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The classical Poincaré formula relates the rational homology classes of tautological cycles on a Jacobian
to powers of the class of Riemann theta divisor. We prove a tropical analogue of this formula. Along the
way, we prove several foundational results about real tori with integral structures (and, therefore, tropical
abelian varieties). For example, we prove a tropical version of the Appell–Humbert theorem. We also
study various notions of equivalences between tropical cycles and their relation to one another.
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1. Introduction

1A. Background. Let C be a compact Riemann surface of genus g. Its Jacobian variety J has a number
of natural subvarieties W̃d for d ≥ 0, defined up to translation. The origin is denoted by W̃0, the image of
the Abel–Jacobi map is denoted by W̃1, and W̃d = W̃d−1+ W̃1 is the image of higher symmetric powers
of C . One can intersect these subvarieties, add again, pull back or push down under multiplication by
integers, and so on. This provides a large supply of algebraic tautological cycles, which live naturally
in J .

By the Riemann–Roch or Jacobi inversion theorem, one has W̃g = J . Riemann’s theorem states that
W̃g−1 is a shift of the Riemann theta divisor 2; see, e.g., [Griffiths and Harris 1978, page 338], [Arbarello
et al. 1985, Chapter 1, Section 5], or [Birkenhake and Lange 2004, Theorem 11.2.4]. The classical
Poincaré formula gives a refinement of Riemann’s theorem; see, e.g., [Griffiths and Harris 1978, page 350],
[Arbarello et al. 1985, Chapter 1, Section 5], or [Birkenhake and Lange 2004, Section 11.2]. It states that,
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for 0≤ d ≤ g, the classes of W̃d and 2g−d coincide in rational homology (up to the multiplicative constant
1/(g−d)!). In other words, the subalgebra of tautological cycles in H∗(J ;Q) is generated by the class of
Riemann theta divisor. There are also versions of the Poincaré formula over a general field. For example,
Lieberman proves a “Weil cohomological equivalence” statement (see [Kleiman 1968, Remark 2A13]),
and Mattuck, built on the work of Matsusaka, proves a “numerical equivalence” statement; see [Mattuck
1962, Section 2; Matsusaka 1959].

1B. Our contribution. Our main goal in this paper is to prove a tropical analogue of the Poincaré formula.
Let 0 be a compact connected metric graph of genus g. Following [Kotani and Sunada 2000; Mikhalkin
and Zharkov 2008], one associates to 0 a g-dimensional polarized real torus Jac(0), called its tropical
Jacobian. There is also a well-behaved theory of divisors, ranks, Abel–Jacobi maps, and Picard groups for
metric graphs [Mikhalkin and Zharkov 2008; Gathmann and Kerber 2008; Baker and Norine 2007]. We
denote the tropical Abel–Jacobi morphism by 8 : 0d → Jac(0), which is well-defined up to a translation.
Here 0d denotes the set of all unordered d-tuples of points of 0. The image W̃d =8(0d) is a polyhedral
subset of Jac(0) of pure dimension d. Exactly as in the classical situation W̃d may be identified with
the effective locus Wd ⊆ Picd(0) via the Abel–Jacobi map. In [Mikhalkin and Zharkov 2008] one also
finds the notion of Riemann theta divisor 2 on Jac(0), which is closely related to the theory of Voronoi
polytopes of lattices. The polyhedral subsets W̃d and 2 of Jac(0) support tropical fundamental cycles
[W̃d ] and [2]; see Section 8. Recently, the notions of tropical homology, cohomology, and the cycle class
map have been developed in [Itenberg et al. 2019] and further studied in [Gross and Shokrieh 2019].

Theorem A (Theorem 9.8 and Corollary 9.10). For every 0≤ d ≤ g, we have the equality

[W̃d ] =
[2]g−d

(g− d)!

on Jac(0) modulo tropical homological equivalence. Moreover, the equality also holds modulo numerical
equivalence.

Our proof further provides explicit descriptions of the classes of W̃d and 2g−d in tropical homology in
terms of the combinatorics of the metric graph 0; see Section 9B and Section 9C.

The Poincaré formula has several interesting, but immediate, consequences.

Corollary B (Corollaries 9.12, 9.13, and 9.15). (a) There exists a unique µ ∈ Picg−1(0) such that
[Wg−1] = [2] +µ.

(b) The effective tropical 0-cycle obtained from the stable intersection of [W̃d ] and [W̃g−d ] has degree
(g

d

)
.

(c) The tropical 0-cycle [2]g has degree g!.

We note that part (a) is a tropical version of Riemann’s theorem and has already been proven by
Mikhalkin and Zharkov [2008] using other combinatorial techniques. The special case d = 1 of part (b)
can also be found in [loc. cit.] in the context of the Jacobi inversion theorem, where again the proof is
direct and combinatorial. This was essential in the development of break divisors in their paper. Part (c)
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classically follows from the geometric Riemann–Roch theorem for abelian varieties; see, e.g., [Birkenhake
and Lange 2004, Theorem 3.6.3]. In the case where 0 is a chain of loops, (c) has previously been observed
in [Cartwright et al. 2015].

Building up to the proof of the Poincaré formula we also prove several foundational results about real
tori with integral structures (and, therefore, about tropical abelian varieties) some of which had been used
implicitly in previous work on the subject. Most notably, we prove the following tropical version of the
Appell–Humbert Theorem:

Theorem C (Theorem 7.2). Every tropical line bundle on a real torus NR/3 corresponds to a pair (E, l)
of a symmetric form E on NR with E(N , 3)⊆ Z and a morphism l ∈Hom(NR, R). Two such pairs (E, l)
and (E ′, l ′) define the same line bundle if and only if E = E ′ and (l − l ′)(N )⊆ Z.

We also study the relationship between various notions of equivalence of tropical cycles. For example,
we prove the following statement.

Theorem D (Propositions 5.8 and 5.11). Algebraic equivalence implies homological equivalence, and
homological equivalence implies numerical equivalence on real tori admitting a “spanning curve”.

1C. Further directions. We believe our Poincaré formula is a first step in proving the following ambitious
conjecture in tropical Brill–Noether theory. Let W r

d ⊆ Picd(0) denote the locus of divisor classes of
degree d and rank at least r ; see, e.g., [Cools et al. 2012; Lim et al. 2012].

Conjecture. Assume ρ = g− (r + 1)(g− d + r)≥ 0. Then there exists a canonical tropical subvariety
Z r

d ⊆W r
d of pure dimension ρ such that

[Z r
d ] =

( r∏
i=0

i !
(g− d + r + i)!

)
[2]g−ρ .

modulo tropical homological equivalence.

Note that our Theorem A precisely establishes this conjecture in the case r = 0, in which case W 0
d =Wd

is pure-dimensional by [Gross et al. 2022, Theorem 8.3] (see also Theorem 8.2) and Z0
d =Wd . Numerical

evidence for the conjecture in the case where 0 is a generic chain of loops is given in [Cartwright et al.
2015, Proposition 2.8]. We also remark that a less precise version of this conjecture is posed as a question
in [Pflueger 2017, Question 6.2].

As stated above, it follows from the Poincaré formula that the subring of tautological cycles in rational
homology is too simple to provide interesting invariants. A celebrated result of Ceresa [1983] implies that
for a generic curve C , the class of Wd is not proportional to the class of 2 modulo algebraic equivalence.
Beauville [2004] (see also [Polishchuk 2005; Marini 2008; Moonen 2009]) has studied results about
algebraic equivalence. We believe that the tautological subring of the ring of tropical cycles modulo
algebraic equivalence is an interesting object to study. For example, one might hope that this ring is
generated by the classes of the Wd for 1≤ d ≤ g−1. We remark that a tropical version of Ceresa’s result
has already been established by Zharkov [2015].
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As stated in Theorem D, homological equivalence implies numerical equivalence on tropical abelian
varieties. We expect this to be true in general on any tropical manifold.

In analogy with Grothendieck’s “standard conjecture D” one might also hope that homological equiva-
lence coincides with numerical equivalence, at least in the case of tropical abelian varieties. The analogous
classical result has been established by Lieberman [1968]. For rationally triangulable smooth projective
tropical varieties, this was recently shown by Amini and Piquerez [2020, Theorem 1.3].

1D. The structure of this paper. In Sections 2–4 we review the main objects and tools needed to proof
the Poincaré formula, including rational polyhedral spaces, tropical cycles, tropical homology, and tropical
Jacobians.

In Sections 5–7 we study tropical cycles, tropical homology, and line bundles on real tori. Our results
here are of a more foundational nature, and include the Appell–Humbert Theorem. We also study various
notions of equivalences of tropical cycles and prove Theorem D.

Finally, in Sections 8–9 we prove the Poincaré formula. In Section 8 we show that the set W̃i has a
fundamental cycle. In Section 9 we give explicit expression for both the cycle classes of the [W̃i ] and of
powers of the theta divisor. Comparing these expressions will finish the proof of Theorem A. The results
summarized in Corollary B will be direct consequences of the Poincaré formula.

Notation. We will denote by N the natural numbers including 0. For an Abelian group A and a topological
space X , we will denote by AX the constant sheaf on X associated to A.

2. Rational polyhedral spaces

The tropical spaces studied in this paper are real tori with integral structures, compact tropical curves,
and their Jacobians. They all live inside the category of boundaryless rational polyhedral spaces. We
quickly review their definition and refer to [Mikhalkin and Zharkov 2014; Jell et al. 2018; Gross and
Shokrieh 2019] for more details.

2A. Boundaryless rational polyhedral spaces. A rational polyhedral set in Rn is a finite union of finite
intersections of sets of the form

{x ∈ Rn
| ⟨m, x⟩ ≤ a},

where m ∈ (Zn)∗, a ∈ R, and ⟨ · , · ⟩ denotes the evaluation pairing. Any such set P comes with a sheaf
AffP of integral affine functions, which are precisely the continuous real-valued functions that are locally
(on P) of the form x 7→ ⟨m, x⟩+ a for some m ∈ (Zn)∗ and a ∈ R.

Definition 2.1. A boundaryless rational polyhedral space is a pair (X, AffX ) consisting of a topological
space X and a sheaf of continuous real-valued functions AffX such that every point x ∈ X has an open
neighborhood U such that there exists a rational polyhedral set P in some Rn , an open subset V ⊆ P , and
a homeomorphism f : U → V that induces an isomorphism f −1(AffP |V ) ∼= AffX |U via pulling back
functions. Such an isomorphism f is called a chart for X . A boundaryless rational polyhedral space that
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is compact is called a closed rational polyhedral space. The sections of AffX are called integral affine
functions.

Remark 2.2. In the literature (for example in [Jell et al. 2018; Gross and Shokrieh 2019]), the notion
of rational polyhedral spaces is used for spaces that are locally isomorphic to open subsets of rational
polyhedral sets in R

n
, where R= R∪ {∞}. This introduces a notion of boundary, which is essential for

many applications. For our purposes it is sufficient to consider spaces without boundary. A boundaryless
rational polyhedral space is precisely a rational polyhedral space without boundary.

Definition 2.3. (i) A morphism of boundaryless rational polyhedral spaces is a continuous map
f : X→ Y such that pullbacks of functions in AffY are in AffX .

(ii) A morphism f : X→ Y is called proper if it is a proper map of topological spaces, that is preimages
of compact sets are compact.

2B. Real tori with integral structures. Let N be a lattice, and let 3⊆ NR = N ⊗Z R be a second lattice
of full rank, that is such that the induced morphism 3R→ NR is an isomorphism. Clearly, NR gets a
well-defined rational polyhedral structure from any isomorphism N ∼= Zn . The real torus (with integral
structure) associated to N and 3 is the quotient X = NR/3, with the sheaf of affine functions being the
one induced by NR. More precisely, if π : NR→ X denotes the quotient map, and U ⊆ X is open, then
φ : U → R is in AffX (U ) if and only if φ ◦π ∈ AffNR

(π−1U ). Note that the integral affine structure on
X is induced by N and not by 3.

