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The Manin–Mumford conjecture and
the Tate–Voloch conjecture for a
product of Siegel moduli spaces

Congling Qiu

We use perfectoid spaces associated to abelian varieties and Siegel moduli spaces to study torsion points
and ordinary CM points. We reprove the Manin–Mumford conjecture, i.e., Raynaud’s theorem. We also
prove the Tate–Voloch conjecture for a product of Siegel moduli spaces, namely ordinary CM points
outside a closed subvariety can not be p-adically too close to it.
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1. Introduction

We use the theory of perfectoid spaces to study torsion points in abelian varieties and ordinary CM points
in Siegel moduli spaces. The use of perfectoid spaces is inspired by Xie’s recent work [2018].

Tate–Voloch conjecture. Our main new result is about ordinary CM points. Let p be a prime number, L
the complete maximal unramified extension of Qp. Let X be a product of Siegel moduli spaces over L
with arbitrary level structures.

Theorem 1.1. Let Z be a closed subvariety of X L . There exists a constant c > 0 such that for every
ordinary CM point x ∈ X (L), if the distance d(x, Z) from x to Z satisfies d(x, Z)≤ c, then x ∈ Z.

The distance d(x, Z) is defined as follows. Let ∥·∥ be a p-adic norm on L . Let X be an integral model
of X over OL . Let {U1, . . . ,Un} be a finite open cover of X by affine schemes flat over OL . Define
d(x, Z) to be the supremum of the ∥ f (x)∥ where Ui contains x and f ∈OX(Ui ) vanishing on Z

⋂
Ui .

The definition of d(x, Z) depends on the choices of the integral model and the cover. However, the truth
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of Theorem 1.1 does not depend on these choices; see page 986. Moreover, we show that Theorem 1.1
holds for formal subschemes of X (with maximal level at p); see Theorem 6.8. For CM points which are
canonical liftings, we prove an “almost effective” version; see Theorem 6.13.

It is clear that the same statement in Theorem 1.1 is true replacing X L by a closed subvariety. In
particular, Theorem 1.1 is in fact equivalent the same statement for X being a single Siegel moduli space,
by embedding a product of Siegel moduli spaces into a larger Siegel moduli space.

Remark 1.2. (1) For a power of the modular curve without level structure, Theorem 1.1 was proved by
Habegger [2014] by a different method. However, Habegger’s proof relies on a result of Pila [2014] (see
also [Habegger 2014, Theorem 8]) concerning Zariski closure of a Hecke orbit. As far as we know, it is
not available for Siegel moduli spaces yet. Moreover, Habegger’s method seems not applicable to formal
schemes.

(2) Habegger [2014] also showed that the ordinary condition is necessary.

(3) The original Tate–Voloch conjecture [Tate and Voloch 1996] states that in a semiabelian variety,
torsion points outside a closed subvariety can not be p-adically too close to it. This conjecture was proved
by Scanlon [1998; 1999] when the semiabelian variety is defined over Qp. Xie [2018] proved dynamical
analogs of Tate–Voloch conjecture for projective spaces.

Idea of the proof of Theorem 1.1. It is not hard to reduce Theorem 1.1 to the case that X has maximal
level at p; see Lemma 2.15. We sketch the proof of Theorem 1.1 in this case. Relative to the canonical
lifting of an ordinary point x in the reduction of X , ordinary CM points in X with reduction x are like
p-primary roots of unity relative to 1 in the open unit disc around 1; see Proposition 5.1. This is the
Serre–Tate theorem. If we only consider one such disc, Theorem 1.1 follows from a result of Serban
[2018]. In general, we need to study all infinitely many Serre–Tate deformation spaces together. In
characteristic p, this can be achieved by Chai’s [2003] global Serre–Tate theorem; see Section 5. To
prove Theorem 1.1, we at first prove a Tate–Voloch type result in a family characteristic p; see Section 6.
Then we use the ordinary perfectoid Siegel space associated to X and the perfectoid universal covers of
Serre–Tate deformation spaces to translate this result to the desired Theorem 1.1.

Possible generalizations. For Shimura varieties of Hodge type, the ordinary locus in the usual sense could
be empty. In this case, we consider the notion of µ-ordinariness; see [Wedhorn 1999]. Then following
our strategy, we need three ingredients. At first, a theory of Serre–Tate coordinates for µ-ordinary CM
points. For Shimura varieties of Hodge type; see [Hong 2019; Shankar and Zhou 2016]. Secondly, a
global theory of Serre–Tate coordinates in characteristic p. For Shimura varieties of PEL type, such
results should be known to experts. Thirdly, µ-ordinary perfectoid Shimura varieties. Following Scholze
[2015], certain perfectoid Shimura varieties of abelian type are constructed in [Shen 2017]. For universal
abelian varieties over Shimura varieties of PEL type, we expect a Tate–Voloch type result for torsion
points in fibers over µ-ordinary CM points. Still, we need analogs of the above three ingredients.



The Manin–Mumford and Tate–Voloch conjectures for a product of Siegel moduli spaces 983

Manin–Mumford conjecture. For torsion points in abelian varieties, we reprove Raynaud’s theorem,
which is also known as the Manin–Mumford conjecture.

Theorem 1.3 [Raynaud 1983b]. Let F be a number field. Let A be an abelian variety over F and V a
closed subvariety of A. If V contains a dense subset of torsion points of A, then V is the translate of an
abelian subvariety of A by a torsion point.

Idea of the proof of Theorem 1.3. We simply consider the case when V does not contain any translate of a
nontrivial abelian subvariety. Suppose that A has good reduction at a place of F unramified over a prime
number p. Let [p] : A→ A be the morphism multiplication by p. Let 3n be a suitable set of reductions
of torsions in [pn

]
−1(V ), and 3Zar

n its Zariski closure in the base change to Fp of the reduction of A. Use
the p-adic perfectoid universal cover of A to lift 3Zar

n to A. A variant of Scholze’s approximation lemma
[2012] shows that as n get larger, the liftings are closer to V ; see Proposition 2.23. A result of Scanlon
[1998] on the Tate–Voloch conjecture for prime-to-p torsions implies that the prime-to-p torsions of
these points are in V for n large enough; see Proposition 4.8. Assume that 3n is infinite and we deduce a
contradiction as follows. A result of Poonen [2005] (see Theorem 4.1) shows that the size of the set of
prime-to-p torsions in 3Zar

n is not small. Then the liftings give a lower bound on the size of the set of
prime-to-p torsions in V ; see Proposition 4.9. Now consider the l-adic perfectoid space associated to A.
By the same approach, we can repeatedly improve such lower bounds. Finally we get a contradiction as
A is of finite dimensional.

Remark 1.4. The proofs of Poonen’s result and Scanlon’s result are independent of Theorem 1.3.

Organization of the Paper. The preliminaries on adic spaces and perfectoid spaces are given in Section 2.
We introduce the perfectoid universal cover of an abelian scheme in Section 3. The reader may skip
these materials and only come back for references. We set up notations for the proof of Theorem 1.3 in
Section 3, then prove Theorem 1.3 in Section 4. We introduce the ordinary perfectoid Siegel space and
set up notations for the proof of Theorem 1.1 in Section 5. Then we prove Theorem 1.1 in Section 6.

2. Adic spaces and perfectoid spaces

We briefly recall the theory of adic spaces due to Huber [1993a; 1993b; 1994; 1996], and the generalization
by Scholze and Weinstein [2013]. Then we define tube neighborhoods in adic spaces and distance functions.
Finally we recall the theory of perfectoid spaces of Scholze [2012] and an approximation lemma due to
Scholze.

Let K be a nonarchimedean field, i.e., a complete nondiscrete topological field whose topology is
induced by a nonarchimedean norm ∥·∥K (∥·∥ for short). Define

K ◦ = {x ∈ K : ∥x∥ ≤ 1} and K ◦◦ = {x ∈ K : ∥x∥< 1}.

Let ϖ ∈ K ◦◦−{0}.
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Adic generic fibers of certain formal schemes.

Adic spaces. Let R be a complete Tate K -algebra, i.e., a complete topological K -algebra with a subring
R0 ⊂ R such that {a R0 : a ∈ K×} forms a basis of open neighborhoods of 0. A subset of R is called
bounded if it is contained in a certain a R0. Let R◦ be the subring of power bounded elements, i.e., x ∈ R◦

if and only if the set of all powers of x form a bounded subset of R. Let R+ ⊂ R◦ be an open integrally
closed subring. Such a pair (R, R+) is called an affinoid K -algebra. Let Spa(R, R+) be the topological
space whose underlying set is the set of equivalent classes of continuous valuations |·(x)| on R such that
| f (x)| ≤ 1 for every f ∈ R+ and topology is generated by the subsets of the form

U
(

f1, . . . , fn

g

)
:= {x ∈ Spa(R, R+) : ∀i | fi (x)| ≤ |g(x)|}

such that ( f1, . . . , fn)= R. There is a natural presheaf on Spa(R, R+); see [Huber 1994, page 519]. If
this presheaf is a sheaf, then the affinoid K -algebra (R, R+) is called sheafy, and Spa(R, R+) is called
an affinoid adic space over K .

Assumption 2.1. If K ◦ ⊂ R+, for every x ∈ Spa(R, R+), we always choose a representative |·(x)| in the
equivalence class of x such that | f (x)| = ∥ f ∥K for every f ∈ K .

Define a category (V ) as in [Scholze 2012, Definition 2.7]. Objects in (V ) are triples (X ,OX , {|·(x)| :
x ∈ X }) where (X ,OX ) is a locally ringed topological space whose structure sheaf is a sheaf of complete
topological K -algebras, and |·(x)| is an equivalence class of continuous valuations on the stalk of OX at x .
Morphisms in (V ) are morphisms of locally ringed topological spaces which are continuous K -algebra
morphisms on the structure sheaves, and compatible with the valuations on the stalks in the obvious sense.

Definition 2.2. An adic space X over K is an object in (V ) which is locally on X an affinoid adic space
over K . An adic space over Spa(K , K ◦) is an adic space over K with a morphism to Spa(K , K ◦). A
morphism between two adic spaces over Spa(K , K ◦) is a morphism in (V ) compatible the morphisms to
Spa(K , K ◦). The set of morphisms Spa(K , K ◦)→ X is denoted by X (K , K ◦).

There is a natural inclusion X (K , K ◦) ↪→ X by mapping a morphism Spa(K , K ◦)→ X to its image.
We always identify X (K , K ◦) as a subset of X by this inclusion.

Adic generic fibers of certain formal schemes. A Tate K -algebra R is called of topologically finite type
(tft for short) if R is a quotient of K ⟨T1, T2, . . . , Tn⟩. In particular, it is equipped with the ϖ -adic
topology. Similarly define K ◦-algebras of tft. By [Bosch et al. 1984, 5.2.6, Theorem 1] and [Huber
1994, Theorem 2.5], if R is of tft, then an affinoid K -algebra (R, R+) is sheafy. Similar to the rigid
analytic generic fibers of formal schemes over K ◦ [Bosch 2014, 7.4], we naturally have a functor from the
category of formal schemes over K ◦ locally of tft to adic spaces over Spa(K , K ◦) such that the image of
Spf A is Spa

(
A
[ 1
ϖ

]
, Ac

)
where Ac is the integral closure of A in A

[ 1
ϖ

]
. The image of a formal scheme

under this functor is called its adic generic fiber.
We are interested in certain infinite covers of abelian schemes and Siegel moduli spaces. They are not

of tft. We need to generalize the adic generic fiber functor. In [Scholze and Weinstein 2013], the category
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of adic spaces over Spa(K , K ◦) is enlarged in a sheaf-theoretical way. Moreover, the adic generic fiber
functor extends to the category of formal schemes over K ◦ locally admitting a finitely generated ideal of
definition.

For our purpose, we only need the following special case. Let X be a formal K ◦-scheme which is
covered by affine open formal subschemes {Spf Ai : i ∈ I }, where I is an index set, such that each affinoid
K -algebra

(
Ai

[ 1
ϖ

]
, Ac

i

)
is sheafy. Then the adic generic fiber X of X is an adic space over Spa(K , K ◦) in

the sense of Definition 2.2. Indeed, X is the obtained by gluing the affinoid adic spaces Spa
(

Ai
[ 1
ϖ

]
, Ac

i

)
in the obvious way. We have an easy consequence.

Lemma 2.3. Let X be the adic generic fiber X. Then there is a natural bijection X(K ◦)≃ X (K , K ◦).

Tube neighborhoods and distance functions.

Tube neighborhoods. Let X = Spf B, where B is a flat K ◦-algebra of tft. Let Z be a closed formal
subscheme defined by a closed ideal I . Let X be the adic generic fiber of X. Then X = Spa(R, R+)
where R = B

[ 1
ϖ

]
and R+ is the integral closure of B in R.

Definition 2.4. For ϵ ∈ K×, the ϵ-neighborhood of Z in X is defined to be the subset

Zϵ := {x ∈ X : | f (x)| ≤ |ϵ(x)| for every f ∈ I }.

Remark 2.5. Note that Zϵ may not be open in X . If I is generated by { f1, . . . , fn}, then Zϵ =
U (( f1, . . . , fn, ϵ)/ϵ) is naturally an open adic subspace of X . In fact, for our applications, we only use
this case.

Definition 2.4 immediately implies the following lemmas.

Lemma 2.6. Let Z=
⋂m

i=1 Zi , where each Zi is a closed formal subschemes of X. For ϵ ∈ K×, let Zi,ϵ

be the ϵ-neighborhood of Zi . Then Zϵ =
⋂m

i=1 Zi,ϵ .

Lemma 2.7. Let Z= Z1
⋃

Z2, where Z1,Z2 are closed formal subschemes of X:

(1) Then Z1,ϵ ⊂ Zϵ .

(2) Suppose that there exists δ ∈ K ◦◦−{0} which vanishes on Z2. Then Zϵ ⊂ Z1,ϵ/δ.

Let X be a K ◦-scheme locally of finite type, and X the ϖ -adic formal completion of X . Let X be the
adic generic fiber of X. We also call X the adic generic fiber of X . Let Z be a closed subscheme of X K .
We define tube neighborhoods of Z in X as follows; see also [Scholze 2012, Proposition 8.7].

Suppose that X is affine. Let Z⊂X be the closed formal subscheme associated to the schematic closure
of Z .

Definition 2.8. For ϵ ∈ K×, the ϵ-neighborhood of Z in X is defined to be the ϵ-neighborhood of Z in X .

Remark 2.9. If the schematic closure of Z has empty special fiber, then Zϵ is empty.
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To define tube neighborhoods in general, we need to glue affinoid pieces. We consider the following
relative situation. Let Y be another affine K ◦-scheme of finite type, and 8 : Y → X a K ◦-morphism.
Let W be the preimage of Z which is a closed subscheme of YK , and Wϵ its ϵ-neighborhood. By
the functoriality of formal completion and taking adic generic fibers, we have an induced morphism
9 : Y→ X . From the fact that schematic image is compatible with flat base change (see [Bosch et al.
1990, 2.5, Proposition 2]), we easily deduce the following lemma.

Lemma 2.10. If8 : Y→ X is flat, then9−1(Zϵ)=Wϵ . In particular, if Y ⊂ X is an open K ◦-subscheme,
Wϵ = Zϵ

⋂
Y under the natural inclusion Y ↪→ X .

Now we turn to the general case. Let X be an K ◦-scheme locally of finite type. For an open subscheme
U ⊂ X , let ZU be the restriction of Z to U . Let S = {Ui : i ∈ I } be an affine open cover of X , where I is
an index set and each Ui is of finite type over K ◦. Let ZUi ,ϵ be the ϵ-neighborhood of ZUi in the adic
generic fiber Ui of Ui . Note that each Ui is naturally an open adic subspace of X .

Definition 2.11. Define the ϵ-neighborhood of Z in X by Zϵ :=
⋃

U∈S ZU,ϵ .

As a corollary of Lemma 2.10, this definition is independent of the choice of the cover U .

Distance functions. Let U be an affine open subset of X which is flat over K ◦. Let I be an ideal of the
coordinate ring of U . For x ∈U (K ), define dU (x, I ) := sup{∥ f (x)∥ : f ∈ I }. Let I be the ideal sheaf of
the schematic closure of Z in X .

Assume that X is of finite type over K ◦. Let U := {U1, . . . ,Un} be a finite affine open cover of X such
that each Ui is flat over K ◦. For x ∈ X (K ), define dU (x, Z) to be the maximum of dUi (x, I ) over all i
such that x ∈Ui .

Let x◦ ∈ X (K ◦) and x the generic point of x◦. Regard x as a point in X (K , K ◦) via Lemma 2.3. Let
U be an affine open subset of X flat over K ◦ such that x◦ ∈ U (K ◦). We have a tautological relation
between the distance function and tube neighborhoods.

Lemma 2.12. Let ϵ ∈ K×. Then x ∈ ZU,ϵ if and only if dU (x, I(U ))≤ ∥ϵ∥.

By Lemma 2.10, the number dU (x, I(U )) does not depend on the choice of U . Define

d(x, Z) := dU (x, I(U )).

Then d(x, Z)= dU (x, Z) for every finite affine open cover U of X . Our distance function coincides with
the one in the end of [Scanlon 1998, Section 1], which is defined globally.

A finite extension of K has a natural structure of a nonarchimedean field; see [Bosch et al. 1984]. Let
K be an algebraic closure of K . The above discussion is naturally generalized to x ∈ X (K ) and Z ⊂ X K .

Tate–Voloch type sets. Let X be of finite type over K ◦.

Definition 2.13. Fix an arbitrary finite affine open cover U of X by subschemes flat over K ◦. A set
T ⊂ X (K ) is of Tate–Voloch type if for every closed subscheme Z of X K , there exists a constant c > 0
such that for every x ∈ T , if dU (x, Z)≤ c, then x ∈ Z(K ).
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Remark 2.14. Is there always a set of Tate–Voloch type? Let C ⊂ X be irreducible and flat over K ◦

of relative dimension 1. Choose one point in each residue disk in C . Easy to check that this set of
points of X is of Tate–Voloch type. Moreover, we can choose points in residue disks in C chose degrees
are unbounded. The following questions are more meaningful. Is there always a Tate–Voloch type set
which is Zariski dense in X? Can the points in this set have unbounded the degrees over K ? Indeed,
the Tate–Voloch type sets in Theorem 1.1 and in the results of Habegger, Scanlon and Xie give positive
answers to these two questions.

Let Y be a K ◦-scheme of finite type, and π : Y → X a finite schematically dominant morphism.

Lemma 2.15. Let T ⊂ X (K ) be of Tate–Voloch type and T ′=π−1(T )⊂Y (K ). Then T ′ is of Tate–Voloch
type.

Proof. We may assume that Y = Spec B and X = Spec A where A is a subring of B. Let L be a finite
extension of K . Let Z ′ be a closed subscheme of YL . We need to show that d(x ′, Z ′) has a positive lower
bound for x ′ ∈ T ′− Z ′(K ). Define the dimension of Z ′ to be the maximal dimension of the irreducible
components of Z ′. We allow Z ′ to be empty, in which case we define its dimension to be −1. We do
induction on the dimension of Z ′. Then the dimension −1 case is trivial. Now we consider the general
case with the hypothesis that the lemma holds for all lower dimensions.

Suppose such a lower bound does not exists, then there exists a sequence of x ′n ∈ T ′− Z ′(K ) such
that d(x ′n, Z ′)→ 0 as n→∞. We will find a contradiction. Let Z be the schematic image of Z ′ by π ,
xn = π(x ′n). Let the schematic closure of Z in X L◦(resp. Z ′ in YL◦) be defined by an ideal J ⊂ A⊗ L◦

(resp. I ⊂ B⊗ L◦). Then I ⊗ L ⊃ J B⊗ L . Since J B⊗ L◦ is finitely generated, there exists a positive
integer r such that I ⊃ ϖ r J B ⊗ L◦. Thus d(xn, Z)→ 0 as n→∞. Since T is of Tate–Voloch type,
xn ∈ Z(K ) for n large enough. We may assume that every xn ∈ Z(K ). Since x ′n ̸∈ Z ′, π−1(Z)= Z ′

⋂
Z1

where Z1 is a closed subscheme of YL not containing Z ′ but containing all x ′n . Claim: d
(
x ′n, Z ′

⋂
Z1

)
→ 0

as n→∞. This contradicts the induction hypothesis. Thus d(x ′, Z ′) has a positive lower bound for
x ′ ∈ T ′− Z ′(K ). Now we prove the claim. Let the schematic closure of Z1 in YL◦ be defined by an ideal
I1 ⊂ B⊗ L◦. Then the schematic closure of Z ′

⋂
Z1 is defined by the following ideal of B⊗ L◦:

I2 := (I1⊗ L + I ′⊗ L)
⋂

B⊗ L◦ = (I1+ I ′)⊗ L
⋂

B⊗ L◦,

which is finitely generated. Thus there exists a positive integer s such that (I1+ I ′)⊃ϖ s I2. Now the
claim follows from that d(x ′n, Z ′)→ 0 and x ′n ∈ Z1. □

Perfectoid spaces.

Two perfectoid fields. Instead of recalling the definition of perfectoid fields (see [Scholze 2012, Defini-
tion 3.1]), we consider two examples and use them through out this paper.
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Let k = Fp, W =W (k) the ring of Witt vectors, and L =W
[ 1

p

]
. For each integer n ≥ 0, let µpn be a

primitive pn-th root of unity in L such that µp
pn+1 = µpn . Let

Lcycl
:=

∞⋃
n=1

L(µpn ).

Let ϖ = µp − 1, and K the ϖ -adic completion of Lcycl. Then K is a perfectoid field in the sense that

K ◦/ϖ → K ◦/ϖ, x 7→ x p

is surjective; see [Scholze 2012, Definition 3.1]. Let

K ♭
= k((t1/p∞/))

be the t-adic completion of
⋃
∞

n=1 k((t))(t1/pn
). Then K ♭ is a perfectoid field. Let ϖ ♭

= t1/p. Equip K ♭

with the nonarchimedean norm ∥·∥K ♭ such that ∥ϖ ♭
∥K ♭ = ∥ϖ∥K . Consider the morphism

K ◦/ϖ → K ♭◦/ϖ ♭, µpn − 1 7→ t1/pn
. (2-1)

This morphism is well-defined since

(µpn − 1)pm
≃ µpn−m − 1 (modϖ)

for m < n. Easy to check this morphism is an isomorphism. We call K ♭ the tilt of K .

Perfectoid spaces. The most important property of a perfectoid K -algebra R is that

R◦/ϖ → R◦/ϖ, x 7→ x p

is surjective; see [Scholze 2012, Definition 5.1]. An affinoid K -algebra (R, R+) is called perfectoid if R
is perfectoid. By [loc. cit., Theorem 6.3], an affinoid K -algebra (R, R+) is sheafy. Define a perfectoid
space over K to be an adic space over K locally isomorphic to Spa(R, R+), where (R, R+) is a perfectoid
affinoid K -algebra.

By [loc. cit., Theorem 5.2], there is an equivalence between the categories of perfectoid K -algebras
and perfectoid K ♭-algebras. By [loc. cit., Lemma 6.2 and Proposition 6.17], this category equivalence
induces an equivalence between the categories of perfectoid affinoid K -algebras and perfectoid affinoid
K ♭-algebras, as well as an equivalence between the categories of perfectoid spaces over K and perfectoid
spaces over K ♭.

The image of an object or a morphism in the category of perfectoid K -algebras, perfectoid affinoid
K -algebras, or perfectoid spaces over K is called its tilt.

Two important maps ♯ and ρ. Let R be perfectoid K -algebra and R♭ its tilt. By [loc. cit., Proposition 5.17],
there is a multiplicative homeomorphism R♭ ≃ lim

←−−x 7→x p R. Denote the projection to the first component
by

R♭→ R, f 7→ f ♯.



The Manin–Mumford and Tate–Voloch conjectures for a product of Siegel moduli spaces 989

Let (R, R+) be perfectoid affinoid K -algebra and (R♭, R♭+) its tilt. For x ∈ Spa(R, R+), let ρ(x) ∈
Spa(R♭, R♭+) be the valuation | f (ρ(x))| = | f ♯(x)| for f ∈ R♭. This defines a map between sets

ρ : Spa(R, R+) 7→ Spa(R♭, R♭+).

Note that Spa(R♭, R♭+) is the tilt of Spa(R, R+). The definition of ρ glues and we have a map

ρX : |X | ≃ |X ♭
|

between the underlying sets of a perfectoid space X over K and its tilt X ♭.

Lemma 2.16. (1) Let φ : R→ S be a morphism between perfectoid K -algebras, and φ♭ : R♭→ S♭ its tilt.
Then for every f ∈ R♭, we have φ♭( f )♯ = φ( f ♯).

(2) Let 8 : X → Y be a morphism between perfectoid spaces over K and 8♭ its tilt. Then as maps
between topological spaces, we have

ρY ◦8=8
♭
◦ ρX .

Proof. (1) follows from the definition of the ♯-map and [Scholze 2012, Theorem 5.2]. (2) follows
from (1). □

By (2), the restriction of ρX to X (K , K ◦) gives the functorial bijection X (K , K ◦) ≃ X ♭(K ♭, K ♭◦),
which we also denote by ρX . In the next two paragraphs, we compute ρX in two cases.

Tilting and reduction. Let (R, R+) be a perfectoid affinoid K -algebra and (R♭, R♭+) its tilt. Suppose
there exists a flat W -algebra S such that:

(1) R+ is the ϖ -adic completion of S⊗W K ◦,

(2) R♭+ is the ϖ ♭-adic completion of Sk ⊗k K ♭◦.

Let φ : S → W be a W -algebra morphism, φk : Sk → k be its base change. Then φ induces a map
ψ : R+→ K ◦ which further induces a point x of Spa(R, R+). Similarly, φk induces a map ψ ′ : R♭+→ K ♭◦

which further induces a point x ′ of Spa(R♭, R♭+). Then ψ/ϖ =ψ ′/ϖ ♭ under the isomorphism R+/ϖ ≃
R♭+/ϖ ♭. By [Scholze 2012, Theorem 5.2], φ′ is the tilt of φ and thus we have the following lemma.

Lemma 2.17. We have ρSpa(R,R+)(x)= x ′.

An example: the perfectoid closed unit disc. Let R = K ⟨T 1/p∞, T−1/p∞
⟩, the ϖ ♭-adic completion of⋃

r∈Z≥0
K [T 1/pr

, T−1/pr
]. Then R is perfectoid. The tilt R♭ of R is K ♭

⟨T 1/p∞, T−1/p∞
⟩. Let Gperf

:=

Spa(R, R◦). Then Gperf is a perfectoid space over Spa(K , K ◦), and Gperf,♭
:= Spa(R♭, R♭◦) is its tilt.

Let c ∈ Zp, and m ∈ Z≥0. The K ◦-morphism R◦→ K ◦ defined by

T 1/pn
→ µc

pm+n

gives a point x ∈ Gperf(K , K ◦). The K ♭◦-morphism Rperf
→ K ♭ defined by

T 1/pn
→ (1+ t1/pm+n

)c
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gives a point x ′ ∈ Gperf,♭(K ♭, K ♭◦). The following lemma follows from (2-1) and [Scholze 2012, Theo-
rem 5.2].

Lemma 2.18. We have ρGperf(x)= x ′.

Similar result holds for Gl,perf
= Spa(R, R◦) where

R = K ⟨T 1/p∞

1 , T−1/p∞

1 , . . . , T 1/p∞
l , T−1/p∞

l ⟩,

and its tilt Gl,perf ♭
= Spa(R♭, R♭◦) where

R♭ = K ♭
⟨T 1/p∞

1 , T−1/p∞

1 , . . . , T 1/p∞
l , T−1/p∞

l ⟩.

A variant of Scholze’s approximation lemma. The perfectoid fields K , K ♭ and related notations are as on
page 987. Let (R, R+) be a perfectoid affinoid (K , K ◦)-algebra with tilt (R♭, R♭+). Let X = Spa(R, R+)
with tilt X ♭

= Spa(R♭, R♭+). For f, g ∈ R, define | f (x)− g(x)| to be |( f − g)(x)|. The following
approximation lemma plays an important role in Scholze’s work [2012].

Lemma 2.19 [Scholze 2012, Corollary 6.7(1)]. Let f ∈ R+. Then for every c ≥ 0, there exists g ∈ R♭+

such that for every x ∈ X , we have

| f (x)− g♯(x)| ≤ ∥ϖ∥1/p max{| f (x)|, ∥ϖ∥c} = ∥ϖ∥1/p max{|g♯(x)|, ∥ϖ∥c}. (2-2)

Here the map ♯ is as on page 988 (i.e., |g(ρ(x))| = |g♯(x)|), and we use ∥·∥ to denote ∥·∥K .
Recall that k = Fp. Assume that there exists a k-algebra S, such that R♭+ is the ϖ ♭-adic completion of

S⊗ K ♭◦. Then we have natural maps

Homk(S, k) ↪→ HomK ♭◦(S⊗ K ♭◦, K ♭◦)≃ X ♭(K ♭, K ♭◦).

Thus we regard (Spec S)(k) as a subset of X ♭.

Lemma 2.20. Continue to use the notations in Lemma 2.19. Assume that c ∈ Z
[ 1

p

]
. There exists a finite

sum
gc =

∑
i∈Z[1/p]≥0,

i<1/p+c

gc,i · (ϖ
♭)i

with gc,i ∈ S and only finitely many gc,i ̸= 0, such that

g− gc ∈ (ϖ
♭)1/p+c R♭+. (2-3)

Proof. There exists a finite sum g′ =
∑

s j a j ∈ S⊗ K ♭◦, where s j ∈ S and a j ∈ K ♭◦, such that g− g′ ∈
(ϖ ♭)1/p+c R♭+.

Claim. Let a ∈ K ♭◦, then there exists a positive integer N such that

a−
∑

h∈(Z/pN )≥0,
h<1/p+c

αh · (ϖ
♭)h ∈ (ϖ ♭)1/p+c K ♭◦

for certain αh ∈ k.
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Indeed, the claim follows from that K ♭◦ is the ϖ ♭-adic completion of
⋃
∞

n=1 k[[t]][(ϖ ♭)1/pn
]. Note that

{h ∈ (Z/pN )≥0, h < 1/p+ c} is finite set. So there exists a finite sum

gc =
∑

i∈Z[1/p]≥0,
i<1/p+c

gc,i · (ϖ
♭)i

with gc,i ∈ S such that g′− gc ∈ (ϖ
♭)1/p+c R♭+. Then g− gc ∈ (ϖ

♭)1/p+c R♭+. □

Lemma 2.21. Let gc be as in Lemma 2.20 and x ∈ (Spec S)(k). Regarding x ∈ X ♭(K ♭, K ♭◦) via the
inclusion above. If |gc(x)| ≤ ∥ϖ∥1/p+c, then gc,i (x)= 0 for all i .

Proof. Since x ∈ (Spec S)(k), if gc,i (x) ̸= 0, then |gc,i (x)| = 1. Let i0 < 1/p+ c be the minimal i such
that |gc,i (x)| = 1. Then |gc(x)| = ∥ϖ ♭

∥
i0
K ♭ > ∥ϖ∥

1/p+c, a contradiction. □

Profinite setting. Impose the following assumption.

Assumption 2.22. There are k-algebras S0 ⊂ S1 ⊂ . . . such that S =
⋃

Sn .

Let Xn is the adic generic fiber of Spec Sn ⊗ K ♭◦. Then we have a natural morphism

πn : X ♭
→ Xn.

We also use πn to denote the morphism (Spec S)(k)→ (Spec Sn)(k). We have natural maps

(Spec Sn)(k) ↪→ HomK ♭◦(Sn ⊗ K ♭◦, K ♭◦)≃ Xn(K ♭, K ♭◦)

by which we regard (Spec Sn)(k) as a subset of Xn . For each n, let 3n ⊂ (Spec Sn)(k) be a set of k-points,
and 3Zar

n the Zariski closure of 3n in Spec Sn . We have the following maps and inclusions between sets:

|X | ρ
−→ |X ♭

|
πn
−→ |Xn| ⊃3

Zar
n (k)⊃3n,

where ρ is as on page 988.
Let f ∈ R+, and 4 := {x ∈ X : | f (x)| = 0}. We have the following variant of Lemma 2.19.

Proposition 2.23. Assume that 3n ⊂ πn(ρ(4)) for each n. Then for each ϵ ∈ K×, there exists a positive
integer n such that | f (x)| ≤ ∥ϵ∥K for every x ∈ (πn ◦ ρ)

−1(3Zar
n (k)).

Proof. Choose c ∈ Z≥0 large enough such that ∥ϖ∥1/p+c
K ≤ ∥ϵ∥K , choose g as in Lemma 2.19 and choose

a finite sum

gc =
∑

i∈Z[1/p]≥0,
i<1/p+c

gc,i · (ϖ
♭)i

as in Lemma 2.20 where gc,i ∈ S for all i . There exists a positive integer n(c) such that gc,i ∈ Sn(c)

for all i by the finiteness of the sum. By the assumption, every element x ∈ 3n(c) can be written as
πn(c) ◦ ρ(y) where y ∈ 4. By (2-2) and (2-3), |gc(ρ(y))| ≤ ∥ϖ∥1/p+c. Then by Lemma 2.21 and that
ρ(y)∈ (Spec S)(k), gc,i (ρ(y))= 0. Since gc,i ∈ Sn(c), gc,i (x)= 0. Thus gc,i lies in the ideal defining3Zar

n(c).



992 Congling Qiu

So gc,i (x) = 0, and thus gc(x) = 0, for every x ∈ 3Zar
n(c)(k). By (2-2) and (2-3), for every x ∈ 3Zar

n(c)(k),
we have

| f (ρ−1(π−1
n(c)(x)))| ≤ ∥ϖ∥

1/p+c
≤ ∥ϵ∥. □

3. Perfectoid universal cover of an abelian scheme

Let K be the perfectoid field on page 987 and K ♭ its tilt. Let A be a formal abelian scheme over K ◦.
We first recall the perfectoid universal cover of A and its tilt constructed in [Pilloni and Stroh 2016,
Lemme A.16]. Then we study the relation between tilting and reduction.

Perfectoid universal cover of an abelian scheme. Let A′ be a formal abelian scheme over Spf K ♭◦.
Assume that there is an isomorphism

A⊗ K ◦/ϖ ≃ A′⊗ K ♭◦/ϖ ♭ (3-1)

of abelian schemes over K ◦/ϖ ≃ K ♭◦/ϖ ♭. Let

Ã := lim
←−−
[p]

A, Ã′ := lim
←−−
[p]

A′.

Here the transition maps [p] are the morphism multiplication by p and inverse limits exist in the categories
of ϖ -adic and ϖ ♭-adic formal schemes; see [Pilloni and Stroh 2016, Lemme A.15]. Index the inverse
systems by Z≥0. Let Spf R+0 ⊂ A be an affine open formal subscheme. Let R+i be the coordinate ring
of ([p]i )−1 Spf R+0 , in other words, Spf R+i = ([p]

i )−1 Spf R+0 . Let Ri = R+i
[ 1
ϖ

]
, then R+i is integrally

closed in Ri . Let R+ be the ϖ -adic completion of
⋃
∞

i=0 R+i , R = R+
[ 1
ϖ

]
. Let Spf R′+0 ⊂ A′ be an

affine open formal subscheme such that the restriction of (3-1) to Spf R+0 ⊗ K ◦/ϖ is an isomorphism to
Spf R′+0 ⊗ K ♭◦/ϖ ♭. We similarly define R′+i , R′+ and R′.

Lemma 3.1 [Pilloni and Stroh 2016, Lemme A.16]. The affinoid K ♭-algebra (R′, R′+) is perfectoid. So
is (R, R+). Moreover, (R′, R′+) is the tilt of (R, R+).

Thus the adic generic fiber Aperf (resp. A′ perf) of Ã (resp. Ã′) is a perfectoid space. Moreover, A′ perf is
the tilt of Aperf. Thus we use Aperf ♭ to denote A′ perf. We call Aperf (resp. Aperf ♭) the perfectoid universal
cover of A (resp. A′). By Lemma 2.3, there are natural bijections

Ã(K ◦)≃Aperf(K , K ◦), Ã′(K ♭◦)≃Aperf ♭(K ♭, K ♭◦).

Let A (resp. A′) be the adic generic fiber of A (resp. A′). By Lemma 2.3, we have natural bijections

A(K ◦)≃A(K , K ◦), A′(K ♭◦)≃A′(K ♭, K ♭◦).

Definition 3.2. The group structures on A(K , K ◦), Aperf(K , K ◦), A′(K ♭, K ♭◦) and Aperf ♭(K ♭, K ♭◦) are
defined to be the ones induced from the natural bijections above.

By the functoriality of taking adic generic fibers, we have morphisms

πn :Aperf
→A, π ′n :A

perf ♭
→A′
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for n ∈ Z≥0, and morphisms

[p] :A→A, [p] :A′→A′.

Consider the following commutative diagram

Ã(K ◦) ≃
//

≃

��

lim
←−−[p]A(K

◦)

≃

��

Aperf(K , K ◦) // lim
←−−[p]A(K , K ◦)

(3-2)

where the bottom map is given by the πn . We immediately have the following lemma.

Lemma 3.3. The bottom map in (3-2) is a group isomorphism.

Remark 3.4. Indeed, Aperf serves as certain “limit” of the inverse system lim
←−−

A in the sense of [Scholze
and Weinstein 2013, Definition 2.4.1] by [loc. cit., Proposition 2.4.2]. Then Lemma 3.3 also follows from
[loc. cit., Proposition 2.4.5].

Now we study torsion points in the inverse limit. We set up some group theoretical convention once
for all. Let G be an abelian group. We denote by G[n] the subgroup of elements of orders dividing n
and by G tor the subgroup of torsion elements. For a prime p, we use G[p∞] to denote the subgroup
of p-primary torsion points, and G p′- tor to denote the subgroup of prime-to-p torsion points. If H is a
subset of G, Htor and Hp′−tor to denote the subset H

⋂
G tor and H

⋂
G p′−tor when both the definitions

of H and G are clear from the context. The following lemma is elementary.

Lemma 3.5. Let G be an abelian group, then

(lim
←−−
[p]

G)p′−tor ≃ lim
←−−
[p]

G p′−tor.

Lemma 3.6. There are group isomorphisms

Aperf(K , K ◦)p′−tor ≃ lim
←−−
[p]

A(K , K ◦)p′−tor ≃A(K , K ◦)p′−tor

where the second isomorphism is the restriction of πn . Similar result holds for A′ and Aperf ♭.

Proof. The first isomorphism is from Lemmas 3.3 and 3.5. Since A(K , K ◦)[n] ≃ A(K ◦)[n] is a finite
group, [p] is an isomorphism on A(K , K ◦)[n] for every natural number n coprime to p. The second
isomorphism follows. □

Proposition 3.7. The functorial bijection

ρ = ρAperf :Aperf(K , K ◦)≃Aperf ♭(K ♭, K ♭◦)

(see page 988) is a group isomorphism.
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Proof. We only show the compatibility of ρ with the multiplication maps, i.e., we show that the following
diagram is commutative:

Aperf(K , K ◦)×Aperf(K , K ◦)
ρ×ρ
//

��

Aperf ♭(K ♭, K ♭◦)×Aperf ♭(K ♭, K ♭◦)

��

Aperf(K , K ◦)
ρ

// Aperf ♭(K ♭, K ♭◦)

Here the vertical maps are the multiplication maps on corresponding groups.
Consider the formal abelian schemes B = A×A and B′ = A′ ×A′. We do the same construction

to get their perfectoid universal covers Bperf and Bperf ♭. The multiplication morphism B→ A induces
m : Bperf

→ Aperf. The multiplication morphism B′→ A′ induces m′ : Bperf ♭
→ Aperf ♭. By (3-1) and

[Scholze 2012, Theorem 5.2], m′ = m♭. By functoriality, we have a commutative diagram:

Bperf(K , K ◦)
ρBperf

//

m
��

Bperf ♭(K ♭, K ♭◦)

m♭

��

Aperf(K , K ◦)
ρAperf

// Aperf ♭(K ♭, K ♭◦)

We only need to show that this diagram can be identified with the diagram we want. For example we
show that the top horizontal maps in the two diagrams coincide, i.e., a commutative diagram:

Bperf(K , K ◦)
ρBperf

//

≃

��

Bperf ♭(K ♭, K ♭◦)

≃

��

Aperf(K , K ◦)×Aperf(K , K ◦)
ρ×ρ
// Aperf(K , K ◦)×Aperf(K , K ◦)

The projection B=A×A→A to the i-th component, i = 1, 2, induces pi : Bperf
→Aperf. Easy to check

that

p1× p2 : Bperf(K , K ◦)→Aperf(K , K ◦)×Aperf(K , K ◦)

is a group isomorphism by passing to formal schemes. Similarly we have an isomorphism

p′1× p′2 : B
perf ♭(K ♭, K ♭◦)→Aperf(K , K ◦)×Aperf(K , K ◦).

The commutativity is implied by that p′i = p♭i , which is from (3-1) and [Scholze 2012, Theorem 5.2]. □

Tilting and reduction. Let k = Fp and let W = W (k) be the ring of Witt vectors. Let A be an abelian
scheme over W , AK ◦ be its base change to K ◦, A be the adic generic fiber of AK ◦ . Let Ak be the special
fiber of A, and A′ be the base change Ak ⊗ K ♭◦ with adic generic fiber A′. Since

AK ◦ ⊗ (K ◦/ϖ)≃ A⊗W k⊗k (K ◦/ϖ)≃ A′⊗K ♭◦ (K ♭◦/ϖ ♭),
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we can apply the construction in Lemma 3.1 to the formal completions of Ak ⊗k K ◦ and A′. Then
we have the perfectoid universal cover Aperf of the ϖ -adic formal completion of AK ◦ , the perfectoid
universal cover Aperf ♭ of the ϖ ♭-adic formal completion of AK ♭◦ , and the morphisms πn : Aperf

→ A,
π ′n :Aperf ♭

→A′ for each n ∈ Z≥0. The following well-known results can be deduced from [Serre and
Tate 1968].

Lemma 3.8. (1) The inclusion A(W ) ↪→ A(K ◦) gives an isomorphism A(W )p′−tor ≃ A(K ◦)p′−tor.

(2) The reduction map gives an isomorphism

red : A(W )p′−tor ≃ A(k)p′−tor.

(3) The natural inclusion A(k) ↪→ AK ♭◦(K ♭◦) gives an isomorphism A(k)p′−tor ≃ AK ♭◦(K ♭◦)p′−tor.

Now we relate reduction and tilting.

Lemma 3.9. Let the unindexed maps in the following diagram be the naturals ones:

A(K , K ◦)p′−tor Aperf(K , K ◦)p′−tor
πn

oo
ρ
// Aperf ♭(K ♭, K ♭◦)p′−tor

π ′n
// A′(K ♭, K ♭◦)p′−tor

AK ◦(K ◦)p′−tor

OO

A(W )p′−toroo
red

// A(k)p′−tor // AK ♭◦(K ♭◦)p′−tor

OO

Then each map is a group isomorphism, and the diagram is commutative (up to inverting the arrows).

