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One-level density estimates for Dirichlet L-functions
with extended support

Sary Drappeau, Kyle Pratt and Maksym Radziwiłł

We estimate the 1-level density of low-lying zeros of L(s, χ) with χ ranging over primitive Dirichlet
characters of conductor in

[ 1
2 Q, Q

]
and for test functions whose Fourier transform is supported in(

−2 −
50

1093 , 2 +
50

1093

)
. Previously, any extension of the support past the range (−2, 2) was only known

conditionally on deep conjectures about the distribution of primes in arithmetic progressions, beyond
the reach of the generalized Riemann hypothesis (e.g., Montgomery’s conjecture). Our work provides
the first example of a family of L-functions in which the support is unconditionally extended past the
“diagonal range” that follows from a straightforward application of the underlying trace formula (in this
case orthogonality of characters). We also highlight consequences for nonvanishing of L(s, χ).

1. Introduction

Motivated by the problem of establishing the nonexistence of Siegel zeros (see [Conrey and Iwaniec 2002]
for details), Montgomery [1973] investigated the vertical distribution of the zeros of the Riemann zeta
function. He showed that under the assumption of the Riemann hypothesis, for any smooth function f
with supp f̂ ⊂ (−1, 1),

lim
T →∞

1
N (T )

∑
T ≤γ,γ ′≤2T

f
(

log T
2π

· (γ − γ ′)

)
=

∫
R

f (u) ·
(
δ(u)+ 1 −

(
sin 2πu

2πu

)2)
du, (1)

where N (T ) denotes the number of zeros of the Riemann zeta function up to height T , and γ, γ ′ are
ordinates of the zeros of the Riemann zeta function, and δ(u) is a Dirac mass at 0. Dyson famously
observed that the right-hand side coincides with the pair correlation function of eigenvalues of a random
Hermitian matrix.

Dyson’s observation leads one to conjecture that the spacings between the zeros of the Riemann zeta
function are distributed in the same way as spacings between eigenvalues of a large random Hermitian
matrix. Subsequent work of Rudnick and Sarnak [1994] provided strong evidence towards this conjecture
by computing (under increasingly restrictive conditions) the n-correlations of the zeros of any given
automorphic L-function. Importantly, the work of Rudnick and Sarnak [1996] suggested that the distri-
bution of the zeros of an automorphic L-function is universal and independent of the distribution of its
coefficients.

MSC2020: primary 11M26; secondary 11M50, 11N13.
Keywords: Dirichlet L-functions, one-level density, nonvanishing, primes, arithmetic progressions, dispersion method.
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For number-theoretic applications, the distribution of the so-called “low-lying zeros”, that is, zeros
close to the central point, is particularly interesting (see, e.g., [Heath-Brown 2004; Young 2006] for
various applications; see also [Granville and Soundararajan 2018] and [Watkins 2021], for instance, for
results in a different direction). Following the work of Katz and Sarnak [1999] and Iwaniec, Luo and
Sarnak [Iwaniec et al. 2000], we believe that the distribution of these low-lying zeros is also universal and
predicted by only a few random matrix ensembles (which are either symplectic, orthogonal or unitary).

Specifically, the work of Katz and Sarnak suggests that for any smooth function φ and any natural
“family” of automorphic objects F ,

1
#F

∑
π∈F

∑
γπ

φ

(
log cπ

2π
· γπ

)
#F→∞

−−−−−→

∫
R

φ(x)KF (x) dx, (2)

where γπ are ordinates of the zeros of the L-function attached to π , cπ is the analytic conductor of π ,
and KF (x) is a function depending only on the “symmetry type” of F . One may wish to consult [Iwaniec
et al. 2000] and [Sarnak et al. 2016] for a more detailed discussion.

There is a vast literature providing evidence for (2) (see [Mackall et al. 2016]). Similarly to Mont-
gomery’s result (1), all of the results in the literature place a restriction on the support of the Fourier
transform of φ. This restriction arises from the limitations of the relevant trace formula (in some families
it is not always readily apparent what this relevant trace formula is). In practice, an application of the trace
formula gives rise to so-called “diagonal” and “off-diagonal” terms. Trivially bounding the off-diagonal
terms corresponds to what we call a “straightforward” application of the trace formula.

A central yet extremely difficult problem is to extend the support of φ̂ beyond what a “straightforward”
application of the trace formula gives. In fact most works in which the support of φ̂ has been extended
further rely on the assumption of various deep hypotheses about primes that sometimes lie beyond the
reach of the generalized Riemann hypothesis (GRH).

For example, Iwaniec, Luo and Sarnak show that in the case of holomorphic forms of even weight ≤ K
one obtains unconditionally a result for φ̂ supported in (−1, 1) and that under the assumption of the
generalized Riemann hypothesis this can be enlarged to (−2, 2) (it is observed in [Devin et al. 2022] that
assuming GRH only for Dirichlet L-functions is sufficient). Iwaniec, Luo and Sarnak also show that this
range can be pushed further to supp φ̂ ⊂

(
−

22
9 ,

22
9

)
under the additional assumption that, for any c ≥ 1,

(a, c)= 1 and ε > 0, ∑
p≤x

p≡a (mod c)

e(2
√

p/c)≪ε x
1
2 +ε.

A similar behaviour is observed on low-lying zeros of dihedral L-functions associated to an imaginary
quadratic field [Fouvry and Iwaniec 2003], where an extension of the support is shown to be equivalent
to an asymptotic formula on primes with a certain splitting behaviour.

Assuming GRH, Brumer [1992] studied the one-level density of the family of elliptic curves and
proved a result for test functions supported in

(
−

5
9 ,

5
9

)
; this corresponds to the “diagonal” range for
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this family. Heath-Brown [2004] improved this range to
(
−

2
3 ,

2
3

)
, and Young [2006] pushed the support

to
(
−

7
9 ,

7
9

)
. One-level density estimates for this family have deep implications for average ranks of elliptic

curves. In particular, the work of Young was the first to show that, under some reasonable conjectures,
a positive proportion of elliptic curves have rank 0 or 1 and thus satisfy the rank part of the Birch and
Swinnerton–Dyer conjecture.1

As another example, it follows for instance from minor modifications of [Hughes and Rudnick 2003;
Chandee et al. 2014] that in the family of primitive Dirichlet characters of modulus ≤ Q one can estimate
1-level densities unconditionally for φ with φ̂ supported in (−2, 2).2 As a byproduct of work of Fiorilli and
Miller [2015, Theorem 2.8], it follows that for any δ ∈ (0, 2), this support can be enlarged to (−2−δ, 2+δ)

under the following “de-averaging hypothesis”:∑
1
2 Q≤q≤Q

∣∣∣∣ ∑
p≤x

p≡1 (mod q)

log p −
x

ϕ(q)

∣∣∣∣2

≪ Q−
1
2 δ

∑
1
2 Q≤q≤Q

∑
(a,q)=1

∣∣∣∣ ∑
p≤x

p≡a (mod q)

log p −
x

ϕ(q)

∣∣∣∣2

. (3)

In this paper we give a first example of a family of L-functions in which we can unconditionally
enlarge the support past the “diagonal” range, which would follow from a straightforward application of
the trace formula (in this case orthogonality of characters).

Theorem 1. Let 8 be a smooth function compactly supported in
[ 1

2 , 3
]
, and φ be a smooth function such

that supp φ̂ ⊂
(
−2 −

50
1093 , 2 +

50
1093

)
. Then, as Q → ∞,∑

q

8

(
q
Q

) ∑
χ (mod q)
primitive

∑
γχ

φ

(
log Q

2π
γχ

)
= φ̂(0)

∑
q

8

(
q
Q

) ∑
χ (mod q)
primitive

1 + o(Q2). (4)

Here 1
2 + iγχ correspond to nontrivial zeros of L(s, χ) and since we do not assume the generalized

Riemann hypothesis we allow the γχ to be complex.

Remark. In stating the theorem we have, for technical simplicity, made a suitable approximation to the
conductor cπ appearing in (2).

Note that φ, initially defined on R, is analytically continued to C by compactness of supp φ̂. Our
arguments can be adapted to show that if supp φ̂ ⊂

(
−2 −

50
1093 + ε, 2 +

50
1093 − ε

)
for some ε > 0, then

the error term in (4) is O(Q2−δ) with δ = δ(ε), up to altering slightly the main terms: after applying the
explicit formula as in Section 2.2, include the terms of order ≍ Q2/log Q into the main term instead of
treating them as error terms.

We remark that we make no progress on the “de-averaging hypothesis” (3) of Fiorilli and Miller, which
remains a difficult open problem. We estimate the original sum over primes in arithmetic progressions,
on average over moduli, by a variant of an argument of Fouvry [1985] and Bombieri, Friedlander and

1A stronger conclusion was later reached unconditionally by Bhargava and Shankar [2015] through other methods.
2This is in fact the GL(1) analogue of the result of Iwaniec, Luo and Sarnak for holomorphic forms.
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Iwaniec [Bombieri et al. 1986] which is based on Linnik’s dispersion method. The GRH will be dispensed
with by working throughout, as in [Drappeau 2015], with characters of large conductors.

The asymptotic formula (4) is expected to hold true without the extra averaging over q . This extra aver-
aging over q and the cancellation of arguments which comes along play an important role in our arguments.

If the GRH is true for Dirichlet L-functions, then let any 0< κ < 50
1093 be fixed, and let λ > 1 be small

enough that κ ′
:= 2(λ− 1)+ λκ ∈

(
0, 50

1093

)
as well. Defining

φ̃(x)= λ

(
sinπ(2 + κ)x
π(2 + κ)x

)2

, φ = φ̃ ∗ u,

where u is a smooth, positive approximation of unity such that φ(0) ≥ λ−1φ̃(0) = 1, and using the
inequality

1 −

∑
γχ

φ

(
log Q

2π
γχ

)
≤ 1

(
L
( 1

2 , χ
)
̸= 0

)
,

we deduce from Theorem 1 that the proportion of nonvanishing L
(1

2 , χ
)

with χ ranging over primitive
characters of conductor in

[ 1
2 Q, Q

]
is at least 1 − λ(2 + κ ′)−1

= 1 − (2 + κ)−1 for any κ < 50
1093 .

Corollary 2. Let ε ∈ (0, 10−7). Assume the generalized Riemann hypothesis for Dirichlet L-functions.
Then for all Q large enough, the proportion of primitive characters χ with modulus in

[ 1
2 Q, Q

]
for which

L
( 1

2 , χ
)
̸= 0

is at least
1
2 +

25
2236 − ε > 0.51118.

Corollary 2 is related to a recent result of Pratt [2019], who showed unconditionally that the proportion
of nonvanishing in this family is at least 0.50073. We note that both the arguments of [Pratt 2019] and
those presented here eventually rely on bounds of Deshouillers and Iwaniec [1982] on cancellation in
sums of Kloosterman sums.

Notation. We call a map f : R+ → C a test function if f is smooth and supported inside
[1

2 , 3
]
.

For w ∈ N, n ∈ Z and R ≥ 1, we let

uR(n, w) := 1n≡1 (modw) −
1

ϕ(w)

∑
χ (modw)

cond(χ)≤R

χ(n).

Note the trivial bound

|uR(n, w)| ≪ 1n≡1 (modw) +
Rτ(w)
ϕ(w)

. (5)

The symbol n ∼ N in a summation means n ∈ [N , 2N )∩Z. We say that a sequence (αn)n is supported
at scale N if αn = 0 unless n ∼ N .

The letter ε will denote an arbitrarily small number, whose value may differ at each occurrence. The
implied constants will be allowed to depend on ε.
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2. Proof of Theorem 1

2.1. Lemmas on primes in arithmetic progressions. We will require two results about primes in arithmetic
progressions. The first is a standard estimate, obtained from an application of the large sieve.

Lemma 3. Let A> 0, X , Q, R ≥ 2 satisfy 1 ≤ R ≤ Q and X ≥ Q2/(log Q)A, and let f be a test function
with ∥ f ( j)

∥∞ ≪ j 1. Then∑
q≤Q

∣∣∣∣∑
n∈N

f
(

n
X

)
3(n)uR(n, q)

∣∣∣∣ ≪ Q(log Q)O(1)
√

X
(

1 +

√
X

RQ
+

X
3
8

Q

)
. (6)

The implied constant depends at most on A and the implied constants in the hypothesis.

Proof. By Heath-Brown’s combinatorial formula for primes [Iwaniec and Kowalski 2004, Proposition 13.3]
(with K = 2), we restrict to proving the bound with 3(n) replaced by convolutions of types I and II, of
the shape ∑ ∑

n=mℓ
m∼M

αm (M ≪ X
1
4 ),

∑ ∑
n=mℓ
m∼M

αmβℓ (X
1
4 ≪ M ≪ X

3
4 ),

where |αm | ≪ (log X)τ4(m) and the analogous bound holds for βℓ; here we noted that if m1 ≤ m2 ≤
√

X
and m1m2 > X

1
4 , then either X

1
4 <m1m2 ≤ X

3
4 or X

1
4 ≤ m1 ≪ X

1
2 . We treat the type I case by the Pólya–

Vinogradov inequality [Iwaniec and Kowalski 2004, Theorem 12.5], getting a bound O(M R
3
2 (log Q)O(1)).

We treat the type II case by the large sieve [Iwaniec and Kowalski 2004, Theorem 17.4], getting a
contribution O

(√
X(log Q)O(1)(Q +

√
M +

√
X/M +

√
X R−1)

)
. □

The second estimate is substantially deeper and we defer its proof to Section 4.

Proposition 4. Let κ ∈
(
0, 50

1093

)
and ε > 0. Let 9 and f be test functions, A > 0, X , Q, W , R ≥ 1,

and b ∈ N. Assume that

Q2

(log Q)A ≪ X ≪ Q2+κ , X
11
20 Q−1

≤ R ≤ Q
2
3 X−

2
9 , b ≤ Qε, Q1−ε

≪ W ≪ Q,

and that ∥ f ( j)
∥∞, ∥9

( j)
∥∞ ≪ j 1. Then, if ε > 0 is small enough in terms of κ , we have∑
w∈N

9

(
w

W

) ∑
n∈N

3(n) f
(

n
X

)
uR(n, bw)≪ Q1−ε

√
X .

The implied constant depends at most on κ , A, and the implied constants in the hypotheses.

Proof. See Section 4. □

2.2. Explicit formula. We let κ ∈
(
0, 50

1093

)
be such that supp φ̂ ⊂ (−2 − κ, 2 + κ).

We rewrite the left-hand side of (4) by applying the explicit formula, e.g., [Sica 1998, Theorem 2.2],
where the quantity8(ρ) there (not to be confused with our test function) is replaced by φ

( 1
2π i

(
ρ−

1
2

)
log Q

)
,
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so that F(x)= (1/ log Q)φ̂(x/log Q). For q > 1 and χ (mod q) primitive, we obtain∑
ρ∈C

Re(ρ)∈(0,1)
L(ρ,χ)=0

φ

((
ρ−

1
2

)
log Q

2π i

)
=O

(
1

log Q

)
+ φ̂(0)

log q
log Q

−
1

log Q

∑
n≥1

(χ(n)+χ(n))
3(n)
√

n
φ̂

(
log n
log Q

)
, (7)

since the terms I, J appearing in [Sica 1998, Theorem 2.2] satisfy
∣∣I

( 1
2 , b

)∣∣ +
∣∣J

( 1
2 , b

)∣∣ ≪ (log Q)−1

for b ∈
{
0, 1

2

}
by reasoning similarly as in [Sica 1998, Lemma 3.1]. Let 9(x)=8(x)x . Summing (7)

over χ and q , we see that to conclude it remains to show that

Sφ(Q) :=

∑
q∈N

1
q
9

(
q
Q

) ∑
χ(q)

primitive

1
log Q

∑
n≥1

(χ(n)+χ(n))
3(n)
√

n
φ̂

(
log n
log Q

)
= o(Q). (8)

We will in fact obtain the following slightly stronger result.

Proposition 5. Let κ ∈
(
0, 50

1093

)
. For all Q large enough and ε > 0 small enough in terms of κ , we have

Sφ(Q)= O
(

Q
log Q

)
.

The implied constant depends on φ and ε at most.

We break down the proof of Proposition 5 into the following three sections.

2.3. Orthogonality and partition of unity. Applying character orthogonality for primitive characters (see
the third display in the proof of Lemma 4.1 of [Bui and Milinovich 2011]), we get

Sφ(Q)=
2

log Q

∑ ∑
v,w

9

(
vw

Q

)
µ(v)

v

ϕ(w)

w

∑
n≡1 (modw)

3(n)
√

n
φ̂

(
log n
log Q

)
. (9)

Let V be any test function generating the partition of unity∑
j∈Z

V
(

x
2 j

)
= 1

for all x > 0. Inserting this in (9), we obtain

Sφ(Q)=
2

log Q

∑
j∈Z

1
2 ≤X :=2 j

≤2Q2+κ

∑ ∑
v,w

9

(
vw

Q

)
µ(v)

v

ϕ(w)

w

∑
n≡1 (modw)

3(n)
√

n
V

(
n
X

)
φ̂

(
log n
log Q

)
.

Set f j (x)= x−
1
2 V (x)φ̂(log(2 j x)/log Q) for 1

2 ≤ 2 j
≤ 2Q2+κ . Differentiating the product, we have that

for all k ≥ 0, there exists Cφ,k ≥ 0 such that ∥ f (k)j ∥∞ ≤ Cφ,k for all j . We deduce

Sφ(Q)≪ sup
1≪X≪Q2+κ

X−
1
2 sup

f
|T (Q, X)|,

where f varies among test functions subject to ∥ f (k)∥∞ ≤ Cφ,k , and

T (Q, X) :=

∑ ∑
v,w

9

(
vw

Q

)
µ(v)

v

ϕ(w)

w

∑
n≡1 (modw)

3(n) f
(

n
X

)
.
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We handle the very small values of X by the trivial bound∑
n≡1 (modw)

3(n) f
(

n
X

)
≪ log Q

∑
1
2 X<n<3X

n ̸=1,n≡1 (modw)

1 ≪
X log Q
w

,

which implies

T (Q, X)≪
X log Q

Q

∑ ∑
vw≍Q

1 ≪ X (log Q)2.

It will therefore suffice to show that for

Q2/(log Q)6 ≪ X ≪ Q2+κ ,

we have

T (Q, X)≪

√
X Q

log Q
.

2.4. Subtracting the main term. We insert the coprimality condition (n, v)= 1. Since∑ ∑
v,w

9

(
vw

Q

)
µ(v)

v

ϕ(w)

w

∑
n≡1 (modw)
(n,v)>1

3(n) f
(

n
X

)
≪

∑
v≪Q

v−1
∑
p|v

1≤k≪log X

(
(log p)

∑
w|pk−1

1
)

≪ Q1+ε,

we obtain

T (Q, X)=

∑ ∑
v,w

9

(
vw

Q

)
µ(v)

v

ϕ(w)

w

∑
n≡1 (modw)
(n,v)=1

3(n) f
(

n
X

)
+ O(Q1+ε).

Let 1≤ R< 1
2 Q so that R<vw for any v,w appearing in the sum. We replace the condition n ≡1 (modw)

by uR(n, w). The difference is∑
q

1
q
9

(
q
Q

) ∑
χ (mod q)

r=cond(χ)≤R
r |q

∑
(n,q)=1

3(n) f
(

n
X

)
χ(n)

∑
v|q/r

µ(v)= 0

since r < q by our choice of R, so that

T (Q, X)=

∑ ∑
v,w

9

(
vw

Q

)
µ(v)

v

ϕ(w)

w

∑
(n,v)=1

3(n) f
(

n
X

)
uR(n, w)+ O(Q1+ε).

We next remove the coprimality condition on n, using the trivial bound (5). For the first term 1n≡1 (modw)

in uR(n, w), this was already justified above. For the second term, we get

≪ RQ−1+ε
∑ ∑
v,w
vw≍Q

∑
p|v

log p ≪ RQε.

Since R ≪ Q, both error terms are acceptable. We get

T (Q, X)= T (Q, X, R)+ O(Q1+ε),
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where

T (Q, X, R) :=

∑ ∑
v,w

9

(
vw

Q

)
µ(v)

v

ϕ(w)

w
1(w),

1(w) :=

∑
n

3(n) f
(

n
X

)
uR(n, w). (10)

We are required to show that

T (Q, X, R)≪

√
X Q

log Q
. (11)

2.5. Reduction to the critical range. We now impose the additional conditions

Q
1
2 κ+ε ≤ R ≤ Q

1
2 and κ < 2

3 . (12)

Observe that this κ is the same as that appearing in the statement of Proposition 4. The condition κ < 2
3

is convenient for applying (6) below, but is rather loose since κ is ultimately required to be much smaller
than 2

3 .
Let B ∈ [1, Q

1
2 ] be a parameter. In T (Q, X, R), we write ϕ(w)/w =

∑
b|w µ(b)/b and exchange

summation, so that

T (Q, X, R)≤

∑
b,v

1
bv

∣∣∣∣∑
w

9
(bvw

Q

)
1(bw)

∣∣∣∣ ≪ (log B)2 sup
b,v≤B

∣∣∣∣∑
w

9
(bvw

Q

)
1(bw)

∣∣∣∣ + E1 + E2,

where E1 (resp. E2) corresponds to the sum over b, v restricted to b > B (resp. v > B). We recall
that supp9 ⊂

[1
2 , 3

]
by hypothesis. On the one hand, we have

E1 ≪

∑ ∑
b,w

bw≤3Q
b>B

1
b
|1(bw)| ≪ Q

1
2 εB−1

∑
q≤3Q

|1(q)| ≪ Q1+
1
2 ε

√
X B−1,

using (6) along with our hypotheses (12). On the other hand, we have

E2 ≪

∑ ∑
b,w

bw≤3Q/B

1
b
|1(bw)| ≪ Q

1
2 ε

∑
q≤3Q/B

|1(q)| ≪ Q
√

X(Q
1
2 εB−1

+ Q−ε)

again by (12) and (6); we have used the bounds Q−1+ε
√

X R−1
≪ Q−ε and Q−1+εX

3
8 ≪ Q−ε, which

follow from Q
1
2 κ+ε ≤ R and κ < 2

3 respectively upon reinterpreting ε.
Grouping the above, it will suffice to show that∑

w

9
(bvw

Q

)
1(bw)≪ Q1−ε

√
X

uniformly for b, v ≤ Qε and test functions 9 and f . Assume now κ ∈
(
0, 50

1093

)
. Then the conditions

on R in (12) and in Proposition 4 overlap, so that we may apply Proposition 4 with W = Q/(bv). This
gives the above bound, and completes the proof of (11), hence of Proposition 5.
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3. Exponential sums estimates

In this section, we work out the modifications to be made to the arguments underlying [Deshouillers and
Iwaniec 1982] in order to exploit current knowledge on the spectral gap of the Laplacian on congruence
surfaces [Kim and Sarnak 2003]. We will follow the setting in Theorem 2.1 of [Drappeau 2017], since we
will need to keep track of the uniformity in q0. We also take the opportunity to implement the recently
described correction to [Bombieri et al. 1986].

Let θ ≥ 0 be a bound towards the Petersson–Ramanujan conjecture, in the sense of [Drappeau 2017,
(4.6)]. Selberg’s 3

16 theorem corresponds to θ ≤
1
4 , and the Kim–Sarnak bound [2003] asserts that θ ≤

7
64 .

Proposition 6. Let the notation and hypotheses be as in [Drappeau 2017, Theorem 2.1]. Then∑
c

∑
d

∑
n

∑
r

∑
s

c≡c0 and d≡d0 (mod q)
(qrd,sc)=1

bn,r,s g(c,d,n,r,s)e
(

n rd
sc

)
≪ε,ε0 (qC DN RS)ε+O(ε0)q

3
2 K (C,D,N , R, S)∥bN ,R,S∥2,

where ∥bN ,R,S∥
2
2 =

∑
n,r,s |bn,r,s |

2, and here

K (C, D, N , R, S)2

= qC S(RS + N )(C + RD)+ C1+4θ DS((RS + N )R)1−2θ
(

1 +
qC
RD

)1−4θ

+ D2 N R. (13)

Remark 7. The bound of Proposition 6 is monotonically stronger as θ decreases, since the first term
is larger than C S(RS + N )(RD + qC). Under the Petersson–Ramanujan conjecture for Maass forms,
which predicts that θ = 0 is admissible, the second term in (13) is smaller than the first.

Proof. The proof of the proposition, as with all results of this type, relies on the Kuznetsov formula and
large sieve inequalities for coefficients of automorphic forms. The application of the Kuznetsov formula
requires one to understand the contribution of holomorphic forms, Eisenstein series, and Maass forms
(whether the holomorphic forms appear depends on the sign of the variables inside the Kloosterman
sum). We divide these forms into the exceptional spectrum and the regular spectrum. The exceptional
spectrum consists of those (conjecturally nonexistent) Maass forms whose eigenvalues t f =

1
2 + i t f

have t f ∈ iR. By the definition of θ above we have that |t f | ≤ θ for all f in the exceptional spectrum. The
regular spectrum consists of everything that is not exceptional. The contribution of the regular spectrum is
handled as in [Drappeau 2017], and does not require any modification here. We improve upon the analysis
there in handling the exceptional spectrum by keeping track of the dependence on θ (see the remark
made in [Drappeau 2017, p. 703]). The statements which are affected are [Drappeau 2017, Lemma 4.10,
Proposition 4.12, Proposition 4.13 and the proof of Theorem 2.1]. The treatment of the exceptional
spectrum rests upon a weighted large sieve inequality. These weighted large sieve inequalities are proved,
following [Deshouillers and Iwaniec 1982], by an iterative procedure.

With the notation of [Drappeau 2017], the changes to be made are as follows:
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• Lemma 4.10 bounds sums of the form∑
q≤Q
q0|q

∑
f ∈B(q,χ)

t f ∈iR

Y 2|t f |

∣∣∣∣ ∑
N<n≤2N

n
1
2ρ f ∞(n)

∣∣∣∣2

,

and serves to control the first step of the recursion. The bound∑
q≤Q
q0|q

∑
f ∈B(q,χ)

t f ∈iR

Y 2|t f |

∣∣∣∣ ∑
N<n≤2N

n
1
2ρ f ∞(n)

∣∣∣∣2

≪ (QN )ε(Qq−1
0 + N + (NY )

1
2 )N

may be replaced by the bound

≪ (QN )ε
(
Qq−1

0 + N + (NY )2θ (Q1−4θ
+ N 1−4θ )

)
N .

This does not require any change in the recursion argument, but merely the use of the bound |t f | ≤ θ in
the very last step [Deshouillers and Iwaniec 1982, page 278], whereby

√
Y/Y1 is replaced by (Y/Y1)

2θ .

• In Proposition 4.12 one bounds sums of the form∑
m,n,r,s
(s,rq)=1

ambn,r,s

∑
c∈C(∞,1/s)

1
c
φ

(
4π

√
mn

c

)
S∞,1/s(m,±n; c)

in terms of quantities L reg and Lexc. In place of

Lexc =

(
1 +

√
N
RS

)√
1 + X−1

RS

(
M N

RS + N

)1
4
√

RS
1 + X

√
M∥bN ,R,S∥2,

we claim the improved

Lexc = q
1
2 −2θ
0

(
1 +

√
N
RS

)(
1 + X−1

RS

)2θ( M N
RS + N

)θ(
1 +

M
RS

)1
2 −2θ √

RS
1 + X

√
M∥bN ,R,S∥2.

To obtain this bound one uses the new bound for Lemma 4.10 and follows the arguments of [Deshouillers
and Iwaniec 1982, Section 9.1].

• In Proposition 4.13, one bounds∑
c,m,n,r,s
(sc,rq)=1

bn,r,sχ(c)g(c,m, n, r, s)e(mt)S(nr ,±mq; sc)

in terms of quantities Kreg and Kexc. The term

K 2
exc = C3S2

√
R(N + RS)

can be replaced by

K 2
exc = C2+4θ S2(R(N + RS))1−2θ

(
1 +

M
RS

)1−4θ
.

This is seen by using the new definition on Lexc in Proposition 4.12, and by keeping track of a factor q−1+2θ

coming from the term (1 + X−1)2θ/(1 + X).
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• Finally, we modify the proof of Theorem 2.1 at two places. First, the bound for A0 on page 706, as
explained in the correction to [Bombieri et al. 1986], is wrong unless further hypotheses on (bn,r,s) are
imposed. The correct bound in general is

A0 ≪ q−2(log S)2 D(N R)
1
2 ∥bN ,R,S∥2,

and this yields the term D2 N R instead of D2 N RS−1. Second, our new bound for Kexc in Proposition 4.13
gives a contribution C2+4θ S2(R(RS + N ))1−2θ (1 + M1/(RS))1−4θ instead of C3S2√R(RS + N ) in the
definition of L2

exc and L∗(M1)
2 on page 707 of [Drappeau 2017]. This yields a term C1+4θ DS ×

((N + RS)R)1−2θ (1 + qC/(RD))1−4θ instead of C2 DS
√
(N + RS)R in (4.39) of [Drappeau 2017], and

by following the rest of the arguments we deduce our claimed bound. □

4. Primes in arithmetic progressions: proof of Proposition 4

The proof of Theorem 1 relies on Proposition 4, which for the convenience of the reader we recall below.

Proposition 4. Let κ ∈
(
0, 50

1093

)
and ε > 0. Let 9 and f be test functions, A > 0, X , Q, W , R ≥ 1,

and b ∈ N. Assume that

Q2

(log Q)A ≪ X ≪ Q2+κ , X
11
20 Q−1

≤ R ≤ Q
2
3 X−

2
9 , b ≤ Qε, Q1−ε

≪ W ≪ Q,

and that ∥ f ( j)
∥∞, ∥9

( j)
∥∞ ≪ j 1. Then, if ε > 0 is small enough in terms of κ , we have∑
w∈N

9

(
w

W

) ∑
n∈N

3(n) f
(

n
X

)
uR(n, bw)≪ Q1−ε

√
X .

The implied constant depends at most on κ , A, and the implied constants in the hypotheses.

Remark 8. What is crucial in our statement is the size of the upper bound, which should be negligible
with respect to Q

√
X . On the other hand, we are only interested in values of X larger than Q2. This is

in contrast with most works on primes in arithmetic progressions [Fouvry and Iwaniec 1983; Bombieri
et al. 1986; Zhang 2014], where the main challenge is to work with values of X much smaller than Q2,
while only aiming at an error term which is negligible with respect to X . The main point is that in both
cases, the large sieve yields an error term which is always too large (see [Iwaniec and Kowalski 2004,
Theorem 17.4]), an obstacle which the dispersion method is designed to handle.

In what follows, we will systematically write

X = Q2+ϖ ,

so that −o(1)≤ϖ ≤ κ + o(1) as Q → ∞.

4.1. Combinatorial identity. We perform a combinatorial decomposition of the von Mangoldt function
into sums of different shapes: type d1 sums have a long smooth variable, type d2 sums have two long
smooth variables, and type II sums have two rough variables that are neither too small nor too large. We
accomplish this decomposition with the Heath-Brown identity and the following combinatorial lemma.
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Lemma 9. Let {t j }1≤ j≤J ∈ R be nonnegative real numbers such that
∑

j t j = 1. Let λ, σ, δ ≥ 0 be real
numbers such that

• δ < 1
12 ,

• σ ≤
1
6 −

1
2δ,

• 2λ+ σ < 1
3 .

Then at least one of the following must occur:

• Type d1: There exists t j with t j ≥
1
3 + λ.

• Type d2: There exist i, j, k such that 1
3 − δ < ti , t j , tk < 1

3 + λ, and∑
t∗j ̸∈{ti ,t j ,tk}

t∗

j < σ.

• Type II: There exists S ⊂ {1, . . . , J } such that

σ ≤

∑
j∈S

t j ≤
1
3 − δ.

Proof. Assume that the type d1 case and the type II case both fail. Then for every j we have t j <
1
3 + λ,

and for every subset S of {1, . . . , J } we have either∑
j∈S

t j < σ or
∑
j∈S

t j >
1
3 − δ.

Let s1, . . . , sK denote those t j with 1
3 − δ < t j <

1
3 + λ. We will show that K = 3. Let t∗

j be any other t j ,
so that t∗

j ≤
1
3 − δ, and therefore t∗

j < σ . We claim that∑
j

t∗

j < σ.

If not, then
∑

j t∗

j >
1
3 − δ. By a greedy algorithm we can find some subcollection S∗ of the t∗

j such that

σ <
∑
j∈S∗

t∗

j ≤ 2σ.

Since 2σ ≤
1
3 − δ this subcollection satisfies the type II condition, in contradiction to our assumption.

Now we show that K = 3. Observe that K ≥ 3, since if K ≤ 2 we have

1 =

∑
j

t j =

K∑
i=1

si +

∑
j

t∗

j < 2
( 1

3 + λ
)
+ σ < 1.

Furthermore, we must have K ≤ 3, since if K ≥ 4 we have

1 =

∑
j

t j ≥

K∑
i=1

si > 4
( 1

3 − δ
)
> 1.

This completes the proof. □
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Using, e.g., the combinatorial identity of Heath-Brown [1982], we deduce the following.

Corollary 10. Let f be a test function, u : N → C be any map, and X ≥ 1. Then there exists a
sequence (C j ) j≥0 of positive numbers, depending only on f , such that we have∣∣∣∣∑

n∈N

3(n) f
(

n
X

)
u(n)

∣∣∣∣ ≪ (log X)8(T1 + T2 + TII), (14)

where

T1 = sup
N≫X1/3+λ

M N≍X

sup
g∈G
β∈S

∣∣∣∣∑ ∑
n∈N

m∼M

g
(

n
N

)
βmu(mn)

∣∣∣∣, (15)

T2 = sup
X1/3−δ

≪N2≤N1≪X1/3+λ

M N1 N2≍X

sup
g1,g2∈G
β∈S

∣∣∣∣∑ ∑∑
n1,n2∈N

m∼M

g1

(
n1

N1

)
g2

(
n2

N2

)
βmu(mn1n2)

∣∣∣∣, (16)

TII = sup
Xσ≪N≪X1/3−δ

M N≍X

sup
α,β∈S

∣∣∣∣∑ ∑
n∼N
m∼M

αmβnu(mn)
∣∣∣∣, (17)

where the implied constants are absolute, G is the set of test functions g satisfying ∥g( j)
∥∞ ≤ C j , and S is

the set of sequences (βn) satisfying |βn| ≤ d(n)8.

Proof. By the Heath-Brown identity [Iwaniec and Kowalski 2004, Proposition 13.3], there exists bounded
coefficients (cJ )1≤J≤4 such that

3(n)=

4∑
J=1

cJ

∑
m1,...,m J
n1,...,n J

n=m1···m J n1···n J
m j ≤(3X)1/4

log(n1)
∏

j

µ(m j )

for any n involved in the left-hand side of (14). Let ψ be a test function inducing a partition of unity in
the sense that

∑
j∈Z ψ(x/2

j )= 1 for all x > 0. Then we have

∑
n∈N

3(n) f
(

n
X

)
u(n)=

4∑
J=1

cJ

∑
(M1,...,MJ ,N1,...,NJ )∈UJ

S(M1, . . . ,MJ , N1, . . . , NJ ),

S(M1, . . . , NJ )=

∑
m1,...,n J ∈N

log(n1)

(∏
j

ψ

(
n j

N j

))(∏
j

µ∗(m j )ψ

(
m j

M j

))
f
(

m1 · · · n J

X

)
u(m1 · · · n J ),

where UJ is the set of 2J -tuples of powers of 2 such that 1
6 X ≤ M1 · · · MJ N1 · · · NJ ≤ 6X , and µ∗(m)=

µ(m) if m ≤ (3X)
1
4 and 0 otherwise. We abbreviated m1 · · · n J = m1 · · · m J n1 · · · n J . The set UJ has

at most O((log X)2J−1) elements. By Lemma 9, for each choice of J and (M1, . . . , NJ ) ∈ UJ we
have either N ≥

1
6 X

1
3 +λ for some N ∈ {N j }, or 1

6 X
1
3 −δ

≤ N ′, N ′′
≤ 6X

1
3 +λ for some N ′, N ′′

∈ {N j },
or 1

6 Xσ
≤ N ≤ 6X

1
3 −δ for some subproduct N of N j and M j (here we used that for X large enough,
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we have (3X)
1
4 < 1

6 X
1
3 −δ). Sorting the sum over J and (M1, . . . , NJ ) according to this trichotomy, and

writing log(n1)= log N1 + log(n1/N1), the above is bounded in absolute values by

≪ (log X)8(T ∗

1 + T ∗

2 + T ∗

II ),

where

T ∗

1 = sup
1
6 X≤M N≤6X

1
6 X1/3+λ

≤N
|r |≤8

sup
g∈{ψ,ψ log}

β∈S

∣∣∣∣ ∑
n∈N

m∼M

g
(

n
N

)
βm f

(
mn

2r M N

)
u(mn)

∣∣∣∣,

T ∗

2 = sup
1
6 X≤N1 N2 M≤6X

1
6 X1/3−δ

≤N1,N2≤6X1/3+λ

|r |≤8

sup
g1,g2∈{ψ,ψ log}

β∈S

∣∣∣∣ ∑
n1,n2∈N

m∼M

g1

(
n1

N1

)
g2

(
n2

N2

)
βm f

(
n1n2m

2r N1 N2 M

)
u(n1n2m)

∣∣∣∣,

T ∗

II = sup
1
6 X≤N M≤6X

1
6 Xσ≤N≤6X1/3−δ

|r |≤8

sup
α,β∈S

∣∣∣∣ ∑
m∼M
n∼N

αmβn f
(

mn
2r M N

)
u(mn)

∣∣∣∣.

Here the conditions m ∼ M and n ∼ N in the sums were added by an additional bounded dichotomy
(which is the reason for the presence of the sup over r ). Finally, letting f̌ be the Mellin transform of f ,
we have by Mellin inversion f (x)=

1
2π

∫
∞

−∞
f̌ (i t)x−i t dt , and the map t 7→ f̌ (i t) is of Schwartz class

on R. In particular, for M , N , r , g, β as in T ∗

1 we have∣∣∣∣ ∑
n∈N,m∼M

g
(

n
N

)
βm f

(
mn

2r M N

)
u(mn)

∣∣∣∣ ≪ sup
t∈R

∣∣∣∣ ∑
n∈N,m∼M

gt

(
n
N

)
βm,t u(mn)

∣∣∣∣,
where gt(x) = (1 + t2) f̌ (i t)x−i t g(x) (the factor 1 + t2 being included so that we could write a
supremum) and βm,t = m−i tβm ∈ S. We note that gt is a test function satisfying ∥g( j)

t ∥∞ ≪ C j ,
where C j := sup0≤k,ℓ,m≤ j+2 ∥tk f̌ (i t)∥∞∥x−ℓg(m)(x)∥∞ can be bounded in terms of f only. This yields
the contribution of T1 in our claim. The contributions of T2 and TII are obtained in the same way. □

In what follows, we successively consider T1, T2 and TII, which we specialize at

u(n) :=

∑
w∈N

9

(
w

W

)
uR(n, bw),

and we will write

R = Xρ .

4.2. Type d1 sums. We suppose M and N are given as in (15). The quantity we wish to bound is

T1(M, N )=
∑
w

9
(
w

W

) ∑
m∼M

(m,bw)=1

βm

( ∑
n∈N

mn≡1 (mod bw)

g
( n

N

)
−

1
ϕ(bw)

∑
χ (mod bw)
cond(χ)≤R

χ(m)
∑

(n,bw)=1

χ(n)g
( n

N

))
.
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By Poisson summation and the classical bound on Gauss sums [Iwaniec and Kowalski 2004, Lemma 3.2],∑
n≡m (mod bw)

g
( n

N

)
=

N
bw

ĝ(0)+ N
bw

∑
0<|h|≤W 1+ε/N

ĝ
( Nh

bw

)
e
(mh

bw

)
+ O(Q−A),

1
ϕ(bw)

∑
(c,bw)=1

χ(c)g
( c

N

)
=

N
bw

ĝ(0)1(χ = χ0)+ O
( QεR

1
2

W

)
.

Therefore,

T1(M, N )=
N
b

∑
w

1
w
9

(
w

W

) ∑
(m,bw)=1

m∼M

βm

∑
0<|h|≤W 1+ε/N

ĝ
( Nh

bw

)
e
(mh

bw

)
+ O(M R

3
2 Qε).

Our goal is to get cancellation in the exponential phases by summing over the smooth variable w. We
apply the reciprocity formula

mh
bw

≡ −
bwh

m
+

h
mbw

(mod 1),

which implies

T1(M, N )=
N
b

∑
w

1
w
9

(
w

W

) ∑
(m,bw)=1

m∼M

βm

∑
0<|h|≤W 1+ε/N

ĝ
( Nh

bw

)
e
(bwh

m

)
+ O(M R

3
2 Qε

+ Q1+εN−1).

We rearrange the sum as

N
bW

∑
(m,b)=1

m∼M

βm

∑
0<|h|≤W 1+ε/N

∑
(w,m)=1

ĝ
( Nh

bw

)W
w
9

(
w

W

)
e
(bwh

m

)
.

By partial summation and a variant of the Weil bound [Drappeau 2015, (2.4)], the sum on w is

≪ ((h,m)W M−1
+

√
(h,m)

√
M)Qε.

Summing over h and m, we obtain a bound

T1(M, N )≪ Q1+ε
+ M

3
2 Qε

+ M R
3
2 Qε.

This bound is acceptably small provided

N ≫

(
X
Q

)2
3 +ε

= X
1
3 +

1
3ϖ/(2+ϖ)+ε(1+ϖ)/(2+ϖ) and N ≫

X
1
2 R

3
2

Q1−2ε = X
1
2ϖ/(2+ϖ)+ 3

2ρ+2ε/(2+ϖ).

These inequalities are satisfied, for all sufficiently small ε > 0, under the assumptions

λ >
ϖ

3(2+ϖ)
and ρ <

4+ϖ

9(2+ϖ)
. (18)

We have proved the following.

Lemma 11. Under the notation and hypotheses of Corollary 10, and assuming (18), we have

T1 ≪ Q1−ε
√

X .

The implied constant depends on λ, ρ and ϖ .
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4.3. Type d2 sums. The treatment of the type d2 sums (16) is nearly identical to [Bombieri et al. 1986,
Section 14]. For convenience, we rename (N1, N2,M) into (M, N , L) so that we have M N L ≍ X . We
wish to bound

T2(M, N , L)=

∑
ℓ∼L

βℓ
∑

(w,ℓ)=1

9
(
w

W

)( ∑ ∑
m,n

ℓmn≡1 (mod bw)

g1

( m
M

)
g2

( n
N

)

−
1

ϕ(bw)

∑
χ (mod bw)
cond(χ)≤R

χ(ℓ)
∑ ∑
(mn,bw)=1

g1

( m
M

)
g2

( n
N

)
χ(mn)

)
.

We perform Poisson summation on the m-sums to get∑
m≡ℓn (mod bw)

g1

( m
M

)
=

M
bw

∑
|h|≤H

ĝ1

( Mh
bw

)
e
(
ℓnh
bw

)
+ O(Q−A),

∑
(m,bw)=1

χ(m)g1

( m
M

)
=
ϕ(bw)

bw
Mĝ1(0)1(χ = χ0)+ O(QεR

1
2 ),

where H = W 1+εM−1. The contribution of the error terms is

≪ L N R
3
2 Qε.

The zero frequency of Poisson summation cancels out. For the nonzero frequencies we employ reciprocity
in the form

e
(
ℓnh
bw

)
= e

(
−

bwh
ℓn

)
+ O

( H
L N W

)
,

and the error term contributes a quantity of size O(Q1+ε). We therefore have

T2(M, N , L)=
M
b

∑
ℓ∼L
(ℓ,b)=1

βℓ
∑

(w,ℓ)=1

1
w
9

(
w

W

) ∑
(n,bw)=1

g2

( n
N

) ∑
0<|h|≤H

ĝ1

( Mh
bw

)
e
(
−

bwh
ℓn

)
+ O(Q1+ε

+ L N R
3
2 Qε). (19)

We next separate the variables h and w. We change variables to write

ĝ1

(
Mh
bw

)
=
w

M

∫
R

g1

(
wy
M

)
e
(

−
hy
b

)
dy.

Since g1 and 9 are test functions, the integral is restricted to y ≍ M/W . We move the integral to the
outside to write the first term of the right-hand side of (19) as

≪
M

bW
sup

y≍M/W

∣∣∣∣∑
ℓ

βℓ
∑

0<|h|≤H

e
(

−
hy
b

) ∑
w

∑
n

9

(
w

W

)
g1

(
wy
M

)
g2

(
n
N

)
e
(

−
bwh
ℓn

)∣∣∣∣. (20)

We then use [Deshouillers and Iwaniec 1982, Theorem 12], amended as described in the correction
to [Bombieri et al. 1986], more specifically, with the dictionary (the bold symbols denote the variables
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names from [Deshouillers and Iwaniec 1982])

c,C ↔ n, N , d, D ↔ w,W,

n, N ↔ h, H, r, R ↔ b′, b,

s, S ↔ ℓ, L , bn,r,s ↔ 1b′=be(−hy/b)βℓ.

Since λ < 1
6 , we have H ≪ L if ε is sufficiently small. Thus, with the same notation, we find the bounds

K (C, D, N, R, S)≪ b(N L2(N + W )+ N 2W L
3
2 + W 2 H)

1
2 and ∥bN,R,S∥2 ≪ Lε(H L)

1
2 .

It will also be easier to sum up the bounds if we assume

N ≪ W 1+ε. (21)

We find

T2(M, N , L)≪ L N R
3
2 Qε

+ Qε(
√

X L +
√

M N L
5
4 + L

1
2 W )≪ L N R

3
2 Qε

+ Qε(
√

X L +
√

M N L
5
4 ),

the second inequality following since L
1
2 W ≪ X

1
2 L . This contribution is acceptable provided

M ≫ X
1
2ϖ/(2+ϖ)+ 3

2ρ+ε, M N ≫ X
1
2 +

1
2ϖ/(2+ϖ)+ε, (22)

M
3
2 N

1
2 ≫ X

1
2 +ϖ/(2+ϖ)+2ε. (23)

The bounds (21)–(23) are satisfied if

δ <
1
12

−
ϖ

2(2+ϖ)
, λ <

1
6

−
ϖ

2(2+ϖ)
, ρ <

1
6
. (24)

We therefore conclude the following.

Lemma 12. Under the notation and hypotheses of Corollary 10, and assuming (24), we have

T2 ≪ Q1−ε
√

X .

The implied constant depends on λ, δ, ρ and ϖ .

4.4. Type II sums. In the type II case (17), we wish to prove the bound

TII(M, N ) :=

∑
w

9
(
w

W

) ∑ ∑
m,n

αmβnuR(mn, bw)≪
√

X Q1−ε,

where α is supported at scale M , β is supported at scale N , M N ≍ X , and Xσ
≪ N ≪ X

1
3 −δ. We

have |αm | ≤ τ(m)O(1), and similarly for β. We use the dispersion method of Linnik [1963], following
closely [Fouvry 1985]; see also [Bombieri et al. 1986, Section 10].

We interchange the order of summation and apply the triangle inequality, writing our sum as

|TII(M, N )| ≤

∑
m

∣∣∣∣∑
w

∑
n

∣∣∣∣.
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Applying the Cauchy–Schwarz inequality, we arrive at

TII(M, N )2 ≪ M(log M)O(1)D, (25)

where

D =

∑
m

f
( m

M

)∣∣∣∣ ∑ ∑
n,w

mn≡1 (mod bw)

9
(
w

W

)
βn −

1
ϕ(bw)

∑
χ (mod bw)
cond(χ)≤R

∑ ∑
n,w

(mn,bw)=1

9
(
w

W

)
βnχ(mn)

∣∣∣∣2

.

Here f is some fixed, nonnegative test function majorizing 1[1,2]. It suffices to show that

D ≪ N Q2−ε.

We open the square and arrive at

D = D1 − 2 ReD2 +D3, (26)

say. We treat each sum Di in turn.

4.4.1. Evaluation of D3. By definition we have

D3 :=

∑
m

f
(

m
M

) ∑ ∑∑ ∑
w1,w2,n1,n2
(mn1,bw1)=1
(mn2,bw2)=1

∑ ∑
χ1,χ2

χ j (mod bw j )

cond(χ j )≤R

9

(
w1

W

)
9

(
w2

W

)
βn1βn2

χ1(mn1)χ2(mn2)

ϕ(bw1)ϕ(bw2)
.

The computations in [Drappeau 2017, pp. 711–712] can be directly quoted, putting formally

γ (q)= 1(b | q)9(q/(bW )), (27)

with the modification that cond(χ1χ2) ≤ R2 (instead of R, as stated incorrectly in [Drappeau 2017]).
Writing H = Qεb[w1, w2]M−1, we get

D3 = M3 + O
(

Qε
∑

w1,w2≍W
n1,n2≍N

1
ϕ(bw1)ϕ(bw2)

∑
χ1,χ2

cond(χ j )≤R

M
b[w1, w2]

∑
0<|h|≤H

R
∑

d|(h,b[w1,w2])

d
)

= M3 + O(QεN 2 R5),

where the main term is computed as in [Drappeau 2017, p. 712] to be

M3 := M f̂ (0)
∑ ∑∑ ∑

w1,w2,n1,n2
(n j ,bw j )=1

∑
χ primitive
cond(χ)≤R

cond(χ)|b(w1,w2)

9

(
w1

W

)
9

(
w2

W

)
βn1βn2χ(n1n2)

ϕ(bw1w2)

bw1w2ϕ(bw1)ϕ(bw2)
.

The error term is acceptable provided

N R5
≪ Q2−ε.

Since N ≪ X
1
3 this is acceptable provided

ρ <
4−ϖ

15(2+ϖ)
. (28)
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4.4.2. Evaluation of D2. We have

D2 :=

∑ ∑∑ ∑
w1,w2,n1,n2
(n j ,bw j )=1

∑
χ (mod bw2)
cond(χ)≤R

9

(
w1

W

)
9

(
w2

W

)
βn1βn2

χ(n2)

ϕ(bw2)

∑
mn1≡1(bw1)
(m,w2)=1

χ(m) f
(

m
M

)
.

The computations in [Drappeau 2017, pp. 712–713] can be also quoted directly with the identification (27).
We obtain

D2 = M3 + O(R
3
2 N 2 Q1+ε).

This is acceptable if

ρ <
2
3
λ+

2(1−ϖ)

9(2+ϖ)
. (29)

4.4.3. Evaluation of D1. We have

D1 :=

∑ ∑∑ ∑
w1,w2,n1,n2
(n j ,bw j )=1

n1≡n2 (mod b)

9

(
w1

W

)
9

(
w2

W

)
βn1βn2

∑
mn j ≡1 (mod bw j )

f
(

m
M

)
.

We need to separate the variables w1, w2, n1, n2 from each other, and this requires a subdivision of the
variables. We decompose these variables uniquely, following [Fouvry and Radziwiłł 2018], as follows:{

d = (n1, n2), n1 = dd1ν1 with d1 | d∞ and (d, ν1)= 1, n2 = dν2,

q0 = (w1, w2), wi = q0qi for i ∈ {1, 2}.

The summation conditions imply

(dd1ν1, q0q1)= (dν2, q0q2)= 1.

We therefore have

D1 =

∑
(d,b)=1

∑
d1|d∞

∑
(q0,d)=1

D1(d, d1, q0),

D1( · · · )=

∑ ∑∑ ∑
q1,q2,ν1,ν2

(dν1,ν2)=(q1,q2)=1
(q1q2,d)=(ν1,d)=1

(ν1,q1)=(ν2,q2)=(ν1ν2,bq0)=1
d1ν1≡ν2 (mod bq0)

9

(
q0q1

W

)
9

(
q0q2

W

)
βdd1ν1βdν2

∑
mdd1ν1≡1 (mod bq0q1)
mdν2≡1 (mod bq0q2)

f
(

m
M

)
.

Using smooth partitions of unity we break the variables into dyadic ranges: d ≍ D, d1 ≍ D1, q0 ≍ Q0.
The contribution from d ≍ D and d1 ≍ D1 is

≪ QεM
∑
d≍D

∑
d1|d∞

d1≍D1

∑
ν1≍N/dd1

∑
ν2≍N/d

|βdd1ν1 ||βdν2 | ≪ QεM N 2
∑
d≍D

1
d2

∑
d1|d∞

τ(d1)
O(1)

d1

(
d1

D1

)1−ε2

≪ QεM N 2 D−1+ε2

1 D−1,
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where the sum over q0 and q1 was bounded by O(τ3(|mdd1ν1 − 1|)) = O(Qε), likewise for the sum
over q2 (note that mdν2 ̸= 1 and mdd1ν1 ̸= 1). This bound is acceptable provided

DD1 ≫
X

Q2−ε
, (30)

so we may henceforth assume DD1 ≪ X Q−2+ε.
The contribution from q0 ≍ Q0 is

≪ Qε
∑

q0≍Q0

∑
q1≍Q/q0

∑ ∑
n1≡n2 (mod q0)

n j ≍N

∑
m≍M

m≡n1 (mod q0q1)

1

≪ QεM
∑

q0≍Q0

∑
q1≍Q/q0

1
q0q1

∑ ∑
n1≡n2 (mod q0)

n j ≍N

1

≪ Qε(M N 2 Q−1
0 + M N ),

where in the first line the sum over q2 was again bounded by τ(|mdν2 − 1|). This is acceptable provided

N ≫
X

Q2−ε
and Q0 ≫

X
Q2−ε

, (31)

so we may henceforth assume Q0 ≪ X Q−2+ε.
We use Poisson summation, following [Drappeau 2017, pp. 714–716]. Let

q̃ = bq0q1q2 and µ≡

{
dd1ν1 (mod bq0q1),

dν2 (mod bq0q2).

Note that q̃ ≥
1
2 W ≫ Q1−ε. With H = q̃1+εM−1

≪ Q2+ε/(q0 M), we get, for any fixed A > 0,∑
m≡µ (mod q̃)

f
( m

M

)
=

M
q̃

∑
|h|≤H

f̂
(hM

q̃

)
e
(
µh
q̃

)
+ O(Q−A). (32)

The zero frequency in (32) contributes the main term, which, after summing over d, d1 and q0 (and
reintegrating the values DD1 and Q0 larger than X Q−2+ε which were discarded earlier), is given by

M1 :=
M
b

f̂ (0)
∑ ∑∑ ∑

w1,w2,n1,n2
(n j ,bw j )=1

n1≡n2 (mod b(w1,w2))

9

(
w1

W

)
9

(
w2

W

)
βn1βn2

1
[w1, w2]

.

The error term in (32) induces in D1(d, d1, q0) a contribution

≪ Q−10 N 2,

and therefore in D1 a contribution O(1), which is acceptable.
We solve the congruence conditions on µ by writing

d1ν1 − ν2 = bq0t, µdd1ν1 = 1 + bq0q1ℓ, µdν2 = 1 + bq0q2m,
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with t, ℓ,m ∈ Z. We deduce

µdt = q1ℓ− q2m, t = q1ν2ℓ− q2d1ν1m.

Then we have the equalities, modulo Z,

µ

q̃
=

µ

bq0q1q2
=

1
dd1ν1bq0q1q2

+
ℓ

dd1ν1q2

≡
1

dd1ν1bq0q1q2
+
ℓdd1

ν1q2
+
ℓν1q2

dd1

≡
1

dd1ν1bq0q1q2
+

tq1ν2dd1

ν1q2
−

bq0q1ν1q2

dd1

≡
1

dd1ν1bq0q1q2
+

d1ν1 − ν2

bq0

q1ν2dd1

ν1q2
−

bq0q1ν1q2

dd1
.

By estimating trivially the first term, we have

e
(

hµ
q̃

)
= e

(
h

d1ν1 − ν2

bq0

q1ν2dd1

ν1q2
−

hbq0q1ν1q2

dd1

)
+ O

(
Hq0

N W 2

)
. (33)

The error term here is ≪ QεX−1, which contributes to D1(d, d1, q0) a quantity

Q2+εN
Xq2

0 dd1

(
1 +

N
d

)
,

and upon summing over (d, d1, q0), this contributes to D1 a quantity O(Q2+εN 2 X−1). This error is
acceptable if

N ≪ Q2−ε. (34)

Then we insert the first term of (33) in (32), and insert the Fourier integral. The nonzero frequencies
contribute a term

R1(d, d1, q0) :=
Mq0

bW 2

∫ ∑ ∑∑ ∑
q1,q2,ν1,ν2

(dν1,ν2)=(q1,q2)=1
(q1q2,d)=(ν1,d)=1

(ν1,q1)=(ν2,q2)=(ν1ν2,bq0)=1
d1ν1≡ν2 (mod bq0)

∑
0<|h|≤H

9

(
q0q1

W

)
9

(
q0q2

W

)
βdd1ν1βdν2

× f
(

t
q2

0 q1q2

W 2

)
e
(

h
d1ν1−ν2

bq0

q1ν2dd1

ν1q2
−

hbq0q1ν1q2

dd1

)
e
(

−ht Mq0

bW 2

)
dt.