The group law on a real torus X makes it a group object in the category of boundaryless rational
polyhedral spaces. In particular, every x ∈ X defines an automorphism via translation.

Definition 2.4. Let X be a real torus and let x ∈ X . Then the translation by x is the morphism

tx : X→ X, y 7→ x + y.

2C. Tropical curves. A tropical curve is a purely 1-dimensional boundaryless rational polyhedral space.
With this definition, the underlying space of a tropical curve 0 is a topological graph. In particular, it
has a set of vertices (branch points) V (0) where 0 does not locally look like an open interval in R,
and a set of open edges E(0), which are the connected components of 0 \ V (0). The closed edges of
0 are the closures of its open edges and an open edge segment is a connected open subset of an open
edge. A tropical curve is smooth (see Figure 1) if every point has a neighborhood that is isomorphic to a
neighborhood of the origin in a star-shaped set, that is a set of the form⋃

0≤i≤n

R≥0ei ⊆ Rn+1/R1.

Here n > 0 will denote the valency of the point, we denote by 1 the vector whose coordinates are all 1,
and ei denotes the i-th standard basis vector.

Using the integral structure on a compact tropical curve, one can assign lengths to its edges, thus
defining a metric graph. Conversely, given a metric graph (a topological graph 0 equipped with an inner
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Figure 1. Two tropical curves embedded in R2. The one to the left is smooth, the one to
the right is not.

metric), one can define Aff0 as the sheaf of harmonic functions on 0, that is the sheaf of functions whose
sum of incoming slopes is 0 at every point. In this way, one obtains a smooth tropical curve (0, Aff0);
see [Mikhalkin and Zharkov 2008, Proposition 3.6].

The genus g of a tropical curve 0 is defined as its first Betti number, that is g = dimR H1(0;R).

Remark 2.5. With our notion of tropical curves, the underlying topological graph is not allowed to
have 1-valent vertices. This can be resolved by working in the larger category of polyhedral spaces with
boundary mentioned in Remark 2.2 and allowing neighborhoods of∞ in R as local models for the curves.
In this way, tropical curves could have edges of infinite length that end in a 1-valent vertex. But as we will
note in Remark 9.11, the results of this paper are easily generalized to apply to compact and connected
smooth tropical curves with boundary as well.

Example 2.6. For any positive real number j ∈R>0 the sublattice Z j of R= ZR has full rank. Therefore,
the quotient 0 = R/Z j , endowed with the integral affine structure induced by Z, is a 1-dimensional real
torus. It is also a smooth tropical curve of genus 1. Its unique edge is both open and closed and it is
homeomorphic to the 1-sphere. The length of this edge is given by j , which can be considered as the
j-invariant of 0 [Katz et al. 2008].

Example 2.7. Consider the topological space 0 obtained by gluing three intervals [0, a], [0, b], and [0, c]
along their lower and upper bounds, respectively. Clearly, 0 is a topological graph with three edges and
two vertices. We can view the three intervals as rational polyhedral spaces, so on the interior of the edges
of 0 we have a notion of linearity. We can now define Aff0 as the sheaf of all continuous functions whose
restrictions to the interiors of the intervals are linear, and such that the sum of the outgoing slopes is 0 at
the two vertices. With these choices, 0 is the smooth tropical curve associated to the metric graph with
three parallel edges of lengths a, b and c. It is depicted in Figure 2.

2D. Tropical manifolds. We recall that every loop-free matroid M on a ground set E(M) has an associated
tropical linear space L M , which is a rational polyhedral set in RE(M)/R1. We will only consider very
special linear spaces and therefore refrain from recalling their precise definition. For our purposes, it
suffices to say that Rn is a tropical linear space for any n, and the 1-dimensional tropical linear spaces are
precisely the star-shaped sets appearing in the definition of smooth tropical curves in Section 2C.
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b

c

a

Figure 2. A tropical curve of genus 2 with its local charts and edge lengths.

Definition 2.8. A boundaryless rational polyhedral space X is called a boundaryless tropical manifold if
it can be covered by charts

X ⊇U ∼=−→ V ⊆ L ,

where U is an open subset of X and V is an open subset of a tropical linear space L .

Since both Rn and star-shaped sets are tropical linear spaces, it follows that real tori and smooth tropical
curves are boundaryless tropical manifolds.

2E. The cotangent sheaf.

Definition 2.9. Let X be a boundaryless rational polyhedral space:

(i) The quotient AffX /RX is called the cotangent sheaf and is denoted by �1
X .

(ii) The integral tangent space at a point x ∈ X is defined as T Z
x X = Hom(�X,x , Z).

(iii) The tangent space at a point x ∈ X is defined as Tx X = (T Z
x X)R

∼= Hom(�X,x , R).

Example 2.10. Let X = NR/3 be a real torus. Then AffX has no nonconstant global sections because
there is no globally defined nonconstant integral affine function on NR that is 3-periodic. On the other
hand, the quotient AffX /RX =�1

X is isomorphic to the constant sheaf NX .

By definition, a morphism of boundaryless rational polyhedral spaces f : X→ Y induces a morphism
f −1�1

Y →�1
X . Taking stalks and dualizing induces morphisms on tangent spaces dx f : Tx X→ T f (x)Y

for all x ∈ X that map the integral tangent spaces on X to the integral tangent spaces on Y .

3. Tropical cycles and their tropical cycle classes

We briefly recall the definitions of tropical cycles, tropical (co)homology, and the tropical cycle class
map connecting the two. We closely follow [Allermann and Rau 2010; François and Rau 2013; Shaw
2013] regarding tropical cycles and [Itenberg et al. 2019; Mikhalkin and Zharkov 2014; Jell et al. 2018;
Gross and Shokrieh 2019] regarding tropical (co)homology and the tropical cycle class map.
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3A. Tropical cycles. For a boundaryless rational polyhedral space X , let us denote by X reg its open
subset of points x ∈ X that have a neighborhood isomorphic (as boundaryless rational polyhedral spaces)
to an open subset of Rn for some n ∈ N. A tropical k-cycle is a function A : X→ Z such that its support
|A| = {x ∈ X | A(x) ̸= 0} is either empty or a purely k-dimensional polyhedral subset of X , A is nonzero
precisely on the set |A|reg, on which it is locally constant, and it satisfies the so-called balancing condition.
The latter is a local condition that is well-known for X = Rn , to which the general case can be reduced.
As we will only need it implicitly, we refer to [Allermann and Rau 2010] for details. The sum of two
tropical k-cycles on X , considered as a sum of Z-valued functions, is not a tropical k-cycle again in
general. However, there exists a unique tropical k-cycle on X that agrees with the sum on the complement
of an at most (k−1)-dimensional polyhedral subset of X . This makes the set Zk(X) into an Abelian
group. A tropical cycle A is said to be effective if it is everywhere nonnegative.

If f : X → Y is a proper morphism of boundaryless rational polyhedral spaces, it induces a push-
forward f∗ : Zk(X)→ Zk(Y ) of tropical cycles. If A ∈ Zk(X) is a tropical cycle, then f∗A will be zero
outside of the subset ( f |A|)k ⊆ f |A| where the local dimension of f |A| is k. There exists a dense open
subset U ⊆ ( f |A|)k such that for each y ∈U the fiber f −1

{y} is finite and contained in |A|reg, and for
each such y ∈U we have

f∗A(y)=
∑

x∈ f −1{y}

|coker dx f |A(x).

Note that the finiteness of coker dx f follows from the finiteness of the fiber over y. If X is compact then
one can take Y to be a point. Identifying the tropical 0-cycles on a point with Z, the push-forward then
defines a morphism Z0(X)→ Z. The image of a tropical 0-cycle A under this morphism is called the
degree of A, and it is denoted by

∫
X A.

If X and Y are boundaryless rational polyhedral spaces, and A ∈ Zk(X) and B ∈ Zl(X), then the cross
product

A× B : X × Y → Z, (x, y) 7→ A(x) · B(x)

of A and B is a tropical cycle again.
A rational function on a boundaryless rational polyhedral space X is a continuous function φ : X→ R

such that φ is piecewise affine with integral slopes in every chart. As this is a local condition, rational
functions define a sheaf MX of Abelian groups. The group of tropical Cartier divisors on X is given
by CDiv(X)= 0(X, MX/ AffX ). For every φ ∈ 0(X, MX ) we denote its image in CDiv(X) by div(φ),
and refer to it as the associated principal divisor. There exists natural bilinear map CDiv(X)× Zk(X)→

Zk−1(X), the intersection pairing of divisors and tropical cycles.
Note that a boundaryless rational polyhedral space X does not automatically have a natural fundamental

cycle, that is there is no canonical element in Z∗(X) in general.

Definition 3.1. We will say that a boundaryless rational polyhedral space X has a fundamental cycle
if X is pure-dimensional and the extension by 0 of the constant function with value 1 on X reg defines a
tropical cycle. In that case we will denote this tropical cycle by [X ], and refer to it as the fundamental
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cycle of X . We will say that a Cartier divisor D ∈ CDiv(X) on a tropical space X with fundamental cycle
is effective, if its associated Weil divisor [D] := D · [X ] is effective.

If X is a tropical manifold then it has a fundamental cycle [X ], which is the unity of the tropical
intersection product on Z∗(X). The tropical intersection product is compatible with intersections with
Cartier divisors in the sense that

D · A = [D] · A

for every Cartier divisor D ∈ CDiv(X) and tropical cycle A ∈ Z∗(X). Furthermore, the morphism

CDiv(X) 7→ Zdim(X)−1(X), D 7→ [D]

is an isomorphism; see [Francois 2013, Corollary 4.9]. If X is locally isomorphic to open subsets of Rn ,
then a Cartier divisor D ∈ CDiv(X) is effective if and only if it is locally given by concave rational
functions. This follows from the fact that every tropical hypersurface of Rn is realizable. Here, a rational
function is concave if it is the restriction of a concave rational function on Rn in sufficiently small local
charts. Also note that concave functions appear rather than convex ones, because we are using the
“min”-convention; see Remark 3.4.

3B. Line bundles. A tropical line bundle on a boundaryless rational polyhedral space X is an AffX -torsor.
More geometrically, it is a morphism Y → X of boundaryless rational polyhedral spaces such that locally
on X there are trivializations Y ∼= X ×R, where two such trivializations are related via the translation
by an integral affine function. More precisely, if two trivializations are defined over U ⊆ X , then the
transition between them is of the form

U ×R→U ×R, (u, x) 7→ (u, x +φ(u))

for some φ ∈ 0(U, AffX ). The standard argument using Čech cohomology shows that the set of iso-
morphism classes of tropical line bundles on X is in natural bijection to H 1(X, AffX ). In particular,
isomorphism classes of tropical line bundles form a group. A rational section of a tropical line bundle
Y → X is a continuous section that is given by a rational function in all trivializations. Exactly as in
algebraic geometry, every tropical Cartier divisor D on X defines a line bundle L (D) on X that comes
with a canonical rational section. This defines a bijection between CDiv(X) and isomorphism classes of
pairs (L , s) of a tropical line bundle L on X and a rational section s of L .