Proof. We may assume n = 0. Definition 3.2, Lemma 3.6, Proposition 3.7 and Lemma 3.8 give the
isomorphisms. We only need to check the commutativity. And we only need to check the two maps from
A(W )p′−tor to Aperf ♭(K ♭, K ♭◦)p′−tor are the same. This follows from Lemma 2.17. □

Similarly, we have the following commutative diagram:

Aperf(K , K ◦)
ρ
// Aperf ♭(K ♭, K ♭◦)

≃

((

lim
←−−[p] A(W )

?�

ι

OO

red
//

π0

��

lim
←−−[p] A(k)

π ′n

��

� � // lim
←−−[p]A

′(K ♭, K ♭◦)

π ′n
��⋂

∞

i=0 pi A(W )

��

A(k)

[pn
]

��

� � // A′(K ♭, K ♭◦)

[pn
]

��

A(W )
red

// A(k) �
�

// A′(K ♭, K ♭◦)

(3-3)

Here ι is induced from the inclusion A(W ) ↪→ Aperf(K , K ◦) and the isomorphism Aperf(K , K ◦) ≃
lim
←−−[p]A(K , K ◦) (see Lemma 3.3). Here and from now on we regard lim

←−−[p] A(W ) as a subset of
Aperf(K , K ◦) via ι, A(k) as a subset A′(K ♭, K ♭◦), and lim

←−−[p] A(k) as a subset of Aperf ♭(K ♭, K ♭◦).
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4. Proof of Theorem 1.3

In this section, we at first prove a lower bound on prime-to-p torsion points in a subvariety. Then we
prove Theorem 1.3. Let k = Fp, W =W (k) the ring of Witt vectors, and L =W

[ 1
p

]
.

Results of Poonen, Raynaud and Scanlon.

Theorem 4.1 [Poonen 2005]. Let B be an abelian variety defined over k, and V an irreducible closed
subvariety of B. Let S be a finite set of primes. Suppose that V generates B, then the composition of

V (k) ↪→ B(k)
⊕

l∈S prl
−−−−→

⊕
l∈S

B[l∞]

is surjective, where prl is the projection to the l-primary component.

Let A be an abelian scheme over W . Let T =
⋂
∞

n=0 pn(A(L)[p∞]), the maximal divisible subgroup of
A(L)[p∞]. Though not needed, as an illustration, we note that by [Raynaud 1983a, Exemples 5.2.3], T =0
if the p-rank of Ak is 0 or if A is a “general ordinary abelian variety”, and T = A(L)[p∞] ≃ L/Zdim AL

p

if A is the canonical lifting in Serre–Tate theory; see Section 5.

Lemma 4.2 [Raynaud 1983a, Lemma 5.2.1]. (1) Let To be the subgroup of A(L)[p∞] coming from the
connected component of the p-divisible group of A, then To

⋂
T = 0.

(2) As a subgroup of A(L)[p∞], T is a Gal(L/L)-direct summand.

Note that
∞⋂

n=0

pn(A(W )tor)= A(W )p′−tor
⊕ ∞⋂

n=0

pn(A(W )[p∞]). (4-1)

Corollary 4.3. The following reduction map is injective

red :
∞⋂

n=0

pn(A(W )tor)→ A(k).

Let Z ⊂ AL be a closed subvariety.

Lemma 4.4 [Raynaud 1983b, 8.2]. Let T ′ be a Gal(L/L)-direct summand such that as Gal(L/L)-modules

A(L)tor = A(L)p′−tor
⊕

T
⊕

T ′.

If Z does not contain any translate of a nontrivial abelian subvariety of AL , there exists a positive integer
N such that the order of the T ′-component of every element in Z(L)tor divides pN .

Remark 4.5. Lemma 4.4 is used by Raynaud [1983b] to reduce the Manin–Mumford conjecture to a
theorem (see [loc. cit., Theorem 3.5.1]) obtained by studying p-adic rigid analytic properties of universal
vector extension of an abelian variety.
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Let K and K ♭ be the perfectoid fields on page 987. Let A be the adic generic fiber of AK ◦ . Let
ZZar be the Zariski closure of Z in A, and Z the adic generic fiber of ZZar

K ◦ . For ϵ ∈ K×, let Zϵ be the
ϵ-neighborhood of Z K in A as in Definition 2.11. By Lemma 2.12, a result of Scanlon [1998] on the
Tate–Voloch conjecture implies the following lemma.

Lemma 4.6 [Scanlon 1998]. There exists ϵ ∈ K×, such that A(K , K ◦)p′−tor
⋂

Zϵ ⊂ Z .

Remark 4.7. The proofs of Poonen’s result and Scanlon’s result are independent of Theorem 1.3.

A lower bound. Define

3 := ZZar(W )
⋂ ∞⋂

n=0

pn(A(W )tor), 3∞ := ι(π
−1
0 (3)), (4-2)

where π0 and ι are as in the left column of diagram (3-3). Then ρ(3∞) is contained in (the image of)
lim
←−−[p] A(k) by diagram (3-3). Now let 3n := π

′
n(ρ(3∞)). Then 3n is contained in (the image of) A(k).

Let 3Zar
n be the Zariski closure of 3n in Ak .

Proposition 4.8. There exists a positive integer n such that

π0(ρ
−1(π ′n

−1
(3Zar

n (k)p′−tor)))
⋂

A(K , K ◦)p′−tor ⊂ Z.

Proof. Let U be a finite affine open cover of A by affine open subschemes flat over W . Let U ∈ U . The
restriction of Aperf over the adic generic fiber of UK ◦ is a perfectoid space X = Spa(R, R+) whose tilt
satisfies Assumption 2.22 (see Lemma 3.1 and the discussion above it). Let I be the ideal sheaf of ZZar.
Let f ∈ I(U ). Regard f as in R. By definition of 3n , we can apply Proposition 2.23 to f and 3n .
Varying U in U and varying f in a finite set of generators of I(U ), Proposition 2.23 implies that for
every ϵ ∈ K×, there exists a positive integer n such that

π0(ρ
−1(π ′n

−1
(3Zar

n (k))))⊂ Zϵ .

Then Proposition 4.8 follows from Lemma 4.6. □

Our lower bound on the size of the set of prime-to-p torsions in Z is as follows.

Proposition 4.9. Let p > 2. Assume that Z contains the unit 0 ∈ AL :

(1) Assume 3 is infinite. For every prime number l ̸= p, the image of the composition of

ZZar(W )p′−tor ↪→ A(W )p′−tor
prl
−→ A(W )[l∞] (4-3)

contains a translate of a free Ql/Zl-submodule of A(W )[l∞] of rank at least 2. Here the map prl is
the projection to the l-primary component.

(2) Assume that the image of the composition of

3 ↪→ A(W )tor
prp
−→ A(W )[p∞]

contains a translate of a free L/Zp-submodule of rank r. For every prime number l ̸= p, the image
of the composition of (4-3) contains a translate of a free Ql/Zl-submodule of A(W )[l∞] of rank 2r .



998 Congling Qiu

Proof. Fix a large n such that

π0(ρ
−1(π ′n

−1
(3Zar

n (k)p′−tor)))
⋂

A(K , K ◦)p′−tor ⊂ Z(K , K ◦)p′−tor (4-4)

as in Proposition 4.8. Let X be the image of the left hand side of (4-4) via the composition of

A(K , K ◦)p′−tor ≃ A(W )p′−tor
prl
−→ A(W )[l∞].

Then X is contained in the image of the composition of (4-3).
To prove (1), we only need to prove the following claim.

Claim. X contains a translate of a free Ql/Zl-submodule of A(W )[l∞] of rank at least 2 for every l.

By diagram (3-3), we have 30 = red(3). Since p > 2, by Corollary 4.3, 30 is infinite. Since
30 = [p]n(3n), 3n is infinite. There exists a ∈ A(k) such that an irreducible component of 3Zar

n + a
(is contained and) generates a nontrivial abelian subvariety A′ of Ak . Since Z contains the unit 0 ∈ AL ,
3Zar

n contains the unit 0 ∈ Ak and A′ contains a. Let ap be the p-primary part of a and ap′ = a− ap. By
Theorem 4.1 (for 3Zar

n + a ⊂ A′ and S = {p, l}), the image of

3Zar
n (k)+ a

prl
⊕

prp
−−−−→ A(k)[l∞]

⊕
A(k)[p∞] (4-5)

contains M
⊕
{ap}, where M is a free Ql/Zl-submodule of A(k)[l∞] of rank at least 2. Thus

(prl

⊕
prp)(3

Zar
n (k)+ ap′)⊃ M

⊕
{0}.

We claim

prl((3
Zar
n (k)+ ap′)p′−tor)⊃ M.

Indeed, write b ∈ 3Zar
n (k) + ap′ as the sum bp + bp′ of p-primary part and prime-to-p part. Then

(prl
⊕

prp)b= prl(bp′)+bp. If this is x + 0 ∈ M
⊕
{0}, then bp = 0, and b= bp′ . Thus prl(b)= x ∈ M .

The claim is proved. By the claim,

M − prl(ap′)⊂ Y := prl(3
Zar
n (k)p′−tor).

By Lemma 3.9, X contains the preimage of [p]n(Y ) under the isomorphism red : A(W )p′−tor≃ A(k)p′−tor.
Thus we proved the claim above.

To prove (2), we only need to prove the following claim.

Claim. X contains a translate of a free Ql/Zl-submodule of A(W )[l∞] of rank at least 2r for every l.

By diagram (3-3), we have 30 = red(3). Since p > 2, by Corollary 4.3 and the assumption on 3,
prp(30) contains a translate of a free L/Zp-submodule of rank r . Let V1, . . . , Vm be the irreducible
components of 3Zar

0 . Let Ai be the minimal abelian subvariety of Ak such that a certain translate of Ai

contains Vi . Since the p-rank of Ai is at most its dimension, at least one Ai is of dimension at least r .
Since 30 = [p]n(3n), there exists a ∈ A(k) such that an irreducible component of 3Zar

n + a generates an
abelian subvariety of Ak of dimension at least r . Then we prove (2) by copying the proof of (1) above,
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starting from the sentence containing (4-5). The only modification needed is that the rank of M should be
at least 2r . □

The proof of Theorem 1.3. Now we prove Theorem 1.3. By the argument in [Pila and Zannier 2008], we
only need to prove the following weaker theorem. We save the symbol A for the proof.

Theorem 4.10. Let F be number field. Let B be an abelian variety over F and V a closed subvariety
of B. If V does not contain any translate of an abelian subvariety of B of positive dimension, then V
contains only finitely many torsion points of B.

Proof. We only need to prove the theorem up to replacing V by a multiple.
Let v be a place of F unramified over a prime number p>2 such that B has good reduction. Let A be the

base change to W of the integral smooth model of B over OFv . Let Z = VL ⊂ A. By (4-1) and Lemma 4.4,
up to replacing V by [pN

]V for N large enough, we may assume that ZZar(W )tor ⊂
⋂
∞

n=0 pn(A(W )tor).
Thus 3= ZZar(W )tor, where 3 is defined as in (4-2). Suppose that V contains infinitely many torsion
points. Then 3 is infinite. Up to replacing V by [pN

]V , we may assume that Z contains the unit
0 ∈ AL . Now we want to find a contradiction. By Proposition 4.9(1), for every prime number l ̸= p, the
composition of

Z(L)p′−tor ↪→ A(L)p′−tor
prl
−→ A(L)[l∞]

contains a translate of a free Ql/Zl-submodule of A(L)[l∞] of rank 2.
Let u be another place of F , unramified over an odd prime number l ̸= p, such that B has good

reduction at u. Let Bo be the reduction. Let M be the completion of the maximal unramified extension of
Fu and M its algebraic closure. Then the composition

V (M)tor ↪→ B(M)tor
prl
−→ B(M)[l∞]

contains a translate G of a free Ql/Zl-submodule of B(M)[l∞] of rank 2. Let T =
⋂
∞

n=0 ln(B(M)[l∞]).
By Lemma 4.4 (applied to l, M instead of p, L), up to replacing V by [l N

]V for N large enough, G is
contained in T . By (4-1) (applied to l, M◦ instead of p, W ), the image of the composition of

V (M)
⋂ ∞⋂

n=0

ln(B(M)tor) ↪→ B(M) prl
−→ B(M)[l∞]

contains G. By Proposition 4.9(2) (applied to l, M◦ instead of p, W ), for every prime number q ̸= l, the
composition

V (M)l ′−tor ↪→ B(M)l ′−tor
prq
−→ B(M)[q∞]

contains a translate of a free Qq/Zq-submodule of rank 4. Repeating this process (use more places or
only work at v and u), we get a contradiction as A is of finite dimension. □
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5. Ordinary perfectoid Siegel space and Serre–Tate theory

Let A f be the ring of finite adeles of Q, U p
⊂ GSp2g(A

p
f ) an open compact subgroup contained in the

congruence subgroup of level-N for some N ≥ 3 prime to p. Let X = Xg,U p over Zp be the Siegel moduli
space of principally polarized g-dimensional abelian varieties over Zp-schemes with level U p structure.
Let Xo be special fiber of X . We will use the perfectoid fields defined on page 987. We briefly recall
some notations. Let k = Fp, W =W (k) the ring of Witt vectors, L the fraction field of W , and Lcycl the
field extension of L by adjoining all p-power-th roots of unity. Let K be the p-adic completion of Lcycl

which is a perfectoid field. Then K ♭
= k((t1/p∞)) is the tilt of K . Fix a primitive pn-th root of unity µpn

for every positive integer n such that µp
pn+1 = µpn .

Ordinary perfectoid Siegel space. Let Xo(0) ⊂ Xo be the ordinary locus. Let X(0) over Zp be the
open formal subscheme of the formal completion of X along Xo defined by the condition that every
local lifting of the Hasse invariant is invertible; see [Scholze 2015, Definition 3.2.12, Lemma 3.2.13].
Then X(0)/p = Xo(0); see [loc. cit., Lemma 3.2.5]. Let

∧

Xo(0)K ♭◦ be the ϖ ♭-adic formal completion of
Xo(0)K ♭◦ . Let X (0) and X ′(0) be the adic generic fibers of X(0)K ◦ and

∧

Xo(0)K ♭◦ respectively.
Let Fr : Xo(0)→ Xo(0) be the (relative) Frobenius morphism (note that Xo(0) is defined over Fp). Let

Frcan
:X(0)→X(0) be given by the functor sending an abelian scheme A to its quotient by the connected

subgroup scheme of A[p]. Then Frcan /p = Fr. We also use Frcan and Fr to denote their base changes to
K ◦ and K ♭◦ respectively. Let

X̃(0) := lim
←−−
Frcan

X(0)K ◦, X̃′(0) := lim
←−−
Fr

∧

Xo(0)K ♭◦,

where the inverse limits are taken in the categories of ϖ -adic and ϖ ♭-adic formal schemes respectively.
Here ϖ = µp− 1 and ϖ ♭

= t1/p. By [Scholze 2015, Corollary 3.2.19], the corresponding adic generic
fibers X (0)perf and X ′(0)perf of X̃(0) and X̃′(0) are perfectoid spaces. Moreover, X ′(0)perf

= X (0)perf,♭,
the tilt of X (0)perf. Then we have the natural projections

π : X (0)perf
→ X (0), π ′ : X (0)perf,♭

→ X ′(0). (5-1)

We also have a natural map between the underlying sets defined on page 988

ρX (0)perf : |X (0)perf
| → |X (0)perf,♭

|. (5-2)

(The map ρX (0)perf is in fact a homeomorphism and we do not need this fact.)

Classical Serre–Tate theory. We use the adjective “classical” to indicate the Serre–Tate theory [Katz
1981] discussed in this subsection, compared with Chai’s global Serre–Tate theory to be discussed in
Section 5.

Let R be an Artinian local ring with maximal ideal m and residue field k. Let A/Spec R be an abelian
scheme with ordinary special fiber Ak . Let A∨k be the dual abelian variety of Ak . There is a Zp-module
morphism from the product of Tate-modules Tp Ak ⊗ Tp A∨k to 1+m constructed by Katz [1981]. We
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call this morphism the classical Serre–Tate coordinate system for A/Spec R. If A/Spec R is moreover a
principally polarized abelian scheme, the Serre–Tate coordinate system for A/Spec R is a Zp-module
morphism

qA/Spec R : Sym2(Tp Ak)→ 1+m. (5-3)

Let x ∈ Xo(0)(k), and let Ax be the corresponding principally polarized abelian variety. Let Mx be
the formal completion of X at x , and A/Mx the formal universal deformation of Ax . Then as part of the
construction of qA/Spec R , there is an isomorphism of formal schemes over W

Mx ≃ HomZp(Sym2(Tp Ax), Ĝm), (5-4)

where Ĝm is the formal completion of the multiplicative group scheme over W along the unit section. In
particular, Mx has a formal torus structure. Moreover, if Ak ≃ Ax in (5-3), then (5-3) is the value of (5-4)
at the morphism Spec R→Mx induced by A. Let O(Mx) be the coordinate ring of Mx , and let mx be
the maximal ideal of O(Mx). From (5-4), we have a morphism of Zp-modules

q = qA/Mx : Sym2(Tp Ax)→ 1+mx .

Fix a basis ξ1, . . . , ξg(g+1)/2 of Sym2(Tp Ax).

Proposition 5.1 [de Jong and Noot 1991, 3.2]. Let F be a finite extension of L with ring of integers F◦.
Let y◦ ∈ X (F◦) with generic fiber y. Suppose that y◦ ∈Mx(F◦). Then y is a CM point if and only if
q(ξi )(y◦) is a p-primary root of unity for i = 1, . . . , g(g+ 1)/2.

Thus every ordinary CM point is contained in X (Lcycl). For an ordinary CM point y ∈ X (Lcycl). there
is a unique y◦ ∈ X (K ◦) whose generic fiber is yK ∈ X (K ). We regard y◦ as a point in X(0)(K ◦) and yK

as a point in X (K , K ◦) via Lemma 2.3.

Definition 5.2. Let a = (a(1), . . . , a(g(g+1)/2)) ∈ Z
g(g+1)/2
≥0 :

(1) An ordinary CM point y ∈ X (Lcycl) with reduction x is called of order pa with respect to the basis
ξ1, . . . , ξg(g+1)/2 if q(ξi )(y◦) is a primitive pa(i)-th root of unity for each i = 1, . . . , g(g+ 1)/2. If
moreover q(ξi )(y◦)= µpa(i) , y is called a µ-generator with respect to the basis ξ1, . . . , ξg(g+1)/2.

(2) Assume that a is nonincreasing so that q(ξi+1)(y◦) is an r (i)-th power of q(ξi )(y◦) for some
(nonunique) r (i) ∈ Zp, i = 1, . . . , g(g+ 1)/2− 1. We call (r (1), . . . , r (g(g+1)/2−1)) ∈ Z

g(g+1)/2−1
p a

ratio of y with respect to the basis ξ1, . . . , ξg(g+1)/2.

It is clear that if a is nonincreasing, then the usual p-adic absolute value |r (i)|p = pa(i+1)
−a(i) .

Let Ti = q(ξi )− 1 ∈mx . Then we have an isomorphism

O(Mx)≃W [[T1, . . . , Tg(g+1)/2]]. (5-5)

Let X̂o(0)/x be the formal completion of Xo(0) at x . Restricted to X̂o(0)/x , (5-5) gives an isomorphism

O(X̂o(0)/x)≃ k[[T1, . . . , Tg(g+1)/2]]. (5-6)
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Let U → Xo(0) be an étale morphism, z ∈U (k) with image x . Then (5-6) gives an isomorphism

O(Û/z)≃ k[[T1, . . . , Tg(g+1)/2]]. (5-7)

Let Az be the pullback of Ax at z. Then we naturally have Tp Az ≃ Tp Ax . Thus we also regard
ξ1, . . . , ξg(g+1)/2 as a basis of Sym2(Tp Az).

Definition 5.3. We call (5-7) the realization of the classical Serre–Tate coordinate system of Û/z at the
basis ξ1, . . . , ξg(g+1)/2 of Sym2(Tp Az).

We have another description of (5-7). Let In be a descending sequence of open ideals of O(Û/z)

defining the topology of O(Û/z). Let Rn := O(Û/z)/In , let An be the pullback of the formal universal
principally polarized abelian scheme over Mx to Spec Rn with special fiber Az . Let

qAn/Spec Rn : Sym2(Tp Auniv
x )→ R×n

be the classical Serre–Tate coordinate system of An/Rn . Then qAn/Spec Rn (ξi )− 1= Ti (mod In). Thus
the sequence {qAn/Spec Rn (ξi )− 1}n gives an element in O(Û/z)≃ lim

←−−n Rn , which equals Ti .

Tilts of ordinary CM points. Let
∧

Xo(0)K ♭◦/x be the formal completion of Xo(0)K ♭◦ at x . By (5-6), we
have

O(
∧

Xo(0)K ♭◦/x)≃ K ♭◦
[[T1, . . . , Tg(g+1)/2]]. (5-8)

Let Dx be the adic generic fiber of
∧

Xo(0)K ♭◦/x . Then Dx is an adic subspace of X ′(0) in the sense of
Definition 2.2. Moreover, (5-8) and Lemma 2.3 imply an isomorphism

Dx(K ♭, K ♭◦)≃ K ♭◦◦,g(g+1)/2. (5-9)

Lemma 5.4. Let y ∈ X (Lcycl) be an ordinary CM point with reduction x :

(1) For every ỹ ∈ π−1(yK )⊂ X (0)perf, we have

π ′ ◦ ρX (0)perf(ỹ) ∈ Dx .

(2) Let a = (a(1), . . . , a(g(g+1)/2)) ∈ Z
g(g+1)/2
≥0 and I ⊂ {1, 2, . . . , g(g+ 1)/2} the subset of the i such

that a(i) = 0. Let y be a µ-generator of order pa with respect to the basis ξ1, . . . , ξg(g+1)/2 (see
Definition 5.2). There exists ỹ ∈ π−1(yK ) such that via the isomorphism (5-9), the i-th coordinate of
π ′ ◦ ρX (0)perf(ỹ) is 0 for i ∈ I and is t1/pa(i)

for i ̸∈ I .

Proof. We recall the effect of Frcan on Mx (see [Katz 1981, 4.1]). Denote Mx by MAx . Let σ ∈ Aut(k)
be the Frobenius. Let A(σ )x := Ax ⊗k,σ k be the base change by σ . Then Frcan, restricted to MAx gives a
morphism Frcan

:MAx →MA(σ )x
over W [loc. cit., page 171]. Let σ(ξ1), . . . , σ (ξg(g+1)/2) be the induced

basis of Sym2(Tp A(σ )x [p∞]). Then [loc. cit., Lemma 4.1.2] implies that

Frcan,∗(q(σ (ξi )))= q(ξi )
p. (5-10)
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We associate a perfectoid space to Mx . Let

M̃x := lim
←−−
Frcan

M
A(σ
−n )

x
.

By a similar (and easier) proof as the one for [Scholze 2015, Corollary 3.2.19], the adic generic fiber
Mperf

x of M̃x,K ◦ is a perfectoid space. Moreover, let M′ perf
x be the adic generic fiber of lim

←−−Fr
∧

Xo(0)K ♭◦/x .
Then M′ perf

x is the tilt of Mperf
x . By Lemma 2.16, the tilting process commutes with restriction to an open

subspace. Thus to prove Lemma 5.4, we only need to consider the tilting between Mperf
x and M′ perf

x .
Then Lemma 5.4 follows from the cases c = 0 and c = 1 of Lemma 2.18 (which deals with closed units
discs while here we are dealing with open unit discs so that we apply Lemma 2.16 again). □

Global Serre–Tate theory.

The algebraic and geometric formulations. Now we review Chai’s [2003] globalization of Serre–Tate
coordinate system in characteristic p. Let U be a Fp-scheme. Let A/U be an abelian scheme whose
relative dimensions on connected components of U are the same. Define

νU = lim
←−−

n
Coker([pn

] : Gm→ Gm),

which is a Zp-sheaf on Uet.

Example 5.5. (1) Let m ≥ n be positive integers, and U0 = Spec k[T ]/T pn
. Then the pm-th power of

an element in (k[T ]/T pn
)× with constant term b is bpm

. Thus

νU0(U0)= (k[T ]/T pn
)×/k× ≃ 1+ T (k[T ]/T pn

). (5-11)

(2) Let B be an Fp-algebra, U = Spec B and U ′ = Spec B[T ]/T pn
. For m ≥ n, consider the map

B×/(B×)pm ⊕
(1+ T B[T ]/T pn

)→ (B[T ]/T pn
)×/((B[T ]/T pn

)×)pm

defined by (a, f ) 7→ a f . Easy to check that this is a group isomorphism. In particular,

νU ′(U ′)≃ νU (U )
⊕

(1+ T B[T ]/T pn
). (5-12)

(3) For every z ∈ U (k), {z} ×U U ′ ≃ U0. Then the restriction of the isomorphism (5-12) at z is the
isomorphism (5-11).

Suppose A/U is ordinary. Let Tp A[p∞]et be the Tate module attached to the maximal étale quotient
of the p-divisible group A[p∞]. The global Serre–Tate coordinate system for A/U is a homomorphism
of Zp-sheaves

qA/U : Tp A[p∞]et
⊗ Tp A∨[p∞]et

→ νU

constructed by Chai [2003, 2.5]. Let U0 = Spec k[T ]/T pn
. Let A/U0 be an ordinary abelian scheme,

and Ak the special fiber of A. Then

Tp A[p∞]et
⊗ Tp A∨[p∞]et

≃ Tp Ak[p∞]⊗ Tp A∨k [p
∞
], (5-13)

where the right-hand side is regarded as a constant sheaf.
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Lemma 5.6 [Chai 2003, (2.5.1)]. The morphism of Zp-modules

Tp Ak[p∞]⊗ Tp A∨k [p
∞
] → νU (U )≃ 1+ T (k[T ]/T pn

)

induced from qA/U0 via (5-13) coincides with the classical Serre–Tate coordinate system; see (5-3).

The geometric formulation of global Serre–Tate coordinate system is as follows. Let Auniv be the
universal principally polarized abelian scheme over Xo(0), and Âuniv the formal completion of Auniv

along the zero section which is a formal torus over Xo(0). Then the sheaf of polarization-preserving Zp-
homomorphisms between Tp Auniv

[p∞]et and Âuniv is a formal torus over Xo(0) of dimension g(g+1)/2.
Let us call it T1. Let 1 be the diagonal embedding of Xo(0) into Xo(0)× Xo(0), and let T2 be the formal
completion of Xo(0)× Xo(0) along this embedding.

Proposition 5.7 [Chai 2003, Proposition 5.4]. There is a canonical isomorphism T1 ≃ T2. In particular,
T2 has a formal torus structure over the first Xo(0).

Igusa tower. In order to have sections of the étale Zp-sheaf Tp A[p∞]et over U , or equivalently to trivialize
the formal torus, we need to pass to the Igusa tower, defined as follow. For n = 0, 1, . . . ,∞, let In be the
functor assigning to every k-algebra R the set of isomorphism classes of pairs

{(A, ε) : A ∈ Xo(0)(R), ε : A[pn
] ≃ Ĝ

g
m,R[p

n
]}.

By [Hida 2004, 8.1.1], for n <∞ (resp. n =∞) the functor In is represented by a k-scheme (which
we still denote by In) finite (resp. profinite) Galois over Xo(0) with Galois group GLg(Z/pnZ) (resp.
GLg(Zp)). And In is known as the Igusa scheme of level n.

Realization of the global Serre–Tate coordinate system at a basis. Let U0 be an affine open subscheme
of Xo(0). Let U = Spec B := I∞|U0 . Let 1 be the diagonal of U ×U . We have two projection maps
pr1, pr2 from Û ×U /1 to the first and second U . For z ∈U (k), the restriction of pr2 induces

pr−1
1 ({z})

pr2
≃ Û/z. (5-14)

Let O(Û ×U /1) be the coordinate ring of Û ×U /1. Endow O(Û ×U /1) a B-algebra structure via
pr1. By Proposition 5.7, we have a (nonunique) B-algebra isomorphism

O(Û ×U /1)≃ B[[T1, . . . , Tg(g+1)/2]]. (5-15)

Let A/Û ×U /1 be the pullback of Auniv
|U0 . Assume that Sym2(Tp Auniv

[p∞]et)(U ) is a free Zp-
modules of rank g(g+1)/2. Let ξ1, . . . , ξg(g+1)/2 be a basis of Sym2(Tp Auniv

[p∞]et)(U ) (whose existence
follows from the definition of I∞ and the polarization). The realization of the global Serre–Tate coordinate
system of A/Û ×U /1 at the basis ξ1, . . . , ξg(g+1)/2 is a construction of an isomorphism (5-15) as follows.

For the simplicity of notations, let us assume g = 1. The general case can be dealt in the same way.
Let ξ = ξ1 and T = T1. Let

U ′ = Û ×U /1/T pn
≃ Spec B[[T ]]/T pn
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and let An be the restriction of A to U ′. The global Serre–Tate coordinate system of An/U ′ is a
homomorphism of Zp-sheaves over U2,et

qAn/U ′ : Sym2(Tp An[p∞]et)→ νU ′ .

Note that ξ gives a basis ξn of Sym2(Tp An[p∞]et)(U ′). Then we have

qAn/U ′(ξn) ∈ ν(U ′)≃ νU (U )
⊕

(1+ T B[T ]/T pn
)

where the second isomorphism is (5-12). Consider the morphism

φn : ν(U ′)→ (1+ T B[T ]/T pn
) ↪→ B[T ]/T pn

where the first map is the projection and second map is the natural inclusion. Let T ST
n ∈ B[T ]/T pn

be
φn(qAn/U ′(ξn))− 1. As n varies, the T ST

n give an element

T ST
∈O(Û ×U /1)≃ lim

←−−
n

B[T ]/T pn
.

We compare the above construction with the realization of the classical Serre–Tate coordinate system.
Let z ∈ U (k). The restriction of A to pr−1

1 ({z}) is pullback Auniv
|Û/z

of Auniv
|U0 to Û/z via (5-14).

(Thus we may regard A as the family {Auniv
|Û/z
: z ∈U (k)}.) The realization of the classical Serre–Tate

coordinate system of Û/z at ξz (the restriction of ξ at z) gives an element T c ST
z ∈ Û/z and an isomorphism

Û/z ≃ Spf k[[T c ST
z ]] (see Definition 5.3). Here and below, the superscript c indicates “classical”.

Lemma 5.8. The restriction of T ST to pr−1
1 ({z})≃ Û/z is T c ST

z . In particular,

O(Û ×U /1)= B[[T ST
]].

Proof. The restriction of (5-15) to pr−1
1 ({z})≃ Û/z via (5-14) gives an isomorphism O(Û/z)≃ k[[T ]]. Let

qc
n = qc

Auniv|Û/z
/T pn : Sym2(Tp Auniv

z [p
∞
])→ 1+ T k[[T ]]/T pn

be the classical Serre–Tate coordinate system of Auniv
|Û/z
/T pn

(see (5-3)). Then the image of T c ST
z in

k[[T ]]/T pn
is qc

n(ξz)−1. By Example 5.5(3) and Lemma 5.6, qc
n(ξz) equals the restriction of φn(qAn/U ′(ξn))

at z. Thus the first statement follows. The second statement follows from the first one. □

6. Proof of Theorem 1.1

In this section, we at first prove a Tate–Voloch type result in a family in characteristic p. Combined with
the results in Section 5, we prove Theorem 1.1. We continue to use the notations in Section 5.

Tate–Voloch type result in a family in characteristic p. Recall that k = Fp and K ♭
= k((t1/p∞)). In the

proof of Lemma 2.21, we used the following simple fact: let S a k-algebra, g ∈ S and x ∈ (Spec S)(k),
then g(x)= 0 or |g(x)|k = 1 where the valuation |·|k on k takes value 0 on 0 ∈ k and 1 on k×. This fact
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can be naively regarded as an analog of the Tate–Voloch conjecture over k. We want to consider this
analog in a family. We need some notations.

Let l be a positive integer. For d = (d(1), . . . , d(l)) ∈ (pZ<0)l , define td
:= (td(1), . . . , td(l)) ∈ (K ♭◦)l .

For c = (c(1), . . . , c(l)) ∈ (Zp
×)l , define

(1+ td)c− 1 := ((1+ td(1))c
(1)
− 1, . . . , (1+ td(l))c

(l)
− 1) ∈ (K ♭◦)l .

Fix a sequence {dn}
∞

n=1 of elements in (pZ<0)l and a sequence {cn}
∞

n=1 of elements in (Z×p )
l . Let

yn = (1+ tdn )cn − 1 ∈ (K ♭◦)l ⊂ Spec K ♭◦
[[T1, . . . , Tl]]. (6-1)

Let N= {1, 2, . . . } the sequence of positive integers. For δ ∈ (0, 1) and the given sequence {dn}
∞

n=1, let

N(δ)= {n ∈ N : d(i)n /d(i+1)
n < δ}.

If l = 1, we understand N(δ) as N.

Proposition 6.1. Let A be a reduced k-algebra and V = Spec A. Let {zn}
∞

n=1 be a sequence of (not
necessarily distinct) points in V (k). Let f ∈ A[[T1, . . . , Tl]] and let fzn ∈ k[[T1, . . . , Tl]] be the restriction
of f at zn . Assume that

for every infinite subset N′ ⊂ N, the set {zn : n ∈ N′} is Zariski dense in V . (⋆)

If f ̸= 0, then there exists D0 ∈ R>0 and δ0 ∈ (0, 1) such that for every D ≥ D0 and δ ≤ δ0, the following
set is finite

{n ∈ N(δ) : ∥ fzn (yn)∥< ∥Tl(yn)∥
D
}. (6-2)

Here Tl(yn) is, by definition, the l-th coordinate of yn .

Proof. We do induction on l.
The case l = 1 is proved as follows. Let f =

∑
m≥0 am T m where am ∈ A. Regard am as a function on

V so that am(zn) ∈ k. Claim: there exists some m such that am(zn) ̸= 0 for n large enough. Let m0 be the
smallest such m. Then

∥ fzn (yn)∥ = ∥tdnm0∥

for n large enough. Let D0 = m0 and we are done. Now we prove the claim by contradiction. Assume
that for every m, am(zn)= 0 for infinitely many n. By assumption (⋆) and the reducedness of A, am = 0.
Thus f = 0. This is a contradiction.

Now we do the induction. Let l> 1. We prepare some notations. Let d ′n, y′n be the first l−1 components
of dn, yn respectively. For δ ∈ (0, 1), we have a subsequence N(δ)′ ⊂ N defined using the sequence
{d ′n}

∞

i=1. Then N(δ)′ ⊃ N(δ).
Assume that f ̸=0. Write f =T m1

l (g1+ f1)where g1∈ A[[T1, . . . , Tl−1]]\{0} and f1∈Tl A[[T1, . . . , Tl]].
Below, to lighten notation, we abbreviate the subscript zn . Then for n in the set (6-2), with D and δ to be
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determined, we have

∥g1(yn)+ f1(yn)∥ = ∥Tl(yn)∥
−m1∥ f (yn)∥< ∥Tl(yn)∥

D−m1 .

If D ≥ m1+ 1, then

∥g1(yn)∥ ≤ ∥g1(yn)+ f1(yn)∥+∥ f1(yn)∥ ≤ ∥Tl(yn)∥.

Since ∥Tl(yn)∥< ∥Tl−1(y′n)∥
1/δ and ∥g1(y′n)∥ = ∥g1(yn)∥, we have

∥g1(y′n)∥< ∥Tl−1(y′n)∥
1/δ. (6-3)

By the induction hypothesis, there exists D′ > 0 and δ′0 ∈ (0, 1) such that if δ ≤ 1/D′ and δ ≤ δ′0,
{n ∈ N(δ)′ : (6-3) holds} is finite. Then (6-2) is finite by choosing δ0 =min{1/D′, δ′0}. □

Remark 6.2. (1) D0 and δ0 are uniform for all choices of {cn}
∞

n=1. We do not need this fact later.

(2) The proposition is inspired by [Serban 2018, Lemma 2.10]. In the proof of that result, there is a minor
imprecision. The following modification is suggested by Serban. Define Tδ in [loc. cit., Lemma 2.10]
to be the first set in the intersection but not the entire intersection, so that the statement (2) in loc. cit.
is about Tδ ∩ Sφ(q−1−c). The 3rd displayed formula in the proof of [loc. cit., Lemma 2.10] should be
removed. Then, on can still get the 5th displayed formula in that proof with slightly more effort.

Closure and limit. We show that assumption (⋆) in Proposition 6.1 holds in some situations.

Lemma 6.3. Let {Bi }
∞

i=0 be a system of rings and B = lim
−−→i Bi . Let fi : Spec B→ Spec Bi be the natural

morphism. Let 3 ⊂ Spec B be a subset and 3i = fi (3) ⊂ Spec Bi . We have the following relation
between Zariski closures:

3Zar
=

∞⋂
i=0

f −1
i (3Zar

i ). (6-4)

Proof. The ideal I ⊂ B defining 3Zar, with reduced induced structure as a closed subscheme, is generated
by the union of the images Ii in B, where Ii ⊂ Bi is the ideal of elements whose image in B vanishes on
3Zar. By the definition of 3i , Ii is the ideal defining 3Zar

i . Then (6-4) follows. □

Let f :U →U0 be a surjective morphism of schemes. Let 30 ⊂U0 be a subset with Zariski closure
3Zar

0 in U0. For s ∈30, choose zs ∈ f −1(s). Let 3= {zs : s ∈30} with Zariski closure 3Zar in U .

Lemma 6.4. Assume that f is closed:

(1) The image of 3Zar in U0 is 3Zar
0 .

(2) Assume that 3Zar
0 is irreducible and U is noetherian. There exists a choice of 3 such that 3Zar is

irreducible.

(3) In (2), further assume that f is finite and the Zariski closure of every infinite subset of 30 is 3Zar
0 .

Then the Zariski closure of every infinite subset of 3 is 3Zar.

Proof. (1) is easy and the proof is omitted.
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(2) For every member of the finitely many irreducible (so closed) components of f −1(3Zar
0 ), its image in

3Zar
0 is a closed subscheme. By the irreducibility of 3Zar

0 , some irreducible component of f −1(3Zar
0 ) is

surjective to 3Zar
0 . We choose all the zs in this component.

(3) Note that a finite surjective morphism preserves dimension, and a proper closed subscheme of a
noetherian irreducible scheme has a strictly smaller dimension. Then (3) follows from (1) and counting
dimensions. □

The last two lemmas imply the following corollary.

Corollary 6.5. Let the B, Bi be as in Lemma 6.3. Let U = Spec B (not necessary noetherian), U0 =

Spec B0 and f = f0. Assume that each Bi is noetherian and the transition morphisms Spec B j→ Spec Bi

are finite surjective. Assume that the Zariski closure of every infinite subset of 30 is 3Zar
0 . There exists a

choice of 3 such that the Zariski closure of every infinite subset of 3 is 3Zar.

Later, to fulfill the second assumption of the corollary, we will use the following lemma.

Lemma 6.6. Let U0 be a noetherian scheme. For every infinite subset Y ⊂U0, there is an infinite subset
30 ⊂ Y such that the Zariski closure of every infinite subset of 30 is 3Zar

0 .

Proof. By the noetherianness of U0, there exists a closed subscheme V of U0 containing an infinite subset
30 of Y such that every proper closed subscheme of V only contains finitely many elements in Y . □

Proof of Theorem 1.1. Let X be a product of Siegel moduli spaces over Zp with certain level structures
away from p. By Lemma 2.15, Theorem 1.1 follows from the following theorem.

Theorem 6.7. Let Z be a closed subvariety of X L . There exists a constant c > 0 such that for every
ordinary CM point x ∈ X (Lcyc), if d(x, Z)≤ c, then x ∈ Z.

Here the distance function d(x, Z) is defined as on page 986 using the integral model X

Proof. We prove Theorem 6.7 when X is a single Siegel moduli space. The general case is proved in
the same way or by embedding a product of Siegel moduli spaces into a bigger one. We continue to use
the notations in Section 5. In particular, the fields L , Lcyc, K and K ♭ below are as in the beginning of
Section 5; the formal scheme X(0), the adic locus X (0), the perfectoid spaces X (0)perf,X (0)perf ♭ and
Frobenius morphism Frcan below are as in Section 5. For an ordinary CM point x ∈ X (Lcyc), we the same
notation x to denote its base change in X (K ). Let x◦ be the unique K ◦-point in X whose generic fiber
is x .

Suppose that Z is defined over a finite Galois extension F of L . Let I be the ideal sheaf of the
schematic closure of Z in X F◦ . Let U be an affine open subscheme of XW , of finite type over W . (This is
the only use of a calligraphic font not representing an adic space in this paper.) We only need to find
a constant c such that, if an ordinary CM point x ∈ X (Lcyc) satisfies x◦ ∈ U(K ◦) and dUK◦ (xK , I ) < c,
then x ∈ Z . Here the distance function is as on page 986.
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We at first have the following simplification on F . Let K ′ = F K . Suppose I(UF◦) is generated by fi ,
i = 1, . . . , n. For σ ∈ G :=Gal(K ′/K ), f σi is in the coordinate ring of UK ′◦ and ∥ fi (xK ′)∥ = ∥ f σi (xK ′)∥.
Let I be the ideal of the coordinate ring of UK ◦ generated by

∏
σ∈G f σi , i = 1, . . . , n. Then

dUK◦ (xK , I )= dUK ′◦
(xK ′, IK ′◦(UK ′◦))

|G|.

Thus we may assume that F ⊂ K . Equivalently, F ⊂ Lcycl.
Now we reduce Theorem 6.7 to Theorem 6.8 below, which is formulated with affine formal schemes.

For an ordinary CM point x ∈ X (K ), we also use x to denote the corresponding point X (0)(K , K ◦). Let
U be the restriction of the ϖ -adic formal completion of U to X(0). By Lemma 2.12, Theorem 6.7 is
deduced from Theorem 6.8. □

Theorem 6.8. Let Z be an irreducible closed formal subscheme of UF◦ . For a sequence {xn}
∞

n=1 of
ordinary CM points such that xn is in the ϵn-neighborhood of Z and with ∥ϵn∥→ 0, we have xn ∈ Z for
infinitely many n.

The proof of Theorem 6.8 consists of two bulks: one involves perfectoid spaces and one does not. The
perfectoid one is more technical and proves results to be used in the second one. The nonperfectoid one
concludes Theorem 6.8. We will present the non-perfectoid one first, on pages 1009 and 1010.

A canonical lifting is an ordinary CM points of order 1 with respect to a (equivalently every) basis, see
Definition 5.2(1). The following lemma will be proved in Theorem 6.13 using perfectoid spaces.