So far, we have obtained under the conditions (31) and (34) the bound

D1 = M1 +R1 + O(N Q2−ε), where R1 :=

∑
Q0,DD1≪X Q−2+ε

Q,D,D1 dyadic

∑
d≍D

d1≍D1
q0≍Q0

R(d, d1, q0).
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We now restrict the summation over q1 and q2 in residue classes modulo dd1, to account for the
oscillatory factors. Let λ1, λ2 ∈ (Z/dd1Z)×, and

bn,r,s =

∑
ν1

∑
ν2

ν1=s
ν2dd1=r

(dν1,ν2)=(ν1ν2,bq0)=1
(ν1,d)=1

d1ν1≡ν2 (mod bq0)

∑
0<|h|≤H

h(d1ν1−ν2)=bq0n

βdd1ν1βdν2e
(

−
hbq0λ1ν1λ2

dd1
−

ht Mq0

bW 2

)
,

g(c, d, n, r, s)=9

(
q0c
W

)
9

(
q0d
W

)
f
(

tq2
0 cd

W 2

)
.

Then

R1(d, d1, q0)=
Mq0

bW 2

∫
t≍ f 1

∑
λ1,λ2 (mod dd1)∗

R̃1(t, (λ j )) dt,

R̃1(t, (λ j ))=

∑
n,r,s,c,d

c≡λ1,d≡λ2 (mod dd1)
(sc,rdbdd1)=1

bn,r,sg(c, d, n, r, s)e
(

nrd
sc

)
.

We apply Proposition 6, with sizes given by

C = D =
W
q0
, S =

N
dd1

, R = Nd1, N =
H N
dbq0

.

Let X = Q2Y . Then Y = Qϖ . Note that

RS ≍ N 2 D−1, N ≪ QεN 2Y −1 D−1 Q−2
0 ≪ QεRS, C ≪ QεR D.

We get

R̃1(t, λ j )≪ Qε(DD1)
3
2 K∥bN,R,S∥2,

where

Q−εK 2
≪ Q2 N 4 D−1 D1 Q−2

0 +Q2+4θN 4−6θ D−2+2θ D−2θ
1 Q−2−4θ

0

(
1+

D
N

)1−4θ
+Q2 N 3Y −1 D−1 D1 Q−4

0 .

To bound the term ∥bN,R,S∥2, we assume

X Q−2+ε
= o(N ), (35)

so that D = o(N ) by virtue of the line below (30), and the case d1ν1 = ν2 never occurs in bn,r,s. Then

∥bN,R,S∥
2
2 ≤

∑
ν1,ν2,h

d1ν1≡ν2 (mod q0)
0<|h|<H

|βdd1ν1βdν2 |
2
≪

Q2+ε

Q0 M
N

DD1

( N
DQ0

+ 1
)

≪ Qε(N 3Y −1 D−2 D−1
1 Q−2

0 + N 2Y −1 D−1 D−1
1 Q−1

0 ).
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We deduce

R̃1(t, (λ j ))≪ Qε

6∑
k=1

Qηk,1 N ηk,2Y ηk,3 Dηk,4 Dηk,5
1 Qηk,6

0 ,

where, for each k, ηk = (ηk,ℓ)1≤ℓ≤6 is given by

{ηk} =





1

3

−
1
2
1
2
3
2

−
3
2


,



1
7
2

−
1
2

0
3
2

−2


,



2θ+1

3−3θ

−
1
2

θ

1−θ

−2θ−
3
2


,



2θ+1
7
2 −3θ

−
1
2

θ−
1
2

1−θ

−2θ−2


,



1
5
2

−1
1
2
3
2

−
5
2


,



1

3

−1

0
3
2

−3




.

Summing over λ j , integrating over t , and multiplying by Mq0/(bW 2)≪ QεN−1Y Q0, we get

R1(d, d1, q0)≪ Qε

6∑
k=1

Qηk,1 N ηk,2−1Y ηk,3+1 Dηk,4+2 Dηk,5+2
1 Qηk,6+1

0 .

We sum over d , d1 and q0 in dyadic intervals of lengths D, D1 and Q0, obtaining∑
d≍D

d1≍D1, d1|d∞

q0≍Q0
(d,b)=(q0,d)=1

R1(d, d1, q0)≪ Qε

6∑
k=1

Qηk,1 N ηk,2−1Y ηk,3+1 Dηk,4+3 Dηk,5+2
1 Qηk,6+2

0 .

Finally, we sum this dyadically over Q0, D and D1 subject to Q0 + DD1 ≪ Y Qε. We get

R1 ≪ Qε

6∑
k=1

Qηk,1 N ηk,2−1Y ηk,3+1+max(0,ηk,6+2)+max(0,ηk,4+3,ηk,5+2).

Here, the terms for k = 5, 6 are majorized by the term k = 1, so

R1 ≪ Qε

4∑
k=1

Qθk,1 N θk,2Y θk,3,

where

{θk} =




1

2
9
2

,


1
5
2

4

,


1+2θ

2−3θ

4−θ

,


1+2θ
5
2 −3θ
7
2 −θ


 .

We conclude that

D1 = M1 + O(Q2−εN )

on the condition that N ≪ Q−ε min(QY −
9
2 , Q

2
3 Y −

8
3 , Q(1−2θ)/(1−3θ)Y −(4−θ)/(1−3θ), Q

2
3 Y −

1
3 (7−2θ)/(1−2θ)).
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Upon using θ ≤
7

64 , these conditions are implied by

N ≪ X−ε min(X
1
2 (2−9ϖ)/(2+ϖ), X

1
43 (50−249ϖ)/(2+ϖ), X

1
75 (50−217ϖ)/(2+ϖ)), (36)

and hypotheses (31), (34) and (35).

4.4.4. Main terms. The main terms M1 and M3, which are real numbers by the symmetry n1 ↔ n2,
combine to form

M1 −M3

= M f̂ (0)
∑∑
w1,w2

9

(
w1

W

)
9

(
w2

W

)
1

b[w1,w2]ϕ(b(w1,w2))
×

∑
χ prim

cond(χ)>R
cond(χ)|b(w1,w2)

∑∑
n1,n2

(n j ,bw j )=1

βn1βn2χ(n1)χ(n2).

We may quote the computations in [Drappeau 2017, p. 717], again with the identification (27), to obtain

|M3 −M1| ≪ QεM(N + N 2 R−2)≪ Qε(X + N X R−2).

This is acceptable provided

N ≫ Qϖ+ε and R ≫ Q
1
2ϖ+ε. (37)

4.4.5. Conclusion. Hypotheses (28), (29), (31), (34), (35), (36) and (37) are all satisfied if

ϖ <
1
8
, ϖ < σ <

1
3

− δ <
1
3

−
242ϖ

75(2+ϖ)
,

ϖ

2(2+ϖ)
< ρ <

1
9

−
ϖ

3(2+ϖ)
. (38)

We therefore conclude the following.

Lemma 13. Under the notation and hypotheses of Corollary 10, assuming (38), we have

TII ≪
√

X Q1−ε.

4.5. Proof of Proposition 4. We combine Lemmas 11, 12, 13 and 9. Setting σ =ϖ + ε and recalling
that ϖ < 1

8 , we obtain the conditions

ϖ

3(2+ϖ)
< λ <

1
6

−
ϖ

2
,

242ϖ
75(2+ϖ)

< δ <
1
12

−
ϖ

2(2+ϖ)
,

ϖ

2(2+ϖ)
< ρ <

1
9

−
ϖ

3(2+ϖ)
.

The third is implied by our hypothesis on R. The first two can be satisfied whenever −o(1) ≤ ϖ <
50

1093 − o(1). This proves Proposition 4.
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Multiplicative preprojective algebras are 2-Calabi–Yau
Daniel Kaplan and Travis Schedler

We prove that multiplicative preprojective algebras, defined by Crawley-Boevey and Shaw, are 2-Calabi–
Yau algebras, in the case of quivers containing unoriented cycles. If the quiver is not itself a cycle, we
show that the center is trivial, and hence the Calabi–Yau structure is unique. If the quiver is a cycle, we
show that the algebra is a noncommutative crepant resolution of its center, the ring of functions on the
corresponding multiplicative quiver variety with a type A surface singularity. We also prove that the dg
versions of these algebras (arising as certain Fukaya categories) are formal. We conjecture that the same
properties hold for all non-Dynkin quivers, with respect to any extended Dynkin subquiver (note that the
cycle is the type A case). Finally, we prove that multiplicative quiver varieties — for all quivers — are
formally locally isomorphic to ordinary quiver varieties. In particular, they are all symplectic singularities
(which implies they are normal and have rational Gorenstein singularities). This includes character
varieties of Riemann surfaces with punctures and monodromy conditions. We deduce this from a more
general statement about 2-Calabi–Yau algebras (following Bocklandt, Galluzzi, and Vaccarino).
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1. Introduction

Multiplicative preprojective algebras have recently gained attention in geometry and topology. These alge-
bras appear in the study of certain wrapped Fukaya categories [29; 30], in the study of microlocal sheaves
on rational curves [12], and in the study of generalized affine Hecke algebras [33, Appendix 1]. Their
moduli spaces of representations are called multiplicative quiver varieties, and are analogs of Nakajima’s
quiver varieties. These include character varieties of rank n local systems on closed Riemann surfaces, or
on open Riemann surfaces with punctures and monodromy conditions [25; 55; 61]. Multiplicative quiver
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varieties have also been studied from various viewpoints in [9; 13; 20; 22]. A quantization was defined in
[39] and further studied in [35].

Historically, Crawley-Boevey and Shaw [25] defined the multiplicative preprojective algebra to view
solutions of the Deligne–Simpson problem as irreducible representations of multiplicative preprojective
algebras of certain star-shaped quivers. Their paper establishes the foundations for much of this work.
For a fixed field k and a quiver Q with vertex set Q0 and arrow set Q1 and q ∈ (k×)Q0 , Crawley-Boevey
and Shaw define

3q(Q) :=
L Q

JQ
:=

k Q[(1 + aa∗)−1
]a∈Q(

r :=
∏

a∈Q1
(1 + aa∗)(1 + a∗a)−1 − q

) ,
a quotient of the localized path algebra of the double quiver, L Q , by the two-sided ideal JQ generated by
the single relation, r .

Many of the desirable properties of the (additive) preprojective algebra seem to hold for the multiplicative
preprojective algebra. But establishing this rigorously is difficult, as most proof techniques in the additive
case (employing the grading on the algebra) are not available in the multiplicative case. In particular, the
multiplicative preprojective algebra is not in general a deformation of the ordinary one, nor does it have a
useful Hilbert series for a filtration (due to the localization).

In this paper we overcome these difficulties when the quiver contains a cycle, and formulate the general
expectations. This is sufficient for applications to multiplicative quiver varieties for every quiver.

The main statement is the following:

Conjecture 1.1. 3q(Q) is 2-Calabi–Yau for all q ∈ (k×)Q0 and all Q connected and not Dynkin;
moreover, it is a prime ring, and the family 3q(Q) is flat in q.1 If Q is furthermore not extended Dynkin,
then Z(3q(Q))= k, and the Calabi–Yau structure is unique.

Here (extended) Dynkin refers to the underlying unoriented graph being of types A, D, or E. We explain
how one can reduce the conjecture to the case where Q is extended Dynkin in Section 7D. We carry out
this procedure for Q = Ãn and thereby prove the conjecture for all connected quivers containing it.

Theorem 1.2. 3q(Q) is 2-Calabi–Yau and prime for any q ∈ (k×)Q0 and any k a field, and Q connected
and containing an unoriented cycle. The family of algebras is flat in q. If the quiver properly contains a
cycle, then Z(3q(Q))= k, and the Calabi–Yau structure is unique.

This theorem is established in Corollaries 3.20 and 7.12, and the results of Section 8: Propositions 8.5
and 8.6, and Corollary 8.7. Each relies on technical results proven in Section 7. Before outlining the
proof techniques, we give four different perspectives on this work:

(I) Symplectic topology: wrapped Fukaya categories. Multiplicative preprojective algebras arise from
studying certain wrapped Fukaya categories. Let X0 be the Weinstein manifold formed by plumbing
cotangent bundles of 2-spheres according to the graph 0. Ekholm and Lekili [28] and Etgü and Lekili

1A prime ring is a noncommutative analog of an integral domain, being a ring R in which a Rb = 0 implies a = 0 or b = 0.
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[29; 30] produced quasiisomorphisms,

W(X0)
[28]
∼=

−−−−→ B0
[29; 30]

∼=
−−−−→ L0

where W(X0) is the partially wrapped Fukaya category of X0 , B0 is the Chekanov–Eliashberg dg-algebra
and L0 is the dg multiplicative preprojective algebra following [36], with q = 1; see Definition 4.3.

Since X0 is a Liouville manifold, [34, Theorem 1.3] shows that W(X0) is a 2-Calabi–Yau category
and hence L0 is 2-Calabi–Yau, as a dg-algebra. We establish this result purely algebraically, in the case
0 contains a cycle. In particular, we show in this case that

31(0)= H 0(L0)
Proposition 4.4

=
↪−−−−−−−→ H∗(L0)

and hence L0 is formal. By Theorem 1.2, the dg multiplicative preprojective algebra L0 is formal.2

Consequently, deformations of the wrapped Fukaya category, W(X0), as an A∞-category (respec-
tively Calabi–Yau A∞-category) over a degree zero base, are given by deformations of 31(0) as an
associative algebra (respectively Calabi–Yau algebra). The infinitesimal deformations can be identified
with HH2(31(0)). Thanks to Theorem 1.2, 31(0) is 2-Calabi–Yau. Hence, Van den Bergh duality
identifies HH2(31(0)) with HH0(3

1(0)). The techniques in [54] can likely be adapted to compute the
latter using the explicit basis for 3q(Q) computed here. Furthermore, by the 2-Calabi–Yau property,
HH3(3q(Q))= 0, so there are no obstructions to extending to infinite order deformations.

We conjecture that the same holds for every connected, non-Dynkin quiver. More precisely, in addition
to Conjecture 1.1, we expect the following:

Conjecture 1.3. If Q is connected and not Dynkin, then the dg multiplicative preprojective algebra
3dg,q(Q) is quasiisomorphic to 3q(Q), in degree zero.

We give the precise definitions and details, as well as proof in the case Q contains a cycle, in Section 4.

(II) Quiver varieties: local structure of multiplicative quiver varieties and moduli spaces attached to
2-Calabi–Yau algebras. Given a dimension vector α ∈ NQ0, the affine multiplicative quiver variety is
defined as the (coarse) moduli scheme of representations of3q(Q). Explicitly, it is the geometric invariant
theory quotient of the space of all representations

3q(Q)→

⊕
i

Matαi (k)

by the action of
∏

i GL(αi ) by change of basis. See Section 5 for more details (where we also recall a
version incorporating a stability condition).

Properties of multiplicative preprojective algebras determine properties of the corresponding multi-
plicative quiver varieties. For instance, in Section 7.5 of [55], Tirelli and the second author observe,
following [14], that the 2-Calabi–Yau property determines the (formal) local structure of the moduli space
of representations. Namely, any formal neighborhood can be identified with the formal neighborhood of

2Additionally, since submission of this article, the dg multiplicative preprojective algebra was shown to be 2-Calabi–Yau for
all q and all 0 in [15].
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the zero representation of the moduli space of representations of some (additive) preprojective algebra.
This is proved in more detail here, in Theorem 5.3 (expanding on [14, Section 6], where a similar result
is given). Among other applications mentioned in [55], it follows that, when k has characteristic zero, the
corresponding multiplicative quiver varieties are normal and are symplectic singularities in the sense of
Beauville [3] (in particular, they are normal and have rational Gorenstein singularities); see Corollary 5.5.

This includes (as an open subset) character varieties of Riemann surfaces of positive genus with
punctures and prescribed monodromy conditions, as explained in [55, Section 3] (following [25; 61]).
(In the case of closed Riemann surfaces, as pointed out in [4], this statement does not require our result,
since the group algebra k[π1(6)] is well-known to be 2-Calabi–Yau.)

One subtle point is that we can describe the local structure of multiplicative quiver varieties for all
quivers despite the fact that we only prove the 2-Calabi–Yau property for quivers containing a cycle
(Theorem 5.4). The key idea is that any quiver can be embedded into a quiver containing a loop and
hence any representation of a quiver can be viewed as a representation of a quiver with a cycle. Therefore,
its formal neighborhood can be identified with a formal neighborhood of the zero representation of an
(additive) preprojective algebra. For detailed definitions, statements, and proofs see Section 5.

(III) Noncommutative algebraic geometry: noncommutative resolutions. Although in the non-Dynkin,
nonextended Dynkin case, the center is expected to be trivial (Conjecture 1.1, proved when the quiver
contains a cycle), this is far from true in the extended Dynkin case. Indeed, ordinary preprojective
algebras of extended Dynkin quivers have a large center, the spectrum of which is a du Val singularity.
The algebra itself is a noncommutative crepant resolution of this center. Moreover, this center is the
algebra of functions on a natural quiver variety. So it is reasonable to ask if multiplicative preprojective
algebras also resolve the corresponding multiplicative quiver variety.

In Shaw’s thesis [57], he makes progress towards this question by showing that, for an extended Dynkin
quiver Q with extended vertex v, the subalgebra ev31(Q)ev is commutative of dimension 2, with a
unique singularity at the origin; he expects that (for k of characteristic zero) the singularity there has the
corresponding du Val type (see Remark 6.5).

In further analogy to the additive case, it is reasonable to pose the following conjecture:

Conjecture 1.4. Let Q be extended Dynkin. The algebra 31(Q) is a 2-dimensional noncommutative
crepant resolution (NCCR) of its center, which is the ring of functions on the associated multiplica-
tive quiver variety M1,0(Q, δ). The Satake map Z(31(Q)) → ev31(Q)ev defined by z 7→ evz is an
isomorphism.3

See Section 5 for the precise definition of the multiplicative quiver variety. Thanks to our aforementioned
results on its local structure, the conjecture implies Shaw’s expectation that the singularity of ev31(Q)ev
is du Val of the corresponding type.

For Q = Ãn , we prove the conjecture in Section 6B. In the process, we obtain an explicit description

3We use the terminology “Satake” following the analogous one for symplectic reflection algebras at t = 0 of Etingof–Ginzburg,
itself coming from the map for affine Hecke algebras proposed by Lusztig.
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of the center, Z(31( Ãn)), which may be of independent interest.

(IV) Representation theory: Kontsevich–Rosenberg principle. A final perspective on this work involves
the Kontsevich–Rosenberg Principle which says: a noncommutative geometric structure on an associative
algebra A should induce a geometric structure on the representation spaces Repn(A), for all n ≥ 1. This
principle needs adjusting for structures living in the derived category of A-modules, as the representation
functor is not exact. For a d-Calabi–Yau structure on A, it is shown in [17] and [62] that the derived
moduli stack of perfect complexes of A-modules, R Perf(A), has a canonical (2−d)-shifted symplectic
structure. Since the dg multiplicative preprojective algebra is 2-Calabi–Yau, this implies that its moduli
stack of representations has a 0-shifted symplectic structure. By Conjecture 1.3, it is the same as the
moduli stack of representations of 3q(Q) itself. Note that the multiplicative quiver variety can be viewed
as a coarse moduli space of semistable representations; so the aforementioned result that this variety
locally has the structure of an ordinary quiver variety is a singular analog of the statement on the moduli
stack.

We now give a brief overview of the proof of Conjectures 1.1 and 1.3 for quivers containing a cycle.
We prove Theorem 1.2 using a complex

P• :=3q(Q)⊗k Q0 k Q0 ⊗k Q0 3
q(Q) α

−→3q(Q)⊗k Q0 k Q1 ⊗k Q0 3
q(Q) β

−→3q(Q)⊗k Q0 3
q(Q)

defined originally in [25] (following [56, Theorem 10.3] and [26, Corollary 2.11]) and shown to resolve
3q(Q), except for the injectivity of the map α. We show α is injective and then show the dual complex
P∨

•
is a resolution of 3q(Q)[−2], which implies 3q(Q) is 2-Calabi–Yau.

First, we establish a chain of implications to reduce the proof to a presentation of the localization L Q

that we call the strong free product property, established in Theorem 3.7, see Definition 3.5 or see below
for a rough definition. The strong free product property is a version of Anick’s weak summand property
in the ungraded case; see [1].

To prove the 2-Calabi–Yau property from the strong free product property we show these implications:

Strong free product property for Q :

∃σ ′
:3q(Q) ∗k Q0 k Q0[t, (q + t)−1

] → L Q a linear isomorphism

⇓ Section 3A

Weak free product property for Q : gr(σ ′) :3q(Q) ∗k Q0 k Q0[t] → gr(L Q) is an algebra isomorphism

⇓ Proposition 3.12

gr(σ ′)1 :3q(Q)⊗k Q0 k Q0[t] ⊗k Q0 3
q(Q)→ JQ/J 2

Q is an isomorphism of 3q(Q)-bimodules

⇓ Propositions 3.11 and 3.12

P• is a length two projective 3q(Q)-bimodule resolution of 3q(Q)

⇓ Theorem 3.17

3q(Q) is 2-Calabi–Yau.
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Here the isomorphism σ ′ is determined by a choice of k Q0-bimodule section3q(Q)→ L Q of the quotient
map L Q ↠3q(Q), but gr(σ ′) is independent of this choice. The element t maps to the relation, and the
filtrations used are the t-adic one on the source and the JQ-adic filtration on L Q .

In Section 4, we show that the strong free product property implies that the dg multiplicative prepro-
jective algebra 3dg,q(Q) is formal. Therefore, by the results of this paper, both Conjectures 1.1 and 1.3
would follow from the following more general statement (see Section 7 for precise details).

Conjecture 1.5. If Q is a connected, non-Dynkin quiver, then σ ′ as above is a linear isomorphism:
(L Q, r, σ, k Q0[t, (t + q)−1

]) satisfies the strong free product property.

Proposition 7.11 proves the conjecture for quivers containing a cycle. This is the technical heart of the
paper. Our main technique involves reduction systems over the localized ring k Q0[t, (t + q)−1

]. Using
the diamond lemma [11], we show these give unique reductions of elements of L Q to basis elements of
the given free product. As a consequence, 3q(Q) itself obtains the module structure of a free product of
the cycle part and the rest of the quiver; see (7-12) for a precise statement.

Remark 1.6. After submission of this article Crawley-Boevey and Yuta Kimura [24, Theorem 1.1] proved
that a related, more well-studied algebra, the deformed preprojective algebra [23], is 2-Calabi–Yau, in the
case that the quiver is connected and non-Dynkin. This algebra is a deformation of the usual (additive)
preprojective algebra, given as the quotient of the path algebra of the double quiver by the single relation∑

a∈Q1
aa∗

− a∗a −
∑

i∈Q0
λi ei , the case λi = 0 returning the original preprojective algebra. This can

also be proved via the techniques of this article, by deducing the strong free product property from the
known one for the additive preprojective algebra for non-Dynkin quivers.

Namely, the latter are noncommutative complete intersections [1; 32], shown in [54, Proposition 5.2.1]
to be equivalent, in the context of graded algebras, to the (strong or weak) free product property. More
generally, let A = T V/(r) be a graded algebra satisfying the free product property. Briefly, this means
that we have a section σ : A → T V , which we can take to be graded, so that the induced linear map
σ ′

: A ∗k k[t] → T V sending t to r is a linear isomorphism. Then for every λ ∈ k, σ ′ also defines a linear
isomorphism by the same formula except sending t to r +λ. This is because, taking a homogeneous basis
of A with degree nondecreasing, we obtain a homogeneous basis of T V via the free product, and the
substitution r 7→ r +λ is a strictly triangular change of basis. Thus, the algebra T V/(r +λ) also satisfies
the strong free product property. Note that the same argument given here applies if we replace r by any
filtered deformation r + r ′, with r ′ in degrees strictly lower than r . They also apply to the quiver context,
replacing k by k Q0, hence imply that the deformed preprojective algebra satisfies the strong free product
property. It seems likely this argument can apply to many other interesting algebras.

An outline of the paper is as follows: In Section 2, we give elementary background information on
multiplicative preprojective algebras and produce an alternative generating set crucial for our approach to
the 2-Calabi–Yau property. In Section 3, we prove the 2-Calabi–Yau property for 3q(Q) assuming the
strong free product property. In Section 4, using the strong free product property, we show that the dg
multiplicative preprojective algebra has homology 3q(Q), concentrated in degree zero. In Section 5, we
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use the 2-Calabi–Yau property to describe the formal neighborhoods of multiplicative quiver varieties as
formal neighborhoods of the zero representation in certain quiver varieties. In Section 6 we use the 2-
Calabi–Yau and prime properties in the cycle case, together with work of Shaw, to show the multiplicative
preprojective algebra is a noncommutative resolution over its center. In Section 7, we prove the strong
free product property first for multiplicative preprojective algebras of cycles, then for partial multiplicative
preprojective algebras. Putting the two together, we deduce the strong free product property for connected
quivers containing cycles. The key point of the argument, of independent interest, is a construction of
bases of these algebras. Finally, in Section 8, we establish the prime property of 3q(Q) using our explicit
bases. We furthermore show that Z(3q(Q))= k for Q connected and properly containing a cycle. This
shows that the Calabi–Yau structure in these cases are unique, up to scaling.

2. The multiplicative preprojective algebra

2A. Definitions. Throughout the paper we fix an arbitrary field k. For each quiver (i.e., directed graph) Q,
let Q0 be the vertex set, Q1 be the arrow set, and h, t : Q1 → Q0 the head and tail maps, respectively.
We will assume that Q0 and Q1 are finite for convenience, but really only need finitely many arrows
incident to each vertex.

Let Qop denote the quiver with the same underlying graph of vertices and edges, but with every arrow
in the opposite direction. Q denotes the quiver with the same vertex set as Q and Qop and with arrow set
Q1 ⊔ Qop

1 . For each arrow a ∈ Q1, we write a∗ for the corresponding arrow in Qop
1 , and vice versa. In Q

we distinguish between arrows in Q and Qop using a function

ϵ : Q1 → {±1}, ϵ(a) :=

{
1 if a ∈ Q1,

−1 if a ∈ Qop
1 .

For a quiver Q, we denote the path algebra by k Q and follow the convention that paths are concatenated
from left to right. We have an inclusion e(−) : Q0 → k Q in order to view a vertex i ∈ Q0 as a length zero
path ei .

For a ∈ Q1, define ga := 1 + aa∗
∈ k Q. Consider the localization L Q := k Q[g−1

a ]a∈Q1
. We write

L := L Q , when the quiver is clear from context. Notice, for all a ∈ Q1,

gaa = a + aa∗a = aga∗ . (2-1)

This implies

ga∗a∗
= a∗ga, g−1

a a = ag−1
a∗ , g−1

a∗ a∗
= a∗g−1

a .

Fixing a total ordering ≤ on the set of arrows Q1, one can make sense of a product over (subsets of) the
arrow set. Using ≤ and ϵ we define

ρ :=

∏
a∈Q1

gϵ(a)a , la :=

∏
b∈Q1,b<a

gϵ(b)b , ra :=

∏
b∈Q1,b>a

gϵ(b)b .
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When we need to make the role of the total ordering ≤ more explicit, we write ρ≤ (respectively la,≤

and ra,≤) for ρ (respectively la and ra). By definition, la and ra are the subproduct of ρ to the left and
right of a, respectively. Therefore,

ρ = lagϵ(a)a ra (2-2)

for all a ∈ Q1.

Definition 2.1. Fix a quiver Q and q ∈ (k×)Q0 . Consider Q and fix an ordering ≤ on the arrows and a
map ϵ as defined above. The multiplicative preprojective algebra, 3q(Q), is defined to be

3q(Q) := L/J

where L = k Q[g−1
a ]a∈Q1

is the localization and J is the two-sided ideal generated by the element ρ− q .

Note that q is viewed as an element of k Q via
∑

i∈Q0
qi ei ∈ k Q0 ⊂ k Q, and as ρ is invertible we need

qi ̸= 0 so ei3
q(Q) ̸= 0, for all i .

Remark 2.2. The isomorphism class of 3q(Q) is independent of both the orientation of the quiver and
the choice of an ordering on the arrows, by Section 2 in [25].

In the multiplicative preprojective algebra, (2-2) becomes the identity

lagϵ(a)a ra = q.

Hence

rala = qg−ϵ(a)
a . (2-3)

As mentioned in the introduction, we say that a quiver is (extended) Dynkin, we mean that the
underlying unoriented graph is an (extended) type ADE Dynkin diagram. We don’t consider nonsimply
laced types because, given a quiver, the associated Cartan matrix is 2I − A where A is the adjacency
matrix of the underlying unoriented graph, which is symmetric.

Example 2.3 (Dynkin case). Let Q be a Dynkin quiver and let R be a commutative ring. Note that the
definitions of (multiplicative) preprojective algebra make sense over R. In [42, Section 5], the first named
author constructed explicit isomorphisms

31(Q)∼=50(Q) := RQ
/ ( ∑

a∈Q1

[a, a∗
]

)
if 2, 3, and 5 are invertible in R; see also the earlier works [57, Lemma 5.2.1], [22, Corollary 1], [29,
Theorem 13], and [47, Section 5]. In particular, for a field k of characteristic zero, we can work over
k[[h̄]] and set q = eh̄ . Then 3q is a formal deformation of 31. Hence, by [31, Proposition 5.0.2], there
exists some λ ∈ k[[h̄]] such that there is a k[[h̄]]-linear algebra isomorphism

3q(Q)∼=5λ(Q) := k Q
/ ( ∑

a∈Q1

[a, a∗
] −

∑
i∈Q0

λi ei

)
.
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In A types, such an isomorphism holds over any field k and for any actual parameter q. Namely,
identifying (An)0 = {1, 2, . . . , n} and (An)1 = {a1, a2, . . . , an−1} with tail t (ai ) = i , the isomorphism
3q(An)∼=5λ(An) is given by

ei 7→ ei , ai 7→ ai , a∗

i 7→

(∏
j>i

q j

)
a∗

i ,

where λi := (qi − 1)
∏

j>i q j . Since 5λ(An) is nonzero if and only if there exists i, j with i < j and∑ j
ℓ=i λℓ = 0, it follows that 3q(An) is nonzero if and only if

∏ j
ℓ=i qℓ = 1.

2B. The map θ . In [25], the important map θ : Q1 →3q(Q) is defined by θ(a)=q−1laara∗ and extended
to k Q by the identity on Q0 and by requiring θ to be an algebra map. Then Lemma 3.3 in [25] shows that

θ(ga)= lagal−1
a (2-4)

= r−1
a gara, (2-5)

so θ(ga) is invertible. Hence θ factors through the localization L := k Q[g−1
a ]a∈Q1

. We will show θ

descends to the quotient 3q(Q), with the ordering of the arrows reversed, using the following result.

Lemma 2.4. Let ≤ denote a total order on Q1 and let ≥ denote its opposite ordering, i.e., a ≥ b if b ≤ a.
Such an order fixes a bijection Q1 ∼= {a1, a2, . . . , a

|Q1|
}. Then

θ(ra j ,≥)= la j ,≤ =: la j and θ(la j ,≥)= ra j ,≤ =: ra j

for any a j ∈ Q1.

Proof. We prove θ(ra j ,≥)= la j by induction on j , where j = 1 is the identity θ(1)= 1. Then,

θ(ra j+1,≥)= θ(gϵ(a j )
a j )θ(ra j ,≥)

(IH)
= θ(gϵ(a j )

a j )la j

(2-4)
= la j g

ϵ(a j )
a j l−1

a j
la j = la j g

ϵ(a j )
a j = la j+1 .

The second identity is similar and one can formally obtain a proof from the above by exchanging the
symbols r and l, the identity (2-4) for (2-5), and the order of the multiplication. □

Corollary 2.5. θ(ρ≥)= ρ.

This corollary implies θ descends to a map 3q(Q,≥) → 3q(Q,≤). Notice that we can similarly
define θ≥ :3q(Q,≤)→3q(Q,≥).

Proposition 2.6. θ≥ ◦ θ = Id3q (Q,≤).

Proof. It suffices to check θ≥ ◦ θ is the identity on arrows in Q1. We have

θ≥(θ(a))= θ≥(q−1laara∗)= q−1θ≥(la)θ≥(a)θ≥(ra∗),

which by Lemma 2.4 equals

= q−1raθ≥(a)la∗ = q−1ra(q−1laara∗)la∗

(2-3)
= = g−ϵ(a)

a ag−ϵ(a∗)
a∗

(2-1)
= ag−ϵ(a)

a∗ g−ϵ(a∗)
a∗ = a. □
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3. Calabi–Yau and free product properties

The goal of this section is to prove that 3q(Q) is 2-Calabi–Yau for Q containing an unoriented cycle. We
do so by exhibiting a length two, projective, 3q(Q)-bimodule resolution P• of 3q(Q), whose bimodule
dual complex P∨

•
is quasiisomorphic to 3q(Q). This resolution is due to Crawley-Boevey and Shaw,

but they don’t state nor prove that it is exact. The main new ingredient we provide is the injectivity of
α which relies on the weak free product property. Hence we begin this section with a short digression
explaining the strong and weak free product properties.

3A. Free product (complete intersection) properties. Recall that, if R is a commutative ring and r ∈ R
an element, then there is a dg analog of the quotient R/(r): the Koszul complex (R[s]/(s2), d) with
d|R = 0 and ds = r , here |s| = −1. Note here that, in spite of the notation, R[s]/(s2) is the graded-
commutative algebra freely generated by R and a single generator s in degree −1. The quotient map
(R[s]/(s2), d)→ R/(r) is a quasiisomorphism if and only if r is a nonzerodivisor.

Thus, in the commutative setting, the nonzerodivisor condition is the correct one for which the Koszul
complex (derived imposition of r = 0) is equivalent to the quotient algebra.

Now let us pass to the noncommutative setting. If A is an algebra over a ring S and J = (r) an ideal
generated by a single relation r , we can form a canonical algebra map,

8 : A/J ∗S S[t] → grJ A, 8|A/J = Id,8(t)= r, (3-1)

where grJ means the associated graded algebra with respect to the J -adic filtration.

Definition 3.1. The pair (A, r) satisfies the weak free product property if 8 is an isomorphism.

Remark 3.2. This condition is significantly more subtle than in the commutative case. In particular,
it is insufficient for r to be a nonzerodivisor. For example, if A = k[x] and r = x2, then we have
H 1(A ∗ k[s], d) ∋ [xs − sx] ̸= 0. (Here A is actually commutative, but we take the noncommutative
construction; for a noncommutative example, simply replace A with k⟨x, y⟩.)

The weak free product property is an analog of a noncommutative complete intersection (NCCI) [32],
and closely matches the weak summand property from [1] (considered in the graded setting). We have
chosen this terminology to make the algebraic property we are using more evident.

When the context is clear, we will sometimes abuse notion and say the quotient A/J , for J = (r),
satisfies the weak free product property, even though the choice of A and r ∈ A is important.

Given an S-bimodule section σ : A/J → A of the quotient map π : A → A/J , we can form an
associated linear map,

σ̃ : A/J ∗S S[t] → A, (a0tm1a1tm2 · · · tmn an) 7→ σ(a0)rm1σ(a1)rm2 · · · rmnσ(an), (3-2)

for mi > 0, for all i . The existence of such a σ (and hence σ̃ ) is automatic if S is separable, as is the case
when S = k Q0 below.
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By construction, this is S[t]-bilinear, where t acts on A by multiplication by r . It also reduces to the
identity modulo (t) on the source and J on the target. If (A, r) satisfies the weak free product property,
then moreover the completion ̂̃σ :

∧

A/J ∗S S[t] → Â, (3-3)

with respect to the t-adic and J -adic filtrations, is a linear isomorphism.
The goal of the strong free product property is to find a description of A itself as a free product. The

first version is the following:

Definition 3.3. The triple (A, r, σ ) satisfies the strong free product property if σ̃ : A/J ∗S S[t] → A is an
S-bimodule isomorphism.

Remark 3.4. The choice of σ is important. Let A = k⟨x, y⟩ and J = (y) so A/J ∼= k[x]. Here k[t] acts
on A via t f := y f . Consider two different choices

σ1, σ2 : k[x] → k⟨x, y⟩, σ1(x + (y))= x, σ2(x + (y))= x − xy.

Then σ̃1 is a linear isomorphism, while σ̃2 is not surjective as

x = σ2(x + (y))(1 − y)−1
= σ2(x + (y))

∑
i≥0

yi /∈ σ̃2(k[x] ∗k k[t]).

This property is too much to expect in many situations, such as in the presence of rational functions
in t . To fix this, let B = S[t, f −1

] be a localization of S[t] obtained by inverting some f ∈ S×
+ (t),

such that the map S[t] → A extends to an algebra map τ : B → A (such an extension is necessarily
unique). Let B := t B, so that we have an S-bimodule decomposition B = S ⊕ B. Then σ̃ extends to a
map σ ′

: A/J ∗S B → A, which has the form

a0b1a1 · · · bnan 7→ σ(a0)τ (b1) · · · τ(bn)σ (an), ai ∈ A/J, bi ∈ B. (3-4)

Definition 3.5. The quadruple (A, r, σ, B) satisfies the strong free product property if σ ′ is a linear
isomorphism.

This definition reduces to the previous definition in the case B = S[t], τ(t)= r .
In this case, it follows by taking associated graded algebras that (A, r) satisfies the weak free product

property. Moreover, A is Hausdorff in the J -adic filtration (because the source of σ ′ is Hausdorff in the
t-adic filtration), and σ ′ is indeed a restriction of ̂̃σ .

Remark 3.6. It is important in the definition of σ ′ to use the natural bimodule complement B = t B.
Here is an example to show why (see also Remark 7.2 for another one, which we naively ran into before
realizing our mistake). Let A = k⟨x, y, z⟩/(xyz−xz), r = y, so that A/J ∼= k⟨x, z⟩/(xz). A basis for A/J
is given by {zi x j

}i, j≥0. Let σ : A/J → A be the section preserving this, i.e., σ(zi x j
+ (y, xyz − xz))=

zi x j
+ (xyz − xz). Set B := k[t]. Then σ ′

= σ̃ : A/J ∗k k[t] → A is a linear isomorphism, so (A, r, σ )
is a strong free product. However, if we were to instead choose a complement B = (t − 1)B, then we
now have σ ′(x(t − 1)z)= 0, so the map σ ′

: A/J ∗k B → A defined using B is not injective. (It is also
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not surjective, as xz is not in the image.) On the other hand, for general weak free products, using the
correct choice B = t B, σ ′ is always injective.

Now we return to the setup of Q a connected, non-Dynkin quiver and q = (k×)Q0 . Let B :=

k Q0[t, (q + t)−1
] and B := t B = Span(tm, (t ′)m | m ≥ 1}, for t ′

:= (q + t)−1
− q−1. We conjecture that,

for every such Q, there exists σ such that the quadruple (L Q, r, σ, B) satisfies the strong free product
property. Moreover, in Section 7 we prove this conjecture in the case of quivers containing a cycle.

Theorem 3.7 (Proposition 7.11). Let Q be a connected quiver containing an unoriented cycle. Let
B = k Q0[t, (q + t)−1

] and let r denote the multiplicative preprojective relation. There exists a section σ
such that (L Q, r, σ, B) satisfies the strong free product property.

The proof of this theorem is technical and uses combinatorial algebraic techniques. Therefore we delay
its proof until Section 7, which does not result in circular logic as that section does not depend on results
after Section 2.

Remark 3.8. The connectedness assumption can be weakened as follows. If Q = Q′
⊔ Q′′ then L Q =

L Q′ ⊕ L Q′′ and 3q(Q)=3q(Q′)⊕3q(Q′′) and so by adding sections, the strong free product property
for

(L Q′ ⊕ L Q′′, r ′
+ r ′′, σ ′

+ σ ′′, B ′
⊕ B ′′)= (L Q, r, σ, B)

follows from the strong free product properties for (L Q′, r ′, σ ′, B ′) and (L Q′′, r ′′, σ ′′, B ′′). So one only
needs the weaker assumption that Q is a quiver with each component containing an unoriented cycle.
But we state results in the connected setting to simplify the hypotheses.

Corollary 3.9. Let Q be a connected quiver containing an unoriented cycle. Then 3q(Q) satisfies the
weak free product property. In particular, there exists an isomorphism of graded algebras∑

i

ϕi : gr(3q(Q) ∗k Q0 k Q0[t])→ gr(L Q)

where the associated graded algebras are taken with respect to the t-adic and JQ-adic filtrations on
3q(Q) ∗k Q0 k Q0[t] and L Q respectively.

Remark 3.10. Note that for ordinary preprojective algebras, the free product property was observed in [54,
Propositions 5.1.9 and 5.2.1]. In fact, as these algebras are nonnegatively graded with finite-dimensional
subspaces in each degree, and one-dimensional in degree zero (connected), the strong and weak free
product properties are equivalent (and independent of the choice of graded section σ ), as was already
observed by Anick [1].4 Moreover, if A has global dimension at most two, then these conditions are
also equivalent to the condition that A/(r) also has global dimension at most two. In the case A is a
tensor or path algebra, such algebras were called noncommutative complete intersections in [32] due
to their close relationship to the condition that representation varieties be complete intersections. For a

4Anick works in the graded context over a field rather than k Q0, but his results generalize to this setting; see [32; 54].
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nuanced discussion of this relationship, including sufficient conditions for the representation variety to be
a complete intersection, see the introduction and Theorem 24 in [6].

However, in the ungraded case, we only have the implication that we need, that the free product
property implies the existence of a length-two projective bimodule resolution. Indeed, the latter property
only depends on a piece of the associated graded algebra with respect to the (r)-adic filtration, and in the
ungraded case this filtration need not even be Hausdorff. In contrast, the strong free product property
implies the Hausdorff condition and gives information about the algebra itself.

Motivated by this, we believe that the strong free product property can be viewed as an ungraded
analog of the noncommutative complete intersection property. It is an interesting question to investigate
when their representation varieties are complete intersections.

3B. A bimodule resolution of 3. In this subsection, we show that for any quiver, the weak free product
property for 3q(Q) implies 3q(Q) has a length two projective bimodule resolution. Consequently, since
we establish the weak free product property for connected quivers containing a cycle, we prove 3q(Q)
has Hochschild dimension two for connected quivers containing a cycle. For ease of notation, write
3 :=3q(Q).

Crawley-Boevey and Shaw build a chain complex of 3-bimodules P• = P2
α

−→ P1
β

−→ P0 where,

P2 = P0 :=3⊗k Q0 k Q0 ⊗k Q0 3= ⟨ηv⟩v∈Q0, P1 :=3⊗k Q0 k Q1 ⊗k Q0 3= ⟨ηa⟩a∈Q1

and

α(ηv) :=

∑
a∈Q1:t (a)=v

la1ara where 1a =

{
ηaa∗

+ aηa∗ if a ∈ Q1,

−g−1
a (ηaa∗

+ aηa∗)g−1
a if a ∈ Qop

1 ,

β(ηa) := aηt (a) − ηh(a)a.

We claim that it is a resolution of 3. To see this, following [25], we first write down an explicit chain
map of 3-bimodule complexes ψ : P• → Q•, where Q• is quasiisomorphic to 3; we then prove it is an
isomorphism. Q• is the cotangent exact sequence in Corollary 2.11 of [26], but in this context it was
defined earlier (and shown quasiisomorphic to 3) by Schofield [56]. So we have the maps

P•

ψ

[25]−−−−→ Q•

quasiiso
[56]−−−−→3.

Proposition 3.11 [25, Lemma 3.1]. For any quiver Q, the following diagram commutes:

P0
α

//

ψ2
��

P1
β

//

ψ1∼=

��

P0
γ

//

ψ0∼=

��

3

id=

��

J/J 2 κ
// 3⊗L �k Q0(L)⊗L 3

λ
// 3⊗k Q0 3

µ
// 3

Where the vertical maps are 3-bimodule maps defined on generators by,

ψ2(ηv) := ρev − qev, ψ1(ηa) := 1 ⊗L [a ⊗k Q0 1 − 1 ⊗k Q0 a] ⊗L 1, ψ0(ηv)= ev ⊗ ev.
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Here α and β are as defined above and γ (ηv) := ev. The horizontal maps are defined by

κ(x+J 2): = 1⊗Lδ(x)⊗1 where δ(x) := x⊗1−1⊗x for x ∈ J,

λ(1⊗L [ab⊗k Q0c−a⊗k Q0bc]⊗L1): = ab⊗k Q0c−a⊗k Q0bc for a,b,c ∈ L ,

µ(a⊗b): = ab for a,b ∈3.

Since ψ0 and ψ1 are 3-bimodule isomorphisms, it remains to show ψ2 is a 3-bimodule isomorphism.
We show this using the weak free product property.

Proposition 3.12. Suppose 3 satisfies the weak free product property. Then P• is a bimodule resolution
of 3.

Proof. Taking the i = 1 piece of the graded isomorphism

gr(ϕ)=

∑
i

ϕi : gr(3 ∗k Q0 k Q0[t, (t + q)−1
])−→ gr(L Q)

gives an isomorphism of 3-bimodules

ϕ1 :3⊗k Q0 k Q0 · t ⊗k Q0 3→ JQ/J 2
Q .

Since ϕ1 sends t 7→ r , it sends tev 7→ rev = (ρ − q)ev and hence ϕ1 = ψ2. We conclude that ψ2 is an
isomorphism of 3-bimodules and hence ψ• : P• → Q• is an isomorphism of 3-bimodule complexes. In
particular, P• is a resolution since Q• is a resolution. □

For a complex C• concentrated in nonnegative degrees, define the length by

len(C•) := sup{i ∈ N | Ci ̸= 0}.

For an algebra A, the Hochschild dimension of A is HH.dim(A) := len(HH•(A)) and the global dimension
of A, is gl.dim(A) := supM∈A-mod infP•

{len(P•)} where the infimum is taken over all projective A-module
resolutions of M.

Corollary 3.13. Let Q be a connected quiver containing a cycle. Then

gl.dim(3)≤ HH.dim(3)= 2.

Proof. Use P• to compute HHi (3); HHi (3)= 0 for i > 2 while HH2(3) ̸= 0. Therefore HH.dim(3)= 2.
Every left 3-module, M , has a length two projective left 3-module resolution P• ⊗3 M , and hence 3
has global dimension at most two. □

Example 3.14. Note that the inequality in Corollary 3.13 may be strict. If Q is the Jordan quiver (i.e.,
the quiver with one vertex and one loop) then

3q(Q)∼= k⟨a, a∗
⟩[(1 + a∗a)−1

]/(aa∗
− qa∗a − (q − 1)).

The change of variables x := a and y := a∗/(q − 1) when q ̸= 1, identifies 3q(Q) with a localization of
the first quantum Weyl algebra, k⟨x, y⟩/(xy − qyx − 1), which has global dimension one.
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3C. The dual complex. In this subsection, we show for any quiver that if P• is a resolution of 3q(Q),
then 3q(Q) is 2-Calabi–Yau. Combining this with the previous subsection, we get that if 3q(Q) satisfies
the weak free product property then 3q(Q) is 2-Calabi–Yau. In particular, this shows that 3q(Q) is
2-Calabi–Yau for connected quivers containing a cycle.

First we recall the notion of d-Calabi–Yau algebras [36].

Definition 3.15. A is d-Calabi–Yau if (a) A has finite projective dimension as an A-bimodule; (b)
Exti (A, A ⊗ A)= 0 for i ̸= d; and (c) there exists an A-bimodule isomorphism

η : ExtdA−bimod(A, A ⊗ A)→ A.

The map η is called a d-Calabi–Yau structure.

Remark 3.16. For perfect A-modules, M and N , one has a quasiisomorphism,

RHomA−bimod(M, N ) ∼=−→ HomA−bimod(M, A ⊗ A)⊗L
A⊗Aop N .

Taking M = A∨ and N = A gives RHomA−bimod(A∨, A)∼= A ⊗
L
A⊗Aop A. The isomorphism on the level

of d-th homology realizes

η ∈ HomA−bimod(A∨, A[−d])=: Ext−d
A−bimod(A

∨, A)∼= HHd(A)

as a class in d-th Hochschild homology.
For dg-algebras, one further equips this structure with a class in negative cyclic homology that lifts

the Hochschild homology class of the isomorphism. But, as shown in Proposition 5.7 and explained in
Definition 5.9 of [60], for ordinary algebras this additional structure exists uniquely.

We have established P• as a 3-bimodule resolution of 3, if Q is connected and contains a cycle. To
show 3 is 2-Calabi–Yau, it suffices to show that its dual complex

RHom3−bimod(3,3⊗3) := Hom3−bimod(P•,3⊗3)=: P∨

•

is quasiisomorphic to 3[−2].
Define η∨

v ∈ Hom3−bimod(P0,3⊗3) and η∨
a ∈ Hom3−bimod(P1,3⊗3) by,

η∨

v (ηw) :=

{
ev ⊗ ev if v = w,

0 otherwise ,
η∨

a (ηb) :=

{
et (a) ⊗ eh(a) if b = a∗,

0 otherwise .

These are generators of P∨

0 and P∨

1 respectively and give isomorphisms,

P∨

0
∼=3⊗k Q0 k Q0 ⊗k Q0 3= ⟨η∨

v ⟩, P∨

1
∼=3⊗k Q0 k Q1 ⊗k Q0 3= ⟨η∨

a ⟩.

Rather than directly study the dual complex P∨
•

, we modify the formulas for α∨ and β∨ using the
map θ , in a way that doesn’t affect the homology of the complex. Namely, after choosing generators {ξv}

for P∨

0 and {ξa} for P∨

1 , defined below, one can expand

α∨(ξa)=

∑
v∈Q0

a′

vξva
′′

v , β∨(ξv)=

∑
a∈Q1

b′

aξab′′

a,
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for some a′
v, a′′

v , b′
a, b′′

a ∈3 and then define

α∨

θ (ξa) :=

∑
v∈Q0

θ(a′

v)ξvθ(a
′′

v ), β∨

θ (ξv) :=

∑
a∈Q1

θ(b′

a)ξaθ(b′′

a).

It suffices to show that

(P∨

•
)θ := P∨

0
−β∨

θ−−→ P∨

1
α∨

θ−−→ P∨

0

is quasiisomorphic to 3[−2].
We prove this by establishing an isomorphism of 3-bimodule complexes ϕ• : P•[2] → (P∨

•
)θ following

Crawley-Boevey and Shaw, so

(P∨

•
)θ

ϕ−1
•−→ P•[2]

ψ•[2]
−−→ Q•[2]

quasiiso
−−−−→3[2].

Theorem 3.17. The following diagram commutes:

P∨

0

−β∨

θ
//

(II)

P∨

1

α∨

θ
//

(I)

P∨

0

γ ◦ϕ−1
0

// 3

P0
α

//

ϕ0 ∼=

OO

P1
β

//

ϕ1 ∼=

OO

P0
γ

//

ϕ0 ∼=

OO

3

id =

OO

Where the vertical maps are 3-bimodule isomorphisms defined on generators by,

ϕ0(ηv) := ξv := qη∨

v , ϕ1(ηa) := ξa∗ :=

{
laη

∨
a∗l−1

a∗ if a ∈ Qop
1 ,

−r−1
a∗ η∨

a∗ra if a ∈ Q1.

Note that ϕ1 is an invertible map since ra and la are invertible elements of 3 for all a ∈ Q1. The
commuting of (I) becomes clear once we compute the maps α∨, the content of the next lemma.

Lemma 3.18 [25, Lemma 3.2].

α∨(η∨

a )=

{
a∗raη

∨

h(a)la − g−1
a∗ ra∗η∨

t (a)la∗ g−1
a∗ a∗ if a ∈ Q1,

ra∗η∨

t (a)la∗a∗
− a∗g−1

a raη
∨

h(a)lag−1
a if a ∈ Qop

1 .

α∨(ξa)= θ(a∗)ξt (a∗) − ξh(a∗)θ(a∗).

α∨

θ (ξa∗)= aξt (a) − ξh(a)a.

β = ϕ−1
0 ◦α∨

θ ◦ϕ1.

So square (I) in Theorem 3.17 commutes.

Proof. The first two equalities are shown directly in [25] and the last two are clear from the definitions
together with Proposition 2.6. □

Proof of Theorem 3.17. By Lemma 3.18, it suffices to show that (II) commutes. While one can similarly
compute β∨ directly, such a calculation is unnecessary as the commuting of (II) follows from that of (I).
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Indeed, dualizing and applying (−)θ to the maps in (I), produces a still commuting diagram:

P1

(ϕ1)
∨

θ

��

(I)∨θ

P0
(α∨

θ )
∨

θ
oo

(ϕ0)
∨

θ

��

=

P1

−ϕ1
��

(I)∨θ

P0
α

oo

ϕ0

��

P∨

1 P∨

0β∨

θ

oo P∨

1 P∨

0β∨

θ

oo

which shows ϕ1 ◦α = −β∨

θ ◦ϕ0, i.e., (II) commutes.
The equality of maps (α∨

θ )
∨

θ = α follows from Proposition 2.6, and (ϕ0)
∨

θ = ϕ∨

0 = ϕ0 follows from the
definitions. For (ϕ1)

∨

θ = −ϕ1, observe that it suffices to show (ϕ1)θ = −(ϕ1)
∨ and indeed,

(ϕ1)θ (ηa∗)= (ξa)θ =

{
θ(la∗)η∨

a θ(l
−1
a ) if ϵ(a)= 1,

−θ(r−1
a∗ )η∨

a θ(ra) if ϵ(a)= 1,

=

{
ra∗η∨

a r−1
a if ϵ(a)= 1,

−l−1
a∗ η∨

a la if ϵ(a)= −1,
= −(ϕ1)

∨(ηa∗). □

So without conditions on the quiver, we have established:

Corollary 3.19. If P• →3 is exact then (P∨
•
)θ →3[−2] is exact and P∨

•
→3[−2] is exact.

Therefore, the 2-Calabi–Yau property for3 follows from the a priori weaker Hochschild dimension two
property. In the previous subsection, we showed that 3 has Hochschild dimension two for Q connected
and containing a cycle.

Corollary 3.20. If Q is connected and contains a cycle then 3q(Q) is 2-Calabi–Yau.

4. Formality of dg multiplicative preprojective algebras

In this section we show that if Q satisfies the strong free product property, then the dg multiplicative
preprojective algebra is formal. In particular this proves Conjecture 1.3 in the case Q is connected
and contains a cycle. Moreover, it reduces Conjecture 1.3 to the remaining extended Dynkin cases and
Conjecture 1.5.

If one views the dg multiplicative preprojective algebra as the central object of study, as in [29; 30],
then we are showing one can formally replace it by the non-dg version.

We begin with an elementary lemma. It is not strictly required, but it demonstrates more transparently
the construction we will use.

Lemma 4.1. Let K be a commutative ring. Let A be the dg-algebra defined as a graded algebra to be
K [r ] ∗ K [s] with |r | = 0 and |s| = −1, product given by concatenation of words, and differential extended
as a derivation from the generators d(s)= r and d(r)= 0. Then A is quasiisomorphic to its cohomology
H∗(A)= K concentrated in degree zero. In fact, the identity map is chain homotopic to the augmentation
map A → K .
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Proof. Let h : A → A[−1] be the homotopy with the property h(r f )= s f and h(s f )= 0 for all f ∈ A,
and h(K )= 0. Then h ◦ d + d ◦ h − 1A is the projection with kernel K to the augmentation ideal of A.
Therefore, it defines a contracting homotopy from A to K . □

In other words, the lemma is observing that A, as the tensor algebra on an acyclic complex Kr ⊕ K s,
is itself quasiisomorphic to K .

Lemma 4.2. The dg-algebra A given by

3q(Q) ∗k Q0 k Q0[r, (r + q)−1
] ∗k Q0 k Q0[s], with |r | = 0 and |s| = −1

and with differential determined by d(s)= r is quasiisomorphic to 3q(Q) concentrated in degree zero.

Proof. Extending the preceding construction, define a homotopy h : A → A[−1] by

h( f rg)= f sg, h( f sg)= 0, h( f (r + q)−1g)= q−1h( f g)− q−1 f s(r + q)−1g

for f ∈3q(Q) and g ∈ A. The definition of h( f (r + q)−1g) is chosen to match the formula for h( f rg)
in the r -adic completion. There is an augmentation A ↠3q(Q) with kernel (r, s, r ′

:= (r +q)−1
−q−1).

Notice that h ◦d +d ◦h is a homotopy from the identity on A to the augmentation 3q(Q), as it annihilates
3q(Q) and is the identity on s, r , and r ′. □

Definition 4.3. The dg multiplicative preprojective algebra is a dg-algebra over k Q0 defined as a graded
algebra by

3dg,q(Q) := L Q ∗k Q0 k Q0[s], |s| = −1, |α| = 0 for α ∈ L Q .

The differential, d, is defined by d(s)= ρ− q, d(L Q)≡ 0, and extended as a k Q0-linear derivation to
L Q ∗k Q0 k Q0[s].

Proposition 4.4. If 3q(Q) satisfies the strong free product property,5 then

H∗(3
dg,q(Q))= H0(3

dg,q(Q))∼=3q(Q)

so in particular 3dg,q(Q) is formal.

By Theorem 3.7, the proposition holds in particular if Q contains a cycle.

Remark 4.5. Note that for the ordinary preprojective algebra, 5(Q), the Ginzburg dg-algebra has
homology concentrated in degree zero for any non-Dynkin quiver: 5(Q) has a length two bimodule
resolution (see [50; 18] for the characteristic zero case, and [31] in general) which [1, Theorems 2.6 and
2.9] shows is equivalent for graded connected algebras, and [32] observes this extends to the quiver case.

Proof. The strong free product property yields an isomorphism of graded vector spaces,

L Q ∼=3q(Q) ∗k Q0 k Q0[r, (r + q)−1
].