3C. Homology and cohomology. Let X be a boundaryless rational polyhedral space. To define the
tropical homology and cohomology groups, we need sheaves �

p
X of tropical p-forms for p > 0. On the

open subset X reg it is clear that we would like �
p
X to be isomorphic to

∧p
�1

X . However, this is not a
suitable definition globally because in general

∧p
�1

X can be nonzero even for p > dim(X); see [Gross
and Shokrieh 2019, Example 2.9]. One thus defines �

p
X as the image of the natural map∧p

�1
X → ι∗

(∧p
�1

X |X reg

)
,

where ι : X reg
→ X is the inclusion.
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The singular tropical homology groups are defined similar to the integral singular homology groups, but
with different coefficients. More precisely, there is a coarsest stratification of X such that the restrictions
of the constructible sheaf �1

X is locally constant on all the strata, and only singular simplices are allowed
that respect this stratification in the sense that each of their open faces is mapped into a single stratum.
The (p, q)-th chain group is then defined as

C p,q(X)=
⊕

σ : 1q→X allowable

Hom(�
p
X , Zσ(1q )),

where 1q denotes the standard q-simplex, the sum runs over all q-simplices respecting the stratification,
and Zσ(1q ) denotes the constant sheaf associated to Z on σ(1q). With the usual boundary operators
this defines chain complexes C p,• and the tropical homology groups which are defined as Hp,q(X) =

Hq(C p,•(X)).
Dualizing (over Z) the chain complexes C p,•(X) yields cochain complexes C p,•(X) whose cohomology

are the tropical cohomology groups H p,q(X)= Hq(C p,•(X)). There is a natural isomorphism

H p,q(X)∼= Hq(X, �
p
X ).

3D. The first Chern class map. The quotient map d : AffX →�1
X of sheaves on a boundaryless rational

polyhedral space induces a morphism

c1 := H 1(d) : H 1(X, AffX )→ H 1(X, �1
X )∼= H 1,1(X)

called the first Chern class map from the group of all tropical line bundles on X to the (1, 1)-tropical
cohomology group of X . Using the first Chern class map, any divisor D ∈ CDiv(X) has an associated
(1, 1)-cohomology class c1(L (D)).

3E. The tropical cycle class map. Exactly as in algebraic geometry, there is a tropical cycle class map
that assigns a class in tropical homology to every tropical cycle. More precisely, on any closed rational
polyhedral space X , there exist morphisms

cyc : Zk(X)→ Hk,k(X)

for every k ∈N. We will only need an explicit description of the tropical cycle class map for 1-dimensional
tropical cycles, that is when k= 1. If A∈ Z1(X), then its support |A| is a compact (not necessarily smooth)
tropical curve. For each open edge e of |A| choose a generator ηe ∈ Tx |A| for some x ∈ e. By taking
parallel transports of ηe along e we actually obtain a generator for all Ty|A| with y ∈ e. Therefore, ηe

defines a morphism �1
|A|→ Ze (recall that Ze denotes the constant sheaf on e associated to Z), which can

be uniquely extended to a morphism �1
|A|→ Zē. Precomposing with the morphism �1

X →�1
|A| defined

by the inclusion |A|→ X , one obtains a morphism ηē ∈Hom(�1
X , Zē). To complete the construction, one

has to choose a homeomorphism γē : 1
1
→ ē that parametrizes ē in the direction specified by ηe. Let us
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denote the element in C1,1(X) defined by γē and ηē by γē⊗ ηē. Then cyc(A) is represented by the cycle∑
e

A(e) · γē⊗ ηē ∈ C1,1(X),

where the sum runs over all open edges of |A| and A(e) denotes the weight of the tropical 1-cycle A on e.

Example 3.2. Let 0 be the graph from Example 2.7, and denote its edges by e1, e2, and e3. Let v and w

be the vertices of 0 and orient all edges from v to w. Let ηi be the primitive tangent direction on ei in
the chosen direction. Then cyc[0] is represented by the (1, 1)-chain

γ1⊗ η1+ γ2⊗ η2+ γ3⊗ η3,

where γi is any path that parametrizes ei from v to w. This is indeed a cycle. Its boundary is given by

w⊗ (η1+ η2+ η3)− v⊗ (η1+ η2+ η3),

which vanishes: locally at v (respectively at w), the graph 0 looks like the star-shaped set depicted to
the right in Figure 1, and the vectors ηi are the (negatives of the) primitive generators of the rays of the
star-shaped set. Since these sum to 0, the boundary is 0.

3F. Identities in tropical homology. In [Gross and Shokrieh 2019] we studied various operations on
tropical homology and cohomology and showed how to carry over identities known for singular homology
to the tropical setting. For example, there are pull-backs of cohomology classes and push-forwards of
homology classes along morphisms of boundaryless rational polyhedral spaces, there is a cup product
“⌣” on tropical cohomology and a cap product “⌢” that makes the tropical homology groups a module
over the tropical cohomology ring. There also are cross products “×” of both homology and cohomology
classes. We will refer the reader to [loc. cit.] for the details regarding these operations. For the reader’s
convenience, we have summarized the most important identities for the tropical cycle class map in the
following theorem:

Theorem 3.3 [Gross and Shokrieh 2019]. Let X , Y , and Z be closed rational polyhedral spaces, let
f : X→ Z be a proper morphism, let A ∈ Z∗(X), B ∈ Z∗(Y ) and D ∈ CDiv(X). Then we have

cyc( f∗A)= f∗ cyc(A),

cyc(A× B)= cyc(A)× cyc(B), and

cyc(D · A)= c1(L (D)) ⌢ cyc(A).

If X is a closed rational polyhedral space, then the morphism from X to a point defines a morphism
H0,0(X)→Z by identifying the (0, 0)-tropical homology group of a point with Z. The image of a tropical
cycle α ∈ H0,0(X) is called the degree of α and denoted by

∫
X α. It is a direct consequence of the first

equation in Theorem 3.3 that ∫
X

A =
∫

X
cyc(A)

for every A ∈ Z0(X).
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If X is a closed tropical manifold, then homology and cohomology are dual to each other, in the sense
that the morphism

H∗,∗(X)→ H∗,∗(X), c 7→ c ⌢ cyc[X ]

is an isomorphism [Jell et al. 2018; Gross and Shokrieh 2019]. In this context one says that c is Poincaré
dual to c ⌢ cyc[X ]. Poincaré duality allows to define an intersection product for tropical homology
classes on a closed tropical manifold X . More precisely, if α, β ∈ H∗,∗(X), and c ∈ H∗,∗(X) is Poincaré
dual to α, then one defines

α ·β := c ⌢ β.

Remark 3.4. Both the intersection pairing between tropical Cartier divisors and tropical cycles, and the
tropical cycle class map are not entirely free of choices. The intersection pairing depends on whether
one measures incoming or outgoing slopes. When measuring incoming slopes, concave functions define
effective principal divisors, whereas when measuring outgoing slopes, convex functions define effective
principal divisors. Since minima of linear functions are concave, and maxima of linear functions are
convex, one speaks of the “min”- and “max”-conventions, respectively. The cycle class map, on the other
hands, depends on a consistent choice of isomorphisms∧k

N ∼=−→ Hk(NR, NR \ {0};Z)

for any lattice N of any rank k; see [Gross and Shokrieh 2019, Section 5].
If one wants Theorem 3.3 to hold, one has to make the choices involved in the definitions of the

intersection pairing and the cycle class map consistently. In other words, the choice of either “min”-
or “max”-convention will determine the sign of the cycle class map. In this paper, we will choose the

“min”-convention, because it makes the formulas in Section 9 nicer, but the same formulas hold true in the
“max”-convention after appropriately adjusting the sign.

4. Tropical Jacobians

In this section we review the definition of tropical Jacobians, closely following [Mikhalkin and Zharkov
2008]. Let 0 be a compact and connected smooth tropical curve. We write �Z(0) := H 0(0, �1

0) for the
group of global integral 1-forms, and �R(0) :=�Z(0)⊗Z R for the group of (real) 1-forms. A 1-form
on 0 is completely determined by its restrictions to the edges of 0, and these restrictions are constant and
completely determined by a real number and an orientation of the edge: it will be of the form rdx , where
r ∈ R, and x is the chart on the edge determined by the orientation. Extracting the data of its restrictions
to the edges out of a 1-form gives rise to a natural morphism �R(0)→ C1(0;R). Since the outgoing
primitive direction vectors at any point of 0 (in any chart around that point) sum to 0, the chains in the
image of �R(0) will in fact be 1-cycles, that is they are mapped to 0 by the boundary morphism. It is not
hard to see that the induced map �R(0)→ H1(0;R) is an isomorphism.
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Remark 4.1. Another way to think of the elements of �Z(0) is as integral flows. Given ω ∈ �Z(0),
we have already observed that the restriction ω|e to an open edge e is determined by a direction and a
nonnegative integer. Conversely, a collection of directions and nonnegative integers for every edge in 0

will define a global 1-form if and only if this collection defines a flow.

Global 1-forms on 0 can be integrated on singular 1-chains in 0. We obtain a pairing

�R(0)×C1(0;R)→ R, (ω, c) 7→
∫

c
ω, (4-1)

which can be shown to induce a morphism H1(0;R) → �R(0)∗. Together with the isomorphism
H1(0;R)∼=�R(0) from above, we obtain a natural bilinear form E on H1(0;R), which can be described
explicitly. Namely, for two 1-cycles c1 and c2, the pairing E(c1, c2) is the weighted length of the
intersection of c1 and c2, where an oriented line segment occurring in c1 and c2 with weights λ and µ,
respectively, contributes with weigh λ ·µ. This bilinear form is clearly symmetric and positive definite.
In particular, it is a perfect pairing, and hence the morphism H1(0;R)→�R(0)∗ we used to define it
is an isomorphism. Via this isomorphism H1(0;Z) becomes a sublattice of �R(0)∗ of full rank, and
the positive definite symmetric bilinear form E induces a positive definite symmetric bilinear form Q
on �R(0)∗. The full-rank sublattice of �R(0)∗ that has integer pairings with the elements of H1(0, Z)

with respect to Q is precisely �Z(0)∗.

Definition 4.2. The tropical Jacobian associated to the compact and connected smooth tropical curve 0

is the pair consisting of the real torus

Jac(0) :=�R(0)∗/H1(0;Z)

and the bilinear form Q that is defined on the universal cover �R(0)∗ of Jac(0).

Remark 4.3. By the universal coefficient theorem, we also have an isomorphism H 1(0;R)∼= H1(0;R)∗.
Together with the isomorphism �R(0)∼= H1(0;R) from above one obtains an isomorphism H 1(0;R)∼=

�R(0)∗. It is therefore also possible to write the Jacobian of 0 as the quotient H 1(0;R)/H1(0;Z).

Now fix a base point q ∈0. Given any other point p∈0 there is a path γp connecting q to p. As any other
path from q to p differs from γp by an integral 1-cycle, the class of γp in (C1(0;Z)/B1(0;Z))/H1(0;Z)

is independent of the choice of γp. Here, B1(0;Z) denotes the group of 1-boundaries. Using the pairing
(4-1), we obtain an element in Jac(0) that only depends on the choice of q . This defines the Abel–Jacobi
map

8q : 0→ Jac(0).

Let p ∈ 0, and let U be a sufficiently small connected open neighborhood of p. More precisely,
U should be connected and U \ {p} should be disjoint from V (0). Then for every p′ ∈ U \ {p} there
exists r > 0 and a geodesic path γ : [0, r ] →U from p to p′. Let e denote the unique open edge e of 0

containing p′, and let η denote the primitive integral tangent vector on e pointing from p towards p′. If
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x is any lift of 8q(p) to the universal cover �R(0)∗, then by definition, p′ lifts to x + r · δ, where δ is
given by

δ : �R(0)→ R, ω 7→ 1
r

∫
γ

ω = ⟨ω|e, η⟩.