Lemma 6.9. Theorem 6.8 holds if we replace “ordinary CM points” by “canonical liftings”.

Global Serre–Tate coordinate. Before we proceed to the proof of Theorem 6.8, let us recall the realization
of the global Serre–Tate coordinate system on page 1004.

Let U0 be the special fiber of U. Let U = Spec B be the profinite Galois cover of U0 defined on
page 1004 (and coming from the infinite level Igusa scheme) such that Sym2(Tp Auniv

[p∞]et)(U ) is a free
Zp-modules of rank g(g+ 1)/2. Let 1 be the diagonal of U ×U . Then by Lemma 5.8, for a basis

ξ1, . . . , ξg(g+1)/2 (6-5)

of Sym2(Tp Auniv
[p∞]et)(U ), we have the realization of the global Serre–Tate coordinate system

O(Û ×U /1)= B[[T ST
1 , . . . , T ST

g(g+1)/2]],

which has the following property. For every z ∈U (k), we have an isomorphism

pr−1
1 ({z})

pr2
≃ Û/z (6-6)

as in (5-14), and the corresponding isomorphism

Û/z ≃ Spf k[[T ST
1,z , . . . , T ST

g(g+1)/2,z]]. (6-7)

Let T ST
i,z be the restriction of T ST

i to pr−1
1 ({z})≃ Û/z . Let

ξz,1, . . . , ξz,g(g+1)/2 (6-8)
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be the restriction of ξ1, . . . , ξg(g+1)/2. Then (6-7) coincides with the realization of the classical Serre–Tate
coordinate system of Û/z at ξz,1, . . . , ξz,g(g+1)/2; see Definition 5.3.

Proof of Theorem 6.8. After passing to an infinite subsequence, we may assume that {red(xn)}
∞

n=1 is
a sequence of the same point or pairwise different points. Let zn ∈ U (k) be over red(xn) ∈ U0(k). By
Corollary 6.5 and Lemma 6.6, after passing to an infinite subsequence, we may assume the following.

Assumption 6.10. For every infinite subset N′ ⊂N, the Zariski closure of the set {zn : n ∈N′} in U is the
Zariski closure of the set {zn : n ∈ N}.

We regarded the basis (6-8) for z = zn as a basis of Sym2(Tp Axn ) naturally. Let xn be of order pan

with respect to (6-8) (see Definition 5.2(1)) where an = (a
(1)
n , . . . , a(g(g+1)/2)

n ) ∈ Z
g(g+1)/2
≥0 . After passing

to an infinite subsequence and permuting the basis (6-5) of Sym2(Tp Auniv
[p∞]et)(U ), we may assume

that every an is nonincreasing; see Definition 5.2(2). Let l ≤ g(g+ 1)/2 be a nonnegative integer such
that for every n, if i > l, then a(i)n = 0. For example, if l = g(g+ 1)/2, the assumption automatically
holds; if l = 0, we are in the situation of Lemma 6.11.

We will reduce Theorem 6.8 to the case l=0 by using Lemma 6.11 below. We need the “upper triangular
change of variables” argument following [Serban 2018]. By “upper triangular change of variables”, we
indeed mean changing the first l-element of the basis (6-5) of Sym2(Tp Auniv

[p∞]et)(U ) via an upper
triangular matrix as follows. For C ∈ GLl(Zp), (ξ1, . . . , ξl)C combined with (ξl+1, . . . , ξ(g(g+1)/2))

gives a new basis of Sym2(Tp Auniv
[p∞]et)(U ). Thus by restriction as in (6-8), we have a new basis of

Sym2(Tp Axn ) for every n. Let xn be of order pan(C) with respect to this new basis, where an(C)∈Z
g(g+1)/2
≥0 .

Then for C upper triangular, an(C) is still nonincreasing.

Lemma 6.11. Assume Assumption 6.10. Assume that for every upper triangular matrix C ∈ GLl(Zp),
the l-th component (so the i-th component for i = 1, . . . , l as well) of an(C) goes to∞ as n→∞. Then
xn ∈ Z for all n ∈ N.

We postpone the proof of Lemma 6.11.
We finish the proof of Theorem 6.8 by induction on the dimension of Z. If Z is empty, define its

dimension to be −1. When Z is of dimension −1, the theorem is trivial. The induction hypothesis is that
the theorem holds for lower dimensions, and it will only be used in the proof of Lemma 6.12(2) below.

By Lemma 6.11 and passing to an infinite subsequence, we may assume that for an upper triangular
matrix C ∈GLl(Zp), the l-th component of an(C) is bounded. Replacing the basis (6-5) by the new basis
that is (ξ1, . . . , ξl)C combined with (ξl+1, . . . , ξ(g(g+1)/2)), we may assume that there is a nonnegative
integer m such that for every n, a(l)n ≤ pm . The fact that a(i)n = 0 for i > l does not change.

Lemma 6.12. Let m be a nonnegative integer. Then the following hold:

(1) The adic generic fiber of (Frcan)m(x◦n) is in the ϵn-neighborhood of the scheme theoretic image
(Frcan)m(Z); see [Kappen 2013, 2.3].

(2) Assume that (Frcan)m(x◦n) ∈ (Frcan)m(Z(K ◦)) for infinitely many n, then x◦n ∈ Z(K ◦) for infinitely
many n.
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Proof. To lighten the notations, assume that m = 1.
Consider the closed formal subscheme (Frcan)−1(Frcan(Z)) of U which contains Z. Then x◦n is contained

in the ϵn-neighborhood of (Frcan)−1(Frcan(Z)) by Lemma 2.7(1). Then (1) follows from the analog of
Lemma 2.10 for formal schemes (which directly follows from Definition 2.4).

For (2), we prove it by contradiction. Let {ni } ⊂ N be an infinite subsequence such that Frcan(x◦ni
) ∈

Frcan(Z(K ◦)) and x◦ni
̸∈ Z(K ◦) for ni large enough. In particular, (Frcan)−1(Frcan(Z)) ̸= Z. Thus by

[Kappen 2013, Proposition 2.10], it is not hard to show that

(Frcan)−1(Frcan(Z))= Z
⋃

Z′

such that Z′ does not contain Z and x◦ni
∈ Z′(K ◦). By Lemma 2.6, every xni is contained in the ϵni -

neighborhood of Z
⋂

Z′. Let Z1 be the union of irreducible components of Z
⋂

Z′ which dominate Spf F◦.
By Lemma 2.7(2), there exists δ ∈ K ◦−{0} such that every xni is contained in the ϵni /δ-neighborhood of
Z1. Since every irreducible component of Z1 has dimension less than the dimension of Z, by the induction
hypothesis, we have xni ∈ Z1(K ◦)⊂ Z(K ◦). This is a contradiction. □

By (5-10) and Lemma 6.12, after passing to an infinite subsequence, we may assume that for every n,
if i ≥ l, then a(i)n = 0, i.e., we may replace l by l − 1. Continue this process, we may assume that l = 0,
i.e., a(i)n = 0 for every n and i . Now Theorem 6.8 follows from Lemma 6.11.

Canonical liftings and perfectoid strategy. Now our remaining tasks are the proofs of Lemmas 6.9
and 6.11. For Lemma 6.9, we prove an “almost effective” version of Theorem 6.8 for canonical liftings.
In the proof, we use the ordinary perfectoid Siegel space and Scholze’s approximation lemma, following
a strategy of Xie [2018]. Our later proof of Lemma 6.11 involves a more complicated version of this
proof (which in particular uses the global Serre–Tate coordinate).

Let X be the restriction of X (0)perf to the adic generic fiber of UK ◦ . Then X = Spa(R, R+) where
(R, R+) is a perfectoid affinoid (K , K ◦)-algebra (there is no need to specify R though it is easy to do
so). The restriction of X (0)perf,♭ to the adic generic fiber of U0⊗K ♭◦ is X ♭

= Spa(R♭, R♭+), the tilt of X .
More concretely, it is given as follows: let Sm be the coordinate ring of (Frm)−1(U0) with the natural
inclusion Sm−1 ↪→ Sm , and S =

⋃
m Sm , then R♭+ is the ϖ ♭-adic completion of S⊗ K ♭◦. Let Xm be the

adic generic fiber of Spec Sm ⊗ K ♭◦ and

πm : X ♭
→ Xm

the natural projection. Recall π and π ′ as defined in (5-1). Then π0 = π
′
|X ♭ (which has image in X0).

We abbreviate π |X as π (which has image in the adic generic fiber of UK ◦ .) Let ρ be the restriction of
ρX (0)perf (see (5-2)) to X .

For f ∈O(U) in the defining ideal of Z, regard f as an element of R+ by the inclusion O(U)⊂ R+.
For c ∈ Z>0, choose g as in Lemma 2.19 (with respect to f ) and choose a finite sum

gc =
∑

i∈Z[1/p]≥0,
i<1/p+c

gc,i · (ϖ
♭)i
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as in Lemma 2.20 where gc,i ∈ S for all i . There exists a positive integer m(c) such that gc,i ∈ Sm(c) for
all i by the finiteness of the sum. Let Gc := g pm(c)

c . Then we have the finite sum

Gc =
∑

i∈Z[1/p]≥0,
i<1/p+c

Gc,i · (ϖ
♭)pm(c)i , (6-9)

where Gc,i = g pm(c)

c,i . By the construction of the Sn , we have Gc,i ∈ S0. Let Ic be the ideal of S0 generated
by {Gc,i : i ∈ Z[1/p]≥0, i < 1/p+ c}. By the noetherianness of S0, there exists a positive integer M such
that

∞∑
c=1

Ic =

M∑
c=1

Ic. (6-10)

For y ∈X(0) and ỹ ∈ π−1(y)⊂ X , | f (ỹ)| = ∥ f (y)∥. If ∥ f (y)∥ ≤ ∥ϖ∥1/p+M , by (2-2) and (2-3), we
have |gc(πm(c)(ρ(ỹ)))| ≤ ∥ϖ∥1/p+c for c = 1, . . . ,M . So for c = 1, . . . ,M , we have

|Gc(π0(ρ(ỹ)))| = |Gc(πm(c)(ρ(ỹ)))| ≤ ∥ϖ∥(1/p+c)pm(c)
. (6-11)

Theorem 6.13. Assume that { f1, . . . , fr } ⊂O(U) generates the ideal defining Z. For each f j , let M j be
the M as in (6-10) with f replaced by f j . Let M=max{M j : j = 1, . . . , t}. Let y be a canonical lifting
in the ϖ 1/p+M-neighborhood of Z. Then y ∈ Z .

Proof. Apply Lemma 5.4(2) to y with a = 1. Choose ỹ ∈ π−1(y) to be as in Lemma 5.4(2). Then
π0(ρ(ỹ))= red(y) ∈U0(k), where we understand U0(k) as a subset of X(K ♭, K ♭◦) naturally. Let f = f j

and M = M j for some j . Then | f (ỹ)| ≤ ∥ϖ∥1/p+M and thus we have (6-11). Similar to Lemma 2.21,
by (6-11) and (6-9), we have Gc,i (π0(ρ(ỹ))) = 0 for every c = 1, . . . ,M and the corresponding i . By
(6-10), Ic(π0(ρ(ỹ)))= {0} for every c ∈ Z>0. So

Gc(πm(c)(ρ(ỹ)))= Gc(π0(ρ(ỹ)))= 0

for every c ∈ Z>0. Thus gc(πm(c)(ρ(ỹ)))= 0. By (2-2) and (2-3), | f (ỹ)| ≤ ∥ϖ∥1/p+c for every c ∈ Z>0.
Thus | f (ỹ)| = 0. □

Remark 6.14. The effectivity of M is essentially determined by the effectivity of the determination of
the approximating function g in Lemma 2.19. However, Scholze’s proof of Lemma 2.19 uses “almost
ring theory” and is not effective. It is meaningful to ask if Lemma 2.19 can be made effective.

Toward the proof of Lemma 6.11. This paragraph closely mimics the proof of Theorem 6.13. Let
notations be as above Theorem 6.13 and let y = xn . For every c = 1, . . . ,M and a corresponding i ,
we want to show that Gc,i (π0(ρ(x̃n)))= 0. Then by (6-10), Ic(π0(ρ(x̃n)))= {0} for every c ∈ Z>0. So
Gc(πm(c)(ρ(x̃n))) = Gc(π0(ρ(x̃n))) = 0 for every c ∈ Z>0. Thus gc(πm(c)(ρ(x̃n))) = 0. By (2-2) and
(2-3), | f (x̃n)| ≤ ∥ϖ∥

1/p+c for every c ∈Z>0. Thus o | f (x̃n)| = 0. Let f run over a finite set of generators
of the defining ideal of Z and choose infinite subsequences successively, we have xn ∈ Z for infinitely
many n.



The Manin–Mumford and Tate–Voloch conjectures for a product of Siegel moduli spaces 1013

Spaces. For x ∈U0(k) (resp. U (k)), let Dx be the adic generic fiber of the formal completion of U0⊗K ♭◦

(resp. U⊗K ♭◦) at x . (This coincides with the definition in Section 5.) Equivalently, Dx is the adic generic
fiber of the formal completion of Û0/x ⊗ K ♭◦ (resp. Û/x ⊗ K ♭◦). The following two diagrams summarize
the adic spaces/k-schemes and morphisms between them that we use:

X
ρ
//

π

��

X ♭

π0

��

X (0) X0
∐

x∈U0(k)
Dx

(1)
oo

∐
z∈U (k)Dz

(2)
oo

U0
∐

x∈U0(k)
Û0/x

(1′)
oo

∐
z∈U (k) Û/z

(2′)
oo

∐
z∈U (k) pr−1

1 ({z})
(6-6)
oo

(3)
// Û ×U /1

(6-12)

Here the morphisms (1), (1’) and (3) are the natural inclusions. And the morphism (2), when restricted
to Dz, z ∈ U (k), is the natural isomorphism Dz ≃ Dx where x ∈ U0(k) is the image of z. We have the
parallel statement for (2’).

Functions. Let Hc,i be the image of Gc,i in B under the morphism S0 = O(U0)→ B = O(U ), and
Hc,i,zn ∈O(Û/zn ) the image of Hc,i under the morphism B =O(U )→O(Û/zn ).

For x̃n ∈ π
−1(xn)⊂ X , by Lemma 5.4(1), π0(ρ(x̃n)) ∈ Dred(xn). Let yn be the preimage of π0(ρ(x̃n))

in Dzn via the natural isomorphism Dzn ≃ Dred(xn). Then as elements in K ♭◦, we have

Hc,i,zn (yn)= Hc,i (yn)= Gc,i (π0(ρ(x̃n))).

Lemma 6.15. There is a constant hc,i < 1 such that ∥Hc,i,znm
(ynm )∥< hc,i .

Proof. If the lemma is not true, let i0 be the smallest i appearing in the finite sum (6-9) such that
∥Hc,i,znm

(ynm )∥ → 1 for a subsequence {nm}
∞

m=1 ⊂ N. Then (6-9) implies that ∥Gc(π0(ρ(x̃nm )))∥ →

∥ϖ∥i0 pm(c)
, which contradicts (6-11). □

Let φ be the composition of

φ : B =O(U )→ B⊗ B→O(Û ×U /1)= B[[T ST
1 , . . . , T ST

g(g+1)/2]]

where the first morphism is b 7→ 1⊗ b. i.e., φ gives the projection pr2 : Û ×U /1 to the second U .
Tracking the second diagram of (6-12), we have the following lemma.

Lemma 6.16. The restriction of φ(Hc,i ) to pr−1
1 ({zn})

pr2
≃ Û1/zn in (6-6) is Hc,i,zn ∈O(Û1/zn ).

Proof of Lemma 6.11. We need some notations. For an open subset O ⊂ Zl−1
p , let N(O) ⊂ N be the

subsequence such that the first l−1 components of a ratio of xn with respect to this basis (see Definition 5.2)
is in O . If l = 1, we understand N(O) as the whole N (and we will not need the case l = 0). For r ∈ Zl−1

p

and δ ∈ (0, 1), let N(r, δ)= N(O(r, δ)) where O(r, δ) is the p-adic closed disc centered at r of radius δ.
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Now we start to prove Lemma 6.11. By the discussion on page 1012, we only need to prove that for
every n ∈ N, Gc,i (π0(ρ(x̃n))) = 0. Let Spec A ⊂ Spec B be the Zariski closure of the set {zn : n ∈ N}.
Let f be the image of φ(Hc,i ) under B[[T ST

1 , . . . , T ST
g(g+1)/2]]→ A[[T ST

1 , . . . , T ST
g(g+1)/2]]. By Lemma 6.16,

we have
Gc,i (π0(ρ(x̃n)))= Hc,i,zn (yn)= f (yn). (6-13)

We prove the stronger result f = 0 by contradiction.
Assume that f ̸= 0. We want to apply Proposition 6.1 to f and the yn . We check the conditions in

Proposition 6.1. First, by the compatibility between the Global and classical Serre–Tate coordinates as in
the end of page 1009, we use Lemma 5.4(2) to conclude that yn are as in (6-1) above Proposition 6.1.
Second, the assumption (⋆) in Proposition 6.1 holds by Assumption 6.10. By the assumption that an

goes to∞ as n→∞ in Lemma 6.11, Lemma 6.15 and the second “=” of (6-13), for n large enough, n
satisfies the inequality in (6-2) of Proposition 6.1 (for every D). Then by Proposition 6.1, there exists
δ0 ∈ (0, 1) such that N(0, δ0) is finite. For a general r ∈ Zl−1

p , by [Serban 2018, Lemma 2.7], after an
“upper triangular change of variables” (as defined above Lemma 6.11), we may use the same proof for
r = 0 to conclude that there exists δr ∈ (0, 1) such that N(r, δr ) is finite. By its compactness, Zl−1

p is the
union of p-adic closed discs centered at r of radius δr for finitely many r . Then the infinite set N is the
union of the finite sets N(r, δr ) for these finitely many r . This is a contradiction.
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Discriminant groups of wild cyclic quotient singularities
Dino Lorenzini and Stefan Schröer

Let p be prime. We describe explicitly the resolution of singularities of several families of wild Z/pZ-
quotient singularities in dimension two, including families that generalize the quotient singularities of
type E6, E7, and E8 from p = 2 to arbitrary characteristics. We prove that for p odd, any power of p can
appear as the determinant of the intersection matrix of a wild Z/pZ-quotient singularity. We also provide
evidence towards the conjecture that in this situation one may choose the wild action to be ramified
precisely at the origin.
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Introduction

The goal of this paper is to study wild quotient singularities which arise from actions of G := Z/pZ on
the formal power series ring A := k[[u, v]] when k is an algebraically closed field of characteristic p > 0.
Here the term “wild” refers to the fact that the order of the group G is not coprime to the characteristic
exponent of the ground field k. The resulting quotient singularity is the ring of invariants AG or, more
precisely, the closed point of Spec(AG).

Let X → Spec(AG) be a resolution of the singularity. Let Ci , i = 1, . . . , r , denote the irreducible
components of the exceptional divisor, and form the intersection matrix

N := ((Ci · C j )X )1≤i, j≤r ∈ Matr (Z).
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This matrix is negative-definite. The discriminant group 8N := Zr/NZr attached to N is a finite group
of order |det(N )|, independent of the resolution. The group 8N appears as a natural quotient of the class
group Cl(AG); see Remark 5.7. Attached to the resolution is its dual graph 0N , with vertices v1, . . . , vr ,
where vi and v j are linked by (Ci · C j )X distinct edges when i ̸= j . Our ultimate, long term, goal is to
characterize the intersection matrices N , discriminant groups 8N , and dual graphs 0N , that can arise
from such wild quotient singularities.

The fixed point scheme of the action of G on Spec A is defined by the ideal I := (σ (a)−a |a ∈ A, σ ∈ G).
We say that the action is ramified precisely at the origin if the radical of I is the maximal ideal (u, v);
in this case, the closed point of Spec(AG) is singular. Otherwise, we say that the action is ramified in
codimension 1. When I is principal, AG is regular [Kiràly and Lütkebohmert 2013, Theorem 2], and
when AG is regular, I is conjectured to be principal [loc. cit., Conjecture 9].

It is known that when the exceptional divisor has smooth components with normal crossings, all
components Ci are smooth projective lines and the dual graph 0N is a tree [Lorenzini 2013, Theorem 2.8].
It is also known that the discriminant group 8N is an elementary abelian p-group [loc. cit., Theorem 2.6],
so that in particular we may write

|8N | = |det(N )| = ps

for some integer s ≥ 0. In this article, we consider which exponents s ≥ 0 can arise in this way. By
studying diagonal actions on products of curves, the first author [Lorenzini 2018, Theorem 3.15] produced
wild quotient singularities with |8N | = ps for all exponents s ≥ 2 with s ̸≡ 1 modulo p. Mitsui [2021]
later explicitly resolved all wild quotient singularities arising from product of curves, and showed that the
previous list is the complete list of exponents arising from product of curves. The missing exponents are
then s = 0, as well as all s with s ≡ 1 mod p.

Conjecture 0.1. We conjecture that for p odd, all exponents s ≥ 0 arise in this way from wild Z/pZ-
quotient singularities associated with an action that is ramified precisely at the origin.

In this article, we prove this conjecture for s = 0 and s = 1 by explicitly resolving certain wild quotient
singularities of independent interest. We also exhibit singularities as in the conjecture that are likely
to produce a group 8N with |8N | = ps for all other missing values s > 1 (see Section 0.3). When
the condition that the action be ramified precisely at the origin is relaxed, we can prove the following
result.

Theorem (see Theorem 5.5). For p odd, all missing exponents s ≥ 0 arise from wild Z/pZ-quotient
singularities associated with an action that is ramified in codimension 1.

Let c, d, e ≥ 2 be integers. Recall that the equation xc
+ yd

+ ze
= 0 is said to define a Brieskorn

surface singularity. The missing exponents s are exhibited to arise from wild quotient singularities with
the help of well-chosen Brieskorn singularities, as in our next theorem.
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Theorem (see Theorems 5.1 and 5.3). Let B := k[[x, y, z]]/(z p
+ xc

+ yd). Assume that p does not
divide cd. Let g := gcd(c, d). Any resolution of Spec B has an intersection matrix whose associated
discriminant group has order pg−1 and is killed by p. When c = pm + 1 and d = pn + 1 for some
m, n ≥ 1, then Spec B is a wild Z/pZ-quotient singularity.

The resolutions of the Brieskorn singularities in the previous theorem are found in Theorem 5.1, and
coincide with the known resolutions in characteristic 0 [Hirzebruch and Jänich 1969, Theorem, page 232;
Orlik and Wagreich 1971a]. The theorem is valid when p = 2, but in this case, the order pg−1 is always
an even power of 2, and thus provides no examples of missing odd exponents. The theorem shows that
when p = 2 and gcd(p, cd) = 1, all singularities z p

+ xc
+ yd

= 0 are wild Z/pZ-quotient singularities.
It would be of interest to determine whether this fails to be the case when p > 2.

Let now Cn denote the n-th Catalan number, and let p ≥ 3. To produce singularities associated with an
action that is ramified precisely at the origin and which have |8N | = p, we expand on the work of Peskin
[1983] and consider the ring Bµ := k[[x, y, z]]/(h), where µ ∈ k[y] and

h := z p
+ 2y p+1

− x2
+

(p+1)/2∑
n=2

(−1)nCn−1(µy)2p−2nzn.

When µ = 1, this equation defines a wild quotient singularity that can be regarded as an analogue of
the E1

6-singularity (notation as in Artin’s classification [1977]). We compute explicitly its resolution in
our next theorem. When p = 3, the graph 0N below reduces to the Dynkin diagram E6. When drawing
a dual graph, we adopt in this article the usual convention that a vertex is adorned with the associated
self-intersection number, unless this self-intersection number is −2, in which case it is suppressed.

Theorem (see Theorem 6.3). Let p be an odd prime. Let Bµ be as above. Then Spec Bµ has a resolution
of singularities with dual graph 0N independent of µ of the following form:

p−1

−(p+1)/2

p−1

The associated discriminant group 8N has order p.

0.2. To treat the case where 8N is the trivial group in Conjecture 0.1, we use a family of hypersurface
singularities introduced in [Lorenzini and Schröer 2020] and which is of independent interest. Fix a
system of parameters a, b in k[[x, y]]. Let µ ∈ k[[x, y]], and consider the equation

z p
− (µab)p−1z − a p y + bpx = 0, (0-1)

and the associated ring

Bµ = B := k[[x, y, z]]/(z p
− (µab)p−1z − a p y + bpx).
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(a) Assume that µ is a unit in k[[x, y]]. It is shown in [loc. cit., 7.1], that B is isomorphic to the ring of
invariants AG of an explicit wild action of Z/pZ on A := k[[u, v]] ramified precisely at the origin. More
precisely, after identifying A with the ring

k[[x, y]][u, v]/(u p
− (µa)p−1u − x, v p

− (µb)p−1v − y),

the action is determined by the automorphism σ with σ(u) = u +µa and σ(v) = v +µb. The morphism
Spec A → Spec AG is ramified only at the maximal ideal m, and we find that the étale fundamental group
π loc

1 (AG) of the punctured spectrum U := Spec AG
\ {m} is isomorphic to Z/pZ. Such actions are called

moderately ramified in [loc. cit.], and we refer the reader to that article for further information on these
actions.

(b) Assume that µ is not a unit in k[[x, y]], that µ ̸= 0, and that it is coprime to both a and b. Then B is
again isomorphic to the ring of invariants AG for the action on A := k[[u, v]] described above. However, in
this case the morphism Spec A → Spec AG is ramified in codimension 1 and the group π loc

1 (AG) is trivial.

We restrict our attention to the case where a = yn and b = xm . The case µ = 0 is then also of interest.

(c) Assume that µ = 0, with a = yn and b = xm . The resulting hypersurface is a Brieskorn singularity of
type z p

− y pn+1
+ x pm+1.

In the specialized case where a = yn and b = xm , preliminary computations with Magma [Bosma
et al. 1997] and Singular [Decker et al. 2022] suggest that the resolution of singularities in all three
cases above might have the same combinatorial type, independent of µ. We prove that this is indeed
the case in two instances in this article, when a = y and b = x in Theorem 9.2, and when a = y2 and
b = x in Theorem 7.1. In the latter case, Artin [1977] (see also [Peskin 1980]) shows when p = 2 that
the values µ = 0, µ = 1, and µ = y produce the rational double points E0

8 , E2
8 , and E1

8 , respectively.
These singularities are not isomorphic but have the same resolution graph, the Dynkin diagram E8. Our
generalization of these singularities to any odd prime p has a resolution with the following dual graph.

Theorem (see Theorem 7.1). Let p be an odd prime. Let Bµ be as in Section 0.2. Assume that a = y2

and b = x. Then Spec Bµ has a resolution of singularities with dual graph 0N independent of µ of the
following form:

−(p+1)/2 −4

p−1p

The associated discriminant group 8N is trivial.

0.3. Let p be odd. Recall that when µ = 1, the associated quotient singularity Spec Bµ=1 is induced by
an action that is ramified precisely at the origin. It is likely that by varying the exponents m and n in
a = yn and b = xm , one will obtain examples of resolutions of Spec Bµ=1 with associated discriminant
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group 8N of order ps for any power s with s ̸≡ −1 mod p. In particular, we exhibit in Lemma 5.6 the
appropriate exponents m and n that would cover all remaining open cases in our Conjecture 0.1 (that is,
all values of s with s ≡ 1 mod p).

Peskin’s singularity with µ = 1 introduced above, and all the singularities considered in [Lorenzini
2018] or [Mitsui 2021], are also induced by an action that is ramified precisely at the origin. When p = 2,
none of the known explicit resolutions for examples in these classes of singularities produce an associated
discriminant group 8N with order 2s and s odd. This lack of examples might indicate that there is a
serious obstruction to exhibiting such examples. It is natural to wonder whether such examples in fact do
not exist for actions ramified precisely at the origin.

Let p = 2. The Dynkin diagram E7, with discriminant group 8E7 of order 2, might be the most
ubiquitous graph with discriminant group of order 2s with s odd. Many other such examples are exhibited
in Example 8.2. Artin [1977] showed that there exists a wild Z/2Z-action on A := k[[u, v]], ramified in
codimension 1, such that Spec AZ/2Z is a rational double point of type E7. He also showed that any such
surface singularity must have a trivial local fundamental group. In other words, there cannot exist a wild
Z/2Z-action on A = k[[u, v]], ramified precisely at the origin, such that Spec AZ/2Z has a resolution of
combinatorial type E7.

Inspired by Artin’s considerations, we define in Section 8 some explicit wild Z/pZ-actions on A =

k[[u, v]] ramified in codimension 1. When p = 2, we exhibit for each s odd an explicit example conjectured
to have discriminant group of order 2s . In Section 9, for any prime p, we exhibit a wild Z/pZ-action on
A = k[[u, v]] ramified in codimension 1 which results in an Ap−1-singularity.

Theorem (see Theorem 9.4). Let k be a field of characteristic p > 0. Let A := k[[u, v]]. Then there
exists an automorphism σ : A → A of order p such that Spec A⟨σ ⟩ is a rational double point of type
Ap−1, which has discriminant group 8Ap−1 of order p. Any such automorphism induces a morphism
Spec A → Spec A⟨σ ⟩ that must be ramified in codimension 1.

It is natural to wonder whether the same result holds for any Hirzebruch–Jung chain whose discriminant
group has order p (definition recalled in Section 1.1). The last statement in the above theorem follows
from a result of Ito and Schröer [2015], which states that if the action is ramified precisely at the origin,
then the resolution of the resulting quotient singularity has a dual graph 0N which must have a vertex of
valency at least 3.

Artin [1975] showed that in characteristic p = 2, all wild quotient singularities AG with Spec A →

Spec AG ramified precisely at the origin can be described by an equation of the form (0-1) with µ = 1. In
particular, all such singularities are complete intersection. We show in Proposition 10.1 that when p = 2,
any wild quotient singularity AG is a complete intersection, even when Spec A → Spec AG ramifies in
codimension 1. When AG is a complete intersection, it is then also Gorenstein, with an intersection
matrix which is numerically Gorenstein. The purely linear algebraic definition of numerically Gorenstein
is recalled in Section 10.2, and it is natural to wonder whether this condition imposes a new restriction on
intersection matrices associated with Z/2Z-quotient singularities. The answer to this question is negative,
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and we show in Proposition 10.5 that any intersection matrix N such that 8N is killed by 2 is always
numerically Gorenstein.

The paper is organized as follows. Section 1 contains several useful facts concerning the linear algebra
of intersection matrices N , in particular formulas for the order of 8N when the dual graph 0N is star-
shaped. Sections 2 and 3 are preparatory sections, where we recall basic facts regarding how to compute
self-intersection numbers on a resolution of a singularity using data coming from intermediate blow-ups.
This will be applied in later sections to the resolution of Spec Bµ, where we found it useful, instead of
starting the resolution process by blowing up the maximal ideal, to first blow up an ideal naturally related
to the ideal defining the fixed scheme of the action. We provide in Section 4 the explicit resolution of
certain weighted homogeneous singularities of the form

W q
− U a V b(V d

− U c) = 0,

with p, q, a, b, c, d subject to certain mild restrictions. Over C, such resolution has already been obtained
by Orlik and Wagreich [1971a; 1971b; 1977] in full generality. The proofs of the theorems presented in
this introduction are found in Sections 5–10.

1. Intersection matrices

Let B be a complete noetherian local ring that is two-dimensional and normal. Let Ci , i = 1, . . . , n,
denote the irreducible components of the exceptional divisor of a resolution of singularities of Spec B,
with associated intersection matrix N := ((Ci · C j ))1≤i, j≤n . This section collects some facts that depend
only on the linear algebra of the matrix N and which are used in later sections.

An n × n intersection matrix N = (ci j ) is a symmetric negative-definite integer matrix with negative
coefficients on the diagonal, and nonnegative coefficients off the diagonal. The discriminant group
8 = 8N is defined as the finite abelian group Zn/NZn , which has order |det(N )|. The associated graph
0 = 0N arises as follows: Introduce vertices v1, . . . , vn corresponding to the standard basis vectors in Zn .
Two vertices vi ̸= v j are linked by exactly ci j ≥ 0 edges. If not stated otherwise, we tacitly assume that 0

is connected.
The degree or valency of a vertex v ∈ 0 is the number of edges attached to v. A vertex v with valency

at least three is called a node, and a vertex v with valency one is called terminal. A graph is a chain if it
is connected and does not contain any node. It is called star-shaped if it is a tree with a unique node.
Given a star-shaped graph 0 with node v0, we can consider the subgraph 0∖ {v0} obtained by removing
the vertex v0 and all the edges containing v0. This complement is the disjoint union of m ≥ 3 chains
11, . . . ,1m that we call the terminal chains of 0.

1.1. Suppose that N is an intersection matrix whose graph 0N is a chain, with ℓ ≥ 1 consecutive vertices
v1, . . . , vℓ. For convenience, we label the diagonal entries of N by ci i = −si , and we assume below
that si ≥ 2 for i = 1, . . . , ℓ, unless ℓ = 1, in which case we also allow s1 = 1. We associate to N with
this ordering of the vertices a unique sequence of positive integers 1 = rℓ < · · · < r1 < r0 such that the
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following matrix equality holds, where the square matrix on the left is N :
−s1 1

1 −s2
. . .

. . .
. . . 1
1 −sℓ




r1
...

rℓ−1

rℓ

 =


−r0

0
...

0


When needed, we will denote R = RN the transpose of the vector (r1, . . . , rℓ), so that N R is the transpose
of (−r0, 0, . . . , 0). It is known that |det(N )| = r0, and that 8N is cyclic of order r0 [Lorenzini 2013,
3.13]. To be able to refer to r0 and r1 without indices, we will relabel them as r0 = a and r1 = b. Note
that by construction, gcd(a, b) = 1, and that we can express the reduced fraction a/b completely in terms
of s1, . . . , sℓ as a continued fraction:

a
b

= [s1, s2, . . . , sℓ] := s1 −
1

s2 −
1

. . .
−

1
sℓ

(1-1)

Clearly, any reduced fraction a/b with a > b determines an intersection matrix N as above. The reduced
fraction a/b = 1/1 determines the matrix N = (−1). We note that −a/b = det(N )/ det(N ′), where N ′

is obtained from N by removing its first line and first column (recall that the determinant of the empty
matrix is 1 by convention).

As is customary, the vertices of the graph 0N of an intersection matrix N = (ci j ) are labeled with the
self-intersection numbers −si := ci i , and self-intersection numbers −si = −2 are usually omitted. For a
chain 0N as above, we get the following drawing:

−s1 −s2 −sℓ−1 −sℓ

We call such chain a Hirzebruch–Jung chain. Recall that p/(p−1)=[2, . . . , 2] and that the corresponding
intersection matrix of size p − 1 and determinant (−1)p−1 p is denoted by Ap−1. This intersection matrix
will be shown to arise in the context of Z/pZ-singularities in Theorem 9.4.

1.2. Let m ≥ 3. Let a1/b1, . . . , am/bm be reduced fractions with ai/bi ≥ 1 for i = 1, . . . , m. Let
s0 ≥ 1 be any integer. We denote by N = N (s0 | a1/b1, . . . , am/bm) the following matrix. Its graph
0 = 0N = 0(s0 | a1/b1, . . . , am/bm) is star-shaped with m terminal chains attached to a central node v0

having self-intersection number −s0. Let 11, . . . ,1m be the Hirzebruch–Jung chains determined by the
fractions a1/b1, . . . , am/bm . The graph 0 is obtained by attaching to v0 with a single edge the initial vertex
of each chain 1i . In this article, when referring to a matrix of the form N = N (s0 | a1/b1, . . . , am/bm),
we will always assume that it is an intersection matrix, i.e., that N is negative-definite.
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Proposition 1.3. Let N = N (s0 | a1/b1, . . . , am/bm) be an n × n intersection matrix as above, with
star-shaped graph 0N . Then s0 >

∑m
j=1 b j/a j , and the following hold:

(i) We have det(N ) = (−1)n
(∏

j a j
)(

s0 −
∑

j b j/a j
)
. In particular, there is an integer factorization

|det(N )| =

( ∏
j a j

lcm(a1, . . . , am)

)(
lcm(a1, . . . , am)(s0 −

∑
j

b j/a j )

)
.

(ii) In the discriminant group 8N , the class of the standard basis vector ev0 ∈ Zn corresponding to the
central node v0 has order lcm(a1, . . . , am)

(
s0 −

∑
j b j/a j

)
.

(iii) Let w j denote the terminal vertex in 0N of the chain 1 j . Then 8N is generated by the classes of ew j ,
j = 1, . . . , m. Moreover, the class of ev0 is equal to the class of a j ew j , and the group 8N is killed by
lcm(a1, . . . , am)2

(
s0 −

∑
j b j/a j

)
.

(iv) If a j is a prime p for all j and ps0 −
∑

j b j = 1, then 8N is killed by p and has order pm−1.

(v) Assume that 8N is killed by a prime p. If p divides a j for some j , then the class of ev0 is trivial
in 8N .

Proof. Without loss of generality, we may assume that N equals the block matrix

N =


−s0 ∗ · · · ∗

∗ N1
...

. . .

∗ Nm

 ∈ Matn(Z),

where Ni is the intersection matrix with graph 1i , with vertices numbered consecutively starting from
the vertex adjacent to the node v0. The ∗’s in the above matrix stand for sequences of appropriate size,
starting with 1 followed by zeros. Let Ri denote the positive integer vector associated to Ni , such that

Ni Ri =
t(−ai , 0, . . . , 0).

Form the block column integer vector R in Zn given as

R := lcm(a1, . . . , am) t(1, tR1/a1, . . . ,
tRm/am).

By construction, the greatest common divisor of the entries in R is 1, since, given a prime p such that ps

exactly divides lcm(a1, . . . , am), there exists at least one index i such that ai is exactly divisible by ps .
In particular, the coefficient of R corresponding to the last vertex on the chain 1i is coprime to p. Let
x := s0 −

∑
j b j/a j . Then

N R = lcm(a1, . . . , am) t(−x, 0, . . . , 0).

Note that x > 0, because N is negative-definite, so the integer tRN R must be negative. By negative-
definiteness, we also know that det(N ) has sign (−1)n . Using [Lorenzini 2013, Theorem 3.14], with the
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matrix N and the vector R, we get

det(N ) = (−1)n
(

s0 −

∑
j

b j/a j

)
·

(∏
j

a j

)
and the assertion (i) follows. The assertion in (ii) follows immediately from the equality

N R = lcm(a1, . . . , am) t(−x, 0, . . . , 0)

and the fact that the greatest common divisor of the coefficients of R is 1. For (iii), to show that ev0 −a j ew j

is in the image of N , consider the unique positive vector S j whose first component is 1 and such that
N j S j is equal to the transpose of (0, . . . , 0, −a j ). Extend this vector to a vector S j ∈ Zn by setting all
other components to 0. Then N S j = ev0 − a j ew j . The proof that for any vertex w on the chain 1 j ,
there exists an integer cw such that ew − cwew j is in the image of N is similar, and is left to the reader.
Using (ii) to find the order of the class of ev0 , it follows immediately that the class of ew j is killed by
lcm(a1, . . . , am)2

(
s0 −

∑
i bi/ai

)
, for all j . Part (iv) is immediate from (i) and (iii). In Part (v), assume

that p divides a j . As the class of ew j is killed by p by hypothesis, we find from (iii) that the class of ev0

is trivial. □

2. Computation of self-intersections

Let B be a complete local noetherian ring that is two-dimensional and normal. It is known that a resolution
of singularities X → Spec(B) exists, and that it can be obtained from the sequence

X = Yt → Yt−1 → · · · → Y1 → Y0 = Spec(B),

where each Yi → Yi−1 is the normalization of the blow-up of the finitely many singular points of Yi−1;
see, e.g., [Lipman 1978, Theorem on page 151 and Remark B on page 155]. In this section we develop a
method for computing the self-intersection of particular irreducible components of the exceptional divisor
on X . This information is needed in the proofs of each of our explicit computation of resolutions in
Theorems 4.4, 6.3, 7.1, and 9.2. For the sake of exposition, we assume that the residue field k = B/mB is
algebraically closed.

Note that the process described above usually does not produce the minimal desingularization, as
some irreducible components of the exceptional divisor on X might be (−1)-curves, and thus contract to
smaller resolutions of singularities. This may even happen for the strict transforms of the exceptional
divisors on the first blow-up Y1; see Example in [Lipman 1969, page 205].

2.1. Let X → Spec(B) be any resolution of singularities, and write C1, . . . , Cn for the irreducible
components of the exceptional divisor. We then have intersection numbers

ci j = (Ci · C j )X := χ(OC j (Ci )) − χ(OC j ) = deg(OC j (Ci )),
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and can form the resulting intersection matrix N = (ci j )1≤i, j≤n . Associated with N is the connected
graph 0 = 0N with vertices v1, . . . , vn , and a pair of vertices vi ̸= v j is linked by exactly ci j edges. We
call 0 the resolution graph or the dual graph attached to X → Spec B.

Now consider a factorization X → Y → Spec B, where π : X → Y is the contraction of certain
exceptional curves, say Cs+1 ∪ · · · ∪ Cn . We regard the induced morphism Y → Spec(B) as a partial
resolution of singularities, and by definition of contraction, Y is normal. Write D1, . . . , Ds ⊂ Y for the
images in Y of the noncontracted curves C1, . . . , Cs ⊂ X . These images are Weil divisors which are not
necessarily Cartier. Following Mumford [1961, page 17] (see also [Fulton 1984, 7.1.16] or [Schröer 2019,
Theorem 1.2]) one has rational intersection numbers (Di · D j )Y ∈ Q obtained as follows: First define
the rational pull-back π∗(Di ) := Ci +

∑
k>s λkCk , where λs+1, . . . , λn ∈ Q are the fractions uniquely

determined by the conditions (π∗(Di ) · Ck)X = 0 for all s < k ≤ n. One then sets

(Di · D j )Y := (π∗(Di ) · C j )X = (π∗(Di ) · π∗(D j ))X .

These numbers actually do not depend on the choice of resolution π : X → Y .
Suppose now that π : X → Y is the contraction of all but the first curve C1. Assume furthermore that 0

is a tree. Let v be the vertex corresponding to C1, and consider the graph 0 ∖ {v} obtained from 0 by
removing the vertex v and all the edges attached to v. The graph 0 ∖ {v} decomposes into connected
components 0 ∖ {v} = 11 ∪ · · · ∪ 1r , with corresponding intersection matrices N1, . . . , Nr for each
component. Since 0 is a tree, there exists a unique vertex wi ∈ 1i which is adjacent to v in 0. Define
1′

i := 1i ∖ {wi }, with intersection matrix N ′

i . We call

δi := −
det(N ′

i )

det(Ni )
∈ Q>0

the correction term at wi (recall that the determinant of the empty matrix is 1, and we use this convention
if 1i is reduced to the single vertex wi ). The correction terms δi are indeed positive, since the signs of
det(Ni ) and det(N ′

i ) are given by (−1)ri and (−1)ri −1, where ri is the number of vertices of 1i . When
1i is a chain as in Section 1.1 corresponding to a fraction ai/bi , we have δi = bi/ai . The geometric
meaning of the correction terms is as follows:

Proposition 2.2. In the above situation, the integral self-intersection and the rational self-intersection are
related by the formula

(C1 · C1)X = (D1 · D1)Y −

r∑
i=1

δi .

