorem 26.
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Lemma 33. Let M be as above with
χ : M→ Z×ℓ

a character. Then, we have the congruence∑
v∈P(M)

χ(v)≡ 0 (mod ℓn−1).

If M = (Zℓ/ℓnZℓ)
b, we have the stronger congruence∑

v∈P(M)

χ(v)≡ 0 (mod ℓ(n−1)b).

Proof. Let |M | =m, note that SM :=
∑

v∈M χ(v)≡ 0 (mod m). There are two cases to consider: First, if
χ is the trivial character, then SM = m and the congruence is clear. Second, if χ is not trivial, we can
find some m0 ∈ M so that χ(m0) ̸= 1 and SM = χ(m0)SM =⇒ SM = 0≡ 0 (mod m).

Define
N = {v ∈ M : ℓn−1v = 0} ⊂ M

so that P(M) = M − N . The module M has size at least ℓn and the module N has size at least ℓn−1.
Therefore, we have ∑

v∈P(M)

χ(v)=
∑
v∈M

χ(v)−
∑
w∈N

χ(w)= SM − SN ≡ 0 (mod ℓn−1)

since |M | ≡ |N | ≡ 0 (mod ℓn−1).
If M = (Zℓ/ℓnZℓ)

b so that N = (Zℓ/ℓn−1Zℓ)
b, then the above argument shows the stronger congruence∑

v∈P(M)

χ(v)=
∑
v∈M

χ(v)−
∑
w∈N

χ(w)= SM − SN ≡ 0 (mod ℓ(n−1)b). □

We now prove Theorem 26, along the same general lines as the proof of Theorem 23.

Proof of Theorem 26. By the exponential identity (7), we have

rn(y)= exp
(
−

∑
v∈P(V/ℓn V )/∼

∑
f≥0

tr A f
n (v)

f
y f kn(v)/kn

)
.

Let us fix some d = d0ℓ
e (with d0 coprime to ℓ) and collect the terms corresponding to yd so that with

Cd,n =
∑

v∈P(Ve,n)/∼

kn(v)

dkn
tr Adkn/kn(v)

n (v), we have rn(y)= exp
(
−

∑
d≥0

Cd,n yd
)
.

As in the proof of Theorem 29, the congruence

rn+1(y)≡ rℓ
b−1

n (y) (mod ℓn),

is reduced to the congruence
Cd,n+1 ≡ ℓ

b−1Cd,n (mod ℓn).
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Since a representative v ∈P(Ve,n)/∼ represents kn(v) many vectors in P(Ve,n) and An(Qv) is conjugate
to An(v) so that their powers have the same traces, we can express Cd,n as a sum over all primitive
vectors by

Cd,n =
∑

v∈P(Ve,n)

1
dkn

tr Adkn/kn(v)
n (v).

Therefore we are reduced to proving the congruence

tn :=
∑

v∈P(Ve,n+1)

1
dkn+1

tr Adkn+1/kn+1(v)

n+1 (v)−
∑

v∈P(Ve,n)

ℓb

dkn+1
tr Adkn/kn(v)

n (v)≡ 0 (mod ℓn)

where we have implicitly used the assumption that n is sufficiently large so that kn+1 = ℓkn . Since every
vector in P(Ve,n) has ℓb many lifts to P(Ve,n+1), we also have

tn =
1

dkn+1

∑
v∈P(Ve,n+1)

(
tr Adkn+1/kn+1(v)

n+1 (v)− tr Adkn/kn(v)
n (v)

)
.

Note that in the expansion
tr Adkn/kn(v)

n (v)=
∑

J∈(Nb)dkn

tr(FJ )ζ
λJ (v)
ℓn ,

the tuples all have size dkn independent of v. As before, we will argue by fixing a tuple K and considering
the contributions from tuples that are multiples of K and their cyclic permutations. In the notation of
Notation 30, let J = JK (dkn+1) and when ℓ | r , J0 = JK (dkn).

First, we suppose that s = 0. In this case, the only contribution to tn from K will be through J and will
be of the form

1
dkn+1

∑
v∈P(Ve,n+1)

tr(FJ )ζ
λJ (v)

ℓn+1 .