If we identify �R(0) with flows on 0 (as in Remark 4.1) then δ is the map assigning to a flow ω on 0 its
flow on e in the direction specified by η. In particular, δ is integral, that is δ ∈�Z(0)∗. This shows that
8q is, in fact, a morphism of boundaryless rational polyhedral spaces, and that its action on the tangent
space of e is given by

δ = (d8q)(η).

Example 4.4. Let 0 be the smooth tropical curve associated to the metric graph that consists of two
vertices which are connected by three edges of length 1 (the graph of Example 2.7 with a = b = c = 1).
It is depicted to the left in Figure 3. We choose one of the vertices as the base point q and orient the
edges of 0 such that one edge, call it e3 is oriented towards q and the other two edges, call them e1 and
e2, are oriented away from q. The orientations define two simple closed loops c1 and c2 in 0, where
ci first follows ei and then e3. These loops define a basis for H1(0;R), and hence for �Z(0). Let
δ1, δ2 ∈ �Z(0)∗ be the dual basis. Since the signed length of ci ∩ c j is 2 if i = j and 1 if i ̸= j , the
injection H1(0;Z)→�R(0)∗ maps c1 to (2, 1) and c2 to (1, 2) in the coordinates defined by the basis
δ1, δ2. If follows that

Jac(0)= R2
/

Z
(1

2

)
+Z

(2
1

)
,

where the integral structure is given by Z2
⊆ R2.

The Abel–Jacobi map sends q to 0 in this quotient. If γ1 is the geodesic path along e1 that starts at q ,
then

(d8q)(γ1(t))= t ·
(1

0

)
+ H1(0;Z)

for all t ∈ [0, 1] because the path from q to γ1(t) along e1 intersects c1 in an edge segment of length t ,
and c2 in a point (an edge segment of length 0). Similarly, if γ2 is a geodesic path along e2, and γ3 is a
geodesic path along e3, both starting at q , then

(d8q)(γ2(t))= t ·
(0

1

)
+ H1(0;Z) and (d8q)(γ3(t))= t ·

(
−1
−1

)
+ H1(0;Z)

for all t ∈ [0, 1].

5. Algebraic, homological, and numerical equivalence

In this section we study different notions of equivalence for tropical cycles on boundaryless rational
polyhedral spaces, with a focus on real tori.
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8q

0

q

e1

e2

e3

2

W̃1

Jac(0)

Figure 3. A tropical curve of genus g, the universal cover of its Jacobian, and the sets W̃1

(segments with arrows) and 2 (no arrows) lifted to the universal cover. (See Section 8B
for the definition of 2).

5A. Algebraic equivalence. Following [Zharkov 2015], we make the following definition.

Definition 5.1. Let X be a boundaryless rational polyhedral space. Let Ralg be the subgroup of Z∗(X)

generated by tropical cycles of the form

p∗(q∗(t0− t1) ·W ),

where W is a tropical cycle on X×0 for some compact and connected smooth tropical curve 0 containing
the two points t0, t1 ∈ 0, and p : X ×0→ X and q : X ×0→ 0 are the natural projections. Note that
because 0 is smooth, the difference t0− t1 defines a tropical Cartier divisors on 0 (see Section 3A) and
tropical Cartier divisors can be pulled-back along any morphism of boundaryless rational polyhedral spaces.

We say that two tropical cycles A, B ∈ Z∗(X) are algebraically equivalent, denoted by A ∼alg B, if
their classes in Z∗(X)/Ralg coincide.

Proposition 5.2. Let X be a boundaryless tropical manifold, let A, B, C ∈ Z∗(X) be tropical cycles on
X , and assume that A ∼alg B. Then

A ·C ∼alg B ·C.

Proof. By the definition of algebraic equivalence, we may assume that there exists a compact and
connected smooth tropical curve 0, two points t0, t1 ∈ 0, and a tropical cycle W on X ×0 such that

A− B = p∗(q∗(t0− t1) ·W ),

where p and q denote the projection. Using the projection formula [François and Rau 2013, Theo-
rem 8.3(1)], we see that

A ·C − B ·C = (A− B) ·C = p∗(q∗(t0− t1) · (W · (C ×0))).

Applying the definition of algebraic equivalence with W replaced by W · (C ×0), we obtain that A ·C
and B ·C are algebraically equivalent. □
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Definition 5.3. Let X = NR/3 be a real torus. A spanning curve for X is a 1-dimensional polyhedral
subset 0 ⊆ X such that there exists an effective tropical 1-cycle on X with support 0, and such that the
parallel transports to 0 of the direction vectors of the edges of 0 span T0 X ∼= NR. If such a curve exists,
we say that X admits a spanning curve. See Example 7.4 for an example of a real torus which does not
admit a spanning curve.

Proposition 5.4. Let 0 be a compact and connected smooth tropical curve. Then its Jacobian Jac(0)

admits a spanning curve.

Proof. For any choice of base point q ∈ 0, the image 8q(0) of 0 under the Abel–Jacobi map is the
support of the effective cycle 8q∗[0]. Using the explicit description given in Section 4 of the tangent
directions in Jac(0) of the images of the edges of 0, it follows directly that 8q(0) is a spanning curve
for Jac(0). □

Proposition 5.5. Let X = NR/3 be a real torus that admits a spanning curve 0. Let x ∈ X , and recall
that we denote by tx : X→ X the translation by x. Then for every tropical cycle A ∈ Z∗(X) we have

A ∼alg (tx)∗A.

Proof. By the assumptions on 0, the point x is in the subgroup of X generated by the differences y− y′

for pairs y, y′ ∈ 0 contained in the same edge of 0. Therefore, it suffices to show that (tx)∗A∼alg (tx ′)∗A
for any pair of points x, x ′ contained in the same edge of 0. Let 0x be the component of 0 containing x .
Even though 0x is not smooth, it still determines a metric graph G. After a choice of weights that makes
0 into a tropical 1-cycle, the metric graph G is equipped with weights m : E(G)→ Z>0 induced by the
weights on 0. Let G̃ be the metric graph obtained from G replacing each edge e of G by an edge of
length ℓ(e)/m(e), where ℓ(e) denotes the length of e in the metric graph G. If 0̃ denotes the smooth
tropical curve associated to the graph G̃ (see Section 2C), then there is a natural morphism f : 0̃→ |0x |

of rational polyhedral spaces, which is a bijection of the underlying spaces. Let t, t ′ ∈ 0̃ be the unique
points with f (t)= x and f (t ′)= x ′. Now let

g : X × 0̃→ X × 0̃, (x, s) 7→ (x + f (s), s),

and denote W = g∗(A×[0])∈ Z∗(X×0). By construction, if p : X× 0̃→ X and q : X× 0̃→ 0̃ denote
the projections, we have

p∗(q∗(t) ·W )= (tx)∗(A) and p∗(q∗(t ′) ·W )= (tx ′)∗(A),

finishing the proof. □

5B. Homological equivalence.

Definition 5.6. Let X be a closed rational polyhedral space. We say that two tropical cycles A and B are
homologically equivalent, if cyc(A)= cyc(B).
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Example 5.7. Let 0 be a compact and connected smooth tropical curve. By definition, we have H0,0(0)∼=

H0(0;Z) ∼= Z. It follows that the degree morphism H0,0(0)→ Z is an isomorphism. Therefore, the
homological equivalence class of a tropical 0-cycle is uniquely determined by its degree. Let D ∈CDiv(0)

be a Cartier divisor on 0. By Theorem 3.3, we have cyc[D] = c1(L (D)) ⌢ [0], and by Poincaré duality
this implies that c1(L (D)= 0 if and only if cyc[D] = 0. By what we just saw, we have cyc[D] = 0 if
and only if the degree of D is 0. We see that if D′ ∈ CDiv(0) is another Cartier divisor, then [D] and
[D′] are homologically equivalent if and only if c1(L (D))= c1(L (D′)), which holds if and only if D
and D′ have the same degree.

Proposition 5.8. Algebraic equivalence implies homological equivalence: if A and B are tropical cycles
on a closed rational polyhedral space X with A ∼alg B, then A ∼hom B.

Proof. By the definition of algebraic equivalence, we may assume that there exists a compact and
connected smooth tropical curve 0, two points t0, t1 ∈ 0, and a tropical cycle W on X × 0 such that
A− B = p∗(q∗(t0− t1) ·W ). Since t0− t1 has degree 0, we have c1(L (t0− t1))= 0; see Example 5.7.
Therefore, by Theorem 3.3, we have

cyc(A)− cyc(B)= cyc(A− B)= p∗(q∗c1(L (t0− t1)) ⌢ cyc(W ))= 0,

finishing the poof. □

Theorem 5.9. Let X be a real torus admitting a spanning curve, and let A, B ∈ Z∗(X) be tropical cycles.
Then we have

cyc(A · B)= cyc(A) · cyc(B).

Proof. As both sides are bilinear in A and B, we may assume that A and B are pure-dimensional, say of
dimensions k and l, respectively. By Propositions 5.5 and 5.8, we may replace A by a general translate.
Therefore, we can assume that A and B meet transversally, that is that |A| ∩ |B| is either empty or of
pure dimension k+ l − n, where n = dim(X), and (|A| ∩ |B|)reg

= |A|reg
∩ |B|reg.

As explained in [Gross and Shokrieh 2019, Remark 5.5], we can view cyc(A) as an element of the
Borel–Moore homology group H B M

k,k (|A|, X) with support on |A|, and similarly

cyc(B) ∈ H B M
l,l (|A|, X) and cyc(A · B) ∈ H B M

k+l−n,k+l−n(|A∩ B|, X).

Using Verdier duality [Gross and Shokrieh 2019, Theorem D], the cycle class cyc(A) is Poincaré dual to a
cohomology class with support on |A|, that is to an element in H n−k,n−k

|A| (X). Therefore, the intersection
product cyc(A) · cyc(B) is also represented by an element in H B M

k+l−n,k+l−n(|A∩ B|, X) and it suffices to
prove the equality

cyc(A · B)= cyc(A) · cyc(B)

in H B M
k+l−n,k+l−n(|A ∩ B|, X). For dimension reasons, both sides are uniquely determined by their

restrictions to H B M
k+l−n,k+l−n(|A∩B|∩U, U ), where U is an open subset of X with U∩|A∩B|= |A∩B|reg

[Gross and Shokrieh 2019, Lemma 4.8(b)]. Combining the facts that V 7→ H B M
k+l−n,k+l−n(|A∩ B|∩V, V )
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satisfies the sheaf axioms [loc. cit., Lemma 4.8(b)], X is locally isomorphic to open subsets of Rn , and
(|A|∩|B|)reg

= |A|reg
∩|B|reg allows us to further reduce to the case where U =Rn and A and B are linear

subspaces of Rn . In this case, there exist hyperplanes H1, . . . , Hn−k and H ′1, . . . , H ′n−l , and integers
a, b ∈ Z such that

A = a · H1 · · · Hn−k and B = b · H ′1 · · · Hn−l .

Let α ∈ H n−k,n−k
|A| (X) be the Poincaré dual to cyc(A). Applying [loc. cit., Proposition 5.12] (see also

[loc. cit., Remark 5.13]) yields

cyc(A·B)= cyc((a·H1 · · ·Hn−k)·(b·H ′1 · · ·Hn−l)·[X ])

=
(
a·c1(L (H1)) ⌣ · · ·⌣ c1(L (Hn−k))

)
⌢

(
(b·c1(L (H ′1)) ⌣ · · ·⌣ c1(L (H ′n−l))) ⌢ cyc[X ]

)
=α ⌢ cyc(B)

= cyc(A)·cyc(B),

where the last equality holds by the definition of the intersection product of tropical homology classes.
This finishes the proof. □

5C. Numerical equivalence.