Proof. For ease of notation, we let in this proof C = C1 and D = D1. Let N0 denote the lower-right
principal submatrix of N . Recall from our earlier description that N0 is a block diagonal matrix with
det(N0) =

∏r
i=1 det(Ni ). Then

(λ2, . . . , λn) = −((C · C2)X , . . . , (C · Cn)X )N−1
0 .
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It follows that

(D · D)Y = (π∗(D) · C)X = (C · C)X +

n∑
j=2

λ j (C j · C)X .

Since 0N is a tree, we find that if (C · C j )X ̸= 0, then (C · C j )X = 1. We only need to compute explicitly
λ j when (C · C j )X ̸= 0. According to our definitions, there are r such indices j and, renumbering
the components if necessary, we find that in each case, the coefficient λ j is the top left corner of the
corresponding matrix N−1

j , that is, det(N ′

j )/ det(N j ), as desired. □

We will use Proposition 2.2 in the following situation. Let b be an ideal in B, and let Z → Spec B
denote the blowing-up with center V (b). Denote by E ⊂ Z the schematic preimage of the center. Let
ν : Y → Z be the normalization map and denote by D = ν−1(E) the schematic preimage of E . Assume
that D, and hence E , are irreducible. Let Dred denote the support of D endowed with its induced reduced
structure. Letting Dred play the role of D1 in Proposition 2.2, we find a formula for the rational intersection
number (Dred · Dred)Y in term of data from a resolution X → Y . Our next proposition shows how to
obtain (Dred · Dred)Y from data associated with the blowing-up Z → Spec B.

The exceptional divisor E ⊂ Z is given by the sheaf of ideals OZ (1) ⊂ OZ . The reduction Ered is a
projective curve over the residue field k, allowing us to define the integral intersection number

(E · Ered)Z := χ(OEred(E)) − χ(OEred) = deg OEred(−1).

In practice, (E ·Ered)Z can often be computed, and such computation is done for instance in Proposition 3.6.
Let η denote the generic point of E , and set m := length(OE,η). When Z is normal, we have the

equality of Weil divisors E = m Ered. When Z is not normal, the abuse of notation E = m Ered should be
interpreted to mean that the length of the local ring OE,η is m.

Proposition 2.3. In the above situation where D, and hence E , are assumed irreducible, let m :=

length(OE,η) and let d ≥ 1 be the degree of the induced map ν : Dred → Ered. Then we have

(Dred · Dred)Y =
d2

m
(E · Ered)Z .

Proof. First, we check that (D · ν−1(F))Y = (E · F)Z for every effective Cartier divisor F ⊂ Z that
does not contain the support of E . The two intersection numbers are the k-degrees of the finite schemes
D ∩ν−1(F) and E ∩ F , respectively. Fix a point z ∈ E ∩ F , consider the local ring A := OF,z and choose
an element t ∈mA defining F ∩ E ⊂ F locally. Then A is a local noetherian ring of dimension one without
embedded components, and M := Oν−1(F),z is a finite A-module of rank one for which the multiplication
map t : M → M is injective. According to [EGA IV1 1964, Chapter IV, Lemma 21.10.13], the modules
A/t A and M/t M have the same A-length, hence also the same k-vector space dimension. Applying
this with a difference F − F ′ of effective Cartier divisors that are linearly equivalent to E , we conclude
(D · D)Y = (E · E)Z .
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To simplify notation write E ′
= Ered and D′

= Dred. Since Y us normal, we can write D = h D′ for
some h ≥ 1, and we get

h2(D′
· D′)Y = (D · D)Y = (E · E)Z = m(E · E ′)Z . (2-1)

We now use Kleiman’s theory of rational degrees deg(V ′/V ) ∈ Q≥0 for morphisms V ′
→ V between

irreducible proper schemes that are not necessarily integral [Kleiman 1966, Definition on page 277].
According to [Kleiman 1966, Lemma 2], the commutative diagram

D′
−−−→ Dy y

E ′
−−−→ E

gives the equation deg(D′/E ′) · deg(E ′/E) = deg(D′/D) · deg(D/E), and furthermore we have
deg(E ′/E) = 1/m and deg(D′/D) = 1/h. Thus deg(D′/E ′) = m/h. Inserting this into (2-1) yields the
assertion. □

3. Blowing up nonreduced centers

We begin this section with some general facts on the computation of blowing-ups, needed for instance to
fully justify the explicit computations done in Proposition 3.6. Let B be a noetherian ring, and let b ⊂ B
be an ideal. Endow the associated Rees ring

B[bT ] := B ⊕ bT ⊕ b2T 2
⊕ · · · ⊂ B[T ]

with the grading induced by the standard grading on B[T ]. The morphism Proj(B[bT ]) → Spec B is
called the blowing-up of Spec(B) with center Spec(B/b). We denote Proj(B[bT ]) by Blb(B) or, when
no confusion may ensue, simply by Z . Let E denote the schematic preimage in Z of the center of the
blowing-up.

Assume now that R is a noetherian ring with a surjection R → B. Let a denote the preimage in R
of the ideal b. Consider the blowing-up Z ′

:= Bla(R) with center V (a), and the commutative diagram
induced by the surjection R[aT ] → B[bT ] of Rees rings:

Z −−−→ Z ′y y
Spec B −−−→ Spec R

The horizontal morphisms are closed immersions.
Recall that an element f ∈ R is called regular if multiplication by f on R is an injective map. Assume

now that the kernel of R → B is generated by a regular element f ∈ R. Then Spec(B) is an effective
Cartier divisor in Spec(R), and our next proposition provides a criterion for checking whether the closed
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subscheme Z is an effective Cartier divisor in Z ′, when Z ′ and V (a) are “nice”. This criterion is explicit
and in general not very difficult to verify.

Each element g ∈ a defines a basic open set D+(g) := Spec R[aT ](gT ) of Z ′ called the g-chart. When
a = (g1, . . . , gr ), the union

⋃r
i=1 D+(gi ) is an affine open cover of Z ′.

Proposition 3.1. Let R be a noetherian ring, locally of complete intersection.1 Let g1, . . . , gr ∈ R be
a regular sequence, and set a := (g1, . . . , gr ). Let f ∈ R be a regular element contained in a, and set
B := R/( f ) and b := aB. Consider as above the blowing-ups Z → Spec B and Z ′

→ Spec R.
For each i = 1, . . . , r , choose a factorization f/1 = (gi/1)si hi in R[aT ](gi T ), with si ≥ 0 and hi ∈

R[aT ](gi T ). Assume that for each i , the closed subscheme V (hi , gi/1) of D+(gi ) has codimension two in
D+(gi ). Then:

(a) The closed subscheme Z of Z ′ is an effective Cartier divisor. Its restriction to the gi -chart D+(gi ) is
the closed subscheme V (hi ).

(b) The scheme Z is locally of complete intersection.

Proof. Part (a) follows from Proposition 3.2. Part (b) follows from Proposition 3.4. □

Proposition 3.2. Keep the notation introduced at the beginning of this section. Let g ∈ a. Suppose that
we have a factorization f/1 = (g/1)sh in R[aT ](gT ), for some s ≥ 0 and some element h ∈ R[aT ](gT ).
Suppose also that the following two assumptions hold:

(i) The closed subscheme V (h, g/1) of D+(g) has codimension at least two.

(ii) The basic open set D+(g) ⊂ Z ′ satisfies Serre’s condition (S2).

Then Z ∩ D+(g) = V (h) as closed subschemes of the g-chart D+(g).

Proof. By hypothesis, g/1 and h define two closed subschemes V (g/1) and V (h) in D+(g). All schemes
below are viewed as subschemes in Z ′

:= Bla(R). The conclusion of the proposition is implied by the
following two claims:

(a) The subsets D+(g) ∩ (Z \ E) and V (h) \ V (g/1), which are open in Z , are equal.
(b) The subscheme V (h) ∩ V (g/1) is an effective Cartier divisor on V (h).
Indeed, on one hand the schematic closure of the inclusion D+(g) ∩ (Z \ E) → D+(g) ∩ Z is

equal to D+(g) ∩ Z by Lemma 3.3, and on the other hand the schematic closure of the inclusion
V (h) ∩ V (g/1) → V (h) is equal to V (h), also by Lemma 3.3.

We leave it to the reader to verify (a). To prove (b), note that since f is regular in R, the element f/1
is regular in R[aT ](gT ). Thus V (h) and V (g/1) are two Cartier divisors in D+(g). We need to show that
the image of g/1 is not a zero-divisor in R[aT ](gT )/(h). Assumption (ii) implies that any effective Cartier
divisor on D+(g) satisfies Serre’s condition (S1). In particular, the ring R[aT ](gT )/(h) has no embedded
primes, and thus the zero divisors in R[aT ](gT )/(h) are contained in the minimal primes ideals. Krull’s

1Recall that g1, . . . , gd ∈ R is called a regular sequence if the class of gi is a regular element in the ring R/(g1, . . . , gi−1),
for each 1 ≤ i ≤ d. The ring R is called locally of complete intersection if for each p ∈ Spec R, the completion of Rp is
isomorphic to a ring of the form A/(a1, . . . , as), where A is a regular complete local ring, and a1, . . . , as is a regular sequence.
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principal ideal theorem shows the irreducible components of V (h) all have codimension one in D+(g).
Assumption (i) implies then that g/1 cannot be contained in a minimal prime ideal of R[aT ](gT )/(h).
Thus g/1 is regular in R[aT ](gT )/(h). □

Lemma 3.3. Let V be the complement of an effective Cartier divisor F on a noetherian scheme Y . Then
the schematic image in Y of the open embedding V → Y coincides with Y .

Proof. The assertion is local, so we may assume that Y = Spec(A) and F = V (g), where g ∈ A is a
regular element. The schematic image is defined by the kernel of the localization map A → Ag, with
a 7→ a/1. Since g is regular, this kernel is the zero ideal. □

In the context of Proposition 3.2, we say that the equation h = 0 is the strict transform of f = 0 on
the g-chart. One easily sees that condition (i) ensures that the exponent s ≥ 0 is the maximal exponent.
Note that in any case there is a factorization f/1 = (g/1)sh with maximal s ≥ 0, by Krull’s intersection
theorem, and the resulting factor h is unique because g/1 is regular. In light of Krull’s principal ideal
theorem, when V (h, g/1) has codimension at least two in D+(g), it has codimension exactly two. This
condition depends only on the radical ideal

√
(h, g/1), a remark which usually substantially simplifies

the computations.

Proposition 3.4. Suppose that the ideal a ⊂ R is generated by a regular sequence g1, . . . , gd ∈ R. If the
scheme S := Spec(R) satisfies Serre’s condition (Sm), or is locally of complete intersection, the same
holds for the blowing-up Bla(R).

Proof. The canonical module surjection R⊕d
→ a coming from the regular sequence yields a closed

embedding Bla(R) ⊂ Pd−1
R . Consider the short exact sequence

0 → F → O⊕d
P

(gi T )
−−→ OP(1) → 0

of locally free sheaves on P :=Pr
R . The kernel has rank(F )=d−1. Let F →OP be the composition of the

inclusion F ⊂ O⊗d
P followed by O⊕d

P
(gi )
−→ OP . According to [SGA 6 1971, Exposé VII, Proposition 1.8],

the image is the quasicoherent ideal corresponding to the closed subscheme X := Bla(R). Moreover, for
each point x ∈ X , the image of any basis in Fx in the local ring OP,x is a regular sequence contained in
the maximal ideal mx . More explicitly, we have

R[aT ](T g j ) = R[S1, . . . , Sd ]/(S1g j − g1, . . . , Sd g j − gd), (3-1)

where the identification is given by Si = gi T/g j T , and the generators in the above ideal form a regular
sequence in the polynomial ring. This result is due to Micali [1964, Theorem 1]. It follows that the
scheme Bla(R) is locally of complete intersection if this holds for the ring R.

Note that the relation S j g j − g j = 0 is equivalent to S j = 1, because g j is regular. In other words, in
(3-1) one may simply omit the indeterminate S j . Also note that if R is integral, so is the Rees ring, and
we may regard (3-1) as the R-subalgebra in Frac(R) generated by the fractions g1/g j , . . . , gd/g j .

Fix a point x ∈ X and consider the local ring A := OX,x . It remains to show that depth(A) ≥ m
or depth(A) = dim(A) < m. For this we may assume that S = Spec(R) is local, and that x lies
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over the closed point s ∈ S. Set c := d − 1. The local ring A′
:= OP,x has dim(A′) = dim(R) + c

and depth(A′) = depth(R) + c. Moreover, the residue class ring A has dim(A) = dim(A′) − c and
depth(A) = depth(A′) − c, the former by Krull’s principal ideal theorem, the latter by [EGA IV1 1964,
Chapter 0, Proposition 16.4.6]. The assertion on the Serre condition is immediate. □

3.5. Let us return now to the wild quotient singularities recalled in Section 0.2. Let R := k[[x, y, z]] be a
formal power series ring over a field k of characteristic p > 0, and consider the element

f := z p
− (µab)p−1z − a p y + bpx .

Here a, b ∈ k[[x, y]] is a system of parameters, and µ ∈ k[[x, y]]. Let B := R/( f ).
Let a := (a, b, z) ⊂ R. We call Z := BlaB(B) → Spec B the initial blowing-up. In Theorem 7.1 and

Theorem 9.2, we will later compute a complete resolution X → Z → Spec B of this initial blowing-up in
two special cases. Recall that the exceptional divisor E ⊂ Z is given by the sheaf of ideals OZ (1) ⊂ OZ .
Our next proposition computes the term (E · Ered)Z , needed for instance when applying Proposition 2.3.

Proposition 3.6. Keep the assumptions of Section 3.5. Then the following hold:

(i) The reduction Ered is isomorphic to the projective line P1
k .

(ii) The z-chart on Z is disjoint from the exceptional divisor, and thus is regular.

(iii) The scheme Z is locally of complete intersection.

(iv) We have (E · Ered)Z = −1.

(v) The local ring OE,η at the generic point η of E has length p · dimk k[[x, y]]/(a, b).

Proof. The blowing-up Bla(R) is covered by the a-chart, the b-chart and the z-chart. We start by examining
the a-chart, which is the spectrum of the ring

R[aT ](aT ) = R[b/a, z/a]/(b/a · a − b, z/a · a − z).

Consider the factorization f = a ph with

h :=

(
z
a

)p

− µp−1a p−1
(

b
a

)p−1( z
a

)
− y +

(
b
a

)p

x .

The radical J of the ideal generated by h and a in R[aT ](aT ) clearly contains b. It thus also contains
x and y, because a, b is a system of parameters in k[[x, y]]. Hence, J also contains z/a and z. It
follows that the subscheme V (h, a) of the a-chart is one-dimensional. According to Proposition 3.1, the
scheme BlaB(B) coincides on the a-chart with the effective Cartier divisor defined by the equation h = 0.
The exceptional divisor is given by the additional equation a = 0, and thus equals Spec A, where A is
the quotient of k[[x, y, z]][b/a, z/a] modulo the ideal generated by a, b, z, and (z/a)p

− y + (b/a)px .
Let Q := (x, y, z/a) ⊂ A. Since the classes of x, y, z/a are nilpotent, and since the quotient A/Q is
isomorphic to the domain k[b/a], we find that Q is the minimal prime ideal of A.
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One easily sees that the z-chart on Bla(R) is disjoint from the exceptional divisor. The situation for the
b-chart is similar to the a-chart, and it follows that BlaB(B) is locally of complete intersection. Moreover,
the reduced exceptional divisor Ered = Spec k[b/a] ∪ Spec k[a/b] is a copy of P1

k .
The restriction to Ered of the invertible sheaf OZ (1) = OZ (−E) is generated by the elements aT/1 and

bT/1 on the two charts, respectively. Viewing a/b ∈ k[a/b, b/a]
× as a cocycle, one deduces that OZ (1)

has degree 1 on Ered, so that (E · Ered)Z = −1.
It remains to compute the length of OE,η. The coordinate ring of the exceptional divisor E on the

a-chart is given by

R[b/a, z/a]/(b/a · a − b, z/a · a − z, h, a).

Clearly, the ideal on the right is also generated by b, z, h, a. In turn, the above ring is isomorphic
to k[x, y, b/a, z/a]/(a, b, h). Regard the latter as 3[z/a]/(h), where 3 is the polynomial ring in the
indeterminate b/a over the local Artin ring k[x, y]/(a, b). The ring extension 3 ⊂ 3[z/a]/(h) is finite
and free, because h is a monic in z/a. All coefficients of h except the leading one are nilpotent in 3,
consequently z/a becomes nilpotent modulo h. It follows that 3 ⊂ 3[z/a]/(h) induces bijections on
all residue fields. Clearly, the minimal prime p ⊂ 3 is generated by x and y. In turn, the local Artin
ring 3p has length dimk k[x, y]/(a, b), whereas the local Artin ring OE,η = 3p[z/a]/(h) has length
deg(h) · length(3p) = p · dimk k[x, y]/(a, b). □

Remark 3.7. Keep the notation recalled in Section 3.5. Let µ ∈ k[[x, y]] and assume that it is a unit,
or that it is nonzero and coprime to both a and b. The ring B = k[[x, y, z]]/( f ) can be identified with
the ring of invariants AG for an action of the group G := Z/pZ on the ring A := k[[u, v]], as recalled
in Section 0.2, where the generator acts via u 7→ u + µa and v 7→ v + µb. Under this identification,
the element z corresponds to ub − va. We note below that the initial blowing-up BlaB(B) → Spec(B)

considered in Proposition 3.6 is canonically associated to the action.
Indeed, the fixed scheme of the action is by definition the largest closed subscheme of Spec A on which

the action is trivial, and we find that for the above action it corresponds to the ideal I := (σ (u)−u, σ (v)−v)

= (µa, µb) in A. Under the above identification B = AG we have z = ub − va, and therefore µz ∈ I .
We find that (µa, µb, µz) ⊆ I ∩ B. The reverse inclusion also holds since A is flat over k[[x, y]] (same
proof as in [Schröer 2009, Lemma 1.5], when p = 2 and a similar choice of initial blow-up was also
used). Thus the ideals I ∩ B and aB = (a, b, z) coincide up to the factor µ and, hence, the total spaces of
the resulting blowing-ups coincide.

4. Some weighted homogeneous singularities

Let k be an algebraically closed field of characteristic exponent p ≥ 1. The goal of this section is to
describe a resolution of the singularity at the origin on the hypersurface given by the equation

W q
− U a V b(V d

− U c) = 0
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when the integers p, q, a, b, c, d ≥ 1 are subject to certain mild restrictions. This is achieved in
Theorem 4.4. Note that this singularity is not necessarily isolated. The above polynomial is weighted
homogeneous, and resolutions of such singularities were already studied by Orlik and Wagreich [1971a;
1971b; 1977], exploiting Gm-actions corresponding to the weights. The former two papers rely on
transcendental methods, and the latter mainly treats the case of isolated singularities. Our method is
completely algebraic, and relies on the theory of toric varieties and Hirzebruch–Jung singularities.

To compute a resolution of our surface singularity, we first make an initial blow-up that separates the
irreducible components of the plane curve U a V b(V d

−U c) = 0. We then pass to certain nicer subrings of
the charts, and identify their formal completions with suitable monoid rings. This necessitates taking roots
of power series along the way, requiring some restrictions on the integers p, q, a, b, c, d as in Section 4.3.

Let us start with a brief review of the theory of Hirzebruch–Jung singularities. Suppose that t, r ≥ 1
and s ≥ 0 are integers such that ρ := gcd(t, r, s) is prime to p. Consider the ring

R := k[U, V, W ]/(W t
− U r V s).

We have a factorization W t
− U r V s

=
∏

(W t/ρ
− ζU r/ρV s/ρ), where the product runs over the ρ-th

roots of unity ζ in k. The corresponding minimal primes p1, . . . , pρ ⊂ R define a partial normalization
R ⊂

∏
R/pi , and it usually suffices to understand the rings R/pi .

4.1. Assume from now on that ρ = 1, so that R is an integral domain. Let R′ be its normalization. To
describe the resolution of the singularity of Spec R′ at the maximal ideal (U, V, W ) when Spec R′ is
singular at this point, it is standard to first express R′ as the normalization of a different domain R0, as we
now recall. Given the triple (t, r, s), we describe below its fraction type, which can be 0, and when the
fraction type is not 0, it is equal to (t ′

− s ′)/t ′, where (t ′, 1, s ′) is the unique triple with 0 < s ′ < t ′ and s ′

coprime to t ′ such that R′ can be identified with the normalization of the ring R0 := k[u, v, w]/(wt ′
−uvs′

).
Let DU and DV denote the preimages in Spec R′ of the closed subsets of Spec R defined by U = W = 0

and V = W = 0, respectively. The identification of R′ as the normalization of R0 is such that the closed
subsets DU and DV on Spec R′ are again equal to the preimages under the new normalization map
Spec R′

→ Spec R0 of the closed subsets of Spec R0 defined by u = w = 0 and v = w = 0, respectively.
We leave it to the reader to check this claim, for instance using the explicit description of R0 recalled
below.

Write r = r0 + ct and s = s0 + dt for some integers r0, s0, c, d ≥ 0 with r0, s0 < t . Then the fraction
W/(U cV d) is integral over R since it satisfies the equation (W/(U cV d))t

= U r0 V s0 . We can thus replace
R by R[W/(U cV d)]. In particular, if either r or s is divisible by t , then R′ is regular above (U, V, W ).
We define in this case the fraction type of R or R′ to be 0. If R′ is not regular, then upon replacing R
with R[W/(U cV d)] we may assume that 0 < r, s < t .

Let h := gcd(t, r) and h′
:= gcd(t, s). Since gcd(t, r, s) = 1, we find that gcd(r, h′) = gcd(s, h) = 1.

Thus we can write ar = 1 + bh′ and cs = 1 + dh for some nonnegative integers a, b, c, d. Let U1 :=

W at/h′

/(U (ar−1)/h′

V as/h′

) and V1 := W ct/h/(U cr/h V (cs−1)/h). We find that U h′

1 = U and V h
1 = V . In
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the integral extension R[U1, V1], we find that W t/(hh′)
= U r/h

1 V s/h′

1 . If r divides t/h′, or if s divides t/h,
we find that R′ is regular above (U, V, W ), and we define again in this case the fraction type of R or R′

to be 0.
Assume then that R′ is not regular. Replacing R with R[U1, V1], we may assume now that h = h′

= 1,
and upon replacing R by a larger integral extension if necessary, we can also assume that 0 < r, s < t . In
this process, t has been replaced by t/hh′.

There exists a unique integer e with 0 < e < t and er = s + ct for some integer c. Since s < t by
assumption, we find that c ≥ 0. Consider the ring R1 := k[U, V, Z ]/(Z t

−U r V s+ct). We find that this ring
has two natural integral extensions. Indeed, R1[Z/V c

] is isomorphic to the ring R. Writing rρ = 1 + f t
for some integers ρ, f ≥ 0, we find that w := Zρ/(U V e) f is such that wr

= Z and wt
= U V e. Thus

R1[w] is integral over R1 and isomorphic to R0 := k[U, V, W ]/(W t
− U V e). We define in this case the

fraction type of R or R′ to be (t − e)/t , with 0 < (t − e)/t < 1 and gcd(e, t) = 1. This concludes our
description of how to compute the fraction type of the ring R.

Given a resolution of singularities X → Spec R′, we write C ⊂ X for the exceptional curve, and CU and
CV for the strict transforms in X of the Weil divisors DU and DV on Spec R′, respectively. We endow all
these closed subsets with the induced reduced structure of scheme. The following theorem is well-known
(see, e.g., the pictures in [Kempf et al. 1973, page 37] or [Conrad et al. 2003, Theorem 2.4.1]), but we
did not find a suitable reference in the literature which also proved the statement regarding the divisors
CU and CV . We include a sketch of proof below, with references, for the convenience of the reader.

Theorem 4.2. Let s and t be coprime integers with 0 < s < t . Let R := k[U, V, W ]/(W t
− U V s) and

denote by R′ its normalization. There is a resolution of singularities X → Spec R′ such that CU ∪C ∪CV

is a divisor with simple normal crossings having the following dual graph:

−s1 −s2 −sℓ−1 −sℓ

CU CV

The integer ℓ ≥ 1 and the self-intersection numbers −si are computed from the continued fraction
expansion t/(t − s) = [s1, . . . , sℓ] as described in (1-1). Moreover, the irreducible components of C are
isomorphic to P1

k .

Proof. The proof relies on the theory of toric varieties, and we refer the reader to the monographs [Cox
et al. 2011; Danilov 1978; Kempf et al. 1973] for the general theory. The book [Cox et al. 2011] assumes
from the onset that the characteristic of k is 0, but the proofs of the results quoted below are valid in all
characteristics and can be applied to our purposes. We identify Z := Spec R as an explicit (nonnormal)
toric variety, and use the general theory of toric varieties to describe the normalization Y → Z and the
toric resolution X6 → Y attached to an explicit fan 6.

Consider the lattices N := Z2 and M := Hom(N , Z). Write e1, e2 ∈ N for the standard basis of N , and
e∗

1, e∗

2 ∈ M for the dual basis. Let σ ⊂ NR := N ⊗Z R be the closed convex cone generated by the vectors
e2 and te1 − (t − s)e2. The dual cone σ∨

⊂ MR is generated by α := (t − s)e∗

1 + te∗

2 and β := e∗

1 . Let
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γ := e∗

1 + e∗

2 , and let S ⊂ M be the submonoid generated by α, β, γ . We have the relation tγ = α + sβ,
and can identify k[U, V, W ]/(W t

− U V s) with the monoid ring k[S] via U 7→ α, V 7→ β, and W 7→ γ .
Let S′

:= σ∨
∩ M . Clearly, the abelian group M is generated by β and γ . It follows that α ∈ M and,

hence, S ⊆ S′. Since S′ is always saturated, S′ is equal to the saturation of the monoid S. It follows that
the normal toric variety Y attached to N and σ , namely Y := Spec k[σ∨

∩ M], is the normalization of the
nonnormal toric variety Z := Spec k[S].

The cone σ is in normal form, and since t > s > 0, [Cox et al. 2011, Theorem 10.2.3], provides
an explicit description of a refinement fan 6 of σ such that the induced morphism X6 → Y is a toric
resolution of singularities. Using the Hirzebruch–Jung continued fraction [s1, . . . , sℓ] of t/(t − s), one
constructs a sequence of vectors u0 := e2, u1, . . . , uℓ, uℓ+1 := te1 − (t − s)e2 such that σ =

⋃ℓ+1
i=1 σi with

σi the cone generated by ui−1 and ui . The fan 6 consists of the cones σi and their faces.
Using the orbit-cone correspondence [Cox et al. 2011, Theorem 3.2.6], we find that the ray generated

by ui , i = 0, . . . , ℓ + 1, corresponds to a curve Ci on X6 . Since 6 is a simplicial fan, the intersection
products (Ci · C j )X6

with 0 ≤ i ̸= j ≤ ℓ + 1 can be computed as in [loc. cit., Corollary 6.4.3], and are
found to equal 1. The self-intersections (Ci · Ci )X6

for i = 1, . . . , ℓ are computed to equal −si using
Theorem 10.2.5, along with Theorem 10.4.4, of [loc. cit.].

The curve C1 ∪ · · · ∪ Cℓ is the exceptional divisor of the toric desingularization X6 → Y . Using the
orbit-cone correspondence for the surface Y , we let D and D′ denote the curves on Y corresponding to
the rays in the cone σ generated e2 and te1 − (t − s)e2, respectively. The natural properties of the map
X6 → Y implies that D is the image of C0, and D′ is the image of Cℓ+1. The proof is concluded by the
fact that D is the reduced preimage of the Weil divisor U = W = 0 on Z , and that similarly, D′ is the
reduced preimage of the Weil divisor V = W = 0 on Z . □

4.3. Let q, a, b, c, d ≥ 1 be integers. Set

m := ad + bc + cd and g := gcd(c, d).

Noting that m/g is an integer, we further set

h := gcd(q, m/g), ha := gcd(q, m/g, a), and hb := gcd(q, m/g, b).

In our main result below on the resolution of the hypersurface singularity W q
− U a V b(V d

− U c) = 0,
we assume that

gcd(a, c/g) = gcd(b, d/g) = 1 and gcd(p, hg) = 1. (4-1)

Note that the latter condition automatically holds when p = 1. The reader will easily check that the
condition gcd(a, c/g) = 1 is equivalent to the condition gcd(m/g, c/g) = 1. Similarly, gcd(b, d/g) = 1
if and only if gcd(m/g, d/g) = 1.
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Denote by α, β, γ ∈Q<1 the fraction types (see Section 4.1) of the normal Hirzebruch–Jung singularities
associated with the triples (t, r, s) given by(

qc
gha

,
m

gha
,

a
ha

)
,

(
qd
ghb

,
m

ghb
,

b
hb

)
, and

(
q,

m
g

, 1
)

,

respectively. Finally, set

s0 :=
h2g2

qcd
+ haα + hbβ + gγ. (4-2)

We are now ready to state the main result of this section. Three complements to Theorem 4.4 are given in
Propositions 4.7–4.9.

Theorem 4.4. Set B := k[U, V, W ]/(W q
−U a V b(V d

−U c)), and assume that the conditions (4-1) hold.
With the above notation, we have the following:

(i) The fraction s0 > 0 is an integer.

(ii) The hypersurface singularity has a resolution of singularities X → Spec(B) where, using the notation
in Section 1.2, the exceptional divisor C ⊂ X has star-shaped dual graph

0 = 0(s0 | α−1, . . . , α−1︸ ︷︷ ︸
ha

, β−1, . . . , β−1︸ ︷︷ ︸
hb

, γ −1, . . . , γ −1︸ ︷︷ ︸
g

)

when α, β, γ > 0. When α (resp. β, resp. γ ) equals 0 (e.g., when q divides m/g), the graph 0 is as
above except that the corresponding ha (resp. hb, resp. g) chains are removed.

(iii) The curve C has simple normal crossings. All irreducible components of C are copies of P1
k , except

possibly for the central node. When h = 1, the central node is also isomorphic to P1
k .

Proof. Since our ground field k is algebraically closed, we can rewrite the defining polynomial for our
hypersurface singularity as

f = W q
− U a V b

∏
ζ

(V d/g
− ζU c/g),

where the product runs over the g-th roots of unity ζ ∈ k. Assumption (4-1) ensures that we have exactly
g ≥ 1 distinct factors in the product.

To construct the desired resolution of singularities X → Spec(B), we first make an initial blowing-up
Z := BlaB(B) → Spec(B), for the ideal a := (U c/g, V d/g) in the polynomial ring R := k[U, V, W ]. The
ambient blowing-up Bla(R) has two charts, the U c/g-chart and the V d/g-chart. The former is given by
four generators U, V, W, V d/g/U c/g subject to the single relation(

V d/g

U c/g

)
· U c/g

= V d/g, (4-3)

as recalled in Proposition 3.4. On this chart we rewrite the defining polynomial as

f = W q
− U a+cV b

·

∏
ζ

(V d/g/U c/g
− ζ ). (4-4)
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Clearly, the radical of the ideal generated by f and U c/g contains U , V , and W . Hence, its zero-locus is
one-dimensional, and according to Proposition 3.1 the blowing-up Z = BlaB(B) on the U c/g-chart of
Bla(R) is the effective Cartier divisor with equation f = 0. In other words, write A′ for the coordinate
ring of the blowing-up Z = BlaB(B) on the U c/g-chart. Then this ring is generated by four indeterminates
U, V, W, V d/g/U c/g subject to the two relations (4-3) and f = 0 with f as in (4-4).

4.5. The exceptional divisor E ⊂ Z is given by f = U c/g
= 0 on this chart. The reduction Ered is defined

by U = V = W = 0, and V d/g/U c/g can be regarded as a coordinate function. The situation on the
V d/g-chart is symmetric, and we conclude that Ered = P1

k is a projective line. This description also yields
the intersection number: Recall that the ambient Bla(R) is the homogeneous spectrum of the Rees ring
R[aT ], so the invertible sheaf OZ (1) is generated by T U c/g and T V d/g on our two charts. In turn, the
restriction to Ered = P1

k is given by the cocycle U c/g/V d/g, and it follows that (E · Ered)Z = −1.

4.6. Let us note here also that the multiplicity of E is qcd/g2. This can be seen as follows. On the
U c/g-chart, the scheme Ered is defined by the ideal Q := (U, V, W ). Thus the multiplicity of E can
be computed as the length of the ring (A′/(U c/g))Q . It is easy to verify that the ring A′/(U c/g) is
k-isomorphic to the ring (k[U, V, W ]/(U c/g, V d/g, W q))[V d/g/U c/g

], and the claim follows.
The ring A′ is locally of complete intersection, but usually fails to be normal. Let ν : Y → Z = BlaB(B)

denote the normalization morphism. To understand the normalization and minimal resolution of the
singularities of the chart Spec A′ of Z , we pass to a subring A of A′ with only three generators and one
relation that has the same normalization as A′. It turns out that on formal completions, the resolution
of singularities of A is given by the theory of toric surface (i.e., Hirzebruch–Jung) singularities. This
formal passage to toric varieties requires the existence of certain roots of formal power series. When
p > 1, their existence follows from Hensel’s lemma together with the conditions (4-1), which imply that
gcd(m/g, c/g) and gcd(m/g, d/g) are coprime to p.

We proceed as follows: Let A be the k-subalgebra of A′ generated by the three elements U, W , and
V d/g/U c/g. The ring extension A ⊂ A′ is finite, because A′

= A[V ] and the generator V satisfies the
integral equation V d/g

− U c/g(V d/g/U c/g) = 0 in (4-3). Clearly, V d/g
∈ A, and the relation (4-4) shows

that V b
∈ Frac(A). Since we assume that gcd(b, d/g)= 1 in (4-1), we find that V can be written as rational

function in V b and V d/g and, hence, V ∈ Frac(A). It follows that the rings A and A′ have the same integral
closure in Frac(A). The reduced exceptional divisor on Spec(A′) is defined by the ideal (U, V, W ), and
the restriction of Spec(A′) → Spec(A) to it is a closed embedding, because V d/g/U c/g

∈ A and thus the
map A → A′/(U, V, W ) = k[V d/g/U c/g

] is surjective.
It turns out that the subring A has a much nicer description than A′, in particular when passing to

formal completions along the exceptional divisor. Recall that m := ad + cd + bc. Taking the d/g-power
of (4-4) and using (4-3) we get a single relation

W qd/g
= U m/g

(
V d/g

U c/g

)b

·

∏
ζ

(V d/g/U c/g
− ζ )d/g. (4-5)
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Since b and d/g are coprime by assumption (4-1), we find that wqd/g
= um/gzb ∏

ζ (z − ζ )d/g is an
irreducible polynomial in k[u, w, z]. By abuse of notation, we will also say that the equation (4-5)
is irreducible. Using Krull’s principal ideal theorem, we conclude that the algebra A is generated by
U, W, V d/g/U c/g subject to the single relation (4-5).

To understand the normalization of A, we pass to formal completions Âm with respect to maximal
ideals m of the form (U, W, V d/g/U c/g

− ξ) for various scalars ξ ∈ k. Note that these maximal ideals
correspond to points on the exceptional divisor.

Let us start with the simplest case where ξ is neither zero nor a g-th root of unity; here it turns out that
the normalization of Âm is regular. Indeed, the relation (4-5) now takes the form

W qd/g
= U m/g

· δ (4-6)

for some unit δ ∈ Âm. To proceed, we first verify that gcd(qd/g, m/g, p) = 1. This is clear when p = 1,
so let us assume that p ≥ 2 is prime. Suppose that p divides both qd/g and m/g. Since p does not divide
h = gcd(q, m/g) by hypothesis, we have p ∤q and, hence, p | d/g, contradicting gcd(d/g, m/g) = 1,
which we also assume in (4-1).

We conclude that there exist positive integers r and s such that ℓ := r(m/g) − s(qd/g) is coprime to
p ≥ 1. With Hensel’s lemma we find roots δ1 := δr/ℓ and δ2 := δs/ℓ in Âm, and obtain a factorization
δ = δ

m/g
1 /δ

qd/g
2 . It follows that Âm is isomorphic to the complete local ring described by the same three

generators, but with a modified relation (4-6) in which δ = 1. This shows that Âm is isomorphic to
a complete local ring for a point on the product of a plane curve with the affine line. Consequently,
the normalization is indeed regular. Note that the plane curve is usually reducible, and the number of
irreducible components is our integer h = gcd(q, m/g) = gcd(qd/g, m/g).

Next, assume that ξ = ζ is one of the g-th root of unity. Rewrite (4-5) as

W qd/g
= U m/g

(
V d/g

U c/g − ζ

)d/g

· δ (4-7)

for some unit δ ∈ Âm. As in the preceding paragraph, one reduces the situation to δ = 1. Since we noted
in Section 4.3 that gcd(d/g, m/g) = 1, the above relation is then irreducible.

Consider the triple (t, r, s) = (qd/g, m/g, d/g). We identify Âm with k[[u, v, w]]/(wt
− urvs). Using

the results reviewed in Section 4.1 and Theorem 4.2 regarding the desingularization of Spec k[u, v, w]/

(wt
− urvs), we find that the singularity on Âm is a Hirzebruch–Jung singularity of fraction type γ .

Finally, assume that ξ = 0. Our relation becomes

W qd/g
= U m/g

(
V d/g

U c/g

)b

· δ

for some unit δ ∈ Âm, and again we reduce to the situation δ = 1. The above equation is usually not
irreducible, and the number of irreducible factors is our integer hb = gcd(q, m/g, b), which also equals



Discriminant groups of wild cyclic quotient singularities 1039

gcd(qd/g, m/g, b) since we noted in Section 4.3 that gcd(d/g, m/g) = 1. Let p1, . . . , phb ⊂ Âm be the
resulting minimal prime ideals.

Consider the triple (t, r, s) = (qd/(ghb), m/(ghb), b/hb). We identify Âm/pi with k[[u, v, w]]/

(wt
−urvs). Using the results reviewed in Section 4.1 and Theorem 4.2 regarding the desingularization of

Spec k[u, v, w]/(wt
−urvs), we find that the singularity on Âm/pi has the resolution of a Hirzebruch–Jung

singularity of fraction type β. The number of such singularities on the normalization of Âm is hb ≥ 1.
The situation on the V d/g-chart is symmetric, where ha ≥ 1 Hirzebruch–Jung singularities of frac-

tion type α appear. Summing up, we have described the singularities appearing on the normalization
ν : Y → Z = BlaB(B).

Recall from Section 4.5 that the exceptional divisor E ⊂ Z has reduction Ered = P1
k , with coordinate

rings k[V d/g/U c/g
] and k[U c/g/V d/g

]. Write D := ν−1(E) for the preimage of the exceptional divisor
under the map ν. We now analyze the induced morphism Dred → Ered. This morphism is flat, because
Ered is regular. The formal description of the normalization ν : Y → Z via inclusions k[[S]] ⊂ k[[S′

]] of
monoid rings shows that Dred is regular. Equation (4-6) implies that

deg(Dred/Ered) = gcd(q, m/g) = h. (4-8)

In a similar way, (4-7) tells us that Dred → Ered is completely ramified over the points where V d/g/U c/g
=ξ

is a g-th root of unity. Hence, the curve Dred is connected. Since it is also regular, it is in fact irreducible.
We can then apply Proposition 2.3 along with Sections 4.5 and 4.6 and obtain that

(Dred · Dred)Y =
h2

(qcd/g2)
(E · Ered)Z = −h2g2/qcd.

Let X → Y be the resolution of singularities obtained by resolving the Hirzebruch–Jung singularities
of fraction types α, β and γ occurring on Y . The resulting dual graph 0 is star-shaped, with the central
node corresponding to the strict transform C0 ⊂ X of Dred ⊂ Y . When γ > 0, there are g terminal chains
obtained from the continued fraction development of 1/γ = [s1, . . . , sℓ]. Using the identification of Âm

with the completion of k[u, v, w]/(wqd/g
−um/gvd/g) at (u, v, w) discussed above, as well as Theorem 4.2

and the identifications reviewed in Section 4.1, one sees that the vertex of the terminal chain adjacent to the
central node has self-intersection −s1. The situation for the other Hirzebruch–Jung singularities is similar.

It is now an easy matter to compute the self-intersection (C0 ·C0)X using Proposition 2.2, which asserts
that (C0 · C0)X = (Dred · Dred)Y −

∑
i δi . There are ha correcting terms α, hb correcting terms β, and g

correcting terms γ (see just before Proposition 2.2 for the correcting term of a chain). Hence, −(C0·C0)X =

s0 (see (4-2)), as desired. Since (C0 · C0)X is the self-intersection of a curve on a regular surface, we find
that it must be a negative integer, proving (i). To complete the proof of Theorem 4.4 it remains to show in
(iii) that the central node C0 is a rational curve when h =1. This is done using the following proposition. □

Proposition 4.7. Keep the hypotheses of Theorem 4.4. Let v0 ∈ 0 be the central node, and let C0 ⊂ X be
the corresponding curve on the resolution X → Spec B. We have h1(OC0) = (g(h − 1) + 2 − ha − hb)/2.
In particular, when h = 1, h1(OC0) = 0.
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Proof. Consider the ramified covering C0 → Ered = P1
k induced from the morphism X → Z . It follows

from (4-8) that the degree of this map is h. Assumption (4-1) ensures that this degree is coprime to the
characteristic exponent, so that the map is separable. Let us regard the closed points on P1

k as elements
ξ ∈ k ∪ {∞}. The description of the normalization of the rings Âm in the preceding proof shows that
C0 → P1

k is totally ramified over each of the g-th roots of unity in k, and therefore the ramification indices
are coprime to p. Furthermore, there are ha points in C0 over ξ = 0 and all these points have the same
ramification index h/ha . Similarly, there are hb points in C0 over ξ = ∞ with ramification index h/hb.
Applying the Riemann–Hurwitz formula 2h1(OC0) − 2 = h(2h1(OP1

k
) − 2) +

∑
x(ex − 1), we get the

desired formula (where ex denotes the ramification index of the morphism at x). □

Keep the hypotheses of Theorem 4.4. The scheme Spec(B) contains two copies of the affine line, given
by the equations U = W = 0 and V = W = 0. Write CU and CV for their respective strict transforms
in X with respect to the resolution X → Spec(B). For a later application in Theorem 7.1, we explicitly
determine below how these curves intersect the exceptional divisor C ⊂ X when h = 1. Under this
additional hypothesis, the partial resolution Y → Spec B contains exactly one Hirzebruch–Jung singularity
of fraction type α and one of type β. Let 1α and 1β be the terminal chains of 0 resulting from resolving
these two singularities. Write Cα and Cβ for the irreducible components of C corresponding to the
terminal vertices of 0 lying on 1α and 1β , respectively.