We note that ζ λJ (v)

ℓn+1 is a character on Ve,n+1 and therefore, by Lemma 33, there exists some TλJ ∈ Zℓ such
that

1
dkn+1

∑
v∈P(Ve,n+1)

tr(FJ )ζ
λJ (v)

ℓn+1 =
ℓn

dkn+1
TλJ .

Moreover, for any cyclic permutation τ i J of J , the corresponding contribution is of the same form as
before since Qi permutes P(Ve,n+1)

1
dkn+1

∑
v∈P(Ve,n+1)

tr(Fτ i J )ζ
λJ (Qiv)

ℓn+1 =
1

dkn+1

∑
v∈P(Ve,n+1)

tr(FJ )ζ
λJ (v)

ℓn+1 =
ℓn

dkn+1
TλJ .

Therefore, the contribution from all the cyclic permutations of J is together equal to

ρℓn

dkn+1
tr(FJ )TλJ ≡ 0 (mod ℓn)

since the ℓ-adic valuation of ρ is equal to the ℓ-adic valuation of dkn+1.
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Next, suppose s > 0. In this case, the contribution from K will be through J and J0. Since v ∈ Ve, dkn+1

is divisible by kn+1(v) so that Q−idknv = v+ iℓnYv for some Y ∈ Mb(Zℓ) and

(I+Q−dkn + · · ·+ Q−(ℓ−1)dkn )v = ℓv+ iℓn
ℓ−1∑
i=0

Yv = ℓv+ ℓn+1 ℓ−1
2

Yv ≡ ℓv (mod ℓn+1).

This implies that

λJ (v)=

dkn∑
i=1

⟨Ii , q−i (1+ Q−dkn + · · ·+ Q−(ℓ−1)dkn )v⟩ ≡ ℓλJ0(v) (mod ℓn+1)

which is equivalent to ζ λJ (v)

ℓn+1 = ζ
λJ0 (v)

ℓn . Therefore, the contribution from J, J0 in tn is of the form

1
dkn+1

(tr(Fr
k )− tr(Fr/ℓ

k ))
∑

v∈P(Ve,n+1)

ζ
λJ (v)

ℓn+1 =
ℓn

dkn+1
(tr(Fr

k )− tr(Fr/ℓ
k ))TλJ .

As above, the cyclic permutations of K give rise to exactly the same contribution so that the total
contribution from all cyclic permutations of K is

ρℓn

dkn+1
(tr(Fr

k )− tr(Fr/ℓ
k ))TλJ ≡ 0 (mod ℓn)

since (tr(Fr
k )− tr(Fr/ℓ

k )) is divisible by r by Theorem 29 and rρ = dkn+1.
When Q = q I, the proof is exactly the same as above except that we have the stronger congruence∑

v∈P(Ve,n+1)

tr(FJ )ζ
λJ (v)

ℓn+1 ≡ 0 (mod ℓnb).

This follows from the second part of Lemma 33 since Ve=V =Zb
ℓ in this case and Ve,n+1= (Zℓ/ℓ

n+1Zℓ)
b.
□

Remark 34. As one sees from the proof, the modulus of the congruence in Theorem 26 depends on the
structure of Ve,n+1.

4. Explicit examples

In this section, we prove that the normalized eigenvalues of the characteristic polynomials hn,v(x) defined
in the proof of Theorem 19 are independent of n for n sufficiently large in the following two examples:

• Fermat Curves: This is the family of curves defined by the equation

Cn : xℓ
n
+ yℓ

n
+ zℓ

n
= 0⊂ P2.

We have maps
· · · → Cn→ Cn−1→ · · · → C1 ∼= P1

with Gn = Aut(Cn/C1)= (µℓn )2 and the element (ζ1, ζ2) acts by [x : y : z] → [xζ1 : yζ2 : z].
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• Artin–Schreier Curves: This is the family of curves defined by the projective closure of the equation

Cn : yq
− y = xℓ

n
⊂ P2/Fq .

The automorphism group in this case is Gn = Fq ×µℓn . An element (a, ζ ) in this group acts on the
curve by (x, y)→ (ζ x, y+ a).