Definition 5.10. Let X be a closed tropical manifold. Then two tropical cycles A, B ∈ Z∗(X) on X are
numerically equivalent, for which we write A ∼num B, if for every tropical cycle C ∈ Z∗(X) on X we
have ∫

X
A ·C =

∫
X

B ·C.

Proposition 5.11. Let X be a real torus admitting a spanning curve, and let A, B ∈ Z∗(X) with A∼hom B.
Then A ∼num B.

Proof. Let C ∈ Z∗(X). By Theorem 5.9, we have∫
X

A ·C =
∫

X
cyc(A ·C)=

∫
X

cyc(A) · cyc(C)=

∫
X

cyc(B) · cyc(C)=

∫
X

cyc(B ·C)=

∫
X

B ·C,

from which the assertion follows. □

6. Tropical homology of real tori

Let X = NR/3 be a real torus. Then the group law and the tropical cross product endow the tropical
homology groups with the additional structure of the Pontryagin product.

Definition 6.1. Let X be a real torus with group law µ : X × X→ X . The tropical Pontryagin product is
defined as the pairing

(α, β) 7→ α ⋆ β := µ∗(α×β),
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where α and β are either elements of Z∗(X) or of H∗,∗(X). We thus obtain morphisms

⋆ : Zi (X)⊗Z Zk(X)→ Zi+k(X)

⋆ : Hi, j (X)⊗Z Hk,l(X)→ Hi+k, j+l(X)

for all choices of natural numbers i, j, k, l. It is not hard to see that ⋆ makes Z∗(X) into a graded abelian
group, and H∗,∗(X) into a bigraded abelian group.

Proposition 6.2. Let X be a real torus. Then the tropical cycle class map respects Pontryagin products,
that is the diagram

Zi (X)⊗Z Z j (X) Zi+ j (X)

Hi,i (X)⊗Z H j, j (X) Hi+ j,i+ j (X)

⋆

⋆

cyc⊗ cyc cyc

is commutative for all i, j ∈6.

Proof. Since the Pontryagin product is defined as the push-forward of a cross product, this follows
immediately from the compatibility of the tropical cycle class map with cross products and push-forwards
stated in Theorem 3.3. □

For the real torus X = NR/3, we will now describe the group H∗,∗(X) and the Pontryagin product
on it explicitly. First we note that the sheaf �1

X is the constant sheaf MX associated to the lattice
M = Hom(N , Z), and since X reg

= X , we have �k
X
∼=

(∧k M
)

X for all integers k. By definition of
singular tropical homology, we thus have a canonical graded isomorphism

H∗,∗(X)∼= H∗

(
X;

∧∗

N
)
∼= H∗(X;Z)⊗Z

∧∗

N .

The restriction of the Pontryagin product to the first factor H∗(X;Z)∼= H0,∗(X) is precisely the classical
Pontryagin product one obtains when one views X as a topological group. But, as a topological group,
X is a product of 1-spheres. So using the Künneth theorem one sees that H∗(X;Z) is isomorphic to∧

H1(X;Z). This is, in fact, an isomorphism of rings, the multiplication of H∗(X;Z) being the Pontryagin
product. Finally, because X is the quotient of its universal covering space NR by the action of 3, we
obtain a natural isomorphism H1(X;Z)∼=3. If a tropical 1-cycle in H1(X;Z) is represented by a loop
γ : [0, 1] → X then the corresponding element of 3 is given by γ̃ (1)− γ̃ (0) for any lift γ̃ : [0, 1] → NR

of γ to the universal cover. We obtain an isomorphism

H∗,∗(X)∼=
∧∗

3⊗Z

∧∗

N . (6-1)

It is straightforward to check that with this identification, the tropical Pontryagin product on H∗,∗(X)

satisfies

(α⊗ω) ⋆ (β⊗ ξ)= (α∧β)⊗ (ω∧ ξ).
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By a similar argument, one obtains a description for the tropical cohomology of X that is dual to the
description of tropical homology in (6-1). More precisely, one sees that

H∗,∗(X)∼=
∧∗

3∗⊗Z

∧∗

M, (6-2)

and that, with this identification, the tropical cup product on H∗,∗(X) satisfies

(α⊗ω) ⌣ (β⊗ ξ)= (α∧β)⊗ (ω∧ ξ).

With the descriptions of the tropical homology and the tropical cohomology given in (6-1) and (6-2),
the tropical cap product can also be expressed explicitly. More precisely, we have

(α⊗ω) ⌢ (β⊗ ξ)= (α ⌟β)⊗ (ω ⌟ ξ), (6-3)

where “⌟” denotes the interior product on the exterior algebra.
In bidegree (1, 1) our description of the tropical cohomology of X produces an isomorphism

H 1,1(X)∼=3∗⊗Z M.

We can further identify the right side with Hom(3⊗Z N , Z), that is with bilinear forms on NR that have
integer values on 3× N .

Convention 6.3. From now on we will always identify, according to the identifications in this section,
the cohomology group H 1,1(NR/3) with the group of bilinear forms on NR that have integer values on
3× N .

7. Line bundles on real tori

7A. Factors of automorphy. Let N be a lattice, let 3⊆ NR be a lattice of full rank, and let X = NR/3 be
the real torus associated to N and 3. To describe the tropical line bundles on X we recall from Section 3B
that they form a group, canonically identified with H 1(X, AffX ). Invoking the results from [Mumford
2008, Appendix to Section 2], together with the fact that the pull-back π−1 AffX ∼= AffNR

along the
quotient morphism π : NR→ NR/3= X has trivial cohomology on NR, we obtain the identification

H 1(X, AffX )∼= H 1(3, 0(NR, AffNR
)),

where the right side is the first group cohomology group of 0(NR, AffNR
), equipped with its natural

3-action. This is very much akin to the case of complex tori: an element of H 1(3, 0(NR, AffNR
)) can

be represented by a tropical factor of automorphy, that is a family of integral affine functions indexed
by 3, that, if we represent it as a function a : 3× NR→ R, satisfies

a(λ+µ, x)= a(λ, µ+ x)+ a(µ, x) (7-1)
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for all µ, λ∈3 and x ∈NR. Two factors of automorphy represent the same element of H 1(3,0(NR,AffNR
))

if and only if they differ by a factor of automorphy of the form

(λ, x) 7→ l(x + λ)− l(x)

for some integral affine function l ∈ 0(NR, AffNR
), which happens if and only if they differ by a factor of

automorphy of the form

(λ, x) 7→ mR(λ),

where mR is the R-linear extension of a linear form m : N → Z.
Any factor of automorphy a(− ,− ) defines a group action λ.(x, b) = (x + λ, b+ a(λ, x)) of 3 on

the trivial line bundle NR×R on NR. The tropical line bundle on X corresponding to a(− ,− ) is the
quotient (NR×R)/3.

7B. The Appell–Humbert Theorem. It is easy to check that for every morphism l ∈ Hom(3, R) and
every symmetric bilinear form E on NR with E(3× N )⊆ Z, the family of integral affine functions on
NR defined by

aE,l(λ, x)= l(λ)− E(λ, x)− 1
2 E(λ, λ)

is a tropical factor of automorphy. We denote the associated tropical line bundle on X by L (E, l). The
following proposition shows that the first Chern class recovers E from L (E, l).

Proposition 7.1. Let E be a symmetric bilinear form on NR with E(3× N )⊆ Z, and let l ∈ Hom(3, R).
Then c1(L (E, l))= E , where we identify H 1,1(X) with the group of bilinear forms on NR with integer
values on 3× N according to Convention 6.3.

Proof. Let U = {Uα}α be an open cover of X such that each preimage π−1Uα is a union of disjoint
open subsets of NR that map homeomorphically onto Uα. For each α, choose a continuous section
sα : Uα→ π−1Uα of π . Furthermore, we choose a (necessarily noncontinuous) section s : X→ NR of π .
By construction, the line bundle L (E, l) is represented by the Čech cocycle

(Uα,β ∋ x 7→ aE,l(sβ(x)− sα(x), sα(x))) ∈ Č1(U, AffX ).

Note that sβ−sα has values in 3 and is therefore constant on the connected components of Uα,β =Uα∩Uβ

by continuity. In particular, the functions x 7→ aE,l(sβ(x)− sα(x), sα(x)) are indeed integral affine. By
definition, the first Chern class of L (E, l) is represented by the Čech cocycle obtained by differentiating
the transition functions for all α and β. Using the definition of aE,l , it follows that c1(L (E, l)) is
represented by the cocycle

(Uα,β ∋ x 7→ −E(sβ(x)− sα(x))) ∈ Č1(U, �1
X ), (7-2)

where we consider E as a function 3→ N ∗. To compute what this corresponds to under the identification
of H 1(X, �1

X ) with H 1(X; N ∗)∼=3∗⊗ N ∗, we consider the double complex

(Č i (U, C j (X; N ∗)), di j , ∂i j ),
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where C i (X; N ∗) denotes the sheafification of the presheaf

U 7→ C i (U ; N ∗)

and we set C−1(U ; N ∗) = N ∗ and Č−1(U, F ) = 0(X, F ) for any sheaf F . We follow the cocycle of
formula (7-2) through the double complex in the zig-zag from the (1,−1) entry to the (−1, 1) entry
indicated by the solid arrows in the following diagram:

0 0 0

0 N ∗ C0(X; N ∗) C1(X; N ∗) · · ·

0 Č0(U, (N ∗)X ) Č0(U, C 0(X; N ∗)) Č0(U, C 1(X; N ∗)) · · ·

0 Č1(U, (N ∗)X ) Č1(U, C 0(X; N ∗)) Č1(U, C 1(X; N ∗)) · · ·

...
...

...

First we apply the differential coming from singular cohomology and obtain

((Uα,β
x
←− {0}) 7→ −E(sβ(x)− sα(x))) ∈ Č1(U, C 0(X; N ∗)).

Clearly, this is the image under the differential coming from Čech cohomology of the cochain

((Uα
x
←− {0}) 7→ −E(sα(x)− s(x))) ∈ Č0(U, C (X; N ∗)).

Applying the differential of singular cohomology again we obtain

((Uα
σ
←− [0, 1]) 7→ −E(sα(σ (1))− s(σ (1))− sα(σ (0))+ s(σ (0)))) ∈ Č0(U, C 1(X; N ∗)).

This can be lifted to a singular 1-cochain. Namely, for an arbitrary 1-simplex σ : [0, 1]→ X we choose a
lift σ ′ : [0, 1] → NR and then assign to σ the value

−E(σ ′(1)− s(σ (1))− σ ′(0)+ s(σ (0))).

This is clearly independent of the choice of σ ′. In particular, if the image of σ is contained in Uα, we
may choose σ ′ = sα ◦ σ and obtain the same cocycle on Uα as before. It is also clear that any loop in X
which is the image of a path in NR from 0 to λ ∈3 is mapped to −E(λ) by this 1-cochain. Therefore,
we have c1(L (E, l))= E when identifying H 1,1(X) with 3∗⊗Z N ∗ according to Convention 6.3. □

Theorem 7.2 (tropical Appell–Humbert theorem). Let L be a tropical line bundle on the real torus
X = NR/3. Then there exists l ∈ Hom(3, R) and a symmetric form E on NR with E(3× N )⊆ Z such
that L ∼=L (E, l). Moreover, if we are given another choice of l ′ ∈Hom(3, R) and symmetric form E ′ on
NR with E ′(3×N )⊆Z, then L ∼=L (E ′, l ′) if and only if E = E ′ and the linear form (l− l ′)R : NR→R

has integer values on N.