Proposition 4.8. Keep the hypotheses of Theorem 4.4. Assume that h = 1. Then the strict transform CV

intersects the exceptional divisor C only in Cβ , with intersection number (CV · Cβ)X = 1. Likewise, CU

intersects C only in Cα, with (CU · Cα)X = 1.

Proof. By symmetry, it suffices to verify the first assertion. Let us first work with the effective Cartier
divisor on Spec(B) given by V d/g

= 0. Its strict transform C ′

V ⊂ X has the same support as CV . Using
the notation from the proof of Theorem 4.4, we see that its image on Spec(A) is given by V d/g/U c/d

= 0.
Using Theorem 4.2 one infers that C ′

V intersects only Cβ , and that its reduction has intersection number
(CV · Cβ)X = 1. □

Proposition 4.9. Keep the hypotheses of Theorem 4.4, and suppose furthermore that p = q. Set ap := 1
if p | a, and ap := 0 otherwise. Similarly, set bp := 1 if p | b, and bp := 0 otherwise. Let N denote the
intersection matrix of the resolution of the hypersurface singularity

W p
− U a V b(V d

− U c) = 0

described in Theorem 4.4. Then |8N | = pg+1−ap−bp , and the group 8N is killed by p.

Proof. First note that for q = p = 1, the assertion is trivially true, because then our hypersurface singularity
is actually regular. So we may assume that q = p ≥ 2 is a prime number. From our assumptions (4-1),
one easily sees that m/g is coprime to p, pc/g and pd/g. In particular, we have h = ha = hb = 1. The
triples (t, r, s) in Section 4.3 specialize to (pc/g, m/g, a), (pd/g, m/g, b), and (p, m/g, 1), respectively.
Furthermore, the resulting reduced fractions α, β, γ ∈ Q have as denominators the integers p1−ap c/g,
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p1−bp d/g, and p, respectively. According to Theorem 4.4, the graph 0N is star-shaped. Thus we may
compute the determinant of the intersection matrix with Proposition 1.3 and obtain

|det(N )| = (p1−ap c/g)(p1−bp d/g)pg(s0 − α − β − gγ ).

The last factor is g2/pcd in light of the formula (4-2) for the self-intersection −s0 of the central node in
Theorem 4.4. Thus |8N | = |det(N )| = pg+1−ap−bp .

The group structure of 8N can be obtained by computing the Smith normal form of the matrix N ,
using a row and column reduction of N . Reducing the intersection matrix of each terminal chain as in
[Lorenzini 1992, Lemma 2.5], we find that the matrix N is equivalent to a block diagonal matrix with
two blocks, a square matrix A of size (g + 3) × (g + 3) that we describe below, and an identity matrix:

A :=



−s0 ∗ ∗ ∗ . . . ∗

1 −p1−ap c/g 0 0 0
1 0 −p1−bp d/g 0 0
1 0 0 −p 0
...

. . .
...

1 −p


The matrix A ⊗ Fp has g + ap + bp rows equal to (1, 0, . . . , 0), and we see that the rank of A is at most
r :=1+bp+ap+1. In turn, the vector space dimension of the cokernel is at least g+3−r = g+1−ap−bp.
It follows that 8N = 8N ⊗ Fp. □

Remark 4.10. The explicit resolution of W p
− U V (V − U p) = 0 is needed in the proof of Theorem 7.1.

In this case, the intersection matrix is N = N (2 | p/(p − 1), p/(p − 1), p2/(2p − 1)), with |8N | = p2.
When p is odd, we do not know if this intersection matrix can occur as the intersection matrix of the
resolution of a Z/pZ-quotient singularity. When p = 2, this equation defines the singularity D0

6 with
trivial local fundamental group [Artin 1977]. The singularity D1

6 is a wild Z/2Z-quotient singularity 8.5.
More generally, one might wonder whether every intersection matrix arising in Proposition 4.9 can

occur as the intersection matrix of the resolution of a Z/pZ-quotient singularity. We discuss the case of
W p

−U pV p(V pm+1
−U pn+1) and W p

−U V (V pm−1
−U pn−1) in Theorem 5.3. We note in Remark 8.5

how the intersection matrix of the resolution of the singularity defined by W p
− U V (V pm

− U pn−1) = 0
might occur as the intersection matrix of the resolution of a Z/pZ-quotient singularity.

Remark 4.11. The resolution X → Y → Spec B provided in Theorem 4.4 is not always minimal. This
can be seen already in the case where q = 1, in which case Spec B is regular, but the exceptional divisor
C on X is not reduced to a point. The graph 0 consists in this case of a central node of self-intersection
−1 with two terminal chains obtained by resolving Hirzebruch–Jung singularities associated with the
triples (c/g, m/g, a) and (d/g, m/g, b). The fraction types of these triples are independent of a and b.
Indeed, let ρ, σ > 0 be the unique positive integers such that ρ(d/g) + σ(c/g) = 1 + (c/g)(d/g). Then
the triple (c/g, m/g, a) reduces to (c/g, 1, ρ), and (d/g, m/g, b) reduces to (d/g, 1, σ ).
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Other examples where the resolution is not minimal can also be obtained when q > 1; for instance,
when p = 2, the singularity W 2

− U 2V 2(V 7
− U 3) = 0 (resp. W 2

− U 2V (V 4
− U 3) = 0) admits a

resolution with smooth rational curves and dual graph drawn on the left below (resp. on the right):

−2 −1

−7

−3 −2 −1

−8

−3

5. Brieskorn singularities

Let k be an algebraically closed field of characteristic exponent p ≥ 1. Let q, c, d ≥ 2 be integers, with q
coprime to cd . Let

B := k[[x, y, z]]/(zq
+ xc

+ yd).

We study in this section properties of the singularity Spec B. Let g := gcd(c, d).

Theorem 5.1. Assume that gcd(p, g) = 1. Then Spec B admits a star-shaped resolution of singularities
X → Spec B whose associated intersection matrix is

N = N (s0 | a1/b1, a2/b2, a0/b0, . . . , a0/b0︸ ︷︷ ︸
g entries

),

where N is specified as follows (notation as in Section 1.2). Let

a1 := c/g, a2 := d/g, and a0 := q.

Set ℓ1 := dq/g, ℓ2 := cq/g and ℓ0 := cd/g, and define bi by biℓi ≡ −1 mod ai and 0 ≤ bi < ai . Finally,
set

s0 := g2/cdq + b1/a1 + b2/a2 + gb0/q.

In case a1 = 1 (resp. a2 = 1), in which case b1 = 0 (resp. b2 = 0), we remove the term a1/b1 (resp. a2/b2)
from the matrix N.

When q = p, the associated discriminant group 8N is killed by p and has order pg−1.

Proof. Consider the weighted homogeneous singularity

C := k[[x, Y, Z ]]/(Zq
− xqY q(Y d

− xc)).

Since we assume that gcd(p, g) = 1 and q is coprime to cd, the conditions (4-1) are satisfied, and
Theorem 4.4 provides a resolution of Spec C . Since k is algebraically closed, the field k contains an
element ζ2d such that ζ d

2d = −1. Let B := k[[x, y, z]]/(zq
+ xc

+ yd). The scheme Spec C is not normal,
and the natural map C → B, with Z 7→ ζ2d zxy and Y 7→ ζ2d y, induces a finite birational morphism
Spec B → Spec C . Hence, Spec B has the same resolution as Spec C . The reader will check that the
matrix NC associated to the resolution of Spec C in Theorem 4.4 is the same as the matrix N appearing
in the statement of Theorem 5.1. The discriminant group 8N is computed in Proposition 4.9. □
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Remark 5.2. A resolution of the Brieskorn singularity of the form xc
+ yd

+ ze
= 0 is known over the

complex numbers thanks to the work of [Hirzebruch and Jänich 1969, Theorem, page 232], when c, d,
and e are pairwise coprime, and [Orlik and Wagreich 1971a] in general. An explicit description for the
intersection matrix N and dual graph 0N of a resolution is found for instance in [Tomaru 1995, page 284],
with a formula giving the self-intersection −s0 of the node given on page 287.

Let now p > 1 be prime. When p is coprime to cd, the intersection matrix for the resolution of
z p

+xc
+ yd

= 0 obtained in Theorem 5.1 is the same as the intersection matrix obtained in characteristic 0.
Some characteristic p > 1 examples appear explicitly already in the literature, such as the case of
z p

+ x2
+ y p+2

= 0 when p is odd, treated in [Miyanishi and Russell 1983, Lemma 3.13].
Assume that p > 1 is prime and divides cd. The Brieskorn singularity z p

+ xc
+ yd

= 0 has then a
resolution in characteristic p which is quite different than in characteristic 0. Indeed, assume that c = pγ

for some integer γ , and gcd(p, d) = 1. Then in characteristic p, z p
+ xc

+ yd
= (z + xγ )p

+ yd . It follows
that the normalization of k[[x, y]][z]/(z p

+ xc
+ yd) is regular when char(k) = p. On the other hand, in

the case for instance of z2
+ x3

+ y6
= 0 in characteristic 0 (a case which is not covered by Theorem 5.1),

the minimal resolution is a smooth elliptic curve of self-intersection −1. This explicit example of a
resolution in characteristic 0 (and many others) is found for instance in [Laufer 1977, page 1290].

Theorem 5.3. Let B := k[[x, y, z]]/( f ), where f (x, y, z) is a weighted homogeneous polynomial of the
following form, with n, m ≥ 1:

(i) z p
+ x pm+1

+ y pn+1.

(ii) z p
+ xy(x pm−1

− y pn−1).

(iii) z p
− x2

+ 2y p+1 when p ≥ 3.

Then Spec B is a wild Z/pZ-quotient singularity. Moreover, the fundamental group of the punctured
spectrum Spec B \ {mB} is trivial.

Proof. The proof of the theorem is similar for each of the three types of homogeneous polynomials.
In each case, there exists a family of rings Bµ, µ homogeneous in k[x, y], such that the ring B can
be identified with the ring Bµ=0, and such that when deg(µ) is large enough, there is an isomorphism
between Bµ=0 and Bµ. The family Bµ is constructed such that when µ ̸= 0 is chosen adequately, the ring
Bµ is a wild Z/pZ-quotient singularity.

For the weighted homogeneous form in (iii), we use the family Bµ (with µ ∈ k[y]) described in
Proposition 6.2. For the weighted homogeneous forms in (i) and (ii), we use the families discussed in
[Lorenzini and Schröer 2020] and recalled in Section 0.2. More precisely, fix a system of parameters a, b
in k[[x, y]]. Consider the family of hypersurface singularities Spec Bµ, µ ∈ k[[x, y]], with

Bµ := k[[x, y, z]]/(z p
− (µab)p−1z − a p y + bpx).

Let G := Z/pZ. When µ is not a unit, is not zero, and is coprime to a and coprime to b, then
Bµ is isomorphic to the ring of invariants AG of an action of G on A = k[[u, v]], and the morphism
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Spec A → Spec AG is ramified in codimension 1. Cases (i) and (ii) are obtained when µ = 0 by setting
a = −yn and b = xm , and a = −xm and b = −yn , respectively.

We now claim that it is possible to find a homogeneous polynomial µ of large enough degree such
that B := k[[x, y, z]]/( f ) is isomorphic over k to Bµ. In cases (i) and (ii), we note that the homogeneous
polynomial µ := x t

+ yt (t ≥ 1), is coprime to both a and b, so that the corresponding Spec Bµ is a
quotient singularity associated with an action that is ramified in codimension 1.

To prove the existence of a k-isomorphism from B := k[[x, y, z]]/( f ) to Bµ, we use the lemma in
[Greuel and Kröning 1990, 2.6, page 345]. For the details of the proof of this lemma, the authors of
[loc. cit.] refer the reader to the paper [Bochnak and Łojasiewicz 1971]. Recall that the Tjurina ideal of f
is j ( f ) :=

(
f, ∂ f

∂x ,
∂ f
∂y ,

∂ f
∂z

)
, and that there exists an integer s > 0 such that (x, y, z)s

⊆ j ( f ) if and only if
the Tjurina number τ := dimk(k[[x, y, z]]/j ( f )) is finite. This is indeed the case for all polynomials f in
(i), (ii), and (iii). Then the lemma in [Greuel and Kröning 1990, 2.6], implies that if deg(µg) > 2τ (with
g ∈ k[[x, y, z]]), then B := k[[x, y, z]]/( f ) is isomorphic over k to k[[x, y, z]]/( f + µg).

In each case above, we have shown that Spec B is isomorphic to a quotient singularity Spec Bµ

such that Bµ is the ring of invariants of an action of Z/pZ on the ring A := k[[u, v]] such that the
morphism Spec A → Spec Bµ is ramified in codimension 1. Corollary 1.2(ii) in [Artin 1977] shows that
the fundamental group of the punctured spectrum Spec B \ {mB} is trivial. □

Remark 5.4. Consider the equation f := zq
+ xc

+ yd with q, c, d three distinct primes. Let k be a
field of characteristic p. Let B := k[[x, y, z]]/( f ). Theorem 5.1 shows that the intersection matrix of
the resolution of Spec B is the same in all three characteristics p = q, c, d, and has determinant 1. It is
natural to wonder whether this matrix can occur in more than one characteristic as the intersection matrix
attached to a resolution of a wild Z/pZ-quotient singularity.

Consider the intersection matrix with resolution graph E8. In Artin’s notation [1977], f := z2
+x3

+ y5

defines the singularity Spec B denoted by E0
8 , with resolution graph E8. This singularity is a wild

Z/pZ-quotient singularity when p = 2; see Theorem 5.3(i). When p = 5, a different singularity, denoted
by E1

8 in [Artin 1977], also has resolution graph E8 and is a wild Z/5Z-quotient singularity.

Theorem 5.5. Let p be prime. Let s ≥ 0:

(a) Assume that either s ̸≡ 1 mod p, or that p is odd and s = 1. Then there exists a Z/pZ-quotient
singularity Spec AG with associated action ramified precisely at the origin, and such that the
discriminant group of a resolution of the singularity has order ps .

(b) Assume that either p is odd and s ≡ 1 mod p, or that p = 2 and s = 1. Then there exists a Z/pZ-
quotient singularity Spec AG with associated action ramified in codimension 1 and such that the
discriminant group of a resolution of the singularity has order ps .

Proof. (a) The cases s = 0 and s = 1 are covered by Theorem 7.1 and Section 0.2, and Proposition 6.2
and Theorem 6.3, respectively. The cases with s ≥ 2 and s ̸≡ 1 mod p were obtained earlier in the papers
[Lorenzini 2018; Mitsui 2021].
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(b) When s ≡ 1 mod p and s ≥ p + 1, we use the Brieskorn singularities exhibited in Lemma 5.6, and
apply Theorem 5.1 and Theorem 5.3. The case p = 2 and s = 1 was noted by Artin and is discussed in
Section 8. The case s = 1 is treated in Theorem 9.4. □

Lemma 5.6. Let p be an odd prime, and r be any positive integer. Then there are integers m, n > 0 such
that the discriminant group 8N of the intersection matrix N associated with the Brieskorn singularity
z p

+ x pm+1
+ y pn+1

= 0 described in Theorem 5.1 is isomorphic to (Z/pZ)pr+1.

Proof. In view of Theorem 5.1, we need to produce integers n and m such that gcd(pn+1, pm+1)= pr+2.
For this, it suffices to take n := (pr + r + 2)/2, so that pn + 1 = (pr + 2)(p + 1)/2, and to set
m := (3pr + r + 6)/2, so that m = n + (pr + 2). □

Note that not all elementary abelian p-groups appear as discriminant groups 8N attached to the
intersection matrix N associated with a Brieskorn singularity z p

+ x pm+1
+ y pn+1

= 0. Indeed, for all
m, n > 0, the integer g = gcd(pm + 1, pn + 1) is never divisible by p. Thus in the above setting 8N

cannot be isomorphic to (Z/pZ)pr−1 for any r > 0.

Remark 5.7. Let B be a complete noetherian local ring that is two-dimensional and normal, with
algebraically closed residue field. Consider a resolution of singularities X → Spec B, with associated
intersection matrix N . Recall that there is a natural surjection Cl(B) → 8N ; see [Lipman 1969, 14.4]. In
particular, when det(N ) ̸= 1, we obtain a natural nontrivial finite quotient of Cl(B) from the computation
of a resolution of Spec B.

The study of the class group Cl(B) of B := k[[x, y]][z]/(z p
− xc

− yd) was initiated by Samuel [1964,
Proposition (3) in Section 6]; see also [Fossum 1973, Chapter IV, Section 17]. When p = 2, Samuel
is able to exhibit by a completely algebraic method a finite quotient of Cl(B) of order pg−1, where
g := gcd(c, d). Under the hypothesis of Theorem 5.1, pg−1 would also be the order of the corresponding
group 8N .

6. Analogues of the E6 singularities

Let k be an algebraically closed field of characteristic p ≥ 3. Let µ ∈ k[y], µ ̸= 0. Consider the
automorphism σ of the polynomial ring k[u, v, y] given by

u 7→ u + µv, v 7→ v + µy, and y 7→ y.

This automorphism has order p. We exclude the case p = 2 in this section because when p = 2, σ has
order 4. Let

Nu := Norm(u) =

p−1∏
d=0

σ d(u) =

p−1∏
d=0

(
u + dµv +

d(d − 1)

2
µ2 y

)
,

and

x := Norm(v) = v p
− (µy)p−1v.
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Finally, let
z := v2

− µyv − 2yu.

Let G := Z/pZ act on k[u, v, y] through σ . When µ = 1, the ring of invariants k[u, v, y]
G is known to

be generated by x , y, z, and Nu , subject to a single relation; see, e.g., [Campbell and Wehlau 2011, 4.10].
This relation was made explicit by Peskin, who showed [1983, Lemma 5.6], that hµ=1(x, y, z, Nu) = 0,
where,

hµ=1(x, y, z, Nu) := z p
+ 2y p Nu − x2

+

(p+1)/2∑
n=2

(−1)nCn−1 y2p−2nzn.

Here Cn−1 := (2n − 2)!/n!(n − 1)! are the Catalan numbers.
When µ ̸= 1, the above result can be used to show that x , y, z, and Nu are subject to the relation

h(x, y, z, Nu) := z p
+ 2y p Nu − x2

+

(p+1)/2∑
n=2

(−1)nCn−1(µy)2p−2nzn
= 0.

Indeed, the morphism k[u, v, y] → k[U, V, y], which sends u 7→ µ2U , v 7→ µV , and y 7→ y, is G-
equivariant when k[u, v, y] is endowed with the action of σ , and k[U, V, y] is endowed with the action
of σ1, with σ1(U ) = U + V and σ1(V ) = V + y.

For any choice of c(y) ∈ yk[y], we can consider the ring

A0 := k[u, v, y]/(Nu − c(y)).

We will slightly abuse notation and denote again by x , y, z, u, v, the classes of these elements in A0.
Clearly, the automorphism σ fixes the polynomial Nu − c(y), and thus induces an automorphism on A0,
again denoted by σ . This endows A0 with an action of G. Let A denote the formal completion Â0 of the
ring A0 at the maximal ideal (u, v, y).

The fixed scheme of the G-action on Spec(A0) is given by the ideal I := (µv, µy). When µ ∈ k∗,
I = (v, y) = (u p, v, y), and thus its radical is the maximal ideal (u, v). Hence, the morphism Spec A →

Spec AG is ramified precisely at the origin. When µ ̸=0 is not a unit in A, the morphism Spec A→Spec AG

is ramified in codimension 1.
The study of the singularities of the rings Spec AG when µ = 1 was initiated by Peskin [1980,

Chapter III, Section 4; 1983, Section 5]. In the remainder of this section, we treat the case where c(y) = y,
and obtain a family of wild quotient singularities AG of multiplicity 2 whose discriminant groups have
order |8| = p. For p > 3, these singularities can be viewed as analogues of the rational double point of
type E1

6 in characteristic p = 3, which was shown to be a wild Z/3Z-quotient singularity by Artin [1977].

Proposition 6.1. Let c(y) := y. Let µ ∈ k[y]. Then the ring A0 is a domain, the formal completion A is
regular, and the canonical map k[[u, v]] → A is bijective.

Proof. The expression f (u, v, y) := Nu − y is a monic polynomial of degree p in the variable u over the
factorial ring k[v, y], with constant term f (0, v, y) = −y. Since f is monic in u, to prove f irreducible in
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k[u, v, y], it suffices to prove that f (u, 0, y) is irreducible in k[u, y]. The Newton polygon of f (u, 0, y)

with respect to the y-adic valuation is the straight line from (0, 1) to (p, 0) in R2, and we conclude with
the Eisenstein–Dumas theorem [Mott 1995] that f (u, 0, y) is irreducible.

The ring A0 and its formal completion A are thus two-dimensional domains. To see that the local
ring A is regular, we have to check that the cotangent space mA/m2

A has vector space dimension at most
two. Indeed, this vector space is generated by u, v, y. In light of the relation Nu − y = 0, the class of y
vanishes. In turn, the canonical map k[[u, v]] → A between complete local rings induces a bijection on
cotangent spaces, and is thus bijective. □

Let µ ∈ k[y]. Abusing notation slightly, we let h(x, y, z) ∈ k[x, y, z] be defined as

h(x, y, z) := z p
+ 2y p+1

− x2
+

(p+1)/2∑
n=2

(−1)nCn−1(µy)2p−2nzn. (6-1)

We let Bµ := k[[x, y, z]]/(h).

Proposition 6.2. Let c(y) := y. Let µ ∈ k[y], µ ̸= 0. Then the canonical map Bµ → AG is bijective. In
particular, the wild quotient singularity AG is a complete intersection of multiplicity two.

Proof. Both local rings Bµ and AG are Cohen–Macaulay, and finite k[[x, y]]-algebras of rank p. One
easily sees that h(x, y, z) = 0 defines an isolated singularity, by using the relations hx = −2x and
2z(µ+ yµy)hz +µyh y = 2µy p+1 between partial derivatives. It follows that k[[x, y, z]]/(h) is normal,
and that the canonical map induces a bijection on the field of fractions. The map in question is thus
bijective, by Zariski’s main theorem. Clearly, the monomial x2 is the lowest term in h(x, y, z), and it
follows that the complete intersection AG has multiplicity two. □

Theorem 6.3. Let c(y) := y. Let µ ∈ k[y]. Let X → Spec(Bµ) be the minimal resolution of singularity,
with associated intersection matrix N. Then the dual graph 0N is independent of µ, and takes the form:

p−1

−(p+1)/2

p−1

The associated discriminant group 8N has order p.

Proof. Consider the blow-up Z → Spec(Bµ) of Spec(Bµ) with respect to the ideal (x, y, z). Let Y → Z
denote the normalization of Z . Let E denote the exceptional divisor of the blow-up, and let D denote its
schematic preimage in Y .

The blow-up Z is covered by three charts that we call the x-chart, y-chart, and z-chart. We consider in
detail below the y-chart and show that its normalization contains a unique singular point y0. Proceeding
in an analogous way as for the y-chart, the reader will check that the normalizations of the x-chart and
the z-chart are regular.
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On the y-chart, the strict transform of h(x, y, z) = 0 becomes(
z
y

)p

y p−2
+ 2y p−1

−

(
x
y

)2

+

(p+1)/2∑
n=2

(−1)nCn−1µ
2p−2n y2p−n−2

(
z
y

)n

= 0.

The fraction x/y(p−1)/2 satisfies the integral equation(
z
y

)p

y + 2y2
−

(
x

y(p−1)/2

)2

+

(p+1)/2∑
n=2

(−1)nCn−1µ
2p−2n y p−n+1

(
z
y

)n

= 0. (6-2)

Write g = (z/y)p y + 2y2
− (x/y(p−1)/2)2

+· · · for the polynomial on the left. The radical of the Tjurina
ideal associated with g contains y, because y defines the exceptional divisor on the y-chart and there are no
singularities outside the exceptional divisor. Obviously the Tjurina ideal also contains x/y(p−1)/2 (consider
the derivative of g with respect to the variable x/y(p−1)/2). Using the partial derivative gy = (z/y)p

+· · · ,
we see that the radical of the Tjurina ideal furthermore contains z/y. Thus the normalization of the
y-chart is given by the three variables z/y, y, x/y(p−1)/2 and the equation g = 0.

We claim that Dred is a smooth rational curve, and that (Dred · Dred)Y = −
1
2 . For this it suffices to

check analogously as in Proposition 3.6 that the curve Ered is regular, and that (E · Ered)Z = −1. Then
one checks that the natural map Dred → Ered is an isomorphism. Finally, noting that the multiplicity of E
is ℓ = 2, we apply the formula (Dred · Dred)Y = (E · Ered)Z/ℓ in Proposition 2.3 to obtain the claim.

Regarded as a formal power series, the initial term of g is the quadratic polynomial 2y2
−(x/y(p−1)/2)2,

which is thus a product of two linear factors since k is algebraically closed. According to Lemma 6.4
below, the singularity must be a rational double point of type Am for some integer m ≥ 1. To determine
this integer, we compute the Tjurina number of the singularity, which is the colength of the ideal generated
by g and its partial derivatives. Setting x ′

= x/y(p−1)/2 and z′
= z/y, the partial derivatives take the form

gx ′ = 2x ′, gy = z′p
+ y · (4 + y · ∗) and gz′ =

(p+1)/2∑
n=2

(−1)nnCn−1µ
2p−2n y p−n+1z′n−1.

We now use gy = 0 to substitute for y in the equations g(0, y, z′) = 0 and gz′(0, y, z′) = 0, and infer that
the Tjurina ideal has colength τ = 2p. The first two summands in g(0, y, z′) = 0 do not cancel after the
substitution.

Recall that the Tjurina number for the Am-singularity, which is formally isomorphic to Zm+1
− XY = 0,

is given by

τ =

{
m if p does not divide m + 1;
m + 1 else.

It follows that either m = 2p − 1 or m = 2p, and we shall see below that m is odd.
Write X → Y for the minimal resolution of singularities of the rational double point, such that the

composite map X → Y → Spec(Bµ) is a resolution of the singularity. The dual graph of this resolution
contains a chain C1, . . . , Cm of (−2)-curves, together with the strict transform C0 of the divisor Dred on Y .

Suppose that C0 intersects two distinct exceptional curves Ci ̸= C j . Then
(⋃

i≥1 Ci
)
∩ C0 is an Artin

scheme of length ≥ 2 on C0. We claim that this is not possible. Indeed, consider the blow-up X → Y .
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The induced morphism C0 → Dred is an isomorphism since we have shown above that the point y0 is
a regular point of Dred. The scheme

(⋃
i≥1 Ci

)
, which is proper, has schematic image in Y the reduced

closed point y0. The same is true for any closed subscheme of the exceptional divisor, including the
subscheme

(⋃
i≥1 Ci

)
∩ C0. This is a contradiction since we have on the other hand an isomorphism

C0 → Dred, and a closed subscheme of length bigger than one in the source cannot be sent to a closed
subscheme of length 1 in the target. Thus C0 hits precisely one divisor Ci . If (C0 · Ci )X > 1, a similar
argument leads again to a contradiction, and thus we must have (C0 · Ci )X = 1.

Consider now the involution on Bµ given by x 7→ −x , y 7→ y and z 7→ z. This involution fixes Peskin’s
equation (6-1), and induces an involution on the initial blow-up Z and its normalization Y . There the
equation z/y = 0 defines an invariant Cartier divisor on the Am-singularity SpecOY,y0 , which is the union
of two regular Weil divisors D1 and D2, and these divisors are interchanged by the involution. The
blow-up Y ′

→ Y of the singular point y0 ∈ Y with reduced structure introduces two exceptional curves
F1 and F2, and the strict transforms of D1 and D2 in Y ′ are disjoint. The intersection F1 ∩ F2 consists
of a single point y′

0, and the local ring OY ′,y′

0
is a rational double point of type Am−2.

We now show that m is odd. First, suppose that the strict transforms of D1 and D2 in Y ′ do not
intersect the same exceptional component of the blow-up Y ′

→ Y . It then follows that the involution acts
nontrivially on the dual graph attached to the resolution of singularities X → Y . If m = 2p was even,
the curve C0 would pass through the sole fixed point C p ∩ C p+1 of the exceptional divisor, and as we
have seen above, this is a contradiction. It follows that m = 2p − 1 must be odd in this case, and that
(C0 · C p)X = 1. The assertion on the dual graph 0N follows.

Suppose now that the strict transforms of D1 and D2 in Y ′ intersect the same exceptional component
of the blow-up Y ′

→ Y . We are going to show that this case cannot happen. Indeed, then the Weil divisors
D1, D2 ⊂ Y define the same class in the class group Cl(OY,y0) = Z/(m +1)Z of the rational double point
of type Am . Since the curves Di are regular, the divisors Di ⊂ Y are not Cartier. It follows that Di has
order two in Cl(OY,y0) since the sum of D1 and D2 is a Cartier divisor on Y . On the other hand, the strict
transform of Di in X intersects a terminal vertex of the exceptional divisor of X → Y , and this fact along
with a computation using the intersection matrix of the chain of m curves implies that Di has order m + 1
in the class group. This gives m = 1, contradicting m ≥ 2p − 1 ≥ 5.

To completely determine the intersection matrix N of the resolution X → Spec(Bµ), it remains to
compute the self-intersection number (C0 · C0)X . We have already observed above that (D0 · D0)Y = −

1
2 ,

and Proposition 2.2 shows that (C0 · C0)X = (D0 · D0)Y − δ, where the correcting term δ is computed as
follows. The determinant of the intersection matrix of the full chain of length 2p − 1 is −2p. Removing
the vertex adjacent to C0 from this chain yields two chains of length p − 1. The determinant of the
associated intersection matrix is then p2. It follows that δ = p2/2p = p/2. Hence,

(C0 · C0)X = −1/2 − p/2 = −(p + 1)/2.

Proposition 1.3 shows that |8N | = p. □

In the course of the proof we have used the following well-known general observation:
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Lemma 6.4. Let f ∈ k[[x, y, z]] by a power series over an arbitrary field k. Write f =
∑

∞

j=0 f ( j), where
f ( j) is a homogeneous polynomial of degree j . Suppose that f (0)

= f (1)
= 0, and that f defines an

isolated singularity. Assume also that the quadratic part f (2) is the product of two nonassociated linear
forms. Then k[[x, y, z]]/( f ) is isomorphic to k[[x, y, z]]/(zm+1

− xy) for some integer m ≥ 2. In other
words, the singularity in question is a rational double point of type Am .

Proof. After a linear change of coordinates, we may assume that f = xy + O(3), where we denote
by O(d) an element of md . By induction on d ≥ 3, one makes further coordinate changes of the form
x ′

:= x + a(x, y, z), y′
:= y + b(x, y, z) with a, b ∈ md−1 sending f to a power series of the form

x ′y′
+

∑d
i=3 λi zi

+ O(d +1), for some λi ∈ k. This shows that we may assume f = xy +
∑

∞

i=3 λi zi . If all
coefficients λi vanish, the singularity would not be isolated. Thus our equation is of the form xy + zm+1ϵ

for some m ≥ 2 and unit ϵ. Multiplying with ϵ−1, we get the equation (ϵ−1x)y + zm+1 for the rational
double point of type Am . □

Recall that the fundamental cycle Z of an intersection matrix N is the minimal positive vector Z
such that N Z is a nonpositive vector. The canonical cycle K of an intersection matrix N is recalled
in Section 10.2. The fundamental genus h1(OZ) can be computed for the hypersurface singularities
considered below as 2h1(OZ) − 2 = (K + Z) · Z.

Proposition 6.5. The multiplicities in the fundamental cycle Z of the resolution of Spec Bµ are indicated
below next to the corresponding vertex:

1 p−1

p−1

p

2

p−1 1

p−1

The canonical cycle is given by K = −
p−3

2 Z. We have Z2
= −2, and h1(OZ) = (p − 3)/2.

Proof. Let us denote by E0 the node of 0N , and by E1 the pendant vertex of self-intersection E2
1 =

−(p + 1)/2. To compute Z, we apply Artin’s algorithm [1966]: one starts with the cycle C having
all coefficients equal to 1, which we will draw pictorially as 1

1 1 ··· 1 ··· 1 1 . The algorithm updates C
by increasing some coefficient of C at each step. We denote by m0 the multiplicity of E0 in C . Since
C · E0 > 0, the algorithm increases m0 by 1. The new cycle C has positive intersection number with
both vertices adjacent to the node on the two terminal chains of length p − 1, and one then increases
their multiplicities by 1. Proceeding along these terminal chains, one ends with the new cycle C given by

1
1 2 ··· 2 ··· 2 1 . Now one repeats the process, starting again at the node E0. After p − 1 steps, one obtains
the cycle 1

1 2 ··· p ··· 2 1 . This new cycle has positive intersection number with the terminal vertex E1.
Increasing the multiplicity m1 of E1 by 1 gives the fundamental cycle: indeed, this new cycle C = Z now
has (Z · E1) = −1, and all other intersection numbers are 0.

This description of Z immediately lets us compute that Z2
= −2. It is easy to check that the canonical

cycle is K = −
p−3

2 Z, and that (K + Z) · Z = p − 5. □
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7. Analogues of the E8 singularities

Let k be an algebraically closed field of characteristic p > 0. We compute in this section the resolution of
the singularity of Spec Bµ introduced in Section 0.2, for any value of the parameter µ ∈ k[[x, y]] when
a = −y2 and b = −x . The ring Bµ is given in this case by

Bµ := k[[x, y]][z]/(z p
− (µxy2)p−1z − x p+1

+ y2p+1).

When p = 2, the resolution of Spec Bµ is known to have dual graph E8 when µ = 0, µ = 1 and
µ = y: these values produce the rational double points E0

8 , E2
8 , and E1

8 , respectively [Artin 1977]; see
also [Peskin 1980]. The index of determinacy of a singularity Er

8 in characteristic 2 is computed to be 5
in [Greuel and Kröning 1990, page 346]. It follows that when µ ∈ (x, y)2, then Spec Bµ is isomorphic
to E0

8 . For µ ∈ k×, we find that Bµ is isomorphic to E2
8 through the change of variables X = µ10/7x ,

Y = µ6/7 y, and Z = µ15/7z.

Theorem 7.1. Let p ≥ 3. Then Spec Bµ has a resolution of singularities with dual graph 0N independent
of µ of the following form:

−(p+1)/2 −4

p−1p

The associated discriminant group 8N is trivial.

Proof. Set R := k[[x, y, z]] and f := z p
− (µxy2)p−1z − x p+1

+ y2p+1, and write B := R/( f ). We start
with an initial blowing-up Z := BlaB(B) for the ideal a := (x, y2, z), as in Proposition 3.6. As usual, let
E ⊂ Z denote the exceptional divisor of the blow-up, and Ered its reduction. Proposition 3.6 shows that
Ered is a smooth rational curve, that E = 2pEred, and that (E · Ered)Z = −1. One checks that the blow-up
is regular on the y2-chart and the z-chart, and contains a unique singularity, which is located at the origin
of the x-chart.

The x-chart is given by four variables x, y, y2/x, z/x modulo the two relations

y2
=

(
y2

x

)
x and

(
z
x

)p

− µp−1x p−1
(

y2

x

)p−1 z
x

− x +

(
y2

x

)p

y = 0.

The exceptional divisor is given by x = 0. Its reduction is defined by x = y = z/x = 0. Let us rewrite the
second equation above as(

z
x

)p

+

(
y2

x

)p

y = x
(

µp−1x p−2
(

y2

x

)p−1 z
x

+ 1
)

. (7-1)

On the formal completion along the exceptional divisor, 1 + µp−1x p−2(y2/x)p−1(z/x) is invertible, and
we denote by ϵ its inverse. The unit ϵ admits a (p + 1)-st root δ (with δ p+1

= ϵ). After extracting an
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expression for x from (7-1) and substituting it in the expression y2
=

y2

x x , we find that

y2
=

y2

x

((
z
x

)p

+

(
y2

x

)p

y
)

ϵ.

This is formally isomorphic to the equation

y2
− U p+1 y − U W p

= 0

in the new set of variables y, U, W , via the map given by y 7→ y, U 7→ (y2/x)δ and W 7→ (z/x)δ. Note
that the reduced exceptional divisor is given by x = y = z/x = 0 in the old coordinates, and by y = W = 0
in the new ones. Let

B ′
:= k[[y, U, W ]]/(y2

− U p+1 y − U W p).

We now make a second blow-up Z ′
→ Spec(B ′), with nonreduced center given by (y, U, W p). Let E ′

denote the exceptional divisor of this blow-up. Using Proposition 3.1, we infer that the U -chart of Z ′ is
described by four variables U, W, y/U, W p/U and two relations

W p
=

(
W p

U

)
U and

(
y
U

)2

− U p
(

y
U

)
−

W p

U
= 0.

Substituting the latter in the former and renaming y/U by V gives

W p
= U V (V − U p). (7-2)

The origin (U, V, W ) is obviously singular on this chart, and this is a singularity analyzed in Theorem 4.4.
The reader will check that Z ′ has no further singularities on other charts, and that the only singularity on
the U -chart is located at the origin. On this chart, the exceptional divisor is given by U = 0. Its reduction
has U = W = 0. The reader will check that the exceptional divisor E ′ of this blow-up is a smooth
projective line. Note also that the strict transform of the exceptional divisor from the initial blow-up is
given by V 2

= 0 (since x = V 2Uδ), with reduction V = W = 0, and that this strict transform is also a
smooth projective line.

Theorem 4.4 lets us describe explicitly the intersection matrix N (s0 | α−1, β−1, γ −1) of the unique
singularity in the U -chart. Using the notation from Section 4.3, we set q = p, a = b = 1, c = p and
d = 1, and find that g := gcd(c, d) = 1 and (ad + bc + cd)/g = 2p + 1. It follows that

α−1
= p2/(2p − 1) and β−1

= γ −1
= p/(p − 1).

Recall that p ≥ 3 and set e := (p + 1)/2. The reader will check that the continued fraction expansion of
α−1

= p2/(2p −1) is α−1
= [e, 5, 2, . . . , 2] with 2+ (p −3)/2 overall entries, starting with the relations

p2
= e(2p − 1) − (p − 1)/2, and (2p − 1) = 5(p − 1)/2 − (p − 3)/2.
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The self-intersection −s0 of the node of the star-shaped graph is computed as

s0 =
1
p2 +

2p − 1
p2 + 2

p − 1
p

= 2.

Having resolved the singularity (7-2), we get a resolution for our original singularity Spec Bµ with the
following resolution graph:

︸ ︷︷ ︸
p−1

−e −5 ︸ ︷︷ ︸
(p−3)/2

︸ ︷︷ ︸
p−1

(7-3)

According to Proposition 4.8, the white terminal vertex to the left corresponds to the strict transform of the
exceptional divisor on the initial blow-up, whereas the white terminal vertex on the top right corresponds
to the strict transform of the exceptional divisor on the second blow-up.

It remains to determine the self-intersection of both of these strict transforms in the resolution of
Spec B. Recall that E ′ is the exceptional divisor for the second blow-up Z ′

→ Spec(B ′). Computing in
the affine charts, one sees that E ′

red is a projective line, with E ′
= pE ′

red and (E ′
· E ′

red)Z ′ = −2. Since the
U -chart is regular away from the origin, we can conclude using Proposition 2.3 that the self-intersection
of the strict transform of E ′

red in the normalization of Z ′ is −2/p. Proposition 2.2 shows that the strict
transform C ′ of E ′

red in X has thus (C ′
· C ′)X = −2/p − δ for some correction term δ ∈ Q>0. The

term δ is computed as follows. Let 01 be the star-shaped subgraph in (7-3) consisting of all the black
vertices, and let 0′

1 ⊂ 01 be the star-shaped subgraph obtained from 01 by removing the terminal black
vertex in the top right position. Let N1 and N ′

1 be the resulting intersection matrices. According to
Proposition 2.2, we have δ = − det(N ′

1)/ det(N1). Using Proposition 1.3, we compute that |det(N1)| = p2

and |det(N ′

1)| = p2
− 2p. Hence, δ = (p2

− 2p)/p2
= 1 − 2/p, and it follows that the white terminal

vertex on the top right has self-intersection −1. We can thus contract this divisor. Successively contracting
(−1)-curves from the right, we get the desired graph as in the statement of Theorem 7.1 with a terminal
vertex of self-intersection number −4 = −5 + 1 on the top right.

Recall that we denoted by E the exceptional divisor of Z→Spec B, and determined using Proposition 3.6
that Ered is a smooth rational line, that E = 2pEred, and that (E · Ered)Z = −1. As above, Proposition 2.2
shows that the strict transform C of Ered in X has (C ·C)X = −1/2p−δ for some correction term δ ∈ Q>0.
Let 02 be the star-shaped subgraph in (7-3) consisting of all the black vertices and the terminal white vertex
(of self-intersection (−1)) in the top right position. Let 0′

2 be the star-shaped subgraph obtained from 02

by removing the terminal black vertex of 02 attached to the terminal white vertex on the left corresponding
to E . Let N2 and N ′

2 be the resulting intersection matrices. According to Proposition 2.2, we have δ =

− det(N ′

2)/ det(N2). The matrix N2 has the same determinant as N (2 | p/(p−1), p/(p−1), (2p+1)/4),
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and N ′

2 has the same determinant as N (2 | (p−1)/(p−2), p/(p−1), (2p+1)/4). Using Proposition 1.3,
we compute that |det(N2)| = 2p and |det(N ′

2)| = 4p − 1. Hence, (C · C)X = −2.
Now that the intersection matrix N of the resolution has been determined, with N = N (2 | p/(p − 1),

(p + 1)/p, (2p + 1)/4), Proposition 1.3 can be used to show that |det(N )| = 1. □

Proposition 7.2. Keep the assumptions of Theorem 7.1. The multiplicities in the fundamental cycle Z of
the resolution of Spec Bµ are indicated below next to the corresponding vertex.

p 2p p2 p2
+p

2p+1 (p+1)/2

p2
−1 2(p+1) p+1

p−1p

The canonical cycle of the resolution is K = −(2p − 4)Z +
p−3

2 E2, where E2 is the terminal vertex on
the top right of the above graph. We have Z2

= −(p + 1)/2, and h1(OZ) = (p2
− p + 2)/2.

Proof. The self-intersection numbers along the three terminal chains in the dual graph 0N yield the
continued fractions

p + 1
p

= [2, . . . , 2],
p

p − 1
= [2, . . . , 2], and

2p + 1
4

=

[
(p + 1)

2
, 4

]
.