Remark 35. The results of this section work in somewhat greater generality, for instance we don’t need
to restrict to Fermat or Artin–Schreier curves of degree a power of ℓ. The results also work for various
quotients of these curves such as the superelliptic curves ym

= xℓ
n
+ a.

Since the computations in other cases are exactly analogous, we only deal with the above two cases.

Throughout this section, we identify characters χ : µℓn → Zℓ with vectors v ∈ Zℓ by χ(v) : ζℓn → ζ vℓn .
We also fix a compatible family of additive characters ψn : Fqn → Zℓ that satisfy ψn = tr(Fqn/Fq) ◦ψ1.

In both of the above families of curves, we can decompose Mn = H 1
ét(Cn,Zℓ) into one dimensional

eigenspaces Mn(χ) indexed by characters χ of Gn . In the Fermat curve case, the characters are naturally
indexed by v ∈ (Z/ℓnZ)2 while in the second case, the characters are indexed by (ψ, v) where ψ is an
additive character of Fq and v ∈ Z/ℓnZ.

Given a character χ : µℓn → Zℓ and q ≡ 1 (mod ℓn), we can define a multiplicative character of F×q

since the map x→ x (q−1)/ℓn
induces a surjection

F×q → µℓn (Fq)∼= µℓn

and we compose this surjection with χ . By a slight abuse of notation, we also denote this character by χ .
The following well-known theorem [Katz 1981, Corollary 2.2 and Lemma 2.3] identifies the eigenvalues

of the Frobenius σq on M(χ) with Gauss and Jacobi sums respectively.

Theorem 36. We assume that q ≡ 1 (mod ℓn):

• For the Fermat curves Cn , let η = (χ, χ2) be a character of Gn = (µℓn )2. The eigenvalues of σq on
the eigenspace Mn(η) are given by the Jacobi sum

−Jq(χ1, χ2)=−
∑
x∈Fq

χ1(x)χ2(1− x).

• For the Artin–Schreier curves, let η = (ψ, χ) be a character of Gn = Fq ×µℓn . The eigenvalues of
σq on the eigenspace Mn(η) are given by the Gauss sums

−gq(ψ, χ)=−
∑
x∈Fq

ψ(x)χ(x).

Proof. We sketch the proof for completeness. In the case of Fermat curves, we would like to count points
on the affine curve xℓ

n
+ yℓ

n
=−1 while in the case of Artin–Schreier curves, we would like to count

points on yq
− y = xℓ

n
.
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We have the identities ∑
χ :F×q→µℓn

χ(x)=
{
ℓn if x = yℓ

n
,

0 otherwise,

and ∑
ψ :Fq→µq

ψ(x)=
{

q if x = yq
− y,

0 otherwise.

We can use these identities to test if an element x ∈ Fq is a ℓn-th power or of the form yq
− y and therefore

use it to count points.
For the Fermat curve, we have

Cn(Fq)=
∑

z+w=−1

∑
χ1,χ2:F

×
q→µℓn

χ1(x)χ2(y)

while for Artin–Schreier curves

Cn(Fq)=
∑
z∈Fq

∑
ψ,χ

ψ(z)χ(z).

Exchanging the summation, this shows that the point counts on the two curves can be expressed in terms
of Jacobi and Gauss sums respectively. Finally, we use the Weil-conjectures to identify eigenvalues of the
Frobenius action with Jacobi/Gauss sums by varying over all powers of q. □

Let us return to the set-up of Theorem 19. The roots of the characteristic polynomial hn,v(x) therefore
correspond to (−Jq(χ1, χ2))

kn =−Jqkn (χ1, χ2) with v corresponding to the character χ1, χ2 and similarly
for the Gauss sum in the two cases we are interested in. Put another way, we choose the minimal q so
that q − 1 is exactly divisible by ℓn and we are looking for a relation between these values for varying n.