Proof. We have already seen in Section 7A that there exists a tropical factor of automorphy a : 3×NR→R

such that L is the line bundle associated to a(− ,− ). For every λ ∈3, the function a(λ,−) is integral
affine, hence its differential E(λ) := −da(λ,−) defines an element in Hom(N , Z). Differentiating (7-1),
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we see that the map λ 7→ E(λ) is linear. In other words, E defines a bilinear map on 3× N → Z.
Therefore, for a suitable function b : 3→ R, we have a(λ, x) = −E(λ, x)+ b(λ) for all λ ∈ 3 and
x ∈ NR. Plugging this into (7-1), we see that E(λ, µ) = E(µ, λ) for all λ, µ ∈ 3, that is that E is, in
fact, symmetric. The tropical factor of automorphy a− aE,0 is then a family of constant functions, that is
we have

(a− aE,0)(λ, x)= l(λ)

for some function l : 3→ R. Applying (7-1) once more we see that l is, in fact, linear. It follows that
a = (a− aE,0)+ aE,0 = aE,l . In particular, we have L ∼=L (E, l).

Now assume we are given a second choice of linear function l ′ ∈ Hom(3, R) and symmetric form
E ′ on NR with E ′(3× N ) ⊆ Z such that L (E ′, l ′) ∼= L . We have already seen in Section 7A that
this happens if and only if aE,l − aE ′,l ′ is of the form a0,mR|3 for some linear function m : N → Z. By
Proposition 7.1, we have

E ′ = c1(L (E ′, l ′))= c1(L (E, l))= E .

Therefore, we have aE,l − aE ′,l ′ = a0,l−l ′ and it follows that (l − l ′)R has integer values on N . □

Remark 7.3. It follows directly from the tropical Appell–Humbert theorem that there is a bijection
between the group of all tropical line bundles with trivial first Chern class and 3∗R/N ∗, which is called
the dual real torus to X for that reason.

Example 7.4. Let N = Z2 and let 3= Zu1+Zu2 ⊆ NR = R2, where

u1 =

( 1
√

6

)
and u2 =

(√3
√

2

)
.

We claim that the real torus X = NR/3 has no spanning curve. Indeed, if there was one, then there existed
an effective tropical 1-cycle C in X supported on a spanning curve. Because the tangent directions of C
span NR, there is a translate C ′ of C that intersects C transversally in at least one point. Therefore, we
have

0 ̸= cyc(C ·C ′)= cyc(C2)= cyc(C)2,

where the first equality follows from Propositions 5.2 and 5.5, and the second one from Theorem 5.9. In
particular, we have cyc(C) ̸= 0.

As C is a hypersurface in X , it is a tropical Cartier divisor and we have

cyc(C)= c1(L (C)) ⌢ cyc[X ].

By Proposition 7.1 and Theorem 7.2, the first Chern class c1(L (C)) is given by a symmetric from E on
NR with E(3× N )⊆ Z. Let Z ∋ αi j = E(ui , e j ), where ei denotes the standard basis of Z2. Then E is
symmetric if and only if

α11
√

3+α12
√

2= E(u1, u2)= E(u2, u1)= α21+α22
√

6.
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The numbers 1,
√

2,
√

3, and
√

6 being linearly independent over Q implies that all αi j are zero. Thus, we
have E = 0, which is equivalent to c1(L (C))= 0, which in turn implies that cyc(C)= 0, a contradiction.

7C. Translations of line bundles.

Proposition 7.5. Let X = NR/3 be a real torus, let l ∈ Hom(3, R), and let E be a symmetric bilinear
form on NR with E(3× N )⊆ Z. Furthermore, let π : NR→ X be the projection and let y ∈ NR. Then
we have

t∗π(y)L (E, l)∼=L (E, l − E(−, y)).

In particular, if the bilinear form E is nondegenerate and L ′ is any line bundle on NR/3 with c1(L
′)= E ,

then there exists x ∈ X such that L ′∼= t∗x L (E, l). If , moreover, E restricts to a perfect pairing 3×N→Z,
then x is unique.

Proof. We recall from above that L (E, l) can be defined as the quotient of the trivial bundle NR×R by
the 3-action given by λ.(x, b)= (x+λ, b+a(E,l)(λ, x)). Since the morphism t̃y : NR→ NR, x 7→ x+ y
that induces tπ(y) on the quotient NR/3 is 3-equivariant, the pull-back t∗π(y)L (E, l) can be represented
as the quotient of

t̃∗y (NR×R)∼= NR×R

by the pulled back 3-action. The action of λ ∈ 3 on (x, b) under the pulled back action is obtained
by first applying t̃y to the first coordinate, yielding (x + y, b), then applying the 3-action defined by
a(E,l), yielding (x + y+ λ, b+ a(E,l)(λ, x + y)), and finally applying t̃−1

y to the first coordinate, yielding
(x + λ, b+ a(E,l)(λ, x + y)). So in total, the pulled back action is given by

λ.(x, b)= (x + λ, b+ a(E,l)(λ, x + y))

=
(
x + λ, b+ l(λ)− E(λ, x + y)− 1

2 E(λ, λ)
)

=
(
x + λ, b+ l(λ)− E(λ, y)− E(λ, x)− 1

2 E(λ, λ)
)

= (x + λ, b+ a(E,l−E(−,y))),

which is precisely the action on the trivial bundle defined by the factor of automorphy a(E,l−E(−,y)). This
shows that t∗π(y)L (E, l)=L (E, l − E(−, y)).

Now assume that E is nondegenerate and that L ′ is any line bundle on X with c1(L
′) = E . By

Theorem 7.2 and Proposition 7.1, there exists a linear form l ′ : 3→ R such that L ′ ∼=L (E, l ′). Since E
is nondegenerate and 3R

∼= NR, there exists x̃ ∈ NR such that l − l ′ = E(−, x̃). By what we have shown
above, we have

L ′ ∼=L (E, l − E(−, x̃))∼= t∗π(x̃)L (E, l)= t∗x L (E, l),

where x = π(x̃). If x ′ ∈ X is another point such that t∗x ′L (E, l)∼=L ′, and x̃ ′ ∈ NR is chosen such that
π(x̃ ′)= x ′, then we have

L (E, l − E(−, x̃))∼=L (E, l − E(−, x̃ ′))
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by what we have shown above. This happens if and only if E(−, x̃ − x̃ ′) has integer values on N by
Theorem 7.2. If E restricts to a perfect pairing on 3× N , this happens if and only if x̃− x̃ ′ ∈3, that is if
and only if x = x ′. □

Remark 7.6. If we call two line bundles on a real torus tropically equivalent if they have the same first
Chern class, then Proposition 7.5 shows that two tropical line bundles which are translates of each other
are tropically equivalent, with the converse being true if their first Chern class is nondegenerate. This is
completely analogous to the situation on complex tori, where two line bundles are analytically equivalent
if they have the same first Chern class [Birkenhake and Lange 2004, Proposition 2.5.3]. If two line
bundles on a complex torus are translates of each other, then they are analytically equivalent, with the
converse being true if their first Chern class is nondegenerate [loc. cit., Corollary 2.5.4].

7D. Rational sections of line bundles. Let E : 3× N → Z be bilinear such that ER is a symmetric
bilinear form on NR, and let l : 3→R be linear. As mentioned above, the tropical line bundle L (E, l) on
X is a quotient of the trivial bundle NR×R by the 3-action defined by E and l. In particular, the global
rational sections of L (E, l) are precisely those global rational sections of NR×R that are invariant under
the 3-action. More precisely, the global rational sections of L (E, l) are in bijection with the piecewise
linear function φ ∈ 0(NR, MNR

) such that

φ(x + λ)= φ(x)+ l(λ)− E(λ, x)− 1
2 E(λ, λ). (7-3)

The divisor associated to the section of L (E, l) corresponding to φ is precisely the quotient of div(φ) by
the 3-action. In particular, this divisor is effective if and only if div(φ) is effective, that is if φ is concave.
Together, concavity and (7-3) put strong constraints on φ, or rather its Legendre transform. In fact, it
has been shown in [Mikhalkin and Zharkov 2008, Theorem 5.4] that if E is a perfect pairing and ER is
positive definite, these constraints completely determine φ up to an additive constant. More precisely, φ

is given by

φ(x)=min
{

E(λ, x)+ 1
2 E(λ, λ)− l(λ) | λ ∈3

}
+ const

in this case (note that this only differs from the formula in [loc. cit.] because we are using the “min”-
convention, see Remark 3.4). By the tropical Appell–Humbert theorem it follows that for every line
bundle L on X with c1(L )= E there exists a unique effective divisor D ∈ CDiv(X) with L (D)=L .

Proposition 7.7. Let X = NR/3 be the real torus associated to a pair of lattices N and 3⊂ NR, and let
D, D′ ∈ CDiv(X) be two effective divisors such that cyc[D] = cyc[D′] is Poincaré dual to E ∈ H 1,1(X)

for some perfect pairing E : 3× N → Z such that ER is a positive definite symmetric bilinear form on
NR, where we identify H 1,1(X) with Hom(3, N ∗) according to Convention 6.3. Then there exits a unique
x ∈ X such that t∗x D = D′.

Proof. We have

cyc[D] = cyc(D · [X ])= c1(L (D)) ⌢ cyc[X ],
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so cyc[D] is Poincaré dual to c1(L (D)), and similarly cyc[D′] is Poincaré dual to c1(L (D′)). By
assumption, it follow that

c1(L (D))= c1(L (D′))= E .

By Proposition 7.5, there exists a unique point x ∈ X such that t∗x (L (D)) ∼= L (t∗x (D)) is isomorphic
to L (D′). It follows that the two divisors t∗x (D) and D′ correspond to two concave rational sections
of L (D′). But, since c1(L (D′)) = E , these two rational sections differ by a constant. Therefore,
D′ = t∗x (D). □

8. Tautological cycles on tropical Jacobians

Classically, the ring of tautological classes on the Jacobian of an algebraic curve is the smallest subring
of its Chow group that contains the image of the curve under the Abel–Jacobi map and is invariant under
intersection products, Pontryagin products, translations, and the involution map. We will now introduce
the most important tropical tautological cycles on a tropical Jacobian.

Throughout this section, 0 will denote a compact connected smooth tropical curve of genus g. We
will also fix a base point q ∈ 0 with respect to which we define the Abel–Jacobi map.

8A. Effective loci and semibreak divisors. Using the group structure on the Jacobian, the Abel–Jacobi
map induces morphisms 8d

q : 0
d
→ Jac(0) for all nonnegative integers d .

Definition 8.1. For every integer 0≤ d ≤ g we define

W̃d :=8d
q(0d).

Because 8d
q is a proper morphism of boundaryless rational polyhedral spaces, we know that W̃d is an at

most d-dimensional boundaryless rational polyhedral subspace of Jac(0). By definition, (8d
q)∗[0

d
] is a

tropical d-cycle on W̃d . Note that this does not mean that W̃d has dimension d or that it is pure-dimensional
as (8d

q)∗[0
d
] could be 0. All we can say a priori is that the support of (8d

q)∗[0
d
] is precisely the subset

of points of W̃d where the local dimension of W̃d is equal to d .
To show that W̃d in fact is purely d-dimensional we will use the identification of Jac(0) with the

Pic0(0) given by the tropical Abel–Jacobi theorem [Mikhalkin and Zharkov 2008]. Here, Pic(0) denotes
the quotient of CDiv(0) by the subgroup consisting of all principal divisors, and Picd(0) denotes the
subgroup of Pic(0) consisting of the all classes of divisors of degree d. The statement of the tropical
Abel–Jacobi theorem is that the Abel–Jacobi map 8q induces a bijections Picd(0)→ Jac(0) for d = 0,
and hence for any d . If Wd denotes the preimage of W̃d in Picd(0) under the bijection Picd(0)→ Jac(0),
then Wd is precisely the set of the classes of effective divisors of degree d . In particular Wd is independent
of the base point q . Together with L. Tóthmérész, we have proved the following theorem.