Recall that given a fraction r/s, the ceiling ⌈r/s⌉ is the smallest integer larger than or equal to r/s. Write
E0 ∈ 0N for the central node. According to [Tomaru 1995, equation (3.4) on page 282], its multiplicity
m0 ≥ 1 in the fundamental cycle Z is the smallest integer m ≥ 1 such that

2m −

⌈
mp

p + 1

⌉
−

⌈
m(p − 1)

p

⌉
−

⌈
4m

2p + 1

⌉
≥ 0. (7-4)

Let us show that m0 = (p + 1)p. First, we claim that when m = (p + 1)p, then equality holds in (7-4).
Indeed, the first two fractions on the left of (7-4) are then the integers p2 and p2

− 1, whereas the last
summand becomes ⌈

4m
2p + 1

⌉
=

⌈
2p +

2p
2p + 1

⌉
= 2p + 1.

Assume now m < (p +1)p. We claim that in this case (7-4) fails. Indeed, since the fraction p/(p +1)

and (p − 1)/p are reduced, and one of the integers p or p + 1 does not divide m, one of the fractions
mp/(p + 1) and m(p − 1)/p is not an integer. Using 1/p > 1/(p + 1), we obtain⌈

mp
p + 1

⌉
+

⌈
m(p − 1)

p

⌉
≥

mp
p + 1

+
m(p − 1)

p
+

1
p + 1

.

In turn, the left-hand side of (7-4) is bounded above by

2m −
mp

p + 1
−

m(p − 1)

p
−

4m
2p + 1

−
1

p + 1
=

m
p(p + 1)(2p + 1)

−
1

p + 1
.
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This is bounded above by 1/(2p + 1)− 1/(p + 1) < 0, because m < p(p + 1). As desired, the inequality
(7-4) fails.

For convenience in this proof, let us denote by Z0 the vector whose coefficients are given in the
proposition. Without loss of generality, we may assume that E1 and E2 are the two vertices on the very
short chain of the graph, with self-intersection numbers E2

1 = −(p + 1)/2 and E2
2 = −4, respectively. It

is easy to check that N Z0 = −E2. Since N Z0 has nonpositive coefficients, we find that by definition of
the fundamental cycle, we must have Z ≤ Z0.

We now determine that the multiplicities of Z along the two terminal chains comprising only (−2)-
curves are the ones indicated in the statement of the proposition. We treat the case of the terminal chain on
the right, with p − 1 vertices. The other chain is treated similarly. Let us denote by z p−1, . . . , z2, z1 the
multiplicities of Z along the terminal chain with p −1 vertices. The central node has multiplicity denoted
for convenience z p := p2

+ p. The fact that N Z has nonpositive coefficients produces the following
inequalities. At the last vertex, we have −2z1 + z2 ≤ 0, and at each other vertex of the chain, we find that
−2zi + zi−1 + zi+1 ≤ 0. It follows that

zi+1 − zi ≤ zi − zi−1

when 2 ≤ i ≤ p − 1. Since Z ≤ Z0, we have z p−1 ≤ p2
− 1. Suppose that z p−1 = p2

− 1 − a for some
a ≥ 0. Then

(p2
+ p) − (p2

− 1 − a) = p + 1 + a = z p − z p−1 ≤ z p−1 − z p−2 ≤ · · · ≤ z2 − z1 ≤ z1.

Hence,

p2
+ p = z p ≥ p(p + 1 + a).

It follows that a = 0 and z p−1 = p2
−1. A similar argument shows that z p−i = (p − i)(p +1), as desired.

It remains to determine the coefficients of Z along the terminal chain of length 2. As above, E0

is the central node, and we denote by m0, m1, m2, the coefficients of Z corresponding to E0, E1, E2,
respectively. We have shown above that m0 = p2

+ p. We have

0 ≥ (Z · E1) = (m0 E0 + m1 E1 + m2 E2) · E1 = p2
+ p − m1(p + 1)/2 + m2.

0 ≥ (Z · E2) = (m1 E1 + m2 E2) · E2 = m1 − 4m2.

This gives m1 ≥4(p2
+p)/(2p+1)>2p. Since Z ≤ Z0, we have m1 ≤2p+1 and, thus, m1 =2p+1. From

m2 ≥ m1/4, we conclude that m2 ≥ (2p +1)/4, and since m2 is an integer, we must have m2 ≥ (p +1)/2.
Again because Z ≤ Z0, we have m2 ≤ (p + 1)/2 and, hence, m2 = (p + 1)/2. Thus, the vector Z0

described in the proposition is indeed the fundamental vector of N .
It is easy to compute that Z2

= −(p+1)/2. It is also an easy matter to check that the vector K satisfies
the matricial condition defining the canonical cycle recalled in Section 10.2. Similarly, one checks that
(K + Z) · Z = p2

− p. □
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Remark 7.3. Let G := Z/pZ and let Spec AG be a G-quotient singularity. Let X → Spec AG be a
resolution of singularities with an exceptional divisor having smooth components and normal crossings.
It is known that the fundamental cycle Z associated with the intersection matrix of the exceptional divisor
satisfies |Z2

| ≤ p; see [Lorenzini 2013, 2.4]. It is not immediate to produce examples of such singularities
where |Z2

| < p. We note that the singularities exhibited in Theorems 6.3 and 7.1 have |Z2
| = 2 and

|Z2
| = (p + 1)/2, respectively.

It is shown in [Lorenzini 2013, Lemma 3.7], that if the discriminant group 8N of an intersection matrix
N is killed by e, then the fundamental cycle Z associated with N satisfies |Z2

| ≤ ezmin , where zmin is
the smallest coefficient of Z. In the case of the intersection matrix in Theorem 7.1, zmin = (p + 1)/2 and
|8N | = 1, showing that the inequality |Z2

| ≤ ezmin is sharp.

8. Analogues of the E7 singularities

When p = 2, the blow-up at the maximal ideal of the Z/2Z-quotient singularity E2
8 given by

z2
+ xy2z + x3

+ y5
= 0

has a new singularity, namely the singularity E1
7 given by the equation

z2
+ xy2z + yx3

+ y3
= 0;

see for instance [Roczen 1992, 1.1]. The singularity E2
8 has resolution graph the Dynkin diagram E8 with

trivial discriminant group, while the resolution of E1
7 has resolution graph E7 with discriminant group of

order 2.
Artin [1977, bottom of page 18] (or Peskin [1980, (2.16), page 104]) shows that the Dynkin diagram

E7 cannot be obtained as the resolution graph of a wild Z/2Z-quotient singularity whose associated action
is ramified precisely at the origin. He shows however that the singularity E1

7 does occur as the resolution
graph of a wild Z/2Z-quotient singularity for an action that is ramified in codimension 1.

When p = 2, we have not been able to exhibit any wild Z/2Z-quotient singularity whose action is
ramified precisely at the origin and whose associated intersection matrix has discriminant group of order
2s with s odd. We suggest in Example 8.3 for each s odd the existence of explicit examples with group
(Z/2Z)s . In each case, these wild Z/2Z-quotient singularities are associated to actions that are ramified
in codimension 1.

The above considerations have analogues for any prime p. Indeed, consider the singularity at the
maximal ideal of Spec Bn , where

Bn := k[[x, y, z]]/(z p
− (xyn)p−1z − y pn+1

+ x p+1).

This singularity is a special case of the singularity recalled in Section 0.2, where we have set µ = 1,
a = yn , and b = x . In particular, this singularity is a Z/pZ-quotient singularity whose moderately ramified
action is ramified precisely at the origin. When n = p = 2, this singularity is E2

8 .
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Consider the blow-up of Spec Bn at the maximal ideal (x, y, z). Then the y-chart (defined by the
variables y, x/y, z/y) has a singular point whose local ring is isomorphic to the local ring Cn , where

Cn := k[[x, y, z]]/(z p
− (xyn)p−1z − y(n−1)p+1

+ yx p+1). (8-1)

When n > 1, the closed point of Spec Cn is singular, and we show below in Proposition 8.1 that
the singularity of Spec Cn is again a Z/pZ-quotient singularity, but for an action that is ramified in
codimension 1. In the examples that we were able to compute, the discriminant groups 8Bn and 8Cn of
the intersection matrices of the resolutions of Spec Bn and Spec Cn when n > 1 satisfy |8Cn | = p|8Bn |.

When n = 2, the singularity of Spec B2 is treated in Theorem 7.1 and generalizes the E2
8-singularity.

The singularity of Spec C2 is the E1
7-singularity when p = 2, and thus Spec C2 is a natural generalization

for all primes p of the E1
7-singularity. Our educated guess for the resolution of Spec C2 is discussed in

Example 8.4.
We can further generalize the ring Cn as follows. Let a, b ∈ k[[x, y]], not both 0. Set

A0 := k[[x, y]][U, V ]/(U p
− (ay)p−1U − y, V p

− (by)p−1V − xy).

Let L denote the field of fractions of A0. The ring A0 and the field L are endowed with an automorphism
σ of order p fixing k[[x, y]] and with

σ(U ) := U + ay, σ (V ) := V + by.

As usual, we set G := ⟨σ ⟩. Let z := aV − bU . Then σ(z) = z, and we find that

z p
− (aby)p−1z − a pxy + bp y = 0. (8-2)

Let B denote the subring k[[x, y]][z] of A0. Let A denote the subring A0
[ V

U

]
of L . The group G acts

on A, since σ(V/U ) = (V/U + by/U )(1 + ay/U )−1 and 1 + ay/U is a unit in A0.

Proposition 8.1. Keep the above notation. The ring homomorphism A → k[[u, v]], which sends U to u
and V/U to v, is a k-isomorphism. In the special case where either a = xm and b = yℓ, or a = yℓ and
b = xm for some integers ℓ, m ≥ 1, then the ring of invariants AG is equal to the ring B. In particular,
Spec Cn is a wild Z/pZ-quotient singularity when n > 1.

Proof. The equation U p
− (ay)p−1U − y = 0 first shows that y/U is in the maximal ideal of A0, and then

that y/U p is in A0 and is a unit. The ring A0 is not integrally closed, since it is clear from the equation
V p

− (by)p−1V − xy = 0 that (
V
U

)p

−

(
by
U

)p−1( V
U

)
−

y
U p x = 0

is an integral relation for V
U over A0. Since x and y can be expressed in terms of U and V/U , we find

that A := A0
[ V

U

]
, viewed as a subring of L , is in fact isomorphic to the power series ring k[[u, v]], with

u := U and v := V/U .
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Consider the ring

B ′
:= k[[x, y]][Z ]/(Z p

− (aby)p−1 Z − a pxy + bp y)

and the natural map ϕ : B ′
→ AG which sends Z to z. Assume that either a = xℓ and b = ym , or that a = yℓ

and b = xm for some integers ℓ, m ≥ 1. We claim that ϕ is an isomorphism. One can show that B ′ is an
integral domain, and that its field of fractions injects in Frac(A), and has image by degree considerations
equal to Frac(AG). The ring B ′ is Cohen–Macaulay since it is free as a module over the regular ring
k[[x, y]]. Thus B ′ is normal as soon as it is regular in codimension 1. This can be shown, because of the
special forms of a and b, by using the Jacobian criterion. Let f := Z p

− (aby)p−1 Z −a pxy +bp y. Then
if a prime ideal p of B ′ contains the classes of f , and of the partial derivatives fx , fy, fZ , then p contains
(x, y, Z).

The reader will check that when n > 1, the ring Cn is isomorphic to B when a = −x and b = −yn−1.
When p = n = 2, the proposition is proved in [Peskin 1980, (2.16), page 104]. □

Example 8.2. We show in this example that there are (many) intersection matrices N with 8N killed
by 2 and of order 2s with s odd. Since our interest is to provide evidence that there may exist wild
Z/2Z-quotient singularities whose resolutions have discriminant groups of order 2s with s odd, we note
that any such resolution must also have an intersection matrix N whose fundamental cycle Z satisfies
|Z2

| ≤ 2 [Lorenzini 2013, 2.4]. This is a nontrivial restriction on the possible matrices N , and we exhibit
below matrices that also satisfy this restriction.

Recall that a star-shaped graph with n ≥ 4 vertices is called a star, or the complete bipartite graph
K1,n−1, if it consists of a single node and n − 1 terminal vertices attached to the node. We write the
intersection matrix N of a star on n vertices as N = N (s0 | s1/1, . . . , sn−1/1), where −s0 denotes the
self-intersection of the node, and −si denotes the self-intersection of the i-th terminal vertex when i > 0.
The Dynkin diagram D4 is a star on 4 vertices, and so are the two graphs in Remark 4.11.

Consider any intersection matrix N = N (s0 | s1/1, . . . , sn−1/1) such that one of the s j with j ≥ 1 is
even and at most one of the s j with j ≥ 1 is divisible by 4. Assume in addition that 8N is killed by 2, and
that the fundamental cycle Z of N satisfies |Z2

| ≤ 2. Define the matrix Ni (s0 | s1/1, . . . , sn−1/1, sn/1),
i = 1, 2, by

sn := i +

(n−1∏
j=1

s j

)
/|8N |.

We claim that the two intersection matrices N1 and N2 have graphs that are stars on n + 1 vertices with
|det(Ni )| = i |det(N )|. Moreover, both groups 8Ni are killed by 2, and both fundamental cycles Zi of Ni

satisfy |Z2
i | ≤ 2.

Proof. Let ℓn−1 := lcm(s1, . . . , sn−1). Then the order of the node in 8N is equal to ℓn−1
(
s0 −

∑n−1
j=1 1/s j

)
,

use Proposition 1.3(ii). This order equals 1 since we assume that one of the s j is even, use Proposition 1.3(v).
It follows that |8N | =

(∏n−1
j=1 s j

)
/ℓn−1 (use Proposition 1.3(i)). In particular,

(∏n−1
j=1 s j

)
/|8N | = ℓn−1 is

an integer. The equality |det(Ni )| = i |det(N )| follows from an easy computation.
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We find that lcm(s1, . . . , sn−1, ℓn−1 + i) = lcm(ℓn−1, ℓn−1 + i), which equals ℓn−1(ℓn−1 + 1) when
i = 1, and ℓn−1(ℓn−1/2 + 1) when i = 2. Hence, the node is trivial in 8Ni since its order is

lcm(s1, . . . , sn−1, ℓn−1 + i)
(

s0 −

n−1∑
j=1

1/s j − 1/(ℓn−1 + i)
)

= 1.

Let R ∈ Zn+1 denote the transpose of the vector (ℓn−1, ℓn−1/s1, . . . , ℓn−1/sn−1, 1). Then Ni R = −ien+1.
Since all coefficients of R are positive and Ni R has nonpositive coefficients, we find that R is an upper
bound for the fundamental cycle Zi of Ni . Then |Z2

i | ≤ |R2
| ≤ i , as desired.

To show that 8Ni is killed by 2, it suffices to show that the classes of the standard vectors have order 1
or 2 in 8Ni for each terminal vertex of the graph. This is clear for a terminal vertex v j with s j odd or
exactly divisible by 2, since the column of Ni corresponding to v j shows that the class of s jv j is equal to
the class of the node. We note now that the construction implies that there can be at most one terminal
vertex v j with s j divisible by 4. If the corresponding class in 8Ni has order divisible by 4, we would find
using the first column of the matrix Ni that this unique class is equal to the sum of classes which all have
order 1 or 2, a contradiction. This ends the proof of the claim. □

The sequence {sn}n≥1 with s1 = 2 and sn := lcm(s1, . . . , sn−1) + 1 is called Sylvester’s sequence
{2, 3, 7, 43, . . . } in the literature. It produces the only intersection matrices N (1 | s1/1, . . . , sn−1/1) with
trivial group 8N in the above construction.

An example of a star with intersection matrix N such that 8N is killed by 2 but |Z2
| > 2 is given by

N = N (1 | 2/1, 3/1, 10/1, 16/1), with group 8N = (Z/2Z)2 and Z = (30, 15, 10, 3, 2), giving |Z2
| = 4.

Example 8.3. Let p = 2. Fix an integer n ≥ 1. Consider the star graph with a central node of self-
intersection −(n + 1) attached to 2n + 1 terminal vertices of self-intersection −2. Denote by N0

its intersection matrix. Proposition 1.3(iv) shows that 8N0 = (Z/2Z)2n . We remark in passing that
this matrix does occur as the intersection matrix attached to a quotient singularity (use the equation
z2

= xy(x2n−1
− y2n−1) and Theorem 5.3(ii)).

Starting with N0, the construction in Example 8.2 produces two intersection matrices, the matrix
N1(n) := N (n + 1 | 2/1, . . . , 2/1, 3/1) with group of order 22n and whose graph is represented on the
left below, and the matrix N2(n) := N (n + 1 | 2/1, . . . , 2/1, 4/1) with group of order 22n+1 and whose
graph is represented below on the right:

−(n+1)

−3

2n

. . .

−(n+1)

−4

2n

. . .

When n = 1, the intersection matrices N1(n) and N2(n) are the matrices of the resolutions of the wild
quotient singularities Spec B4 and Spec C4, respectively. This can be verified using the Magma [Bosma
et al. 1997] commands ResolveSingByBlowUp() and IntersectionMatrix().
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When n ≥ 1, consider f := z p
− (aby)p−1z − a pxy + bp y introduced in (8-2), and set a := xn and

b := y2n+1. Let B := k[[x, y, z]]/( f ). Proposition 8.1 shows that the equation f = 0 defines a wild
Z/2Z-quotient singularity. We conjecture that Spec B has a resolution X → Spec B with a dual graph
equal to the dual graph of N2(n) represented on the right above. The conjecture thus provides examples
of wild Z/2Z-quotient singularities with discriminant group of order 22n+1 for all n ≥ 1. These quotient
singularities are associated with actions that are ramified in codimension 1.

Example 8.4 (analogues of E7). Let p be prime. Computations suggest that the resolution of the wild
Z/pZ-quotient singularity Spec C2 (see (8-1)) has intersection matrix (notation as in Section 1.2)

N = N
(

2
∣∣∣ p

p − 1
,

p + 1
p

,
p2

2p − 1

)
with group 8N = Z/pZ. When p is odd, the intersection matrix N has the following graph:

−(p+1)/2 −5 (p−3)/2

p−1p

The resolution of Spec B2 is discussed in Theorem 7.1.

Remark 8.5. Consider the equation z p
− (aby)p−1z − a pxy + bp y = 0 introduced in (8-2), and set

a = yn and b = xm for some integers m, n ≥ 1. Proposition 8.1 shows that this equation defines a wild
Z/pZ-quotient singularity. Computations with Magma [Bosma et al. 1997] suggest that for such a and b,
the resolution of the singularity at the origin of z p

−(aby)p−1z−a pxy+bp y = 0 has the same intersection
matrix as the resolution of the singularity of z p

− a pxy + bp y = 0.
When a = yn and b = xm , this latter singularity has the form z p

−xy(y pn
−x pm−1)=0, and Theorem 4.4

provides an explicit resolution for it. When p = 2, we find that g := gcd(pn, pm − 1) is always odd, so
the discriminant group of this resolution, which has order 2g+1 by Proposition 4.9, is always of the form
|8N | = 2s with s even. Thus the quotient singularity (8-2) in this case is unlikely to provide examples of
discriminant groups of order |8N | = 2s with s odd.

When p = 2, (8-2) in the case b = x and a = yn gives the equation of the singularity Dn
2(2n+1) with

resolution graph the Dynkin diagram D2(2n+1); notation as in [Artin 1977, Section 3].

9. D4 and A p−1

We compute in this section the resolution of the singularity of Spec Bµ introduced in Section 0.2, for any
value of the parameter µ when a = −y and b = −x . The ring Bµ is given in this case by

Bµ := k[[x, y]][z]/(z p
− (µxy)p−1z − x p+1

+ y p+1).
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Let Z → Spec(Bµ) be the blow-up of the ideal b= (x, y, z), as in Proposition 3.6. We note in Theorem 9.4
that Z has p + 1 singularities, each again Z/pZ-quotient singularities, with resolution graph Ap−1 and
associated discriminant group Z/pZ.

Remark 9.1. When k contains a third root of unity ζ with ζ 2
+ ζ + 1 = 0, the change of variables

X := x + ζ y and Y := x + ζ 2 y produces x3
+ y3

= −ζ XY (X + ζY ). In that case, for any integer q ≥ 1,
the singularity zq

− (x3
+ y3) = 0 is always isomorphic over k to the singularity zq

− (x2 y − xy2) = 0.
When in addition p = 2, we find that Bµ=0 is isomorphic over F4 to the singularity D0

4 , given by the
equation z2

+ x2 y + xy2
= 0. The dual graph of its resolution is the Dynkin diagram D4. The Tjurina

number of this singularity is equal to 8.
The resolution of Spec Bµ=1 when p = 2 is also known to have dual graph D4 over an algebraically

closed field. Indeed, the equation when µ = 1 is stated to be equivalent to D1
4 in [Peskin 1980, page 102],

where D1
4 is given by the equation z2

+ xyz + x2 y + xy2
= 0. The quotient singularity Spec Bµ=1 when

p > 2 can thus be considered as a generalization of D1
4 .

Theorem 9.2. Assume that p ≥ 3. Then Spec Bµ has a resolution of singularities with star-shaped dual
graph 0N independent of µ having p + 1 identical terminal chains, each with p − 1 vertices, as follows:

−p

. . .

p−1 p−1

The associated discriminant group 8N has order p p.

Proof. Let Z → Spec(Bµ) be the blow-up of the ideal aB = (a, b, z) = (x, y, z), as in Proposition 3.6.
Let as usual E denote the exceptional divisor. We find from Proposition 3.6 that Ered is a smooth rational
curve over k, and that (E · Ered)Z = −1. In addition, E = pEred, and the z-chart is regular.

The blow-up Z is covered by three affine charts, and we see that the x-chart is generated by the
expressions x, y/x, z/x modulo the relation(

z
x

)p

− x
(

1 + µp−1x p−2
(

y
x

)p−1 z
x

−

(
y
x

)p+1)
= 0. (9-1)

Clearly, this chart is regular at the origin. Let Y → Z denote the normalization of Z . Let D denote as
usual the pull-back of the exceptional divisor of Z . It follows from the regularity at the origin that the
induced morphism Dred → Ered is an isomorphism. Hence, we can conclude from Proposition 2.3 that
(Dred · Dred)Y = −1/p.

Using partial derivatives, one sees that the singular locus on the x-chart is given by x = z/x = 0 and
(y/x)p+1

= 1. In particular, the singular locus is finite and, hence, Z is normal since it is Cohen–Macaulay
and regular in codimension 1. We thus have Y = Z . Let ζ denote a primitive root of the equation u p+1

= 1.
When rewriting the above equation defining the x-chart in terms of the expressions x , y/x − ζ j , and z/x ,
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we obtain a polynomial of the form x(y/x − ζ j ) + O(3) when p ≥ 3. Using the changes of variables
discussed in the proof of Lemma 6.4, we find that the singularity is in fact a rational double point. Since
(9-1) contains the monomial (z/x)p and no other monomial (z/x)i with i < p, we find that the rational
double point is of type Ap−1.

Let X → Y denote a resolution of the singularities of Y . Let C denote the strict transform of Dred

in X . It follows from Proposition 2.2 that (C · C)X = −1/p − (p + 1)δ, where δ is the correcting term
associated with the rational double point Ap−1. As noted in Section 1.1, δ = (p − 1)/p, and we find that
(C · C)X = −p. The associated discriminant group is computed with Proposition 1.3. □

Let R := k[[x, y]]. As recalled in Section 0.2, let

A := k[[u, v]] = R[u, v]/(u p
− (µy)p−1u − x, v p

− (µx)p−1v − y),

and let σ be the automorphism defined by σ(u) = u +µy and σ(v) = v+µx . Let G := ⟨σ ⟩. The element
z := xu − yv is invariant, and we can identify the ring Bµ with AG .

Let Z ′
→ Spec(A) be the blow-up of the induced ideal aA, with a= (x, y, z). Let Y ′

→ Z ′ denote the
normalization of Z ′. We have the commutative diagram:

Y ′
−−−→ Z ′

−−−→ Spec(A)y y y
X −−−→ Y −−−→ Z −−−→ Spec(AG)

Let yi , i = 1, . . . , p + 1, denote the rational double points in Y of type Ap−1. We show below that these
points are in fact Z/pZ-quotient singularities.

Lemma 9.3. The scheme Y ′ is regular, and the morphism Y ′
→ Spec(A) coincides with the blow-up of

the maximal ideal mA = (u, v).

Proof. Indeed, using the relations

u p
− (µy)p−1u = x and v p

− (µx)p−1v = y, (9-2)

we get u p, v p
∈ aA. Since the finite ring extension R ⊂ A is flat of degree p2, we must have aA = (u p, v p).

More precisely, substituting the equations (9-2) into each others one obtains

x · unit = u p
− µp−1v p(p−1)u and y · unit = v p

− µp−1u p(p−1)v,

showing explicitly that (x, y)A ⊆ (u p, v p). Since z = xu − yv, we have (u p, v p) = aA.
The blow-up Z ′ of the ideal (u p, v p) in Spec(A) is covered by two charts. The u p-chart has generators

u, v, and v p/u p, so v/u satisfies an obvious integral equation, and we also have v = v/u · u. It follows
that on the normalization the chart becomes regular. The situation on the v p-chart is similar, and we see
that the scheme Y ′ is regular. □
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Theorem 9.4. The preimage of each yi under the map Y ′
→ Y consists of a single regular point xi ∈ Y ′,

and OY,yi = (OY ′,xi )
G . Thus yi is a Z/pZ-quotient singularity whose resolution has dual graph Ap−1

and associated discriminant group Z/pZ. The morphism Spec OY ′,xi → Spec(OY ′,xi )
G is ramified in

codimension 1 and the punctured spectrum of the rational double point yi has trivial fundamental group.

Proof. The G-action on the ring A induces a G-action on the normalized blow-up Y ′, which on the field
of fractions of the u-chart is given by

u 7→ u + µy and v/u 7→ (v + µx)/(u + µy).

Since Y is normal, the induced morphism Y ′
→ Y yields an identification Y = Y ′/G.

Let E ′ denote the exceptional divisor of the blow-up Y ′
→ Spec(A) of the maximal ideal. Then the

natural map E ′
→ Dred induced by Y ′

→ Y is purely inseparable of degree p, and, hence, the morphism
Spec OY ′,xi → Spec(OY ′,xi )

G is ramified at the codimension 1 point corresponding to E ′. It follows
from [Artin 1977, Corollary 1.2], that the punctured spectrum of the rational double point yi has trivial
fundamental group. □

Remark 9.5. The occurrence of the Ap−1-singularities yi on the quotient Y = Y ′/G is caused by points
xi ∈ Y ′ where the ideal of the fixed scheme Y ′G

⊂ Y ′ is not a Cartier divisor. Indeed, using Theorem 2 in
[Kiràly and Lütkebohmert 2013], we find that when the action of σ on the local ring A = k[[u, v]] is such
that the ideal (σ (u) − u, σ (v)− v) of the fixed scheme is principal, then the fixed ring A⟨σ ⟩ is regular.

Proposition 9.6. The multiplicities in the fundamental cycle Z of the resolution of Spec Bµ are strictly
decreasing along each terminal chain, as indicated below next to the corresponding vertex:

p

. . .

p−11 p−1 1

The canonical cycle of the singularity is K=−(p−2)Z. Moreover, Z2
=−p and h1(OZ)= 1

2(p−2)(p−1).

Proof. For convenience in this proof, let us denote by Z0 the vector whose coefficients are given in the
proposition. Since N Z0 has nonpositive coefficients, we find that by definition of the fundamental cycle,
we must have Z ≤ Z0. In particular, the multiplicities in Z of the terminal vertices of the graph must be
all equal to 1. Since the fundamental cycle Z is unique, it is easy to check that it must be “rotationally
symmetric” around the central node. Let us denote by z p−1, . . . , z2, z1 the multiplicities of Z along
a terminal chain. The central node has multiplicity denoted z p, and the fact that N Z has nonpositive
coefficients produces the following inequalities. First at the central node, we find

−pz p + (p + 1)z p−1 ≤ 0.

It follows that z p − z p−1 ≥ z p−1/p, so that z p − z p−1 ≥ 1. At each other vertex, we find that

−2zi + zi−1 + zi+1 ≤ 0.
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It follows that zi+1 − zi ≤ zi − zi−1. Hence, for each i = 2, . . . , p, we have zi − zi−1 ≥ 1. Since Z ≤ Z0,
we must have Z = Z0.

It is easy to compute that Z2
= −p. It is also an easy matter to check that the vector K satisfies

the matricial condition defining the canonical cycle recalled in Section 10.2. Similarly, one checks that
(K + Z) · Z = p2

− 3p. □

10. Numerically Gorenstein intersection matrices

All wild Z/pZ-quotient singularities resolved in this article are hypersurface singularities. We prove in
this section that all wild Z/2Z-quotient singularities are hypersurface singularities. We then recall that
the intersection matrix associated with a hypersurface singularity is always numerically Gorenstein. We
show in Proposition 10.5 that any intersection matrix N whose discriminant group 8N is killed by 2 is
automatically numerically Gorenstein. We exhibit in Example 10.7 an example when p > 2 of a wild
Z/pZ-quotient singularity which is not numerically Gorenstein.

Proposition 10.1. Let p = 2. Let A = k[[u, v]], endowed with a nontrivial action of G = Z/2Z. Then
there exists a power series ring R := k[[x, y]] such that AG is k-isomorphic to R[z]/(z2

+ sz + t), with
s, t ∈ R.

Proof. Let σ denote the generator of G. Proposition 2.9 in [Lorenzini and Schröer 2020] allows us,
if necessary, to replace the system of parameters (u, v) for A with a new system of parameters (again
denoted by (u, v) below) with the following properties (use [loc. cit., Proposition 2.3]): let x := uσ(u) and
y := vσ(v). Let R := k[[x, y]] be the subring of A generated by k, x , and y. Then A is a free R-module
of rank 4.

We have the inclusions R ⊂ AG
⊂ A, and the fraction field of AG is then of degree 2 over the fraction

field of R. Since R is regular and AG is Cohen–Macaulay because it is normal of dimension 2, we find
that AG is a free R-module of rank 2. Thus, R is a direct summand of AG , with quotient AG/R free of
rank 1. We can therefore find an element z ∈ AG which generates the quotient AG/R. It follows that
the natural map R[Z ] → AG with Z 7→ z is surjective. Since z /∈ R, it satisfies a quadratic equation
z2

+ sz + t = 0, with s, t ∈ R and Z2
+ s Z + t irreducible in R[Z ]. Since R[Z ] is a UFD, we find that

R[Z ]/(Z2
+ s Z + t) → AG is an isomorphism. □

10.2. Let N = (ci j )∈Matn(Z) be an intersection matrix. Let H0 ∈Zn be the integer vector whose i-th coef-
ficient is hi :=−ci i −2 for i =1, . . . , n. Since N is invertible, there exists a vector K ∈Qn such that N K =

H0. The vector K is called the canonical cycle of N . We say that N is numerically Gorenstein if K ∈ Zn .
When N is the intersection matrix associated with a collection of irreducible curves Ci , i = 1, . . . , n

on a surface, each component Ci has an arithmetical genus pa(Ci ). Our definition of numerically
Gorenstein coincides with the usual one (see for instance [Popescu-Pampu and Seade 2009, (2.5)]) when
all arithmetical genera are equal to 0. When a matrix N is numerically Gorenstein and Z denotes its
fundamental cycle, then −K ≥ Z, unless the dual graph of N is the dual graph of a rational double point
[Laufer 1987, Proposition 2.1; Popescu-Pampu and Seade 2009, Proposition 2.4].



Discriminant groups of wild cyclic quotient singularities 1065

Lemma 10.3. Let k be a field of characteristic p. Let B denote a complete local ring of dimension 2,
isomorphic to k[[x, y, z]]/( f ) for some f ∈ (x, y, z), and formally smooth outside its closed point. Let
X → Spec B be a resolution of the singularity, with associated intersection matrix N . Assume that all the
irreducible components in the exceptional locus of the resolution are smooth rational curves. Then N is
numerically Gorenstein.

Proof. We first use [Artin 1969, 3.8], to find an algebraic scheme S over k and a point s ∈ S such
that the completion of OS,s is isomorphic to B. The ring OS,s is Gorenstein since its completion B is
[Eisenbud 1995, 21.18]. Thus there exists an open set U of S, containing s, and such that U is everywhere
Gorenstein [Greco and Marinari 1978, 1.5]. It follows that U has a canonical sheaf that is an invertible
sheaf. Consider a resolution π : V → U of the singularity s ∈ U . Then the canonical divisor KV on V is
supported on the exceptional divisor of π . The adjunction formula for each irreducible component Ei

shows that (KV · Ei )+ (Ei · Ei ) = 2pa(Ei )− 2. Since KV is equal to a linear combination of the Ei , we
find that the intersection matrix N of the exceptional locus is numerically Gorenstein. □

Let N = (ci j ) ∈ Matn(Z) be an intersection matrix with discriminant group 8N . As usual, denote
by e1, . . . , en the standard basis of Zn , and let pi denote the order of the class of ei in 8N . For each
i = 1, . . . , n, let Ri ∈ Zn denote the unique positive vector such that N Ri = −pi ei . Let (Ri ) j denote the
j-th coefficient of Ri , and define

gi :=

n∑
j=1

(Ri ) j (|c j j | − 2) = (tRi )H0.

If the matrix N is such that c j j ≤ −2 for all j = 1, . . . , n, then gi ≥ 0.

Lemma 10.4. Let N be an intersection matrix. Then t K = (−g1/p1, . . . ,−gn/pn). In particular, the
matrix N is numerically Gorenstein if and only if pi divides gi for each i = 1, . . . , n.

Proof. By hypothesis, we have N K = H0 for some vector K ∈ Qn . It follows that −pi Ki =
tRi N K =

tRi H0 = gi , and we find that Ki = −gi/pi . □

Proposition 10.5. Let N = (ci j ) ∈ Matn(Z) be an intersection matrix with discriminant group 8N killed
by 2. Then N is numerically Gorenstein.

Proof. Our hypothesis implies that pi = 1 or 2, for all i = 1, . . . , n. We use the criterion given in
Lemma 10.4: To show that N is numerically Gorenstein, it suffices to show, for each i , that the integer gi

is even when pi = 2. Assume then that pi = 2. Then by construction,

tRi N Ri = −pi (Ri )i .

We now compute explicitly the term tRi N Ri and obtain

tRi N Ri =

n∑
j=1

c j j (Ri )
2
j + 2

∑
j<k

c jk(Ri ) j (Ri )k .

Since pi is even and (Ri )
2
j ≡ (Ri ) j (mod 2), we find that

∑n
j=1 c j j (Ri ) j is even, and so is gi , as desired. □
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Remark 10.6. Let N = (ci j )∈ Matn(Z) be an intersection matrix associated with the resolution of a hyper-
surface singularity, all of whose exceptional components are smooth rational curves. Assume that ci i ≤−2
for all i =1, . . . , n. Laufer [1987, 3.7] provides additional constraints on the canonical vector K associated
with such N , with an improvement by M. Tomari stated in the addendum on page 496 of [loc. cit.]. A
further improvement was found by Yau [1989, Theorems B and C], which show that for such N ,

gi/pi ≥ (|Z · Z| − 2)zi ,

where t Z = (z1, . . . , zn) is the fundamental cycle of N . In other words, we have −K ≥ (|Z · Z| − 2)Z.
Note that the singularity in Proposition 9.6 satisfies −K = (|Z · Z| − 2)Z.

In the context of wild Z/2Z-quotient singularities treated in this article, the resolution of such a
singularity has intersection matrix N with 8N killed by 2 and with |Z · Z| ≤ 2. Proposition 10.5 shows
that any such N is always numerically Gorenstein, and since |Z · Z| ≤ 2 and Z > 0, Laufer’s constraints
are also automatically satisfied.

Example 10.7. We exhibit below a wild Z/pZ-quotient singularity that is not numerically Gorenstein.
Let p > 2 be prime and consider the wild Z/pZ-quotient singularity in [Lorenzini 2014, 6.8], with
resolution graph with r1(i) = 1. This resolution graph has a single vertex of self-intersection different
from −2, namely the terminal vertex C with r1(i) = 1 and self-intersection −p, represented as the top
center vertex in the graph below:

1 p−1

p−1

p

2
−p

p−1 1

p−1

The graph is adorned with the coefficients of an integer vector R, and it is easy to check that the canonical
vector K is −(p−2)R/p. Since p > 2, the vector K is not an integer vector. The fundamental cycle of the
singularity is given in [Lorenzini 2018, 4.4], and it is shown in [loc. cit., 4.1], that this singularity is rational.
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Twisted derived equivalences and isogenies
between K3 surfaces in positive characteristic

Daniel Bragg and Ziquan Yang

We study isogenies between K3 surfaces in positive characteristic. Our main result is a characterization
of K3 surfaces isogenous to a given K3 surface X in terms of certain integral sublattices of the second
rational ℓ-adic and crystalline cohomology groups of X . This is a positive characteristic analog of a result
of Huybrechts (Comment. Math. Helv. 94:3 (2019), 445–458), and extends results of Yang (Int. Math.
Res. Not. 2022:6 (2022), 4407–4450). We give applications to the reduction types of K3 surfaces and to
the surjectivity of the period morphism. To prove these results we describe a theory of B-fields and Mukai
lattices in positive characteristic, which may be of independent interest. We also prove some results on
lifting twisted Fourier–Mukai equivalences to characteristic 0, generalizing results of Lieblich and Olsson
(Ann. Sci. Éc. Norm. Supér. (4) 48:5 (2015), 1001–1033).
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1. Introduction

The purpose of this paper is to study twisted Fourier–Mukai partners of K3 surfaces in positive char-
acteristics and to develop an isogeny theory for these surfaces which is analogous to that of abelian
varieties.

Let k be an algebraically closed field and p be a prime number. When char k = p, we simply write W
for the ring of Witt vectors W (k). Let Ẑ p denote the prime-to-p part of Ẑ. For a variety Y over k, we
set H∗(Y ) := H∗ét(Y, Ẑ) if char k = 0, and H∗(Y ) := H∗ét(Y, Ẑ p)×H∗cris(Y/W ) if char k = p, and write
H∗(Y )Q := H∗(Y )⊗Z Q.
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Definition 1.1 (cf. [Yang 2022, Definition 1.1]). Let X and X ′ be K3 surfaces over k. An isogeny
f : X ⇝ X ′ is a correspondence, i.e., a Q-linear combination of algebraic cycles on X × X ′, such that
the induced action H2(X ′)Q→ H2(X)Q is an isomorphism which preserves the Poincaré pairing. Two
isogenies are deemed equivalent if they induce the same map H2(X ′)Q

∼
−→ H2(X)Q .

Our main results concern the existence and uniqueness of isogenies with prescribed cohomological
action. We begin with the former. A natural source for isogenies between K3 surfaces is provided
by twisted Fourier–Mukai equivalences: For a K3 surface X and Brauer class α ∈ Br(X), we denote
by Db(X, α) the bounded derived category of α-twisted sheaves. Given another K3 surface X ′ and
Brauer class α′, an equivalence Db(X, α) ∼−→ Db(X ′, α′) induces, up to some choices, an isogeny
f : X ⇝ X ′. We call isogenies which arise this way primitive derived isogenies, and compositions of
such isogenies derived isogenies. The precise definitions are given in Section 4. There we also give a
motivic reformulation of the above definition, which will be used for the rest of the paper.

To state our theorems, we denote the K3 lattice U⊕3
⊕E⊕2

8 by3 and recall Ogus’s notion of K3 crystals
[1979, Definition 3.1]. Here U denotes the standard hyperbolic plane and E8 denotes the unique unimod-
ular even negative definite lattice of rank 8. Our first theorem is an existence result on derived isogenies:

Theorem 1.2. Assume char k = p ≥ 5. Let X be a K3 surface over k. Endow 3⊗W with a K3 crystal
structure and denote it by Hp and let H p denote 3⊗ Ẑ p.

Let ι : H p
× Hp ↪→ H2(X)Q be an isometric embedding which respects the Frobenius actions on Hp

and H2
cris(X/W )[1/p]. There exists a derived isogeny f : X ⇝ X ′ to another K3 surface X ′ such that

f ∗(H2(X ′))= im(ι) if and only if ι sends the slope< 1 part of Hp isomorphically onto that of H2
cris(X/W ).

We refer the reader to Remark 6.10 for the reason to restrict to p ≥ 5. The above result is inspired by a
theorem of Huybrechts [2019, Theorem 0.1], which can be stated as follows in our terminology:

Theorem 1.3 (Huybrechts). Let X and X ′ be two K3 surfaces over C. Every isomorphism of Hodge
structures H2(X ′, Q) ∼−→ H2(X, Q) which preserves the Poincaré pairings is induced by a derived
isogeny f : X ⇝ X ′.

This refines an earlier theorem of Buskin [2019, Theorem 1.1], which affirms a conjecture of Shafarevich.
Using the global Torelli theorem and surjectivity of the period map, one checks that Huybrechts’ theorem
is equivalent to an existence theorem for isogenies: for every K3 surface X over C and every isometric
embedding ι :3↪→H2(X, Q), there exists another K3 surface X ′ over C and a derived isogeny f : X⇝ X ′

such that f ∗(H2(X ′, Z)) = im(ι) (see Section 6D). Note that this statement does not involve Hodge
structures. Our Theorem 1.2 is a positive characteristic analog for this version of Huybrechts’ theorem.

Huybrechts’ refinement shows in particular that every isogeny between K3 surfaces over C is equivalent
to a derived isogeny. In contrast, the “only if” part of Theorem 1.2 implies that the cohomological actions
of derived isogenies in characteristic p obey a certain nontrivial constraint at p. In particular, not every
isogeny is equivalent to a derived isogeny. Given this, it is of interest to characterize also the possible
cohomological actions of all (not necessarily derived) isogenies. The following result shows that, under
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some technical assumptions, the “if” part of Theorem 1.2 can be removed for k = Fp if one is willing to
consider all isogenies:

Theorem 1.4. Let X , Hp, H p and ι be as in Theorem 1.2. If k = Fp and

(a) Pic(X) has rank ≥ 12 or contains a standard hyperbolic plane, or

(b) Pic(X) contains an ample line bundle L of degree L2 < p− 4,

then there exists another K3 surface X ′ over k and an isogeny f : X ⇝ X ′ such that f ∗(H2(X ′))= im(ι).

This is a strengthening of [Yang 2022, Theorem 1.4]. We mention that a byproduct in the course of
proving the above is a generalization (Theorem 6.18) of Taelman’s characterization [2020, Theorem C]
of the canonical liftings of ordinary K3 surfaces. Nygaard and Ogus [1985] constructed, for every
nonsupersingular K3 surface X , a “section” to the natural morphism Def(X)→ Def(B̂rX ) from the
deformation space of X to that of its formal Brauer group, such that a lifting of B̂rX induces a lifting of X .
We call liftings of X which arise this way “Nygaard–Ogus liftings”. When X is ordinary, a Nygaard–
Ogus lifting is the same as a canonical lifting. Theorem 6.18 gives an integral p-adic Hodge-theoretic
characterization of Nygaard–Ogus liftings. See Section 6E for details.