Luckily, the exact statement we need is a result of Coleman [1987] proved using the p-adic Gamma
function of Gross and Koblitz [1979]. Stated in our notation and specialized to our needs, [Coleman 1987,
Theorem 11] takes the following form:

Theorem 37 (Coleman). Let v ∈ Zℓ, q = p f be such that ℓn exactly divides q − 1. In the notation of the
previous theorem, we have

gqℓ(ψ, χqℓ(v))= gq(ψ, χq(v))χq(v)(ℓ)cq

for cq = c f
p and cp = (−1)r p(ℓ−1)/2 where r depends only on ℓ.

Proof. In Theorem 11 of [loc. cit.], take b = v/ℓn+1, d = ℓ. Note that there is exactly one orbit of size ℓ
and c = (

√
−pℓ−1

φd(0)) f , r = rℓ+ (ℓ− 1)/2 in the notation of that paper. □

The following theorem is an immediate consequence of Coleman’s theorem and is the required relation.
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Theorem 38. Suppose that q is such that ℓn exactly divides q − 1. Let v1, v2 ∈ Zℓ, χqm (vi ) multiplicative
characters of µℓ∞(Fqm ) corresponding to vi and ψn : Fqn → Zℓ a compatible series of additive characters
as above.

Then, we have the following identities:

Jq(χq(v1), χq(v2))

q1/2 =
Jqℓ(χqℓ(v1), χqℓ(v2))

qℓ/2
(11)

and
gq(ψ, χq(v))χq(v)(ℓ)

q1/2 =
gqℓ(ψ, χqℓ(v))

qℓ/2
. (12)

Proof. We first prove (11). We have the well known identity

Jq(χ1, χ2)gq(ψ, χ1χ2)= gq(ψ, χ1)gq(ψ, χ2).

By Theorem 37, we then have

Jqℓ(χqℓ(v1), χqℓ(v2))=
gqℓ(ψ, χqℓ(v1))gqℓ(ψ, χqℓ(v2))

gqℓ(ψ, χ1χ2)

=
gq(ψ, χq(v1))gq(ψ, χq(v2))cq

gq(ψ, χ1χ2)

= Jq(χq(v1), χq(v2))cq

where q = p f . Since cq = ±q(ℓ−1)/2, we recover (11) up to a sign by dividing by qℓ/2. Finally, upon
reducing Theorem 23 (mod ℓ), we note that the normalized eigenvalues are all congruent (mod ℓ) and
therefore the sign has to be +1.

Equation (12) follows in exactly the same manner from Theorem 37. □

Remark 39. We note that the above theorem is in exact accord with Case A, Theorem 19 since in the
notation of that theorem, it shows that the roots of hn+1(y) are equal to the roots of hn(y). In other words,
we not only have a congruence hn+1(y)≡ hn(y) (mod ℓn), we have an equality hn+1(y)= hn(y) in the
two cases considered in this section.

Acknowledgements

I would like to thank my advisor Jordan Ellenberg for posing a question that led to this paper, feedback on
the writing of this paper and many other useful discussions, Douglas Ulmer for many helpful discussions
and useful feedback on the writing of the paper, John Yin for helping with some computer calculations.

I am also very grateful to the anonymous referee for helpful expository suggestions and spotting an
error in an earlier version of the proof of Lemma 12 and to Yifan Wei for helping me fix the error.

References

[Anderson 1987] G. W. Anderson, “Torsion points on Fermat Jacobians, roots of circular units and relative singular homology”,
Duke Math. J. 54:2 (1987), 501–561. MR Zbl

http://dx.doi.org/10.1215/S0012-7094-87-05422-6
http://msp.org/idx/mr/899404
http://msp.org/idx/zbl/1370.11069


On the variation of Frobenius eigenvalues in a skew-abelian Iwasawa tower 2179

[Arnold 2006] V. I. Arnold, “On the matricial version of Fermat–Euler congruences”, Jpn. J. Math. 1:1 (2006), 1–24. MR Zbl

[Coleman 1987] R. F. Coleman, “The Gross–Koblitz formula”, pp. 21–52 in Galois representations and arithmetic algebraic
geometry (Kyoto, 1985/Tokyo, 1986), edited by Y. Ihara, Adv. Stud. Pure Math. 12, North-Holland, Amsterdam, 1987. MR
Zbl