5Meaning (L Q , r, σ, k Q0[t, (t + q)−1
]) satisfies the strong free product property for some choice of σ .
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Hence, as complexes,

3dg,q(Q)∼= L Q ∗k Q0 k Q0[s] ∼=3q(Q) ∗k Q0 k Q0[r, (r + q)−1
] ∗k Q0 k Q0[s],

which by Lemma 4.2 is quasiisomorphic to 3q(Q), concentrated in degree zero. It follows that

3dg,q(Q)∼= H∗(3
dg,q(Q))∼= H0(3

dg,q(Q))∼=3q(Q)

as dg-algebras. □

Remark 4.6. In the presence of Conjecture 1.1, formality of3dg,q(Q) implies3dg,q(Q) is 2-Calabi–Yau.
Hence by Theorem 1.2, we have shown that3dg,q(Q) is 2-Calabi–Yau, when Q is connected and contains
a cycle. One may be able to adapt the techniques in Section 3 to prove that 3dq,q(Q) is 2-Calabi–Yau, in
general. In more detail, writing 3dg

:=3dg,q(Q), the role of the 3q(Q)-bimodule resolution, P•, should
now be played by the 3dg-dg-bimodule given by the total complex of

3dg
⊗k Q0 k Q0 · s ⊗k Q0 3

dg αdg
//

β
dg
1

113dg
⊗k Q0 k Q1 ⊗k Q0 3

dg
β

dg
0
// 3dg

⊗k Q0 3
dg,

where βdg
1 (a⊗s⊗b)=as⊗b−a⊗sb and αdg (respectively βdg

0 ) has the same formula as α (respectively β).

Remark 4.7. We are grateful to Georgios Dimitroglou Rizell, who pointed out that our definition differs
from that arising in symplectic geometry. Indeed in the derived multiplicative preprojective algebra, L0 ,
[30, page 779] define additional variables za, ζa with za invertible and d(ζa)= za − (1 + a∗a), and hence
(1 + a∗a) is invertible only after taking homology. In contrast, we invert (1 + a∗a) on the chain level in
3dg,q(Q). However, for our main result, Proposition 4.4, this distinction is irrelevant, as we now explain.

We claim that the dg algebra map α : L0 →3dg,q(Q), given by α(za)= (1 + a∗a), α(ζa)= 0, and
taking arrows to arrows, is a quasiisomorphism. To see this, note that L0 can be viewed as a bigraded
dg algebra with two differentials: set |ζa| = (−1, 0) and |s| = (0,−1), with horizontal differential
dH (ζa) = za − (1 + a∗a), dH (s) = 0, and vertical differential dV (ζa) = 0, dV (s) = ρ − q. We will
show in the next paragraph that the map α induces an isomorphism on horizontal cohomology, that is,
α : (L0, dH )→ (3dg,q(Q), 0) is a quasiisomorphism. Therefore, α is a morphism of bicomplexes (placing
the target in horizontal degree zero), that induces an isomorphism on the first page of the associated
spectral sequences. These sequences collapse on the second page. They collapse to the cohomology, since
both sequences were third-quadrant (cohomologically) and hence convergent. This proves the claim.

It remains to show that α is an isomorphism on horizontal cohomology. More generally, let A be a
graded path algebra on the quiver Q (arrows can be assigned any degrees), and let S ⊆ A be a subset of
homogeneous elements; in the case above we have A := k Q∗k Q0 k Q0[s] and S := {1+a∗a}a∈Q1

. We wish
to compare two localizations. The first is the naive one, A[ f −1

] f ∈S . The second is given by replacing A by
the quasiisomorphic algebra Ã := A⟨z f , ζ f ⟩ f ∈S , with differential d(ζ f )= z f − f, d(z f )= 0, d(A)≡ 0.
We then consider Ã[z−1

f ] f ∈S . To compare these we use the technique of derived localization, following [16].
Since A is hereditary with zero differential, by [16, Corollary 4.20, Theorem 5.1], its derived localization by
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S is A[S−1
] (i.e., it is underived). On the other hand, Ã is cofibrant in the category of dg algebras equipped

with a morphism from k Q0⟨z f ⟩ f ∈S , as it is given by cell attachment (although with nonzero differential).
So Ã[z−1

f ]= Ã∗k Q0⟨z f ⟩k Q0⟨z f , z−1
f ⟩ is also its derived localization. Now the quasiisomorphism Ã → A is

compatible with the morphisms from the path algebra k Q0⟨z f ⟩ f ∈S , sending z f to z f and to f , respectively.
Thus the map Ã[z−1

f ] f ∈S → A[ f −1
] f ∈S is a quasiisomorphism of derived localizations of A at S.

Note that by combining the two preceding paragraphs, in general, the quasiisomorphism

A⟨z f , z−1
f , ζ f ⟩ f ∈S → A[ f −1

] f ∈S

induces a quasiisomorphism

A⟨z f , z−1
f , ζ f , si ⟩ → A[ f −1

]⟨si ⟩

for any additional arrows si and differential d(si ) compatible with the morphism (only assuming that
A is a graded path algebra with S a collection of homogeneous elements). The same is true replacing
A⟨z f , z−1

f , ζ f ⟩ by any other model of the derived localization of A at S.

Remark 4.8. The dg multiplicative preprojective algebra is called the Legendrian cohomology dg algebra
in [29, 3.2] where they establish that it is a multiplicative analog of Ginzburg’s dg algebra for a quiver
with zero potential defined in [36, 1.4]. It is called a capped Chekanov–Eliashberg algebra in [53,
Section 3.2] where they independently prove formality in the case Q is the Jordan quiver and q = 1 in
[53, Theorem 3.13].

5. Local structure of multiplicative quiver varieties and
moduli spaces attached to 2-Calabi–Yau algebras

In this section, we will assume that k is an algebraically closed field of characteristic zero.
We will use our main result to prove, as anticipated in [55, Section 7.5], that multiplicative quiver

varieties are étale-locally (or formally locally) isomorphic to ordinary quiver varieties. Our proof uses (a
generalization of) a result of Bocklandt, Galluzzi, and Vaccarino in [14] for 2-Calabi–Yau algebras. While
our main result is only proved for quivers with cycles, we are able to prove this result for all quivers.
The key idea is to embed any quiver into one containing a new vertex with a cycle, and put the zero
vector space at this new vertex. This identifies every multiplicative quiver variety with one for a quiver
containing a cycle.

We recall the definition of multiplicative quiver varieties [25; 61; 55], beginning with King’s notion of
(semi)stability. First, by an algebra over k Q0, we mean a k-algebra which contains k Q0 as a subalgebra.
Given a module M over such an algebra A, its dimension vector is α ∈ NQ0 given by αi = dim ei M, i ∈ Q0.
Given a k Q0-module V , let Rep(A, V ) := Homk Q0-alg(A,Endk(V )) be the set of A-module structures
on V . Let Repα(A) := Rep(A, V ) for V :=

⊕
i∈Q0

kαi , called the representation space of dimension α.

Definition 5.1 [45]. Let Q be a finite quiver. Let A be an algebra over k Q0, θ ∈ ZQ0 a parameter, α ∈ NQ0

a dimension vector. Assume that θ · α = 0. Then an A-module M of dimension vector α is said to be
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θ -semistable if, for every submodule N := {Ni }i∈Q0 , with dimension vector β ∈ NQ0 , we have β · θ ≤ 0.
Furthermore M is θ -stable if β ·θ <0 for all nonzero, proper submodules. Let Repθ -ss(A, V )⊆Rep(A, V )
be the subset of θ -semistable module structures, and denote this by Repθ -ss

α (A) when V :=
⊕

i∈Q0
kαi .

Definition 5.2 [45]. Let Q, α, and θ be as in the definition above, and let A be an algebra over k Q0.
Then the corresponding (semistable) moduli space is

Mθ (A, α) := Repθ -ss
α (A)//GL(α). (5-1)

In the case A = 3q , this is called a multiplicative quiver variety, denoted Mq,θ (Q, α). In the case
A =5λ is a (deformed) preprojective algebra, it is called an ordinary quiver variety, denoted Madd

λ,θ (Q, α).
The main results of this section are the following:

Theorem 5.3. Let A be a 2-Calabi–Yau algebra over k Q0, and let ρ be a θ -semistable representation of
A of dimension α. Then there exists Q′, α′ such that the formal neighborhood of ρ of the moduli space
Mθ (A, α) is isomorphic to the formal neighborhood of Madd

0,0 (Q
′, α′) at the zero representation.

Theorem 5.4. At every point of a multiplicative quiver variety, a formal neighborhood is isomorphic to
the formal neighborhood of zero of an ordinary quiver variety.

In the case where the quiver contains an oriented cycle, Theorem 5.4 follows immediately from
Theorem 5.3 and our main result; in general, we need to enlarge the quiver; see Section 5C. Note that the
corresponding result for formal neighborhoods of ordinary quiver varieties is known; see [5, Corollary 3.4].

By Artin’s approximation theorem [2, Corollary 2.6], we can replace “formal neighborhoods” in the
preceding theorems by étale neighborhoods, since we are in the setting of varieties (by which we always
mean of finite type) over a field.

Corollary 5.5. Let A be a 2-Calabi–Yau algebra over k Q0. Then, all moduli spaces Mθ (A, α) are
symplectic singularities. In particular, they are normal and have rational Gorenstein singularities. The
same holds for all multiplicative quiver varieties.

The proofs of these results are given in the final subsection.

5A. Generalities on completions of 2-Calabi–Yau algebras. To prove Theorem 5.3, we will need the
following results about the local structure of n-Calabi–Yau algebras at modules M , adapted from [10].

Definition 5.6. Let A and B be A∞-algebras. B is minimal if m B
1 = 0. B is further a minimal model for

A if there exists an A∞-quasiisomorphism B → A lifting the identity. We make the same definitions for
L∞ algebras.

In particular, if B is a minimal model for A then (B,m B
2 )

∼= H∗(A) as graded algebras. Kadeishvili
showed [40] that every A∞-algebra has a minimal model.
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Theorem 5.7 (minimal model theorem). Let A be an augmented A∞-algebra over a semisimple k-algebra
S. Then, A admits an augmented A∞-algebra isomorphism H∗(A)′ ⊕ C → A, where H∗(A)′ is an A∞-
algebra which, as a dg algebra, is the cohomology H∗(A) with zero differential, and C is a contractible
complex such that all ≥ 2-ary multiplications involving it are zero.

Similarly, if g is an L∞-algebra over k, then there is an L∞-isomorphism H∗(g)′ ⊕ c → g, where the
underlying ordinary dg Lie algebra of H∗(g)′ is the cohomology of g with zero differential, and c is a
contractible complex such that all ≥ 2-ary multiplications involving it are zero.

Here, an A∞-algebra A is augmented over S if it is of the form S ⊕ A where S is a subalgebra and
A is a strict ideal, i.e., all multiplications with A as an input land in A; moreover, we assume that the
only nonzero multiplication between S and A are the binary operations (i.e., the S-bimodule structure).
An augmented A∞-morphism is an A∞-morphism which is the identity on S, preserves strictly the
augmentation ideals, and all higher A∞-structure maps vanish when one of the inputs is in S.

Remark 5.8. The map A → A gives an equivalence between augmented A∞-algebras and nonunital
A∞-algebras in the category of S-bimodules. This makes the statements for A∞ and L∞- algebras more
symmetric. There are also L∞ analogs of working over a semisimple algebra; for example, we may work
with representations of a reductive group. Given an augmented A∞-algebra over a matrix algebra, the
augmentation ideal has an associated L∞-algebra which is a representation of the general linear group.

Kadeishvili’s approach is direct and explicit: he constructs both the A∞-structure on H∗(A)′ and the
A∞-algebra isomorphism A → H∗(A)′ ⊕ C . For more conceptual treatments, see e.g., Theorem 5.4 of
[41] and Remark 4.18 in [21]. For a sketch in the context of L∞-algebras see Lemma 4.9 of [46].

Remark 5.9. Note that the minimal model theorem is usually stated in the literature for fields, but it is
known that the statement and proof generalizes to the case of semisimple algebras over a field.

Definition 5.10. Let A be an A∞-algebra. We say A is formal if there is an augmented A∞-isomorphism
H∗(A)′ → H∗(A), where H∗(A) has zero ℓ-ary multiplication for ℓ≥ 3.

Definition 5.11. Given a dg associative algebra A with module M , define the derived Koszul dual algebra
with respect to M to be EM(A) := REndA(M).

This is only defined up to quasiisomorphism, but it will not matter to us which model is chosen. Note
that if A is a Koszul algebra over S, with S the augmentation module, then up to degree conventions,
ES(A) is the completion of the Koszul dual algebra, A!, with respect to the filtration by powers of the
augmentation ideal. In this case, A and A! have an additional weight grading, and (A!)! ∼= A.

Recall that, if A is an n-Calabi–Yau algebra and M a finite-dimensional module, then there is a trace
λ : Extn(M,M)→ k such that the composition

(− ,− ) : Exti (M,M)× Extn−i (M,M) ◦
−→ Extn(M,M) λ

−→ k

is a graded symmetric perfect pairing [44, Lemma 3.4]. Since it is also graded commutative, this says that
Ext•(M,M) is a symmetric dg Frobenius algebra. In the case that R := EndA(M) is semisimple, this says
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that Extn(M,M)∼= R as R-modules. Moreover, if we realize R as endomorphisms of a k Q′-representation
(i.e., R ∼=

∏
i∈Q′

0
Endk(kα

′

i ) for some finite set Q′

0 and dimension vector α′
∈ NQ′

0) then we can write, for
Vi := kα

′

i ,
Extm(M,M)∼=

⊕
i, j∈Q′

0

Homk(Vi , V j )
cm

i, j ,

for some cm
i, j ∈ N.

Moreover, in the case of interest, n = 2, we only need to consider m = 1. Then the pairing on
Ext1(M,M) is symplectic. By picking an appropriate symplectic basis on Ext1(M,M), we can write

Ext1(M,M)∼= T ∗

( ⊕
a∈Q′

1

Homk(Vt (a), Vh(a))

)
,

with the standard symplectic structure on the cotangent bundle, for some set Q′

1 of arrows with vertex
set Q′

0 (i.e., extending Q′

0 to a quiver Q′
= (Q′

0, Q′

1)). It turns out that the symplectic pairing on
Ext1(M,M), and hence the quiver data (Q′, α′), completely determines the dg algebra REnd(M) up to
A∞-isomorphism.

Continue to assume that R := EndA(M) is semisimple. In this case, the image, call it S, of the action
homomorphism ρM : A → Endk(M) is also semisimple. We could complete A at M , meaning the
completion with respect to the filtration by powers of ker ρM . This is not necessarily a quasiisomorphism
invariant, however. A better way to take the completion is by a double Koszul duality, as EM(EM A),
where M is viewed as an EM A-module via the augmentation map REnd(M)→ EndA(M). The result is
certainly complete, and in certain cases it is indeed the completion of A (e.g., for A = k[x] with M = k,
one obtains k[[x]]; see the proof of the next theorem for more cases).

Since S is semisimple, it is Morita equivalent to a direct sum of copies of k, namely k Q′

0 for Q′

0 the set
of isomorphism classes of indecomposable summands of M . Then, we can replace the aforementioned
“completion” of A by a completed quiver algebra, by replacing M by M ′, the direct sum of one copy of
each nonisomorphic indecomposable summand of M . Then EM ′ EM A is augmented over k Q′

0 and is
Morita equivalent to the completion of A at M . More precisely, if Vi = kα

′

i as before, so that EndA(M)=⊕
i Endk(Vi ), then M ′

=
⊕

i Vi , viewed as an EM A module via the augmentation EM A → EndA(M).

Theorem 5.12. Let A be a 2-Calabi–Yau algebra over k Q0 and M a finite-dimensional module such that
EndA(M) is semisimple. Then EM A is formal.

Proof. We deduce this result from [10, Theorem 11.2.1, Corollary 9.3] as follows. The latter gives a
formal local characterization of n-Calabi–Yau algebras (more generally for dg exact Calabi–Yau algebras
concentrated in nonpositive degrees) for n ≥ 3. The proof there is valid also in the case n = 2, where it
yields that the following are equivalent for a complete augmented algebra A over k Q0:

(a) A is a 2-Calabi–Yau algebra.

(b) Ek Q0 A is formal and has a nondegenerate trace of degree −2.

In this case, A itself is isomorphic to Ek Q0 REndA(k Q0).
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Now, let A be an ordinary 2-Calabi–Yau algebra and M a finite-dimensional module with EndA(M)
semisimple. Then EM A = REndA(M) has a nondegenerate trace of degree −2. We can now apply the
aforementioned result to the dg algebra A′

:= EM ′ EM A, which is complete and augmented over k Q0. By
construction, Ek Q0 A′ ∼= EM A (formally, this is because B := EM A is its own double Koszul dual, as it is
augmented, finite-dimensional, and concentrated in positive degrees [10, Proposition A.5.4]). Thus EM A
is formal. □

Remark 5.13. In fact, the proof shows that the following statements are equivalent for an ordinary algebra
A and module M with EndA(M) semisimple:

(a) EM A is formal and has a nondegenerate trace of degree −2.

(a’) EM A has a nondegenerate trace of degree −2.

(b) The double dual EM EM A is 2-Calabi–Yau.

Since the double Koszul dual is Morita equivalent to the completed dg quiver algebra EM ′ EM A, these
statements are also equivalent to this latter algebra being 2-Calabi–Yau.

Remark 5.14. As stated, [10] actually deals with the case of Calabi–Yau dimension n ≥ 3. In this case,
one can also state a version of the theorem: instead of yielding that EM A is formal, one can only kill
the higher A∞-structures of Ext•(M,M) which land in top degree n. The main result of [10] can then
be stated as saying that the remaining structure of EM A is governed by a single cyclically symmetric
element called the superpotential.

Remark 5.15. Since submission of this article, Ben Davison [27, Theorem 1.2] has proved a more general
formality result for 2-Calabi–Yau categories. As he explains, the reason for the formality is quite simple:
the Koszul dual EM A can be taken to be a cyclic A∞-algebra which is augmented over EndA(M). This
means that, for s ∈ EndA(M), ⟨mn(a1, . . . , an), s⟩ = ⟨a1,mn(a2, . . . , an, s)⟩ = 0. This shows that all
A∞-structures landing in top degree (here, degree two) vanish.

Theorem 5.12 implies that the formal moduli problem, based at M , of modules over a 2-Calabi–Yau
algebra A is equivalent to that of a dg preprojective algebra. Indeed, using the bar construction, one can
realize EM ′ Ext•(M,M) as the completed dg preprojective algebra of the quiver Q′, for M ′ as above.
Note that the module M ′ is a zero representation of this preprojective algebra: all arrows act by zero.

5B. The representation and moduli schemes. We are interested rather in the ordinary representation
moduli scheme of A, possibly using a nonzero stability condition. In this case, Theorem 5.12 will imply
that, when A is 2-Calabi–Yau the formal neighborhood of this scheme at M will be isomorphic to that of
the corresponding quiver variety.

To prove this, we use the following generalization of [14, Theorem 6.3], describing the general structure
of these schemes whenever A is an algebra with EndA(M) semisimple. Given (formal) schemes X , Y
with actions by a group G, write X ×

G Y := (X × Y )//G using the diagonal action.
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Theorem 5.16. Let A be an algebra over k Q0, and α ∈ NQ0 a dimension vector. Suppose that M ∈

Repα(A) is a representation whose GLα-orbit is closed in some GLα-stable affine open subset U of
Repα(A). Let A′

:= H 0 EM ′ EM A (for M ′ as above). Then:

(1) EndA(M) is semisimple.

(2) There is a GLα-equivariant isomorphism
∧

Repα(A)GLα ·M ∼=
∧

Repα′(A′)M ′ ×
GLα′ GLα.

(3) The formal neighborhood of [M] in U//GLα is isomorphic to the formal neighborhood of [M ′
] in

Repα′(A′)//GLα′ .

Before we begin the proof of the theorem, as in [14, Section 6], we need to recall some of the formalism
of Maurer–Cartan loci. Let g be a dg associative or Lie algebra. Then the Maurer–Cartan locus is

MC(g) :=
{
a ∈ g1

| da +
1
2 [a, a] = 0

}
.

Let M̂C(g) be its formal completion at 0 ∈ g1. More generally, given an A∞ or L∞-algebra, we can define

M̂C(g) := Z
(
a 7→ da +

1
2!

[a, a] +
1
3!

[a, a, a] + · · ·
)
⊆ ĝ1,

the formal subscheme of ĝ1 cut out by the Maurer–Cartan equation (now a power series).
The algebra of functions on this formal scheme is the zeroth Lie algebra cohomology of g>0,

H 0 CE(g>0)= H 0(CE(g)/((g0)∗)). Here, the Chevalley–Eilenberg cochain complex is the completed dg
symmetric algebra, CE(g)= (Ŝym(g∗

[−1]), dCE), equipped with the Chevalley–Eilenberg differential.
For algebras g concentrated in positive degrees, this does not depend on A∞ or L∞-quasiisomorphisms.

The Maurer–Cartan formal scheme has an infinitesimal action by the Lie algebra g0, via gauge
equivalence. The gauge action of an element ξ ∈ g0 is recorded by applying the differential and
contracting with ξ . The categorical quotient of the Maurer–Cartan formal scheme by this action is
defined, on the level of functions, by passing to g0-invariant functions. The algebra of functions here is
H 0 CE(g≥0)/((H 0g)∗[−1]). For algebras g concentrated in nonnegative degrees, this quotient does not
depend on A∞ or L∞-quasiisomorphisms.

Now let A be a k Q0-algebra and M a module. Consider the nonnegatively graded dg associative
algebra of k Q0-bilinear Hochschild cochains,

g := HCk Q0(A,Endk(M)) :=

⊕
i≥0

Homk Q0−bimod(A⊗k Q0 i ,M),

equipped with the usual differential and cup product structure. (We remark that this is well known to be
quasiisomorphic to the usual algebra of k-linear Hochschild cochains, since k Q0 is semisimple.)

Given a ∈g1
=Homk Q0−bimod(A,Endk(M)), we can consider the deformation (ρM+a) : A→Endk(M),

with ρM the original module structure. The condition for ρM + a to be a module structure is the Maurer–
Cartan equation, da + a2

= 0. Hence MC(g) = Rep(A,M), with zero corresponding to M . Thus
M̂C(g)=
∧

Rep(A,M)M .
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Proof of Theorem 5.16. First, to show EndA(M) is semisimple, we will use Matsushima’s criterion [51]:

If G is a reductive group acting on an affine variety X , then the stabilizer of a point in a closed
orbit is reductive.

In the case at hand, G = GLα is acting on X = U , so the stabilizer G M ∼= Aut(M) is reductive. So any
element x ∈ N (EndA(M)), the nilradical of EndA(M), gives rise to an element 1 + x in the unipotent
radical, which is {1} as Aut(M) is reductive. So N (EndA(M)) = 0, which implies, as EndA(M) is
finite-dimensional, that the Jacobson radical J (EndA(M))= 0. We conclude that EndA(M) is semisimple,
being Artinian with vanishing Jacobson radical.

To obtain (2), let g be the dg algebra of k Q0-bilinear cochains, HCk Q0(A,Endk(M)) as before the
proof. As we explained, the completed Maurer–Cartan subscheme M̂C(g) = M̂C(g>0) is the same
as for the minimal model H∗(g>0) of g>0 (as these are concentrated in positive degrees). Next, let
h := Z0(g)∼=EndA(M), the zero-cycles of g, which is a reductive Lie subalgebra of g0. Its action integrates
to the reductive group H = AutA(M)∼= GLα′ , so it acts semisimply. Now, we apply Lemma 5.19 below, to
obtain a quasiisomorphic L∞-algebra (in fact A∞-algebra, see Remark 5.20) g′

:= g0
⊕ Z1(g)⊕ H>1(g).

Define H̃ 1(g) to be an H -invariant complement to the one-coboundaries B1(g) in Z1(g). The L∞-
structure maps H̃ 1(g)m → H 2(g) in g′ are the same as the ones on any minimal model H∗(g′) induced
by transfer (as in the proof of Lemma 5.19 below). This gives an embedding of the Maurer–Cartan locus
M̂C(H∗g)= M̂C(H>1g) of the cohomology into the Maurer–Cartan locus of g′. By Lemma 5.19, this
inclusion is compatible with the H -action, which is linear. It is also a formal slice to the infinitesimal
g0 action on M̂C(g′): the tangent space to this action is B1(g), whereas the tangent space to M̂C(g′)

is Z1(g).
Next let us turn from the formal neighborhood of M in Repα(A) to a formal neighborhood of its GLα

orbit. Luna’s slice theorem [48] implies that there is a (GLα)M = AutA(M) = H -stable affine subset
V ⊆ U , such that the action map φ : GLα ×

H V → Repα(A) induces a GLα-equivariant isomorphism
onto an étale neighborhood of the orbit GLα ·M . Using the fact that Aut(M) is connected, we have the
following identifications. For ease of reading let FN(X, Y ) := ŶX denote the formal neighborhood of X
in Y :

FN(GLα ·M,U )∼= FN(GLα ×
H
{M},GLα ×

H V )∼= GLα ×
H FN({M}, V ).

Finally, we showed above that the slice V can be taken to be the Maurer–Cartan locus of H>0(g). This
identifies with

∧

Repα′(A′)M ′ , since the latter is isomorphic to the Maurer–Cartan locus of the minimal
model H∗(g). (Explicitly, since the augmentation ideal of A′ acts by zero on M ′, Endk Q0(M

′)=EndA′(M ′)

is the degree zero part of the Hochschild cochain complex of M ′ with zero differential, so Ext>0
A′ (M ′,M ′)

is quasiisomorphic to H>0(g).) This completes the proof of (2), as H is identified with GLα′ by definition
of α′.

It remains to deduce (3) from (2). First note that, since GLα is reductive and the orbit GLα ·M ⊆ U
is closed, by Hilbert’s theorem, the ideal of [M] in O(U//GLα)= O(U )GLα is the set of GLα-invariant
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functions in the ideal of GLα ·M in O(U ). Therefore, functions on FN([M],U//GLα) are the GLα-
invariant functions in the completion of O(U ) at the fiber F ⊆ U of the projection U → U//GLα:

FN([M],U//GLα)∼= FN(F,U )//GLα .

Note that GLα ·M ⊆ F , so we get a further map FN(F,U )//GLα → FN(GLα ·M,U )//GLα. We
claim that this is an isomorphism. Indeed, let IGLα ·M ⊇ IF be the ideals. Then we are considering
two different completions of O(U//GLα) concentrated at [M], by the systems {I GLα

GLα ·M} and {I GLα
F }.

Since U is irreducible, by Krull’s intersection theorem,
⋂

n≥0 I n
GLα ·M = 0. Hence the systems are

both exhaustive. Since I n
[M]
/I n+1

[M]
is finite-dimensional for all n, both systems must yield the I[M]-adic

completion (equivalently, the completion by all finite-dimensional quotients supported at [M]). We deduce

FN([M],U//GLα)∼= FN(GLα ·M,U )//GLα . (5-2)

Applying (2), we have

FN(GLα ·M,U )//GLα ∼= FN(GLα′ ·M ′,Repα′(A′))//GLα′ .

By (5-2) applied to the first and last terms, we obtain finally the desired isomorphism. □

Remark 5.17. Part of the proof is actually showing is that the derived formal moduli stack at [M] of
representations of A is identified with the same for the dg algebra EM ′ EM A at the zero representation [M ′

].
This is true more generally, but under our hypotheses this implies the stated result by taking a truncation
and applying Luna’s slice theorem.

Remark 5.18. The second statement of the theorem is a strengthened version of the statement in [14] that
a formal neighborhood of [M] in Repα(A) identifies with that of [M ′

] in Repα′(A′) times a formal disc
of dimension dim GLα − dim GLα′ . This is because GLα is smooth, and taking the formal completion
at the identity, the product construction here is multiplying by such a formal disc.

The theorem above uses the following lemma:

Lemma 5.19. Suppose that h ⊆ Z(g0) acts on a dg Lie algebra g concentrated in nonnegative degrees.
Suppose that all h-subrepresentations have complements (e.g., this is true if the h action integrates to an
action of a connected reductive group H with Lie algebra h). Then there is an L∞-quasiisomorphism

φ : g′
:= g0

⊕ Z1(g)⊕ H>1(g)→ g,

where on the source, all higher brackets

h× (g′)≥2
→ g′ (5-3)

vanish. The bracket g0
× g0

→ g0 is the original one. Moreover, the linear part φ1
: g′

→ g is h-linear
and induces the identity on g0

⊕ Z1(g), as well as on cohomology. Finally, φ≥2 vanishes on h× (g′)≥1.
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Proof. We apply the homotopy transfer formulae from [49] (stated for A∞-algebras but easily adapted to
the L∞ setting). To do this, for each i we pick a decomposition gi

= Bi (g)⊕ H̃ i (g)⊕ qi , with Bi (g)

the i-coboundaries, H̃ i (g) an h-linear complement to Bi (g) in the i-cocycles Z i (g), and qi a h-linear
complement to Z i (g) in gi . We then define a homotopy h : g>1

→ g>0 via the projection gi
→ Bi (g)

followed by a h-linear isomorphism Bi (g)→ qi−1, for i > 1, setting h|g≤1 = 0.
The resulting homotopy is h-linear and has the property that t := Id −(dh + hd) is a projection onto

the subcomplex g0
⊕ Z1(g)⊕ H̃>1(g), which is an h-subrepresentation. Call this subcomplex g′. We

have an h-linear decomposition g= g′
⊕ c as complexes, with c= im(dh +hd) a contractible subcomplex

(and h-subrepresentation).
Now use h on all of g, as in the proof of Theorem 5.7 (see the references above). We obtain a new

L∞-structure on g, which is L∞-isomorphic to the original one (with linear part the identity), so that all
structures vanish on c aside from the differential. The L∞-structures on g′ are linear combinations of
expressions such as

t[a1, h[a2, [h[a3, a4], h[a5, a6]]]],

given by iteratively bracketing and applying h, except at the end where t is applied.
By h-linearity of h, if x ∈ h and a ∈ g′

= im t , then h[x, a] = [x, ha] = 0. Similarly, t[x, ha] =

th[x, a] = 0. Hence, all contributions to higher brackets h× g>1
→ g vanish. Similarly, φ>1 vanishes

on h (since h[x, a] = 0). By construction φ is the identity on g0
⊕ Z1(g) and on cohomology. □

Remark 5.20. The lemma has an associative analog with the same proof: let g be a dg associative
algebra and h is a subalgebra for which every h-subbimodule of g admits an h-complement (e.g., g is
augmented over a semisimple algebra h). Then we obtain the same result with an A∞-quasiisomorphism
with higher order parts vanishing on h, and with higher multiplications on g′ vanishing on h. This applies
to the situation at hand, so that we could use an A∞-quasiisomorphism in the proof of Theorem 5.16.
However, it makes no difference for the Maurer–Cartan locus. (Actually, this says that the decomposition
in Theorem 5.16 enhances to a decomposition of noncommutative representation schemes, meaning it
describes representations with coefficients in noncommutative Artinian rings.)

5C. Proof of main results. In the case where A is 2-Calabi–Yau, we can use Theorem 5.12 (which
applies because of part one in Theorem 5.16) and the discussion following it, to refine part three of
Theorem 5.16. Namely, we can identify the formal neighborhood of [M ′

] in Repα(A
′)//GLα′ with a

formal neighborhood of the zero representation in a quiver variety.

Corollary 5.21. Let A be a 2-Calabi–Yau algebra over k Q0 for a quiver Q. Let α ∈ NQ0 and let
M ∈ Repα(A), such that GLα ·M is closed in some GLα-stable open affine subset, U. Then a formal
neighborhood of [M] in U//GLα is isomorphic to the formal neighborhood

∧

Madd
0,0 (Q

′, α′)0 of the zero
representation in a quiver variety.
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Pick a stability parameter θ . If M ∈ Repα(A) is θ -semistable, one has the open set Repα(A)
θ -ss, which

is a union of GLα-stable affine open subsets. As M lies in one such affine open subset, M satisfies the
hypotheses of Theorem 5.16 and Corollary 5.21. This implies the following corollary:

Corollary 5.22. Let Q, α, A be as in Theorem 5.16, let θ ∈ ZQ0 . Then for every M ∈ Repα(A)
θ -ss, the

conditions of Theorem 5.16 are satisfied. So, the formal neighborhood of [M] in Mθ (A, α) is isomorphic
to that of zero in Repα′(A′)//GLα′ , for A′ as in the theorem.

Proof of Theorem 5.3. Let Q, α, A be as in Corollary 5.21, let θ ∈ ZQ0 , and V := Repα(A)
θ -ss. For every

M ∈ V the conditions of Corollary 5.21 are satisfied. So, the formal neighborhood of [M] in V//GLα is
isomorphic to the formal neighborhood

∧

Madd
0,0 (Q

′, α′)0 of the zero representation in a quiver variety. □

Proof of Theorem 5.4. If the quiver Q contains a cycle, then Theorem 5.4 follows immediately from
Theorem 5.3 since 3q(Q) is 2-Calabi–Yau, by Theorem 1.2.

If Q does not contain a cycle, then build Q̃ from Q by adding a new vertex i0, an arrow from i0 to
itself, and an arrow from i0 to any vertex of Q. If α ∈ NQ0 is a dimension vector then define α̃ ∈ NQ̃0

such that α̃|Q0 = α and α̃i0 = 0. Note that Repα(3
q(Q))= Repα̃(3

q̃(Q̃)) where q̃ is similarly such that
q̃|Q0 = q and q̃i0 = 1.

Under this identification, the GLα̃ = GLα × GL1 action factors through the projection to GLα, which
identifies the actions on the two varieties. For every θ ∈ ZQ0 , extending by zero to θ̃ , one also identifies
θ-semistable representations of 3q(Q) of dimension α with θ̃-semistable representations of 3q̃(Q̃) of
dimension α̃. Therefore, Mq,θ (Q, α)= Mq̃,θ̃ (Q̃, α̃), i.e., the semistable moduli spaces in question are
identical. So the result follows in general from the specific case where Q contains a cycle. □

Proof of Corollary 5.5. By [3], a (normal) symplectic singularity is rational Gorenstein. The latter is a
formal local property. By [5, Theorem 1.2], ordinary quiver varieties are symplectic singularities. Thus,
the moduli spaces in question have rational Gorenstein singularities, and in particular are normal.

Next, thanks to Namikawa [52, Theorem 4], the property of being a (normal) symplectic singularity is
a equivalent to having rational Gorenstein singularities and having a symplectic form on the smooth locus.
It remains to check the last property. (Note that this property is certainly known for many multiplicative
quiver varieties: For instance, Yamakawa [61, Theorem 3.4] showed that the stable locus is smooth
symplectic, and this is often the entire smooth locus. For another example, character varieties of Riemann
surfaces of genus ≥ 1 (and many of genus zero) have symplectic smooth locus by [55, Section 1.2].)

To see that the smooth locus is symplectic in general, first we can assume that we are in the situation
of a 2-Calabi–Yau algebra A (in the case of multiplicative quiver varieties, the proof of Theorem 5.4 in
Section 5C identifies the moduli space with one for a 2-Calabi–Yau algebra obtained by enlarging the
quiver). At a smooth point of the moduli space, Theorem 5.3 endows the formal neighborhood of the
point with a symplectic form, given by the canonical symplectic pairing Ext1(M,M)× Ext1(M,M)→

Ext2(M,M)
tr
∼= k coming from the Calabi–Yau structure. This is functorial in the point of the moduli space:

the Calabi–Yau structure furnishes a fixed A-bimodule isomorphism A ∼= Ext2(A, Ae). This induces a
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functorial isomorphism

Ext2(M,M)∼= H 2(RHom(A, Ae)⊗L
Ae Endk(M))→ A ⊗Ae Endk(M)=

Endk(M)
[A,Endk(M)]

.

Composing this with the trace map we obtain the functorial trace pairing. □

Remark 5.23. Alternatively, one should be able to construct the symplectic structure on the smooth locus
because the latter is an open substack of the symplectic derived moduli stack of representations of 3q(Q),
shown to be symplectic in [17].

6. The multiplicative preprojective algebra of the cycle is an NCCR

The purpose of this section is to prove Conjecture 1.4 in the case where Q is a cycle. We begin with the
necessary definitions. Throughout this section, Q denotes an extended Dynkin quiver (not necessarily a
cycle).

According to the conjecture, the center of the multiplicative preprojective algebra is the ring of functions
on the multiplicative quiver variety M1,0(Q, δ). Here δ is the primitive positive imaginary root. In terms
of the McKay correspondence, Q is the McKay graph of a finite subgroup 0 < SL2(C), which means
that the vertices are labeled by the irreducible representations of 0. In these terms, δv is the dimension of
the irreducible representation of 0Q attached to the vertex v. In particular, for the cycle with n vertices,
0 = Z/nZ, and δ = (1, . . . , 1) is the all ones vector.

We next recall the notion of an NCCR. Van den Bergh [8, Appendix A] originally defined these in to
give an alternate proof of Bridgeland’s theorem that a flop of three-dimensional smooth varieties induces
an equivalence of their bounded derived categories. Van den Bergh later simplified and generalized the
definition to the following:

Definition 6.1 [7, Definition 4.1 and Lemma 4.2]. Let R be an Gorenstein commutative integral domain.
An algebra A is an NCCR over R if:

(1) A is (maximal) Cohen–Macaulay.

(2) A has finite global dimension.

(3) A ∼= EndR(M) for some reflexive module M .6

Note that if A is derived equivalent to a commutative crepant resolution of Spec(R), then it will have
to satisfy these conditions by [38, Corollary 4.15]. (However, in general, R could admit a commutative
crepant resolution but not a noncommutative one, and vice-versa).

In our case, with dim R = 2, it is convenient to observe that we don’t have to check the Cohen–Macaulay
condition:

Lemma 6.2. Let R be a normal Noetherian domain of dimension 2 over k. Let M be a finitely generated,
reflexive R-module. Then A := EndR(M) is Cohen–Macaulay.

6Recall an R-module M is reflexive if the natural map M → HomR(HomR(M, R), R) sending m ∈ M to evaluation on m
(i.e., m 7→ [ϕ ∈ HomR(M, R) 7→ ϕ(m) ∈ R]) is an isomorphism.



Multiplicative preprojective algebras are 2-Calabi–Yau 861

Proof. Since R is Noetherian and M is finitely generated and reflexive, [58, Lemma 15.23.8] implies
that A is reflexive. Since R is 2-dimensional and normal [19, Corollary 3.9] implies that A is Cohen–
Macaulay. □

Remark 6.3. Note that, in higher dimensions, while the Cohen–Macaulay property for A is not automatic,
it nevertheless can be deduced from the Calabi–Yau property thanks to [37, Theorem 3.2(3)]. This gives
an alternative way to handle condition (2) in our situation.

6A. Shaw’s results on the center. While the center of the multiplicative preprojective algebra is in
general unknown, in Shaw’s thesis [57], he proves the following. Let v be an extending vertex.

Theorem 6.4 [57, Theorem 4.1.1]. ev31(Q)ev ∼= k[X, Y, Z ]/( f (X, Y, Z)) where f has isolated singu-
larity at the origin. Explicitly,

f (X, Y, Z)=



Zn+1
+ XY + XY Z if Q = Ãn, n ≥ 1,

Z2
− pn−4(X)X Z + pn−5(X)X2Y − XY 2

− XY Z if Q = D̃n, n ≥ 4,
Z2

+ X2 Z + Y 3
− XY Z if Q = Ẽ6,

Z2
+ Y 3

+ X3Y − XY Z if Q = Ẽ7,

Z2
− Y 3

− X5
+ XY Z if Q = Ẽ8,

where p−1(X) := −1, p0(X) := 0, and pi+1(X) := X (pi−1(X)+ pi (X)) for i ≥ 1.

Remark 6.5. Shaw expected that the singularities at the origin have the du Val type corresponding to the
quiver. Over a field of characteristic zero, Michael Wemyss checked this in E types via Magma. It is also
clear that in A types, the singularity is du Val of the same type as the quiver, by the rational substitution
y 7→ y/(1 + z). Presumably it can be checked that in type D (over characteristic not equal to two) the
singularity also is the corresponding du Val one.

Note that having du Val singularities is equivalent to the statement that the minimal commutative
resolution is symplectic, i.e., 2-Calabi–Yau. Thanks to [59], it is also true that if a Gorenstein surface
admits an NCCR, then it has du Val singularities. This is another reason to believe Shaw’s expectation.

Remark 6.6. Suppose as expected that the singularities are du Val. Then, as in [43], one may construct an
NCCR from the minimal resolution. It seems an interesting question to show that this is Morita equivalent
to 31(Q).

This motivates the final statement in Conjecture 1.4, that the Satake map, Z(31(Q))→ ev31(Q)ev,
given by z 7→ evz, is an isomorphism. With this in place, the above translates into an explicit description
of the center.

6B. Proof of Conjecture 1.4 for a cycle. Fix n ≥ 1. In the remainder of this section we prove
Conjecture 1.4 for Q = Ãn . As a consequence, using Shaw’s result, we conclude:

Corollary 6.7. The center of 31( Ãn) is isomorphic to k[X, Y, Z ]/(Zn+1
+ XY + XY Z).
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The steps of the proof of Conjecture 1.4 for Ãn are as follows:

(1) First we show that 31( Ãn) is isomorphic to an NCCR over e03
1( Ãn)e0.

(2) Then we use the preceding result to establish that the Satake map Z(31( Ãn))→ e03
1( Ãn)e0, is an

isomorphism.

(3) To complete the proof we consider the canonical map Z(31( Ãn)) → k[M0,1( Ãn, δ)], given by
associating to a central element and a simple representation the scalar by which the element acts in
the representation. We show that this is an isomorphism.

We carry out these steps in the next subsections.
In the first step, we will make use of the prime property for 31( Ãn). We state the prime property now,

but defer the proof until Section 7, as our proof uses an explicit basis produced in Proposition 7.1.

Remark 6.8. Note that there is no circular logic in the paper, as Section 7 does not rely on any results
after Section 2, and hence could instead fit logically between Sections 3A and 3B, whereby every result
would be proven in order. We decided that, due to the technical nature of Section 7, whose methods are
not used in the preceding material, it would be better to use its results as a black box in Sections 3B–6.

Definition 6.9. Let R be a ring. We say R is prime if r Rr ′
= 0 implies r = 0 or r ′

= 0, for all r, r ′
∈ R.

For a commutative ring, this recovers the usual notion of an integral domain, i.e., that the zero ideal is
a prime ideal.

Example 6.10. For a nonexample, take B = ⊕n∈N Bn to be a finite-dimensional N-graded algebra not
concentrated in degree zero. Then there exists N ∈ N such that Bm = 0 for all m > N but BN ̸= 0. Pick
b ∈ BN nonzero and notice that bBb ∈ ⊕m≥2N Bm = {0} since 2N > N . Hence B is not prime.

In particular for Q Dynkin and k = C, 31(Q)∼=50(Q) is a finite-dimensional N-graded algebra and
therefore not prime. However, for Q = A2 and q = (1/2, 2) ̸= (1, 1), then 3q(A2) ∼= 5(−1,1)(A2) ∼=

Mat2×2(k) is prime.

Proposition 6.11 (Proposition 7.3). 3q( Ãn) is prime for all n ≥ 0 and all q ∈ (k×)n+1.

6B1. The NCCR property. We first show that the multiplicative preprojective algebra is an NCCR (Step 1).

Proposition 6.12. 31( Ãn) is isomorphic to an NCCR over e03
1( Ãn)e0.

Proof. Define 3 :=31( Ãn) for ease of notation. Write the vertex set as {0, 1, . . . , n} and the arrow set
{a0, a∗

0 , a1, a∗

1 , . . . , an, a∗
n}, with t (ai )= i = h(a∗

i ) for i < n but t (an)= 0 = h(a∗
n). So the multiplicative

preprojective relation at each vertex is

ei (ρ− 1)=


a0a∗

0 + ana∗
n + a0a∗

0ana∗
n if i = 0,

a∗
nan + a∗

n−1an−1 + a∗
nana∗

n−1an−1 if i = n,
ai a∗

i − a∗

i−1ai−1 otherwise.

Shaw’s isomorphism in Theorem 6.4 takes the form

a0a∗

0 7→ Z a0a1 · · · an−1a∗

n 7→ X ana∗

n−1a∗

n−2 · · · a∗

0 7→ Y.
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Define M := e03 and note that M = ⊕
n
i=0 Mi where Mi := e03ei . Observe that Mi ∼= (Z i , Y ), the

two-sided ideal generated by Z i and Y in 3, as e03e0-modules via a map,

a0a1 · · · ai−1 7→ a0a1 · · · ai−1a∗

i−1a∗

i−2 · · · a∗

0 = (a0a∗

0)
i
= Z i

ana∗

n−1 · · · a∗

i 7→ ana∗

n−1 · · · a∗

0 = Y.

Define the map

3
φ

−→ Ende03e0(M),

on generators by sending the idempotent ei at vertex i to the projection map M → Mi , and sending the
arrows as follows:

0
•

an
tt

a0

��

M0

Y
ss

Z

##n
•

a∗

n−1

��

a∗
n

44

1
•

a1

��

a∗

0

__

φ
7−→ Mn

ι

��

−Z
Y (1+Z)

33

M1

Z

��

ι

cc

n−1
•

an−1

SS

· · ·
2
•

a∗

2

CC

Mn−1

Z

UU

· · · M2

ι

AA

where ι denotes the inclusion map. This map is well-defined at vertex 0 and n since

Z +
−Y Z

Y (1 + Z)
+

−Y Z2

Y (1 + Z)
= Z +

−Z(1 + Z)
(1 + Z)

= Z − Z = 0

and at vertex i ̸= 0, n since Z − Z = 0.
The surjectivity of φ follows from the observation that every e03e0-module map of ideals is given by

left multiplication by some element of the field of fractions of e03e0. The injectivity follows from the
fact that 3 is prime (Proposition 6.11) and injectivity on e03e0, as we now explain.

By definition of primality, for any a, c ∈3 both nonzero, there exists b ∈3 such that abc ̸= 0. Fix
γ ∈ 3 nonzero and take a = e0 and c = γ to get a nonzero path γ ′

∈ e03 containing γ as a subpath.
Then take a = γ ′ and c = e0 to get a nonzero path γ ′′

∈ e03e0 containing γ as a subpath. Since φ is
injective on e03e0, φ(γ ′′) ̸= 0. Hence φ(γ ) ̸= 0 and φ is injective.

To complete the proof that 3 is an NCCR, we need to show that the module M = e03 is a reflexive
e03e0-module. The computation above shows that

Home03e0(Mi ,M j )∼= ei3e j ∼= M j−i

as a module over e03e0 ∼= ei3ei , so in particular Home03e0(M, e03e0) ∼= ⊕i ei3e0 ∼= M . So M is
self-dual and hence reflexive as a e03e0-module. □
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6B2. The center. Observe, if A is an NCCR over some ring R, then the center Z(A) is an R-algebra.
Under suitable hypotheses, they are actually isomorphic. For example, this holds if R an integrally closed
Noetherian domain, by Zariski’s main theorem (as Spec Z(A)→ Spec R is finite and birational).

Instead of using this to establish our isomorphism, we consider an explicit map in the other direction.
More generally, suppose A is a ring, e ∈ A is an idempotent, and R := eAe. Then we have a canonical
map

Z(A)→ R = eAe, z 7→ ez. (6-1)

We call this the “Satake map” following the terminology for Hecke algebras, symplectic reflection algebras,
etc.

Under natural conditions, the Satake map is well known to be an isomorphism. Namely, note that eA
is an (eAe)− A bimodule, and EndAop(eA)= eAe. Then we have a natural map Aop

→ EndeAe(eA).

Lemma 6.13. Suppose that (I) the natural map Aop
→ EndeAe(eA) is an isomorphism, and (II) eAe is

commutative. Then the Satake map (6-1) is an isomorphism.

Proof. We have an identification

Z(eAe)∼= EndeAe⊗Aop(eA)∼= Z(A) z 7→ ez.

Since eAe is commutative, Z(A)∼= eAe, via the Satake map. □

Corollary 6.14. The Satake map (6-1) is an isomorphism for A =31( Ãn) and e = ev, the idempotent at
any vertex.

Proof. This is a direct consequence of Lemma 6.13, once we check hypotheses (I) and (II). Thanks to
Proposition 6.12, A ∼= EndeAe(eA) so (I) follows from A ∼= Aop, a consequence of the independence
of orientation established in [25, Theorem 1.4]. By Shaw’s Theorem 6.4, (II) holds (alternatively, the
commutativity of the generators can be checked directly). □

Corollary 6.15. 31( Ãn) is an NCCR over its center.

Proof. This follows immediately, provided we identify the Z(31( Ãn))-module structure on 31( Ãn) with
left multiplication. Indeed, given z ∈ Z(31( Ãn)) (by tracing through the above maps) its action on
Ende31( Ãn)e(M) via the Satake map is multiplication by ez. □

Note that Corollary 6.14 and Theorem 6.4 immediately imply Corollary 6.7.

6B3. The center as functions on a quiver variety. It remains to identify the center with the algebra of
functions on the multiplicative quiver variety.

In general, given a k Q0-algebra A and a finite-dimensional k Q0-module V , we have a canonical
algebra homomorphism ev : A → k[Rep(A, V )] ⊗ Endk(V ), called “evaluation”: ev(a)(ρ)= ρ(a).

Suppose that ρ : A → End(V ) is an irreducible representation. Consider z ∈ Z(A). If k is algebraically
closed, then by Schur’s Lemma, ρ(z)= λρ,z IdV for some scalar λρ,z . However, we don’t assume here
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that k is algebraically closed. We could fix this by passing to the algebraic closure, but this turns out to
be unnecessary as follows.

Lemma 6.16. Suppose that v ∈ Q0 is a vertex with dim Vv = 1. Suppose ρ is an irreducible representation.
Then End(ρ)= k · IdV .

Proof. If φ ∈ End(ρ), then ρ(ev)φ = φρ(ev). Therefore, φ preserves ρ(ev)V = Vv . As this has dimension
one, we have φ|Vv = λ IdVv . Now, φ−λ IdV is not invertible. By Schur’s lemma over a general field, this
implies that φ− λ IdV is zero. So φ = λ IdV . □

Corollary 6.17. Let Q0, A, V, v and ρ be as in Lemma 6.16. If z ∈ Z(A), then ρ(z) ∈ End(V ) is a scalar.

Proof. Note that ρ(z) ∈ End(ρ). Then apply the lemma. □

Corollary 6.18. Suppose that for some vertex v, we have Vv = 1, and moreover that there exists an
irreducible representation A → End(V ). Then the restriction ev |Z(A) is an algebra map Z(A) →

k[Rep(A, V )] · IdV .

Proof. Let U ⊆ Rep(A, V ) be the locus of representations ρ such that End(ρ) = k · IdV . This is a
Zariski open subset, since k · IdV is always contained in End(ρ). If ρ ∈ Rep(A, V ) is irreducible, then by
Lemma 6.16, ρ ∈ U . Thus, by our assumptions, U is nonempty. Since Rep(A, V ) is a vector space, it is
irreducible. We conclude that U is Zariski dense.

Now, for every z ∈ Z(A), ev(z) : Rep(A, V )→ End(V ) is scalar-valued on U . As U is dense, it is a
scalar on all of Rep(A, V ). Hence ev(z)∈ k[Rep(A, V )]⊗ Id. As z was arbitrary, we obtain the result. □

Back to the situation at hand, for convenience let us orient Ãn clockwise (note that the statement does
not depend on orientation). We consider the vector space V = k Q0 , which has the property dim Vv = 1
for all v ∈ Q0. Consider the representation on V where each clockwise arrow is the identity (i.e., the
one-by-one matrix [1]) and each counterclockwise arrow is zero. This defines a representation of the
localization L Q that descends to an irreducible representation of 31(Q). Therefore, having satisfied the
hypotheses of Corollary 6.18, we obtain a canonical map

evZ : Z(31(Q))→ k[M0,1(Q, δ)]. (6-2)

Proposition 6.19. The map evZ is an isomorphism.

Proof. To check surjectivity, let f ∈ k[M0,1(Q, δ)] = k[Repα(3
1(Q))]GLα . We wish to show that

f ∈ evZ (Z(31(Q))). Note that f is a polynomial in the matrix coefficient functions of the arrows (these
are one by one matrices). To be invariant under GLα, the polynomial must in fact be a polynomial in
the functions defined by closed paths in the quiver: each such closed path is canonically a scalar, as it is
an endomorphism of a one-dimensional vector space. Thus it suffices to assume that there is a single
closed path a ∈ ev31(Q)ev such that ρ(a)= f (ρ) · IdVv for all ρ. As the Satake map is an isomorphism
(Corollary 6.14), we must have a = evz for some z ∈ Z(31(Q)). Then, ρ(a) = evZ (z) · IdVv . Hence
f (ρ)= evZ (z) for all ρ ∈ Repα(3

1(Q)). This shows that evZ is surjective.
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By Corollary 6.7 the source is an integral domain. Since we already proved surjectivity, injectivity
will follow provided that the target also has dimension at least two. This can be seen by constructing a
two-parameter family of representations, e.g., we can take the representations with all clockwise arrows
a matrix (a) and all counterclockwise arrows a matrix (b), with ab ̸= −1. Alternatively, this statement
follows from Theorem 5.4. □

7. The strong free product property

In this section, we prove the strong free product property for connected quivers containing a cycle. We
first establish the strong free product property for the quivers Ãn for n ≥ 0 using the diamond lemma to
build a section of the quotient map π : L →3q( Ãn). Then we establish the more general result using the
corresponding result for partial multiplicative preprojective algebras; see Section 3A for the prerequisite
definitions.

As results in Sections 3B, 3C, 4, 5, 6 rely on results established in this section, the reader should note
that we do not use any results beyond Section 3A; see Remark 6.8.

7A. The case of cycles. Consider the quiver Ãn−1 with vertex set ( Ãn−1)0 := {0, 1, . . . , n−1} and arrow
set ( Ãn−1)1 ={a0, a∗

0 , a1, a∗

1 , . . . , an−1, a∗

n−1} with t (ai )= i and h(ai )= i+1 (mod n)i<ai+1<a∗

j <a∗

j+1

for all i, j ∈ {0, 1, . . . , n − 2}. The multiplicative preprojective algebra for this quiver, with respect to the
ordering, is defined to be

3q( Ãn−1) :=
k Ãn−1[(1 + ai a∗

i )
−1, (1 + a∗

i ai )
−1

]i=0,...,n−1〈∏n−1
i=0 (1 + ai a∗

i )
∏n−1

i=0 (1 + a∗

i ai )−1 −
∑n

i=1 qi ei
〉 =:

L
J
.

Writing a :=
∑

i ai , a∗
:=

∑
i a∗

i , and q =
∑

i qi ei since

1 + aa∗
= 1 +

∑
i

ai a∗

i =

n−1∏
i=0

(1 + ai a∗

i ), 1 + a∗a = 1 +

∑
i

a∗

i ai =

n−1∏
i=0

(1 + a∗

i ai )

we have

3q( Ãn−1) :=
k Ãn−1[(1 + aa∗)−1, (1 + a∗a)−1

]

⟨(1 + aa∗)(1 + a∗a)−1 − q⟩
.

We write r := (1 + aa∗)(1 + a∗a)−1
− q for this relation, S for the degree zero piece k( Ãn−1)0 of

3q( Ãn−1). As in Section 3A, let B := S[t, (q + t)−1
] and B = t B, spanned over S by tm, (t ′)m,m ≥ 1,

for t ′
:= (q + t)−1

− q−1. Let r ′
:= (q + r)−1

− q−1.
We construct σ : L/(r) ∗S B → L so that (L , r, σ ′, B) satisfies the strong free product property using

an explicit basis.

Proposition 7.1. L is a free left S-module with basis consisting of 1 together with all alternating products
of elements of the following two sets, for x := (1 + aa∗):

B := {xmaℓ, xm(a∗)ℓ | m ∈ Z, ℓ ∈ N}. R := {rm, (r ′)m | m ∈ N}.
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In particular, B forms a basis for 3q( Ãn−1)= L/(r), and (L , r, σ, B) satisfies the strong free product
property, with σ induced from the inclusion of B into L.

Proof. Note that, for every vertex i , we have ei a = ae j for a unique j , and similarly for the elements
a∗, x, y := 1 + a∗a, x−1, y−1, and by definition, eir = rei . Therefore L is spanned as a left S-module by
noncommutative monomials in a, a∗, x, y, x−1, y−1, r , and r ′. Define M := ⟨a, a∗, x, y, x−1, y−1, r, r ′

⟩

the set of monomials and P := S⟨a, a∗, x, y, x−1, y−1, r, r ′
⟩ the set of noncommutative polynomials with

coefficients in S.
The set of relations, R, is the two-sided ideal generated by

xx−1
= 1 = x−1x, yy−1

= 1 = y−1 y, x = 1 + aa∗, y = 1 + a∗a, (7-1)

r = xy−1
− q, r ′

= yx−1
− q−1. (7-2)

So we have the presentation L ∼= P/R and hence 3q( Ãn−1)∼= P/(R, r).
The idea of the proof is to produce a basis of the quotient L = P/R by realizing it as an S-module

subspace Pirr ⊂ P spanned by irreducible monomials, defined below.
That is, we define an ordering, ≤, on the set M. Then we use this ordering to build a system of

reductions {ri } from R by reading each relation Ri ∈ R as an S-module map, ri , taking the leading term
lt(Ri ) to the smaller term lt(Ri )− Ri . We extend ri to M via alt(Ri )b 7→ a(lt(Ri )− Ri )b for a, b ∈ M.
We say m ∈ M is irreducible (or in normal form) if every reduction is the identity on m or, equivalently,
if m doesn’t contain the leading term of any relation as a submonomial.