We now describe our uniqueness results. We recall some terminology from [Yang 2022, §6]: an isogeny
f : X⇝ X ′ between K3 surfaces is said to be polarizable if the induced map Pic(X ′)Q

∼
−→ Pic(X)Q sends

an ample class to another ample class, and Z-integral if the induced isomorphism H2(X ′)Q
∼
−→ H2(X)Q

restricts to an isomorphism H2(X ′) ∼−→ H2(X). We prove the following Torelli theorem for derived
isogenies:

Theorem 1.5. Assume char k ≥ 5. Let X and X ′ be K3 surfaces over k. A derived isogeny f : X ⇝ X ′ is
equivalent to the graph of an isomorphism X ′ ∼−→ X , if and only if f is polarizable and Z-integral.

Finally, we remark that Li and Zou [2021] considered derived isogenies and Torelli type theorems for
abelian surfaces.

1A. Applications to good reductions of K3 surfaces. We apply our results to study the good reduction
conjecture for K3 surfaces:

Conjecture 1.6. Let k be an algebraically closed field of characteristic p > 0 and let F be a finite
extension of W [1/p]. Let X F be a K3 surface over F such that H2

ét(X F , Qℓ) is unramified for some
prime ℓ ̸= p. Then, X F has potentially good reduction.

This conjecture is a K3 analog of the Néron–Ogg–Shafarevich criterion for abelian varieties. It admits
many variants (e.g., ones that concern semistable reductions) and is verified in cases when X F admits a
polarization of low degree (see [Matsumoto 2015] and [Liedtke and Matsumoto 2018]). We prove the
following:

Theorem 1.7. Let X F be as in Conjecture 1.6. Assume p > 2 and X F admits a line bundle of degree
prime to p. Then the GalF -representation H2

ét(X F , Q p) is potentially crystalline. If p ≥ 5 (resp. p > 2)
and H2

ét(X F , Q p) has potentially good ordinary or (resp. supersingular) reduction, then so does X F .
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Roughly speaking, the theorem is saying that if the cohomology of X F predicts that X F should have
potential ordinary or supersingular reduction, then it does. We derive this as a consequence of a more
general result (Theorem 8.10), which essentially reduces Conjecture 1.6 to the Hecke orbit conjecture (see
Conjecture 8.2), which is a purely Shimura–theoretic statement. In particular, we prove the following.

Theorem 1.8. Let X F be an in Conjecture 1.6. Suppose that p > 2 and that X F admits a line bundle of
degree prime to p. Assume the Hecke orbit conjecture (Conjecture 8.2) holds for all i . Then, X F has
potentially good reduction.

Our unconditional Theorem 1.7, in the ordinary case, is then a consequence of recent work of Maulik,
Shankar, and Tang [Maulik et al. 2022, Theorem 1.4] proving the Hecke orbit conjecture in certain
special cases. The supersingular case will be treated by a slightly different argument. Moreover, it seems
very likely that a slight generalization of the conjecture can remove the condition on the existence of
a prime-to-p line bundle as well, and hence completely affirms Conjecture 1.6.

We remark that nowhere in the proofs of the above results do we directly analyze a degeneration of K3
surfaces, unlike in [Matsumoto 2015] and [Liedtke and Matsumoto 2018]. In particular, we avoid the use
of any techniques from the minimal model program. As far as the authors are aware, our method of proving
good reduction results by marrying moduli theory of sheaves with density arguments is new in the literature.

After the paper was accepted for publication, Marco D’Addezio and Pol van Hoften proved the Hecke
orbit conjecture for Shimura varieties of Hodge type and in particular proved Conjecture 8.2 under a very
minor assumption on p [D’Addezio and van Hoften 2022, Section 7.5].

1B. Ideas of proof. (1) The “only if” part of Theorem 1.2 follows from the general theory of twisted
derived equivalences in positive characteristics. The idea for the “if” part is to construct the desired X ′

together with the isogeny f : X ⇝ X ′ by iteratively taking moduli spaces of twisted sheaves on X .
This approach is inspired by that of [Huybrechts 2019, Theorem 1.1]. A key technical tool is the
theory of B-fields in ℓ-adic and crystalline cohomology, described in Section 2. This allows us to relate
classes in H2(X)Q to the Brauer group, and provides a replacement for the Hodge-theoretic B-fields
in Huybrechts’ proof, although there are some additional complications at p. There are some further
technical difficulties caused by the fact that in positive characteristic the cohomology H2(X)Q can only
take on adelic coefficients (i.e., Ap

f ×W [1/p]) instead of Q-coefficients. For instance, the Mukai vector
which one must specify in order to form a moduli of sheaves is not an adelic object. That is, unlike Brauer
classes, one cannot specify a Mukai vector by prescribing its local factors in H2(X)Q . We solve these
problems by using local–global type results on quadratic forms (e.g., the strong approximation theorem),
and the theory of quadratic forms over local rings.

(2) Theorem 1.4 is obtained by the realizing X ′ as the reduction of a suitable K3 surface in characteristic
zero. This strategy is a simultaneous simplification and strengthening of that of [Yang 2022], with
the additional input of Theorem 1.2. The characterization of Nygaard–Ogus liftings (Theorem 6.18)
is obtained by applying recent advances on integral p-adic Hodge theory from [Bhatt et al. 2018] and
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[Cais and Liu 2019] to study deformations of K3 crystals. These techniques for handling crystalline
cohomology were unnecessary in Taelman’s case [2020], as the deformation of the formal Brauer group
of an ordinary K3 is rigid, which is not true for a general finite-height K3. We remark that here the
restriction p ≥ 5 is mainly due to our usage of the deformation theory of K3 crystals.

(3) Theorem 1.5 is a twisted generalization of the derived Torelli theorem of Lieblich and Olsson [2015,
Theorem 6.1]. Just as in loc. cit., we prove this result by using a lifting argument to reduce to the global
Torelli theorem over C . The main difficulty which arises in our generalization is that instead of considering
isogenies which arise directly from a (twisted or untwisted) derived equivalence, we are allowing any
finite compositions of such. The derived equivalences involved may not be simultaneously liftable to
characteristic zero. To overcome this difficulty, we combine the lifting results on derived equivalences
with the Kuga–Satake method. This helps us reduce composing isogenies of K3’s to composing isogenies
of abelian varieties, which is much better understood. There is a technical problem which arises from
the usage of Kuga–Satake. Namely, we need to put the relevant K3 surfaces into the same moduli space.
However, the K3 surfaces themselves may not have a quasipolarization of a common degree. To overcome
this problem, we pass from K3 surfaces to their Hilbert squares, which are treated in [Yang 2023]. The
restriction to p ≥ 5 is imposed because in loc. cit. the second author only treated K3[n]-type varieties
when p > n+ 1 for certain technical reasons.

(4) For Theorem 1.7, we first show that the derived prime-to-p isogeny classes of K3’s match up with
the notion of prime-to-p Hecke orbit on the period domains of Kuga–Satake morphisms, which are some
orthogonal Shimura varieties. It follows from some intermediate steps in the proof of Theorem 1.2 that
the property of satisfying Conjecture 1.6 is invariant in a prime-to-p derived isogeny class. On the other
hand, any X F which satisfies the hypothesis of Theorem 1.7 produces a mod p point x(X F ) on the period
domain, and the set Lbad := {x(X F ) : X F violates Conjecture 1.6} is closed.

If we combine the above observations with the Hecke orbit (HO) conjecture (see Conjecture 8.2), we
see that if Lbad intersects any of the height stratum of the period domains, then it must contain the entirety
of that stratum, which is false by a deformation argument. Hence the HO conjecture forces Lbad to be
empty. The HO conjecture is now known for the ordinary locus by the recent work of Maulik, Shankar,
and Tang [Maulik et al. 2022] and we will verify it in the superspecial locus for cases relevant to us
(Theorem 8.6). This gives Theorem 1.7.

1C. Plan of paper. In Section 2, we develop the formalism of B-fields and twisted Mukai lattices in
positive characteristic. Section 3 concerns the construction of twisted Chern characters, the twisted
Néron–Severi lattice, and the action of a twisted derived equivalence on cohomology. In Section 4 we
discuss rational Chow motives and isogenies. In Section 5 we prove some lifting results for twisted derived
isogenies. In Section 6, we first prove Theorem 1.2. We then revisit Nygaard–Ogus theory for the point
of view of integral p-adic Hodge theory and prove Theorem 1.4. In Section 7, we review the basics of
Hilbert squares and the Kuga–Satake period morphism, and then prove Theorem 1.5. Finally, in Section 8,
we explain the relationship between our isogeny theory and Hecke orbits, and prove Theorem 1.7.
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1D. Notation.

• Let p denote a prime. The letter k denotes a perfect base field of characteristic either 0 or p and
ℓ denotes a prime not equal to char k. When char k = p, we write W for W (k) and K for W [1/p].

• If Z is a scheme, we write Hi (Z , µn) for the flat (fppf) cohomology of the sheaf of n-th roots of
unity on Z . If n is coprime to the characteristics of all residue fields of Z , this is equal to the étale
cohomology of µn .

• We normalize our Chern characters so that the mod m Chern character of a line bundle L is equal
to the image of the class of L under the boundary map H1(Z , Gm)→ H2(Z , µm) of the Kummer
sequence.

• Suppose k is a perfect field of characteristic p and S is a k-scheme. If f : X→ S is a scheme, we
denote by H j

cris(X) the sheaf on Cris(S/W ) given by R j fcris∗OX/W when S is understood.

• For any integral domain R, and R-modules M and N , an isomorphism f : M Q
∼
−→ N Q is said to be

R-integral if f (M)= N .

• In this paper we only make use of singular, de Rham, étale, flat, and crystalline cohomology. We
may omit the subscripts cris, fl, or dR when the choice of the relevant Grothendieck topology is
clear from the coefficients.

• For a smooth proper variety Y over k, we let H j (Y ) denote either H j
ét(Y, Ẑ) if char k = 0 or

H j
ét(Y, Ẑ p)×H j

cris(Y/W ) if char k = p.

• Let R be a commutative ring. A quadratic lattice M over R is a free R-module of finite rank equipped
with a bilinear symmetric pairing M × M → R. The pairing is said to be nondegenerate (resp.
unimodular or perfect) if the induced map M→ M∨ is an injection (resp. an isomorphism).

2. B-fields and the twisted Mukai lattice in positive characteristic

Let X be a K3 surface over the complex numbers. Associated to X is the Mukai lattice H̃(X, Z), which
is the direct sum of the singular cohomology groups of X equipped with a certain pairing and Hodge
structure. Consider a class α ∈ Br(X). Huybrechts and Stellari [2005, Remark 1.3] generalized Mukai’s
construction to the twisted K3 surface (X, α) by defining the twisted Mukai lattice H̃(X, B, Z). This
construction modifies the Hodge structure on the Mukai lattice in a certain way using an auxiliary choice
of a B-field lift of α, which is a class B ∈ H2(X, Q) whose image in Br(X) under the exponential map is
equal to α.

Suppose now that X is a K3 surface defined over an algebraically closed field of characteristic p > 0.
After [Lieblich and Olsson 2015], we may consider the ℓ-adic and crystalline realizations of the Mukai
motive of X . These are respectively a Zl-lattice H̃(X, Zl) and a W -lattice H̃(X/W ), both of rank 24. In
the crystalline setting, H̃(X/W ) is equipped with a Frobenius action, which makes H̃(X/W ) into a K3
crystal in the sense of Ogus [1979, Definition 3.1]. That this construction makes sense integrally is first
observed in [Bragg and Lieblich 2018].
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Consider a Brauer class α ∈Br(X). We wish to have an analog of Huybrechts and Stellari’s construction
of the twisted Mukai lattice in both the ℓ-adic and crystalline settings. The main task is to find the
appropriate analog of a B-field lift of a Brauer class in ℓ-adic or crystalline cohomology. The ℓ-adic
case is considered in [Lieblich et al. 2014] (we remark that the authors also deal with some additional
complications coming from working over a field that is not algebraically closed, which we ignore here).
The crystalline case is considered in [Bragg 2021, §3] and [Bragg and Lieblich 2018, §3.4], with the
restriction that the Brauer class α is killed by p (rather than a power of p).

In this section we make two contributions. First, we complete the crystalline realization by defining
crystalline B-field lifts of classes killed by an arbitrary power of p. We then treat the mixed case,
considering all primes simultaneously, and define mixed B-field lifts of Brauer classes whose order is
divisible by more than one prime. To assist the reader in connecting these constructions in the Hodge,
ℓ-adic, and crystalline settings, we have included a brief summary of the Hodge and ℓ-adic realizations. We
have tried to present a perspective which emphasizes the unifying features present in the different settings.

2A. Hodge realization. Let X be a K3 surface over the complex numbers. We have the exponential
exact sequence

0→ Z→ OX
exp
−→ O×X → 1.

Consider the induced map H2(X,OX )
exp
−→ H2(X,O×X ), which, because H3(X, Z) = 0, is a surjection.

Given a class v ∈ H2(X,OX ), we note that exp(v) is contained in the torsion subgroup H2(X,O×X )tors =

H2(X, Gm) = Br(X) if and only if v is contained in the subgroup H2(X, Q) ⊂ H2(X,OX ). Thus, this
map restricts to a surjection

exp : H2(X, Q)→ Br(X), (1)

which we denote by B 7→ αB = exp(B). According to [Huybrechts and Stellari 2005], a B-field lift of a
class α ∈ Br(X) is a class B ∈ H2(X, Q) such that αB = α.

The relationship between B-fields and the Brauer group is expressed in the diagram

0 0

0 H2(X, Z) H2(X, Z)+Pic(X)⊗ Q Pic(X)⊗ (Q/Z) 0

0 H2(X, Z) H2(X, Q) H2(X, Z)⊗ (Q/Z) 0

H2(X, Q)
H2(X, Z)+Pic(X)⊗ Q

Br(X)

0 0

∼

(2)
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with exact rows and columns. In particular, we see that there are two sources of ambiguity in choosing a
B-field lift of a Brauer class, namely, integral classes in H2(X, Z) and rational classes in H1,1(X, Q)=
Pic(X)⊗ Q ⊂ H2(X, Q).

2B. ℓ-adic realization. Let k be an algebraically closed field of arbitrary characteristic. Fix a prime
number ℓ, not equal to the characteristic of k. We review the ℓ-adic B-fields and the ℓ-adic realization of
the twisted Mukai motive introduced in [Lieblich et al. 2014].

Let X be a K3 surface over k. By duality in étale cohomology, we have H3(X, µℓn )= 0 for all n ≥ 1.
It follows that the natural map

H2(X, Zℓ(1))→ H2(X, µℓn ) (3)

is surjective, and hence we have an identification

H2(X, Zℓ(1))⊗ Z/ℓn Z ∼= H2(X, µℓn ).

We consider the composition

H2(X, Zℓ(1))↠ H2(X, µℓn )↠ Br(X)[ℓn
], (4)

where the second map is induced by the inclusion µℓn ⊂ Gm .

Definition 2.1. Let α ∈ Br(X) be a Brauer class which is killed by a power of ℓ. An ℓ-adic B-field lift
of α is an element

B ∈ H2(X, Qℓ(1))
def
= H2(X, Zℓ(1))⊗Zℓ Qℓ

such that if we write B = a/ℓn for some a ∈ H2(X, Zℓ(1)), then a maps to α under the composition (4).

We give the following alternative description. Define µℓ∞ =
⋃

n µℓn ⊂ Gm . The Picard group of X
is torsion-free, which implies the vanishing H1(X, µℓ) = 0. It follows that the inclusions µℓn ⊂ µℓn+1

induce injections on H2, and we have a natural identification H2(X, µℓ∞)=
⋃

n H2(X, µℓn ). Moreover,
for every n we have a commutative diagram

H2(X, Zℓ(1)) H2(X, Zℓ(1))

H2(X, µℓn ) H2(X, µℓn+m )

·ℓm

(5)

Taking the direct limit of the maps (3), we get a map

H2(X, Qℓ(1))→ H2(X, µℓ∞). (6)

This map may be explicitly described as follows: given B ∈ H2(X, Qℓ(1)), choose n ≥ 0 such that
ℓn B ∈ H2(X, Zℓ(1)), and map B to the image of ℓn B under the left map of (4). Note that by the
commutativity of (5), this association is well defined, independent of our choice of n. Composing (6)
with the natural map H2(X, µℓ∞)→ Br(X), we get a map

H2(X, Qℓ(1))→ Br(X). (7)
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This is the ℓ-adic analog of the exponential map (1). The image of this map is exactly the subgroup
Br(X)[ℓ∞] ⊂ Br(X) consisting of classes killed by some power of ℓ. Furthermore, an ℓ-adic B-field
lift of a class α ∈ Br(X)[ℓ∞] (in the sense of Definition 2.1) is exactly a preimage of α under (7). We
denote (7) by B 7→ αB .

The relationship between ℓ-adic B-fields and the Brauer group is expressed by the diagram

0 0

0 H2(X, Zℓ(1)) H2(X, Zℓ(1))+Pic(X)⊗ Qℓ Pic(X)⊗ (Qℓ/Zℓ) 0

0 H2(X, Zℓ(1)) H2(X, Qℓ(1)) H2(X, µℓ∞) 0

H2(X, Qℓ(1))
H2(X, Zℓ(1))+Pic(X)⊗ Qℓ

Br(X)[ℓ∞]

0 0

∼

(8)

with exact rows and columns, where the right-hand column is given by taking the direct limit of the exact
sequence induced by the Kummer sequence.

In particular, we have an isomorphism

Br(X)[ℓ∞] ∼= (Qℓ/Zℓ)⊕22−ρ, (9)

where ρ is the Picard rank of X .

2C. The twisted ℓ-adic Mukai lattice. The ℓ-adic Mukai lattice associated to X [Lieblich et al. 2014,
Definition 3.3.1] is

H̃(X, Zℓ)= H0(X, Zℓ)(−1)⊕H2(X, Zℓ)⊕H4(X, Zℓ)(1),

which we equip with the Mukai pairing. Given a class B ∈ H2(X, Qℓ), we define the associated twisted
ℓ-adic Mukai lattice to be the submodule

H̃(X, Zℓ, B)= exp(B) H̃(X, Zℓ)⊂ H̃(X, Qℓ).

Here, exp(B) denotes the isometry H̃(X, Qℓ)→ H̃(X, Qℓ) given by

(a, b, c) 7→
(
a, b+ aB, c+ b.B+ 1

2aB2). (10)

2D. Crystalline realization. Let k be an algebraically closed field of characteristic p > 0 and let X be a
K3 surface over k. We will define crystalline B-fields associated to Brauer classes on X whose order is
a power of p. There are some new phenomena which present themselves in the crystalline setting that
are not present in the Hodge and ℓ-adic theories. In particular, there is a nontrivial interaction between
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crystalline B-fields and the Frobenius operator on the crystalline cohomology. A related feature is that not
every class in rational crystalline cohomology is a crystalline B-field. We give a characterization of which
classes are B-fields using only the F–crystal structure on crystalline cohomology in Proposition 2.7. We
then construct the crystalline version of the twisted Mukai lattice, and show that this object has a natural
structure of a K3 crystal in the sense of Ogus [1979, Definition 3.1]. We conclude with some calculations
with the twisted Mukai crystals. In the special case when the Brauer class is killed by p, the results of
this section have appeared in [Bragg 2021; Bragg and Lieblich 2018].

Set Wn =W/pnW , so in particular W1 = k. Let σ : k→ k be the Frobenius λ 7→ λp. We denote the
induced map σ :W →W (abusively) by the same symbol.

2E. Crystalline B-fields. We begin by relating the flat cohomology of µpn to certain étale cohomology
groups. Consider the Kummer sequence

1→ µpn → Gm
x 7→x pn

−−−−→ Gm→ 1,

which is exact in the fppf topology. Let ε : Xfl→ X ét be the natural map from the big fppf site of X to the
small étale site of X . By a theorem of Grothendieck, the cohomology of the complex Rε∗Gm vanishes in
all positive degrees. Applying ε∗ to the Kummer sequence, we obtain an exact sequence

1→ Gm
x 7→x pn

−−−−→ Gm→ R1ε∗µpn → 1

of sheaves on the small étale site of X (because X is reduced, the restriction of µpn to the small étale site
of X is trivial). It follows that

R1ε∗µpn = Gm/G×pn

m ,

where the quotient is taken in the étale topology. We therefore obtain isomorphisms

Hi (Xfl, µpn ) ∼−→ Hi−1(X ét, Gm/G×pn

m ). (11)

We next relate the étale cohomology groups on the right to crystalline cohomology. We consider the map
of étale sheaves

d log : Gm→Wn �
1
X

given by x 7→ dx/x , where x = (x, 0, 0, . . . ) is the multiplicative representative of x in Wn OX . By
[Illusie 1971, Proposition I.3.23.2, p. 580] the kernel of d log is equal to the subsheaf G×pn

m ⊂ Gm , so
there is an induced injection

d log : Gm/G×pn

m ↪→Wn �
1
X . (12)

As the image of d log is contained in the kernel of d , we have a commutative diagram

0 Gm/G×pn

m 0

Wn OX Wn �
1
X Wn �

2
X

d log

d d
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which we interpret as a map of complexes

d log : Gm/G×pn

m [−1] ↪→Wn �
•

X . (13)

An important fact is that the de Rham–Witt complex computes crystalline cohomology, in the sense
that there is a canonical isomorphism

H∗(X,Wn �
•

X )
∼
−→ H∗(X/Wn) (14)

in each degree [Illusie 1971, Théoréme II.1.4, p. 606]. Taking cohomology of (13) and using the
identifications (11) and (14), we find a map

d log : H2(X, µpn )→ H2(X/Wn). (15)

Lemma 2.2. For each n ≥ 1, the map (15) is injective.

Proof. We induct on n. By [Illusie 1971, Corollaire 0.2.1.18, p. 517], there is a short exact sequence

1→ Gm/G×p
m

d log
−−→ Z�1

X
W−C
−−→�1

X ′→ 0

of étale sheaves, where X ′ denotes the Frobenius twist of X over k. In particular, from the vanishing
of H0(X, �1

X ) and the injectivity of H1(X, Z�1
X )→ H2

dR(X/k) = H2(X/W1) (a consequence of the
degeneration of the Hodge–de Rham spectral sequence) we obtain injectivity of (15) for n = 1.

We recall that the crystalline cohomology groups H∗(X/W ) of a K3 surface are torsion-free. This
implies in particular that the maps

H2(X/W )⊗Z Z/pn Z→ H2(X/Wn)

are isomorphisms. Hence, multiplication by pn on H2(X/W ) induces a short exact sequence

0→ H2(X/k) ·p
n
−→ H2(X/Wn+1)→ H2(X/Wn)→ 0.

We also have a short exact sequence

1→ µp→ µpn+1
·p
−→ µpn → 1 (16)

of fppf groups. We claim that the diagram

0 H2(X, µp) H2(X, µpn+1) H2(X, µpn )

0 H2(X/k) H2(X/Wn+1) H2(X/Wn) 0

·p

·pn

(17)

commutes and has exact rows, where the top horizontal row is given by the second cohomology of (16),
and the vertical arrows are (15). The exactness of the top row follows from the vanishing of H1(X, µpn )
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(we remark that the top right horizontal arrow is surjective if and only if X has finite height). To see the
commutativity, note that applying R1ε∗ to (16) results in the short exact sequence

1→ Gm/G×p
m
·pn
−→ Gm/G×pn+1

m → Gm/G×pn

m → 1

of étale sheaves. Using diagram (17), the result follows immediately by induction. □

We arrive at a diagram

H2(X/W ) H2(X/Wn)

H2(X, µpn ) Br(X)[pn
]

πn

⊂ (18)

where πn denotes reduction modulo pn . This is the crystalline analog of (4).

Definition 2.3. Let α ∈ Br(X) be a Brauer class which is killed by a power of p. A crystalline B-field lift
of α is an element

B ∈ H2(X/K ) def
= H2(X/W )⊗W K

such that if we write B = a/pn for some a ∈ H2(X/W ), then πn(a) is equal to d log(α′) for some
α′ ∈ H2(X, µpn ) whose image in Br(X) is equal to α.

From the surjectivity of the horizontal maps in (18), we see that any p-power torsion Brauer class
admits a crystalline B-field lift. However, in contrast to the Hodge and ℓ-adic cases, not every element
of H2(X/K ) is a crystalline B-field lift of a Brauer class, because H2(X, µpn ) is only a subgroup
of H2(X/W )⊗ Z/pn Z.

Definition 2.4. A class B ∈H2(X/K ) is a crystalline B-field if it is a B-field lift of some Brauer class. Let
B(X)⊂ H2(X/K ) denote the subgroup of crystalline B-fields. Let Bn(X)⊂B(X) denote the subgroup
of crystalline B-fields B such that pn B ∈ H2(X/W ).

We take the direct limit of the maps Bn(X)→ H2(X, µpn ) to obtain a map

B(X)↠ H2(X, µp∞), (19)

which may be explicitly described exactly as in the étale case (6): given a class B ∈B(X), we choose
n ≥ 0 such that pn B ∈ H2(X/W ), and then reduce modulo pn . We compose (19) with the map to
the Brauer group to obtain a map

B(X)→ Br(X), (20)

which we denote by B 7→ αB . This is the crystalline analog of the exponential map (1). As in the ℓ-adic
case, the image of this map is Br(X)[p∞] ⊂Br(X), and a crystalline B-field lift of a class α ∈Br(X)[p∞]
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is exactly a preimage of α under (20). We have a diagram

0 0

0 H2(X/W ) H2(X/W )+Pic(X)⊗ Q p Pic(X)⊗ (Q p/Zp) 0

0 H2(X/W ) B(X) H2(X, µp∞) 0

B(X)

H2(X/W )+Pic(X)⊗ Q p
Br(X)[p∞]

0 0

∼

(21)

with exact rows and columns.

2F. Description of the group of crystalline B-fields. We will now give some results describing the
subgroup B(X)⊂ H2(X/K ) more explicitly.

We recall that the Tate module of a K3 crystal H (in the sense of Ogus [1979, Definition 3.1]) is
the Zp-module Hφ=1

⊂ H consisting of those elements h ∈ H satisfying φ(h)= h, where φ := p−18

and 8 is the Frobenius endomorphism of H . By a result of Illusie [1971, Théorème 5.14, p. 631], if X is
a K3 surface then we have an exact sequence

0→ H2(X, Zp(1))→ H2(X/W )
p−8
−−→ H2(X/W )

identifying H2(X, Zp(1)) with the Tate module H2(X/W )φ=1 of the K3 crystal H2(X/W ), where the
left inclusion is given by the inverse limit of the inclusions (15). We have inclusions

Pic(X)⊗ Q p ⊂ H2(X, Q p(1))⊂B(X),

where as usual H2(X, Q p(1))= H2(X, Zp(1))⊗ Q p.

Remark 2.5. By analogy with the Lefschetz (1,1) theorem, one might imagine that the inclusion
Pic(X)⊗ Q p ⊂ H2(X, Q p(1)) is an equality. However, this is frequently false, e.g., for a very general
ordinary K3 surface. It is true if X is supersingular, as a consequence of the Tate conjecture for
supersingular K3 surfaces (of course, the Tate conjecture is known for all K3 surfaces, but it is only in the
supersingular case that there is such a consequence for K3 surfaces over general algebraically closed fields).

Proposition 2.6. Let X be a K3 surface.

(1) If X has finite height, then B(X)= H2(X/W )+H2(X, Q p(1)).

(2) If X is supersingular, then B(X)=B1(X)+H2(X, Q p(1)).
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Proof. In either case, we have H2(X/W )⊂B1(X)⊂B(X) and H2(X, Q p(1))⊂B(X). It follows that
in both cases the right-hand side is contained in B(X). We prove the reverse containments. Consider the
commutative diagram

H2(X, Zp(1)) H2(X/W )

H2(X, µpn ) H2(X/Wn)

mod pn (22)

Suppose that X has finite height. Flat duality implies that H3(X, µpn )= 0 for all n ≥ 1. Hence, the maps
H2(X, Zp(1))→H2(X, µpn ) are surjective. It follows that the restriction H2(X, Q p(1))→Br(X)[p∞] of
the exponential map (20) is surjective. This proves (1). We next prove (2). Suppose that X is supersingular.
For each n and i we consider the short exact sequence

0→ Ui (X, µpn )→ Hi (X, µpn )→ Di (X, µpn )→ 0.

As H1(X, µpn )= 0, flat duality shows that D3(X, µpn )= 0. Hence, the maps D2(X, µpn+1)→D2(X, µpn )

induced by the multiplication p : µpn+1 → µpn are surjective. Furthermore, the formal group associated
to U2(X, µpn ) is isomorphic to B̂r(X)∼= Ĝa , so U2(X, µpn )∼=Ga(k). In particular, the groups U2(X, µpn )

are p-torsion, and the maps U2(X, µpn )→ U2(X, µpn+1) induced by the inclusion µpn ⊂ µpn+1 are
isomorphisms. Write U2(X, µp∞) for the union of the U2(X, µpn ) and D2(X, µp∞) for the union of
the D2(X, µpn ). It follows that the composition

H2(X, Q p(1))→ H2(X, µp∞)→ D2(X, µp∞)

is surjective, and that U2(X, µp)=U2(X, µp∞). Hence, the exponential map (20) restricts to a surjection
B1(X)+H2(X, Q p(1))→ Br(X)[p∞], which proves (2). □

The following describes the subgroup B(X) ⊂ H2(X/K ) in terms of the F-crystal structure on
H2(X/W ), without explicit mention of flat cohomology or the Brauer group. The special case of classes
B ∈ p−1 H2(X/W ) is Lemma 3.4.11 of [Bragg and Lieblich 2018].

Proposition 2.7. A class B ∈ H2(X/K ) is a crystalline B-field if and only if

B−φ(B) ∈ H2(X/W )+φ(H2(X/W )), (23)

where φ = p−18.

Proof. Write H =H2(X/W ). Suppose that X has finite height. It is immediate from Proposition 2.6(1) that
any B-field satisfies the claimed relation. Conversely, suppose that B = a/pn is an element satisfying (23).
Consider the Newton–Hodge decomposition

H2(X/W )= H<1⊕ H1⊕ H>1

of H2(X/W ) into subcrystals with the indicated slopes (see Section 2I below). Write a = (a<1, a1, a>1).
We have pH<1 ⊂8(H<1) or, equivalently, H<1 ⊂ φ(H<1) (see for instance [Katz 1979, §1.2]). Consider
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the map
1−φ : H<1→ φ(H<1).

All slopes of H<1 are less than one, so this map is injective. By [Illusie 1971, Lemme II.5.3], it is
surjective, and hence an isomorphism. We have (1−φ)(a<1) ∈ pnφ(H<1), so in fact a<1 ∈ pn H<1. We
have φ(H>1)⊂ H>1. Thus, we have a map

1−φ : H>1→ H>1,

which as before is both injective and surjective, and hence an isomorphism. We have (1−φ)(a>1)∈ pn H>1,
so in fact a>1 ∈ pn H>1. Finally, note that H1 is a unit root crystal. It follows quickly that a1 = pnh+ t
for some h ∈ H1 and some t which is fixed by φ. We conclude that B ∈B(X). This completes the proof
of Proposition 2.7 in the case when X has finite height.

Suppose that X is supersingular. By Lemma 3.4.11 of [Bragg and Lieblich 2018], we have that B1(X)
consists exactly of those classes B = a/p with a ∈ H that satisfy (23). By Proposition 2.6(2), any B-field
satisfies the claimed relation. We prove the converse. The inclusion of the Tate module is an isogeny,
meaning that the map T ⊗K→ H⊗K is an isomorphism. Thus, the natural map H ∼

−→ H∨→ T∨⊗W
is injective, and we may regard H as a subgroup of the dual lattice T∨⊗W . Note that if h ∈ H and t ∈ T ,
then φ(h).t = φ(h).φ(t)= σ(h.t). It follows that H +φ(H)⊂ T∨⊗W . Now, if B ∈H2(X/K ) satisfies
the claimed relation, then B is in the kernel of the map 1−φ : T∨⊗W → T∨⊗ (K/W ), which is equal
to T∨⊗W + T ⊗ Q p. We may therefore write B = B ′+ t/pn for some B ′ ∈ T∨⊗W and some t ∈ T .
As t is killed by 1− φ, B ′ also satisfies the relation (23). But by [Ogus 1979, Lemma 3.10], we have
T∨⊗W ⊂ p−1 H , so B ′ ∈ p−1 H . By Lemma 3.4.11 of [Bragg and Lieblich 2018] we have B ′ ∈B(X).
We also have t/pn

∈B(X), and we conclude that B ∈B(X), as desired. □

Remark 2.8. One can alternatively prove Proposition 2.7 by generalizing the method of [Bragg and
Lieblich 2018, Lemma 3.4.11], which we sketch. This proof has the advantage of avoiding flat duality
and being uniform in the height of X . The first step is to understand the cokernel of the map (12). This is
described by the short exact sequence [Colliot-Thélène et al. 1983, Lemma 2, p. 779]

0→ Gm/G×pn

m →Wn �
1
X

1−F
−−→Wn �

1
X/d(Wn OX )→ 0, (24)

where 1 denotes the projection and F is the map defined in [Illusie 1971, Proposition II.3.3]. One then
proceeds by analyzing the p-adic filtrations on crystalline and de Rham–Witt cohomology.

2G. p-primary torsion in the Brauer group. We make some observations connecting the group B(X) of
crystalline B-fields to the p-primary torsion in the Brauer group of X . Suppose that X has finite height h.
By Proposition 2.6, we have

B(X)= H2(X, Q p(1))+H2(X/W ).

In particular, (21) induces an isomorphism

H2(X, Q p(1))
H2(X, Zp(1))+Pic(X)⊗ Q p

∼
−→ Br(X)[p∞]. (25)
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The slope 1 part of H2(X/W ) has rank 22− 2h, so we have H2(X, Zp(1))∼= Z⊕22−2h
p . Thus, (25) gives

an isomorphism

Br(X)[p∞] ∼= (Q p/Zp)
⊕22−ρ−2h, (26)

where ρ is the Picard rank of X . This could also be seen from the fact that, in the finite-height case, the
diagram (8) with ℓ replaced by p (and étale cohomology with flat cohomology) still has exact rows and
columns.

Remark 2.9. The exponent appearing in the formula (26) for the p-primary torsion of the Brauer group
is smaller than that for the l-primary torsion (9) by a factor of 2h. These “missing” p-primary torsion
Brauer classes are the cause of the restriction at p in Theorem 1.2.

We now suppose X is supersingular. By Proposition 2.6, we have

B(X)=B1(X)+H2(X, Q p(1)).

By the Tate conjecture for supersingular K3 surfaces, the first crystalline Chern character induces an
isomorphism Pic(X)⊗ Zp

∼
−→ T ⊗ Zp = H2(X, Zp(1)), and so H2(X, Q p(1)) is in the kernel of the

crystalline exponential map (20). Write N =Pic(X). We have ρ= 22, so Br(X) has no prime-to-p torsion
(see (9)). We conclude that (20) restricts to a surjection B1(X)→Br(X). We have a short exact sequence

0→ p−1 N/N →B1(X)/H → Br(X)→ 0.

In particular, Br(X) is p-torsion. As shown in the proof of Proposition 2.7, we have that B1(X) ⊂
N∨⊗W + p−1 N ⊂ p−1 N ⊗W , where the latter inclusion holds because discriminant group of N is
p-torsion. Let B1(X)◦ =B1(X)∩ (N∨⊗W ). We have a short exact sequence

0→ N∨/N →B1(X)◦/H → Br(X)→ 0. (27)

The subgroup B1(X)◦ can be understood using Ogus’s results [1979] on the classification of supersingular
K3 crystals. Write K = H/N ⊗W and V = N∨/N ∼= F2σ0

p (here, σ0 is the Artin invariant of X ). The
subspace K ⊂ V ⊗ k is Ogus’s characteristic subspace, and has dimension σ0. Let φ : V ⊗ k→ V ⊗ k
be the map φ(v ⊗ λ) = v ⊗ λp. Ogus showed that K is totally isotropic and is in a special position
with respect to φ. Namely, K +φ(K ) has dimension σ0+ 1, and V ⊗ k =

∑
i φ

i (K ) has dimension 2σ0.
This implies that there exists a characteristic vector for K , which is an element e1 ∈ V ⊗ k such that,
writing ei = φ

i−1(e1), we have that {e0, . . . , eσ0−1} is a basis for K and {e0, . . . , e2σ0−1} is a basis
for V ⊗ k. We let fi denote the functional given by pairing with ei , so that { f0, . . . , fσ0−1} is a basis
for K∨ = V ⊗ k/K . By Proposition 2.7, the subgroup B1(X)◦/H ⊂ V ⊗ k/K is the kernel of the map
1−φ : V ⊗ k/K → V ⊗ k/(K +φ(K )). It follows that we have

B1(X)◦/H = {λ f1+ λ
p f2+ · · ·+ λ

pσ0−1
fσ0−1 | λ ∈ k}.
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We conclude that B1(X)◦/H is isomorphic to the underlying additive group Ga(k) of the group field k.
The left term of (27) is discrete, and hence there is an isomorphism

Br(X)∼= Ga(k).

Remark 2.10. Multiplying by p and then reducing modulo p, the characteristic subspace K is identified
with the kernel of the k-linearized first de Rham Chern character cdR

1 ⊗k :Pic(X)⊗k→H2
dR(X/k), and the

vector space V ⊗ k/K is identified with its image. Furthermore, B1(X)/H is identified with H2(X, µp)

(regarded as a subgroup of H2
dR(X/k) via the map d log) and B1(X)◦/H is identified with U2(X, µp).

2H. The twisted Mukai crystal. We recall the Mukai crystal introduced in [Lieblich and Olsson 2015].
We set

H̃(X/W )= H0(X/W )(−1)⊕H2(X/W )⊕H4(X/W )(1).

As a result of the Tate twists on the first and third factors on the right-hand side, the Frobenius operator 8̃
on H̃(X/W ) is given by the formula

8̃(a, b, c)= (pσ(a),8(b), pσ(c)),

where we have identified H0 and H4 with W , and where 8 is the Frobenius operator on H2(X/W ). We
equip H̃(X/W ) with the Mukai pairing. It is immediate from the definitions that H̃(X/W ) is a K3 crystal
of rank 24.

Definition 2.11. Let B be a crystalline B-field. The twisted Mukai crystal associated to (X, B) is

H̃(X/W, B)= exp(B) H̃(X/W )⊂ H̃(X/K ).

Here, exp(B) is the isometry of H̃(X/K ) defined by the formula (10).

The twisted Mukai crystal has a natural structure of a K3 crystal by the following result.

Theorem 2.12. Let B ∈ B(X) be a crystalline B-field. The endomorphism 8̃ of H̃(X/K ) restricts to
an endomorphism of H̃(X/W, B). When equipped with the restriction of the Mukai pairing, the twisted
Mukai crystal H̃(X/W, B) is a K3 crystal of rank 24.

Proof. When B ∈B1(X), this is Proposition 3.4.15 of [Bragg and Lieblich 2018]. Using Proposition 2.7,
the proof of loc. cit. applies verbatim to give the result for general B-fields as well. □

Note that if h ∈H2(X/W ) then exp(h)=
(
1, h, 1

2 h2
)
∈H∗(X/W ). Thus, as a submodule of H̃(X/K ),

H̃(X/W, B) depends only on the image of B in H2(X, µpn ). Furthermore, up to isomorphism (of K3
crystals), H̃(X/W, B) only depends on the Brauer class αB (see [Bragg 2021, Lemma 3.2.4]).

Remark 2.13. For a K3 surface over the complex numbers, Huybrechts and Stellari [2005] define the
twisted Mukai lattice H̃(X, B, Z) to be equal to the untwisted lattice H̃(X, Z) with a modified Hodge
structure. This differs from our definition of the twisted Mukai crystal (as well as the twisted ℓ-adic
Mukai lattice), as we have defined H̃(X/W, B) by equipping the rational Mukai lattice H̃(X/K ) with a
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nonstandard integral structure, but the same crystal structure. The convention analogous to that of loc. cit.
would be to define H̃(X/W, B) to be equal to H̃(X/W ) as a W -module, but equipped with the twisted
Frobenius operator 8̃B = exp(−B) ◦ 8̃ ◦ exp(B)= exp(φ(B)− B).

We record the following observation.

Proposition 2.14. Let X be a K3 surface and B be a crystalline B-field. If X has finite height h, then
H̃(X/W, B) is a K3 crystal of height h and, in particular, is abstractly isomorphic to H̃(X/W ). If X is
supersingular of Artin invariant σ0, then H̃(X/W, B) is a supersingular K3 crystal whose Artin invariant
is equal to either σ0 if αB = 0 or σ0+ 1 if αB ̸= 0.

Proof. Suppose that X has finite height. The defining inclusion H̃(X/W, B)⊂ H̃(X/K ) is compatible with
the pairing and Frobenius. Thus, H̃(X/W, B) and H̃(X/K ) are isogenous, and so H̃(X/W, B) has height h.
If h is finite, this implies the crystals are isomorphic integrally. Alternatively, we may reason as follows.
Because X has finite height, by Proposition 2.6 we may assume B satisfies B = φ(B). The map exp(−B)
then defines an isomorphism H̃(X/W, B)∼= H̃(X/W ) of K3 crystals. If X is supersingular, then the Brauer
group of X is p-torsion. As the twisted Mukai crystal depends up to isomorphism only on the class αB , we
may assume that B ∈B(X)1. The result then follows from [Bragg and Lieblich 2018, Corollary 3.4.23]. □

2I. The Newton–Hodge decomposition of the twisted Mukai crystal. Let H be a K3 crystal. The
Newton–Hodge decomposition of H is a canonical direct sum decomposition

H = H<1⊕ H1⊕ H>1

with the following properties. If H has finite height h and rank r , then H<1 has slope 1−1/h and rank h,
H1 has slope 1 and rank r − 2h, and H>1 has slope 1+ 1/h and rank h. Furthermore, H1 is orthogonal
to H<1⊕ H>1, and under the pairing, H<1 and H>1 are dual. If H is supersingular, then H1 = H and
H<1 = H>1 = 0.

Let X be a K3 surface and let B be a crystalline B-field. We will relate the Newton–Hodge decomposi-
tions of H̃(X/W, B) and H2(X/W ).

Proposition 2.15. As submodules of H̃(X/K ),

H̃(X/W, B)<1 = H2(X/W )<1,

H̃(X/W, B)1 = exp(B)
(
H0(X/W )⊕H2(X/W )1⊕H4(X/W )

)
,

H̃(X/W, B)>1 = H2(X/W )>1.