[Gordon 1979] W. J. Gordon, “Linking the conjectures of Artin–Tate and Birch–Swinnerton-Dyer”, Compositio Math. 38:2
(1979), 163–199. MR Zbl

[Gross and Koblitz 1979] B. H. Gross and N. Koblitz, “Gauss sums and the p-adic 0-function”, Ann. of Math. (2) 109:3 (1979),
569–581. MR Zbl

[Janichen 1921] W. Janichen, “Uber die Verallgemeinerung einer Gaussschen Formel aus der Theorie der hohern Kongruenzen”,
Sitzungsber. Berlin. Math. Ges. 20 (1921), 23–29. Zbl

[Katz 1981] N. M. Katz, “Crystalline cohomology, Dieudonné modules, and Jacobi sums”, pp. 165–246 in Automorphic forms,
representation theory and arithmetic (Bombay, 1979), Tata Inst. Fundam. Res. Stud. Math. 10, Springer, 1981. MR Zbl

[Manin 1963] Y. I. Manin, “Theory of commutative formal groups over fields of finite characteristic”, Uspehi Mat. Nauk 18:6
(1963), 3–90. In Russian; translated in Russ. Math. Surv. 18 (1963), 1–83. MR Zbl

[Mazur and Petrenko 2010] M. Mazur and B. V. Petrenko, “Generalizations of Arnold’s version of Euler’s theorem for matrices”,
Jpn. J. Math. 5:2 (2010), 183–189. MR Zbl

[Schur 1937] I. Schur, “Arithmetische Eigenschaften der Potenzsummen einer algebraischen Gleichung”, Compositio Math. 4
(1937), 432–444. MR Zbl

[Zarelua 2008] A. V. Zarelua, “On congruences for the traces of powers of some matrices”, Tr. Mat. Inst. Steklova 263 (2008),
85–105. MR Zbl

Communicated by Bjorn Poonen
Received 2022-03-30 Revised 2023-01-12 Accepted 2023-03-20

gasvinseeker94@gmail.com Department of Mathematics, University of Wisconsin-Madison, WI,
United States

mathematical sciences publishers msp

http://dx.doi.org/10.1007/s11537-006-0501-6
http://msp.org/idx/mr/2261060
http://msp.org/idx/zbl/1154.05303
http://dx.doi.org/10.2969/aspm/01210021
http://msp.org/idx/mr/948235
http://msp.org/idx/zbl/0644.12008
http://www.numdam.org/item?id=CM_1979__38_2_163_0
http://msp.org/idx/mr/528839
http://msp.org/idx/zbl/0425.14003
http://dx.doi.org/10.2307/1971226
http://msp.org/idx/mr/534763
http://msp.org/idx/zbl/0406.12010
http://msp.org/idx/zbl/48.0131.01
http://msp.org/idx/mr/633662
http://msp.org/idx/zbl/0502.14007
http://mi.mathnet.ru/eng/umn6440
http://dx.doi.org/10.1070/RM1963v018n06ABEH001142
http://msp.org/idx/mr/0157972
http://msp.org/idx/zbl/0128.15603
http://dx.doi.org/10.1007/s11537-010-1023-9
http://msp.org/idx/mr/2747933
http://msp.org/idx/zbl/1234.05016
http://www.numdam.org/item?id=CM_1937__4__432_0
http://msp.org/idx/mr/1556986
http://msp.org/idx/zbl/63.0107.05
http://dx.doi.org/10.1134/S008154380804007X
http://msp.org/idx/mr/2599373
http://msp.org/idx/zbl/1243.11021
mailto:gasvinseeker94@gmail.com
http://msp.org