We will show that every m ∈ M, reduces uniquely to normal form, m′
∈ Pirr, after applying finitely

many reductions. This implies the S-module map r : P → Pirr given by S-linear extension of m 7→ m′ is
well-defined. Hence r splits the inclusion map Pirr → P . As ker(r)= R, we conclude that r induces an
S-module isomorphism L ∼= Pirr and the set of irreducible monomials gives our desired basis.

First we equip M with an ordering. Fix w, z, z′
∈ M and subsets Z , Z ′

⊂ M. Define

nz(w) := the number of occurrences of z in w, (7-3)

nz,z′(w) := the number of occurrences of z and z′ in w with z appearing before z′, (7-4)

nZ (w) :=
∑
z∈Z

nz(w) and nZ ,Z ′ :=
∑

z∈Z ,z′∈Z ′

nz,z′ . (7-5)

Define a function N : M → N5 taking w to

N (w) := (na(w), n{a,a∗},{x,x−1,y,y−1}(w), n{ax,ax−1}(w), n{y,y−1}(w), n{r,r ′}(w)) ∈ N5. (7-6)

Define the ordering w′
≤ w in M if N (w′)≤ N (w) in the lexicographical ordering on N5. This induces

an ordering on P , by extending N to P , via N
(∑

i mi
)
:= maxi {N (mi )}.

Next, using this ordering, we define a system of reductions from the relations in (7-1), (7-2):

Inverse reductions: xx−1, x−1x , yy−1, y−1 y 7→ 1.

Short cycle reductions: aa∗
7→ x − 1, a∗a 7→ y − 1.
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Reordering reductions: a∗x±1
7→ y±1a∗, ay±1

7→ x±1a.

Substitution reductions: y−1
7→ x−1(r + q), y 7→ (r ′

+ q−1)x (if not preceded by a); ax 7→ a(r + q)y,
ax−1

7→ ay−1(r ′
+ q−1).

Reductions in B: rr ′, r ′r 7→ −qr ′
− q−1r .

By design, if w′ is obtained from w by applying a reduction, then N (w′) < N (w). This implies that
any sequence of reductions terminates in finitely many steps, by the descending chain condition for the
lexicographical ordering on N5.

Next observe that under this reduction system m ∈ M is in normal form (or irreducible) if and only
if it is alternating in B and R. Therefore, the set of alternating words in B and R is a spanning set. It
remains to show that m ∈ M reduces uniquely to normal form, which establishes linear independence.

To prove uniqueness, we need to show wheneverw reduces to r1(w) and r2(w) that each further reduces
to the same irreducible w′. Bergman’s diamond lemma says to show uniqueness for all monomials w it
suffices to show uniqueness for specific w= xyz where xy and yz are both leading terms for a relation in
(7-1), (7-2) [11, Theorem 1.2]. These w are called overlap ambiguities. If the two reduced expressions of
w = xyz (i.e., r1(xy)z and xr2(yz)) both further reduce to the same w′, we say the overlap ambiguity
resolves. To complete the proof it suffices to show all overlap ambiguities resolve.

Next, notice that any unresolvable ambiguity involving y±1 gives rise to an unresolvable ambiguity not
involving y±1 by applying the substitution or reordering reductions. So it suffices to check ambiguities in
the following smaller system of reductions:

Inverse reductions:

(1) xx−1 r1
7−→ 1. (2) x−1x r2

7−→ 1.

Short cycle reductions:

(3) aa∗ r3
7−→ x − 1. (4) a∗a r4

7−→ (r ′
+ q−1)x − 1.

Reordering reductions:

(5) a∗x r5
7−→ (r ′

+ q−1)xa∗. (6) ax r6
7−→ qxa − qar ′x .

(7) ax−1 r7
7−→ x−1a(r ′

+ q−1). (8) a∗x−1 r8
7−→ x−1(r + q)a∗.

Substitution reductions:

(9) y−1
7→ x−1(r + q). (10) y 7→ (r ′

+ q−1)x .

Reductions in B:

(11) rr ′
7→ −qr ′

− q−1r. (12) r ′r 7→ −qr ′
− q−1r.

The substitution reductions and reductions in B don’t overlap with any others, so the only overlap
ambiguities are amongst the (1)–(8), involving the generators a, a∗, x, x−1 only. The inverse, short cycle,
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and reordering reductions are quadratic in these generators giving rise to the following 12 cubic overlap
ambiguities:

(I) xx−1x (IV) a∗aa∗ (VII) a∗x−1x (X) a∗ax

(II) x−1xx−1 (V) a∗xx−1 (VIII) ax−1x (XI) aa∗x−1

(III) aa∗a (VI) axx−1 (IX) aa∗x (XII) a∗ax−1

The resolutions of (I) and (II) are immediate (and are completely general, having to do with a basis for
k[x, x−1

]). Here is a summary of the remaining resolutions of ambiguities:

(III) (r3 − r6 ◦ r4)(aa∗a)= 0 (VIII) (r8 ◦ r7 − r2)(ax−1x)= 0

(IV) (r4 − r5 ◦ r3)(a∗aa∗)= 0 (IX) (r3 − r3 ◦ r6 ◦ r5)(aa∗x)= 0

(V) (r8 ◦ r5 − r1)(a∗xx−1)= 0 (X) (r4 − r4 ◦ r4 ◦ r5 ◦ r6)(a∗ax)= 0

(VI) (r7 ◦ r6 − r1)(axx−1)= 0 (XI) (r3 − r3 ◦ r7 ◦ r8)(aa∗x−1)= 0

(VII) (r5 ◦ r8 − r2)(a∗x−1x)= 0 (XII) (r4 − r4 ◦ r8 ◦ r7)(a∗ax−1)= 0

We explicitly demonstrate (X), one of the more involved resolutions:

a∗ax = (a∗a)x r4
7−−→ [(r ′

+ q−1)x − 1]x = (r ′
+ q−1)x2

− x,

a∗ax = a∗(ax) r6
7−−→ a∗(qxa − qar ′x)
r4◦r5
7−−→ q(r ′

+ q−1)xa∗a − q((r ′
+ q−1)x − 1)r ′x

r4
7−−→ q(r ′

+ q−1)x((r ′
+ q−1)x − 1)− q((r ′

+ q−1)x − 1)r ′x

= q(r ′
+ q−1)x(q−1x − 1)+ qr ′x = (r ′

+ q−1)x2
− x . □

Remark 7.2. The choice of B was important here. If we instead had defined it so that (q + t)−1
∈ B,

i.e., if we replace r ′
= (q + r)−1

− q−1
∈ R by (q + r)−1, then our desired basis would no longer be

linearly independent. Indeed, reducing aa∗a one way, we get (x − 1)a = xa − a, which is irreducible,
whereas the other way we get a(y − 1)= a(q + r)−1x − a, also irreducible. That is, xa = a(q + r)−1x ,
an equality of two distinct irreducible elements.

Proposition 7.3. 3q( Ãn) is prime for all n ≥ 0 and all q ∈ (k×)n+1.

Proof. We need to show, for every pair f, g ∈3q( Ãn), both nonzero, there exists some h ∈3q( Ãn) such
that f hg ̸= 0. It suffices to show that there exists vertices i, j and h such that ei f e j hg ̸= 0, and hence we
can take f to be a linear combination of basis elements that all begin at i and end j . By right multiplication
by an− j or (a∗) j , one can take f to be a linear combination of basis elements ending at vertex 0. By left
multiplication by ai or (a∗)n−i and then applying reordering reductions — the q-commutator, ax − qxa
is zero, for instance, in 3q( Ãn)— one can take f to be a linear combination of basis elements starting
and ending at vertex 0. In fact, f is of the form e0 f1(x, x−1) f2(an+1), where f1 ̸= 0 and f2 has nonzero
constant term. And similarly, we can take g = e0g1(x, x−1)g2(an+1). Then their product has nonzero
term e0 f1(x, x−1) f2(an+1)(0)g1(x, x−1)g2(an+1)(0) and hence is nonzero. □
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7B. Partial multiplicative preprojective algebras. First we define a partial multiplicative preprojective
algebra following the definition of a partial preprojective algebra by [31, Definition 3.1.1].

Definition 7.4. Fix a quiver Q and q ∈ (k∗)Q0 . Define a partition of the vertex set Q0 = B ⊔W into a
set B of black vertices and a set W of white vertices. The partial multiplicative preprojective algebra of
(Q,W) is

3q(Q,W) := L/(rB), where rB := 1Br1B, for 1B :=

∑
j∈B

e j .

In words, we don’t enforce the relations at the white vertices. Hence this algebra interpolates between
3q(Q, Q0)= L and 3q(Q,∅)=3q(Q).

Definition 7.5. Let Q be a quiver and let 0 be its underlying graph. Fix R ⊂ Q0:

• A subgraph T ⊂ 0 is a tree if it is connected and acyclic.

• A tree T ⊂ 0 is rooted in R if it has a single vertex, called the root, in R.

• A forest rooted in R is a disjoint union of trees rooted in R.

• A subgraph S ⊂ 0 is spanning if the vertex set of S is Q0.

Notice that every doubled quiver Q with W ⊂ Q0 nonempty has a spanning forest, F , rooted in W .
We view such an F as a subquiver of Q by orienting the arrows towards the roots, see Figure 1. Since
the isomorphism class of 3q(Q) is independent of the orientation of Q, see Remark 2.2, we can assume
that F1 ⊂ Q1.

Let B := B[t, (t + q)−1
]. Each choice of spanning forest of Q rooted at W gives rise to a linear

isomorphism σ ′
:3q(Q,W) ∗k Q0 B → L and hence a basis for 3q(Q,W)= L/(rB).

Proposition 7.6. Let Q be a connected quiver and Q0 = B ⊔W a decomposition into black and white
vertices with W ̸= ∅. Then (L , rB, σ, B) satisfies the strong free product property for some choice of σ .

In more detail, let F ⊂ Q be a spanning forest rooted in W with arrows F1 ⊂ Q1 directed towards the
roots.

A basis for L is given by concatenable words in the set,

{a, xa, x−1
a | a ∈ Q1} ∪ {rB, r ′

B := (q + rB)−1
− q−1

},

such that the following subwords do not occur:

xax−1
a , x−1

a xa, aa∗, ax±1
a∗ for a ∈ Q1, x±1

a , x−1
a∗ , xa∗a∗, x2

a∗ for a ∈ F1, rBr ′

B, r ′

BrB.

The words in which rB and r ′
B do not occur form a basis for 3q(Q,W) = L/(rB), and the section σ is

given by the inclusion of these elements.

Proof. The proof parallels that of Proposition 7.1. Write r := rB and r ′
:= r ′

B.



Multiplicative preprojective algebras are 2-Calabi–Yau 871

Figure 1. The quiver on the left is a doubled quiver, obtained by adding the gray arrows.
It has three white vertices and three black vertices. The middle and right diagrams show
two inequivalent spanning forests, in light green, with roots at the white vertices.

Note that L is spanned by the set, M, of concatenable words in {a, xa, x−1
a , r, r ′

| a ∈ Q1}. These
words are subject to the following relations, depending on a choice of ordering ≤ on the arrows a ∈ Q1:

xax−1
a = 1 = x−1

a xa, xa = 1 + aa∗, (7-7)

r =

∏
a∈Q

t (a)∈B

xϵ(a)a − q, r ′
=

∏
a∈Q

t (a)∈B

x−ϵ(a)
a − q−1, (7-8)

rr ′
= r ′r = −qr ′

− q−1r, (7-9)

where recall we write t (a) for the tail or source of a, not the target. Define

la :=

∏
b∈Q

b<a, t (b)∈B

xϵ(b)b and ra :=

∏
b∈Q

b>a, t (b)∈B

xϵ(b)b .

So for a ∈ Q1 with t (a) ∈ B we have the relation

la(1 + aa∗)ϵ(a)ra = (r + q)et (a) =⇒ xϵ(a)a = l−1
a (r + q)(et (a))r−1

a .

Hence in L , define redϵ(a)a := l−1
a (r + q)(et (a))r−1

a .
We implement the above relations with the following reductions:

Inverse reductions: xax−1
a , x−1

a xa 7→ 1 for a ∈ Q1.

Short cycle reductions: aa∗
7→ xa − 1 for a ∈ Q1.

Reordering reductions: a∗x±
a 7→ x±

a∗a∗ for a ∈ Q1.

Substitution reductions: x±
a 7→ red±

a , x−1
a∗ 7→ 1 − a∗ red−1

a a, x2
a∗ 7→ xa∗ + a∗ reda a, xa∗a∗

7→ a∗ reda ,
for a ∈ F1

Reductions in B: rr ′, r ′r 7→ −qr ′
− q−1r .

For each word w ∈ M, use the definition in (7-4) to define a weighted size,

ϕa(w) := n{a,a∗}(w)+
3
2 n{xa,xa∗ }(w)+ 3n

{x−1
a ,x−1

a∗ }
(w)
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for each a ∈ Q1. Define a total ordering on the arrows (Q1,≺) such that,

a ≺ a′ if a ∈ F1, a′
∈ Q1 \ F1, or if a, a′

∈ F1 with a′ disconnected from W in F1 \ {a}.

Intuitively, we are saying that arrows in the spanning forest come before the rest in the ordering, with
arrows closer to the white vertices coming first. Using ≺, ϕa , and (7-4), (7-5) define

N ′
: M → N(Q1,≺) × N2, w 7→ (2ϕa(w), n

{a|a∈Q1},{xa |a∈Q1}
(w), n{r,r ′}(w)),

from which we say w ≤ w′ if N ′(w)≤ N ′(w′) in the lexicographical ordering on N|Q1|+2.
Notice, as in Proposition 7.1, that N ′(ri (w)) < N ′(w) for any word w and reduction ri with ri (w) ̸=w.

First notice that, by design, ϕa decreases under the following reductions:

Inverse reductions: ϕa(xax−1
a )= ϕa(x−1

a xa)= 3 +
3
2 > 0 = ϕa(1).

Short cycle reductions: ϕa(aa∗)= 2> 3
2 = ϕa(xa).

Substitution reductions: ϕa(xa)=
3
2 > 0 = ϕa(reda), ϕa(x−1

a )= 3> 0 = ϕa(red−1
a ), ϕ(x−1

a∗ )= 3> 2 =

ϕa(a∗ red−1
a a), ϕ(x2

a∗)= 3> 2 = ϕa(a∗ reda a) and ϕ(x2
a∗)= 3> 3

2 = ϕa(xa∗),
ϕa(xa∗a∗)=

5
2 > 1 = ϕa(a∗ reda).

For the substitution reductions observe that reda for a ∈ F1 has subwords x±1
b , x±1

b∗ for only b ∈ F1

which are necessarily farther from the root than a, and the remaining arrows are not in the spanning forest.
Consequently, ϕa decreasing — despite ϕb increasing for some b ≻ a — implies that N ′ decreases. The
reordering reductions preserve all ϕa but decrease n

{a|a∈Q1},{xa |a∈Q1}
by definition, and hence decrease N ′.

The reductions in B preserve all ϕa and n
{a|a∈Q1},{xa |a∈Q1}

but decrease n{r,r ′}, hence N ′.
We conclude that every w ∈ M reduces to a k Q0-linear combination of words without subwords in the

leading terms of the reductions:

{xax−1
a , x−1

a xa, aa∗, axa∗, ax−1
a∗ | a ∈ Q1} ∪ {x−1

a∗ , xa∗a, x2
a∗ | a ∈ F1}

after applying finitely many reductions.
Note that some generators are nonreduced: xa , x−1

a , and x−1
a∗ for a ∈ F1. Therefore, we can put in

reductions for each of these and throw out all other reductions involving these generators, provided we
check that all the defining relations still reduce to zero. We have the reductions:

(1) xax−1
a

r1
7−→ 1 for a ∈ Q1. (5) ax±

a∗

r5
7−→ x±

a a for a /∈ F1.

(2) x−1
a xa

r2
7−→ 1 for a ∈ Q1. (6) axa∗

r6
7−→ reda a for a ∈ F1.

(3) aa∗ r3
7−→ reda −1 for a ∈ F1. (7) x2

a∗

r7
7−→ xa∗ + a∗ reda a for a ∈ F1.

(4) aa∗ r4
7−→ xa − 1 for a /∈ F1. (8) xa∗a∗ r8

7−→ a∗ reda for a ∈ F1.

Which don’t overlap with the remaining reductions:

Substitution reductions: x±1
a 7→ red±1

a , x−1
a∗ 7→ 1 − a∗x−1

a a, a ∈ F1.

Reductions in B: rr ′, r ′r 7→ −qr ′
− q−1r .
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As before, reductions (3) and (4) imply the relations xa = 1+aa∗, whereas the Substitution Reductions
imply the defining relations for r, r ′. So this is a valid reduction system.

This reduction system has thirteen ambiguities:

(I) xax−1
a xa for a /∈ F1. (VI) x2

a∗a∗ for a ∈ F1. (XI) aa∗a for a ∈ Q1\F1.

(II) x−1
a xax−1

a for a /∈ F1. (VII) xa∗a∗a for a ∈ F1. (XII) aa∗a for a ∈ F1.

(III) axa∗ x−1
a∗ for a /∈ F1. (VIII) axa∗a∗ for a ∈ F1. (XIII) aa∗a for a∗

∈ F1.

(IV) ax−1
a∗ xa∗ for a /∈ F1. (IX) a∗axa∗ for a ∈ F1.

(V) ax2
a∗ for a ∈ F1. (X) a∗axa∗ for a ∈ Q\F1.

Which all resolve by the resolutions:

(I) xax−1
a xa for a /∈ F1. (VIII) (r3 ◦ r6 − r3 ◦ r8)(axa∗a∗)= 0.

(II) (r2 − r1)(x−1
a xax−1

a )= 0. (IX) (r7 ◦ r4 − r6)(a∗axa∗)= 0.

(III) (r1 − r1 ◦ r5 ◦ r5)(axa∗ x−1
a∗ )= 0. (X) (r4 ◦ r5 ◦ r5 − r4)(a∗axa∗)= 0.

(IV) (r2 − r2 ◦ r5 ◦ r5)(ax−1
a∗ xa∗)= 0. (XI) (r4 − r5 ◦ r4)(aa∗a)= 0.

(V) (r3 ◦ r6 ◦ r7 − r6 ◦ r6)(ax2
a∗)= 0. (XII) (r6 ◦ r4 − r3)(aa∗a)= 0.

(VI) (r3 ◦ r8 ◦ r7 − r8 ◦ r8)(x2
a∗a∗)= 0. (XIII) (r8 ◦ r4 − r3)(aa∗a)= 0.

(VII) (r7 ◦ r4 − r8)(xa∗a∗a)= 0.

The resolutions of the ambiguities (I)–(IV) and (X)–(XIII) are quick, leaving the computational heart of
the calculations with the five resolutions (V)–(IX). Note that the resolutions for (V) and (VI) are identical
after swapping the roles of reductions r6 and r8, and similarly for (IX) and (VII), leaving three calculations:
(V), (VIII), and (IX). These ambiguities express the overlap of r6 with r7, r8, and r4 respectively and
further reduce uniquely to red2

a a, reda(reda −1), and a∗ reda a. □

7C. A convenient substitution. It will be convenient for us to make the substitutions

x±
a := x±1

a − 1, (7-10)

motivated as follows.
Let A ∼=3q(Q,W) for Q connected, and W possibly empty. Let I be the ideal generated by all paths

beginning and ending at vertices having either q = 1 or in W (if nonempty). Then A/I is nonzero, and we
can make use of the I -adic filtration. The modified generators x±

a , for a an arrow in I , have the advantage
of lying in the ideal I . As we will show, in the cases Q contains a cycle and W ̸= ∅, the I -adic filtration
is Hausdorff.

Thus, we get an embedding of A into the completion ÂI , realizing x±
a as power series with zero

constant term. In the special case where q = 1 at all black vertices, this embedding sends every modified
generator, x±

a , to a noncommutative power series in arrows with zero constant term. This completion
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is closely related to the completion of (partial) additive preprojective algebras with λ = 0 at all black
vertices.

Practically speaking, we only require the above substitution at white vertices to obtain a basis for
quivers containing cycles, see Section 7D. But theoretically, we advocate for this substitution at any vertex
where we think of q as a deformation parameter based at q = 1.

Let us explain how this substitution works in the case of the cycle Ãn (although we do not strictly need
it in that case). We formally set x± := x±1

− 1 and y± := y±1
− 1; then the modified reductions from

Section 7A are the following ones:

Inverse reductions: x+x−x−x+ 7→ −x+ − x− and y+y−, y−y+ 7→ −y+ − y−.

Short cycle reductions: aa∗
7→ x+, a∗a 7→ y+.

Reordering reductions: a∗x± 7→ x±a∗, ay± 7→ y±a.

Substitution reductions: y− 7→ x−(r + q)+ r + (q − 1), (if not preceded by a); y+ 7→ (r ′
+ q−1)x+ +

r ′
+ (q−1

− 1) (if not preceded by a); ax+ 7→ a(r + q)y+ + ar + (q − 1)a;
ax− 7→ ay−(r ′

+ q−1)+ ar ′
+ (q−1

− 1)a.

This produces the same ambiguities as before, which resolve in the same way after eliminating the
nonreduced generators y± (another way to say this is that the reductions are the same up to the change of
variables, so ambiguities resolve if and only if they did before). The modified ordering function,

N z(w) := (na(w), n
{a,a∗},{x+,x−,y+,y−}

(w), n
{ax+,ax−}

(w), n
{y+,y−}

(w)),

is strictly decreasing under applications of reductions and hence every term reduces after applying finitely
many reductions. So we have proven the following variant of Proposition 7.1:

Proposition 7.7. Let Q ∼= Ãn be a cycle. Then L Q is a free left k Q0-module with basis given by alternating
words in R and B′

:= {(x±)maℓ, (x±)m(a∗)ℓ | m ∈ N, ℓ ∈ N}. Hence B′ is a basis for 3q(Q).

In the case of the partial multiplicative preprojective algebra, the modified reductions are as follows:

Inverse reductions: x+
a x−

a , x−
a x+

a 7→ −x+
a − x−

a for a ∈ Q1.

Short cycle reductions: aa∗
7→ x+

a for a ∈ Q1.

Reordering reductions: a∗x±
a 7→ x±

a∗a∗ for a ∈ Q1.

Substitution reductions: x±
a 7→ red±

a −1, x−

a∗ 7→ −a∗ red−1
a a, x+

a∗
2

7→ −x+

a∗ + a∗ reda a, x+

a∗a∗
7→

a∗(reda −1), for a ∈ F1.

Again, the same ordering function applies here and strictly decreases under these reductions. The
ambiguities must resolve since they did before.

Proposition 7.8. Let Q,B,W be as in Proposition 7.6. Then L Q is a free left k Q0-module with basis
given by concatenable words in the set,

{a, x+
a , x−

a | a ∈ Q1} ∪ {rB, r ′

B},
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such that the following subwords do not occur:

x+
a x−

a , x−
a x+

a , aa∗, ax±

a∗ for a ∈ Q1, x±
a , x−

a∗, x+

a∗a∗, x+

a∗
2 for a ∈ F1, rBr ′

B, r ′

BrB.

A basis for 3q
Q as a free k Q0-module is given by those words above not containing rB, r ′

B.

Remark 7.9. Note that, for the following subsection, we only require the substitutions xa in the case
where the arrow a begins at a white vertex (which in particular implies that a /∈ F1, although it could be
that a∗

∈ F1). If we only make these substitutions, it is similarly easy to write the above reductions in the
case where for certain arrows x±

a appears and for others x±1
a appears; we leave this to the reader.

The only thing that we require from the above in the next subsection is the following observation:

Reductions on 1W L Q1W preserve the augmentation ideal, ker(3q(Q,W)→ kW). (7-11)

In other words, any monomial of positive length beginning and ending at white vertices reduces to a
linear combination of other such monomials. This was not true with the original generators (e.g., looking
at the inverse reductions).

7D. Quivers containing cycles. In this section, we prove the strong free product property for a connected
quiver containing a cycle, along with providing a natural decomposition and basis for its multiplicative
preprojective algebra. In more detail, the multiplicative preprojective algebra decomposes (as a vector
space) into a free product of the multiplicative preprojective algebra for the cycle and a partial multiplica-
tive preprojective algebra for the complement of the cycle. This technique should extend to the case of
general extended Dynkin quivers, hence reducing Conjecture 1.1 to the extended Dynkin case.

Let Q be a connected quiver containing a cycle QE , with complement Q′
:= Q\QE . Let W := (QE)0,

so the vertices of the cycle are white. Fix q ∈ (k∗)Q0 and a decomposition q = (qE , q ′). There is a linear
isomorphism

9 :3qE (QE) ∗k Q0 3
q ′

(Q′,W)→3q(Q). (7-12)

We prove this by producing a basis of 3q(Q) of alternating words in 3qE (QE) and 3q ′

(Q′,W).

Remark 7.10. For the (deformed) additive preprojective algebra, the analogous map,

9add :5λE (QE) ∗k Q0 5
λ′

(Q′,W)→5λ(Q),

is an isomorphism for all connected quivers Q containing an extended Dynkin quiver QE . This follows
from the proof of [31, Theorem 3.4.2]; see also [54, Section 5], particularly Corollary 5.2.9(ii).

As before, let B := k Q0[t, (q + t)−1
] and B = t B, which is spanned by elements {tm, (t ′)m | m ≥ 1}

where t ′
:= (q + t)−1

− q−1.

Proposition 7.11. Let Q be a connected quiver containing a cycle QE ⊆ Q (QE ∼= Ãn−1). Then there
exists a section σ :3q(Q)→ L such that (L , r, σ, B) satisfies the strong free product property.
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In more detail, L Q is a free left k Q0-module with basis given by concatenable alternating products
in the bases of 3qE (QE) given by Proposition 7.1 or 7.7, of 3q ′

(Q′,W) given by Proposition 7.8, and
rm, (r ′)m (m ≥ 1).

Corollary 7.12. Let Q be as in Proposition 7.11. A basis for 3q(Q) is given by concatenable alternating
words in the mentioned bases of 3qE (QE) and 3q ′

(Q′,W). In particular, the family 3q(Q) defines a
free k[qi , q−1

i ]i∈Q0-module, and hence is flat over (k×)Q0 .

Remark 7.13. Note in Proposition 7.11 that we only need to replace x±1
a for x±

a if a ∈ Q′1 begins at a
vertex of QE . Moreover, making this change to the statement does not affect the proof. On the other
hand, we could freely replace x±1

a by x±
a for all arrow in Q1, again without changing the proof.

Proof of Proposition 7.11. First we will establish that our proposed basis for L implies the strong free
product property. To see this, observe that the set of subwords not containing ri , r ′

i for i ∈ Q0 form
a basis for 3q(Q). The inclusion of basis elements 3q(Q)→ L defines a section σ . Using σ define
σ ′

:3q(Q)∗k Q0 k Q0[t, (q + t)−1
] → L to be the extension of the map taking t 7→ r , (q + t)−1

7→ r ′
+q ,

and p 7→ σ(p) for p ∈ 3q(Q). Then σ ′ is clearly a k Q0-linear isomorphism, and hence (L , r, σ, B)
satisfies the strong free product property.

Next we will show that the proposed basis for L implies that there exists a k Q0-linear isomorphism:
9 :3qE (QE) ∗k Q0 3

q(Q′,W)→3q(Q). For this, identify:

• 3q(Q) as the span of words in L without the subwords ri , r ′

i .

• 3qE (QE) as the span of words in 3q(Q) without the subwords a, x±
a for a ∈ Q′1.

• 3q(Q′,W) as the span of words in 3q(Q) without the subwords bi , x±1
bi

for bi ∈ QE 1.

Hence there exists k Q0-linear maps ι1, ι2 :3qE (QE),3
q(Q′,W)→3q(Q) defined by the inclusion of

basis elements. These maps determine a unique injective k Q0-linear map 9 := ι1 ∗k Q0 ι2 :3qE (QE)∗k Q0

3q(Q′,W)→3q(Q), which is clearly surjective, hence an isomorphism.
It remains to establish that the given set is indeed a basis for L . By Proposition 7.1 we have a basis

BQE for L QE and by Proposition 7.8 we have bases BQ′ for L Q′ . Therefore we have a basis of alternating
words in BQE and BQ′ for L = L QE ∗k Q0 L Q′ .

However this basis gives rise to a basis for the quotient L/(ρQE +ρQ′1B −q). So we need to show that
L/(ρQE + ρQ′1B − q) is isomorphic to L/(ρQEρQ′ − q)=:3q(Q) as k Q0-modules. Hence we consider
the system of reductions combining the systems of reductions from Propositions 7.1 and 7.8. Crucially,
we perturb the system of reductions by perturbing the relation rpre

:= ρQE +ρQ′1B −q to r = ρQEρQ′ −q .
First observe that this change does nothing to the reductions for L Q′ , since the transformation is the

identity on black vertices. That is, rpre1B = ρQ′1B − q1B = r1B.
For L QE , notice rpre1W = ρQE − qE while r1W = ρQEρQ′ − qE . So we alter each reduction involving

ρ±

QE
by the transformation

ρQE 7→ ρQEρQ′ = ρQE (ρQ′ − 1)+ ρQE , ρ−1
QE

7→ ρ−1
Q′ ρ

−1
QE

= (ρ−1
Q′ − 1)ρ−1

QE
+ ρ−1

QE
.
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Note that we choose this form for the transformation to emphasize that the new relation splits as a sum
of (I) the old relation and (II) a piece in the ideal generated by x±

a for a ∈ Q′1. This transformation
only effects the substitution reductions in the original reduction system for the cycle; see the proof of
Proposition 7.1. The substitution reductions become (after applying a reordering reduction) the following:

y−1
7→ x−1(ρQ′ − 1)(r + q)+ x−1(r + q), (if not preceded by a),

y 7→ (r ′
+ q−1)(ρ−1

Q′ − 1)x + (r ′
+ q−1)x (if not preceded by a),

ax 7→ a(ρQ′ − 1)(r + q)y + ary + qya,

ax−1
7→ ay−1(r ′

+ q−1)(ρ−1
Q′ − 1)+ ay−1r ′

+ q−1 y−1a.

Order monomials in L lexicographically in the orderings N and N ′ of Propositions 7.1 and 7.6. Then
the above reductions strictly decrease the ordering. Here we are using (7-11) from the previous subsection
to deduce that the ideal of positive-length monomials beginning and ending at vertices of QE is preserved
under reductions.

All ambiguities lie either entirely in L QE or entirely in L Q′ . Hence the ambiguities in L Q′ resolve as
before. The ambiguities in L QE still resolve using the same reductions as before perturbing. To see this,
note that we have replaced the formal variables ρ±1

QE
(which do not interact with a, a∗, x±1, y±1) with the

new formal variables (ρQEρQ′)±1.
Since the perturbed system of reductions has all the same leading coefficients as the original, we

conclude that L has the desired basis. □

8. The center and primality of multiplicative preprojective algebras

Let Q be a connected quiver strictly containing a cycle. The goal of this section is to complete the proof
of Theorem 1.2 by first establishing that 3q(Q) is prime and then that Z(3q(Q)) = k and hence the
Calabi–Yau structure is unique up to rescaling.

8A. Primality of multiplicative preprojective algebras. We will show 3q(Q) is prime by first showing
that left multiplication by certain elements is injective on the subspace of concatenable elements.

Lemma 8.1. Let a denote the sum of all the positively oriented arrows of the cycle in Q1. Then left
multiplication by a, La : 1W3

q(Q)→ 1W3
q(Q), is injective.

Proof. Decompose the vertices Q0 = B ⊔W where the white vertices are in the cycle. Decompose the
arrows in Q1 = QE 1 ⊔ Q′1. Define

A+ := ker(ϵA :3qE (QE)→ kW), B+ := ker(ϵB :3q(Q′,W)→ kW).

Then one can define a descending filtration by F0 =3q(Q) and Fm := Span(B+(A+B+)
≥m)) for m > 0.

Notice a ∈ Fm, b ∈ Fℓ implies ab ∈ Fm+ℓ, so this is an algebra filtration.
Consider the exact sequence B+

ι
↪−→3q(Q) π

−↠3qE (QE). The basis of Proposition 7.11 realizes an
inclusion i : 3qE (QE)→ 3q(Q), a k Q0-module splitting. So for α, β ∈ 3qE (QE), i(α) · i(β) ≡ α · β
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modulo the two-sided ideal generated by B+. Therefore, in the associated graded algebra grF (3q(Q)) :=⊕
m=0 Fm/Fm+1,

i(α) · i(β)= α ·β +α ·βb′′
+αb′β + bα ·β

for b, b′, b′′
∈ B+. Therefore, for b1 ∈ B+, there exists b2 ∈ B+ such that

i(α) · i(β)b1 = α ·β(1 + b2)b1.

Recall A+ has k Q0-module basis given by {x p
a , xm

a aℓ, xm
a (a

∗)ℓ | m, ℓ, p ∈ Z, p ̸= 0, ℓ > 0} by
Proposition 7.1. In the associated graded algebra grF (3q(Q)), La acts on A+B+ as follows, for b ∈ B+:

a(xm
a aℓ)b = qm xm

a aℓ+1b.

a(xm
a (a

∗)ℓ)b = qm xm
a (xa − 1)(a∗)ℓ−1b.

a(x p
a )b = q px p

a (xa − 1)(ρ−1
Q′ )b.

Since La is injective on A+, by Proposition 7.3, we conclude that La is injective on the right ideal
generated by A+.

Consider the basis of Proposition 7.11, and write b ∈ 1W B+ in this basis. Then ab is again a basis
element, and hence La takes basis elements injectively to basis elements. We conclude that La is injective
on the right ideal generated by 1W B+, and therefore on all of 1W3

q(Q). □

Lemma 8.2. Right multiplication by a, Ra :3q(Q)1W →3q(Q)1W is injective.

The proof is completely analogous, using the same filtration, together with the calculations:

b(xm
a aℓ)a = bxm

a aℓ+1.

b(xm
a (a

∗)ℓ)a = bq−ℓ+1xm+1
a (a∗)ℓ−1

− bxm
a (a

∗)ℓ−1.

b(x p
a )a = bx p

a a.

Lemma 8.3. Let v ∈ Q0. There is unique path γv,w in the spanning forest from v to a white vertex w ∈ W .
Right multiplication by γv,w, Rγv,w :3q(Q)ev →3q(Q)ew, is injective.

Proof. We need to show αγh(α),w ̸= 0 for α ̸= 0. Consider the basis in Proposition 7.8, consisting of words
in a, x±

a for a an arrow, without certain disallowed subwords, e.g., aa∗ for a ∈ Q1. Note that γh(α),w is a
basis element as aa∗ cannot appear in a shortest path. Write α as a linear combination of basis elements.
Notice αγh(α),w is a linear combination of basis elements unless the disallowed subword a∗a is created
for some arrow a ∈ F1. This disallowed subword reduces to x+

a∗ (which is not itself disallowed since
a∗

̸∈ F1, as a ∈ F1.) Furthermore, the appearance of x+

a∗ for a ∈ F1 cannot create the disallowed subwords

(I) x+

a∗ x−

a∗, (II) x−

a∗ x+

a∗, (III) ax±

a∗, (IV) x+

a∗
2, (V) x+

a∗a∗,

for a ∈ F1, as in each case α or γh(α),w would itself contain a disallowed subword

(I) x−

a∗, (II) x−

a∗, (III) aa∗, (IV) ax+

a∗ or x+

a∗a∗, (V) aa∗,
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each a contradiction. We conclude that right multiplication by γh(α),w takes basis elements injectively to
basis elements and hence is injective. □

Lemma 8.4. Let v ∈ Q0. There is unique path γw,v in the opposite of the spanning forest, Fop
1 , from

w ∈ W to v. Left multiplication by γw,v, Lγw,v : ev3q(Q)→ ew3q(Q), is injective.

The proof is identical, and follows from the isomorphism 3q(Q)∼=3q(Q)op.

Proposition 8.5. 3q(Q) is prime, for Q connected and containing a cycle.

Proof. Let α, β ∈ 3q(Q) be nonzero. We will show α3q(Q)β ̸= 0 by building an explicit element
γ = γ1γ2 so that αγβ ̸= 0. That is, define

γ1 := γh(α),wx M
a aN , γ2 := aN ′

x M ′

a γw,t (β)

where M,M ′, N , N ′
∈ N are sufficiently large (depending on α and β) and where γh(α),w and γw,t (β) are

as defined in Lemmas 8.3 and 8.4, respectively.
We will first show that right multiplication by γ1 is injective on concatenable paths to conclude αγ1 ̸= 0.

Then we will argue that left multiplication by γ2 is injective on concatenable paths to conclude γ2β ̸= 0.
Finally, we will show that αγ1γ2β ̸= 0.

To show Rγ1 :3q(Q)eh(α) →3q(Q)eh(γ1) is injective, it suffices to show that right multiplication by
each piece, γh(α),w, x M

a , and aN , is injective. Rγh(α),w is injective by Lemma 8.3, Rx M
a

is injective since xa

is invertible, and RaN is injective by Lemma 8.2.
Similarly, Lγ2 : et (β)3

q(Q) → et (γ2)3
q(Q) is injective since La , L xa , and Lγw,t (β) are injective by

Lemma 8.1, invertibility of xa , and Lemma 8.4, respectively.
Finally notice that αγ1 ̸= 0 and γ2β ̸= 0 implies αγ1γ2β ̸= 0. To see this, consider the filtration F

defined in the proof of Lemma 8.1. It suffices to show αγ1γ2β ̸= 0 in grF (3
q(Q)). Write αγ1 and γ2β in

the basis of Proposition 7.11 (see the basis in Proposition 7.1). By design αγ1 ends with a basis element of
the form xm

a an for m, n > 0 and γ2β begins with a basis element of the form an′

xm′

a for m′, n′ > 0. Their
product in grF (3

q(Q)) is the scaled basis element qnm′

xm+m′

a an+n′

. So αγ1γ2β ̸= 0 in grF (3
q(Q)) and

hence in 3q(Q), completing the proof. □

8B. The center of multiplicative preprojective algebras. The center of 31(Q) depends dramatically on
the taxonomy of quiver Q into Dynkin, extended Dynkin, and others:

• For Q Dynkin and k characteristic not 2, 3, or 5, one can compute the center using the isomorphism
31(Q)∼=5(Q); see Example 2.3.

• For Q extended Dynkin, Conjecture 1.4 predicts Z(31(Q)) ∼= ev31(Q)ev, which is proven in
Section 6B in the case Q = Ãn .

• In the remaining cases, Conjecture 1.1 predicts Z(3q(Q))= k, for any q ∈ (k∗)Q0 .

The goal of this section is to establish the conjecture in the case Q contains a cycle.
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Proposition 8.6. Let Q be a connected quiver strictly containing a cycle and fix q ∈ (k×)Q0 . Then
Z(3q(Q))= k.

Proof. Let z ∈ Z(3q(Q)). Decompose z = z0 + z+ into a sum of length zero and positive length paths.
First suppose that z+ = 0. Then z =

∑
i∈Q0

ci ei . Note that every individual arrow forms a basis element
of Proposition 7.11. Then za = az for every arrow implies that all ci are equal, as Q is connected.

Now assume z+ ̸= 0. Expanding z+ in the basis of Proposition 7.11, we write z+ =
∑

i ci zi , where
each zi is a positive-length alternating word in the cycle and the complement. We claim that each zi has
an arrow not in the cycle. Suppose, by contradiction, there exists j such that z j consists of only arrows in
the cycle. Since Q strictly contains the cycle, there exists an arrow b ∈ Q1 not in the cycle. And as z+

commutes with each arrow ai in the cycle, there exists l such that zl consists of only arrows in the cycle
that ends at t (b). Then z+b = bz+. But z+b contains a term beginning with xm

a a j for some m, j with
(m, j) ̸= (0, 0). However, bz+ has no term beginning xm

a a j unless (m, j)= (0, 0). This contradicts the
existence of z j consisting of only arrows in the cycle.

Since z+ ̸= 0, thanks to Lemma 8.3, there exists a vertex i and a path b = γh(z+),i such that z+bei ̸= 0.
Therefore also bz+ei ̸= 0, so z+ei ̸= 0. By Lemma 8.2, we then have z+an

̸= 0 for all n. Hence also
anz+ ̸= 0. Now, for sufficiently large N ≫ 0, aN z+ contains basis elements beginning with an arbitrarily
high power of the cycle. However, terms of z+aN begin only with powers of the cycle appearing in z+,
since every z j has a term not in the cycle. These powers are bounded, so this contradicts the assumption
that z+ ̸= 0. We conclude that z is a scalar multiple of the identity. □

Corollary 8.7. If Q is connected and properly contains a nonoriented cycle, then 3q(Q) has a unique,
up to scaling, Calabi–Yau structure.

Proof. Write3:=3q(Q). Any two Calabi–Yau structures differ by an invertible map in Hom3−bimod(3,3),
which is determined by the image of the unit, a central invertible element. So the set of Calabi–Yau
structures on 3, when nonempty, is a Z(3)×-torsor. By Proposition 8.6, Z(3)× = k×, so any two
Calabi–Yau structures differ by an invertible scalar. □

This completes the proof of Theorem 1.2.
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Tautological cycles on tropical Jacobians
Andreas Gross and Farbod Shokrieh

The classical Poincaré formula relates the rational homology classes of tautological cycles on a Jacobian
to powers of the class of Riemann theta divisor. We prove a tropical analogue of this formula. Along the
way, we prove several foundational results about real tori with integral structures (and, therefore, tropical
abelian varieties). For example, we prove a tropical version of the Appell–Humbert theorem. We also
study various notions of equivalences between tropical cycles and their relation to one another.
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1. Introduction

1A. Background. Let C be a compact Riemann surface of genus g. Its Jacobian variety J has a number
of natural subvarieties W̃d for d ≥ 0, defined up to translation. The origin is denoted by W̃0, the image of
the Abel–Jacobi map is denoted by W̃1, and W̃d = W̃d−1+ W̃1 is the image of higher symmetric powers
of C . One can intersect these subvarieties, add again, pull back or push down under multiplication by
integers, and so on. This provides a large supply of algebraic tautological cycles, which live naturally
in J .

By the Riemann–Roch or Jacobi inversion theorem, one has W̃g = J . Riemann’s theorem states that
W̃g−1 is a shift of the Riemann theta divisor 2; see, e.g., [Griffiths and Harris 1978, page 338], [Arbarello
et al. 1985, Chapter 1, Section 5], or [Birkenhake and Lange 2004, Theorem 11.2.4]. The classical
Poincaré formula gives a refinement of Riemann’s theorem; see, e.g., [Griffiths and Harris 1978, page 350],
[Arbarello et al. 1985, Chapter 1, Section 5], or [Birkenhake and Lange 2004, Section 11.2]. It states that,
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for 0≤ d ≤ g, the classes of W̃d and 2g−d coincide in rational homology (up to the multiplicative constant
1/(g−d)!). In other words, the subalgebra of tautological cycles in H∗(J ;Q) is generated by the class of
Riemann theta divisor. There are also versions of the Poincaré formula over a general field. For example,
Lieberman proves a “Weil cohomological equivalence” statement (see [Kleiman 1968, Remark 2A13]),
and Mattuck, built on the work of Matsusaka, proves a “numerical equivalence” statement; see [Mattuck
1962, Section 2; Matsusaka 1959].

1B. Our contribution. Our main goal in this paper is to prove a tropical analogue of the Poincaré formula.
Let 0 be a compact connected metric graph of genus g. Following [Kotani and Sunada 2000; Mikhalkin
and Zharkov 2008], one associates to 0 a g-dimensional polarized real torus Jac(0), called its tropical
Jacobian. There is also a well-behaved theory of divisors, ranks, Abel–Jacobi maps, and Picard groups for
metric graphs [Mikhalkin and Zharkov 2008; Gathmann and Kerber 2008; Baker and Norine 2007]. We
denote the tropical Abel–Jacobi morphism by 8 : 0d → Jac(0), which is well-defined up to a translation.
Here 0d denotes the set of all unordered d-tuples of points of 0. The image W̃d =8(0d) is a polyhedral
subset of Jac(0) of pure dimension d. Exactly as in the classical situation W̃d may be identified with
the effective locus Wd ⊆ Picd(0) via the Abel–Jacobi map. In [Mikhalkin and Zharkov 2008] one also
finds the notion of Riemann theta divisor 2 on Jac(0), which is closely related to the theory of Voronoi
polytopes of lattices. The polyhedral subsets W̃d and 2 of Jac(0) support tropical fundamental cycles
[W̃d ] and [2]; see Section 8. Recently, the notions of tropical homology, cohomology, and the cycle class
map have been developed in [Itenberg et al. 2019] and further studied in [Gross and Shokrieh 2019].

Theorem A (Theorem 9.8 and Corollary 9.10). For every 0≤ d ≤ g, we have the equality

[W̃d ] =
[2]g−d

(g− d)!

on Jac(0) modulo tropical homological equivalence. Moreover, the equality also holds modulo numerical
equivalence.

Our proof further provides explicit descriptions of the classes of W̃d and 2g−d in tropical homology in
terms of the combinatorics of the metric graph 0; see Section 9B and Section 9C.

The Poincaré formula has several interesting, but immediate, consequences.

Corollary B (Corollaries 9.12, 9.13, and 9.15). (a) There exists a unique µ ∈ Picg−1(0) such that
[Wg−1] = [2] +µ.

(b) The effective tropical 0-cycle obtained from the stable intersection of [W̃d ] and [W̃g−d ] has degree
(g

d

)
.

(c) The tropical 0-cycle [2]g has degree g!.

We note that part (a) is a tropical version of Riemann’s theorem and has already been proven by
Mikhalkin and Zharkov [2008] using other combinatorial techniques. The special case d = 1 of part (b)
can also be found in [loc. cit.] in the context of the Jacobi inversion theorem, where again the proof is
direct and combinatorial. This was essential in the development of break divisors in their paper. Part (c)
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classically follows from the geometric Riemann–Roch theorem for abelian varieties; see, e.g., [Birkenhake
and Lange 2004, Theorem 3.6.3]. In the case where 0 is a chain of loops, (c) has previously been observed
in [Cartwright et al. 2015].

Building up to the proof of the Poincaré formula we also prove several foundational results about real
tori with integral structures (and, therefore, about tropical abelian varieties) some of which had been used
implicitly in previous work on the subject. Most notably, we prove the following tropical version of the
Appell–Humbert Theorem:

Theorem C (Theorem 7.2). Every tropical line bundle on a real torus NR/3 corresponds to a pair (E, l)
of a symmetric form E on NR with E(N , 3)⊆ Z and a morphism l ∈Hom(NR, R). Two such pairs (E, l)
and (E ′, l ′) define the same line bundle if and only if E = E ′ and (l − l ′)(N )⊆ Z.

We also study the relationship between various notions of equivalence of tropical cycles. For example,
we prove the following statement.

Theorem D (Propositions 5.8 and 5.11). Algebraic equivalence implies homological equivalence, and
homological equivalence implies numerical equivalence on real tori admitting a “spanning curve”.

1C. Further directions. We believe our Poincaré formula is a first step in proving the following ambitious
conjecture in tropical Brill–Noether theory. Let W r

d ⊆ Picd(0) denote the locus of divisor classes of
degree d and rank at least r ; see, e.g., [Cools et al. 2012; Lim et al. 2012].

Conjecture. Assume ρ = g− (r + 1)(g− d + r)≥ 0. Then there exists a canonical tropical subvariety
Z r

d ⊆W r
d of pure dimension ρ such that

[Z r
d ] =

( r∏
i=0

i !
(g− d + r + i)!

)
[2]g−ρ .

modulo tropical homological equivalence.

Note that our Theorem A precisely establishes this conjecture in the case r = 0, in which case W 0
d =Wd

is pure-dimensional by [Gross et al. 2022, Theorem 8.3] (see also Theorem 8.2) and Z0
d =Wd . Numerical

evidence for the conjecture in the case where 0 is a generic chain of loops is given in [Cartwright et al.
2015, Proposition 2.8]. We also remark that a less precise version of this conjecture is posed as a question
in [Pflueger 2017, Question 6.2].

As stated above, it follows from the Poincaré formula that the subring of tautological cycles in rational
homology is too simple to provide interesting invariants. A celebrated result of Ceresa [1983] implies that
for a generic curve C , the class of Wd is not proportional to the class of 2 modulo algebraic equivalence.
Beauville [2004] (see also [Polishchuk 2005; Marini 2008; Moonen 2009]) has studied results about
algebraic equivalence. We believe that the tautological subring of the ring of tropical cycles modulo
algebraic equivalence is an interesting object to study. For example, one might hope that this ring is
generated by the classes of the Wd for 1≤ d ≤ g−1. We remark that a tropical version of Ceresa’s result
has already been established by Zharkov [2015].
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As stated in Theorem D, homological equivalence implies numerical equivalence on tropical abelian
varieties. We expect this to be true in general on any tropical manifold.

In analogy with Grothendieck’s “standard conjecture D” one might also hope that homological equiva-
lence coincides with numerical equivalence, at least in the case of tropical abelian varieties. The analogous
classical result has been established by Lieberman [1968]. For rationally triangulable smooth projective
tropical varieties, this was recently shown by Amini and Piquerez [2020, Theorem 1.3].

1D. The structure of this paper. In Sections 2–4 we review the main objects and tools needed to proof
the Poincaré formula, including rational polyhedral spaces, tropical cycles, tropical homology, and tropical
Jacobians.

In Sections 5–7 we study tropical cycles, tropical homology, and line bundles on real tori. Our results
here are of a more foundational nature, and include the Appell–Humbert Theorem. We also study various
notions of equivalences of tropical cycles and prove Theorem D.

Finally, in Sections 8–9 we prove the Poincaré formula. In Section 8 we show that the set W̃i has a
fundamental cycle. In Section 9 we give explicit expression for both the cycle classes of the [W̃i ] and of
powers of the theta divisor. Comparing these expressions will finish the proof of Theorem A. The results
summarized in Corollary B will be direct consequences of the Poincaré formula.

Notation. We will denote by N the natural numbers including 0. For an Abelian group A and a topological
space X , we will denote by AX the constant sheaf on X associated to A.

2. Rational polyhedral spaces

The tropical spaces studied in this paper are real tori with integral structures, compact tropical curves,
and their Jacobians. They all live inside the category of boundaryless rational polyhedral spaces. We
quickly review their definition and refer to [Mikhalkin and Zharkov 2014; Jell et al. 2018; Gross and
Shokrieh 2019] for more details.

2A. Boundaryless rational polyhedral spaces. A rational polyhedral set in Rn is a finite union of finite
intersections of sets of the form

{x ∈ Rn
| ⟨m, x⟩ ≤ a},

where m ∈ (Zn)∗, a ∈ R, and ⟨ · , · ⟩ denotes the evaluation pairing. Any such set P comes with a sheaf
AffP of integral affine functions, which are precisely the continuous real-valued functions that are locally
(on P) of the form x 7→ ⟨m, x⟩+ a for some m ∈ (Zn)∗ and a ∈ R.

Definition 2.1. A boundaryless rational polyhedral space is a pair (X, AffX ) consisting of a topological
space X and a sheaf of continuous real-valued functions AffX such that every point x ∈ X has an open
neighborhood U such that there exists a rational polyhedral set P in some Rn , an open subset V ⊆ P , and
a homeomorphism f : U → V that induces an isomorphism f −1(AffP |V ) ∼= AffX |U via pulling back
functions. Such an isomorphism f is called a chart for X . A boundaryless rational polyhedral space that
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is compact is called a closed rational polyhedral space. The sections of AffX are called integral affine
functions.

Remark 2.2. In the literature (for example in [Jell et al. 2018; Gross and Shokrieh 2019]), the notion
of rational polyhedral spaces is used for spaces that are locally isomorphic to open subsets of rational
polyhedral sets in R

n
, where R= R∪ {∞}. This introduces a notion of boundary, which is essential for

many applications. For our purposes it is sufficient to consider spaces without boundary. A boundaryless
rational polyhedral space is precisely a rational polyhedral space without boundary.

Definition 2.3. (i) A morphism of boundaryless rational polyhedral spaces is a continuous map
f : X→ Y such that pullbacks of functions in AffY are in AffX .

(ii) A morphism f : X→ Y is called proper if it is a proper map of topological spaces, that is preimages
of compact sets are compact.

2B. Real tori with integral structures. Let N be a lattice, and let 3⊆ NR = N ⊗Z R be a second lattice
of full rank, that is such that the induced morphism 3R→ NR is an isomorphism. Clearly, NR gets a
well-defined rational polyhedral structure from any isomorphism N ∼= Zn . The real torus (with integral
structure) associated to N and 3 is the quotient X = NR/3, with the sheaf of affine functions being the
one induced by NR. More precisely, if π : NR→ X denotes the quotient map, and U ⊆ X is open, then
φ : U → R is in AffX (U ) if and only if φ ◦π ∈ AffNR

(π−1U ). Note that the integral affine structure on
X is induced by N and not by 3.

The group law on a real torus X makes it a group object in the category of boundaryless rational
polyhedral spaces. In particular, every x ∈ X defines an automorphism via translation.

Definition 2.4. Let X be a real torus and let x ∈ X . Then the translation by x is the morphism

tx : X→ X, y 7→ x + y.

2C. Tropical curves. A tropical curve is a purely 1-dimensional boundaryless rational polyhedral space.
With this definition, the underlying space of a tropical curve 0 is a topological graph. In particular, it
has a set of vertices (branch points) V (0) where 0 does not locally look like an open interval in R,
and a set of open edges E(0), which are the connected components of 0 \ V (0). The closed edges of
0 are the closures of its open edges and an open edge segment is a connected open subset of an open
edge. A tropical curve is smooth (see Figure 1) if every point has a neighborhood that is isomorphic to a
neighborhood of the origin in a star-shaped set, that is a set of the form⋃

0≤i≤n

R≥0ei ⊆ Rn+1/R1.

Here n > 0 will denote the valency of the point, we denote by 1 the vector whose coordinates are all 1,
and ei denotes the i-th standard basis vector.

Using the integral structure on a compact tropical curve, one can assign lengths to its edges, thus
defining a metric graph. Conversely, given a metric graph (a topological graph 0 equipped with an inner
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Figure 1. Two tropical curves embedded in R2. The one to the left is smooth, the one to
the right is not.

metric), one can define Aff0 as the sheaf of harmonic functions on 0, that is the sheaf of functions whose
sum of incoming slopes is 0 at every point. In this way, one obtains a smooth tropical curve (0, Aff0);
see [Mikhalkin and Zharkov 2008, Proposition 3.6].

The genus g of a tropical curve 0 is defined as its first Betti number, that is g = dimR H1(0;R).

Remark 2.5. With our notion of tropical curves, the underlying topological graph is not allowed to
have 1-valent vertices. This can be resolved by working in the larger category of polyhedral spaces with
boundary mentioned in Remark 2.2 and allowing neighborhoods of∞ in R as local models for the curves.
In this way, tropical curves could have edges of infinite length that end in a 1-valent vertex. But as we will
note in Remark 9.11, the results of this paper are easily generalized to apply to compact and connected
smooth tropical curves with boundary as well.

Example 2.6. For any positive real number j ∈R>0 the sublattice Z j of R= ZR has full rank. Therefore,
the quotient 0 = R/Z j , endowed with the integral affine structure induced by Z, is a 1-dimensional real
torus. It is also a smooth tropical curve of genus 1. Its unique edge is both open and closed and it is
homeomorphic to the 1-sphere. The length of this edge is given by j , which can be considered as the
j-invariant of 0 [Katz et al. 2008].

Example 2.7. Consider the topological space 0 obtained by gluing three intervals [0, a], [0, b], and [0, c]
along their lower and upper bounds, respectively. Clearly, 0 is a topological graph with three edges and
two vertices. We can view the three intervals as rational polyhedral spaces, so on the interior of the edges
of 0 we have a notion of linearity. We can now define Aff0 as the sheaf of all continuous functions whose
restrictions to the interiors of the intervals are linear, and such that the sum of the outgoing slopes is 0 at
the two vertices. With these choices, 0 is the smooth tropical curve associated to the metric graph with
three parallel edges of lengths a, b and c. It is depicted in Figure 2.

2D. Tropical manifolds. We recall that every loop-free matroid M on a ground set E(M) has an associated
tropical linear space L M , which is a rational polyhedral set in RE(M)/R1. We will only consider very
special linear spaces and therefore refrain from recalling their precise definition. For our purposes, it
suffices to say that Rn is a tropical linear space for any n, and the 1-dimensional tropical linear spaces are
precisely the star-shaped sets appearing in the definition of smooth tropical curves in Section 2C.
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b

c

a

Figure 2. A tropical curve of genus 2 with its local charts and edge lengths.

Definition 2.8. A boundaryless rational polyhedral space X is called a boundaryless tropical manifold if
it can be covered by charts

X ⊇U ∼=−→ V ⊆ L ,

where U is an open subset of X and V is an open subset of a tropical linear space L .

Since both Rn and star-shaped sets are tropical linear spaces, it follows that real tori and smooth tropical
curves are boundaryless tropical manifolds.

2E. The cotangent sheaf.