Theorem 8.2 [Gross et al. 2022, Theorem 8.3]. The subset Wd of Picd(0) is purely d-dimensional.

It follows immediately that W̃d is purely d-dimensional as well, and hence that the tropical cycle
(8d

q)∗[0
d
] has support W̃d . We will now show that W̃d has a fundamental cycle [W̃d ] which we will relate
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to (8d
q)∗[0

d
]. To do this, we will need the notion of a break and semibreak divisors. A break divisor on

0 is an effective divisor B such that there exist g open edge segments e1, . . . , eg ⊆ 0 and points qi ∈ ēi

such that 0 \
⋃

i ei is contractible and B =
∑

i (qi ). A semibreak divisor is an effective divisor that is
dominated by a break divisor, that is an effective divisor D such that there exists an effective divisor E
for which D+ E is a break divisor; see [Gross et al. 2022].

Proposition 8.3. Let 0≤ d ≤ g. Then W̃d has a fundamental cycle [W̃d ], and the equality

(8d
q)∗[0

d
] = d![W̃d ]

hold in Z∗(Jac(0)).

Proof. It suffices to show that (8d
q)∗[0

d
] has weight d! on all components of W̃ reg

d . Indeed, if that is the
case then 1

d!(8q)∗[0
d
] is a tropical cycle with support W̃d and weight 1 on all components of W̃ reg

d . But
this implies that W̃d has a fundamental cycle and that (8d

q)∗[0
d
] = d![W̃d ].

By the definition of the push-forward, we now have to show that for any x ∈ W̃d such that (8d
q)−1
{x}

is finite and contained in (0d)reg, the value of (8d
q)∗[0

d
] at x is d!. Let σ be a component of (0d)reg.

Then there exist open edges e1, . . . , ed of 0 such that σ = e1× · · · × ed . We choose an orientation on
each of these d edges. This determines a unique primitive tangent vector ηk on each edge ek . These d
tangent vectors form a basis of the integral tangent space of the product e1× · · ·× ed . As already noted
in Section 4, the image of ηk in the tangent space �Z(0)∗ of Jac(0) is given by

(d8q)(ηk) : �Z(0)→ Z, ω 7→ ⟨ω|ek , ηk⟩.

If we identify �Z(0) with integral flows on 0, as explained in Remark 4.1, then (d8q)(ηk) is the map
assigning to an integral flow ω on 0 its flow on ek in the direction specified by the chosen orientation.
Because 8d

q is defined as the d-fold sum of 8q , we have (d8d
q)(ηk)= (d8q)(ηk). In particular, if ek = el

for k ̸= l, then (d8d
q)(ηk)= (d8d

q)(ηl) which means that 8d
q is not injective on σ and x /∈8d

q(σ ). We
may thus assume that all ek are distinct. If 0 \

⋃
ek is disconnected, then there exists an 1≤ l ≤ d such

that 0 \∪l
k=1ek has precisely two components C1 and C2. For 1≤ k ≤ l let αk be equal 1 if ek is oriented

such that it leads from C1 to C2, and let αk be equal to −1 if it is oriented the other way. Since the total
flow from C1 to C2 in any integral flow on 0 is 0, we have

l∑
k=1

αk(d8d
q)(ηk)= 0,

which means that d8d
q is not injective on the tangent spaces of σ . Therefore, 8d

q is not injective on σ

and again x /∈ 8d
q(σ ). If 0 \

⋃
ek is connected, then for each 1 ≤ k ≤ d there is a simple closed loop

in 0 that passes through ek but not through el for l ̸= k. It follows that for every assignment of values
f : {1, . . . , d} → Z there is an integral flow ω ∈�Z(0) whose flow on ek is f (k). This implies that the
vectors (d8d

q)(η1), . . . , (d8d
q)(ηi ) span a saturated rank-i sublattice of �Z(0)∗. Therefore, every point

of (8d
q)−1
{x}∩σ contributes to the weight of (8d

q)∗[0
d
] with multiplicity one, and by [Gross et al. 2022,
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Lemma 8.1] there is at most one of these points. In fact, if (8d
q)−1
{x} ∩ σ is nonempty, then [loc. cit.,

Lemma 8.1] tells us that all other components σ ′ of (0d)reg with (8d
q)−1
{x} ∩ σ ′ ̸=∅ are obtained from

σ via a permutation of coordinates. As there are exactly d! of these permutations, the weight at x is d!,
finishing the proof. □

As an immediate consequence of Proposition 8.3 we obtain the following corollary.

Corollary 8.4. The equality of tropical cycles ⋆d
k=1[W̃1] = d![W̃d ] holds in Z∗(Jac(0)).

Proof. This follows directly from the formulas for [W̃d ] and [W̃1] given in Proposition 8.3, and the fact
that 8d

q is the d-fold sum of 8q . □

We have a morphism H1(0;Z)→ H1(Jac(0);Z) induced by the (continuous) Abel–Jacobi map. As
noticed in Section 6, there is a natural identification

H1(Jac(0);Z)∼= H1(0;Z)

coming from the fact that Jac(0) = �R(0)∗/H1(0;Z) is defined by taking a quotient of a real vector
space by H1(0;Z).

Lemma 8.5. The morphism

(8q)∗ : H1(0;Z)→ H1(Jac(0);Z)∼= H1(0;Z)

is the identity.

Proof. Let α be a cycle on 0 representing a class in H1(0;Z). We need to show that (8q)∗[α] = [α]. By
the Hurewicz theorem, we may assume that it is represented by a loop γ : [0, 1] → 0 starting and ending
at the base point q . By the definition of the Abel–Jacobi map, the path

γ̃ : [0, 1] →�R(0)∗, t 7→
(

ω 7→

∫
γ |[0,t]

ω

)
lifts the composite 8q◦γ . Therefore, (8q)∗γ ∈H1(Jac(0);Z) is identified with the element γ̃ (1)−γ̃ (0)=

γ̃ (1) ∈ H1(0;Z). But this is equal to the image of γ under the embedding H1(0;Z) ↪→�R(0)∗. □

8B. The tropical Riemann theta divisor. Recall from Section 4 that the tropical Jacobian Jac(0) =

�R(0)∗/H1(0;Z) of a smooth tropical curve 0 comes equipped with a positive definite symmetric
form Q on its universal cover �R(0)∗ which restricts to a perfect pairing �Z(0)∗× H1(0;Z)→ Z. By
Proposition 7.1, the first Chern class of the line bundle L (Q, 0) is given by Q. As explained in Section 7D,
this implies that L (Q, 0) has, up to an additive constant, a unique concave rational section, the Riemann
theta function, which defines a unique effective divisor 2 ∈ CDiv(Jac(0)) with L (2)=L (Q, 0). For
further details about the Riemann theta function see [Mikhalkin and Zharkov 2008] and see [Foster et al.
2018] for the connection to the nonarchimedean Riemann theta function.

Definition 8.6. The unique effective divisor 2 ∈ CDiv(Jac(0)) with L (2) = L (Q, 0) is called the
tropical Riemann theta divisor on Jac(0).
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Note that by construction, we have c1(L (2))= Q.

Example 8.7. Figure 3 shows the 2-divisor for the curve 0 from Example 4.4. It is the image in Jac(0)

of the boundaries of the Voronoi cells of the lattice points H1(0;Z) in �R(0)∗ with respect to the metric
defined by Q.

9. The tropical Poincaré formula

We are finally in a position to prove the Poincaré formula. Our strategy is to give explicit formulas for both
sides of the equation. More precisely, we will introduce coordinates on the tropical homology groups of
the tropical Jacobian, and will compare the coefficients of both sides of the equation in these coordinates.
Throughout this section, 0 will denote a compact and connected smooth tropical curve of genus g, and
e1, . . . , eg will denote distinct open edges of 0 such that 0 \

(⋃
k ek

)
is contractible. Furthermore, we

will assume that we have chosen an orientation on each of the edges e1, . . . , eg.

9A. Bases for the tropical (co)homology of Jac(0). Recall from Section 6 that there is an isomorphism
of rings

H∗,∗(Jac(0))∼=
∧

H1(0;Z)⊗
∧

�Z(0)∗,

where the ring structure on the left side is given by the Pontryagin product. Using this isomorphism, a
choice of bases for H1(0;Z) and �Z(0)∗ will induce a basis for H∗,∗(Jac(0)). We will use our choice
of open edges e1, . . . , eg to define bases for these lattices. Let 1≤ k ≤ g. The orientation on ek defines a
start and an end point for ek . Since T is contractible and therefore a tree, there is a path in T from the
end to the start point of ek , and this path is unique up to homotopy. Together with any path in ēk from
its start to its end point, this defines a fundamental circuit ck ∈ H1(0;Z) that traverses ek but is disjoint
from el for l ̸= k. It is well known, and straightforward to check, that the fundamental circuits c1, . . . , cg

form a basis of H1(0;Z).
To obtain a basis for �Z(0)∗, let ηk denote the primitive tangent vector on ek in the direction specified

by the orientation, and let δk = (d8q)(ηk). As we observed in Section 4, δk can be described as the
morphism �Z(0)→ Z assigning to an integral flow on 0 its flow through ek in the direction specified
by the orientation. By definition of the bilinear from Q on �R(0), we have Q(ck, δl)= 1 if k = l and
Q(ck, δl)= 0 if k ̸= l, that is δ1, . . . , δg is dual to the basis c1, . . . , cg with respect to Q. We noticed in
Section 4 that �Z(0)∗ is precisely the set of vectors in �R(0)∗ that have integral pairing with respect to
Q with all elements of H1(0;Z). It follows directly that δ1, . . . , δg is a basis for �∗Z(0).

Similarly, by the isomorphism

H∗,∗(Jac(0))∼=
∧

H1(0;Z)∗⊗
∧

�Z(0)

of rings discussed in Section 6, bases for H1(0;Z)∗ and �Z(0) induce a basis for H∗,∗(Jac(0)). The
bases we will use for these lattices are the dual bases (c∗k )k and (δ∗k )k to the bases (ck)k and (δk)k .
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Note that both H∗,∗(Jac(0)) and H∗,∗(Jac(0)) are tensor products of skew commutative graded rings.
We will use the following notation for elements of special form in groups of this type.

Notation 9.1. Let R1 and R2 be two skew-commutative graded rings, let J be a finite set, and let a : J→ R1

and b : J → R2 be maps such that for every j ∈ J the elements a( j) and b( j) are homogeneous of the
same degree. Then for any injective map σ : {1, . . . , k} → J , the element

k∏
l=1

a(σ (l))⊗
k∏

l=1

b(σ (l))

of R1⊗Z R2 only depends on the image I := σ({1, . . . , k}). We denote it by∏
i∈I

a(i)⊗
∏
i∈I

b(i).

9B. Cycle classes of tautological cycles.

Proposition 9.2. We have

cyc[W̃1] =

g∑
k=1

ck ⊗ δk .

Proof. Choose an orientation for every edge e of 0 that coincides with the orientation we have already
chosen if e = ek for some k. Let ηe the primitive tangent vector of e in the direction specified by the
orientation, and let δe = (d8q)(ηe). By construction, we have δek = δk for all 1 ≤ k ≤ g. It follows
immediately from the definition of the tropical cycle class map and Theorem 3.3 that cyc[W̃1] is represented
by the (1, 1)-cycle ∑

e∈E(0)

(8q)∗(ē)⊗ δe ∈ C1,1(Jac(0)),

where we view the oriented closed edge ē as a singular 1-simplex by choosing a parametrization compatible
with the given orientation. Using that the ck and the δk form dual bases with respect to the bilinear form Q,
we see that the above equals∑

e∈E(0)

(8q)∗(ē)⊗
( g∑

i=1

Q(ci , δe) · δi

)
=

g∑
i=1

( ∑
e∈E(0)

Q(ci , δe) · (8q)∗(ē)
)
⊗ δi .