Algebra & Number Theory
msp.org/ant

EDITORS

MANAGING EDITOR

Antoine Chambert-Loir
Université Paris-Diderot

France

EDITORIAL BOARD CHAIR

David Eisenbud
University of California

Berkeley, USA

BOARD OF EDITORS

Jason P. Bell University of Waterloo, Canada

Bhargav Bhatt University of Michigan, USA

Frank Calegari University of Chicago, USA

J-L. Colliot-Thélène CNRS, Université Paris-Saclay, France

Brian D. Conrad Stanford University, USA

Samit Dasgupta Duke University, USA

Hélène Esnault Freie Universität Berlin, Germany

Gavril Farkas Humboldt Universität zu Berlin, Germany

Sergey Fomin University of Michigan, USA

Edward Frenkel University of California, Berkeley, USA

Wee Teck Gan National University of Singapore

Andrew Granville Université de Montréal, Canada

Ben J. Green University of Oxford, UK

Christopher Hacon University of Utah, USA

Roger Heath-Brown Oxford University, UK

János Kollár Princeton University, USA

Michael J. Larsen Indiana University Bloomington, USA

Philippe Michel École Polytechnique Fédérale de Lausanne

Martin Olsson University of California, Berkeley, USA

Irena Peeva Cornell University, USA

Jonathan Pila University of Oxford, UK

Anand Pillay University of Notre Dame, USA

Bjorn Poonen Massachusetts Institute of Technology, USA

Victor Reiner University of Minnesota, USA

Peter Sarnak Princeton University, USA

Michael Singer North Carolina State University, USA

Vasudevan Srinivas Tata Inst. of Fund. Research, India

Shunsuke Takagi University of Tokyo, Japan

Pham Huu Tiep Rutgers University, USA

Ravi Vakil Stanford University, USA

Akshay Venkatesh Institute for Advanced Study, USA

Melanie Matchett Wood Harvard University, USA

Shou-Wu Zhang Princeton University, USA

PRODUCTION
production@msp.org

Silvio Levy, Scientific Editor

See inside back cover or msp.org/ant for submission instructions.

The subscription price for 2023 is US $485/year for the electronic version, and $705/year (+$65, if shipping outside the US) for print and electronic.
Subscriptions, requests for back issues and changes of subscriber address should be sent to MSP.

Algebra & Number Theory (ISSN 1944-7833 electronic, 1937-0652 printed) at Mathematical Sciences Publishers, 798 Evans Hall #3840, c/o University
of California, Berkeley, CA 94720-3840 is published continuously online.

ANT peer review and production are managed by EditFLOW® from MSP.

PUBLISHED BY

mathematical sciences publishers
nonprofit scientific publishing

http://msp.org/
© 2023 Mathematical Sciences Publishers

http://dx.doi.org/10.2140/ant
mailto:production@msp.org
http://dx.doi.org/10.2140/ant
http://msp.org/
http://msp.org/


Algebra & Number Theory
Volume 17 No. 12 2023

2055GKM-theory for torus actions on cyclic quiver Grassmannians
MARTINA LANINI and ALEXANDER PÜTZ

2097The de Rham–Fargues–Fontaine cohomology
ARTHUR-CÉSAR LE BRAS and ALBERTO VEZZANI

2151On the variation of Frobenius eigenvalues in a skew-abelian Iwasawa tower
ASVIN G.

2181Limit multiplicity for unitary groups and the stable trace formula
MATHILDE GERBELLI-GAUTHIER

2229A number theoretic characterization of E-smooth and (FRS) morphisms: estimates on the number of
Z/pkZ-points

RAF CLUCKERS, ITAY GLAZER and YOTAM I. HENDEL

A
lgebra

&
N

um
ber

Theory
2023

Vol.17,
N

o.12

http://dx.doi.org/10.2140/ant.2023.17.2055
http://dx.doi.org/10.2140/ant.2023.17.2097
http://dx.doi.org/10.2140/ant.2023.17.2151
http://dx.doi.org/10.2140/ant.2023.17.2181
http://dx.doi.org/10.2140/ant.2023.17.2229
http://dx.doi.org/10.2140/ant.2023.17.2229

	1. Introduction
	1.1. A congruence on characteristic polynomials
	1.2. Some questions for future work

	2. On the cohomology of a tower of curves
	2.1. Two families of Iwasawa towers
	2.2. On the distribution of Frobenius eigenvalues in towers of curves

	3. On the convergence of a skew-abelian Iwasawa theoretic invariant
	3.1. A cohomological interpretation
	3.2. A generalization of Fermat's little theorem to matrices
	3.3. A proof of the main congruences

	4. Explicit examples
	Acknowledgements
	References
	
	