Definition 2.9. Let X be a boundaryless rational polyhedral space:

(i) The quotient AffX /RX is called the cotangent sheaf and is denoted by �1
X .

(ii) The integral tangent space at a point x ∈ X is defined as T Z
x X = Hom(�X,x , Z).

(iii) The tangent space at a point x ∈ X is defined as Tx X = (T Z
x X)R

∼= Hom(�X,x , R).

Example 2.10. Let X = NR/3 be a real torus. Then AffX has no nonconstant global sections because
there is no globally defined nonconstant integral affine function on NR that is 3-periodic. On the other
hand, the quotient AffX /RX =�1

X is isomorphic to the constant sheaf NX .

By definition, a morphism of boundaryless rational polyhedral spaces f : X→ Y induces a morphism
f −1�1

Y →�1
X . Taking stalks and dualizing induces morphisms on tangent spaces dx f : Tx X→ T f (x)Y

for all x ∈ X that map the integral tangent spaces on X to the integral tangent spaces on Y .

3. Tropical cycles and their tropical cycle classes

We briefly recall the definitions of tropical cycles, tropical (co)homology, and the tropical cycle class
map connecting the two. We closely follow [Allermann and Rau 2010; François and Rau 2013; Shaw
2013] regarding tropical cycles and [Itenberg et al. 2019; Mikhalkin and Zharkov 2014; Jell et al. 2018;
Gross and Shokrieh 2019] regarding tropical (co)homology and the tropical cycle class map.
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3A. Tropical cycles. For a boundaryless rational polyhedral space X , let us denote by X reg its open
subset of points x ∈ X that have a neighborhood isomorphic (as boundaryless rational polyhedral spaces)
to an open subset of Rn for some n ∈ N. A tropical k-cycle is a function A : X→ Z such that its support
|A| = {x ∈ X | A(x) ̸= 0} is either empty or a purely k-dimensional polyhedral subset of X , A is nonzero
precisely on the set |A|reg, on which it is locally constant, and it satisfies the so-called balancing condition.
The latter is a local condition that is well-known for X = Rn , to which the general case can be reduced.
As we will only need it implicitly, we refer to [Allermann and Rau 2010] for details. The sum of two
tropical k-cycles on X , considered as a sum of Z-valued functions, is not a tropical k-cycle again in
general. However, there exists a unique tropical k-cycle on X that agrees with the sum on the complement
of an at most (k−1)-dimensional polyhedral subset of X . This makes the set Zk(X) into an Abelian
group. A tropical cycle A is said to be effective if it is everywhere nonnegative.

If f : X → Y is a proper morphism of boundaryless rational polyhedral spaces, it induces a push-
forward f∗ : Zk(X)→ Zk(Y ) of tropical cycles. If A ∈ Zk(X) is a tropical cycle, then f∗A will be zero
outside of the subset ( f |A|)k ⊆ f |A| where the local dimension of f |A| is k. There exists a dense open
subset U ⊆ ( f |A|)k such that for each y ∈U the fiber f −1

{y} is finite and contained in |A|reg, and for
each such y ∈U we have

f∗A(y)=
∑

x∈ f −1{y}

|coker dx f |A(x).

Note that the finiteness of coker dx f follows from the finiteness of the fiber over y. If X is compact then
one can take Y to be a point. Identifying the tropical 0-cycles on a point with Z, the push-forward then
defines a morphism Z0(X)→ Z. The image of a tropical 0-cycle A under this morphism is called the
degree of A, and it is denoted by

∫
X A.

If X and Y are boundaryless rational polyhedral spaces, and A ∈ Zk(X) and B ∈ Zl(X), then the cross
product

A× B : X × Y → Z, (x, y) 7→ A(x) · B(x)

of A and B is a tropical cycle again.
A rational function on a boundaryless rational polyhedral space X is a continuous function φ : X→ R

such that φ is piecewise affine with integral slopes in every chart. As this is a local condition, rational
functions define a sheaf MX of Abelian groups. The group of tropical Cartier divisors on X is given
by CDiv(X)= 0(X, MX/ AffX ). For every φ ∈ 0(X, MX ) we denote its image in CDiv(X) by div(φ),
and refer to it as the associated principal divisor. There exists natural bilinear map CDiv(X)× Zk(X)→

Zk−1(X), the intersection pairing of divisors and tropical cycles.
Note that a boundaryless rational polyhedral space X does not automatically have a natural fundamental

cycle, that is there is no canonical element in Z∗(X) in general.

Definition 3.1. We will say that a boundaryless rational polyhedral space X has a fundamental cycle
if X is pure-dimensional and the extension by 0 of the constant function with value 1 on X reg defines a
tropical cycle. In that case we will denote this tropical cycle by [X ], and refer to it as the fundamental
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cycle of X . We will say that a Cartier divisor D ∈ CDiv(X) on a tropical space X with fundamental cycle
is effective, if its associated Weil divisor [D] := D · [X ] is effective.

If X is a tropical manifold then it has a fundamental cycle [X ], which is the unity of the tropical
intersection product on Z∗(X). The tropical intersection product is compatible with intersections with
Cartier divisors in the sense that

D · A = [D] · A

for every Cartier divisor D ∈ CDiv(X) and tropical cycle A ∈ Z∗(X). Furthermore, the morphism

CDiv(X) 7→ Zdim(X)−1(X), D 7→ [D]

is an isomorphism; see [Francois 2013, Corollary 4.9]. If X is locally isomorphic to open subsets of Rn ,
then a Cartier divisor D ∈ CDiv(X) is effective if and only if it is locally given by concave rational
functions. This follows from the fact that every tropical hypersurface of Rn is realizable. Here, a rational
function is concave if it is the restriction of a concave rational function on Rn in sufficiently small local
charts. Also note that concave functions appear rather than convex ones, because we are using the
“min”-convention; see Remark 3.4.

3B. Line bundles. A tropical line bundle on a boundaryless rational polyhedral space X is an AffX -torsor.
More geometrically, it is a morphism Y → X of boundaryless rational polyhedral spaces such that locally
on X there are trivializations Y ∼= X ×R, where two such trivializations are related via the translation
by an integral affine function. More precisely, if two trivializations are defined over U ⊆ X , then the
transition between them is of the form

U ×R→U ×R, (u, x) 7→ (u, x +φ(u))

for some φ ∈ 0(U, AffX ). The standard argument using Čech cohomology shows that the set of iso-
morphism classes of tropical line bundles on X is in natural bijection to H 1(X, AffX ). In particular,
isomorphism classes of tropical line bundles form a group. A rational section of a tropical line bundle
Y → X is a continuous section that is given by a rational function in all trivializations. Exactly as in
algebraic geometry, every tropical Cartier divisor D on X defines a line bundle L (D) on X that comes
with a canonical rational section. This defines a bijection between CDiv(X) and isomorphism classes of
pairs (L , s) of a tropical line bundle L on X and a rational section s of L .

3C. Homology and cohomology. Let X be a boundaryless rational polyhedral space. To define the
tropical homology and cohomology groups, we need sheaves �

p
X of tropical p-forms for p > 0. On the

open subset X reg it is clear that we would like �
p
X to be isomorphic to

∧p
�1

X . However, this is not a
suitable definition globally because in general

∧p
�1

X can be nonzero even for p > dim(X); see [Gross
and Shokrieh 2019, Example 2.9]. One thus defines �

p
X as the image of the natural map∧p

�1
X → ι∗

(∧p
�1

X |X reg

)
,

where ι : X reg
→ X is the inclusion.
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The singular tropical homology groups are defined similar to the integral singular homology groups, but
with different coefficients. More precisely, there is a coarsest stratification of X such that the restrictions
of the constructible sheaf �1

X is locally constant on all the strata, and only singular simplices are allowed
that respect this stratification in the sense that each of their open faces is mapped into a single stratum.
The (p, q)-th chain group is then defined as

C p,q(X)=
⊕

σ : 1q→X allowable

Hom(�
p
X , Zσ(1q )),

where 1q denotes the standard q-simplex, the sum runs over all q-simplices respecting the stratification,
and Zσ(1q ) denotes the constant sheaf associated to Z on σ(1q). With the usual boundary operators
this defines chain complexes C p,• and the tropical homology groups which are defined as Hp,q(X) =

Hq(C p,•(X)).
Dualizing (over Z) the chain complexes C p,•(X) yields cochain complexes C p,•(X) whose cohomology

are the tropical cohomology groups H p,q(X)= Hq(C p,•(X)). There is a natural isomorphism

H p,q(X)∼= Hq(X, �
p
X ).

3D. The first Chern class map. The quotient map d : AffX →�1
X of sheaves on a boundaryless rational

polyhedral space induces a morphism

c1 := H 1(d) : H 1(X, AffX )→ H 1(X, �1
X )∼= H 1,1(X)

called the first Chern class map from the group of all tropical line bundles on X to the (1, 1)-tropical
cohomology group of X . Using the first Chern class map, any divisor D ∈ CDiv(X) has an associated
(1, 1)-cohomology class c1(L (D)).

3E. The tropical cycle class map. Exactly as in algebraic geometry, there is a tropical cycle class map
that assigns a class in tropical homology to every tropical cycle. More precisely, on any closed rational
polyhedral space X , there exist morphisms

cyc : Zk(X)→ Hk,k(X)

for every k ∈N. We will only need an explicit description of the tropical cycle class map for 1-dimensional
tropical cycles, that is when k= 1. If A∈ Z1(X), then its support |A| is a compact (not necessarily smooth)
tropical curve. For each open edge e of |A| choose a generator ηe ∈ Tx |A| for some x ∈ e. By taking
parallel transports of ηe along e we actually obtain a generator for all Ty|A| with y ∈ e. Therefore, ηe

defines a morphism �1
|A|→ Ze (recall that Ze denotes the constant sheaf on e associated to Z), which can

be uniquely extended to a morphism �1
|A|→ Zē. Precomposing with the morphism �1

X →�1
|A| defined

by the inclusion |A|→ X , one obtains a morphism ηē ∈Hom(�1
X , Zē). To complete the construction, one

has to choose a homeomorphism γē : 1
1
→ ē that parametrizes ē in the direction specified by ηe. Let us
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denote the element in C1,1(X) defined by γē and ηē by γē⊗ ηē. Then cyc(A) is represented by the cycle∑
e

A(e) · γē⊗ ηē ∈ C1,1(X),

where the sum runs over all open edges of |A| and A(e) denotes the weight of the tropical 1-cycle A on e.

Example 3.2. Let 0 be the graph from Example 2.7, and denote its edges by e1, e2, and e3. Let v and w

be the vertices of 0 and orient all edges from v to w. Let ηi be the primitive tangent direction on ei in
the chosen direction. Then cyc[0] is represented by the (1, 1)-chain

γ1⊗ η1+ γ2⊗ η2+ γ3⊗ η3,

where γi is any path that parametrizes ei from v to w. This is indeed a cycle. Its boundary is given by

w⊗ (η1+ η2+ η3)− v⊗ (η1+ η2+ η3),

which vanishes: locally at v (respectively at w), the graph 0 looks like the star-shaped set depicted to
the right in Figure 1, and the vectors ηi are the (negatives of the) primitive generators of the rays of the
star-shaped set. Since these sum to 0, the boundary is 0.

3F. Identities in tropical homology. In [Gross and Shokrieh 2019] we studied various operations on
tropical homology and cohomology and showed how to carry over identities known for singular homology
to the tropical setting. For example, there are pull-backs of cohomology classes and push-forwards of
homology classes along morphisms of boundaryless rational polyhedral spaces, there is a cup product
“⌣” on tropical cohomology and a cap product “⌢” that makes the tropical homology groups a module
over the tropical cohomology ring. There also are cross products “×” of both homology and cohomology
classes. We will refer the reader to [loc. cit.] for the details regarding these operations. For the reader’s
convenience, we have summarized the most important identities for the tropical cycle class map in the
following theorem:

Theorem 3.3 [Gross and Shokrieh 2019]. Let X , Y , and Z be closed rational polyhedral spaces, let
f : X→ Z be a proper morphism, let A ∈ Z∗(X), B ∈ Z∗(Y ) and D ∈ CDiv(X). Then we have

cyc( f∗A)= f∗ cyc(A),

cyc(A× B)= cyc(A)× cyc(B), and

cyc(D · A)= c1(L (D)) ⌢ cyc(A).

If X is a closed rational polyhedral space, then the morphism from X to a point defines a morphism
H0,0(X)→Z by identifying the (0, 0)-tropical homology group of a point with Z. The image of a tropical
cycle α ∈ H0,0(X) is called the degree of α and denoted by

∫
X α. It is a direct consequence of the first

equation in Theorem 3.3 that ∫
X

A =
∫

X
cyc(A)

for every A ∈ Z0(X).
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If X is a closed tropical manifold, then homology and cohomology are dual to each other, in the sense
that the morphism

H∗,∗(X)→ H∗,∗(X), c 7→ c ⌢ cyc[X ]

is an isomorphism [Jell et al. 2018; Gross and Shokrieh 2019]. In this context one says that c is Poincaré
dual to c ⌢ cyc[X ]. Poincaré duality allows to define an intersection product for tropical homology
classes on a closed tropical manifold X . More precisely, if α, β ∈ H∗,∗(X), and c ∈ H∗,∗(X) is Poincaré
dual to α, then one defines

α ·β := c ⌢ β.

Remark 3.4. Both the intersection pairing between tropical Cartier divisors and tropical cycles, and the
tropical cycle class map are not entirely free of choices. The intersection pairing depends on whether
one measures incoming or outgoing slopes. When measuring incoming slopes, concave functions define
effective principal divisors, whereas when measuring outgoing slopes, convex functions define effective
principal divisors. Since minima of linear functions are concave, and maxima of linear functions are
convex, one speaks of the “min”- and “max”-conventions, respectively. The cycle class map, on the other
hands, depends on a consistent choice of isomorphisms∧k

N ∼=−→ Hk(NR, NR \ {0};Z)

for any lattice N of any rank k; see [Gross and Shokrieh 2019, Section 5].
If one wants Theorem 3.3 to hold, one has to make the choices involved in the definitions of the

intersection pairing and the cycle class map consistently. In other words, the choice of either “min”-
or “max”-convention will determine the sign of the cycle class map. In this paper, we will choose the

“min”-convention, because it makes the formulas in Section 9 nicer, but the same formulas hold true in the
“max”-convention after appropriately adjusting the sign.

4. Tropical Jacobians

In this section we review the definition of tropical Jacobians, closely following [Mikhalkin and Zharkov
2008]. Let 0 be a compact and connected smooth tropical curve. We write �Z(0) := H 0(0, �1

0) for the
group of global integral 1-forms, and �R(0) :=�Z(0)⊗Z R for the group of (real) 1-forms. A 1-form
on 0 is completely determined by its restrictions to the edges of 0, and these restrictions are constant and
completely determined by a real number and an orientation of the edge: it will be of the form rdx , where
r ∈ R, and x is the chart on the edge determined by the orientation. Extracting the data of its restrictions
to the edges out of a 1-form gives rise to a natural morphism �R(0)→ C1(0;R). Since the outgoing
primitive direction vectors at any point of 0 (in any chart around that point) sum to 0, the chains in the
image of �R(0) will in fact be 1-cycles, that is they are mapped to 0 by the boundary morphism. It is not
hard to see that the induced map �R(0)→ H1(0;R) is an isomorphism.
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Remark 4.1. Another way to think of the elements of �Z(0) is as integral flows. Given ω ∈ �Z(0),
we have already observed that the restriction ω|e to an open edge e is determined by a direction and a
nonnegative integer. Conversely, a collection of directions and nonnegative integers for every edge in 0

will define a global 1-form if and only if this collection defines a flow.

Global 1-forms on 0 can be integrated on singular 1-chains in 0. We obtain a pairing

�R(0)×C1(0;R)→ R, (ω, c) 7→
∫

c
ω, (4-1)

which can be shown to induce a morphism H1(0;R) → �R(0)∗. Together with the isomorphism
H1(0;R)∼=�R(0) from above, we obtain a natural bilinear form E on H1(0;R), which can be described
explicitly. Namely, for two 1-cycles c1 and c2, the pairing E(c1, c2) is the weighted length of the
intersection of c1 and c2, where an oriented line segment occurring in c1 and c2 with weights λ and µ,
respectively, contributes with weigh λ ·µ. This bilinear form is clearly symmetric and positive definite.
In particular, it is a perfect pairing, and hence the morphism H1(0;R)→�R(0)∗ we used to define it
is an isomorphism. Via this isomorphism H1(0;Z) becomes a sublattice of �R(0)∗ of full rank, and
the positive definite symmetric bilinear form E induces a positive definite symmetric bilinear form Q
on �R(0)∗. The full-rank sublattice of �R(0)∗ that has integer pairings with the elements of H1(0, Z)

with respect to Q is precisely �Z(0)∗.

Definition 4.2. The tropical Jacobian associated to the compact and connected smooth tropical curve 0

is the pair consisting of the real torus

Jac(0) :=�R(0)∗/H1(0;Z)

and the bilinear form Q that is defined on the universal cover �R(0)∗ of Jac(0).

Remark 4.3. By the universal coefficient theorem, we also have an isomorphism H 1(0;R)∼= H1(0;R)∗.
Together with the isomorphism �R(0)∼= H1(0;R) from above one obtains an isomorphism H 1(0;R)∼=

�R(0)∗. It is therefore also possible to write the Jacobian of 0 as the quotient H 1(0;R)/H1(0;Z).

Now fix a base point q ∈0. Given any other point p∈0 there is a path γp connecting q to p. As any other
path from q to p differs from γp by an integral 1-cycle, the class of γp in (C1(0;Z)/B1(0;Z))/H1(0;Z)

is independent of the choice of γp. Here, B1(0;Z) denotes the group of 1-boundaries. Using the pairing
(4-1), we obtain an element in Jac(0) that only depends on the choice of q . This defines the Abel–Jacobi
map

8q : 0→ Jac(0).

Let p ∈ 0, and let U be a sufficiently small connected open neighborhood of p. More precisely,
U should be connected and U \ {p} should be disjoint from V (0). Then for every p′ ∈ U \ {p} there
exists r > 0 and a geodesic path γ : [0, r ] →U from p to p′. Let e denote the unique open edge e of 0

containing p′, and let η denote the primitive integral tangent vector on e pointing from p towards p′. If
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x is any lift of 8q(p) to the universal cover �R(0)∗, then by definition, p′ lifts to x + r · δ, where δ is
given by

δ : �R(0)→ R, ω 7→ 1
r

∫
γ

ω = ⟨ω|e, η⟩.

If we identify �R(0) with flows on 0 (as in Remark 4.1) then δ is the map assigning to a flow ω on 0 its
flow on e in the direction specified by η. In particular, δ is integral, that is δ ∈�Z(0)∗. This shows that
8q is, in fact, a morphism of boundaryless rational polyhedral spaces, and that its action on the tangent
space of e is given by

δ = (d8q)(η).

Example 4.4. Let 0 be the smooth tropical curve associated to the metric graph that consists of two
vertices which are connected by three edges of length 1 (the graph of Example 2.7 with a = b = c = 1).
It is depicted to the left in Figure 3. We choose one of the vertices as the base point q and orient the
edges of 0 such that one edge, call it e3 is oriented towards q and the other two edges, call them e1 and
e2, are oriented away from q. The orientations define two simple closed loops c1 and c2 in 0, where
ci first follows ei and then e3. These loops define a basis for H1(0;R), and hence for �Z(0). Let
δ1, δ2 ∈ �Z(0)∗ be the dual basis. Since the signed length of ci ∩ c j is 2 if i = j and 1 if i ̸= j , the
injection H1(0;Z)→�R(0)∗ maps c1 to (2, 1) and c2 to (1, 2) in the coordinates defined by the basis
δ1, δ2. If follows that

Jac(0)= R2
/

Z
(1

2

)
+Z

(2
1

)
,

where the integral structure is given by Z2
⊆ R2.

The Abel–Jacobi map sends q to 0 in this quotient. If γ1 is the geodesic path along e1 that starts at q ,
then

(d8q)(γ1(t))= t ·
(1

0

)
+ H1(0;Z)

for all t ∈ [0, 1] because the path from q to γ1(t) along e1 intersects c1 in an edge segment of length t ,
and c2 in a point (an edge segment of length 0). Similarly, if γ2 is a geodesic path along e2, and γ3 is a
geodesic path along e3, both starting at q , then

(d8q)(γ2(t))= t ·
(0

1

)
+ H1(0;Z) and (d8q)(γ3(t))= t ·

(
−1
−1

)
+ H1(0;Z)

for all t ∈ [0, 1].

5. Algebraic, homological, and numerical equivalence

In this section we study different notions of equivalence for tropical cycles on boundaryless rational
polyhedral spaces, with a focus on real tori.
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8q

0

q

e1

e2

e3

2

W̃1

Jac(0)

Figure 3. A tropical curve of genus g, the universal cover of its Jacobian, and the sets W̃1

(segments with arrows) and 2 (no arrows) lifted to the universal cover. (See Section 8B
for the definition of 2).

5A. Algebraic equivalence. Following [Zharkov 2015], we make the following definition.

Definition 5.1. Let X be a boundaryless rational polyhedral space. Let Ralg be the subgroup of Z∗(X)

generated by tropical cycles of the form

p∗(q∗(t0− t1) ·W ),

where W is a tropical cycle on X×0 for some compact and connected smooth tropical curve 0 containing
the two points t0, t1 ∈ 0, and p : X ×0→ X and q : X ×0→ 0 are the natural projections. Note that
because 0 is smooth, the difference t0− t1 defines a tropical Cartier divisors on 0 (see Section 3A) and
tropical Cartier divisors can be pulled-back along any morphism of boundaryless rational polyhedral spaces.

We say that two tropical cycles A, B ∈ Z∗(X) are algebraically equivalent, denoted by A ∼alg B, if
their classes in Z∗(X)/Ralg coincide.

Proposition 5.2. Let X be a boundaryless tropical manifold, let A, B, C ∈ Z∗(X) be tropical cycles on
X , and assume that A ∼alg B. Then

A ·C ∼alg B ·C.

Proof. By the definition of algebraic equivalence, we may assume that there exists a compact and
connected smooth tropical curve 0, two points t0, t1 ∈ 0, and a tropical cycle W on X ×0 such that

A− B = p∗(q∗(t0− t1) ·W ),

where p and q denote the projection. Using the projection formula [François and Rau 2013, Theo-
rem 8.3(1)], we see that

A ·C − B ·C = (A− B) ·C = p∗(q∗(t0− t1) · (W · (C ×0))).

Applying the definition of algebraic equivalence with W replaced by W · (C ×0), we obtain that A ·C
and B ·C are algebraically equivalent. □
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Definition 5.3. Let X = NR/3 be a real torus. A spanning curve for X is a 1-dimensional polyhedral
subset 0 ⊆ X such that there exists an effective tropical 1-cycle on X with support 0, and such that the
parallel transports to 0 of the direction vectors of the edges of 0 span T0 X ∼= NR. If such a curve exists,
we say that X admits a spanning curve. See Example 7.4 for an example of a real torus which does not
admit a spanning curve.

Proposition 5.4. Let 0 be a compact and connected smooth tropical curve. Then its Jacobian Jac(0)

admits a spanning curve.

Proof. For any choice of base point q ∈ 0, the image 8q(0) of 0 under the Abel–Jacobi map is the
support of the effective cycle 8q∗[0]. Using the explicit description given in Section 4 of the tangent
directions in Jac(0) of the images of the edges of 0, it follows directly that 8q(0) is a spanning curve
for Jac(0). □

Proposition 5.5. Let X = NR/3 be a real torus that admits a spanning curve 0. Let x ∈ X , and recall
that we denote by tx : X→ X the translation by x. Then for every tropical cycle A ∈ Z∗(X) we have

A ∼alg (tx)∗A.

Proof. By the assumptions on 0, the point x is in the subgroup of X generated by the differences y− y′

for pairs y, y′ ∈ 0 contained in the same edge of 0. Therefore, it suffices to show that (tx)∗A∼alg (tx ′)∗A
for any pair of points x, x ′ contained in the same edge of 0. Let 0x be the component of 0 containing x .
Even though 0x is not smooth, it still determines a metric graph G. After a choice of weights that makes
0 into a tropical 1-cycle, the metric graph G is equipped with weights m : E(G)→ Z>0 induced by the
weights on 0. Let G̃ be the metric graph obtained from G replacing each edge e of G by an edge of
length ℓ(e)/m(e), where ℓ(e) denotes the length of e in the metric graph G. If 0̃ denotes the smooth
tropical curve associated to the graph G̃ (see Section 2C), then there is a natural morphism f : 0̃→ |0x |

of rational polyhedral spaces, which is a bijection of the underlying spaces. Let t, t ′ ∈ 0̃ be the unique
points with f (t)= x and f (t ′)= x ′. Now let

g : X × 0̃→ X × 0̃, (x, s) 7→ (x + f (s), s),

and denote W = g∗(A×[0])∈ Z∗(X×0). By construction, if p : X× 0̃→ X and q : X× 0̃→ 0̃ denote
the projections, we have

p∗(q∗(t) ·W )= (tx)∗(A) and p∗(q∗(t ′) ·W )= (tx ′)∗(A),

finishing the proof. □

5B. Homological equivalence.

Definition 5.6. Let X be a closed rational polyhedral space. We say that two tropical cycles A and B are
homologically equivalent, if cyc(A)= cyc(B).



Tautological cycles on tropical Jacobians 901

Example 5.7. Let 0 be a compact and connected smooth tropical curve. By definition, we have H0,0(0)∼=

H0(0;Z) ∼= Z. It follows that the degree morphism H0,0(0)→ Z is an isomorphism. Therefore, the
homological equivalence class of a tropical 0-cycle is uniquely determined by its degree. Let D ∈CDiv(0)

be a Cartier divisor on 0. By Theorem 3.3, we have cyc[D] = c1(L (D)) ⌢ [0], and by Poincaré duality
this implies that c1(L (D)= 0 if and only if cyc[D] = 0. By what we just saw, we have cyc[D] = 0 if
and only if the degree of D is 0. We see that if D′ ∈ CDiv(0) is another Cartier divisor, then [D] and
[D′] are homologically equivalent if and only if c1(L (D))= c1(L (D′)), which holds if and only if D
and D′ have the same degree.

Proposition 5.8. Algebraic equivalence implies homological equivalence: if A and B are tropical cycles
on a closed rational polyhedral space X with A ∼alg B, then A ∼hom B.

Proof. By the definition of algebraic equivalence, we may assume that there exists a compact and
connected smooth tropical curve 0, two points t0, t1 ∈ 0, and a tropical cycle W on X × 0 such that
A− B = p∗(q∗(t0− t1) ·W ). Since t0− t1 has degree 0, we have c1(L (t0− t1))= 0; see Example 5.7.
Therefore, by Theorem 3.3, we have

cyc(A)− cyc(B)= cyc(A− B)= p∗(q∗c1(L (t0− t1)) ⌢ cyc(W ))= 0,

finishing the poof. □

Theorem 5.9. Let X be a real torus admitting a spanning curve, and let A, B ∈ Z∗(X) be tropical cycles.
Then we have

cyc(A · B)= cyc(A) · cyc(B).

Proof. As both sides are bilinear in A and B, we may assume that A and B are pure-dimensional, say of
dimensions k and l, respectively. By Propositions 5.5 and 5.8, we may replace A by a general translate.
Therefore, we can assume that A and B meet transversally, that is that |A| ∩ |B| is either empty or of
pure dimension k+ l − n, where n = dim(X), and (|A| ∩ |B|)reg

= |A|reg
∩ |B|reg.

As explained in [Gross and Shokrieh 2019, Remark 5.5], we can view cyc(A) as an element of the
Borel–Moore homology group H B M

k,k (|A|, X) with support on |A|, and similarly

cyc(B) ∈ H B M
l,l (|A|, X) and cyc(A · B) ∈ H B M

k+l−n,k+l−n(|A∩ B|, X).

Using Verdier duality [Gross and Shokrieh 2019, Theorem D], the cycle class cyc(A) is Poincaré dual to a
cohomology class with support on |A|, that is to an element in H n−k,n−k

|A| (X). Therefore, the intersection
product cyc(A) · cyc(B) is also represented by an element in H B M

k+l−n,k+l−n(|A∩ B|, X) and it suffices to
prove the equality

cyc(A · B)= cyc(A) · cyc(B)

in H B M
k+l−n,k+l−n(|A ∩ B|, X). For dimension reasons, both sides are uniquely determined by their

restrictions to H B M
k+l−n,k+l−n(|A∩B|∩U, U ), where U is an open subset of X with U∩|A∩B|= |A∩B|reg

[Gross and Shokrieh 2019, Lemma 4.8(b)]. Combining the facts that V 7→ H B M
k+l−n,k+l−n(|A∩ B|∩V, V )
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satisfies the sheaf axioms [loc. cit., Lemma 4.8(b)], X is locally isomorphic to open subsets of Rn , and
(|A|∩|B|)reg

= |A|reg
∩|B|reg allows us to further reduce to the case where U =Rn and A and B are linear

subspaces of Rn . In this case, there exist hyperplanes H1, . . . , Hn−k and H ′1, . . . , H ′n−l , and integers
a, b ∈ Z such that

A = a · H1 · · · Hn−k and B = b · H ′1 · · · Hn−l .

Let α ∈ H n−k,n−k
|A| (X) be the Poincaré dual to cyc(A). Applying [loc. cit., Proposition 5.12] (see also

[loc. cit., Remark 5.13]) yields

cyc(A·B)= cyc((a·H1 · · ·Hn−k)·(b·H ′1 · · ·Hn−l)·[X ])

=
(
a·c1(L (H1)) ⌣ · · ·⌣ c1(L (Hn−k))

)
⌢

(
(b·c1(L (H ′1)) ⌣ · · ·⌣ c1(L (H ′n−l))) ⌢ cyc[X ]

)
=α ⌢ cyc(B)

= cyc(A)·cyc(B),

where the last equality holds by the definition of the intersection product of tropical homology classes.
This finishes the proof. □

5C. Numerical equivalence.

Definition 5.10. Let X be a closed tropical manifold. Then two tropical cycles A, B ∈ Z∗(X) on X are
numerically equivalent, for which we write A ∼num B, if for every tropical cycle C ∈ Z∗(X) on X we
have ∫

X
A ·C =

∫
X

B ·C.

Proposition 5.11. Let X be a real torus admitting a spanning curve, and let A, B ∈ Z∗(X) with A∼hom B.
Then A ∼num B.

Proof. Let C ∈ Z∗(X). By Theorem 5.9, we have∫
X

A ·C =
∫

X
cyc(A ·C)=

∫
X

cyc(A) · cyc(C)=

∫
X

cyc(B) · cyc(C)=

∫
X

cyc(B ·C)=

∫
X

B ·C,

from which the assertion follows. □

6. Tropical homology of real tori

Let X = NR/3 be a real torus. Then the group law and the tropical cross product endow the tropical
homology groups with the additional structure of the Pontryagin product.

Definition 6.1. Let X be a real torus with group law µ : X × X→ X . The tropical Pontryagin product is
defined as the pairing

(α, β) 7→ α ⋆ β := µ∗(α×β),
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where α and β are either elements of Z∗(X) or of H∗,∗(X). We thus obtain morphisms

⋆ : Zi (X)⊗Z Zk(X)→ Zi+k(X)

⋆ : Hi, j (X)⊗Z Hk,l(X)→ Hi+k, j+l(X)

for all choices of natural numbers i, j, k, l. It is not hard to see that ⋆ makes Z∗(X) into a graded abelian
group, and H∗,∗(X) into a bigraded abelian group.

Proposition 6.2. Let X be a real torus. Then the tropical cycle class map respects Pontryagin products,
that is the diagram

Zi (X)⊗Z Z j (X) Zi+ j (X)

Hi,i (X)⊗Z H j, j (X) Hi+ j,i+ j (X)

⋆

⋆

cyc⊗ cyc cyc

is commutative for all i, j ∈6.

Proof. Since the Pontryagin product is defined as the push-forward of a cross product, this follows
immediately from the compatibility of the tropical cycle class map with cross products and push-forwards
stated in Theorem 3.3. □

For the real torus X = NR/3, we will now describe the group H∗,∗(X) and the Pontryagin product
on it explicitly. First we note that the sheaf �1

X is the constant sheaf MX associated to the lattice
M = Hom(N , Z), and since X reg

= X , we have �k
X
∼=

(∧k M
)

X for all integers k. By definition of
singular tropical homology, we thus have a canonical graded isomorphism

H∗,∗(X)∼= H∗

(
X;

∧∗

N
)
∼= H∗(X;Z)⊗Z

∧∗

N .

The restriction of the Pontryagin product to the first factor H∗(X;Z)∼= H0,∗(X) is precisely the classical
Pontryagin product one obtains when one views X as a topological group. But, as a topological group,
X is a product of 1-spheres. So using the Künneth theorem one sees that H∗(X;Z) is isomorphic to∧

H1(X;Z). This is, in fact, an isomorphism of rings, the multiplication of H∗(X;Z) being the Pontryagin
product. Finally, because X is the quotient of its universal covering space NR by the action of 3, we
obtain a natural isomorphism H1(X;Z)∼=3. If a tropical 1-cycle in H1(X;Z) is represented by a loop
γ : [0, 1] → X then the corresponding element of 3 is given by γ̃ (1)− γ̃ (0) for any lift γ̃ : [0, 1] → NR

of γ to the universal cover. We obtain an isomorphism

H∗,∗(X)∼=
∧∗

3⊗Z

∧∗

N . (6-1)

It is straightforward to check that with this identification, the tropical Pontryagin product on H∗,∗(X)

satisfies

(α⊗ω) ⋆ (β⊗ ξ)= (α∧β)⊗ (ω∧ ξ).
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By a similar argument, one obtains a description for the tropical cohomology of X that is dual to the
description of tropical homology in (6-1). More precisely, one sees that

H∗,∗(X)∼=
∧∗

3∗⊗Z

∧∗

M, (6-2)

and that, with this identification, the tropical cup product on H∗,∗(X) satisfies

(α⊗ω) ⌣ (β⊗ ξ)= (α∧β)⊗ (ω∧ ξ).

With the descriptions of the tropical homology and the tropical cohomology given in (6-1) and (6-2),
the tropical cap product can also be expressed explicitly. More precisely, we have

(α⊗ω) ⌢ (β⊗ ξ)= (α ⌟β)⊗ (ω ⌟ ξ), (6-3)

where “⌟” denotes the interior product on the exterior algebra.
In bidegree (1, 1) our description of the tropical cohomology of X produces an isomorphism

H 1,1(X)∼=3∗⊗Z M.

We can further identify the right side with Hom(3⊗Z N , Z), that is with bilinear forms on NR that have
integer values on 3× N .

Convention 6.3. From now on we will always identify, according to the identifications in this section,
the cohomology group H 1,1(NR/3) with the group of bilinear forms on NR that have integer values on
3× N .

7. Line bundles on real tori

7A. Factors of automorphy. Let N be a lattice, let 3⊆ NR be a lattice of full rank, and let X = NR/3 be
the real torus associated to N and 3. To describe the tropical line bundles on X we recall from Section 3B
that they form a group, canonically identified with H 1(X, AffX ). Invoking the results from [Mumford
2008, Appendix to Section 2], together with the fact that the pull-back π−1 AffX ∼= AffNR

along the
quotient morphism π : NR→ NR/3= X has trivial cohomology on NR, we obtain the identification

H 1(X, AffX )∼= H 1(3, 0(NR, AffNR
)),

where the right side is the first group cohomology group of 0(NR, AffNR
), equipped with its natural

3-action. This is very much akin to the case of complex tori: an element of H 1(3, 0(NR, AffNR
)) can

be represented by a tropical factor of automorphy, that is a family of integral affine functions indexed
by 3, that, if we represent it as a function a : 3× NR→ R, satisfies

a(λ+µ, x)= a(λ, µ+ x)+ a(µ, x) (7-1)
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for all µ, λ∈3 and x ∈NR. Two factors of automorphy represent the same element of H 1(3,0(NR,AffNR
))

if and only if they differ by a factor of automorphy of the form

(λ, x) 7→ l(x + λ)− l(x)

for some integral affine function l ∈ 0(NR, AffNR
), which happens if and only if they differ by a factor of

automorphy of the form

(λ, x) 7→ mR(λ),

where mR is the R-linear extension of a linear form m : N → Z.
Any factor of automorphy a(− ,− ) defines a group action λ.(x, b) = (x + λ, b+ a(λ, x)) of 3 on

the trivial line bundle NR×R on NR. The tropical line bundle on X corresponding to a(− ,− ) is the
quotient (NR×R)/3.

7B. The Appell–Humbert Theorem. It is easy to check that for every morphism l ∈ Hom(3, R) and
every symmetric bilinear form E on NR with E(3× N )⊆ Z, the family of integral affine functions on
NR defined by

aE,l(λ, x)= l(λ)− E(λ, x)− 1
2 E(λ, λ)

is a tropical factor of automorphy. We denote the associated tropical line bundle on X by L (E, l). The
following proposition shows that the first Chern class recovers E from L (E, l).

Proposition 7.1. Let E be a symmetric bilinear form on NR with E(3× N )⊆ Z, and let l ∈ Hom(3, R).
Then c1(L (E, l))= E , where we identify H 1,1(X) with the group of bilinear forms on NR with integer
values on 3× N according to Convention 6.3.

Proof. Let U = {Uα}α be an open cover of X such that each preimage π−1Uα is a union of disjoint
open subsets of NR that map homeomorphically onto Uα. For each α, choose a continuous section
sα : Uα→ π−1Uα of π . Furthermore, we choose a (necessarily noncontinuous) section s : X→ NR of π .
By construction, the line bundle L (E, l) is represented by the Čech cocycle

(Uα,β ∋ x 7→ aE,l(sβ(x)− sα(x), sα(x))) ∈ Č1(U, AffX ).

Note that sβ−sα has values in 3 and is therefore constant on the connected components of Uα,β =Uα∩Uβ

by continuity. In particular, the functions x 7→ aE,l(sβ(x)− sα(x), sα(x)) are indeed integral affine. By
definition, the first Chern class of L (E, l) is represented by the Čech cocycle obtained by differentiating
the transition functions for all α and β. Using the definition of aE,l , it follows that c1(L (E, l)) is
represented by the cocycle

(Uα,β ∋ x 7→ −E(sβ(x)− sα(x))) ∈ Č1(U, �1
X ), (7-2)

where we consider E as a function 3→ N ∗. To compute what this corresponds to under the identification
of H 1(X, �1

X ) with H 1(X; N ∗)∼=3∗⊗ N ∗, we consider the double complex

(Č i (U, C j (X; N ∗)), di j , ∂i j ),
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where C i (X; N ∗) denotes the sheafification of the presheaf

U 7→ C i (U ; N ∗)

and we set C−1(U ; N ∗) = N ∗ and Č−1(U, F ) = 0(X, F ) for any sheaf F . We follow the cocycle of
formula (7-2) through the double complex in the zig-zag from the (1,−1) entry to the (−1, 1) entry
indicated by the solid arrows in the following diagram:

0 0 0

0 N ∗ C0(X; N ∗) C1(X; N ∗) · · ·

0 Č0(U, (N ∗)X ) Č0(U, C 0(X; N ∗)) Č0(U, C 1(X; N ∗)) · · ·

0 Č1(U, (N ∗)X ) Č1(U, C 0(X; N ∗)) Č1(U, C 1(X; N ∗)) · · ·

...
...

...

First we apply the differential coming from singular cohomology and obtain

((Uα,β
x
←− {0}) 7→ −E(sβ(x)− sα(x))) ∈ Č1(U, C 0(X; N ∗)).

Clearly, this is the image under the differential coming from Čech cohomology of the cochain

((Uα
x
←− {0}) 7→ −E(sα(x)− s(x))) ∈ Č0(U, C (X; N ∗)).

Applying the differential of singular cohomology again we obtain

((Uα
σ
←− [0, 1]) 7→ −E(sα(σ (1))− s(σ (1))− sα(σ (0))+ s(σ (0)))) ∈ Č0(U, C 1(X; N ∗)).

This can be lifted to a singular 1-cochain. Namely, for an arbitrary 1-simplex σ : [0, 1]→ X we choose a
lift σ ′ : [0, 1] → NR and then assign to σ the value

−E(σ ′(1)− s(σ (1))− σ ′(0)+ s(σ (0))).

This is clearly independent of the choice of σ ′. In particular, if the image of σ is contained in Uα, we
may choose σ ′ = sα ◦ σ and obtain the same cocycle on Uα as before. It is also clear that any loop in X
which is the image of a path in NR from 0 to λ ∈3 is mapped to −E(λ) by this 1-cochain. Therefore,
we have c1(L (E, l))= E when identifying H 1,1(X) with 3∗⊗Z N ∗ according to Convention 6.3. □

Theorem 7.2 (tropical Appell–Humbert theorem). Let L be a tropical line bundle on the real torus
X = NR/3. Then there exists l ∈ Hom(3, R) and a symmetric form E on NR with E(3× N )⊆ Z such
that L ∼=L (E, l). Moreover, if we are given another choice of l ′ ∈Hom(3, R) and symmetric form E ′ on
NR with E ′(3×N )⊆Z, then L ∼=L (E ′, l ′) if and only if E = E ′ and the linear form (l− l ′)R : NR→R

has integer values on N.

Proof. We have already seen in Section 7A that there exists a tropical factor of automorphy a : 3×NR→R

such that L is the line bundle associated to a(− ,− ). For every λ ∈3, the function a(λ,−) is integral
affine, hence its differential E(λ) := −da(λ,−) defines an element in Hom(N , Z). Differentiating (7-1),
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we see that the map λ 7→ E(λ) is linear. In other words, E defines a bilinear map on 3× N → Z.
Therefore, for a suitable function b : 3→ R, we have a(λ, x) = −E(λ, x)+ b(λ) for all λ ∈ 3 and
x ∈ NR. Plugging this into (7-1), we see that E(λ, µ) = E(µ, λ) for all λ, µ ∈ 3, that is that E is, in
fact, symmetric. The tropical factor of automorphy a− aE,0 is then a family of constant functions, that is
we have

(a− aE,0)(λ, x)= l(λ)

for some function l : 3→ R. Applying (7-1) once more we see that l is, in fact, linear. It follows that
a = (a− aE,0)+ aE,0 = aE,l . In particular, we have L ∼=L (E, l).

Now assume we are given a second choice of linear function l ′ ∈ Hom(3, R) and symmetric form
E ′ on NR with E ′(3× N ) ⊆ Z such that L (E ′, l ′) ∼= L . We have already seen in Section 7A that
this happens if and only if aE,l − aE ′,l ′ is of the form a0,mR|3 for some linear function m : N → Z. By
Proposition 7.1, we have

E ′ = c1(L (E ′, l ′))= c1(L (E, l))= E .

Therefore, we have aE,l − aE ′,l ′ = a0,l−l ′ and it follows that (l − l ′)R has integer values on N . □

Remark 7.3. It follows directly from the tropical Appell–Humbert theorem that there is a bijection
between the group of all tropical line bundles with trivial first Chern class and 3∗R/N ∗, which is called
the dual real torus to X for that reason.

Example 7.4. Let N = Z2 and let 3= Zu1+Zu2 ⊆ NR = R2, where

u1 =

( 1
√

6

)
and u2 =

(√3
√

2

)
.

We claim that the real torus X = NR/3 has no spanning curve. Indeed, if there was one, then there existed
an effective tropical 1-cycle C in X supported on a spanning curve. Because the tangent directions of C
span NR, there is a translate C ′ of C that intersects C transversally in at least one point. Therefore, we
have

0 ̸= cyc(C ·C ′)= cyc(C2)= cyc(C)2,

where the first equality follows from Propositions 5.2 and 5.5, and the second one from Theorem 5.9. In
particular, we have cyc(C) ̸= 0.

As C is a hypersurface in X , it is a tropical Cartier divisor and we have

cyc(C)= c1(L (C)) ⌢ cyc[X ].

By Proposition 7.1 and Theorem 7.2, the first Chern class c1(L (C)) is given by a symmetric from E on
NR with E(3× N )⊆ Z. Let Z ∋ αi j = E(ui , e j ), where ei denotes the standard basis of Z2. Then E is
symmetric if and only if

α11
√

3+α12
√

2= E(u1, u2)= E(u2, u1)= α21+α22
√

6.
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The numbers 1,
√

2,
√

3, and
√

6 being linearly independent over Q implies that all αi j are zero. Thus, we
have E = 0, which is equivalent to c1(L (C))= 0, which in turn implies that cyc(C)= 0, a contradiction.

7C. Translations of line bundles.

Proposition 7.5. Let X = NR/3 be a real torus, let l ∈ Hom(3, R), and let E be a symmetric bilinear
form on NR with E(3× N )⊆ Z. Furthermore, let π : NR→ X be the projection and let y ∈ NR. Then
we have

t∗π(y)L (E, l)∼=L (E, l − E(−, y)).

In particular, if the bilinear form E is nondegenerate and L ′ is any line bundle on NR/3 with c1(L
′)= E ,

then there exists x ∈ X such that L ′∼= t∗x L (E, l). If , moreover, E restricts to a perfect pairing 3×N→Z,
then x is unique.

Proof. We recall from above that L (E, l) can be defined as the quotient of the trivial bundle NR×R by
the 3-action given by λ.(x, b)= (x+λ, b+a(E,l)(λ, x)). Since the morphism t̃y : NR→ NR, x 7→ x+ y
that induces tπ(y) on the quotient NR/3 is 3-equivariant, the pull-back t∗π(y)L (E, l) can be represented
as the quotient of

t̃∗y (NR×R)∼= NR×R

by the pulled back 3-action. The action of λ ∈ 3 on (x, b) under the pulled back action is obtained
by first applying t̃y to the first coordinate, yielding (x + y, b), then applying the 3-action defined by
a(E,l), yielding (x + y+ λ, b+ a(E,l)(λ, x + y)), and finally applying t̃−1

y to the first coordinate, yielding
(x + λ, b+ a(E,l)(λ, x + y)). So in total, the pulled back action is given by

λ.(x, b)= (x + λ, b+ a(E,l)(λ, x + y))

=
(
x + λ, b+ l(λ)− E(λ, x + y)− 1

2 E(λ, λ)
)

=
(
x + λ, b+ l(λ)− E(λ, y)− E(λ, x)− 1

2 E(λ, λ)
)

= (x + λ, b+ a(E,l−E(−,y))),

which is precisely the action on the trivial bundle defined by the factor of automorphy a(E,l−E(−,y)). This
shows that t∗π(y)L (E, l)=L (E, l − E(−, y)).

Now assume that E is nondegenerate and that L ′ is any line bundle on X with c1(L
′) = E . By

Theorem 7.2 and Proposition 7.1, there exists a linear form l ′ : 3→ R such that L ′ ∼=L (E, l ′). Since E
is nondegenerate and 3R

∼= NR, there exists x̃ ∈ NR such that l − l ′ = E(−, x̃). By what we have shown
above, we have

L ′ ∼=L (E, l − E(−, x̃))∼= t∗π(x̃)L (E, l)= t∗x L (E, l),

where x = π(x̃). If x ′ ∈ X is another point such that t∗x ′L (E, l)∼=L ′, and x̃ ′ ∈ NR is chosen such that
π(x̃ ′)= x ′, then we have

L (E, l − E(−, x̃))∼=L (E, l − E(−, x̃ ′))
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by what we have shown above. This happens if and only if E(−, x̃ − x̃ ′) has integer values on N by
Theorem 7.2. If E restricts to a perfect pairing on 3× N , this happens if and only if x̃− x̃ ′ ∈3, that is if
and only if x = x ′. □

Remark 7.6. If we call two line bundles on a real torus tropically equivalent if they have the same first
Chern class, then Proposition 7.5 shows that two tropical line bundles which are translates of each other
are tropically equivalent, with the converse being true if their first Chern class is nondegenerate. This is
completely analogous to the situation on complex tori, where two line bundles are analytically equivalent
if they have the same first Chern class [Birkenhake and Lange 2004, Proposition 2.5.3]. If two line
bundles on a complex torus are translates of each other, then they are analytically equivalent, with the
converse being true if their first Chern class is nondegenerate [loc. cit., Corollary 2.5.4].

7D. Rational sections of line bundles. Let E : 3× N → Z be bilinear such that ER is a symmetric
bilinear form on NR, and let l : 3→R be linear. As mentioned above, the tropical line bundle L (E, l) on
X is a quotient of the trivial bundle NR×R by the 3-action defined by E and l. In particular, the global
rational sections of L (E, l) are precisely those global rational sections of NR×R that are invariant under
the 3-action. More precisely, the global rational sections of L (E, l) are in bijection with the piecewise
linear function φ ∈ 0(NR, MNR

) such that

φ(x + λ)= φ(x)+ l(λ)− E(λ, x)− 1
2 E(λ, λ). (7-3)

The divisor associated to the section of L (E, l) corresponding to φ is precisely the quotient of div(φ) by
the 3-action. In particular, this divisor is effective if and only if div(φ) is effective, that is if φ is concave.
Together, concavity and (7-3) put strong constraints on φ, or rather its Legendre transform. In fact, it
has been shown in [Mikhalkin and Zharkov 2008, Theorem 5.4] that if E is a perfect pairing and ER is
positive definite, these constraints completely determine φ up to an additive constant. More precisely, φ

is given by

φ(x)=min
{

E(λ, x)+ 1
2 E(λ, λ)− l(λ) | λ ∈3

}
+ const

in this case (note that this only differs from the formula in [loc. cit.] because we are using the “min”-
convention, see Remark 3.4). By the tropical Appell–Humbert theorem it follows that for every line
bundle L on X with c1(L )= E there exists a unique effective divisor D ∈ CDiv(X) with L (D)=L .

Proposition 7.7. Let X = NR/3 be the real torus associated to a pair of lattices N and 3⊂ NR, and let
D, D′ ∈ CDiv(X) be two effective divisors such that cyc[D] = cyc[D′] is Poincaré dual to E ∈ H 1,1(X)

for some perfect pairing E : 3× N → Z such that ER is a positive definite symmetric bilinear form on
NR, where we identify H 1,1(X) with Hom(3, N ∗) according to Convention 6.3. Then there exits a unique
x ∈ X such that t∗x D = D′.

Proof. We have

cyc[D] = cyc(D · [X ])= c1(L (D)) ⌢ cyc[X ],
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so cyc[D] is Poincaré dual to c1(L (D)), and similarly cyc[D′] is Poincaré dual to c1(L (D′)). By
assumption, it follow that

c1(L (D))= c1(L (D′))= E .

By Proposition 7.5, there exists a unique point x ∈ X such that t∗x (L (D)) ∼= L (t∗x (D)) is isomorphic
to L (D′). It follows that the two divisors t∗x (D) and D′ correspond to two concave rational sections
of L (D′). But, since c1(L (D′)) = E , these two rational sections differ by a constant. Therefore,
D′ = t∗x (D). □

8. Tautological cycles on tropical Jacobians

Classically, the ring of tautological classes on the Jacobian of an algebraic curve is the smallest subring
of its Chow group that contains the image of the curve under the Abel–Jacobi map and is invariant under
intersection products, Pontryagin products, translations, and the involution map. We will now introduce
the most important tropical tautological cycles on a tropical Jacobian.

Throughout this section, 0 will denote a compact connected smooth tropical curve of genus g. We
will also fix a base point q ∈ 0 with respect to which we define the Abel–Jacobi map.

8A. Effective loci and semibreak divisors. Using the group structure on the Jacobian, the Abel–Jacobi
map induces morphisms 8d

q : 0
d
→ Jac(0) for all nonnegative integers d .

Definition 8.1. For every integer 0≤ d ≤ g we define

W̃d :=8d
q(0d).

Because 8d
q is a proper morphism of boundaryless rational polyhedral spaces, we know that W̃d is an at

most d-dimensional boundaryless rational polyhedral subspace of Jac(0). By definition, (8d
q)∗[0

d
] is a

tropical d-cycle on W̃d . Note that this does not mean that W̃d has dimension d or that it is pure-dimensional
as (8d

q)∗[0
d
] could be 0. All we can say a priori is that the support of (8d

q)∗[0
d
] is precisely the subset

of points of W̃d where the local dimension of W̃d is equal to d .
To show that W̃d in fact is purely d-dimensional we will use the identification of Jac(0) with the

Pic0(0) given by the tropical Abel–Jacobi theorem [Mikhalkin and Zharkov 2008]. Here, Pic(0) denotes
the quotient of CDiv(0) by the subgroup consisting of all principal divisors, and Picd(0) denotes the
subgroup of Pic(0) consisting of the all classes of divisors of degree d. The statement of the tropical
Abel–Jacobi theorem is that the Abel–Jacobi map 8q induces a bijections Picd(0)→ Jac(0) for d = 0,
and hence for any d . If Wd denotes the preimage of W̃d in Picd(0) under the bijection Picd(0)→ Jac(0),
then Wd is precisely the set of the classes of effective divisors of degree d . In particular Wd is independent
of the base point q . Together with L. Tóthmérész, we have proved the following theorem.

Theorem 8.2 [Gross et al. 2022, Theorem 8.3]. The subset Wd of Picd(0) is purely d-dimensional.

It follows immediately that W̃d is purely d-dimensional as well, and hence that the tropical cycle
(8d

q)∗[0
d
] has support W̃d . We will now show that W̃d has a fundamental cycle [W̃d ] which we will relate
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to (8d
q)∗[0

d
]. To do this, we will need the notion of a break and semibreak divisors. A break divisor on

0 is an effective divisor B such that there exist g open edge segments e1, . . . , eg ⊆ 0 and points qi ∈ ēi

such that 0 \
⋃

i ei is contractible and B =
∑

i (qi ). A semibreak divisor is an effective divisor that is
dominated by a break divisor, that is an effective divisor D such that there exists an effective divisor E
for which D+ E is a break divisor; see [Gross et al. 2022].

Proposition 8.3. Let 0≤ d ≤ g. Then W̃d has a fundamental cycle [W̃d ], and the equality

(8d
q)∗[0

d
] = d![W̃d ]

hold in Z∗(Jac(0)).

Proof. It suffices to show that (8d
q)∗[0

d
] has weight d! on all components of W̃ reg

d . Indeed, if that is the
case then 1

d!(8q)∗[0
d
] is a tropical cycle with support W̃d and weight 1 on all components of W̃ reg

d . But
this implies that W̃d has a fundamental cycle and that (8d

q)∗[0
d
] = d![W̃d ].

By the definition of the push-forward, we now have to show that for any x ∈ W̃d such that (8d
q)−1
{x}

is finite and contained in (0d)reg, the value of (8d
q)∗[0

d
] at x is d!. Let σ be a component of (0d)reg.

Then there exist open edges e1, . . . , ed of 0 such that σ = e1× · · · × ed . We choose an orientation on
each of these d edges. This determines a unique primitive tangent vector ηk on each edge ek . These d
tangent vectors form a basis of the integral tangent space of the product e1× · · ·× ed . As already noted
in Section 4, the image of ηk in the tangent space �Z(0)∗ of Jac(0) is given by

(d8q)(ηk) : �Z(0)→ Z, ω 7→ ⟨ω|ek , ηk⟩.

If we identify �Z(0) with integral flows on 0, as explained in Remark 4.1, then (d8q)(ηk) is the map
assigning to an integral flow ω on 0 its flow on ek in the direction specified by the chosen orientation.
Because 8d

q is defined as the d-fold sum of 8q , we have (d8d
q)(ηk)= (d8q)(ηk). In particular, if ek = el

for k ̸= l, then (d8d
q)(ηk)= (d8d

q)(ηl) which means that 8d
q is not injective on σ and x /∈8d

q(σ ). We
may thus assume that all ek are distinct. If 0 \

⋃
ek is disconnected, then there exists an 1≤ l ≤ d such

that 0 \∪l
k=1ek has precisely two components C1 and C2. For 1≤ k ≤ l let αk be equal 1 if ek is oriented

such that it leads from C1 to C2, and let αk be equal to −1 if it is oriented the other way. Since the total
flow from C1 to C2 in any integral flow on 0 is 0, we have

l∑
k=1

αk(d8d
q)(ηk)= 0,

which means that d8d
q is not injective on the tangent spaces of σ . Therefore, 8d

q is not injective on σ

and again x /∈ 8d
q(σ ). If 0 \

⋃
ek is connected, then for each 1 ≤ k ≤ d there is a simple closed loop

in 0 that passes through ek but not through el for l ̸= k. It follows that for every assignment of values
f : {1, . . . , d} → Z there is an integral flow ω ∈�Z(0) whose flow on ek is f (k). This implies that the
vectors (d8d

q)(η1), . . . , (d8d
q)(ηi ) span a saturated rank-i sublattice of �Z(0)∗. Therefore, every point

of (8d
q)−1
{x}∩σ contributes to the weight of (8d

q)∗[0
d
] with multiplicity one, and by [Gross et al. 2022,
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Lemma 8.1] there is at most one of these points. In fact, if (8d
q)−1
{x} ∩ σ is nonempty, then [loc. cit.,

Lemma 8.1] tells us that all other components σ ′ of (0d)reg with (8d
q)−1
{x} ∩ σ ′ ̸=∅ are obtained from

σ via a permutation of coordinates. As there are exactly d! of these permutations, the weight at x is d!,
finishing the proof. □

As an immediate consequence of Proposition 8.3 we obtain the following corollary.

Corollary 8.4. The equality of tropical cycles ⋆d
k=1[W̃1] = d![W̃d ] holds in Z∗(Jac(0)).