Since Q(ci , δe) is 1 whenever e is on the loop ci , and 0 otherwise, we have∑
e∈E(0)

Q(ci , δe)(8q)∗(ē)= (8q)∗ci ,

which is equal to ci by Lemma 8.5. This finishes the proof. □

Remark 9.3. It follows immediately from Proposition 9.2 that the expression∑
k

ck ⊗ δk ∈ H1(0;Z)⊗�Z(0)∗
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is independent of the choice of spanning tree used to define the elements ck and δk . On a closer look, it
turns out that this independence is more of a feature of linear algebra than a feature of spanning trees.
To see this, we observe that the natural isomorphism H1(0;Z)∼=�Z(0) identifies the basis (δk)k with
the dual basis of (ck)k . Therefore,

∑
k ck ⊗ δk is identified with the identity endomorphism on H1(0;Z)

under the composite

H1(0;Z)⊗�Z(0)∗ ∼= H1(0;Z)⊗ H1(0;Z)∗ ∼= End(H1(0;Z)),

which is an invariant of H1(0;Z) rather than of 0.

Lemma 9.4. We have

cyc[W̃d ] =
∑

I⊆{1,...,g}
|I |=d

∧
k∈I

ck ⊗
∧
k∈I

δk .

Proof. Using Propositions 8.3 and 6.2 we obtain

d! cyc[W̃d ] = d! cyc
(

d
⋆
k=1
[W̃1]

)
= d!

d
⋆
k=1

cyc[W̃1].

By Proposition 9.2, this equals
d
⋆
k=1

( g∑
l=1

cl ⊗ δl

)
.

Using the description of the Pontryagin product from Section 6, we can rewrite this as

∑
σ

d∧
k=1

cσ(k)⊗

d∧
k=1

δσ(k),

where the sum is over all maps σ : {1, . . . , d} → {1, . . . , g}. Since
∧

�Z(0) is skew-commutative, only
an injective σ would contribute to the sum. If I is the image of an injective σ then, using our Notation 9.1,
we have

d∧
k=1

cσ(k)⊗

d∧
k=1

δσ(k) =

∧
k∈I

ck ⊗
∧
k∈I

δk .

Since the map σ 7→ σ(I ), for injective σ : {1, . . . , d} → {1, . . . , g}, is d!-to-1, we obtain

d! cyc[W̃d ] =
∑
σ

d∧
k=1

cσ(k)⊗

d∧
k=1

δσ(k) = d!
∑

I⊆{1,...,g}
|I |=d

∧
k∈I

ck ⊗
∧
k∈I

δk .

The result follows after dividing both sides by d!. This division is allowed because the tropical homology
groups of Jac(0) are torsion-free. □
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9C. Tropical cycle classes of powers of the theta divisor.

Lemma 9.5. We have

c1(L (2))=

g∑
i=1

c∗i ⊗ δ∗i .

Proof. As already observed in Section 8B, we have c1(L (2))= Q, where we identify

H 1,1(Jac(0))∼= H 1(0;Z)⊗�Z(0)

with Hom(H1(0;Z)⊗�Z(0), Z). Because (ck)k and (δk)k are dual bases with respect to Q, the assertion
follows. □

Lemma 9.6. Let I ⊆ {1, . . . , g} with |I | = d. Then∧
k∈I

c∗k ⊗
∧
k∈I

δ∗k ∈
∧d

H1(0, Z)∗⊗
∧d

�Z(0)∼= H d,d(Jac(0))

is Poincaré dual to∧
k∈{1,...,g}\I

ck ⊗
∧

k∈{1,...,g}\I

δk ∈ Hg−d(Jac(0), Z)⊗
∧g−d

�Z(0)∗ ∼= Hg−d,g−d(Jac(0)).

Proof. Since Jac(0)= W̃g, we have

cyc[Jac(0)] =

( ∧
1≤k≤g

ck

)
⊗

( ∧
1≤k≤g

δk

)
(9-1)

by Lemma 9.4.
Note that for every α ∈ H1(Jac(0);Z)∗, x ∈

∧i H1(Jac(0);Z), and y ∈
∧ j H1(Jac(0);Z) we have

α ⌟ (x ∧ y)= (α ⌟ x)∧ x + (−1)i x ∧ (α ⌟ y)

by the properties of the interior product; see [Eisenbud 1995, Proposition A 2.8]. Similarly for every
a ∈�Z(0), b ∈

∧i
�Z(0)∗, and c ∈

∧ j
�Z(0)∗ we have

a ⌟ (b∧ c)= (a ⌟ b)∧ c+ (−1)i b∧ (a ⌟ c).

Using induction, we conclude that∧
k∈I

c∗k ⌢
∧

k∈{1,...,g}

ck =±
∧

k∈{1,...,g}\I

ck

and similarly ∧
k∈I

δ∗k ⌢
∧

k∈{1,...,g}

δk =±
∧

k∈{1,...,g}\I

δk,

with the sign being the same on the right-hand sides of the two equations as long as we order the sets I
and {1, . . . , g} consistently in both equations. Combining these identities with the expression (9-1) for
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the fundamental class of Jac(0) and the identity (6-3), it follows that(∧
k∈I

c∗k ⊗
∧
k∈I

δ∗k

)
⌢ [Jac(0)] =

∧
k∈{1,...,g}\I

ck ⊗
∧

k∈{1,...,g}\I

δk,

which is precisely what we needed to show. □

The following result is the tropical analogue of [Birkenhake and Lange 2004, Theorem 4.10.4].

Lemma 9.7. We have

cyc([2]g−d)= (g− d)!
∑

I⊆{1,...,g}
|I |=d

∧
k∈I

ck ⊗
∧
k∈I

δk .

Proof. Since intersections with divisors is compatible with the tropical cycle class map by Theorem 3.3,
we have

cyc([2]g−d)= c1(L (2))g−d ⌢ [Jac(0)],

that is cyc([2]g−d) is Poincaré dual to c1(L (2))g−d . By Lemma 9.5 we know that

c1(L (2))=

g∑
i=1

c∗i ⊗ δ∗ei
.

With the description of the cap-product on H∗,∗(X) given in Section 6, we obtain

c1(L (2))g−d
= (g− d)!

∑
I⊆{1,...,g}
|I |=g−d

∧
k∈I

c∗k ⊗
∧
k∈I

δ∗ek

similar as in the proof of Lemma 9.4. Applying Lemma 9.6 finishes the proof. □

9D. The proof of the tropical Poincaré formula.

Theorem 9.8. The Poincaré formula holds tropically, that is we have

(g− d)![W̃d ] ∼hom [2]
g−d .

Remark 9.9. The Poincaré formula is more commonly expressed as

[W̃d ] ∼hom
1

(g− d)!
[2]g−d ,

where we the right side is defined after an extension of scalars to Q. Because the tropical homology
groups of Jacobians are torsion-free, this is indeed an equivalent expression of the formula.

Proof. By Lemma 9.4 we have

cyc[W̃d ] =
∑

I⊆{1,...,g}
|I |=d

∧
k∈I

ck ⊗
∧
k∈I

δk .
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On the other hand, by Lemma 9.7 we have

cyc([2]g−d)= (g− d)!
∑

I⊆{1,...,g}
|I |=d

∧
k∈I

ck ⊗
∧
k∈I

δk .

It follows immediately that

cyc((g− d)![W̃d ])= cyc([2]g−d),

which is equivalent to saying that [W̃d ] and [2]g−d are homologically equivalent. □

Corollary 9.10. We have

(g− d)![W̃d ] ∼num [2]
g−d .

Proof. This follows directly from Theorem 9.8 and Proposition 5.11. □

Remark 9.11. We have proved Theorem 9.8 under the assumption that the smooth tropical curve is
boundaryless. If 0 is a compact and connected smooth tropical curve with boundary as described in
Remark 2.5, then the Poincaré formula holds as well, and the proof in this seemingly more general case
can easily be reduced to the boundaryless case. Namely, if 0′ denotes the boundaryless smooth tropical
curve obtained from 0 by removing the leaves from 0, then 0 and 0′ have identical Jacobians, and their
theta divisors coincide by definition. Furthermore, the Abel–Jacobi map associated to 0′ contracts all the
leaves of 0′, so that the loci W̃d associated to 0 and 0′ coincide as well.

9E. Consequences of the Poincaré formula. The tropical Poincaré formula has some interesting im-
mediate consequences. One of them is a tropical version of Riemann’s theorem. The statement has
appeared before [Mikhalkin and Zharkov 2008], with a different (combinatorial) proof. To state the
theorem, recall from Section 8 that the Abel–Jacobi map induces a bijection Pic0(0)→ Jac(0). Because
all contributions from the chosen base point q cancel in degree 0, this bijection is independent of all
choices. In particular, we can view 2 as a divisor on Pic0(0) in a natural way. Also recall from Section 8
that while W̃d ⊆ Jac(0) depends on q , the image Wd of 0d in Picd(0) does not.

Corollary 9.12 (tropical Riemann’s theorem; see [Mikhalkin and Zharkov 2008, Corollary 8.6]). There
exists a unique µ ∈ Picg−1(0) such that

[Wg−1] = µ+ [2],

where we consider [2] as a tropical cycle in Pic0(0).

Proof. It suffices to show that there exists a unique µ ∈ Jac(0) such that [W̃g−1] = (tµ)∗[2] when
considering 2 as a divisor on Jac(0). Since [W̃g−1] is a codimension-1 tropical cycles on the tropical
manifold Jac(0), we can view W̃g−1 as a tropical Cartier divisor as well; see Section 3A. Applying the
Poincaré formula (Theorem 9.8) with d = g− 1 yields

cyc[W̃g−1] = cyc[2].
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By definition of 2, the cycle class cyc[2] is Poincaré dual to the element in H 1,1(Jac(0)) corresponding
to the linear form Q. As Q restricts to a perfect pairing H1(0;Z)×�Z(0)∗→ Z, Proposition 7.7 applies
and there a unique µ ∈ Jac(0) such that t∗µW̃g−1 = 2. This is, of course, equivalent to the equality
(tµ)∗[W̃g−1] = [2]. □

Corollary 9.13. For every 0≤ d ≤ g, we have∫
Jac(0)

[W̃d ] · [W̃g−d ] =

(g
d

)
.

Remark 9.14. In the special case d = 1 we recover the formula∫
Jac(0)

[W̃1] · [2] = g

stated in [Mikhalkin and Zharkov 2008, Theorem 6.5]. Also note that the intersection product [W̃d ]·[W̃g−d ]

is effective since one can locally apply the fan displacement rule.

Proof. We apply Poincaré formula (Theorem 9.8) three times, and obtain a chain of equalities

[W̃d ] · [W̃g−d ] =
[2]g

d!(g− d)!
=

(g
d

)
[W̃0]

that hold modulo homological equivalence. Taking the degree yields the result. □

Corollary 9.15. We have ∫
Jac(0)

[2]g = g!.

Proof. By the tropical Poincaré formula (Theorem 9.8), we have∫
Jac(0)

[2]g = g!
∫

Jac(0)

[W̃0] = g!.

□

Remark 9.16. Classically, the statement of Corollary 9.15 also follows from the geometric Riemann–
Roch theorem for Abelian varieties [Birkenhake and Lange 2004, Theorem 3.6.3]. Tropically, it is also
possible to prove the statement using the duality of Voronoi and Delaunay decompositions.
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