Proof. This follows directly from the formulas for [W̃d ] and [W̃1] given in Proposition 8.3, and the fact
that 8d

q is the d-fold sum of 8q . □

We have a morphism H1(0;Z)→ H1(Jac(0);Z) induced by the (continuous) Abel–Jacobi map. As
noticed in Section 6, there is a natural identification

H1(Jac(0);Z)∼= H1(0;Z)

coming from the fact that Jac(0) = �R(0)∗/H1(0;Z) is defined by taking a quotient of a real vector
space by H1(0;Z).

Lemma 8.5. The morphism

(8q)∗ : H1(0;Z)→ H1(Jac(0);Z)∼= H1(0;Z)

is the identity.

Proof. Let α be a cycle on 0 representing a class in H1(0;Z). We need to show that (8q)∗[α] = [α]. By
the Hurewicz theorem, we may assume that it is represented by a loop γ : [0, 1] → 0 starting and ending
at the base point q . By the definition of the Abel–Jacobi map, the path

γ̃ : [0, 1] →�R(0)∗, t 7→
(

ω 7→

∫
γ |[0,t]

ω

)
lifts the composite 8q◦γ . Therefore, (8q)∗γ ∈H1(Jac(0);Z) is identified with the element γ̃ (1)−γ̃ (0)=

γ̃ (1) ∈ H1(0;Z). But this is equal to the image of γ under the embedding H1(0;Z) ↪→�R(0)∗. □

8B. The tropical Riemann theta divisor. Recall from Section 4 that the tropical Jacobian Jac(0) =

�R(0)∗/H1(0;Z) of a smooth tropical curve 0 comes equipped with a positive definite symmetric
form Q on its universal cover �R(0)∗ which restricts to a perfect pairing �Z(0)∗× H1(0;Z)→ Z. By
Proposition 7.1, the first Chern class of the line bundle L (Q, 0) is given by Q. As explained in Section 7D,
this implies that L (Q, 0) has, up to an additive constant, a unique concave rational section, the Riemann
theta function, which defines a unique effective divisor 2 ∈ CDiv(Jac(0)) with L (2)=L (Q, 0). For
further details about the Riemann theta function see [Mikhalkin and Zharkov 2008] and see [Foster et al.
2018] for the connection to the nonarchimedean Riemann theta function.

Definition 8.6. The unique effective divisor 2 ∈ CDiv(Jac(0)) with L (2) = L (Q, 0) is called the
tropical Riemann theta divisor on Jac(0).
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Note that by construction, we have c1(L (2))= Q.

Example 8.7. Figure 3 shows the 2-divisor for the curve 0 from Example 4.4. It is the image in Jac(0)

of the boundaries of the Voronoi cells of the lattice points H1(0;Z) in �R(0)∗ with respect to the metric
defined by Q.

9. The tropical Poincaré formula

We are finally in a position to prove the Poincaré formula. Our strategy is to give explicit formulas for both
sides of the equation. More precisely, we will introduce coordinates on the tropical homology groups of
the tropical Jacobian, and will compare the coefficients of both sides of the equation in these coordinates.
Throughout this section, 0 will denote a compact and connected smooth tropical curve of genus g, and
e1, . . . , eg will denote distinct open edges of 0 such that 0 \

(⋃
k ek

)
is contractible. Furthermore, we

will assume that we have chosen an orientation on each of the edges e1, . . . , eg.

9A. Bases for the tropical (co)homology of Jac(0). Recall from Section 6 that there is an isomorphism
of rings

H∗,∗(Jac(0))∼=
∧

H1(0;Z)⊗
∧

�Z(0)∗,

where the ring structure on the left side is given by the Pontryagin product. Using this isomorphism, a
choice of bases for H1(0;Z) and �Z(0)∗ will induce a basis for H∗,∗(Jac(0)). We will use our choice
of open edges e1, . . . , eg to define bases for these lattices. Let 1≤ k ≤ g. The orientation on ek defines a
start and an end point for ek . Since T is contractible and therefore a tree, there is a path in T from the
end to the start point of ek , and this path is unique up to homotopy. Together with any path in ēk from
its start to its end point, this defines a fundamental circuit ck ∈ H1(0;Z) that traverses ek but is disjoint
from el for l ̸= k. It is well known, and straightforward to check, that the fundamental circuits c1, . . . , cg

form a basis of H1(0;Z).
To obtain a basis for �Z(0)∗, let ηk denote the primitive tangent vector on ek in the direction specified

by the orientation, and let δk = (d8q)(ηk). As we observed in Section 4, δk can be described as the
morphism �Z(0)→ Z assigning to an integral flow on 0 its flow through ek in the direction specified
by the orientation. By definition of the bilinear from Q on �R(0), we have Q(ck, δl)= 1 if k = l and
Q(ck, δl)= 0 if k ̸= l, that is δ1, . . . , δg is dual to the basis c1, . . . , cg with respect to Q. We noticed in
Section 4 that �Z(0)∗ is precisely the set of vectors in �R(0)∗ that have integral pairing with respect to
Q with all elements of H1(0;Z). It follows directly that δ1, . . . , δg is a basis for �∗Z(0).

Similarly, by the isomorphism

H∗,∗(Jac(0))∼=
∧

H1(0;Z)∗⊗
∧

�Z(0)

of rings discussed in Section 6, bases for H1(0;Z)∗ and �Z(0) induce a basis for H∗,∗(Jac(0)). The
bases we will use for these lattices are the dual bases (c∗k )k and (δ∗k )k to the bases (ck)k and (δk)k .
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Note that both H∗,∗(Jac(0)) and H∗,∗(Jac(0)) are tensor products of skew commutative graded rings.
We will use the following notation for elements of special form in groups of this type.

Notation 9.1. Let R1 and R2 be two skew-commutative graded rings, let J be a finite set, and let a : J→ R1

and b : J → R2 be maps such that for every j ∈ J the elements a( j) and b( j) are homogeneous of the
same degree. Then for any injective map σ : {1, . . . , k} → J , the element

k∏
l=1

a(σ (l))⊗
k∏

l=1

b(σ (l))

of R1⊗Z R2 only depends on the image I := σ({1, . . . , k}). We denote it by∏
i∈I

a(i)⊗
∏
i∈I

b(i).

9B. Cycle classes of tautological cycles.

Proposition 9.2. We have

cyc[W̃1] =

g∑
k=1

ck ⊗ δk .

Proof. Choose an orientation for every edge e of 0 that coincides with the orientation we have already
chosen if e = ek for some k. Let ηe the primitive tangent vector of e in the direction specified by the
orientation, and let δe = (d8q)(ηe). By construction, we have δek = δk for all 1 ≤ k ≤ g. It follows
immediately from the definition of the tropical cycle class map and Theorem 3.3 that cyc[W̃1] is represented
by the (1, 1)-cycle ∑

e∈E(0)

(8q)∗(ē)⊗ δe ∈ C1,1(Jac(0)),

where we view the oriented closed edge ē as a singular 1-simplex by choosing a parametrization compatible
with the given orientation. Using that the ck and the δk form dual bases with respect to the bilinear form Q,
we see that the above equals∑

e∈E(0)

(8q)∗(ē)⊗
( g∑

i=1

Q(ci , δe) · δi

)
=

g∑
i=1

( ∑
e∈E(0)

Q(ci , δe) · (8q)∗(ē)
)
⊗ δi .

Since Q(ci , δe) is 1 whenever e is on the loop ci , and 0 otherwise, we have∑
e∈E(0)

Q(ci , δe)(8q)∗(ē)= (8q)∗ci ,

which is equal to ci by Lemma 8.5. This finishes the proof. □

Remark 9.3. It follows immediately from Proposition 9.2 that the expression∑
k

ck ⊗ δk ∈ H1(0;Z)⊗�Z(0)∗
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is independent of the choice of spanning tree used to define the elements ck and δk . On a closer look, it
turns out that this independence is more of a feature of linear algebra than a feature of spanning trees.
To see this, we observe that the natural isomorphism H1(0;Z)∼=�Z(0) identifies the basis (δk)k with
the dual basis of (ck)k . Therefore,

∑
k ck ⊗ δk is identified with the identity endomorphism on H1(0;Z)

under the composite

H1(0;Z)⊗�Z(0)∗ ∼= H1(0;Z)⊗ H1(0;Z)∗ ∼= End(H1(0;Z)),

which is an invariant of H1(0;Z) rather than of 0.

Lemma 9.4. We have

cyc[W̃d ] =
∑

I⊆{1,...,g}
|I |=d

∧
k∈I

ck ⊗
∧
k∈I

δk .

Proof. Using Propositions 8.3 and 6.2 we obtain

d! cyc[W̃d ] = d! cyc
(

d
⋆
k=1
[W̃1]

)
= d!

d
⋆
k=1

cyc[W̃1].

By Proposition 9.2, this equals
d
⋆
k=1

( g∑
l=1

cl ⊗ δl

)
.

Using the description of the Pontryagin product from Section 6, we can rewrite this as

∑
σ

d∧
k=1

cσ(k)⊗

d∧
k=1

δσ(k),

where the sum is over all maps σ : {1, . . . , d} → {1, . . . , g}. Since
∧

�Z(0) is skew-commutative, only
an injective σ would contribute to the sum. If I is the image of an injective σ then, using our Notation 9.1,
we have

d∧
k=1

cσ(k)⊗

d∧
k=1

δσ(k) =

∧
k∈I

ck ⊗
∧
k∈I

δk .

Since the map σ 7→ σ(I ), for injective σ : {1, . . . , d} → {1, . . . , g}, is d!-to-1, we obtain

d! cyc[W̃d ] =
∑
σ

d∧
k=1

cσ(k)⊗

d∧
k=1

δσ(k) = d!
∑

I⊆{1,...,g}
|I |=d

∧
k∈I

ck ⊗
∧
k∈I

δk .

The result follows after dividing both sides by d!. This division is allowed because the tropical homology
groups of Jac(0) are torsion-free. □
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9C. Tropical cycle classes of powers of the theta divisor.

Lemma 9.5. We have

c1(L (2))=

g∑
i=1

c∗i ⊗ δ∗i .

Proof. As already observed in Section 8B, we have c1(L (2))= Q, where we identify

H 1,1(Jac(0))∼= H 1(0;Z)⊗�Z(0)

with Hom(H1(0;Z)⊗�Z(0), Z). Because (ck)k and (δk)k are dual bases with respect to Q, the assertion
follows. □

Lemma 9.6. Let I ⊆ {1, . . . , g} with |I | = d. Then∧
k∈I

c∗k ⊗
∧
k∈I

δ∗k ∈
∧d

H1(0, Z)∗⊗
∧d

�Z(0)∼= H d,d(Jac(0))

is Poincaré dual to∧
k∈{1,...,g}\I

ck ⊗
∧

k∈{1,...,g}\I

δk ∈ Hg−d(Jac(0), Z)⊗
∧g−d

�Z(0)∗ ∼= Hg−d,g−d(Jac(0)).

Proof. Since Jac(0)= W̃g, we have

cyc[Jac(0)] =

( ∧
1≤k≤g

ck

)
⊗

( ∧
1≤k≤g

δk

)
(9-1)

by Lemma 9.4.
Note that for every α ∈ H1(Jac(0);Z)∗, x ∈

∧i H1(Jac(0);Z), and y ∈
∧ j H1(Jac(0);Z) we have

α ⌟ (x ∧ y)= (α ⌟ x)∧ x + (−1)i x ∧ (α ⌟ y)

by the properties of the interior product; see [Eisenbud 1995, Proposition A 2.8]. Similarly for every
a ∈�Z(0), b ∈

∧i
�Z(0)∗, and c ∈

∧ j
�Z(0)∗ we have

a ⌟ (b∧ c)= (a ⌟ b)∧ c+ (−1)i b∧ (a ⌟ c).

Using induction, we conclude that∧
k∈I

c∗k ⌢
∧

k∈{1,...,g}

ck =±
∧

k∈{1,...,g}\I

ck

and similarly ∧
k∈I

δ∗k ⌢
∧

k∈{1,...,g}

δk =±
∧

k∈{1,...,g}\I

δk,

with the sign being the same on the right-hand sides of the two equations as long as we order the sets I
and {1, . . . , g} consistently in both equations. Combining these identities with the expression (9-1) for



Tautological cycles on tropical Jacobians 917

the fundamental class of Jac(0) and the identity (6-3), it follows that(∧
k∈I

c∗k ⊗
∧
k∈I

δ∗k

)
⌢ [Jac(0)] =

∧
k∈{1,...,g}\I

ck ⊗
∧

k∈{1,...,g}\I

δk,

which is precisely what we needed to show. □

The following result is the tropical analogue of [Birkenhake and Lange 2004, Theorem 4.10.4].

Lemma 9.7. We have

cyc([2]g−d)= (g− d)!
∑

I⊆{1,...,g}
|I |=d

∧
k∈I

ck ⊗
∧
k∈I

δk .

Proof. Since intersections with divisors is compatible with the tropical cycle class map by Theorem 3.3,
we have

cyc([2]g−d)= c1(L (2))g−d ⌢ [Jac(0)],

that is cyc([2]g−d) is Poincaré dual to c1(L (2))g−d . By Lemma 9.5 we know that

c1(L (2))=

g∑
i=1

c∗i ⊗ δ∗ei
.

With the description of the cap-product on H∗,∗(X) given in Section 6, we obtain

c1(L (2))g−d
= (g− d)!

∑
I⊆{1,...,g}
|I |=g−d

∧
k∈I

c∗k ⊗
∧
k∈I

δ∗ek

similar as in the proof of Lemma 9.4. Applying Lemma 9.6 finishes the proof. □

9D. The proof of the tropical Poincaré formula.

Theorem 9.8. The Poincaré formula holds tropically, that is we have

(g− d)![W̃d ] ∼hom [2]
g−d .

Remark 9.9. The Poincaré formula is more commonly expressed as

[W̃d ] ∼hom
1

(g− d)!
[2]g−d ,

where we the right side is defined after an extension of scalars to Q. Because the tropical homology
groups of Jacobians are torsion-free, this is indeed an equivalent expression of the formula.

Proof. By Lemma 9.4 we have

cyc[W̃d ] =
∑

I⊆{1,...,g}
|I |=d

∧
k∈I

ck ⊗
∧
k∈I

δk .
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On the other hand, by Lemma 9.7 we have

cyc([2]g−d)= (g− d)!
∑

I⊆{1,...,g}
|I |=d

∧
k∈I

ck ⊗
∧
k∈I

δk .

It follows immediately that

cyc((g− d)![W̃d ])= cyc([2]g−d),

which is equivalent to saying that [W̃d ] and [2]g−d are homologically equivalent. □

Corollary 9.10. We have

(g− d)![W̃d ] ∼num [2]
g−d .

Proof. This follows directly from Theorem 9.8 and Proposition 5.11. □

Remark 9.11. We have proved Theorem 9.8 under the assumption that the smooth tropical curve is
boundaryless. If 0 is a compact and connected smooth tropical curve with boundary as described in
Remark 2.5, then the Poincaré formula holds as well, and the proof in this seemingly more general case
can easily be reduced to the boundaryless case. Namely, if 0′ denotes the boundaryless smooth tropical
curve obtained from 0 by removing the leaves from 0, then 0 and 0′ have identical Jacobians, and their
theta divisors coincide by definition. Furthermore, the Abel–Jacobi map associated to 0′ contracts all the
leaves of 0′, so that the loci W̃d associated to 0 and 0′ coincide as well.

9E. Consequences of the Poincaré formula. The tropical Poincaré formula has some interesting im-
mediate consequences. One of them is a tropical version of Riemann’s theorem. The statement has
appeared before [Mikhalkin and Zharkov 2008], with a different (combinatorial) proof. To state the
theorem, recall from Section 8 that the Abel–Jacobi map induces a bijection Pic0(0)→ Jac(0). Because
all contributions from the chosen base point q cancel in degree 0, this bijection is independent of all
choices. In particular, we can view 2 as a divisor on Pic0(0) in a natural way. Also recall from Section 8
that while W̃d ⊆ Jac(0) depends on q , the image Wd of 0d in Picd(0) does not.

Corollary 9.12 (tropical Riemann’s theorem; see [Mikhalkin and Zharkov 2008, Corollary 8.6]). There
exists a unique µ ∈ Picg−1(0) such that

[Wg−1] = µ+ [2],

where we consider [2] as a tropical cycle in Pic0(0).

Proof. It suffices to show that there exists a unique µ ∈ Jac(0) such that [W̃g−1] = (tµ)∗[2] when
considering 2 as a divisor on Jac(0). Since [W̃g−1] is a codimension-1 tropical cycles on the tropical
manifold Jac(0), we can view W̃g−1 as a tropical Cartier divisor as well; see Section 3A. Applying the
Poincaré formula (Theorem 9.8) with d = g− 1 yields

cyc[W̃g−1] = cyc[2].
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By definition of 2, the cycle class cyc[2] is Poincaré dual to the element in H 1,1(Jac(0)) corresponding
to the linear form Q. As Q restricts to a perfect pairing H1(0;Z)×�Z(0)∗→ Z, Proposition 7.7 applies
and there a unique µ ∈ Jac(0) such that t∗µW̃g−1 = 2. This is, of course, equivalent to the equality
(tµ)∗[W̃g−1] = [2]. □

Corollary 9.13. For every 0≤ d ≤ g, we have∫
Jac(0)

[W̃d ] · [W̃g−d ] =

(g
d

)
.

Remark 9.14. In the special case d = 1 we recover the formula∫
Jac(0)

[W̃1] · [2] = g

stated in [Mikhalkin and Zharkov 2008, Theorem 6.5]. Also note that the intersection product [W̃d ]·[W̃g−d ]

is effective since one can locally apply the fan displacement rule.

Proof. We apply Poincaré formula (Theorem 9.8) three times, and obtain a chain of equalities

[W̃d ] · [W̃g−d ] =
[2]g

d!(g− d)!
=

(g
d

)
[W̃0]

that hold modulo homological equivalence. Taking the degree yields the result. □

Corollary 9.15. We have ∫
Jac(0)

[2]g = g!.

Proof. By the tropical Poincaré formula (Theorem 9.8), we have∫
Jac(0)

[2]g = g!
∫

Jac(0)

[W̃0] = g!.

□

Remark 9.16. Classically, the statement of Corollary 9.15 also follows from the geometric Riemann–
Roch theorem for Abelian varieties [Birkenhake and Lange 2004, Theorem 3.6.3]. Tropically, it is also
possible to prove the statement using the duality of Voronoi and Delaunay decompositions.
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Tautological rings of Shimura varieties and
cycle classes of Ekedahl–Oort strata

Torsten Wedhorn and Paul Ziegler

We define the tautological ring as the subring of the Chow ring of a Shimura variety generated by all Chern
classes of all automorphic bundles. We explain its structure for the special fiber of a good reduction of a
Shimura variety of Hodge type and show that it is generated by the cycle classes of the Ekedahl–Oort strata
as a vector space. We compute these cycle classes. As applications we get the triviality of ℓ-adic Chern
classes of flat automorphic bundles in characteristic 0, an isomorphism of the tautological ring of smooth
toroidal compactifications in positive characteristic with the rational cohomology ring of the compact
dual of the hermitian domain given by the Shimura datum, and a new proof of Hirzebruch–Mumford
proportionality for Shimura varieties of Hodge type.
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Introduction

Tautological rings. The Chow ring A•(SK ) (always with rational coefficients) of a Shimura variety SK is
still a very mysterious object. Here we study the subring generated by all Chern classes of all automorphic
bundles on the Shimura variety or on a smooth toroidal compactification of the Shimura variety. In the
Siegel case this subring was already studied by van der Geer and Ekedahl [1999; 2009]. Following
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their terminology, we call this subring the tautological ring1 of the Shimura variety or of some toroidal
compactification.

More precisely, let (G, X) be a Shimura datum and K ⊂ G(A f ) a sufficiently small open compact
subgroup. The Shimura datum defines a conjugacy class of cocharacters µ of G whose field of definition
is the reflex field E of the attached Shimura variety. We denote the canonical model over E of this
Shimura variety by SK = ShK (G, X). To simplify the notation here in the introduction let us assume
that G does not contain a Q-anisotropic and R-split torus in its center. This condition is automatic
if (G, X) is of Hodge type. The Borel embedding of the hermitian space X into its compact dual X∨

induces a morphism
σ : SK → Hdg := [G\X∨

]

of algebraic stacks over E [Milne 1990, III]. By definition, a vector bundle on SK is automorphic2 if it is
isomorphic to the pullback of a vector bundle on Hdg. Moreover, it is flat if it is obtained by pullback from
a vector bundle on the classifying stack [G\∗], i.e., if it is induced by a finite-dimensional representation
of G (see Section 5 for details). For a smooth toroidal compactification Stor

K of SK given by the choice
of a suitable polyhedral cone decomposition, the theory of canonical extensions of automorphic vector
bundles shows that there is a canonical extension of σ to Stor

K .

Definition 1 (Definition 5.7). The tautological ring of SK (resp. of Stor
K ) is the image of the Chow ring

of Hdg in the Chow ring of SK (resp. of Stor
K ) under pullback via σ .

In the Siegel case, the tautological ring is the subring generated by all Chern classes of the Hodge
bundle in the de Rham cohomology of the universal abelian scheme (Example 5.9), which is the definition
of van der Geer in this case.

Ekedahl–Oort strata. From now on we assume that (G, X) is of Hodge type and that p > 2 is a prime of
good reduction for the Shimura datum. Then the reductive group GQp has a reductive model G over Zp

and hence the algebraic stack Hdg has a good integral model over the ring of integers of the completion
of E at a place above p. Denote by G the special fiber G . Hence G is a reductive group over Fp. Moreover,
since the Shimura variety is of Hodge type, there are canonical smooth integral models SK and S tor

K

with special fibers SK and Stor
K by the work of Vasiu [1999], Kisin [2010], and Kim and Madapusi Pera

[2016; 2019] such that the morphism σ extends. Hence we also obtain in characteristic p tautological
rings of SK and Stor

K as images under pullback maps

σ ∗
: A•(Hdg)→ A•(Stor

K ), (0.1)

where we again denote by Hdg the special fiber of the above integral model of Hdg. In characteristic p
the work of Viehmann and Wedhorn [2013] (for Shimura varieties of PEL type), of Zhang [2018]

1One could argue against this terminology: By analogy to the notion of tautological rings of moduli spaces of curves, the
tautological ring should be the subring “generated by all interesting classes”. But with our definition there are many interesting
classes, for instance those of special subvarieties, that are in general not contained in the tautological ring.

2More precisely, it is the underlying vector bundle of an automorphic bundle since we ignore the actions by Hecke operators
here.
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and Wortmann [2013] (for Shimura varieties of Hodge type), and of W. Goldring and Koskivirta [2019a]
(for toroidal compactifications of Shimura varieties of Hodge type) shows that the morphism σ factors into

σ : Stor
K

ζ tor
−→ G-Zipµ β

−→ Hdg, (0.2)

where G-Zipµ is the stack of G-zips of type µ which was defined and studied in [Pink et al. 2011; 2015].
Here µ is as above, now considered as an element of the set of conjugacy classes of cocharacters of GFp

.
The stack G-Zipµ has a finite stratification by gerbes Zw, where w runs through a certain subset I W of
the Weyl group W of G (see Section 3 for a reminder on G-zips). We refer to the Zw as the Ekedahl–Oort
strata in G-Zipµ. The locally closed subschemes

Sw := ζ−1(Zw)⊆ SK and Stor
w := ζ tor,−1(Zw)⊆ Stor

K

are by definition the Ekedahl–Oort strata of SK and Stor
K . As ζ and ζ tor are smooth by the work of Zhang

[2018] and Andreatta [2023], many results proved for Zw ⊆ G-Zipµ in [Pink et al. 2011], such as smooth-
ness, a formula for its codimension, or closure relations of the strata, are known to hold also for the Ekedahl–
Oort strata Sw and Stor

w . Using a deep result on the existence of Hasse invariants ([Goldring and Koskivirta
2019a]; see also Boxer [2015] in the PEL case of type A and C) we can also prove the following connect-
edness result on Ekedahl–Oort strata. (From now on, we abbreviate Ekedahl–Oort strata to EO-strata.)

Theorem 2 (Theorem 6.15, Corollary 6.17). (1) For all j ≥1, the union of all EO-strata of dimension ≤ j
is geometrically connected in each geometric connected component of the toroidal compactifica-
tion Stor

K .

(2) For Shimura varieties of PEL type, the union of all EO-strata of dimension ≤ 1 is geometrically
connected in each geometric connected component of the Shimura variety SK .

The first assertion seems to be new even in the Siegel case. Assertion (2) was proved in the Siegel case
by Oort [2001, Theorem 1.1].

The tautological ring and the Chow ring of the stack of G-zips. By (0.2), the pullback σ ∗ is a composition

σ ∗
: A•(Hdg) β∗

−→ A•(G-Zipµ) ζ
tor,∗

−→ A•(Stor
K ). (0.3)

Brokemper [2018] has given two descriptions for A•(G-Zipµ). From his multiplicative description
(recalled in Proposition 4.8) we deduce:

Theorem 3 (Theorem 4.16, Lemma 4.2, Corollary 4.12). (1) The map β∗ is surjective and its kernel
is generated by all Chern classes in degree > 0 of vector bundles attached to representations of
the group G. In particular, the tautological ring of SK (resp. Stor

K ) is equal to the image of ζ ∗

(resp. ζ tor,∗).

(2) The graded Q-algebra A•(G-Zipµ) is isomorphic to the rational cohomology ring H 2•(X∨,Q) of
the complex manifold X∨.

As a consequence we obtain:
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Corollary 4 (Theorem 7.1, Corollary 7.2, Theorem 7.19). In characteristic p > 0, Chern classes of
flat automorphic bundles are zero in degree > 0. In characteristic 0, the ℓ-adic Chern classes of flat
automorphic bundles are “locally” zero in degree > 0.

Esnault and Harris [2017] prove in characteristic 0 for compact Shimura varieties (not necessarily
of Hodge type) the stronger result that the ℓ-adic Chern classes of flat automorphic bundles are even
globally zero, i.e., in the ℓ-adic continuous cohomology with values in the number field over which the
automorphic bundle is defined.

One particular important line bundle is the Hodge line bundle ω♭(ι) ∈ Pic(G-Zipµ) associated to an
embedding ι of (G, X) in the Siegel Shimura datum. Its pullback to the Shimura variety is the determinant
line bundle of the Hodge filtration of the “universal” abelian scheme attached to ι. Combining Corollary 4
with a result of Goldring and Koskivirta [2018] one gets:

Corollary 5 (Proposition 7.5). Suppose that the adjoint group of G is Q-simple. Then c1(ω
♭(ι)) ∈

A1(G-Zipµ) does not depend on ι, up to multiplication with positive rational numbers.

The second description of A•(G-Zipµ) by Brokemper (recalled in Proposition 4.14) shows that the
classes [Zw] of closures of EO-strata form a Q-basis of A•(G-Zipµ). Hence the tautological rings in
characteristic p are generated as a Q-vector space by the classes of the closures of EO-strata, which are
indexed by the subset I W of the geometric Weyl group W of G.

In fact, it is also possible to define classes in A•(G-Zipµ) whose pullbacks to the Shimura variety SK

are the classes of the closures of the Newton strata or of central leaves in SK . In particular, these classes
are also contained in the tautological ring of SK . This will be pursued in another paper.

The technical heart of the paper is to relate both descriptions of Brokemper:

Theorem 6 (Section 4D). Let G be a reductive group over Fp, where p is any prime (p = 2 included), and
let µ be a cocharacter of G. There is a concrete algorithm to express, for w ∈

I W , the cycle class [Zw] ∈

A•(G-Zipµ) of the closure of an EO-stratum as a polynomial in Chern classes of vector bundles on Hdg.

We refer to Section 4D for the meaning of the phrase “there is a concrete algorithm”. By pulling back
to the Shimura variety or to a toroidal compactification (for p > 2) we get the same descriptions of cycle
classes of EO-strata in the Chow rings of SK and Stor

K .
To obtain a description as in Theorem 6, we follow a strategy already used by Ekedahl and van der

Geer [2009] in the Siegel case, albeit using a somewhat different language. Following [Goldring and
Koskivirta 2019a], we construct a commutative diagram

G-ZipFlagµ
ψ

//

π

��

BrhG

γ

��

G-Zipµ
β

// Hdg

(0.4)

where G-ZipFlagµ is the algebraic stack of flagged G-zips defined by Goldring and Koskivirta [2019a;
2019b] and where BrhG = [B\G/B] = [B\∗] ×[G\∗] [B\∗] is the Bruhat stack (which is called the
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Schubert stack in the articles of Goldring and Koskivirta). Here B ⊆ G is a Borel subgroup. Then we
proceed in three steps.

1. Calculation of cycles of Schubert varieties: In A•(BrhG) there are the classes [Brhw] of Schubert
varieties for w ∈ W . They can be computed as follows. The cycle class of the smallest Schubert
variety [Brhe] is the class of the diagonal and can be computed by a result of Graham. Then one
defines explicit operators δw such that [Brhw] = δw([Brhe]). This is certainly well known but to our
surprise we found this only explained in the literature for classical groups (and sometimes only over
the complex numbers). Hence we explain this for arbitrary split reductive groups over an arbitrary
field in Section 2.

2. Pullback to G-ZipFlagµ: One describes the pullback via ψ explicitly and obtains a description for
the cycle classes in A•(G-ZipFlagµ) of the closures of Z∅

w := ψ−1(Brhw) (Sections 4A and 4B).

3. Push down to G-Zipµ: By a result of Koskivirta [2018], π induces for w ∈
I W a finite étale map

Z∅
w → Zw. If γ (w) is its degree, we obtain

[Zw] = γ (w)π∗([Z∅
w]).

Using a result of Brion [1996] one can describe π∗ explicitly (Theorem 4.17). Moreover, we explain
how to compute γ (w) as the number of Fp-rational points of the flag variety of an explicitly given
form of a Levi subgroup of G (Section 3F).

We also introduce the flag space over the Shimura variety (Section 6C) that classifies — roughly
speaking — refinements of the Hodge filtration. This generalizes a construction of Ekedahl and van der
Geer [2009] and appeared already in Goldring and Koskivirta [2019a; 2019b]. It carries a stratification
obtained by pullback from the stratification of the Bruhat stack. From the analogous properties of Schubert
varieties, we deduce that the closure of these strata are normal, Cohen–Macaulay, and have only rational
singularities. This also generalizes results from these works.

Structure of the tautological ring. By definition the tautological ring is a quotient of A•(Hdg), and A•(Hdg)
can be described explicitly (Remark 5.8). There is the following conjecture about the tautological ring.

Conjecture 7. The tautological ring of a smooth toroidal compactification Stor
K (considered as a scheme

over some splitting field of G) in characteristic zero or Stor
K in characteristic p is isomorphic to the rational

cohomology ring of the compact dual X∨.

By the work of van der Geer [1999] and Esnault and Viehweg [2002], Conjecture 7 is known in
characteristic zero in the Siegel case. In Proposition 7.16, we show that this conjecture is equivalent to
the property that all Chern classes of positive degree of flat automorphic bundles vanish in the Chow
ring of Stor

K (resp. Stor
K ). This equivalence has also been shown in [Esnault and Harris 2017, 1.11] if the

Shimura variety is compact. We show that the conjecture always holds in characteristic p:

Theorem 8 (Theorem 7.12). The map of graded Q-algebras H 2•(X∨) ∼= A•(G-Zipµ) → A•(Stor
K ) is

injective.
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Finally, as an immediate application we obtain a very strong form of Hirzebruch–Mumford proportion-
ality in positive characteristic (Theorem 7.20). From this we deduce a new and purely algebraic proof of
Hirzebruch–Mumford proportionality for Shimura varieties of Hodge type over C (Corollary 7.22).

Structure of the paper. The paper starts with a preliminary section in which we recall the notion of Chow
groups of quotient stacks and some basic properties of these groups. Then the main body of the paper
consists of two parts.

The first part (Sections 2–4) explains how to compute cycle classes of EO-strata in the Chow ring of
the stack of G-zips of type µ. This is a purely group-theoretic part and everything is done for arbitrary
reductive groups, arbitrary cocharacters, and in arbitrary positive characteristic p ≥ 2.

In Section 2 we explain how to calculate the cycle classes of Schubert varieties in the Bruhat stack of a
split reductive group. All of this is well documented in the literature for classical groups.

Section 3 recalls the stack of G-zips and of G-zips “endowed with a refinement of the Hodge filtration”
and defines the commutative diagram (0.4). In Section 4 we explain what maps are induced from this
diagram on Chow rings. This allows us to prove Theorem 3 and to give an algorithm for the determination
of cycle classes of EO-strata in A•(G-Zipµ) (Section 4D). The section closes with stating some easy
functoriality properties for maps of reductive groups inducing an isomorphism on adjoint groups.

In the second part of the paper (Sections 5–7) we apply the results from the first part to Shimura
varieties of Hodge type. Here we have to make the assumption p > 2.

In Section 5 we define the tautological ring for arbitrary Shimura varieties in characteristic 0 and for
Shimura varieties of Hodge type in characteristic p, where p is a prime of good reduction.

In Section 6 we recall the definition of EO-strata and prove Theorem 2. Here we also give the definition
of the flag space over the Shimura variety and its stratification.

Then we prove in Section 7 the triviality of Chern classes of flat automorphic bundles, the uniqueness of
the class of a Hodge line bundle (up to positive scalar), and our results on the structure of the tautological
ring and on Hirzebruch–Mumford proportionality.

In the final Section 8 we illustrate our results in the special cases of the Siegel Shimura variety, the
Hilbert–Blumenthal variety, and Shimura varieties of Spin type.

Notation. All algebraic spaces and algebraic stacks are assumed to be quasiseparated and of finite type
over their respective base.

Notation on reductive groups. Throughout all reductive groups are assumed to be connected (following
[SGA 3 III 1970]). Let k be a field, and let ks be a separable closure. Suppose that G is a reductive group
over k and that T ⊆ G is a maximal torus, defined over k. Then we denote by W = (NG(T )/T )(ks) the
Weyl group of (G, T ). It carries an action of 0 = Gal(ks/k) by group automorphisms. We will denote
by X∗(T ) (resp. X∗(T )) the group of characters (resp. cocharacters) of Tks .

Now suppose that G is quasisplit over k. Then we can choose a Borel pair T ⊆ B ⊆ G defined
over k. The choice of B defines a subset 6 ⊂ W of simple reflections and 0 acts by automorphisms of
the Coxeter system (W, 6). We denote by ℓ( · ) the length function and by ≤ the Bruhat order on the
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Coxeter system (W, 6). We choose representatives ẇ ∈ G(ks) of w ∈ W such that ( ˙w1w2) = ẇ1ẇ2 if
ℓ(w1w2)= ℓ(w1)+ℓ(w2). We denote by w0 ∈ W the element of maximal length and by e ∈ W the identity.

For any subset K ⊆6, we denote by WK the subgroup of W generated by K , and we set

KW := {w ∈ W | ℓ(sw) > ℓ(w) for all s ∈ K },

which is a system of representatives of WK \W . Let w0,K be the element of maximal length in WK .
We denote by 8 ⊂ X∗(T ) (resp. 8∨

⊂ X∗(T )) the set of roots (resp. coroots) of (G, T )ks and by
8+

⊂8 the set of positive roots given by B (that is, a root α is in 8+ if and only if Uα ⊂ B). The based
root datum (X∗(T ),8, X∗(T ),8∨,8+) and the Coxeter system (W, 6) do not depend on the choice
of (T, B), up to unique isomorphism, and are called “the” based root datum of G and “the” Weyl group
of G. For a set of simple reflections K ⊂6, we denote by 8K ⊂8 the set of roots that are in the Z-span
of the simple roots corresponding to K , and let 8+

K :=8+
∩8K .

Let µ : Gm,ks → Gks be a cocharacter of Gks . It gives rise to a pair of opposite parabolic subgroups
(P−(µ), P+(µ)) and a Levi subgroup L := L(µ) = P−(µ) ∩ P+(µ) defined by the condition that
Lie(P−(µ))

(
resp. Lie(P+(µ))

)
is the sum of the nonpositive (resp. nonnegative) weight spaces of µ in

Lie(G). On ks-valued points we have

P+(µ)= {g ∈ G | lim
t→0

µ(t)gµ(t)−1 exists}, P−(µ)= {g ∈ G | lim
t→∞

µ(t)gµ(t)−1 exists},

and L = CentG(µ).
We will also need to consider reductive groups over more general rings than a field. Hence let S be a

scheme. To simplify the notation we assume that S is connected. Let G be a reductive group scheme
over S, i.e., a smooth affine group scheme over S whose geometric fibers are reductive groups. The map
that attaches to s ∈ S the isomorphism class of the based root datum of the geometric fiber G s̄ is locally
constant [SGA 3 III 1970, Exp. XXII, Proposition 2.8] and hence constant because we assumed S to be
connected. Hence we may again speak of “the” based root datum of G. Let (W, 6) be the Weyl group
together with its set of simple reflections of this based root datum. Fix I ⊆6, and let ParI be the scheme
of parabolic subgroups of G of type I . It is defined étale locally on S because G is split étale locally
on S [SGA 3 III 1970, Exp. XXII, Corollaire 2.3].

If λ : Gm,S′ → GS′ is a cocharacter of G defined over some covering S′
→ S for the étale topology,

then the constructions of the parabolic subgroups P+(λ) and P−(λ) over a field generalize to arbitrary
schemes [Conrad 2014, 4.1.7] and yield parabolic subgroups of GS′ . If I is the type of P+(λ), we also
write Parλ instead of ParI .

In other words, we say that a parabolic subgroup P of GS′ is of type λ if it is locally for the étale
topology conjugate to P+(λ). In fact, P is then already locally for the Zariski topology conjugate to P+(λ)

by [SGA 3 III 1970, Exp. XXVI, Corollaire 5.5].

1. Chow groups of quotient stacks

Let k be a field. All Chow groups in the following will have Q-coefficients.
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1A. Chow rings of smooth quotient stacks. By a quotient stack we will mean a stack of the form [G\X ]

where X is a quasiseparated algebraic space of finite type over Spec(k) and G is an affine group scheme
of finite type over Spec(k) which acts on X from the left.

For such X and G, the equivariant Chow groups AG
i (X) are defined in [Edidin and Graham 1998] as

follows: Let n = dim X and g = dim G. There exists a representation of G on an ℓ-dimensional k-vector
space V such that there exists an open subset U of V with complement of codimension strictly bigger
than n − i on which G acts freely. For such a U , the quotient G\(X × U ) by the diagonal action exists
as an algebraic space and AG

i (X) is defined to be Ai+ℓ−g(G\(X × U )). By [Edidin and Graham 1998],
this group does not depend on the choice of U , and in fact, by Proposition 16 in that work, the group
Ai ([G\X ]) := AG

i+g(X) depends up to a canonical isomorphism only on the stack [G\X ] and not on the
chosen presentation of this stack.

A quotient stack is smooth if it admits a presentation as above with X smooth. Suppose that X is in
addition separated and equidimensional of dimension n. In this case for Ai ([G\X ]) := An−g−i ([G\X ])

on the graded vector space A•([G\X ]) :=
⊕

i≥0 Ai ([G\X ]) there is a naturally defined cup product
turning this group into a graded Q-algebra [Edidin and Graham 1998, Section 2.5]. This construction has
been generalized to arbitrary smooth algebraic stacks of finite type over a field by Kresch [1999]. Here
we will need only the case of smooth quotient stacks.

By [Edidin and Graham 1998, Proposition 3], the equivariant Chow groups have the same functoriality
properties as the usual Chow groups for G-equivariant morphisms X → Y . Every representable morphism
X → Y of quotient stacks arises in this way: For a presentation Y = [G\Y ], take X = X ×Y Y . This
is a G-torsor over X so that X = [G\X ] and by assumption it is representable by an algebraic space.
This shows that A•(_) is contravariantly functorial for representable morphisms of quotient stacks and
covariantly functorial for proper representable morphisms of quotient stacks. In fact, by [Kresch 1999] it is
also contravariantly functorial for flat (not necessarily representable) morphisms of smooth quotient stacks.

For an algebraic group H over k, we denote the quotient stack [H\ Spec(k)] by [H\∗]. This is a
smooth algebraic stack over k of dimension −dim(H). In this paper we will mainly use the following
types of morphisms between quotient stacks. For all of them, A•(_) is contravariantly functorial.

Example 1.1. Let G and X be as above.

(1) For a quasiseparated algebraic space Y of finite type over k, every morphism Y → [G\X ] is
representable.

(2) Let X be any equidimensional algebraic stack over k. Then every morphism X → [G\∗] is flat
of constant relative dimension. In particular, if ϕ : H → G is a homomorphism of affine algebraic
groups, the canonical morphism [H\∗] → [G\∗] is flat of relative dimension dim(G)− dim(H).

Let ϕ : G → H be a map of algebraic groups over k. Let f : X → Y be a map of quasiseparated algebraic
spaces of finite type over k. Suppose that G acts on X and that H acts on Y such that f (gx)= ϕ(g) f (x)
for g ∈ G(R) and x ∈ X (R) for any k-algebra R. Then f induces a morphism of algebraic stacks
[ f ] : [G\X ] → [H\Y ].
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Lemma 1.2. (1) If f is flat, then [ f ] is flat.

(2) If ϕ is a monomorphism, then [ f ] is representable.

Proof. The first assertion is clear, and the second is a very special case of [Stacks 2005–, Tag 04YY]. □

Proposition 1.3. Let X = [G\X ] be a smooth equidimensional quotient stack over k, and let k ′ be a
Galois extension of k with Galois group 0. Then the canonical homomorphism

A•(X )→ A•(Xk′)0

is an isomorphism.

Proof. This is well known (e.g., [Brokemper 2018, 1.3.6]) if X is an algebraic space. In general let
n := dim(X) and g := dim(G). For i ≥ 0, choose an ℓ-dimensional representation V of G and an open
subset U of V such that G acts freely on U and such that V \ U has codimension > i . Then

Ai (X )= An−i+ℓ−g(G\(X × U ))−→∼ An−i+ℓ−g(Gk′\(Xk′ × Uk′))0 = Ai (Xk′)0. □

We will also use the following result by Brokemper [2018, 1.4.7], which shows that A•( · ) “ignores
unipotent actions”.

Proposition 1.4. Let 0 → U → G → H → 0 be a split exact sequence of linear algebraic groups over k,
where U is a smooth connected unipotent group scheme over k. Choose a splitting H → G. Let X be a
smooth quasiprojective G-scheme over k and endow X with the H-action via the chosen splitting. Then
the pullback map

A•([G\X ])→ A•([H\X ])

is an isomorphism of Q-algebras.

1B. A variant of a result of Leray and Hirsch. We have the following Leray–Hirsch–type result from
[Edidin and Graham 1997]:

Proposition 1.5. Let X → Y be a representable morphism of smooth quotient stacks over k. Suppose
that Y is connected. Assume that there exists a proper and smooth algebraic space F over k which
admits a decomposition into locally closed algebraic subspaces isomorphic to Am

k such that X → Y is
a Zariski-locally trivial fibration with fiber F , i.e., such that X → Y is Zariski-locally on Y isomorphic
to Y ×k F → Y .

Then the following hold:

(i) For any i ≥ 0, a family of elements of Ai (X ) restricts to a basis of Ai (F ′) for every geometric fiber F ′

of X → Y if it does so for a single such fiber.

(ii) For any i ≥ 0, there exists a family of elements of Ai (X ) which restricts to a basis of Ai (F ′) for every
geometric fiber F ′ of X → Y .

(iii) Let (Bi ⊂ Ai (X ))i≥0 be a collection of families as in (ii). Then A•(X ) is a free module over A•(Y)
and

⋃
i≥0 Bi is a basis of the A•(Y)-module A•(X ).
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Proof. By taking presentations X = [G\X ] and Y = [G\Y ] as well as suitable U ⊂ V for G as above the
claim reduces to an analogous claim for the morphism G\(X × U )→ G\(Y × U ) of algebraic spaces.
Then the claim is given by [Edidin and Graham 1997, Proposition 6, its proof, and Lemma 1]. □

2. The Bruhat stack and cycle classes of Schubert varieties

From now on we fix a split reductive group scheme G over the field k, a Borel subgroup B ⊂ G over k
and a maximal torus T ⊂ B over k which is split over k.

2A. Chow rings of classifying stacks. By [Edidin and Graham 1998, Section 3.2], the Chow rings
A•([T \∗]), A•([B\∗]) and A•([G\∗]) are given as follows: Every χ ∈ X∗(T ) induces a line bundle
on [T \∗], and we get a morphism X∗(T )→ A1([T \∗]) sending χ to the Chern class of this line bundle;
see [Edidin and Graham 1998, Section 2.4]. This extends to an isomorphism

Sym(X∗(T )Q)−→∼ S := A•([T \∗]).

This in fact holds even with Z-coefficients. The canonical homomorphism A•([B\∗])→ S = A•([T \∗])

is an isomorphism (Proposition 1.4). The action of the Weyl group W on T induces an action of W on
the abelian group X∗(T ) by (w, χ) 7→ χ ◦ int(w−1). By functoriality we obtain an action of W on the
graded Q-algebra S. Then the natural homomorphism A•([G\∗])→ S yields an identification

A•([G\∗])−→∼ SW (2.1)

(recall that we consider rational coefficients).

Example 2.2. Let G = GLn . Let T ⊆ G be the diagonal torus identified with Gn
m . Then X∗(T )= Zn and

A•([T \∗])= S = Q[t1, . . . , tn], where (t1, . . . , tn) is the standard basis of Qn
= X∗(T )Q. Moreover,

A•([G\∗])= Q[t1, . . . , tn]Sn = Q[σ1, . . . , σn],

where σi is the elementary symmetric polynomial of degree i in t1, . . . , tn .
If X is a smooth quotient stack and V is a vector bundle of rank n on X , then V corresponds to a flat

morphism αV : X → [GLn \∗] of algebraic stacks and the i-th Chern class of V is given by

ci (V )= α∗

V (σi ) ∈ A•(X ).

The determinant det : GLn → Gm induces a flat morphism [GLn \∗] → [Gm\∗] and hence a pullback
morphism of Q-algebras

det∗ : A•([Gm\∗])= Q[t1] → A•([GLn \∗])= Q[σ1, . . . , σn]

which sends t1 to σ1. In particular,

c1(V )= c1(det V ).
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Proposition 2.3 [Demazure 1974, 4.6]. The homomorphism S → A•(G/B) sending χ ∈ X∗(T ) to the
Chern class of the induced line bundle on G/B is surjective and its kernel is the ideal J of S generated by
the homogeneous elements of SW of degree > 0.

2B. The Chow ring of the Bruhat stack. We consider the Bruhat stack

Brh := BrhG := [B\∗] ×[G\∗] [B\∗] ∼= [B\G/B],

together with its Bruhat decomposition into the locally closed substacks Brhw = [B\BwB/B]. We are
interested in the classes [Brhw] of the closures Brhw in A•(Brh).

Proposition 2.4. (1) For both natural homomorphisms S = A•([B\∗])→ A•(Brh), the module A•(Brh)
is free over S with a basis given by the classes [Brhw] for w ∈ W .

(2) The natural homomorphism S ⊗SW S → A•(Brh) is an isomorphism.

Proof. Consider Brh as a G/B-fibration over [B\∗] via, say, the first projection. Letw0 ∈ W be the longest
element. The substack Brhw0 ⊂ Brh is open and given by the open Bruhat cell in G/B. Since the stabilizer
of w0 in B × B is isomorphic to T , the substack Brhw0 can be identified with [T \∗]. Hence it has a natural
structure as a U−-torsor over [B\∗], where U− is the unipotent radical of the unique Borel subgroup B−

of G such that B−
∩ B = T . The pushout along the open immersion U− ↪→ G/B, u 7→ u B, is isomorphic

to Brh. Any U−-torsor is Zariski-locally trivial and hence so is Brh →[B\∗]. Thus Brh →[B\∗] satisfies
the conditions of Proposition 1.5. Hence (1) follows from Proposition 1.5 using the fact that the closures
of the Bruhat strata on G/B give a basis of A•(G/B) (see [Demazure 1974, Corollaire to Proposition 1]).

For (2), we can argue as follows: Consider S ⊗SW S as an S module via the first factor. The ring S is
free over SW of rank |W | and hence so is S ⊗SW S over S. The S-module A•(Brh) is free of rank |W |

by (1). Thus S ⊗SW S → A•(Brh) is a homomorphism of free S-modules of the same rank and it suffices
to prove that it is surjective. By Proposition 2.3, we can take homogenous elements xi in S which map to
a basis of A•(G/B). Then by Proposition 1.5 the images of 1 ⊗ xi in A•(Brh) form a basis of A•(Brh)
over S. This proves surjectivity. □

To give a description of the class of Brhw in S ⊗SW S, we now proceed as follows. We first recall
a formula for the class of the diagonal Brhe in Brh by Graham. Then we define explicit operators δw
on A•(Brh) such that [Brhw] = δw[Brhe].

2C. The class of the diagonal. In [Graham 1997, Theorem 1.1] the following formula for the class of
the diagonal Brhe in Brh is proved in the case k = C. The proof given there can be readily adapted to
arbitrary fields.

For w ∈ W , let iw : S ⊗SW S → S, r ⊗ r ′
7→ rw(r ′). The map

∏
w∈W iw : S ⊗SW S →

∏
w∈W S is

injective because Spec(S ⊗SW S)= Spec(S)×Spec(S)/W Spec(S).

Theorem 2.5 (Graham). The image of [Brhe] under ie is
∏
α∈8+ α ∈ S. The image of [Brhe] under iw

for w ̸= 1 is zero.



934 Torsten Wedhorn and Paul Ziegler

Example 2.6. We recall the results of Fulton on the class of the diagonal for classical groups. For the
classical groups GLn , SO2n+1, Sp2n , and SO2n , we choose the standard maximal torus T ∼= Gn

m and
Borel subgroup giving rise to the Weyl group descriptions of page 279 of [Fulton 1996] to obtain S =

Sym(X∗(T )Q) and the roots in X∗(T ). We give elements [̃Brhe] in S ⊗Q S = Q[x1, . . . , xn, y1, . . . , yn],
where xi and yi represent the same Gm-factor of T . The images of these elements in S⊗SW S are [Brhe]. As
a reference we use [Fulton 1996], where y j is denoted by yn+1− j and the Schubert variety corresponding
to w = e is denoted by �w0 .

We fix n ∈ N and introduce the following polynomials:

8 :=8n :=

∏
1≤i< j≤n

(xi − y j ) ∈ S ⊗Q S,

0k := det((ck+1+ j−2i )1≤i, j≤k) ∈ Q[c−k+2, c−k+3, . . . , c2k+1].

For instance,
81 = 1, 82 = x1 − y2,

01 = c1, 02 = c1c2 − c0c3.
(2.7)

We also let σ1, . . . , σn be the elementary symmetric polynomials in n variables with deg(σi )= i . We also
set σ0 := 1.

(An−1) Let n ≥ 2. Then

[̃Brhe] =8n. (2.8)

(Bn) Let n ≥ 2. Then

[̃Brhe] =8n0n,

ci :=

{ 1
2(σi (x1, . . . , xn)+ σi (y1, . . . , yn)) if 0 ≤ i ≤ n,

0 otherwise.

(2.9)

(Cn) Let n ≥ 2. Then

[̃Brhe] =8n0n,

ci :=

{
σi (x1, . . . , xn)+ σi (y1, . . . , yn) if 0 ≤ i ≤ n,

0 otherwise.

(2.10)

(Dn) Let n ≥ 3. Then

[̃Brhe] =8n0n−1,

ci :=

{ 1
2(σi (x1, . . . , xn)+ σi (y1, . . . , yn)) if 0 ≤ i ≤ n − 1,

0 otherwise.

(2.11)

2D. The Chevalley formula. For (λ, µ) ∈ X∗(T )× X∗(T ), we have a natural line bundle Lλ,µ on Brh
with Chern class λ⊗µ. The following gives a version of a classical formula of Chevalley in this context:
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Theorem 2.12 [Goldring and Koskivirta 2019a, Theorem 5.2.2]. (1) The line bundle Lλ,µ has a global
section on Brhw if and only if µ= w−1λ.

(2) The space H 0(Brhw,Lλ,w−1λ) has dimension 1.

(3) For w ∈ W , set Ew := {α ∈8+
| wsα <w, ℓ(wsα)= ℓ(w)− 1}. The divisor of any nonzero section

of Lλ,w−1λ on Brhw is equal to ∑
α∈Ew

⟨λ, α∨
⟩[Brhwsα ].

Note that the formula in loc. cit. contains an additional minus sign because there the positive roots are
defined by the opposite Borel subgroup.

For w ∈ W and λ ∈ X∗(T ), this implies the following relation in A•(Brh):

(λ⊗w−1(λ))[Brhw] =

∑
α∈Ew

⟨λ, α∨
⟩[Brhwsα ]. (2.13)

2E. The operators δw. We use certain operators on S and S⊗SW S: Let n be the semisimple rank of G and
α1, . . . , αn be the simple roots with respect to T and B. For 1 ≤ i ≤ n, let si := sαi be the simple reflection
in W corresponding to αi and Pi := B ∪ Bsi B the “i-th minimal parabolic” with root system {±αi }.

Construction 2.14. Let X i := [B\∗] ×[Pi \∗] [B\∗], and let p1, p2 : X i → [B\∗] be the two projections,
which are proper. Then we define δi : S → S to be the correspondence p1,∗ ◦ p∗

2 : S → S.

Construction 2.15. Let 1 ≤ i ≤ n. Consider S as the ring of polynomial functions on X∗(T )Q, that is, the
ring of functions X∗(T )Q → Q which, with respect to some (or equivalently any) basis of X∗(T ), can be
written as a polynomial. For f ∈ S, the element f − sαi ( f ) of S vanishes on the hyperplane in X∗(T )Q
given by the vanishing of the coroot α∨

i . Hence we obtain an element δ̃i ( f ) := ( f − sαi ( f ))/α∨

i ∈ S.
This defines a Q-linear homomorphism δ̃i : S → S.

Theorem 2.16. (1) For each 1 ≤ i ≤ n, we have δi = δ̃i .

(2) For w ∈ W , one gets a well-defined operator δw on S by letting δw = δi1 · · · δik for any decomposition
w = si1 · · · sik with k = ℓ(w).

Proof. When k = C and G is semisimple and simply connected, this is proven in [Bernšteı̆n et al. 1973].
See Theorem 5.7 in that work for (1) and Theorem 3.4 there for (2).

The general case can be deduced from this as follows: First, using the functoriality of the various
constructions with respect to homomorphisms of reductive groups inducing an isomorphism on adjoint
groups one can reduce to the case that G is semisimple and simply connected. Now let k̃ be another
algebraically closed base field, G̃ the reductive group over k̃ with the same root datum as G, with
T̃ , B̃, B̃rh := BrhG̃ , etc. the corresponding data for G̃. We have a natural W -equivariant isomorphism
A•(∗/T )∼= A•(∗/T̃ ) which induces an isomorphism A•(Brh)∼= A•(B̃rh). We claim that for w ∈ W , the
classes of Brhw and B̃rhw correspond to each other under this isomorphism. For w= e, this follows from
Theorem 2.5. From this one deduces the claim by induction on ℓ(w) using (2.13).

By taking k̃ = C this implies the claim. □
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Remark 2.17. Construction 2.15 shows that one has the following Leibniz-type formula:

δi ( f g)=
f g − sαi ( f )sαi (g)

α∨

i
=
( f − sαi ( f ))g + sαi ( f )(g − sαi (g))

α∨

i

= δi ( f )g + sαi ( f )δi (g). (2.18)

Now, for w ∈ W , we define an operator δw on A•(Brh)= S ⊗SW S by letting the δw just defined on S
act on the first factor. For 1 ≤ i ≤ n, the operator δi = δsi on S ⊗SW S can also be described as follows:
Let Brhi be the following fiber product:

Brhi
q2

//

q1

��

Brh

��

Brh // [Pi\∗] ×[G\∗] [B\∗]

(2.19)

Then δsi = q1,∗ ◦ q∗

2 : S ⊗SW S → S ⊗SW S.

Theorem 2.20. Let w ∈ W and 1 ≤ i ≤ n. Then δsi [Brhw] = [Brhsiw] if ℓ(siw) = ℓ(w) + 1 and
δsi [Brhw] = 0 otherwise.

Proof. We let Pi act on Pi/B and G/B by multiplication from the left and on products of these varieties
by the diagonal action. Then the Pi -equivariant diagram

Pi/B × Pi/B × G/B
π13
//

π23

��

Pi/B × G/B

π2

��

Pi/B × G/B
π2

// G/B

gives a presentation of (2.19). Here the quotient morphism Pi/B × G/B → Brh = [B\G/B] sends
(pB, gB) to (Bp−1gB) and the preimage of Brhw is the Pi -orbit

Ow := {(pB, gB) ∈ Pi/B × G/B | Bp−1gB = BwB}

in Pi/B × G/B. We prove the claim by showing the corresponding claim for the classes of the closed
subvarieties [Ow] in A•(Pi/B × G/B).

The image π23(π
−1
13 (Ow)) is contained in Pi/B × PiwB/B = Pi/B ×(Bsi BwB/B ∪ BwB/B). When

siw<w, the latter set is contained in Pi/B × BwB/B. Since dim(Ow)= dim(BwB/B)+dim(Pi/B) >
dim(BwB/B), it is then of strictly smaller dimension than π−1

23 (Ow) = Pi/B × Ow. This proves the
claim in this case.

Now assume siw >w. We have Bsi BwB = BsiwB and

π23(π
−1
13 (Ow))= Pi/B × PiwB/B = Pi/B × (BsiwB/B ∪ BwB/B).

This is a locally closed subset of Osiw of the same dimension, hence it is open in Osiw. Thus it suffices to
prove that π23 :π−1

13 (Ow)→π23(π
−1
13 (Ow)) is an isomorphism. For this it suffices to prove that every fiber

of π23 above a point in this image consists of a single point. For such a point (pB, gB), the fiber of π23
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is isomorphic to {q B ∈ Pi/B | Bq−1gB = BwB}. When gB ∈ BwB/B, the identity Bq−1gB = BwB
implies q ∈ B and hence the fiber consists of a single point.

Now assume gB ∈ BsiwB/B and let q B ∈ Pi/B such that Bq−1gB = BwB. Then necessarily q ∈ Bsi B.
Then (see [Springer 1998, Lemma 8.3.6]) we can write q = usi and g = u′si bw for elements u, u′ in
the root group Uαi associated to αi and an element b ∈ B. Then q−1g = si u−1u′si bw with si u−1u′si ∈

Bsi Bsi B = B ∪ Bsi B. Since q−1g ∈ BwB, we get si u−1u′si ∈ B ∩ U−αi = {e}. Thus u = u′, which
proves that the fiber of π23 above (q B, gB) again consists of a single point. This finishes the proof. □

By induction on ℓ(w), we get:

Corollary 2.21. Let w ∈ W . Then [Brhw] = δw[Brhe].

3. The stacks of G-zips and of flagged G-zips

3A. The stack of G-zips. We recall the construction of the moduli stack of G-zips as a quotient space;
see [Pink et al. 2015, Theorem 1.5]. From now on let k be an algebraic closure of Fp and G a reductive
group scheme over Fp. If X is an object over some Fp-algebra, then we denote by X (p) the pullback
of X under the absolute Frobenius. For a scheme X over Fp, we denote by ϕ : X → X (p)

= X its relative
Frobenius.

The zip datum. Let µ : Gm,k → Gk be a cocharacter of Gk . It gives rise to a pair of opposite parabolic
subgroups (P−(µ), P+(µ)) and a Levi subgroup L := L(µ)= P−(µ)∩ P+(µ) defined by the condition
that Lie(P−(µ))

(
resp. Lie(P+(µ))

)
is the sum of the nonpositive (resp. nonnegative) weight spaces of µ

in Lie(G). On k-valued points we have

P+(µ)= {g ∈ G | lim
t→0

µ(t)gµ(t)−1 exists}, P−(µ)= {g ∈ G | lim
t→∞

µ(t)gµ(t)−1 exists},

and L = CentG(µ). We set

P := P−, Q := (P+)
(p), M := L(p) = CentG(ϕ ◦µ).

Hence M is a Levi subgroup of Q.

The stack of G-zips of type µ. Denote the projections to the Levi components P → L and Q → M both
by x 7→ x̄ . The zip group E is defined as

E := {(x, y) ∈ P × Q | ϕ(x̄)= ȳ}. (3.1)

We let G × G act on G by (x, y) · g := xgy−1. By restriction we obtain actions of P × Q and of E on G.
We denote by

G-Zipµ := [E\G]

the quotient stack. It is a smooth algebraic stack of dimension 0.
Every morphism f : G → G ′ of reductive groups over Fp yields a morphism of stacks G-Zipµ →

G ′-Zip f ◦µ. In particular, if µ′
= int(h) ◦ µ for some h ∈ G(k), then conjugation with h yields an
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isomorphism G-Zipµ −→∼ G-Zipµ
′

. Let κ be the field of definition of the conjugation class of µ. As G is
quasisplit, there exists an element in that conjugacy class that is defined over κ . Therefore it is harmless
to assume that µ is defined over κ , the field of definition of its conjugacy class. We do assume this from
now on. Then the stack G-Zipµ is defined over κ as well.

3B. Choosing a frame.

Lemma 3.2. Let κ be a finite extension of Fp. Let G be a reductive group defined over Fp, let Q ⊆ Gκ be
a parabolic subgroup, and let M ⊆ Q be a Levi subgroup that is also defined over κ . Then there exists
g ∈ G(κ) and a Borel pair T ⊆ B ⊆ G that is already defined over Fp with T ⊆

g M and B ⊆
g Q.

Proof. As every reductive group over a finite field is quasisplit, we can choose a maximal torus T and
a Borel subgroup B ⊇ T defined over Fp. By [SGA 3 III 1970, Exp. XXVI, Lemme 3.8], there exists a
parabolic subgroup Q′ defined over κ with the same type as Q such that B ⊆ Q′. Let M ′ be the unique
Levi subgroup of Q′ that contains T . By [SGA 3 III 1970, Exp. XXVI, Corollaire 5.5(iv)] there exists an
element g ∈ G(κ) with g Q = Q′ and g M = M ′. □

After replacing µ by some conjugate cocharacter µ′, we may (and do) assume by Lemma 3.2 that
there exists a Borel pair T ⊆ B ⊆ G defined over Fp with B ⊆ Q and T ⊆ M . If µ is defined over
some finite extension κ of Fp, we may assume that its conjugate is also defined over κ . Then T is also a
maximal torus of M and hence contains its center. Hence ϕ ◦µ factors through T . Because T is defined
over Fp, also µ itself factors through T . As B ⊆ Q, the cocharacter ϕ ◦µ is B-dominant. Hence µ is
also B-dominant because B is defined over Fp.

Recall that we denote by (W, 6) the Coxeter system associated to (G, B, T ). The Frobenius ϕ on G
induces an automorphism of the Coxeter system (W, 6), which is again denoted by ϕ (see also Section 3D
below). Let I, J ⊆6 be the set of simple reflections corresponding to the conjugacy classes of P and Q,
respectively.

By [Pink et al. 2011, 3.7] (and its proof), we find z ∈ G(k) with zT = T such that (B, T, z) is a frame
for (G, P, L , Q,M, ϕ) in the sense of [Pink et al. 2011, 3.6], i.e., z B ⊆ P and ϕ(z B ∩ L)= B ∩ M . In
fact we can and will choose z as follows.

Lemma 3.3. Let z ∈ NormG(T )(k) be a lift of z̄ :=w0,Iw0 ∈ W . Then z B ⊆ P and ϕ(z B ∩ L)= B ∩ M.

Proof. The first claim follows from the fact that w0 B = ϕ(w0 B)⊂ P . The second claim follows from

ϕ(z B ∩ L)=
ϕ(w0,I )ϕ(w0 B ∩ L)= B ∩ M. □

By [Pink et al. 2011, 3.11], the map

ϕ ◦ int(z) : (WI , I )−→∼ (WJ , J ) (3.4)

is an isomorphism of Coxeter systems and I , J , and ϕ ◦ int(z) are independent of the choice of the frame.
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3C. Classification of G-zips. For w ∈ W , let Gw ⊆ G be the E-orbit of ẇz. By [Pink et al. 2011, 7.5],
there is a bijection

I W ↔ {E-orbits in G}, w 7→ Gw, (3.5)

and dim(Gw)= ℓ(w)+dim(P) for w ∈
I W . We call the corresponding locally closed algebraic substack

of G-Zipµ,

Zw := [E\Gw] ⊆ G-Zipµ, (3.6)

the zip stratum corresponding to w ∈
I W . One has codimG-Zipµ(Zw)= dim(G)− dim(P)− ℓ(w).

Let Gw be the closure of the E-orbit Gw. We set Zw := [E\Gw]. This is the unique reduced
closed algebraic substack of G-Zipµ whose underlying topological space is the closure of the one-point
topological space underlying Zw. By [Pink et al. 2011, 6.2], we have

Zw =

⋃
w′⪯w

Zw′ (3.7)

for a partial order ⪯ on I W defined in [loc. cit., 6.2]. Here we will need only the following properties of
this partial order (see [He 2007, §3]).

Lemma 3.8. (1) There exists a unique minimal element in I W , namely the neutral element e, and a
unique maximal element in I W , namely w0,Iw0, where w0 and w0,I are unique elements of maximal
length in W and in WI , respectively.

(2) The partial order ⪯ is at least as fine as the Bruhat order.

(3) Let w′
⪯ w. Then ℓ(w′)≤ ℓ(w) and one has ℓ(w′)= ℓ(w) if and only if w′

= w.

(4) If w′
≺ w and there exists no u ∈

I W with w′
≺ u ≺ w, then ℓ(w′)= ℓ(w)− 1.

3D. The action of Frobenius. Recall that we denote by ϕ : G → G the relative Frobenius. We also
denote by σ : k → k, x 7→ x p the arithmetic Frobenius. As T and B are defined over Fp, we can identify
canonically T (p) with T and B(p) with B. Hence the relative Frobenius induces isogenies ϕ : T → T
and ϕ : B → B.

Set W := NormG(T )/T = π0(NormG(T )), which is a finite étale group scheme over Fp. Then
W = W(k) is the absolute Weyl group. As NormG(T ) is also defined over Fp, the relative Frobenius ϕ
induces an automorphism of W and hence an automorphism ϕ of the finite group W . As B is defined
over Fp, this automorphism preserves the set 6 of simple reflections in W defined by B. By functoriality,
σ also defines an automorphism w 7→

σw of W = W(k) and we have ϕ(w)=
σ−1
w for all w ∈ W . If T

is a split torus, then ϕ = id on W .
We denote by X∗(T ) the group of characters of T ⊗Fp k. For λ ∈ X∗(T ), we set ϕ(λ) := λ ◦ϕ, which

defines an endomorphism ϕ on the abelian group X∗(T ). We denote by λ 7→
σλ the canonical action of σ

on X∗(T ), i.e.,
σλ := (idGm,Fp

⊗σ) ◦ λ ◦ (idT ⊗σ−1).
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Then one has, for λ ∈ X∗(T ),
ϕ(λ)= p σ

−1
λ. (3.9)

If T is a split torus, then σλ= λ and ϕ(λ)= pλ for all λ ∈ X∗(T ).
By functoriality, the actions of ϕ and σ on X∗(T ) also induce actions on the graded Q-algebra

S = Sym(X∗(T ))Q, and for f ∈ S of degree d, we have

ϕ( f )= pd σ−1
f. (3.10)

3E. The stack of flagged G-zips of type µ. We fix a subset I0 ⊆ I and let P0 be the unique parabolic
subgroup of G of type I0 with z B ⊆ P0 ⊆ P . We let E act on G × P/P0 by

(x, y) · (g, a P0) := (xgy−1, xa P0)

and set
G-ZipFlagµ,I0 := [E\(G × P/P0)].

If I0 =∅, then P0 =
z B and we abbreviate G-ZipFlagµ := G-ZipFlagµ,∅. Note that G-ZipFlagµ,I =

G-Zipµ. For I ′

0 ⊆ I0, there are canonical projection maps

G-ZipFlagµ,I
′

0 → G-ZipFlagµ,I0

that are P0/P ′

0-bundles, where P ′

0 is the unique parabolic subgroup of type I ′

0 with z B ⊆ P ′

0 ⊆ P . In
particular, these maps are proper, smooth, and representable. By taking I ′

0 = ∅ and I0 = I , we obtain a
projection map

π : G-ZipFlagµ → G-Zipµ .

Let L0 ⊂ P0 be the unique Levi subgroup containing T . We set

M0 := L(p)0 and Q0 := M0 B.

Then Q0 is a parabolic subgroup containing B of type

J0 := ϕ(z I0)

and M0 is the unique Levi subgroup of Q0 containing T . Then (B, T, z) is again a frame for (G, P0, L0,

Q0,M0, ϕ). By [Goldring and Koskivirta 2019b, (3.2.3)], the morphism G× P → G, (g, x) 7→ x̄ gϕ(x̄)−1

induces a smooth representable morphism of algebraic stacks

ψ I0 : G-ZipFlagµ,I0 → BrhI0 := [P0\G/Q0]

with irreducible fibers. The maps ψ I0 are compatible with passing to I ′

0 ⊆ I0.
For I0 =∅, we have P0 =

z B and Q0 = B. Therefore g 7→ z−1g yields an isomorphism Brh∅ −→∼ BrhG

and we denote by ψ the composition

ψ : G-ZipFlagµ ψ∅
−→ Brh∅ −→∼ BrhG,
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which is a smooth representable morphism with irreducible fibers. For w ∈ W , we write

Z∅
w := ψ−1(Brhw)⊆ G-ZipFlagµ . (3.11)

Since ψ is smooth, the Z∅
w form a stratification of G-ZipFlagµ whose closure relation is given by the

Bruhat order on W :
Z∅
w =

⋃
w′≤w

Z∅
w′ .

Proposition 3.12. The strata Z∅
w are smooth and irreducible. Their closures Z∅

w are normal and with
only rational singularities. In particular, they are Cohen–Macaulay.

Proof. As ψ is smooth with irreducible fibers and Brhw is smooth and irreducible, the first assertion
holds. The smoothness of ψ also implies that Z∅

w = ψ−1(Brhw). Hence all remaining assertions follow
from the analogous properties for Schubert varieties [Brion and Kumar 2005, 3.2.2, 3.4.3]. □

By [Koskivirta 2018, 2.2.1], we have the following:

Proposition 3.13. The projection π : G-ZipFlagµ → G-Zipµ induces for w ∈
I W representable finite

étale maps
πw : Z∅

w → Zw.

Definition 3.14. We set γ (w) := deg(πw).

In the next section we give a description of γ (w).

Remark 3.15. Like their name suggests, the spaces G-ZipFlagµ,I0 admit a moduli description as a “flag
space” over G-Zipµ. Specifically, the stack G-ZipFlagµ is canonically isomorphic to the moduli stack
of pairs consisting of a G-zip (I, I+, I−, ι) of type µ as in [Pink et al. 2015, Definition 3.1], together with
a P0-subtorsor of the P-torsor I+. See [Goldring and Koskivirta 2019b, Section 3.1] for details on this
construction.

3F. Calculation of γ (w). Fix w ∈
I W .

The type of w ∈
I W . We recall the following construction from [Pink et al. 2011, §5]. Fix w ∈

I W .
Let Iw be the largest subset of I such that

ϕ(z Iw)=
w−1

Iw

and call it the type of w. In other words,

Iw = {s ∈ I | (int(w) ◦ϕ ◦ int(z))k(s) ∈ I for all k ≥ 1}. (3.16)

For instance, as ϕ(z I )= J , one has Ie = I if and only if I = J . Let Pw be the unique parabolic subgroup
of type Iw with z B ⊆ Pw, and let Lw be the unique Levi subgroup of Pw with Lw ⊇ T . As for an arbitrary
subset of I , we obtain

Mw :=
(zw)−1

Lw = L(p)w and Qw := MwB.
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Hence Qw is the unique parabolic subgroup containing B of type Jw, where

Jw :=
w−1

Iw = ϕ(z Iw),

and Mw is the unique Levi subgroup of Qw containing T . Note that Mw (resp. Jw) is denoted by Hw
(resp. Kw) in [Pink et al. 2011, §5].

Description of γ (w) via flag varieties. Set

Aw := {x ∈ Lw |
zwϕ(x)= x}.

Then we have, by [Koskivirta 2018, 2.2.1] and [Pink et al. 2011, 8.1],

γ (w)= #(Aw/(Aw ∩
z B)). (3.17)

Lemma 3.18. (1) (int (zw) ◦ϕ)(Lw)= Lw.

(2) (int (zw) ◦ϕ)(Lw ∩
z B)= Lw ∩

z B.

Proof. The first assertion follows from zwϕ(z Iw) =
z Iw. Let us show the second assertion. Both sides

are Borel subgroups of Lw which contain T . Hence it suffices to show that they contain the same root
subgroups. Let 8 be the set of roots for (G, T ), and let 8+ be the set of positive roots with respect to B.
For a set of simple reflections K , let 8K be the set of roots of the standard Levi subgroup L K of type K .
Then 8+

K :=8K ∩8+ is the system of positive roots given by the Borel subgroup L K ∩ B of L K .
Because z normalizes T , we can consider its image in W , which we denote again by z. Then the set of

roots corresponding to Lw is z8Iw and the set of roots corresponding to Lw∩
z B is z8+

Iw . So we must show

wϕ(z8+

Iw)=8+

Iw .

As both sides have the same cardinality, it suffices to show that the left side is contained in the right side.
By definition of a frame, we have ϕ(z B ∩ Lw)⊆ B ∩ Mw, and this shows

wϕ(z8+

Iw)⊆
w8+

Jw =8+

Iw ,

because wJw = Iw. □

Hence int zw ◦ ϕ defines a descent datum from k to Fp for the reductive group Lw together with its
Borel subgroup z B ∩ Lw. We obtain a reductive group L ′

w and a Borel subgroup B ′
w defined over Fp and

its full flag variety by Fℓw := L ′
w/B ′

w. Then we have by (3.17) the following description of γ (w).

Proposition 3.19. For w ∈
I W , one has

γ (w)= L ′

w(Fp)/B ′

w(Fp)= Fℓw(Fp). (3.20)

Here the second identity follows from H 1(Fp, B ′
w)= 0.

Remark 3.21. By definition, L ′
w is a form defined over Fp of the standard Levi subgroup of G corre-

sponding to the set of simple reflections Iw. It is split if and only if wϕ(zs) = s for all s ∈ Iw. If the
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Dynkin diagram of Lw has no automorphisms (e.g., if it is connected of type Bn , Cn , E7, E8, F4, or G2),
then this is automatic.

If L ′
w is split, one obtains, from the decomposition of the flag variety Fℓw into a disjoint union of

Schubert cells, the formula
γ (w)=

∑
w∈WIw

pℓ(w). (3.22)

3G. The key diagram. The projection E → P , (x, y) 7→ x is a surjective homomorphism of algebraic
groups. We obtain a composition

β : G-Zipµ = [E\G] → [E\∗] → [P\∗]. (3.23)

Finally, we have a morphism γ : BrhG → [P\∗] defined as the composition

γ : BrhG = [B\∗] ×[G\∗] [B\∗]
pr1
−→ [B\∗] −→∼ [

z B\∗] → [P\∗], (3.24)

where the second map is induced by the isomorphism b 7→ zbz−1 and where the third map is induced by
the inclusion z B → P .

The following commutative diagram, where α := β ◦π , will be our key diagram:

G-ZipFlagµ
ψ

//

α

))

π

��

BrhG

γ

��

G-Zipµ
β

// [P\∗]

(3.25)

All morphisms are flat of constant relative dimension. Moreover, π is a P/z B-bundle. Note that
P/z B = L/(z B ∩ L) is the full flag variety for L . In particular, π is proper, smooth, and representable.

4. Induced maps of Chow rings

In this section we describe the maps induced by the key diagram (3.25) on Chow rings. If X is any
smooth algebraic quotient stack defined over some subfield k0 of k, we set A•(X ) := A•(X ⊗k0 k).

4A. The Chow ring of G-Zipµ and G-ZipFlagµ. We recall the description of Brokemper [2018] of
the Chow ring of A•(G-Zipµ):

Recall that S := Sym(X∗(T )Q) = A•([T \∗]). This is a graded Q-algebra carrying an action by the
Weyl group W by graded automorphisms. We also denote by S+ := S≥1 the augmentation ideal of S. Let

I := ( f −ϕ( f ) | f ∈ SW
+
)⊆ SW (4.1)

be the ideal generated by f −ϕ( f ) for f ∈ SW
+

in SW . Because we work with rational coefficients, there
is also a simpler description of I (see Remark 4.13 for why the definition in (4.1) is more natural in this
context).

Lemma 4.2. I = SW
+

.
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Proof. We have to show that SW
+

⊆ I. Let f ∈ SW be of degree d ≥ 1, and let s ≥ 1 be an integer such
that T ⊗Fp Fps is split. Thus σ s acts trivially on X∗(T ) and hence on S. Then ϕs( f )= pds f by (3.10)
and therefore

(1 − pds) f = f −ϕs( f )=

s∑
i=1

(ϕi−1( f )−ϕi ( f )) ∈ I. □

For every set K ⊆ 6 of simple reflections, SWK is a finite free SW -algebra of rank #(W/WK ), and
hence the canonical map

SW/I → SWK /ISWK

is finite and faithfully flat and, in particular, injective.
We keep the notation from Section 3A. For every type K ⊆ 6 of a parabolic subgroup, we denote

by K o the opposite type. Then

I o
=

z I = ϕ−1(J ) (4.3)

is a set of simple reflections and L B =
z PI is the standard parabolic subgroup of type z I .

For a subgroup H of G, we denote by [Hϕ\G] the quotient stack for the action of H on G by ϕ-
conjugation (h, g) 7→ hgϕ−1(h). The following description of the Chow ring of these stacks for H = T
and H = L is given by [Brokemper 2018, 2.3.2; 2016, 1.1] and their proofs.

Proposition 4.4. (1) Consider the homomorphism

S ⊗SW S ∼= A•([B\G/B])∼= A•([T \G/T ])→ A•([T ϕ\G]) (4.5)

induced by pullback along the quotient morphism [T ϕ\G] → [T \G/T ] and the homomorphism

S → S ⊗SW S, f 7→ f ⊗ 1.

The composition S → A•([T ϕ\G]) of these homomorphisms factors through an isomorphism of
graded Q-algebras

S/IS ∼= A•([T ϕ\G]). (4.6)

(2) The homomorphism S ⊗SW S → S/IS given by (4.5) and (4.6) sends f ⊗ g to the class of f ϕ(g).

(3) The homomorphism

SWI o/ISWI o
→ S/IS

induced by the inclusion SWI o ↪→ S is injective and free of rank |WI o |.

(4) The homomorphism A•([Lϕ\G])→ A•([T ϕ\G]) induced by the quotient morphism [T ϕ\G]→[Lϕ\G]

is injective. Under (4.6) it gives an isomorphism of graded Q-algebras

A•([Lϕ\G])∼= SWI o/ISWI o . (4.7)
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Proposition 4.8 (see [Brokemper 2018, 2.4.4]). (1) The homomorphism E → L , x 7→ x̄ induces a
morphism

G-Zipµ = [E\G] → [Lϕ\G].

Using (4.7), on Chow rings this morphism induces an isomorphism

SWI o/ISWI o ∼= A•([Lϕ\G])∼= A•(G-Zipµ) (4.9)

of graded Q-algebras.

(2) For the group scheme E ′
= E ∩ (z B × G), we have a natural identification

G-ZipFlagµ = [E\(G × P/z B)] = [E ′
\G]. (4.10)

Under this identification, the homomorphism E ′
→ T , (x, y) 7→ x̄ induces a morphism

G-ZipFlagµ → [T ϕ\G].

Using (4.6), on Chow rings this morphism induces an isomorphism

S/IS ∼= A•([T ϕ\G])∼= A•(G-ZipFlagµ) (4.11)

of graded Q-algebras.

(3) Under the isomorphisms (4.9) and (4.11), the homomorphism π∗
: SWI o/ISWI o

→ S/IS induced
on Chow rings by the projection π : G-ZipFlagµ → G-Zipµ is the one induced by the inclusion
SWI o ↪→ S.

Proof. The kernels of the surjective homomorphisms E → L and E ′
→ T are unipotent. So (1) and (2)

follow from Proposition 1.4. Then (3) follows from the compatibility of the various constructions. □

The above results allow us to give a noncanonical identification of A•(G-Zipµ) with the rational
cohomology ring of a certain flag variety. Let GC be the reductive group over C with the same based root
datum as Gk , let P be a parabolic subgroup of type I of GC, and set X∨

:= GC/PI . If (G, µ) is induced
by a Shimura datum (G, X) (see Section 5 below), then X∨ is the compact dual of X . This explains the
notation. Write

H 2•(X∨) :=

d⊕
i=0

H 2i (X∨(C),Q)

to denote the cohomology ring of the complex manifold X∨(C) with rational coefficients. The multiplica-
tion is given by cup product. As the cohomology is concentrated in even degree, this is a commutative
graded Q-algebra.

Corollary 4.12. There is an isomorphism of graded Q-algebras A•(G-Zipµ)∼= H 2•(X∨).

Proof. We use the description of I as in Lemma 4.2. Then we have isomorphisms of graded Q-algebras

A•(G-Zipµ)∼= SWI o /ISWI o ∼= SWI /ISWI ∼= H 2•(X∨),

where the first isomorphism is given by (4.9), the second isomorphism is given by conjugation with the
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longest element w0 in the Weyl group, and the third isomorphism holds by [Borel 1953, Theorem 26.1],
identifying X∨ with a quotient of the real compact form of GC. □

Remark 4.13. Recall that we work with Q-coefficients, hence we may use the description of I in
Lemma 4.2. But from the results of Brokemper it follows that the results of Proposition 4.8 even hold
with Z-coefficients if one uses the description (4.1) of I and if the group G is special, i.e., every étale
G-torsor is already Zariski-locally trivial. Examples for special groups are GLn , SLn , GSp2n , or Sp2n . A
nonexample would be PGLn for n ≥ 2.

By [Brokemper 2018, 2.4.10, 2.4.11], we also have the following result.

Proposition 4.14. The ring A•(G-Zipµ) is a finite Q-algebra of dimension #I W . A Q-basis is given by
the classes [Zw] of the closures of the E-orbits on G.

Even for special groups this result cannot be strengthened to integral coefficients, as the more precise
description of the integral Chow ring of G-Zipµ given in [Brokemper 2018, 2.4.12] for G = GLn shows.
The examples calculated in the Section 8 below suggest that the index of the abelian group generated by
the classes [Zw] in the integral Chow ring of G-Zipµ is of the form fR,µ(p) for a polynomial fR,µ ∈ Z[T ]

that depends only on the based root datum R of G with its automorphism given by Frobenius and the
cocharacter µ.

4B. Pullback maps for the key diagram. We now apply A•(−) as a contravariant functor to the key
diagram. Recall that I = SW

+
is the augmentation ideal of SW . We have A•([P\∗])= A•([L\∗])= SWI o

by Proposition 1.4 and (2.1), and

A•(BrhG)= S ⊗SW S = (S ⊗Q S)/(1 ⊗ f − f ⊗ 1 | f ∈ I)

by Proposition 2.4. Using this, (4.9) and (4.11), we obtain the following commutative diagram of graded
Q-algebras by applying A•(−) to (3.25):

S/IS S ⊗SW S
ψ∗

oo

SWI o/ISWI o
?�
π∗

OO

SWI o

β∗

oo

α∗

ii

γ ∗

OO

(4.15)

Theorem 4.16. The morphisms in (4.15) are as follows:

(1) The homomorphisms π∗ and α∗ are induced from the inclusion SWI o ↪→ S.

(2) The homomorphism β∗ is the canonical projection.

(3) The homomorphism γ ∗ is the composition (using (4.3))

γ ∗
: SWI o

= z(SWI )
z−1
−→ SWI f 7→ f ⊗1

−−−−−→ S ⊗SW S.

(4) The homomorphism ψ∗ is induced by

f ⊗ g 7→ z( f )ϕ(g).
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Proof. The description of π∗ is given by Proposition 4.8. Since π∗ is injective by Proposition 4.4, the
descriptions of α∗ and β∗ will follow from those of ψ∗ and γ ∗ since (4.15) commutes. The description
of γ ∗ follows from the definition of γ and the construction of the isomorphism A•(BrhG)∼= S ⊗SW S.

To verify the description of ψ∗, we consider the following commutative diagram:

G-ZipFlagµ = [E ′
\G]

ψ
//

��

BrhG = [(B × B)\G]

��

[T ϕ\G] // [(T × T )\G]

The morphisms in this diagram are given as follows: The morphism ψ is induced from G → G,
g 7→ z−1g and E ′

→ B × B, (x, y) 7→ (z
−1

x, x). Similarly the bottom horizontal morphism is induced
from G → G, g 7→ z−1g and T → T × T , t 7→ (z

−1
t, ϕ(t)). The left vertical morphism is the one

from Proposition 4.8 and the right vertical one is induced from the identity on G and the projection
B × B → (B × B)/ radu(B × B)∼= T × T , where radu denotes the unipotent radical.

The two vertical morphisms induce isomorphisms on Chow rings. Using Proposition 4.4 one checks
that the bottom horizontal morphism induces the morphism S ⊗SW S → S/I S which sends f ⊗ g to the
class of z( f )ϕ(g). This shows what we want. □

4C. Description of π∗. The morphism π : G-ZipFlagµ → G-Zipµ, being a P/z B-bundle, is proper.
Hence under (4.9) and (4.11) it induces a pushforward morphism

π∗ : A•(G-ZipFlagµ)∼= S/IS → A•(G-Zipµ)∼= SWI o/ISWI o .

As an application of a general pushforward formula of Brion [1996], we get the following description
of π∗:

Theorem 4.17. The pushforward π∗ : S/IS → SWI o/ISWI o sends the class of f ∈ S to the class of∑
w∈WI o (−1)ℓ(w)w( f )∏

α∈8+

I o
α

∈ SWI o .

Proof. Consider the following cartesian diagram:

G-ZipFlagµ
ψ∅
//

π

��

Brh∅ ∼= [
z B\G/B] ∼= [∗/z B] ×[∗/G] [∗/B]

pr1
// [∗/z B]

π̃

��

G-Zipµ // [∗/P]

On Chow rings this induces the following maps:

S/IS

π∗





Soooo

π̃∗





SWI o/ISWI o

π∗

JJ

SWI o

π̃∗

II

oo
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Hence it suffices to prove the corresponding formula for π̃∗ : A•([∗/z B]) ∼= S → A•([∗/P]) ∼= SWI o .
Similarly, using the cartesian diagram

[∗/z B ∩ L] //

˜̃π
��

[∗/z B]

π̃

��

[∗/L] // [∗/P]

whose horizontal morphisms induce isomorphisms on Chow groups, one reduces to proving the corre-
sponding formula for ˜̃π∗. This formula is given by [Brion 1996, Proposition 1.1]. □

The following gives an alternative way of computing the expression in Theorem 4.17:

Lemma 4.18 [Demazure 1973, Lemme 4]. For f ∈ S, we have

δw0,I o ( f )=

∑
w∈WI o (−1)ℓ(w)w( f )∏

α∈8+

I o
α

,

where δw0,I o : S → S is the operator associated to the longest element w0,I o of WI o by Theorem 2.16.

So the following diagram is commutative:

S
δw0,I o

//

��

S

��

S/IS
π∗

// SWI o/ISWI o

From Proposition 3.13, we now get the following:

Proposition 4.19. For w ∈
I W , we have [Zw] = γ (w)π∗([Z∅

w]) in A•(G-Zipµ).

4D. Computing the cycle classes of the Ekedahl–Oort strata on G-Zipµ. By putting together the above
results we get the following procedure for computing the classes [Zw] in A•(G-Zipµ) for w ∈

I W :
For computations, it is convenient to replace the rings appearing in the diagram (4.15) with certain

simpler rings mapping surjectively onto them. For this we consider the following diagram of graded
algebras, in which all rings are either polynomial rings or subrings of polynomial rings:

S S ⊗Q S
ψ̃∗

oo

SWI o
?�
π̃∗

OO

SWI o

β̃∗

oo

γ̃ ∗

OO

(4.20)

Here we define the homomorphisms as follows:

(i) The homomorphism π̃∗ is the inclusion SWI o ↪→ S.

(ii) The homomorphism β̃∗ is the identity.
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(iii) The homomorphism γ̃ ∗ is the composition

γ̃ ∗
: SWI o

= z(SWI )
z−1
−→ SWI f 7→ f ⊗1

−−−−−→ S ⊗SW S.

(iv) The homomorphism ψ̃∗ is given by

f ⊗ g 7→ z( f )ϕ(g).

Using Theorem 4.16 one readily checks that under the canonical surjections from the objects in the
diagram (4.20) to the corresponding objects in the diagram (4.15) these two diagrams are compatible.
Similarly, using Theorem 4.17, one checks that the morphism π∗ : S/IS → SWI o/ISWI o lifts to a morphism
π̃∗ : S → SWI o given by the formula from Theorem 4.17.

In the following, for a class c in one of the algebras of (4.15), we will refer to a lift of c to the
corresponding algebra in (4.20) as a formula for c. Then, for w ∈

I W , we can compute a formula for [Zw]

as follows:

(i) Using the results from Section 2C one finds a formula for the class of the diagonal Brhe in S ⊗ S.

(ii) The operator δw on S ⊗SW S from Section 2E lifts to an operator on S ⊗ S by letting the operator δw
on S from Section 2E act on the first factor of S ⊗ S. Then, by Corollary 2.21, by applying this
operator δw to a formula for [Brhe] one gets a formula for the class [Brhw].

(iii) By the definition of the subscheme Z∅
w of G-ZipFlagµ, the image of a formula for [Brhw] under

the homomorphism ψ̃∗ gives a formula for the class [Z∅
w].

(iv) By applying π̃∗ to a formula for [Z∅
w] one gets a formula for π∗([Z∅

w]).

(v) Using the results from Section 3F one computes the number γ (w).

(vi) Using Proposition 3.13 by multiplying the results of the previous two steps we get a formula for
[Zw] = γ (w)π∗([Z∅

w]).

4E. Functoriality in the zip datum. To simplify notation it is often convenient for the computations
in Section 4D to replace G by some other group G̃. Here we explain that this is harmless as long as
G and G̃ have the same adjoint group.

Let (G, µ) and (G̃, µ̃) be two pairs consisting of a reductive group over Fp and a cocharacter defined
over the algebraic closure k of Fp. Let

f : G → G̃

be a map of algebraic groups over Fp with f ◦µ = µ̃. Let κ (resp. κ̃) be the field of definition of the
conjugacy class of µ (resp. of µ̃). Then κ̃ ⊆ κ .

Let P and Q be the parabolics and E the zip group attached to (G, µ) as in Section 3A. Let P̃ , Q̃
and Ẽ be the parabolics and zip group attached similarly to (G̃, µ̃). Then f induces maps P → P̃ ,
Q → Q̃, and E → Ẽ and hence a morphism

[ f ] : G-Zipµ → G̃-Zipµ̃ ⊗κ̃ κ
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of smooth algebraic quotient stacks over κ . Every map f : G → G̃ of algebraic groups can be factorized
into the composition of a faithfully flat map G → G ′

= G/Ker( f ) and a closed embedding G ′
→ G̃.

If G is reductive, then G ′ is reductive. Therefore the following lemma implies, in particular, that the
pullback [ f ]

∗ on Chow rings exists.

Lemma 4.21. (1) If f is flat, then [ f ] is flat.

(2) If f is a monomorphism, then [ f ] is representable.

Proof. This follows from Lemma 1.2 because if f is a monomorphism, then the induced map E → Ẽ is
also a monomorphism. □

Lemma 4.22. Suppose that f induces an isomorphism of adjoint groups Gad
−→∼ G̃ad.

(1) Let Z̃ be the radical of G̃. Let (T, B, z) be a frame as in Section 3B for (G, µ). Set T̃ := Z̃ f (T )
and B̃ := Z̃ f (B). Then (T̃ , B̃, f (z)) is a frame for (G̃, µ̃).

(2) The map f induces an isomorphism W −→∼ W̃ of the Weyl groups with their set of simple reflections
attached to (G, B, T ) and (G̃, B̃, T̃ ), respectively.

(3) The morphism [ f ] of algebraic stacks induces a homeomorphism of the underlying topological
spaces.

Proof. The hypothesis on f means that Ker( f ) is central and that Cent(G̃) f (G)= G̃. As Z̃ f (G) is of
finite index in Cent(G̃) f (G) and G̃ is connected, this implies Z̃ f (G)= G̃. As Z̃ is a torus and clearly
commutes with f (T ), T̃ := Z̃ f (T ) is a torus. Its dimension is the reductive rank of G̃. Hence it is a
maximal torus. By hypothesis, f induces a bijection between the roots of (G, T ) and of (G̃, T̃ ). This
shows that Z̃ f (B) is a Borel subgroup and that f induces an isomorphism W −→∼ W̃ . This implies all
remaining assertions. □

We continue to assume that f induces an isomorphism of adjoint groups Gad
−→∼ G̃ad and use the

notation of the lemma. We identify W with W̃ via the isomorphism induced by f .
We define G̃-ZipFlagµ̃ and BrhG̃ using (G̃, P̃, Q̃, B̃). Then using the description of G-ZipFlagµ

given in (4.10) one sees that f also induces a map [ f̃ ] on stacks of flagged G-zips making the diagram

G-ZipFlagµ
[ f̃ ]
//

��

G̃-ZipFlagµ̃ ⊗κ̃ κ

��

G-Zipµ
[ f ]

// G̃-Zipµ̃ ⊗κ̃ κ

commute. Moreover, the same arguments as above show that the pullback [ f̃ ]
∗ on Chow rings exists.

The key diagram (3.25) and the corresponding diagram of Chow rings (4.15) is functorial for f . The
induced map of Q-algebras S̃ := Sym(X∗(T̃ )Q)→ S is equivariant for the action of W . More precisely,
if we choose splittings of the exact sequences of tori

1 → Ker( f )0 → T → T/Ker( f )0 → 1 and 1 → f (T )→ T̃ → T̃ / f (T )→ 1,
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then S̃ → S is of the form

S̃ ↠ Sym(X∗( f (T ))Q)−→∼ Sym(X∗(T/Ker( f )0)Q) ↪→ S,

where the second map is an isomorphism of Q-algebras with W -action. The map S̃ → S is also equivariant
for the action of the Frobenius because f is defined over Fp.

Proposition 4.23. Let f : G → G̃ be a map of algebraic groups defined over Fp that induces an
isomorphism on adjoint groups.

(1) One has a commutative diagram of Q-linear maps

A•(G̃-ZipFlagµ̃) //

π∗

��

A•(G-ZipFlagµ)

π∗

��

A•(G̃-Zipµ̃) ∼
// A•(G-Zipµ)

(4.24)

where the horizontal maps are the maps of Q-algebras induced by f . The lower horizontal map is
an isomorphism.

(2) For w ∈
I W , the numbers γ (w) defined in Definition 3.14 for (G, µ) coincide with those defined

for (G̃, µ̃).

Proof. Under the identifications (4.9) and (4.11) the horizontal maps are both induced by the W -
equivariant map S̃ → S. Hence the commutativity of (4.24) follows from the concrete description of π∗

in Theorem 4.17. From Proposition 4.14 and Lemma 4.22(3), we also deduce that the lower horizontal
map sends a Q-basis to a Q-basis. In particular, it is an isomorphism.

Let us show (2). The upper horizontal map sends for all w ∈ W the cycle [Z∅
w] defined for (G̃, µ̃)

to the cycle [Z∅
w] defined for (G, µ) because ψ∗ is functorial for f . Hence (2) follows from (1) and

Proposition 4.19. □

Remark 4.25. One can also show that the classes [Z∅
w] for w ∈ W form a basis of A•(G-ZipFlagµ),

and that hence the upper horizontal map in (4.24) is an isomorphism as well.

5. The tautological ring of a Shimura variety

5A. Automorphic bundles and the tautological ring in characteristic zero. Let (G, X) be a Shimura
datum. Recall that this means that G is a connected reductive group over Q, that X is a G(R)-conjugacy
class of homomorphisms h : S → GR of real algebraic groups, where S := ResC/R Gm,C is C× viewed as
a real algebraic group, and that the pair (G, X) satisfies a list of axioms [Deligne 1979, 2.1.1].

For h ∈ X , let µh be the associated cocharacter of GC, i.e., µh is the restriction of

hC : SC =

∏
Gal(C/R)

Gm,C → GC

to the factor indexed by id∈Gal(C/R). For each faithful finite-dimensional representation ρ : GR → GL(V )
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of G over R, the Hodge filtration induced by ρ◦h on V has as stabilizer the parabolic subgroup P−(ρ◦µh)

of GL(VC) (here we follow the normalizations of [Deligne 1979] using negative µh-weights). The G(C)-
conjugacy class of µh has as field of definition a finite extension E of Q, called the reflex field.

Let X∨ be the compact dual of X . Then X∨
= ParGC,µ

−1
h

is the scheme of parabolic subgroups of
type µ−1

h . It is a projective homogeneous G-space and it is defined over E .
For each neat open compact subgroup K of G(A f ), we denote by SK := ShK (G, X) the canonical

model of the attached Shimura variety at level K . This is a smooth quasiprojective scheme over E .
Denote by Gc the quotient of G by the maximal Q-anisotropic R-split torus in the center of G. For

instance, if (G, X) is of Hodge type, then G = Gc and this is the only case that we will use later. But for
future reference we explain the following notions and results in full generality. And in general G ̸= Gc,
for instance, if G = ResF/Q GL2,F for a nontrivial totally real extension F of Q. The action of GE on
the E-scheme X∨ factors through Gc

E .
Milne [1990, III] constructs a diagram of schemes defined over E

S̃K

π

~~

σ̃

  

SK X∨

(5.1)

where π is a Gc
E -torsor and σ̃ is GE -equivariant. We set

HdgE := [Gc
E\X∨

], (5.2)

which is an algebraic stack over E . The diagram (5.1) corresponds to a morphism of algebraic stacks

σ : SK → HdgE (5.3)

making
S̃K

σ̃
//

π

��

X∨

��

SK
σ
// HdgE

cartesian.
Let Stor

K be a smooth toroidal compactification of SK . Then by [Milne 1990, V, Theorem 6.1] the
morphism σ canonically extends to a morphism

σ tor
: SK → HdgE .

Note that a vector bundle on the quotient stack HdgE = [Gc
E\X∨

] is the same as a Gc-equivariant vector
bundle on X∨.

Definition 5.4. Let E ′ be an extension of E . A vector bundle E on SK ,E ′ (resp. on Stor
K ,E ′) is called an

automorphic bundle if there exists a vector bundle E on [Gc
E\X∨

]E ′ such that E ∼= σ ∗(E ) (resp. such that
E ∼= (σ tor)∗(E )). Moreover, (σ tor)∗(E ) is called the canonical extension of σ ∗(E ).
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Remark 5.5. Suppose that X∨(E ′) ̸= ∅, i.e., there exists a parabolic subgroup P of GE ′ of type µ−1

that is defined over E ′. Then the choice of P yields isomorphisms X∨

E ′
∼= GE ′/P ∼= Gc

E ′/Pc, where Pc

is the image of P in Gc
E ′ . We obtain an isomorphism

HdgE ′
∼= [Pc

\∗].

Hence in this case a vector bundle E on [Gc
E\X∨

]E ′ is the same as a finite-dimensional representation
(V, η) of Pc over E ′, and σ ∗(E ) is the automorphic bundle attached to the representation η.

The structure morphism X∨
→ Spec E induces a morphism of algebraic stacks

τ : HdgE → [Gc
E\∗].

Definition 5.6. Let E ′ be an extension of E . An automorphic vector bundle on SK ,E ′ (resp. on Stor
K ,E ′) is

called flat if it is isomorphic to a vector bundle obtained by pullback via σ ◦ τ (resp. via σ tor
◦ τ ) from a

vector bundle on [Gc
E ′\∗].

In other words, flat automorphic bundles are those given by representations of Gc. They are endowed
with a canonical integrable connection which in the Hodge case is the Gauss–Manin connection.

Definition 5.7. Let E ′ be a field extension of E . The images of A•(HdgE ′) in A•(SK ,E ′) and in A•(Stor
K ,E ′)

are called the tautological rings of SK ,E ′ and of Stor
K ,E ′ , respectively. They are denoted by TE ′ and T tor

E ′ ,
respectively.

Remark 5.8. Let E ′ be a field extension of E , and let E ′′ be a Galois extension of E ′ with Galois group 0.
Then 0 acts on TE ′′ and one has (TE ′′)0 = TE ′ by Proposition 1.3.

In particular, assume that the reductive group G splits over E ′′. Then we can choose P ∈ X∨(E ′′) and

A•(HdgE ′′)∼= A•([P\∗])= A•([L\∗])∼= Sym(X∗(T )Q)WL ,

where L is the Levi quotient of P , T ⊆ L a maximal torus and WL the Weyl group of L. Hence TE ′ is a
quotient of Sym(X∗(T )Q)0⋉WL .

Example 5.9. In the Siegel case, we have G = Gc
= GSp2g and P is a Siegel parabolic subgroup, i.e., the

stabilizer of some Lagrangian subspace. We identify SK with the moduli space of principally polarized
abelian varieties of dimension g endowed with some sufficiently fine level structure. Let f : A → SK be
the universal abelian scheme over SK .

The Hodge stack Hdg = [P\∗] parametrizes in this case vector bundles together with a symplectic
pairing that has values in some line bundle and Lagrangian subbundles. The morphism σ is the classifying
map of the de Rham cohomology of A and its Hodge filtration where the pairing is induced by the
principal polarizations.

The projection of P onto its Levi quotient L yields an isomorphism A•(Hdg)∼= A•([L\∗]). There is an
isomorphism L ∼=GLg ×Gm for which the projection GLg ×Gm →GLg yields a vector bundle�♭ on [L\∗]

whose pullback to SK is the Hodge filtration bundle f∗�1
A/SK

, and for which the projection L → Gm

is the restriction of the multiplier character of G and hence the pullback of the corresponding line bundle



954 Torsten Wedhorn and Paul Ziegler

to SK is trivial. Therefore in this case the tautological ring is the Q-subalgebra generated by the Chern
classes of f∗�1

A/SK
and our notion agrees with the one introduced in [Ekedahl and van der Geer 2009].

5B. Stacks of filtered fiber functors. In Remark 5.5 we explained that HdgE ′ is the classifying stack of
a certain parabolic subgroup Pc of Gc if such a subgroup can be defined over E ′. In this case, HdgE ′

simply classifies Pc-torsors. In this subsection we briefly digress to give a moduli-theoretic description
of Hdg in general. This will not be needed in the rest of the article.

Hence, for the moment, let k be any field, let G be a reductive group over k, and let λ be a cocharacter
of G defined over some field extension k ′ of k. Suppose that the conjugacy class of λ is defined over k
or, equivalently, that the scheme Parλ of parabolic subgroups of type λ is defined over k. The reductive
group scheme G acts on Parλ, and we consider the quotient stack

HdgG,λ := [G\ Parλ].

Clearly, HdgG,λ is a smooth algebraic stack over k.
Denote by Rep(G) the k-linear abelian rigid ⊗-category of finite-dimensional representations of G

over k. For any k-scheme T , we denote by FilLF(T ) the exact rigid tensor category of filtered finite
locally free OT -modules [Pink et al. 2015, 4C].

Proposition 5.10. The stack HdgG,λ is canonically equivalent to the stack Fλ sending a k-scheme T to the
groupoid Fλ(T ) of exact k-linear ⊗-functors Rep(G)→ FilLF(T ) of type λ (see [Pink et al. 2015, 5.3]).

Proof. First we construct a canonical morphism Fλ → HdgG,λ as follows: Let T be a k-scheme and
ϕ : Rep(G) → FilLF(T ) be an exact k-linear tensor functor of type λ. Similarly, let ϕλ : Rep(G) →

FilLF(Spec(k ′)) be the exact k-linear tensor functor induced by the cocharacter λ. Then, by definition,
the fact that ϕ is of type λ means that there exists an fpqc covering T ′ of Tk′ over which the functors
ϕ and ϕλ become isomorphic. The group of automorphisms of ϕλ,T ′ is P+(λ)T ′ . Hence the sheaf
Isom⊗(ϕλ,T ′, ϕT ′) of tensor isomorphisms ϕλ,T ′ → ϕT ′ is a right P+(λ)T ′-torsor over T ′. Thus under the
canonical isomorphism [P+(λ)T ′\∗] ∼= (HdgG,λ)T ′ noted above we obtain an object Pϕ of HdgG,λ(T

′).
Since ϕ is defined over T , there is a canonical descent datum for T ′/T on ϕT ′ . This descent datum induces
an analogous descent datum on Pϕ , so that Pϕ descends canonically to an object of HdgG,λ(T ). Finally one
checks that the assignment ϕ 7→ Pϕ naturally extends to a morphism of groupoids Fλ(T )→ HdgG,λ(T )
and that for varying T these morphisms are compatible with base change.

To check that the morphism Fλ → HdgG,λ is an isomorphism of stacks we may work fpqc-locally
on Spec(k). Hence we may assume that λ is defined over k. Then, under the above isomorphism
HdgG,λ

∼= [P+(λ)\∗], the claim is given by [Pink et al. 2015, Theorem 5.6]. □

5C. The tautological ring in positive characteristic. From now on we assume that the Shimura datum
(G, X) is of Hodge type. Then G = Gc. Let p be a prime of good reduction, i.e., there exists a reductive
group scheme G over Zp such that GQp = GQp . We fix a neat level structure K = K p K p ⊆ G(A f ) with
K p

⊆ G(Ap
f ) compact open and K p = G (Zp)⊆ G(Qp) hyperspecial.



Tautological rings of Shimura varieties and cycle classes of Ekedahl–Oort strata 955

Integral models. We fix a place v of the reflex field E over p and denote by Ev the v-adic completion
of E . As GQp has a reductive model over Zp, Ev is an unramified extension Qp. Let SK be the canonical
smooth integral model of SK over the ring of integers OEv defined by Kisin [2010] and Vasiu [1999]
for p > 2 and by Kim and Madapusi Pera [2016] for p = 2. Let Q̆p be the completion of a maximal
unramified extension of Ev, and let k be the residue field of the ring of integers of Q̆p. Let κ be the
residue field of OEv . Then k is an algebraic closure of κ . Let SK be the special fiber of SK over κ , and
let G be the special fiber of G . Hence G is a reductive group over Fp.

By definition, E is the field of definition of the conjugacy class of µh . As conjugacy classes of
cocharacters depend only on the root datum of the reductive group, we can view the G(C)-conjugacy class
of µh also as a G(Q̆p)-conjugacy [µh]Q̆p

of cocharacters of G
Q̆p

because GQp splits over an unramified
extension. We may also view it as a G(k)-conjugacy class [µh]k of cocharacters of Gk . The field of
definition of [µh]Q̆p

is Ev and the field of definition of [µh]k is κ .
As G and G are quasisplit, we may choose an element in [µh]Q̆p

which extends to a cocharacter µ
of G defined over OEv . We also denote by µ its reduction modulo p, a cocharacter of Gκ . As µh is
minuscule, so is µ.

Arithmetic compactifications. We recall some results on integral compactifications by Madapusi Pera
[2019]. Let S tor

K be some smooth proper toroidal compactification of the integral model SK . It depends
on the choice of a smooth, finite, admissible rational polyhedral cone decomposition. Moreover, let S min

K

be the minimal compactification of SK , and let

π : S tor
K → S min

K

be the canonical morphism. It is constructed as the Stein factorization of a certain proper morphism
[Madapusi Pera 2019, 5.2.1]. In particular, π is proper and has geometrically connected fibers, and for
every line bundle L on S min

K , one has a canonical isomorphism

L −→∼ π∗π
∗L . (5.11)

We denote the special fibers over κ of S tor
K and of S min

K by Stor
K and Smin

K , respectively. The restriction
of π to the special fibers is again denoted by π .

Recall that a morphism f : X → Y of finite type between noetherian schemes is called normal if it
is flat and has geometrically normal fibers. This notion is stable under base change Y ′

→ Y and if Y is
normal and X → Y is normal, then X is normal.

Lemma 5.12. The minimal compactification S min
K is normal over OEv .

Proof. For Shimura varieties of PEL type this is shown in [Lan 2013, 7.2.4.3] using the description of
completed local rings of S min

K in geometric points [Lan 2013, 7.2.3.17]. But the same description also holds
for the minimal compactification for Shimura varieties of Hodge type by [Madapusi Pera 2019, 5.2.8]. □
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The tautological ring in characteristic p. The cocharacterµ :Gm,OEv
→GOEv

defines a parabolic subgroup
P := P−(µ) of GOEv

, and we set

HdgOEv
:= [P\∗].

Then HdgOEv
⊗OEv

Ev = HdgEv by Remark 5.5. We denote by P := Pκ the special fiber of P which is a
parabolic subgroup of Gκ . Then we have

Hdgκ := HdgOEv
⊗OEv

κ = [P\∗].

By [Madapusi Pera 2019, 5.3], the morphisms σ and σ tor extend to morphisms

σ : SK → HdgOEv
and σ tor

: S tor
K → HdgOEv

(5.13)

of smooth algebraic stacks over OEv . Let O ′ be a local finite flat extension of OEv . As HdgOEv
= [P\∗],

a vector bundle on HdgO ′ is given by an algebraic representation ρ of the group scheme PO ′ on some
finite free O ′-module. The pullback of such a vector bundle to SK ,O ′ via σ (resp. to S tor

K ,O ′ via σ tor) is
denoted by

V (ρ) (resp. V (ρ)tor).

Again we define vector bundles on SK of this form to be automorphic vector bundles and V (ρ)tor is the
canonical extension of V (ρ) to the toroidal compactification S tor

K .
The morphisms σ and σ tor induce on special fibers morphisms

σ : SK → Hdgκ and σ tor
: Stor

K → Hdgκ (5.14)

of smooth algebraic stacks over κ . Again we have the notion of an automorphic bundle on SK and its
canonical extension to Stor

K .
We now define the tautological rings in positive characteristic as in characteristic 0.

Definition 5.15. For a field extension κ ′ of κ , we call the images of A•(Hdgκ ′) in A•(SK ,κ ′) and in A•(Stor
K ,κ ′)

the tautological rings of SK ,κ ′ and of Stor
K ,κ ′ , respectively. We denote them by Tκ ′ and T tor

κ ′ , respectively.

6. Cycle classes of Ekedahl–Oort strata

We continue to use the notation of Section 5C, i.e., SK /E denotes the Shimura variety attached to a
Shimura datum of Hodge type (G, X) and a neat open compact subgroup K ⊂ G(A f ), SK /OEv denotes
its smooth integral model at a prime p of good reduction, SK /κ its special fiber. We denote by S tor

K a
fixed smooth proper toroidal compactification of SK and by Stor

K its special fiber. Moreover, G denotes the
reductive model of GQp which is endowed with a cocharacter µ defined over OEv . We denote by (G, µ)
the special fiber of (G , µ).

From now on we assume that p > 2. This hypothesis is only needed for the existence of the smooth
morphism ζ and the morphism ζ tor defined below in (6.1) and (6.2). It seems probable that these morphisms
also exist with the stated properties for p = 2, using ideas from [Kim and Madapusi Pera 2016].



Tautological rings of Shimura varieties and cycle classes of Ekedahl–Oort strata 957

6A. Ekedahl–Oort strata. From the reductive group G over Fp and the cocharacter µ : Gm,κ → Gκ ,
we obtain the stack G-Zipµ recalled in Section 3. We use all notation introduced in Section 3 for this
pair (G, µ). In particular, we define P := P−(µ), a parabolic subgroup of G of type I which is defined
over κ . The choice of P yields an isomorphism Hdgκ ∼= [P\∗]. The morphism σ (5.14) is a morphism
σ : SK → [P\∗].

In a series of papers, Viehmann and Wedhorn [2013], Zhang [2018], and Wortmann [2013] defined
(for p > 2) a smooth morphism

ζ : SK → G-Zipµ, (6.1)

which has also been extended to toroidal compactification

ζ tor
: Stor

K → G-Zipµ (6.2)

by Goldring and Koskivirta [2019a, Theorem 6.2.1]. By Andreatta [2023, Theorem 1.2], the morphism ζ tor

is smooth as well. Moreover, one has by construction

β ◦ ζ = σ and β ◦ ζ tor
= σ tor, (6.3)

where β is the morphism defined in (3.23).
Recall the definition of the zip strata Zw ⊆ G-Zipµ (3.6). The Ekedahl–Oort strata of SK (resp. of Stor

K )
are defined for w ∈

I W as

SK ,w := ζ−1(Zw) (resp. Stor
K ,w := (ζ tor)−1(Zw)).

The smoothness of ζ tor implies the following properties of the EO-strata.

(1) For all w ∈
I W , the SK ,w (resp. the Stor

K ,w) are locally closed smooth subschemes of SK (resp. Stor
K ).

They are equidimensional of dimension ℓ(w) by [Pink et al. 2011, 5.11].

(2) By (3.7), one has

ζ−1(Zw)= SK ,w =

⋃
w′⪯w

SK ,w′ (6.4)

and

(ζ tor)−1(Zw)= Stor
K ,w =

⋃
w′⪯w

Stor
K ,w′ . (6.5)

(3) The map ζ ∗
: A•(G-Zipµ)→ A•(SK ) of Q-algebras sends [Zw] to [SK ,w]. Analogously, the map

(ζ tor)∗ : A•(G-Zipµ)→ A•(Stor
K ) of Q-algebras sends [Zw] to [Stor

K ,w].

Proposition 6.6. The tautological rings T and T tor are finite-dimensional Q-algebras that are generated
as Q-vector spaces by [SK ,w] and [Stor

K ,w] for w ∈
I W , respectively.

Proof. By (6.3), the tautological rings are the images of A•(G-Zipµ). Hence the claim follows from
Proposition 4.14. □
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We also recall and complement some results from [Goldring and Koskivirta 2019a] about the EO-strata
in the minimal compactification. Let π : Stor

K → Smin
K be the projection, and set

Smin
K ,w := π(Stor

K ,w), w ∈
I W. (6.7)

Then the Smin
K ,w are pairwise disjoint — in other words, π−1(Smin

K ,w)= Stor
K ,w — and locally closed in Smin

K

by [Goldring and Koskivirta 2019a, 6.3.1]. We endow Smin
K ,w with the reduced scheme structure.

We will also use the following result of Goldring and Koskivirta.

Theorem 6.8 [Goldring and Koskivirta 2019a]. The EO-strata Smin
K ,w in the minimal compactification are

affine for all w ∈
I W .

Theorem 6.8 implies, in particular, that the EO-strata SK ,w are quasiaffine for all w ∈
I W , which was

known before.
Because π is proper, the closure relation (6.5) implies

Smin
K ,w =

⋃
w′⪯w

Smin
K ,w′ . (6.9)

Below (Corollary 6.16) we will also show that Smin
K ,w is equidimensional of dimension ℓ(w).

6B. Connectedness of unions of Ekedahl–Oort strata. In this subsection we show that the smoothness
of ζ tor allows us to deduce from [Goldring and Koskivirta 2019a] certain results on the connectedness of
EO-strata. These are new even in the Siegel case.

Two lemmas on connectedness. For lack of a reference we collect two probably well-known lemmas.
For a topological space X , we denote by π0(X) the space of connected components of X . This defines

a functor π0 from the category of topological spaces to the category of totally disconnected topological
spaces which is left adjoint to the inclusion functor. If X is a noetherian scheme, then π0(X) is a finite
discrete space.

Lemma 6.10. Let f : X → Y be a continuous map between topological spaces with connected (and hence
nonempty) fibers. Suppose that the topology on Y is the quotient topology of the topology on X (as occurs,
e.g., if f is closed or open). Then π0( f ) : π0(Y )−→∼ π0(X) is a homeomorphism.

Proof. For topological spaces Z and Z ′, let C(Z , Z ′) be the set of continuous maps Z → Z ′. Let S be a
totally disconnected space. We have functorial bijections

C(π0(Y ), S)= C(Y, S) = {g ∈ C(X, S) | g| f −1(y) is constant for all y ∈ Y }

= C(X, S)= C(π0(X), S),

where the first and last equalities hold by adjointness of π0 and the inclusion functor, the second equality
holds because Y carries the quotient topology of X , and the third equality holds because all fibers of f
are connected. Therefore π0( f ) is a homeomorphism by Yoneda’s lemma. □
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Let l ≥ 0 be an integer. Recall that a noetherian scheme X is called connected in dimension ≥ l if X \ Z
is connected for every closed subset Z ⊆ X of dimension < l. Hence X is connected if and only if X is
connected in dimension ≥ 0. A scheme X of finite type over a field k is called geometrically connected
in dimension ≥ l if X ⊗k k ′ is connected in dimension ≥ l for all field extensions k ′ of k.

We recall the following variant of a theorem of Grothendieck.

Proposition 6.11. Let k be a field, let X be a proper k-scheme, and let D ⊆ X be an effective ample
divisor. Let l ≥ 1 be an integer. Suppose that the irreducible components of X have dimension ≥ l + 1
and that X is geometrically connected in dimension ≥ l. Then the irreducible components of D have
dimension ≥ l, and D is geometrically connected in dimension ≥ l − 1.

Proof. Let D be the vanishing locus of a section s of an ample line bundle L . Replacing L and s by
some power, we may assume that L is very ample and hence that X is a closed subscheme of projective
space PN

k and that D = X ∩ H for some hyperplane H . Then the result follows from [SGA 2 2005,
Exp. XIII, 2.3]. □

Inheritance of connectedness. For any subset A ⊆
I W , we set Z A :=

⋃
w∈A Zw, considered as a subspace

of the underlying topological space of G-Zipµ. We also set SK ,A :=
⋃
w∈A SK ,w and define similarly

subsets Stor
K ,A and Smin

K ,A of Stor
K and Smin

K , respectively. Then ζ−1(Z A)= SK ,A and (ζ tor)−1(Z A)= Stor
K ,A.

Now let A ⊆
I W be a closed subset, i.e., if w ∈ A and w′

∈
I W with w′

⪯ w, then w′
∈ A. Let A0 be

the set of maximal elements in A with respect to ⪯ and set ∂A := A \ A0. Then Z A is closed in G-Zipµ

and Z A0 is open and dense in Z A. We consider Z A, Z A0 , and Z∂A as reduced locally closed algebraic
substacks of G-Zipµ.

The subvariety SK ,A is closed in SK , and SK ,A0 is open and dense in SK ,A by (6.4). Analogous
assertions also hold for unions of EO-strata in Stor

K and Smin
K by (6.5) and (6.9).

For brevity we say that a scheme X of finite type over a field is l-gc if all irreducible components of X
have dimension ≥ l + 1, and X is geometrically connected in dimension ≥ l.

Lemma 6.12. Let Y ⊆ Smin
K be a closed subscheme, let A ⊆

I W be closed as above, and set YA := Y ∩Smin
K ,A.

Let l ≥ 1 be an integer. If YA is l-gc, then Y∂A is (l−1)-gc.

The proof relies heavily on results from [Goldring and Koskivirta 2019a], using Proposition 6.11 as an
additional ingredient.

Proof. Let Y tor
A := π−1(YA), and let

Y tor
A

π ′

−→ Y ′

A
f

−→ YA

be the Stein factorization of π : Y tor
A → YA. As π has geometrically connected fibers, the same holds for

the finite morphism f . Hence f is a universal homeomorphism. Therefore Y ′

A is l-gc and it suffices to
show that Y ′

∂A := f −1(Y∂A) is (l − 1)-gc.
Let ωtor be the Hodge line on Stor

K obtained from some Siegel embedding of the Shimura datum. Let
ωmin

:= π∗ω
tor. By [Madapusi Pera 2019, 5.2.11], ωmin extends the Hodge line bundle on SK , it is ample,
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and π∗(ωmin)∼= ωtor. The restrictions of ωtor and ωmin to Y tor
A and YA, respectively, are denoted by ωtor

YA

and ωmin
YA

. Set ω′

YA
:= f ∗ωmin

YA
. Then for all N > 1 one has

π ′

∗
ω

tor,⊗N
YA

= π ′

∗
π ′∗(ω′⊗N

YA
)= ω′⊗N

YA
, (∗)

where the second equality follows from π ′
∗
(OY tor

A
)= OY ′

A
.

In the special case Y = Smin
K and A =

I W one has π ′
= π and we also see

π∗ω
tor,⊗N ∼= ωmin,⊗N . (6.13)

By [Goldring and Koskivirta 2019a, 6.2.2], there exists an N ≥ 1 such that for all w ∈
I W there exist

sections hw ∈ 0(Stor
K ,w, ω

tor,⊗N ) whose nonvanishing locus is Stor
K ,w. For w,w′

∈ A0 with w ̸= w′,

hw|Stor
K ,w∩Stor

K ,w′

= 0 = hw′ |Stor
K ,w∩Stor

K ,w′

,

so after passing to some power of N and of hw, we can glue the sections hw with w ∈ A0 to a section
h A ∈ 0(Stor

K ,A, ω
⊗N ) whose nonvanishing locus is Stor

K ,A0 [Goldring and Koskivirta 2019a, 5.2.1]. We
denote the restriction of h A to Y tor

A again by h A. Using (∗) we obtain a section

h A ∈ 0(Y tor
A , ω

tor,⊗N
YA

)= 0(Y ′

A, ω
′⊗N
YA

)

whose vanishing locus in Y ′

A is precisely Y ′

∂A. As ω′⊗N
YA

is the pullback of ωmin,⊗N under a finite morphism
Y ′

A → Smin
K , it is ample and we conclude by Proposition 6.11. □

Connectedness of the length strata. Let d := dim SK = dim Stor
K = ⟨2ρ,µ⟩, where ρ denotes as usual half

of the sum of all positive roots on the root datum of G. For j = 0, . . . , d , we set

S?
K ,≤ j :=

⋃
ℓ(w)≤ j

S?
K ,w and S?

K , j :=

⋃
ℓ(w)= j

S?
K ,w

for ? ∈ {∅, tor,min}. Then S?
K ,≤ j is closed in S?

K and S?
K , j is open and dense in S?

K ,≤ j by (6.4), (6.5),
and (6.9). We endow them with the reduced subscheme structure. The closed subschemes S?

K ,≤ j of S?
K

are called closed length strata.

Lemma 6.14. The schemes SK , j and Stor
K , j are smooth.

Proof. By Lemma 3.8, no two elements of I W of the same length are comparable with respect to ⪯.
Hence S?

K , j is the topological sum of the S?
K ,w for w ∈

I W with ℓ(w)= j . This shows the lemma because
SK ,w and Stor

K ,w are smooth for all w ∈
I W . □

Let X be a scheme of finite type over a field k. By a geometric connected component of X we mean a
connected component Y of X k̄ , where k̄ is an algebraic closure of k. Then Y is already defined over some
finite extension of k.

Theorem 6.15. Let Y be a geometric connected component of Smin
K , and let Y tor

:= π−1(Y ) be the
corresponding (Lemma 6.10) geometric connected component of Stor

K . Then, for all j = 1, . . . , d , the
length strata Stor

K ,≤ j ∩Y tor and Smin
K ,≤ j ∩Y are geometrically connected and equidimensional of dimension j .

In particular, they are nonempty.
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Proof. We already know that Stor
K ,≤ j is equidimensional of dimension j . This shows that Stor

K ,≤ j ∩ Y tor is
either empty or equidimensional of dimension j .

Next we show that Smin
K ,≤ j ∩ Y is geometrically connected in dimension ≥ j − 1 and equidimensional

of dimension j by descending induction on j . We have Smin
K ,≤d = Smin

K . Because Smin
K is (geometrically)

normal (Lemma 5.12), Y is irreducible of dimension d , and in particular, it is geometrically connected in
dimension ≥ d −1. Now let A j := {w ∈

I W | ℓ(w)≤ j}. Then A0
j = {w ∈

I W | ℓ(w)= j} and ∂A = A j−1

by Lemma 3.8. Hence by induction we deduce from Lemma 6.12 that Smin
K ,≤ j ∩ Y is geometrically

connected in dimension ≥ j − 1 and that every irreducible component of Smin
K ,≤ j ∩ Y has dimension ≥ j .

On the other hand we have dim(Y )≤ dim(Smin
K , j )= dim(π(Stor

K , j ))= j . Hence Smin
K , j is equidimensional of

dimension j .
This shows, in particular, that Smin

K ,≤ j ∩ Y is nonempty, which implies that

Stor
K ,≤ j ∩ Y tor

= π−1(Smin
K ,≤ j ∩ Y )

is nonempty. Moreover, Stor
K ,≤ j ∩ Y tor is geometrically connected by Lemma 6.10. □

Corollary 6.16. Each EO-stratum Smin
K ,w in the minimal compactification is equidimensional of dimension

ℓ(w).

Proof. Let Y ⊆ Smin
K ,w be an irreducible component, and let Y be its closure in Smin

K . By (6.9), Y is an
irreducible component of Smin

K ,≤ℓ(w). Hence dim(Y )= dim(Y )= ℓ(w) by Theorem 6.15. □

Corollary 6.17. Let Stor
K ,e be the 0-dimensional EO-stratum in Stor

K . Suppose that Stor
K ,e is already contained

in SK . Let Y be a geometric connected component of Stor
K . Then the length 1 stratum SK ,≤1 ∩ Y in SK ∩ Y

is geometrically connected.

The condition that Stor
K ,e is contained in SK is satisfied for all Shimura varieties of PEL type [Goldring

and Koskivirta 2019a, 6.4.1], and we expect it to hold in general.

Proof. Let Y and Y ′ be irreducible components of Stor
K ,≤1. As Stor

K ,≤1 ∩ Y is geometrically connected by
Theorem 6.15, it suffices to show that Y ∩ Y ′

⊆ Stor
K ,e = SK ,e. But this is clear because Stor

K ,1 is smooth
(Lemma 6.14) and hence cannot contain intersection points of irreducible components. □

The following result generalizes [Ekedahl and van der Geer 2009, Proposition 6.1]:

Proposition 6.18. Let w ∈
I W and Y an irreducible component of Smin

K ,w.

(i) The variety Y has dimension ℓ(w) and is geometrically connected in dimension ≥ ℓ(w)− 1.

(ii) The intersection Y ∩ Smin
K ,e is nonempty.

Proof. (i) As in the proof of Corollary 6.16, the variety Y is an irreducible component of Smin
K ,≤ℓ(w).

Hence (i) follows from Theorem 6.15.

(ii) Let Y ◦
:= Y ∩ Smin

K ,w. Since Y ◦ is an irreducible component of Smin
K ,w, it is affine by Theorem 6.8.

Thus if Y ◦ is closed in Smin
K it has dimension zero, which, using (i), implies ℓ(w)= 0 and hence w = e.

Otherwise Y \ Y ◦ is nonempty. Let Y ′ be an irreducible component of Y \ Y ◦
= Y ∩

⋃
w′≺w Smin

K ,w′ .
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Using (i), Lemma 6.12 yields dim Y ′
≥ ℓ(w)− 1. On the other hand, the inclusion Y ′

⊂
⋃
w′≺w Smin

K ,w′

and Corollary 6.16 yield dim Y ′
≤ ℓ(w)− 1. Thus dim Y ′

= ℓ(w)− 1, which again by Corollary 6.16
implies that Y ′ must be an irreducible component of Smin

K ,w′ for some w′
≺w with ℓ(w′)= ℓ(w)− 1. Now

we may conclude by induction on ℓ(w). □

6C. The flag space over Stor
K . Let πK : F tor

K → Stor
K be defined by the following fiber product:

F tor
K

//

πK

��

G-ZipFlagµ

π

��

Stor
K

ζ tor
// G-Zipµ

Similarly, we let FK be the restriction of F tor
K to SK . As π is representable by schemes, smooth, and

proper, F tor
K and FK are schemes, and πK is smooth and proper.

By pulling back the stratification G-ZipFlagµ =
⋃
w∈W Z∅

w (3.11) to FK and F tor
K , we obtain stratifi-

cations

FK =

⋃
w∈W

FK ,w and F tor
K =

⋃
w∈W

F tor
K ,w.

Proposition 6.19. The strata FK ,w and F tor
K ,w are smooth and equidimensional of dimension ℓ(w). Their

closures FK ,w and F tor
K ,w are normal, Cohen–Macaulay, with only rational singularities.

Proof. Since ζ tor is smooth, this follows from Proposition 3.12. □

7. Applications

7A. Triviality of Chern classes of flat automorphic bundles. Let E ′ be an extension of E . By definition,
an automorphic bundle over E ′ is a vector bundle on ShK (G, X)E ′ that arises by pullback of a vector
bundle on HdgE ′ via the map σ . Recall that such an automorphic bundle is called flat if it comes from a
vector bundle on [GE ′\∗] by pullback via the composition

ShK (G, X)E ′
σ

−→ HdgE ′ → [GE ′\∗],

i.e., it is an automorphic bundle associated with a finite-dimensional representation of GE ′ . Similarly, we
define what it means for an automorphic bundle (or their canonical extensions to the toroidal compactifi-
cation) on the integral model or its special fiber to be flat.

Now the theory of Chow rings of G-zips allows us easily to show the following result for flat automorphic
bundles on the special fiber.

Theorem 7.1. Let κ ′ be an extension of κ , let V be a flat automorphic bundle on SK ,κ ′ , and let V tor be
its canonical extension to Stor

K ,κ ′ . Then for all i ≥ 1 the i-th Chern class of V in A•(SK ,κ ′) and of V tor

in A•(Stor
K ,κ ′) are zero.
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Proof. As all automorphic bundles are defined over some finite extension of κ , we may assume that κ ′ is
an algebraic extension of κ . By Proposition 1.3, we may assume that κ ′

= k is an algebraic closure of κ .
As σ and σ tor both factor through G-Zipµ, it suffices to show that under pullback via the composition

G-Zipµ β
−→ Hdgk

ν
−→ [Gk\∗],

all elements of degree>0 in A•([Gk\∗]) are sent to 0. Here ν is the canonical projection HdgK =[Pk\∗]→

[Gk\∗] which induces via pullback on Chow rings the inclusion A•([Gk\∗])= SW ↪→ SWI o
= A•(Hdgk).

Hence the description of I in Lemma 4.2 and of β∗ in Theorem 4.16 implies the claim. □

Using proper smooth base change we obtain a triviality result for étale Chern classes in characteristic 0
as follows. For a scheme of finite type over a field k, we denote by H i (X,Qℓ(d)) the i-th continuous
ℓ-adic cohomology with Tate twist defined by Jannsen [1988] or, equivalently, the pro-étale cohomology
defined by Bhatt and Scholze [2015]. Here ℓ is a prime different from the characteristic of k. Recall
that SK denotes a Shimura variety of Hodge type in characteristic 0 and that Stor

K denotes a smooth proper
toroidal compactification of SK .

Corollary 7.2. Let E ′ be a finite extension of the reflex field E contained in the algebraic closure E of E
in C. Let V be a flat automorphic bundle over SK ,E ′ , and let V tor be its canonical extension to Stor

K ,E ′ .
Let p ̸= ℓ be a prime of good reduction for the Shimura datum (G, X) and v′ a place of E ′ above p. Then
for all i ≥ 1 the i-th étale Chern classes ci (V ) ∈ H 2i (SK ,E ′

v′
,Qℓ(i)) and ci (V

tor) ∈ H 2i (Stor
K ,E ′

v′
,Qℓ(i))

are zero.

A stronger version of this statement for continuous cohomology over E ′ instead of E ′

v′ has been proved
by Esnault and Harris [2017] for compact Shimura varieties.

First we note the following fact:

Lemma 7.3. Let G be a flat affine group scheme over a Dedekind ring R with quotient field Q. Every
representation of GQ on a finite-dimensional Q-vector space V extends to a representation of G on a
locally free R-module of finite type.

Proof. Let A := 0(G ,OG ) be the ring of functions of G . If σ : V → V ⊗Q AQ is the comodule
map corresponding to the representation in question, then we consider V as a comodule under A via
V σ

→ V ⊗Q ρQ = V ⊗R A. Then, using the local finiteness of A-comodules, we find an A-sub-comodule
L ⊂ V which is finitely generated over R and which generates V as a Q-vector space. Such an L is
torsion-free and hence projective because R is a Dedekind domain. It gives the desired extension. □

Now we prove Corollary 7.2:

Proof. Let v be the restriction of v′ to E , and let S tor
K be a smooth proper toroidal compactification of SK

over OEv with generic fiber Stor
K ,Ev . Let κ ′ be the residue field of O ′

:= OE ′

v′
. We also use the notation of

Section 6. In particular, we denote by G a reductive model of GQp over Zp. Let V be associated to a
representation ρ : GE ′ → GL((E ′)n). By Lemma 7.3, we can extend the base change ρE ′

v′
to a dualizable

representation ρ̃ of G over O ′.
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The special fiber of ρ̃ is then a representation of the split reductive group Gκ ′ . Let V tor
κ ′ be the

corresponding flat automorphic bundle on Stor
K ,κ ′ . By construction it lifts to a flat automorphic bundle

over S tor
K ,O ′ whose generic fiber is V tor. By Theorem 7.1, the i-th Chern class of V tor

κ ′ in Ai (Stor
K ,κ ′) is zero

for i ≥ 1. In particular, its étale cycle class vanishes in

H 2i (Stor
κ ′ ,Qℓ(i))= H 2i (Stor

K ,E ′

v′
,Qℓ(i)),

where the equality holds by smooth and proper base change. But this cycle class in the space on the
right-hand side is the étale cycle class of V tor because the étale cycle class map from Chow groups to étale
cohomology is compatible with specialization. By restriction this implies the result for SK ,E ′

v′
as well. □

7B. The Hodge half-line. As the Shimura datum is of Hodge type there exists a Siegel embedding of G,
i.e., an embedding ι : G ↪→ GSp(V ) of algebraic groups over Fp such that µ̃ := ι ◦µ is minuscule and
the parabolic P+(µ̃) is the stabilizer of a Lagrangian subspace U ⊆ V . Consider the character

χ(ι) := det(V/U )∨ (7.4)

of P , which is defined over κ . It corresponds to a line bundle on the Hodge stack Hdg over κ . We denote
its pullback to G-Zipµ by ω♭(ι). We call a class in A1(G-Zipµ) a Hodge line bundle class if it is the first
Chern class of the line bundle ω♭(ι) given by a symplectic embedding.

Such a Hodge line bundle class is essentially independent of the choice of the embedding by combining
Theorem 7.1 with a result of Goldring and Koskivirta.

Proposition 7.5. Suppose that Gad is Q-simple. If ι and ι′ are two Siegel embeddings, then there exists
ρ ∈ Q>0 such that

c1(ω
♭(ι))= ρc1(ω

♭(ι′)) ∈ A1(G-Zipµ).

Proof. By Theorem 7.1, it suffices to show that there exists a character λ of G and m, n ∈ Z>0 such that
mχ(ι)=λ+nχ(ι′) as characters of P or, equivalently, of the Levi subgroup L . Let L̃ be the connected com-
ponent of the preimage of L in the simply connected cover of the derived group of G, and let χ̃ and χ̃ ′ be the
characters obtained from χ(ι) and χ(ι′), respectively, by composition with L̃ → L . Then it suffices to show
there exist m, n ∈ Z>0 such that mχ̃ = nχ̃ ′. But this is shown in [Goldring and Koskivirta 2018, 1.4.5]. □

It is easy, as was explained to us by Goldring, to give examples where the assertions fail without
the assumption that Gad is Q-simple. Indeed if G := {(A, B) ∈ GL2,Q | det(A)= det(B)} and X is the
G(R)-conjugacy class of

C×
→ G(R), x + iy 7→

((
x −y
y x

)
,

(
x −y
y x

))
,

then ShK (G, X) is the Shimura variety that classifies pairs of elliptic curves (with some level structure).
Let GSp6 be the group of symplectic similitudes over Q defined by the alternating form

⟨x, y⟩ := x1 y2 − x2 y1 + x3 y4 − x4 y3 + x5 y6 − x6 y5 for x, y ∈ Q6.
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The embeddings of Shimura data G → GSp6 given by

(A, B) 7→

A
A

B

 and (A, B) 7→

A
B

B


then yield the embeddings of ShK (G, X) into the moduli space of principally polarized abelian threefolds
given by

(E1, E2) 7→ E2
1 × E2 and (E1, E2) 7→ E1 × E2

2 .

These embeddings then yield Hodge line bundle classes in A1(G-Zipµ) that are not multiples of each
other.

Let T and T tor be the tautological rings of SK and Stor
K , respectively.

Definition 7.6. Suppose that Gad is Q-simple. We call the Q>0 half-line in A1(G-Zipµ) generated
by c1(ω

♭(ι)) the Hodge half-line of G-Zipµ. Its image in the tautological rings Tκ and T tor
κ is also called

the Hodge half-line.

By [Madapusi Pera 2019, Theorem 5], we find that the pullback of a Hodge line bundle class to Tκ
(resp. to T tor

κ ) is generated by the determinant of the sheaf of invariant differentials of the abelian scheme
(resp. semiabelian scheme) that is obtained via pullback from the universal abelian (resp. semiabelian)
scheme over the Siegel Shimura variety (resp. over a suitable toroidal compactification of the Siegel
Shimura variety). In particular, the pullback of a Hodge line bundle class to Tκ is ample.

7C. Powers of Hodge line bundle classes. By Propositions 4.8 and 4.14 the Chow ring A•(G-Zipµ) is a
graded finite-dimensional Q-algebra of dimension #I W . For j = 0, . . . , d := ⟨2ρ,µ⟩, the cycle classes
[Zw] with w ∈

I W such that ℓ(w)= d − j form a basis of the Q-vector space A j (G-Zipµ). In particular,
its top-degree part Ad(G-Zipµ) is 1-dimensional and generated by the unique closed zip stratum [Ze],
which we call the superspecial stratum.

Proposition 7.7. Let λ♭ ∈ A1(G-Zipµ) be a Hodge line bundle class. Then for all j = 0, . . . , d one has

(λ♭)d− j
=

∑
w∈

I W
ℓ(w)= j

αw[Zw],

with αw ∈ Q>0. In particular, there exists αe ∈ Q>0 such that

(λ♭)d = αe[Ze]. (7.8)

Proof. This follows by an easy induction from [Goldring and Koskivirta 2019a, 5.2.2]. □

Remark 7.9. Calculations of examples suggest that the coefficients αw should be equal for w ∈
I W with

ℓ(w)= j if Gad is Q-simple. We cannot prove this.

By pullback we obtain:
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Corollary 7.10. Let λ♭ ∈ A1(G-Zipµ) be a Hodge line bundle class. Let λ ∈ T be its pullback. Then for
all j = 0, . . . , d one has

λd− j
=

∑
w∈

I W
ℓ(w)= j

αw[SK ,w],

with αw ∈ Q>0. In particular, there exists αe ∈ Q>0 such that λd
= αe[Se].

7D. Description of the tautological ring. We now show the pullback map ζ tor,∗
: A•(G-Zipµk )→ A•(Stor

K ,k)

is always injective. By Proposition 1.3, this also implies the injectivity of ζ tor,∗
: A•(G-Zipµκ ′)→ A•(Stor

K ,κ ′)

for every algebraic extension κ ′ of κ . In particular, we obtain an isomorphism of the tautological ring T tor
κ ′

with A•(G-Zipµκ ′).
The tool for showing injectivity is the following lemma.

Lemma 7.11. Let α : A•(G-Zipµk )→ T be a map of graded Q-algebras. Then α is injective if and only
if α([Ze]) ̸= 0.

Proof. It suffices to show that any graded nonzero ideal of A•(G-Zipµ) contains [Ze]. By Corollary 4.12,
A•(G-Zipµ) is isomorphic to the rational cohomology ring of the flag space X∨ over C. In particular,
multiplication yields, for all j = 0, . . . , d = dim SK , a perfect pairing

A j (G-Zipµ)× Ad− j (G-Zipµ)→ Ad(G-Zipµ)= Q[Ze].

This implies our claim. □

Theorem 7.12. The map ζ tor,∗ is injective. One has

T tor
k

∼= A•(G-Zipµk )∼= H 2•(X∨). (7.13)

Proof. Let λ♭ ∈ A1(G-Zipµ) be a Hodge line bundle class, say the first Chern class of a line bundle ω♭ on
G-Zipµ. Let ωtor

:= ζ tor,∗(ω♭). Let π : Stor
K → Smin

K be the canonical proper birational map to the minimal
compactification. By [Madapusi Pera 2019, 5.2.11], there exists an ample line bundle ωmin on Smin

K such
that π∗(ωmin)∼= ωtor.

By Lemma 7.11 and (7.8), we have to show that

ζ tor,∗(c1(ω
♭)d ∩ [G-Zipµk ])= c1(ω

tor)d ∩ [Stor
K ] ̸= 0, (∗)

where the equality holds by [Fulton 1998, 6.6] because ζ tor is a smooth morphism.
The projection formula shows

π∗(c1(ω
tor)d ∩ [Stor

K ])= c1(ω
min)d ∩ [Smin

K ],

which is nonzero because ωmin is ample and Smin
K is proper and of pure dimension d over κ . Hence the

left-hand side of (∗) is nonzero.
The isomorphisms in (7.13) are then a consequence by using Corollary 4.12. □
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It is conjectured that analogously the tautological ring of a smooth toroidal compactification of the
Shimura variety in characteristic 0 should be isomorphic to the cohomology ring of the compact dual.
Let E ′ be an algebraic extension of Ev , and let κ ′ be the residue field of the ring of integers of E ′. There
is a commutative diagram

A•(HdgE ′)
σ tor,∗

//

∼=

��

A•(Stor
K ,E ′)

��

A•(Hdgκ ′) // A•(Stor
K ,κ ′)

(7.14)

where the vertical arrows are the specialization maps. For the Hodge stacks, one can show that the
specialization map is an isomorphism. In particular, the right-hand side specialization map induces a
surjective map of Q-algebras

sptor
: T tor

E ′ → T tor
κ ′ . (7.15)

The analogous diagram to (7.14) with the specialization of A•(SK ,E ′)→ A•(SK ,κ ′) as the right vertical
arrow yields also a surjective map sp : TE ′ → Tκ ′ .

Proposition 7.16. Suppose that E ′ is chosen such that κ ′
= k is algebraically closed. Then the following

assertions are equivalent.

(i) The map sptor
: T tor

E ′ → T tor
k is injective (and hence yields an isomorphism T tor

E ′
∼= H 2•(X∨) by (7.13)).

(ii) The composition A•([G E ′\∗])→ A•(HdgE ′)→ A•(Stor
K ) is zero in degree > 0.

Proof. The commutative diagram (7.14) can be extended to a commutative diagram

A•([G E ′\∗])
� � //

∼=

��

A•(HdgE ′)
σ tor,∗

// //

∼=

��

T tor
E ′

��

A•([Gk\∗])
� � // A•(Hdgκ ′)

β∗

// // A•(G-Zipµ) ∼

ζ tor,∗
// T tor

k

(7.17)

Hence the equivalence follows as the kernel of β∗ is generated by the image of A>0([Gk\∗]) by
Theorem 4.16. □

Although we cannot prove this description of the tautological ring in characteristic 0, we can reprove
the following analogous statement for cohomology. This was previously known by Chern–Weil theory.

Theorem 7.18. For the Qℓ-algebra H 2•(Stor
K ,E

) :=
⊕

i H 2i (Stor
K ,E

,Qℓ(i)), the composition

A•(HdgE)→ A•(Stor
K ,E

)→ H 2•(Stor
K ,E

)

induces an injection H 2•(X∨) ↪→ H 2•(Stor
K ,E

).

Proof. The existence of the factorization A•(HdgE)→ H 2•(X∨)→ H 2•(Stor
K ,E) is given by Corollary 7.2.

To prove injectivity, we may replace E by Qp for some p ̸= ℓ at which the Shimura variety has
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good reduction. As in the proof of Corollary 7.2, one then reduces to proving that the morphism
H 2•(X∨) ∼= A•(G-Zipµ) → A•(Stor

K ) → H 2•(Stor
K ) is injective in characteristic p. This is given by

Theorem 7.12. □

It is conjectured that Theorem 7.18 holds over E instead of E . This is shown in [Esnault and Harris
2017] for compact Shimura varieties. The strongest statement on the Chern classes of automorphic vector
bundles in continuous cohomology which we can obtain with our methods here is the following:

Theorem 7.19. Let E ′ be a finite extension of the reflex field E contained in the algebraic closure E of E
in C. Let V be a flat automorphic bundle over SK ,E ′ , and let V tor be its canonical extension to Stor

K ,E ′ . Let
U ⊂ Spec(OE) be the locus of good reduction of SK and S tor

K ,U the canonical integral model of Stor
K ,E ′

over U. Then, for each i > 0, the i-th Chern class of V tor in H 2i (Stor
K ,E ′,Qℓ(i)) lies in the image of the

natural map from
ker

(
H 2i (S tor

K ,U ,Qℓ(i))→

⊕
v∈U

H 2i (S tor
K ,Ov′

,Qℓ(i))
)

to H 2i (Stor
K ,E ′,Qℓ(i)). (Here H 2i (S tor

K ,U ,Qℓ(i)) denotes the continuous or pro-étale cohomology of S tor
K ,U .)

Proof. This is proved in the same way as Corollary 7.2: First one uses Lemma 7.3 to extend V to U , and
then proper base change to show that the Chern classes of such an extension lie in the given kernel. □

7E. Hirzebruch–Mumford proportionality. The above results immediately imply a very strong form of
Hirzebruch–Mumford proportionality in positive characteristic and the usual form of Hirzebruch–Mumford
proportionality in characteristic 0.

Recall that an automorphic bundle on Stor
K ,k is by definition a vector bundle of the form σ tor,∗(E ) for

some vector bundle E on Hdgk = [Gk\Gk/Pk]. Let X∨
:= Gk/Pk be the characteristic p version of the

compact dual X∨, and let
ρ : X∨

→ Hdgk

be the projection. If we consider E as a Gk-equivariant vector bundle on X∨

k , then ρ∗(E ) is the underlying
vector bundle.

Theorem 7.20. There is an isomorphism u : A•(X∨)−→∼ T tor
k of graded Q-algebras such that for every

Gk-equivariant vector bundle E on X∨

k the i-th Chern class of the underlying vector bundle on X∨

k is sent
by u to the i-th Chern class of the automorphic bundle σ tor,∗(E ).

Proof. The kernel of the surjective map ρ∗
: A•(Hdgk) → A•(X∨

k ) is the same as the kernel of the
surjective map β∗

: A•(Hdgk)→ A•(G-Zipµk ) by Lemma 4.2. Hence we obtain some isomorphism of
graded Q-algebras A•(X∨) −→∼ A•(G-Zipµk ). Composing it with ζ tor,∗

: A•(G-Zipµk )→ T tor
k , which is

an isomorphism by Theorem 7.12, we obtain the desired isomorphism u. □

For a smooth proper equidimensional scheme X over k, we denote by
∫

X : Adim X (X)→ Q the degree
map. Let Q[c1, . . . , cd ] be the graded polynomial ring with deg(ci )= i .

The isomorphism u from Theorem 7.20 induces, in particular, an isomorphism of the 1-dimensional
top-degree parts Ad(X∨

k ) and T tor,d
k , where d := dim(X∨)= dim(Stor

K ). From this we obtain:
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Corollary 7.21. There exists a rational number R ∈ Q× such that for all classes α ∈ Ad(Hdgk) one has∫
X∨

k

ρ∗(α)= R
∫

Stor
K ,k

σ tor,∗(α).

As specialization of cycles commutes with taking degrees we obtain a new and purely algebraic proof
of Hirzebruch–Mumford proportionality in characteristic 0. The original proof of this result is given in
[Hirzebruch 1958] and [Mumford 1977].

Corollary 7.22. There exists a rational number R ∈ Q× such that for all homogenous f ∈ Q[c1, . . . , cd ]

of degree d and all GC-equivariant vector bundles E on X∨ one has∫
X∨

f
(
c1(ρ

∗(E )), . . . , cd(ρ
∗(E ))

)
= R

∫
Stor

K ,C

f
(
c1(σ

tor,∗(E )), . . . , cd(σ
tor,∗(E ))

)
.

Proof. All GC-equivariant vector bundles E on X∨ are already defined over some splitting field E ′ of G
that we may assume to be a finite extension of the reflex field. We now choose p and v′ as in the proof of
Corollary 7.2: let p be a prime number of good reduction for the Shimura datum (G, X) such that there
exists an unramified place v′ of E ′ over p. Let v be the restriction of v′ to E , and let S tor

K be a smooth
proper toroidal compactification of SK over OEv with generic fiber Stor

K ,Ev . Consider the commutative
diagram

A•(X∨

E ′)

sp

��

A•(HdgE ′)
ρ∗

oo
σ tor,∗

//

sp

��

A•(Stor
K ,E ′)

sp
��

A•(X∨

κ ′) A•(Hdgκ ′)
ρ∗

oo
σ tor,∗

// A•(Stor
K ,κ ′)

(7.23)

where the vertical maps are given by specialization. Then we have∫
X∨

f
(
c1(ρ

∗(E )), . . . , ρ∗(cd(E ))
)
=

∫
X∨

κ′

sp
(

f
(
c1(ρ

∗(E )), . . . , cd(ρ
∗(E ))

))
=

∫
X∨

κ′

ρ∗
(
sp

(
f (c1(E ), . . . , cd(E ))

))
= R

∫
Stor

K ,κ′

σ tor,∗(sp
(

f (c1(E ), . . . , cd(E ))
))

= R
∫

Stor
K ,κ′

sp
(
σ tor,∗( f (c1(E ), . . . , cd(E ))

))
= R

∫
Stor

K ,C

f
(
c1(σ

tor,∗(E )), . . . , cd(σ
tor,∗(E ))

)
.

Here the first and the last equality hold because taking the degree commutes with specialization [Fulton
1998, 20.3(a)], and the third equality is a special case of Corollary 7.21. □

The proof shows that the numbers R of Corollaries 7.21 and 7.22 coincide.
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8. Examples

For a permutation π ∈ Sn , we also write π = [π(1), π(2), . . . , π(n)]. We will always denote by τi, j the
transposition of i and j . For any permutation σ , one has στi, jσ

−1
= τσ(i),σ ( j).

8A. Siegel case. Fix g ≥ 1. We consider the vector space F
2g
p with the symplectic pairing

((ai )i , (bi )i ) 7→

∑
1≤i≤g

ai b2g+1−i −

∑
g+1≤i≤2g

ai b2g+1−i .

We take G to be the resulting group of symplectic similitudes and let µ be the cocharacter of G with
weights (1, . . . , 1, 0, . . . , 0) (with each weight having multiplicity g) on the above representation F

2g
p of G.

Let T be the group of diagonal matrices in G. We use the description of the Weyl group W of (G, T )
given in [Viehmann and Wedhorn 2013, Section A7], i.e.,

W = {w ∈ S2g | w(i)+w(i⊥)= 2g + 1},

where i⊥
:= 2g+1−i . Its simple reflections are si = τi,i+1τ2g−i,2g+1−i for i = 1, . . . , g−1 and sg = τg,g+1.

Every element w ∈ W is uniquely determined by w(1), . . . , w(g). As G is split over Fp, the Frobenius ϕ
acts trivially on W .

We get a frame for the resulting zip datum by taking T to be the above torus, B the group of upper
triangular matrices in G, and z the canonical representative of the element [1+g, . . . , 2g, 1, . . . , g] of W .
The types I and J of P and Q are both equal to {s1, . . . , sg−1}, and

I W = {w ∈ W | w−1(1) < · · ·<w−1(g)} = {w ∈ W | w−1(g + 1) < · · ·<w−1(2g)}.

Elements of T have diagonal entries (t1, . . . , tg, t−1
g , . . . , t−1

1 ). Hence if for 1 ≤ i ≤ g we let xi ∈ X∗(T )
be the character sending such an element to ti , we obtain a basis (x1, . . . , xg) of X∗(T ) which induces an
isomorphism S ∼= Q[x1, . . . , xg]. The element z ∈ W is given by z(i)= g + i for all i = 1, . . . , g. It acts
on X∗(T ) via xi 7→ −xg+1−i . We have

zsi z−1
= sg−i for all i = 1, . . . , g − 1. (8.1)

Computation of γ (w). For w ∈
I W , set σw := int(wz). Then we find

Iw =

⋂
m≥1

I (m)w , I (m)w := {s ∈ I | σ k
w(s) ∈ I for all k = 1, . . . ,m}

by (3.16). For instance, si ∈ I (1)w if and only if w(g − i) and w(g + 1 − i) are both ≤ g or both ≥ g + 1.
In this case w(g + 1 − i) = w(g − i) + 1 and σw(s) is sw(g−i) if w(g − i) ≤ g and it is sw(g+1−i)⊥

if w(g − i)≥ g + 1.
We can consider Iw as a subset of vertices of the Dynkin diagram of G and get a subgraph with those

edges in the Dynkin diagram of G that have vertices in Iw. As σw preserves angles between roots, it
is an automorphism of the Dynkin diagram Iw. In particular, it permutes all connected components
of Iw. Let c be a σZ

w-orbit of such connected components. Choose some connected component C in c.
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Let m(c) be the number of vertices in C , and let l(c) be the minimal integer n ≥ 1 such that σ n
w(C)= C .

We say that c is of linear type if σ l(c)(w)= w for all w ∈ C . Otherwise it is called of unitary type. Then
m(c), l(c), and the type do not depend on the choice of C .

Now we can calculate γ (w) by (3.20) as follows. If c is of linear type, then we let γc(w) be the number
of Fp-valued points in the full flag variety of the scalar restriction of GLm(c)+1 over Fpl(c) , i.e.,

γc(w)=

∑
π∈Sm(c)+1

pl(c)ℓ(π)
=

∏
1≤ j≤m(c)

q j+1
− 1

q − 1
,

where q := pl(c). If c is of unitary type, then we let γc(w) be the number of Fp-valued points in the
full flag variety of the scalar restriction of a unitary group in m + 1 variables over Fpl(c) . To describe
this concretely, we let τ be the conjugation with the longest element in the symmetric group Sm(c)+1, an
automorphism of Coxeter groups of order 2 (except if m(c)= 1). For π ∈ Sm(c)+1, set δ(π) := p2l(c)ℓ(π)

if π ̸= τ(π) and δ(π) := pl(c)ℓ(π) if τ(π)= π . Then

γc(w)=

∑
π∈Sm(c)+1/τ

δ(π).

Altogether we obtain
γ (w)=

∏
c

γc(w),

where c runs through all orbits of connected components of Iw.
For instance, fix 0 ≤ f ≤ g, and let u f be the permutation

u f := [g +1, g +2, . . . , g + f, 1, g + f +1, . . . , 2g −1, 2, . . . , g − f, 2g, g − f +1, . . . , g].

Then ug = z and Zu0 is the locus where the p-rank is 0. We have

Iu f = I \ {s1, s2, . . . , sg− f },

and in particular, Iu1 = Iu0 =∅. Moreover, Iu f has only one connected component and it is of linear type.
Therefore

γ (u f )=

∏
1≤ j≤ f −1

p j+1
− 1

p − 1
.

Cycle classes. By Example 2.6, we find that

[Brhe] =

∏
1≤i< j≤g

(xi ⊗ 1 − 1 ⊗ x j )0g(c1, . . . , cg), (8.2)

where ci = σi (x1, . . . , xg)⊗ 1 + 1 ⊗ σi (x1, . . . , xg) for i = 1, . . . , g, and we set c0 = 2 and ci = 0 for
all i /∈ {0, . . . , g}.

The operators δsi act on S by

δsi ( f )=
f (x1, . . . , xg)− f (x1, . . . , xi+1, xi , . . . , xg)

xi − xi+1
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for i = 1, . . . , g − 1, and by

δsg ( f )=
f (x1, . . . , xg)− f (x1, . . . , xg−1,−xg)

2xg

for i = g.
The element z acts on S by xi 7→ −xg+1−i . Since the torus T is split over Fp, the Frobenius ϕ acts

on S by xi 7→ pxi . Hence ψ∗ sends xi ⊗ 1 to −xg+1−i and 1 ⊗ xi to pxi . Thus for w ∈ W we find

[Brhw] = δw

( ∏
1≤i< j≤g

(xi ⊗ 1 − 1 ⊗ x j )0g(c1, . . . , cg)

)
and

[Z∅
w] = ψ∗([Brhw]). (8.3)

Such a formula is already given in [Ekedahl and van der Geer 2009, Theorem 12.1]. The formula in
loc. cit. agrees with (8.3) if one takes the following into account: We believe that in loc. cit. there is a
typo and the polynomial should be evaluated at y j = pℓg+1− j instead of y j = pℓ j . Then the formulas
agree under the substitution xi = ℓg+1−i .

The case g = 2. As an example, let us consider the case g = 2. We let

8 := x1 ⊗ 1 − 1 ⊗ x2,

0 := c1c2 = ((x1 + x2)⊗ 1 + 1 ⊗ (x1 + x2))(x1x2 ⊗ 1 + 1 ⊗ x1x2),

so that
[Brhe] =80.

The set I W consists of the elements {e, s2, s2s1, s2s1s2}. By applying the operators δw, we find

[Brhs2] =8(x1 ⊗ 1 + 1 ⊗ x1)(x1 ⊗ 1 + 1 ⊗ x2),

[Brhs2s1] = (x1 ⊗ 1 + 1 ⊗ x1)(x1 ⊗ 1 + 1 ⊗ x2),

[Brhs2s1s2] = x1 ⊗ 1 + 1 ⊗ x1.

Applying ψ∗ yields
[Z∅

e ] = −(p4
− 1)(x1 + x2)x1x2

2 ,

[Z∅
s2
] = −(p2

− 1)(px1 − x2)x2
2 ,

[Z∅
s2s1

] = (p − 1)(px1 − x2)x2,

[Z∅
s2s1s2

] = px1 − x2.

(8.4)

We have I = I o
= {s1}. Hence, by Theorem 4.17, π∗ = δs1 . Since I has only a single element, we see

that for w ∈
I W either σw(s1)= s1 and hence Iw = I or Iw = ∅. In the first case we find γ (w)= p + 1,

in the second γ (w)= 1. Using this we find

γ (e)= γ (s2s1s2)= p + 1 and γ (s2)= γ (s2s1)= 1. (8.5)
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Altogether we obtain the following formulas for the classes of the EO-strata:

[Z e] = (p + 1)(p4
− 1)(x1 + x2)x1x2,

[Z s2] = (p2
− 1)((p − 1)x1x2 − x2

1 − x2
2),

[Z s2s1] = (p − 1)(x1 + x2),

[Z s2s1s2] = (p + 1)2.

(8.6)

These formulas agree with the ones given in [Ekedahl and van der Geer 2009, 12.2] with xi corresponding
to ℓg+1−i , except that it appears that in loc. cit. the rows for s1s2 and s2s1 should be switched and the
entry for π∗([U s2]) is incorrect.

8B. Hilbert–Blumenthal case. Fix d ≥ 1, and let G̃ := ResFpd /Fp GL2. Define G by the cartesian diagram

G //

��

Gm,Fp

��

G̃ det
// ResFpd /Fp Gm

where the right vertical map is the canonical embedding. Let 6 be the set of embeddings Fpd ↪→ k.
We fix an embedding ι0 and identify the set Z/dZ with 6 via i 7→ σ−i ι0, where σ : x → x p is the
arithmetic Frobenius. Let µ̃ be the cocharacter of G̃k =

∏
6 GL2 given by t 7→

( t
0

0
1

)
in each component.

Then µ̃ factors through a cocharacter µ of G. Let T̃ be the standard torus of G̃, i.e., T̃k is the product of
the diagonal tori. For i ∈ Z/dZ and j = 1, 2, let x (i)j be the character((

t (i)1 0
0 t (i)2

))
i∈Z/dZ

7→ t (i)j

of T̃k . Then S̃ = Sym(X∗(T̃ )Q)= Q[x (i)1 , x (i)2 ; i ∈ Z/dZ]. The intersection T = T̃ ∩G is a maximal torus
of G and S = Sym(X∗(T )Q) identifies with the quotient of S̃ by the ideal generated by (x (i)1 + x (i)2 )−

(x (i+1)
1 + x (i+1)

2 ) for i ∈ Z/dZ. We will compute all cycle classes of EO-strata for (G̃, µ̃). This yields
then also the corresponding cycle classes for (G, µ) by Section 4E.

Let B̃ be the Borel subgroup of G̃ such that B̃k is the product of groups of upper triangular matrices
in GL2. The Weyl group is W = {±1}

Z/dZ and we have I = J =∅. Thus I W = W . As a frame for (G̃, µ̃)
we choose (T̃ , B̃, z) with z a representative of (−1, . . . ,−1) ∈ W .

By (2.8), we have

[Brhe] =

∏
i∈Z/dZ

(x (i)1 ⊗ 1 − 1 ⊗ x (i)2 ) ∈ A•(BrhG̃).

Let w = (ϵi )i∈Z/dZ ∈ W . Then ℓ(w)= #{i ∈ Z/dZ | ϵi = −1}. We have

[Brhw] =

∏
i∈Z/dZ
ϵi =1

(x (i)1 ⊗ 1 − 1 ⊗ x (i)2 ),
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and hence

[Z∅
w] = ψ∗([Brhw])=

∏
i∈Z/dZ
ϵi =1

(x (i)2 − px (i+1)
2 ).

With the notation of Section 3F, we find Iw =∅ and Lw = T . Hence γ (w)= 1 for all w ∈ W . Also, π is
an isomorphism. Therefore we have isomorphisms

A•(G̃-ZipFlagµ̃)∼= A•(G̃-Zipµ̃)∼= A•(G-Zipµ)∼= A•(G-ZipFlagµ)

in this case. From the description of A•(G-ZipFlagµ) in Proposition 4.8(2) one deduces easily that
x (i)2 7→ zi yields an isomorphism of graded Q-algebras

A•(G-Zipµ)∼= Q[z0, . . . , zd−1]/(z2
0, . . . , z2

d−1).

Via this isomorphism we get, for the cycle classes of the Zw,

[Zw] =

∏
i∈Z/dZ
ϵi =1

(zi − pzi+1) ∈ A•(G-Zipµ).

To describe the Hodge half-line in A•(G-Zipµ) we use the notation from Section 7B. The restriction of
the standard embedding ι of G into GSp2d to the maximal torus is given by((

t (i)1 0
0 t (i)2

))
i∈Z/dZ

7→ diag(t (0)1 , t (1)1 , . . . , t (d−1)
1 , t (d−1)

2 , . . . , t (0)2 ).

Therefore the character χ(ι) (see (7.4)) is given by((
t (i)1 0
0 t (i)2

))
i∈Z/dZ

7→

∏
i∈Z/dZ

(t (i)2 )−1,

and the Hodge half-line consists of all Q>0-multiples of the class of

λ := −

∑
i∈Z/dZ

x (i)2 = −(z0 + · · · + zd−1) ∈ A•(G-Zipµ).

Hence (as an illustration of Proposition 7.7) we see that

[Z≤d−1] =

∑
i∈Z/dZ

(zi − pzi+1)= (p − 1)λ and [Ze] = (1 + (−1)d pd)
∏

i∈Z/dZ

zi =
pd

+ (−1)d

d!
λd .

8C. The odd spin case. We assume that p > 2. Let (V, Q) be a quadratic space over Fp of odd
dimension 2n + 1 ≥ 3. We denote by C(V ) = C+(V )⊕ C−(V ) its Clifford algebra. It is a Z/2Z-
graded (noncommutative) Fp-algebra of dimension 22n+1 generated as an algebra by the image of the
canonical injective Fp-linear map V ↪→ C(V ). It is endowed with an involution ∗ uniquely determined
by (v1 · · · vr )

∗
= vr · · · v1 for v1, . . . , vr ∈ V .
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The spinor similitude group is the reductive group G = GSpin(V ) over Fp defined by

G(R)= {g ∈ C+(VR)
×

| gVRg−1
= VR, g∗g ∈ R×

}.

Then g 7→ (v 7→ g • v := gvg−1) defines a surjective map of reductive groups G → G̃ := SO(V ) with
kernel Gm . The groups G and G̃ are both of Dynkin type Bn .

We now assume that we can find an Fp-basis (v0, v1, . . . , v2n) such that the matrix of the bilinear form
attached to Q with respect to this basis is given by

1
1

1
. . .

1
1


.

Although there are two isomorphism classes of quadratic spaces over Fp of dimension 2n + 1, the
associated groups GSpin and SO are isomorphic. Hence our assumption is harmless.

We define the cocharacter µ : Gm → G by

µ(t)= tv1v2n + v2nv1.

The composition of µ with G → SO(V ) yields the cocharacter

µ̃ : Gm → SO(V ), t 7→ diag(1, t, 1, . . . , 1, t−1).

We will compute the cycle classes of EO-strata for (G̃, µ̃). Again by Section 4E this yields then also the
corresponding cycle classes for (G, µ).

As a maximal torus T̃ for G̃ = SO(V ) we choose

T̃ = {diag(1, t1, . . . , tn, t−1
n , . . . , t−1

1 ) | ti ∈ Gm}.

For i = 1, . . . , n, let xi be the character diag(1, t1, . . . , tn, t−1
n , . . . , t−1

1 ) 7→ ti . Then S̃ = Q[x1, . . . , xn].
The Weyl group W is the group

W = {w ∈ S2n | w(i)+w(2n + 1 − i)= 2n + 1 for all i}

acting on T in the standard way via the last 2n coordinates. The roots of (G̃, T̃ ) are given by ±xi ± x j

for 1 ≤ i ̸= j ≤ n and ±xi for i = 1, . . . , n. Let B̃ be the Borel subgroup such that the corresponding simple
roots are given by x1 − x2, . . . , xn−1 − xn, xn . Then the set 6 of simple reflections in W corresponding
to B is given by s1, . . . , sn−1, sn , where si is the transposition τi,i+1τ2n−i,2n+1−i for i = 1, . . . , n − 1
and sn = τn,n+1.

Let z̃ ∈ G̃ be a lift of the element in W with 1 7→ 2n, 2n 7→ 1 and i 7→ i for all i = 2, . . . , 2n − 1.
Then (B̃, T̃ , z̃) is a frame by Lemma 3.3.
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As I is the set of simple reflections corresponding to simple roots α with ⟨µ, α⟩ = 0, we find
I = {s2, . . . , sn}. Hence we find a bijection

I W = {w−1
∈ W | w(2) < w(3) < · · ·<w(2n − 1)} −→∼ {1, . . . , 2n}, w 7→ w−1(1). (8.7)

Moreover, ℓ(w) = w−1(1)− 1 for w ∈
I W . By parts (2) and (4) of Lemma 3.8, this implies that the

order ⪯ coincides with the Bruhat order on I W and that (8.7) is an isomorphism of ordered sets. There is
a concrete reduced expression of w ∈

I W as a product of simple reflections:

w =

{
s1s2 · · · sℓ(w) if ℓ(w)≤ n;

s1s2 · · · snsn−1 · · · s2n−ℓ(w) if ℓ(w) > n.
(8.8)

For all s ∈ I , one has zs = s. As G̃ is split over Fp, the Frobenius ϕ acts trivially on W . Therefore,
for w ∈

I W , the subset Iw ⊆ I defined in Section 3F is the largest subset such that w Iw = Iw. Hence

Ie = I, Is1 = I \ {s2}, . . . Is1···sn−1 = ∅, Is1···sn = ∅,

Is1···snsn−1 = ∅, Is1···snsn−1sn−2 = {sn}, . . . Is1···sn ···s1 = I \ {s2}.
(8.9)

Hence Fℓw is the flag variety of a split group over Fp of Dynkin type Bk , where

k =


n − 1 − ℓ(w) if ℓ(w)≤ n − 1,

0 if ℓ(w)= n,
ℓ(w)− n + 1 if ℓ(w)≥ n + 1.

By Example 2.6, we find that

[Brhe] =

∏
1≤i< j≤n

(xi ⊗ 1 − 1 ⊗ x j )0n(c1, . . . , cn), (8.10)

where ci =
1
2(σi (x1, . . . , xn)⊗ 1 + 1 ⊗σi (x1, . . . , xn)) for i = 1, . . . , n, and we set c0 = 1 and ci = 0 for

all i /∈ {0, . . . , n}. For instance, if n = 2, 3, we find

[Brhe] =

{
(x1 ⊗ 1 − 1 ⊗ x2)c1c2 if n = 2,∏

1≤i< j≤3(xi ⊗ 1 − 1 ⊗ x j )c3(c1c2 − c3) if n = 3.
(8.11)

The operators δsi from Section 2E act on S̃ by

δsi ( f )=
f (x1, . . . , xn)− f (x1, . . . , xi−1, xi+1, xi , xi+2, . . . , xn)

xi − xi+1

for 1 ≤ i ≤ n − 1 and by

δsn ( f )=
f (x1, . . . , xn)− f (x1, . . . , xn−1,−xn)

xn

for i = n.
The homomorphism ψ̃∗

: S̃ ⊗ S̃ → S̃ is given by x1 ⊗ 1 7→ −x1, xi ⊗ 1 7→ xi for i = 2, . . . , n and
1 ⊗ xi 7→ pxi for i = 1, . . . , n.

Finally, by Lemma 4.18, the operator π̃∗ is given by δw0,I o , where w0,I o is the longest element of the
Weyl group WI o = W{s2,...,sn} of type Bn−1.
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The case n = 2. For i = 1, . . . , 4, we denote the element of length i − 1 by wi ∈
I W . By (8.9), we find

γ (w1)= γ (w4)= #P1(Fp)= p + 1 and γ (w2)= γ (w3)= 1. (8.12)

Using the above we find the following formulas for the classes of the closures of the EO-strata:

[Zw1] = (p + 1) 1
2(1 − p2)((p2

+ p)x2
2 + (p − 1)x2

1)x1,

[Zw2] =
1
2(p

2
− 1)(p − 1)x2

1 ,

[Zw3] = (p − 1)x1,

[Zw4] = (p + 1)2.

(8.13)

Since the Dynkin diagrams of type B2 and C2 are isomorphic, by Proposition 4.23, the Chow rings of
the associated moduli spaces of G-zips are isomorphic. Indeed one can check that the formulas in (8.13)
match those in (8.6) (up to terms in SW

+
) under the isomorphism

Q[x1, x2] → Q[x1, x2], x1 7→ x1 + x2, x2 7→ x1 − x2.

The case n = 3. For i = 1, . . . , 6, we denote, as above, the element of length i −1 by wi ∈
I W . By (8.9),

γ (w1)=γ (w6)= p3
+2p2

+2p+1, γ (w2)=γ (w5)=#P1(Fp)= p+1, γ (w3)=γ (w4)=1. (8.14)

Using the above we find the following formulas for the classes of the closures of the EO-strata:

[Zw1] =
1
2(p

3
+ 2p2

+ 2p + 1)(p2
+ p + 1)(p + 1)2(p − 1)

· (p4x2
2 x2

3 + p3x2
1 x2

2 + p3x2
1 x2

3 + p2x4
1 + p2x2

2 x2
3 − 2px4

1 − px2
1 x2

2 − px2
1 x2

3 + x4
1)x1,

[Zw2] = −
1
2(p + 1)3(p − 1)2(p2x2

2 + p2x2
3 + px2

1 − x2
1)x

2
1 ,

[Zw3] =
1
2(p

2
+ p + 1)(p + 1)(p − 1)3x3

1 ,

[Zw4] = (p + 1)(p − 1)2x2
1 ,

[Zw5] = (p + 1)2(p − 1)x1,

[Zw6] = (p3
+ 2p2

+ 2p + 1)(p2
+ 1)(p + 1)2.
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