Proof. If X is supersingular, then H̃(X/W, B) is also supersingular, and the result is trivial. Suppose X
has finite height. Write Hi

= Hi (X/W ). By Proposition 2.6, B is congruent modulo H2 to a B-field B ′

satisfying φ(B ′)= B ′. As H̃(X/W, B)= H̃(X/W, B ′), we may assume without loss of generality that B is
fixed by φ and, in particular, B ∈ (H2)1⊗K . We then have that H̃(X/W, B)<1= exp(B) H̃(X/W )<1, and
similarly for the slope 1 and> 1 parts. It is immediate that the Newton–Hodge decomposition of H̃(X/W )

is given by H̃(X/W )<1 = (H2)<1, H̃(X/W )1 = H0
⊕(H2)1⊕H4, and H̃(X/W )>1 = (H2)>1. The result
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follows upon noting that H1⊗K is orthogonal to (H2)<1 and (H2)>1, so exp(B)(H2)<1 = (H2)<1 and
exp(B)(H2)>1 = (H2)>1. □

Note that if B is a general B-field, the direct sum decomposition of H̃(X/W, B)1 described in the
statement of Proposition 2.15 may not be preserved by 8̃.

2J. Mixed realization. We define B-fields for Brauer classes whose order is not necessarily a prime
power. For simplicity we give the definitions only when char k = p > 0.

Definition 2.16. Let α ∈ Br(X) be a class of exact order m. Fix a prime q. Let qn be the largest power
of q dividing m, and set t = m/qn . If q = ℓ ̸= p, then an ℓ-adic B-field lift of α is an ℓ-adic B-field lift
(in the sense of Definition 2.1) of tα. Similarly, if q = p, then a crystalline B-field lift of α is a crystalline
B-field lift (in the sense of Definition 2.3) of tα.

Definition 2.17. Let α ∈ Br(X) be a Brauer class. A mixed B-field lift of α is a set B = {Bℓ}ℓ̸=p ∪ {Bp}

consisting of a choice of an ℓ-adic B-field lift Bℓ of α for each prime ℓ ̸= p and a crystalline B-field
lift Bp of α (in both cases in the sense of Definition 2.16).

Given a mixed B-field B, we write B p for the component in H2(X, Ap
f ), and Bp = Bp for the

component in B(X)⊂ H2(X/K ).

We say a few words to explain this definition. Let µ∗ =
⋃

m µm be the subsheaf of torsion sections
of Gm . Let p0 = p and let p1, p2, . . . be an enumeration of the remaining primes. We have a canonical
isomorphism

µp∞0 ⊕µp∞1 ⊕µp∞2 · · ·
∼= µ∗

given by multiplication. As described in the introduction, we have

H2(X, Ap
f )=

∏
i≥1

′

H2(X, Q pi (1)),

where the restricted product on the right-hand side consists of tuples {Bi } such that for all but finitely
many i we have Bi ∈ H2(X, Zpi (1)). A mixed B-field lift of a class α is a preimage of α under the
composition

B(X)×H2(X, Ap
f )↠

⊕
i

H2(X, µp∞i )
∼
−→ H2(X, µ∗)↠ Br(X), (28)

which we denote by B 7→ αB . Here, the right horizontal map is induced by the inclusion µ∗ ⊂ Gm .

3. Twisted Chern characters and action on cohomology

Let X be a smooth projective variety over a field k and let α ∈ Br(X) be a torsion Brauer class. In this
section we will define a certain twisted Chern character for α-twisted sheaves on X . This will be a map
from the Grothendieck group of coherent α-twisted sheaves on X to the rational Chow group A∗(X)Q of X .
There are multiple inequivalent definitions of twisted Chern characters appearing in the literature, several
of which are reviewed and compared in [Huybrechts and Stellari 2006, §3]. These all seem to be essentially
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equivalent in practice. We will use the notion appearing in [Lieblich et al. 2014; Bragg 2021; Bragg and
Lieblich 2018], which is also used in [Huybrechts 2019, §2]. This formulation seems to us to be the most
flexible, and has a uniform interaction with B-fields in each of the contexts we have considered. We remark
that our definition below is described in terms of cocycles in [Bragg 2021, Appendix A.1] and is compared
to the twisted Chern characters of Huybrechts and Stellari [2005] in [Bragg 2021, Appendix A.2].

Suppose that nα = 0 for some positive integer n. To define our twisted Chern character we will make
an auxiliary choice of a preimage α′ ∈ H2(X, µn) of α under the surjection

H2(X, µn)↠ Br(X)[n]

induced by the inclusion µn ⊂ Gm .
We choose a Gm–gerbe π :X → X with cohomology class α, and identify the category of α-twisted

sheaves on X with the category of coherent sheaves on X of weight 1. We also choose aµn-gerbe X ′
→ X

with cohomology class α′, and an isomorphism X ′
∧µn Gm ∼= X (see [Olsson 2016, Chapter 12.3]).

There is then a canonical n-fold twisted invertible sheaf L on X . Given a locally free α-twisted sheaf E

of finite rank, we note that E⊗n
⊗L ∨ is a 0-twisted sheaf on X . We define

chα
′

(E )= n
√

ch(π∗(E⊗n ⊗L ∨)),

where the n-th root is chosen so that rk is positive. One can check that chα
′

depends only on α′, and not
on the choice of gerbes or on L . We note that ch0 and ch1 are given by

chα
′

(E )= (rk(E ), π∗(det(E )⊗L ∨), . . . ). (29)

Assume that X has the resolution property, so that every α-twisted sheaf admits a finite resolution by
locally free α-twisted sheaves. We then obtain by additivity a map

chα
′

: K (X, α)→ A∗(X)Q,

where K (X, α) denotes the Grothendieck group of the category of α-twisted sheaves. We note that this
definition is purely algebraic, and hence makes sense in any characteristic. Furthermore, we did not
need α to be topologically trivial, only torsion.

Suppose that X is a K3 surface. We explain the relationship between the choice of α′ and the choice
of a B-field lift of α. We first observe that, in any of the contexts we have considered, a choice of
B-field lift for α determines in particular a choice of preimage of α in H2(X, µn). More precisely, a
choice of singular B-field lift (if the ground field is the complex numbers) or of a mixed B-field lift
determines a preimage in H2(X, µn). If α is killed by ℓn , then a choice of ℓ-adic B-field lift determines a
preimage in H2(X, µℓn ), and if α is killed by pn a choice of crystalline B-field lift determines a preimage
in H2(X, µpn ). In any of these situations, we write

chB(E )= chα
′

(E ),

where α′ is the induced preimage. We also set

vB(E )= chB(E ).
√

td(X).
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3A. Twisted Chern characters on twisted K3 surfaces.

Definition 3.1. We assume now that k is an algebraically closed field of characteristic p > 0. If X is a
K3 surface over k, we define the extended Néron–Severi group of X by

Ñ (X)= ⟨(1, 0, 0)⟩⊕ N (X)⊕⟨(0, 0, 1)⟩ = A∗(X)⊂ A∗(X)Q.

As the Chern characters of a coherent sheaf on a K3 surface are integral, the extended Néron–Severi
group is a natural recipient for the Chern class map, and in fact the Chern class map

ch : K (X)→ Ñ (X)

is an isomorphism. Let α ∈ Br(X) be a Brauer class. For two α-twisted sheaves E , F , we have the
Riemann–Roch formula

χ(E ,F )=−⟨vB(E ), vB(F )⟩.

We will identify a subgroup of Ñ (X)⊗ Q which contains the image of the twisted Chern class map

chB
: K (X, α)→ Ñ (X)⊗ Q.

Definition 3.2. If B is an ℓ-adic B-field, we define the ℓ-adic twisted Néron–Severi group by

Ñ (X, Bℓ)= (Ñ (X)⊗ Z[ℓ−1
])∩ H̃(X, Zℓ, Bℓ).

If char k = p and B is a crystalline B-field, we define the crystalline twisted Néron–Severi group by

Ñ (X, Bp)= (Ñ (X)⊗ Z[p−1
])∩ H̃(X/W, Bp),

and if B = {Bℓ}ℓ̸=p ∪ {Bp} is a mixed B-field, we define the mixed twisted Néron–Severi group by

Ñ (X, B)=
( ⋂
ℓ̸=p

Ñ (X, Bℓ)
)
∩ Ñ (X, Bp),

where the intersection is taken inside of Ñ (X)⊗ Q. Note that for all but finitely many primes q the
B-field Bq is integral. Hence, the intersection defining Ñ (X, B) is finite.

The restriction of the Mukai pairing on Ñ (X)⊗ Q to the ℓ-adic twisted Néron–Severi group takes
values in Z[ℓ−1

] ∩ Zℓ = Z. Similarly, the Mukai pairing restricts to an integral pairing on the crystalline
twisted Néron–Severi group. The following is the crucial integrality result for twisted Chern characters,
generalizing the fact that the Chern characters of usual sheaves on K3 surfaces are integral.

Proposition 3.3. Let X be a K3 surface and B a mixed (resp. ℓ-adic, resp. crystalline) B-field lift of a
Brauer class α ∈ Br(X). For any twisted sheaf E ∈ Coh(1)(X, α), the twisted Chern character chB(E )

lies in the mixed (resp. ℓ-adic, resp. crystalline) twisted Néron–Severi group Ñ (X, B).

Proof. This is proved in Appendix A of [Bragg 2021] (the quoted statement is written for a crystalline
B-field of the form B = a/p, but the proof applies essentially unchanged). □



1090 Daniel Bragg and Ziquan Yang

Remark 3.4. The analog of Proposition 3.3 for the Hodge realization follows immediately from the
existence of an invertible twisted sheaf in the differentiable category (in fact, this existence is used to
define twisted Chern characters in [Huybrechts and Stellari 2005]). The ℓ-adic case is proved in [Lieblich
et al. 2014, Lemma 3.3.7] by lifting to characteristic 0.

Proposition 3.5. For any mixed B-field lift of α, the twisted Chern character

chB
: K (X, α)→ Ñ (X, B)

is surjective.

Proof. The analogous result over the complex numbers is [Huybrechts and Stellari 2005, Proposition 1.4].
The proof in our case is identical, up to our differences in convention. □

3B. Action on cohomology. Let (X, α) and (Y, β) be twisted K3 surfaces over k. Choose mixed B-field
lifts B of α and B′ of β. As above, we define the twisted Chern character map

ch−B⊞B′
: K (X × Y,−α⊞β)→ Ñ (X × Y )⊗ Q,

and set
v−B⊞B′(_)= ch−B⊞B′(_).

√
td(X × Y ).

Let 8P : Db(X, α)→ Db(Y, β) be a Fourier–Mukai equivalence. We consider the map

8v−B⊞B′ (P) := π2∗(π
∗

1 (_)∪ v
−B⊞B′(P)) : H∗(X)Q→ H∗(Y )Q, (30)

where π1 : X × Y → X and π2 : X × Y → Y are the respective projections. Using the same formula,
we define maps 8ℓv−Bℓ⊞B′

ℓ (P) on the rational ℓ-adic cohomologies and 8cris
v
−Bp⊞B′p (P) on rational crystalline

cohomology. By definition, these maps are equal to the maps given by restricting (30) to the ℓ-adic and
crystalline components of H∗Q .

Theorem 3.6. Let 8P : Db(X, α)→ Db(Y, β) be a Fourier–Mukai equivalence. The map (30) restricts
to an isomorphism

8
ℓ
v−Bℓ⊞B′

ℓ (P) : H̃(X, Zℓ, Bℓ)→ H̃(Y, Zℓ, B ′ℓ) (31)

which is compatible with the Mukai pairings for each ℓ ̸= p, to an isomorphism

8
cris
v
−Bp⊞B′p (P) : H̃(X/W, Bp)→ H̃(Y/W, B ′p) (32)

of K3 crystals (that is, an isomorphism of W -modules which is compatible with the pairing and Frobenius
operators), and to an isometry

8v−B⊞B′ (P) : Ñ (X, B) ∼−→ Ñ (Y, B′). (33)

Proof. By definition, the map (31) is equal to the correspondence induced by the cycle v−Bℓ⊞B ′ℓ(P), and
the map (32) is equal to the correspondence induced by the cycle v−Bp⊞B ′p(P). The compatibility with
the pairing, and in the crystalline case, with the Frobenius, is proved exactly as in [Bragg 2021, §3.4]. It
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remains to show that the correspondences preserve the integral structures. Under the assumption that p≥ 5,
this is shown in [Bragg 2021, Appendix A]. The result in general can be shown by lifting to characteristic 0,
using the techniques of the following section. We omit further details. This proves the claims regarding (31)
and (32). To prove the claimed properties of (33), note that the indicated correspondence preserves the
subgroups of algebraic cycles, and so restricts to an isomorphism Ñ (X)⊗ Q ∼

−→ Ñ (Y )⊗ Q. The result
then follows from the previous claims. □

4. Rational Chow motives and isogenies

Given a smooth proper variety X over and algebraically closed field k, we let h(X) denote its rational
Chow motive.

Definition 4.1 (cf. [Yang 2022, Definition 1.1]). Let X and X ′ be K3 surfaces over k. An isogeny
from X to X ′ is an isomorphism of motives f : h2(X ′) ∼−→ h2(X) whose cohomological realization
H2(X ′)Q → H2(X)Q preserves the Poincaré pairing. Two isogenies are said to be equivalent if they
induce the same map H2(X ′)Q

∼
−→ H2(X)Q (see Section 1D).

Recall [Kahn et al. 2007, 14.2.2] that if X is a K3 surface over an algebraically closed field k then
there is a canonical decomposition

h2(X)= h2
alg(X)⊕ h2

tr(X)

of the Chow motive in degree two into an algebraic part and a transcendental part. The algebraic
part h2

alg(X) is isomorphic to L⊗NS(X), where L stands for the Lefschetz motive. Similarly, h(X)
decomposes as halg(X)⊕ h2

tr(X), where halg = L0
⊕ h2

alg⊕ L2.
Now suppose (X, α) and (Y, β) are twisted K3 surfaces with mixed B-field lifts B of α and B′ of β. Let

8P : Db(X, α)→ Db(Y, β) be a Fourier–Mukai equivalence. Following Huybrechts [2019, Theorem 2.1],
we have that the correspondence v−B⊞B′(P) induces an isomorphism h(X) ∼−→ h(Y ), which restricts
to isomorphisms h2

tr(X)
∼
−→ h2

tr(Y ) and halg(X) ∼−→ halg(Y ). By Witt’s cancellation theorem, we can
always find some isomorphism h2

alg(X)
∼
−→ h2

alg(Y ) that preserves the Poincaré pairing. Adding this and
the isomorphism h2

tr(X)
∼
−→ h2

tr(Y ) induced by v−B⊞B′(P), we obtain an isogeny h2(X) ∼−→ h2(Y ).

Definition 4.2. Let X, Y be K3 surfaces. An isogeny f : h2(X) ∼−→ h2(Y ) is a primitive derived isogeny
if its restriction h2

tr(X)
∼
−→ h2

tr(Y ) agrees with the one induced by v−B⊞B′(P) for some choices of α, β,
B, B′ and 8P as above. A derived isogeny is a composition of finitely many primitive derived isogenies.

In particular, note that if there exists a primitive derived isogeny between X and Y , then X and Y are
twisted derived equivalent. Twisted derived equivalent K3 surfaces clearly have the same rational Chow
motive. In a recent paper, Fu and Vials proved that their motives are moreover isomorphic as Frobenius
algebra objects, and over C they also give a motivic characterization of twisted derived equivalent K3’s
[Fu and Vial 2021, Theorem 1, Corollary 2].
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5. Lifting derived isogenies to characteristic 0

The goal of this section is to give some lifting results for primitive derived isogenies. This requires
understanding deformations of twisted K3 surfaces and of twisted Fourier–Mukai equivalences in mixed
characteristic. Deformations of a twisted K3 surface (X, α) over the complex numbers can be profitably
understood in terms of deformations of a pair (X, B), where B ∈ H2(X, Q) is a Hodge B-field lift
of α (see for instance [Reinecke 2019]). Considering deformations of (X, B) serves two purposes: first,
the B-field B allows one to algebraize formal deformations of the Brauer class, and second, B gives a
notion of twisted Chern characters in the deformation family. Suppose now that (X, α) is a twisted K3
surface in positive characteristic. To similarly understand deformations of (X, α) over a base of mixed
characteristic, we would need a notion of mixed characteristic B-field lift. The ℓ-adic theory works
essentially unchanged in this setting, but the analog of the crystalline theory seems more complicated. We
will avoid this issue by using instead of a B-field a simpler object, namely a preimage α′ ∈H2(X, µn) of α
under the map H2(X, µn)→ Br(X). The deformation theory of such pairs (X, α′) has been considered
in [Bragg 2023]: the flat cohomology groups H2(X, µn) can be defined relatively in families, and their
tangent spaces can be understood in terms of de Rham cohomology. Moreover, it turns out that formal
projective deformations of such pairs (X, α′) algebraize, and furthermore the class α′ can be used to define
twisted Chern characters in families. Our approach to the deformation theory of twisted Fourier–Mukai
equivalences is based on the techniques of Lieblich and Olsson [2015], which we, in particular, extend to
the twisted setting.

Let (X, α) and (Y, β) be twisted K3 surfaces over an algebraically closed field k of characteristic
p > 0. Let 8P : Db(X, α) ∼= Db(Y, β) be a Fourier–Mukai equivalence induced by a complex P ∈
Db(X × Y,−α⊞β).

Definition 5.1. The equivalence 8P : Db(X, α) ∼−→ Db(Y, β) is filtered if there exist preimages α′ ∈
H2(X, µn) of α and β ′ ∈ H2(Y, µm) of β such that the cohomological transform

8v−α′⊞β′ (P) : Ñ (X)Q
∼
−→ Ñ (Y )Q

sends (0, 0, 1) to (0, 0, 1).

Note that the condition for being filtered does not depend on the choices of α′ and β ′, and thus is an
intrinsic property of 8P . We consider the deformation functor Def(X,α′), whose objects over an Artinian
local W -algebra A are isomorphism classes of pairs (X A, α

′

A) where X A is a flat scheme over Spec A
such that X A ⊗ k ∼= X , and α′A ∈ H2(X A, µn) is a cohomology class such that α′A|X = α

′ (see [Bragg
2023, Definition 1.1]).

Proposition 5.2. Suppose that8P is filtered. Given a preimage α′ ∈H2(X, µn) of α, there is a canonically
induced preimage β ′ ∈ H2(Y, µn) of β and a morphism

δP : Def(Y,β ′)→ Def(X,α′)

of deformation functors over W (depending on P and α′).
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Proof. Let X → X and Y → Y be Gm-gerbes representing α and β. The chosen preimage α′ corresponds
to an n-twisted invertible sheaf L on X . Using Proposition 3.5, we find a complex of twisted sheaves E

on X with rank n and det E ∼= L . Using the assumption that 8P is filtered, we see that 8P(E ) is a
complex of twisted sheaves on Y of rank n. Thus, its determinant N = det(8P(E )) is an invertible
n-twisted sheaf on Y . Note that this implies nβ = 0. We let β ′ ∈ H2(Y, µn) be the preimage of β
corresponding to N . Note that the class β ′ does not depend on our choice of E .

Let X ′
→ X and Y ′→ Y be µn-gerbes corresponding to α′ and β ′. Suppose given an Artinian local

W -algebra A and a deformation of (Y, β ′) over A. Up to isomorphism, this is the same as giving a
pair (Y ′A, ϕ), where Y ′A is a µn-gerbe equipped with a flat proper map to Spec A and ϕ : Y ′A⊗ k ∼= Y ′ is
an isomorphism of gerbes. We let DY ′A/A be the stack of relatively perfect universally glueable simple
Y ′A-twisted complexes over Spec A with twisted Mukai vector (0, 0, 1) (see [Lieblich and Olsson 2015,
Section 5]). We let P ′ be the pullback of P along the product of the maps X ′

⊂X and Y ′⊂Y . Because
8P is filtered, the complex P ′ induces a map X ′

→ DY ′A/A⊗ k. By reasoning identical to [Lieblich and
Olsson 2015, Lemma 5.5], this map is an open immersion. The image of X ′ is contained in the smooth
locus of the morphism π⊗k, so there is a unique open substack X ′

A⊂DY ′A/A which is flat and proper over
Spec A whose restriction to the closed fiber is isomorphic to X ′. Via this isomorphism, the stack X ′

A has
a canonical structure of µn-gerbe. Thus, given a deformation of (Y, β ′) over A, we have produced (using
the complex P) a deformation of (X, α′) over A. This defines a morphism Def(Y,β ′)→ Def(X,α′). □

We now assume that 8P is a filtered Fourier–Mukai equivalence. We fix a preimage α′ ∈ H2(X, µn)

of α. Let β ′ ∈ H2(Y, µn), and let

δP : Def(Y,β ′)→ Def(X,α′) (34)

be the preimage and morphism produced by Proposition 5.2. We continue the notation introduced above,
so that πX : X → X and πY : Y → Y are Gm-gerbes corresponding to α and β, X ′ and Y ′ are
µn-gerbes corresponding to α′ and β ′, L and N are the corresponding n-fold twisted invertible sheaves
on X ′ and Y ′, and P ′ is the restriction of P to X ′

×Y ′. Let Bα and Bβ be mixed B-field lifts of α and β
such that n Bα and n Bβ are integral and such that n Bα (mod n) equals α′ and n Bβ (mod n) equals β ′.
Write 8 for the cohomological transform

8=8v−α′⊞β′ (P) : Ñ (X)Q→ Ñ (Y )Q.

Lemma 5.3. The transform 8 satisfies 8(0, 0, 1)= (0, 0, 1) and 8(1, 0, 0)= (1, 0, 0), and restricts to
an isometry N (X) ∼−→ N (Y ) of integral Néron–Severi lattices.

Proof. We are assuming that 8P is filtered, so we have 8(0, 0, 1) = (0, 0, 1). Consider a complex E

of twisted sheaves on X with rank n and det E ∼=L . It follows immediately from the definition of the
twisted Chern character that vα

′

(E )= (n, 0, s) for some integer s. Moreover, we see that the vector

8(n, 0, s)=8(vα
′

(E ))= vβ
′

(8P(E ))
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has trivial second component. As 8 is an isometry, we conclude that 8(n, 0, s)= (n, 0, s). It follows
that 8(1, 0, 0)= (1, 0, 0), and that 8 restricts to an isometry on the rational Néron–Severi lattices.

We now prove that8 in fact restricts to an isometry between the integral Néron–Severi lattices. Consider
an invertible sheaf L on X . The complex 8P(E ⊗ π

∗L) of twisted sheaves on Y has rank n. Let M

be its determinant. Using the formula (29), we see that the pushforward of the (0-twisted) invertible
sheaf M ⊗N ∨ to Y has cohomology class 8(L). In particular, 8(L) is in N (Y ). □

The following result is our twisted analog of [Lieblich and Olsson 2015, Proposition 6.3].

Proposition 5.4. The morphism δP (34) is an isomorphism, and furthermore has the following properties:

(1) For any class L ∈ Pic(X), the map δ restricts to an isomorphism

Def(Y,β ′,8(L)) ∼= Def(X,α′,L) .

(2) For any augmented Artinian W -algebra A and any lift (X A, α
′

A) of (X, α′) over A, there exists a
perfect complex PA ∈ Db(X A ×A YA,−αA ⊞ βA) lifting P , where (YA, β

′

A) = δ
−1(X A, α

′

A) and
αA and βA are the Brauer classes associated to α′A and β ′A.

Proof. To see that µP is an isomorphism, consider the same construction applied to the kernel Q = P∨

of the inverse Fourier–Mukai transform and the preimage β ′ of β, which yields a map

µQ : Def(X,α′) ∼−→ Def(Y,β ′) .

We claim that µP and µQ are inverses. This may be verified exactly as in [Lieblich and Olsson 2015,
Proposition 6.3]. To see claim (2), note that the restriction along the open immersion

X ′

A×Y ′A ⊂ DY ′A/A×Y ′A

of the universal complex lifts P ′. To see (1), suppose that the deformation (X A, α
′

A) is contained in the
subfunctor Def(X,α′,L). There is then an invertible sheaf L A on X A deforming L . Let EA be a relatively
perfect complex of αA-twisted sheaves on X A with rank n and trivial determinant. Let πA :XA→ X A be
the coarse space map. The determinant of the complex 8PA(EA⊗π

∗

A L A) is a 0-fold twisted sheaf on YA,
so its pushforward to YA is an invertible sheaf. Moreover, this sheaf has class lifting 8(L). □

Definition 5.5. We say that a filtered Fourier–Mukai equivalence 8P is polarized if there exists B-field
lifts B and B′ of α and β such that the isometry 8 : Pic(X)→ Pic(Y ) (see Lemma 5.3) sends the ample
cone CX of X to the ample cone CY of Y .

One checks that the condition to be polarized is independent of the choice of B-field lifts, in the sense
that it is verified for one choice of lifts if and only if it is verified for all choices of lifts.

We now prove our main lifting results. By results in [Bragg 2023], the twisted K3 surface (X, α) can be
lifted to characteristic 0. Moreover, we can also compatibly lift the preimage α′ of α. As a consequence,
Proposition 5.4 shows that given such a lift there is an induced formal lift of (Y, β), together with a lift
of β ′ and of the complex P inducing the equivalence. Under the assumption that 8P is polarized, we can
even produce a (nonformal) lift. We make this precise in the following result.



Twisted derived equivalences and isogenies between K3 surfaces in positive characteristic 1095

Theorem 5.6. Suppose that 8P is a filtered polarized Fourier–Mukai equivalence. Let L be an ample
line bundle on X. Suppose we are given a complete DVR V with residue field k and a lift (XV , α

′

V , LV ) of
(X, α′, L) over V . There exists an ample line bundle M on Y , a lift (YV , β

′

V ,MV ) of (Y, β ′,M) over V ,
and a perfect complex PV ∈ Db(XV ×V YV ,−αV ⊞ βV ) (where βV is the image of β ′V in the Brauer
group) which induces a Fourier–Mukai equivalence and whose restriction to Db(X × Y,−α ⊞ β) is
quasi-isomorphic to P.

Proof. Let M be the line bundle on Y corresponding to 8(L). By Proposition 5.4, we find compatible
deformations (YVn , β

′

Vn
,MVn ) of (Y, β ′,M) over Vn = V/mn+1 for each n ≥ 0, together with compatible

perfect complexes PVn ∈ Db(XVn×Vn YVn ,−αVn⊞βVn ) deforming P , where βVn is the image of β ′Vn
in the

Brauer group. As 8P is polarized, M is ample, so by the Grothendieck existence theorem, there exists a
scheme (YV ,MV ) over V restricting to the (YVn , β

′

Vn
). By [Bragg 2023, Proposition 1.4] there exists a class

β ′V ∈ H2(YV , µn) restricting to the β ′Vn
. Finally, by the Grothendieck existence theorem for perfect com-

plexes [Lieblich 2006, Proposition 3.6.1], there is a perfect complex PV ∈Db(XV×V YV ,−αV⊞βV )whose
restriction to Vn is quasi-isomorphic to PVn for each n. Moreover, arguing as in the proof of Theorem 6.1
of [Lieblich and Olsson 2015], we see that the complex PV induces a Fourier–Mukai equivalence. □

Definition 5.7. Let X be a K3 surface over a local ring and X be its special fiber. We say that X is a
perfect lifting of X if the restriction map Pic(X)→ Pic(X) is an isomorphism.

We remark that if X as above is over a DVR, the ample and the big and nef cones of the generic fiber
are canonically identified with those of the special fiber.

Theorem 5.8. Let (X, α) and (Y, β) be twisted K3 surfaces over k. Let 8P : Db(X, α) ∼−→ Db(Y, β) be
a Fourier–Mukai equivalence. There exists

(a) an autoequivalence 8′ of Db(Y, β) which is a composition of spherical twists about (−2)-curves,

(b) a DVR V whose fraction field has characteristic 0 and with residue field k,

(c) projective lifts (XV , αV ) and (YV , βV ) of (X, α) and (Y, β) over V , and

(d) a perfect complex RV ∈ Db(XV ×V YV ,−αV ⊞ βV ) which induces a Fourier–Mukai equivalence
and whose restriction to X × Y is quasi-isomorphic to the kernel R of the equivalence 8′ ◦8P .

Moreover, if X and Y have finite height, we may choose the above data so that 8′ is the identity and
XV and YV are perfect liftings.

Proof. Choose a preimage α′ ∈ H2(X, µn) of α. Given a choice of preimage of β, we obtain an isometry

8 : Ñ (X)Q
∼
−→ Ñ (Y )Q.

Consider the class v = (8)−1(0, 0, 1) ∈ ÑS(X)Q . Note that this class does not depend on the choice of
preimage of β. By [Bragg 2023, Theorem 7.3], we may find a DVR V of characteristic 0 and residue
field k and a polarized lift (XV , α

′

V ) of (X, α′) over V over which the class v extends. Let αV be the
image of α′V in the Brauer group of XV . Let MV =M(XV ,αV )(v) be the relative moduli space of H -stable
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αV -twisted sheaves on XV → Spec V with twisted Mukai vector vα
′

V = v, where H is a v-generic
polarization. Let MV be the coarse space of MV . The morphism MV → Spec V is a projective family of
K3 surfaces, and there is a class γV ∈Br(MV ) such that the universal complex QV induces an equivalence

8QV : D
b(MV , γV )

∼
−→ Db(XV , αV ).

Let γ ∈ Br(M) be the restriction of γV to M , and let Q be the restriction of QV . The Fourier–Mukai
equivalence

8P ◦8Q : Db(M, γ ) ∼−→ Db(Y, β)

is filtered. As in [Lieblich and Olsson 2015, Lemma 6.2], we may find an autoequivalence 8′ as in the
statement of the theorem so that8′◦8P◦8Q is both filtered and polarized. Let R denote its kernel. Choose
a preimage γ ′V ∈H2(MV , µm) of γV , and write γ ′ for the restriction of γ ′V to M . Let β ′ be the corresponding
lift of β produced by Proposition 5.2. By Theorem 5.6, there is a lift (YV , β

′

V ) of (Y, β ′) and RV of R
over V , corresponding to the lift (MV , γ

′

V ) of (M, γ ′). Consider the Fourier–Mukai equivalence

8RV ◦8
−1
QV
: Db(XV , αV )→ Db(YV , βV ).

This equivalence restricts over k to 8′ ◦8P . By the uniqueness of the kernel, we conclude that RV

restricts to the kernel of the equivalence 8′ ◦8P , as claimed.
Suppose that X and Y have finite height. We modify the above as follows. Choose α′ so that p does

not divide n/ord(α). By [Bragg 2023, Theorem 7.3], we may choose the lift XV so that the restriction
map Pic(XV )→ Pic(X) is an isomorphism. It follows that Pic(YV )→ Pic(Y ) is also an isomorphism. In
particular, every (−2)-class in Pic(Y ) extends to YV . We now compose 8RV with an autoequivalence of
Db(Y, β) lifting the inverse of8′. The kernel of the resulting equivalence then restricts to P , as desired. □

6. Existence theorems

The goal of this section is to construct isogenies with prescribed action on cohomology. In particular, we
will prove Theorems 1.2 and 1.4.

6A. Construction of derived isogenies. We begin with Theorem 1.2.
Let R be an integral domain whose field of fractions is of characteristic 0 (we have in mind R = Zℓ or

R =W ). Set R Q := R⊗Z Q. Let M be a quadratic lattice such that 2−1m2
∈ R for every m ∈ M .

Given an element b∈M such that ⟨b, b⟩ ̸=0, the reflection in b is the isometry sb :M Q→M Q defined by

sb(x)= x −
2⟨x, b⟩
⟨b, b⟩

b.

Let H̃ be a lattice of the form R⊕M ⊕ R equipped with the Mukai pairing, i.e.,

⟨(r,m, s), (r ′,m′, s ′)⟩ = ⟨m,m′⟩− rs ′− r ′s,

and a multiplicative structure given by

(r,m, s) · (r ′,m′, s ′)= (rr ′, rm′+ r ′m, rs ′+ r ′s+⟨m,m′⟩).
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Lemma 6.1. Let b ∈ M be a primitive element such that ⟨b, b⟩ ̸= 0. Set n := 1
2 b2 and B := b/n ∈ M Q :=

M ⊗Z Q. Let B ′ ∈ M Q be another element. If 8 : H̃Q
∼
−→ H̃Q satisfies

(a) 8(1, 0, 0)= (0, 0, 1/n) and 8(0, 0, 1)= (n, 0, 0), and

(b) eB8e−B ′ is R-integral (i.e., restricts to an isometry H̃ ∼
−→ H̃ ),

then ϕ(M)= sb(M), where sb ∈ Aut(M Q) is the reflection in b and ϕ is the restriction of 8 to M Q .

Proof. We extend rb := −sb to an isometry 9 : H̃Q
∼
−→ H̃Q by requiring that 9 satisfies (a). It is

straightforward to verify that eB9e−B is R-integral:

eB9e−B(0, 0, 1)= eB9(0, 0, 1)= eB(n, 0, 0)= (n, b, 1),

eB9e−B(1, 0, 0)= eB9(1,−B, 1/n)= eB(1,−B, 1/n)= (1, 0, 0),

eB9e−B(0,m, 0)= eB9(0,m,−⟨B,m⟩)= eB(n⟨−B,m⟩, rb(m), 0)= (⟨−b,m⟩,−m, 0).

We now consider the composition (eB9e−B)−1
◦ (eB8e−B ′) = eB(9−1

◦8)e−B ′ , which has to be
R-integral. Direct computation shows

eB(9−1
◦8)e−B ′(0,m, 0)= eB(9−1

◦8)(0,m,−⟨B ′,m⟩)

= eB(
0, r−1

b (ϕ(m)),−⟨B ′,m⟩
)

=
(
0, r−1

b (ϕ(m)), ⟨B, ϕ(m)⟩− ⟨B ′,m⟩
)
.

As eB(9−1
◦8)e−B ′ is R-integral, we deduce that r−1

b ◦ϕ is R-integral, and so rb(M)= ϕ(M). □

The next result is the key geometric input for the proof of Theorem 1.2. Let k be an algebraically closed
field of characteristic p. Given a K3 surface X over k and a class b∈H2(X), we let sb :H2(X)Q→H2(X)Q

denote the isometry sbp1
×sbp2

×· · · . We say that a class b ∈H2(X) is primitive if nb′= b for an integer n
and b′ ∈ H2(X) implies n =±1.

Proposition 6.2. Let X be a K3 surface over k. Let b ∈ H2(X) be a primitive class such that n := 1
2 b2 is

an integer1 and such that b/n is a mixed B-field. There exists a K3 surface X ′ together with a primitive
derived isogeny f : h2(X ′)→ h2(X) such that f∗(H2(X ′))= sb(H2(X)) in H2(X)Q .

Proof. Set B := b/n and let α = αB be the Brauer class defined by B. Let X ′ be the moduli space
of stable α-twisted sheaves with Mukai vector vB

= (n, 0, 0) (where stability is taken with respect
to a sufficiently generic polarization). As b is primitive, the class (n, 0, 0) is primitive in Ñ (X, B).
Thus, X ′ is a K3 surface, and there exists a Brauer class α′ ∈ Br(X ′) together with an equivalence
8E : Db(X ′, α′) ∼−→ Db(X, α). Choose a mixed B-field lift B′ of α′. Then the cohomological action
8 : H(X ′)Q

∼
−→ H(X)Q of the algebraic cycle v−B′⊞B(E ) sends (0, 0, 1) to (n, 0, 0).

Since 8 is an isometry, the vector u = (8)−1(0, 0, 1/n) satisfies u2
= 0 and ⟨u, (0, 0, 1)⟩ = −1.

Therefore, u is necessarily of the form eδ =
(
1, δ, 1

2δ
2
)

for some δ ∈H2
ét(X

′)Q . As (0, 0, 1) is an algebraic
class, and 8 is induced by an algebraic cycle, we have δ ∈ NS(X ′)Q . After replacing B′ by B′ + δ,

1That is, n is in the image of the diagonal embedding Z ↪→W × Ẑ p .
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we may assume that 8 sends (1, 0, 0) to (0, 0, 1/n). Now we may apply Lemma 6.1 to the ℓ-adic part
for each ℓ ̸= p and to the crystalline part. We conclude that the degree 0 part of the correspondence
v−B′⊞B(E ) sends H2(X ′) to sb(H2(X)). □

6B. Cartan–Dieudonné theorems and strong approximation. To apply Proposition 6.2 towards the
proof of Theorem 1.2, we need to show that the reflections sb about classes b ∈ H2(X) satisfying the
conditions of Proposition 6.2 generate a sufficiently large subgroup of isometries of H2(X)Q . We need two
lattice-theoretic inputs. The first is the following generalized Cartan–Dieudonné theorem [Klingenberg
1961, Theorem 2].

Theorem 6.3. Let R be a local ring with residue characteristic ̸= 2 and let L be a unimodular quadratic
lattice over R. The group O(L) is generated by the set of reflections sb, where b ranges over the elements
of L such that b2

∈ R×.

We also will use the following consequence of the strong approximation theorem. Recall that U
denotes the hyperbolic plane, which is a Z–lattice of rank 2.

Lemma 6.4. Let L be a nondegenerate indefinite quadratic lattice over Z of rank ≥ 3. If q is a prime
such that L ⊗ Zq contains a copy of U ⊗ Zq as an orthogonal direct summand, then the double quotient

O(L ⊗ Q)\O(L ⊗ Qq)/O(L ⊗ Zq)

is a singleton.

Proof. This is a slight variant of [Yang 2023, Lemma 2.1.12], whose proof follows from that of [Ogus
1979, Lemma 7.7]. We briefly summarize the argument: Let K ⊆ Spin(L ⊗ Qq) be the preimage of
SO(L ⊗ Zq) under the natural map ad : Spin→ SO. Using the fact that L ⊗ Zq contains U ⊗ Zq as an
orthogonal direct summand, we show that the maps

Spin(L ⊗ Q)\Spin(L ⊗ Qq)/K→ SO(L ⊗ Q)\SO(L ⊗ Qq)/SO(L ⊗ Zq)

→ O(L ⊗ Q)\O(L ⊗ Qq)/O(L ⊗ Zq)

are both surjections. Now we conclude using the fact that the first double quotient is a singleton by the
strong approximation theorem. □

We now return to the setting of a K3 surface X over an algebraically closed field k of characteristic p.

Lemma 6.5. Let X be a K3 surface over k, and assume that p ≥ 5. There exists a Z–lattice L of rank 22
and a primitive indefinite sublattice L ′ ⊂ L such that

(a) for each ℓ ̸= p, there exists an isometry L ⊗ Zℓ ∼= H2(X, Zℓ),

(b) there exists an isometry L ′⊗ Zp ∼= T (X) := H2(X/W )ϕ=1, and

(c) the double quotients

O(L ⊗ Z(p))\O(L ⊗ Ap
f )/O(L ⊗ Ẑ p) and O(L ′⊗ Q)\O(L ′⊗ Q p)/O(L ′⊗ Zp)

are both singletons.
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Proof. Suppose that X has finite height h. We take L = 3 to be the K3 lattice. As L contains a
copy of U as an orthogonal direct summand, we may apply [Yang 2023, Lemma 2.1.12] to conclude
that the indicated double quotient is a singleton. We will now produce L ′. Suppose that h ≤ 9. By
[Ito 2019, Theorem 6.4] (which requires p ≥ 5), there exists a K3 surface Y over Fp such that h(Y )= h
and ρ(Y ) = 22− 2h. Set L ′ = Pic(Y ). The existence of a perfect lifting of Y to characteristic zero
shows that L ′ admits a primitive embedding into L =3. Condition (a) is immediate. The embedding
L ′→ H2(Y/W ) induces an isomorphism L ′⊗ Zp ∼= T (Y )= T (X), giving (b). It remains to check that
the double quotient involving L ′ is a singleton. The pairing on H1 is perfect, and the inclusion T (X)⊂H1

induces an isomorphism T (X)⊗Zp W ∼= H1, so the discriminant of the pairing on T (X) ∼= L ′⊗ Zp is
a p-adic unit. As L ′ has rank ≥ 4, the classification of p-adic lattices [Ogus 1979, Lemma 7.5] implies
that L ′⊗ Zp contains a copy of U ⊗ Zp as an orthogonal direct summand. By the Hodge index theorem,
L ′ is indefinite. We conclude using Lemma 6.4. Suppose h = 10. We take L ′ = U . This is certainly a
primitive sublattice of L =3, and the double quotient involving L ′ is a singleton. It remains to check
that U ⊗ Zp ∼= T (X). As explained by Ogus [1983, Remark 1.5], the discriminant of the pairing on H1

is −1. The same is then true for T (X), because T (X)⊗Zp W ∼= H1. By the classification of quadratic
lattices over Zp, we conclude that U ⊗ Zp ∼= T (X).

Suppose that X is supersingular. Let L ′ = L =3σ0 be the supersingular K3 lattice of Artin invariant
σ0= σ0(X). The discriminant of the pairing on3σ0 is equal to−p2σ0 , which is an ℓ-adic unit for all ℓ ̸= p,
and so (a) holds. Condition (b) is immediate. Finally, by [Ogus 1979, Lemma 7.7], condition (c) holds. □

The following results could be phrased purely in terms of (semi)linear algebra, but for clarity we will
maintain the geometric notation.

We recall that O(H2(X, Ap
f )) is the subgroup of

∏
ℓ̸=p O(H2(X, Zℓ)) consisting of those tuples 2 such

that 2ℓ is ℓ–integral for all but finitely many ℓ (here, we say that 2ℓ is ℓ-integral if 2ℓ(H2(X, Zℓ))=
H2(X, Zℓ)). We let O8(H2(X/K )) be the group of automorphisms of H2(X/K ) which are isometries with
respect to the pairing and which commute with8. We set O8(H2(X))=O8(H2(X/K ))×O(H2(X, Ap

f )).

Remark 6.6. Giving an isometric embedding ι as in the statement of Theorem 1.2 is equivalent to
giving an isometry ιp : 3⊗ W ↪→ H2(X/K ) of W -modules and for each prime ℓ ̸= p an isometry
ιℓ :3⊗Zℓ ↪→H2(X, Qℓ) of Qℓ-modules such that for all but finitely many ℓ we have im(ιℓ)=H2(X, Zℓ).
A similar description holds for the isometric embedding in the statement of Theorem 6.13.

Lemma 6.7. Suppose that p ≥ 5. If 2p
∈ O(H2(X, Ap

f )) is an isometry, then there exists a sequence
b1, . . . , br of primitive elements of H2(X) such that

(1) for each i , ni :=
1
2 b2

i is an integer which is not divisible by p, and

(2) the isometry s := sb1 ◦ · · · ◦ sbr satisfies s(H2(X, Ẑ p))=2p(H2(X, Ẑ p)).

Proof. Let L be a lattice as in Lemma 6.5, and choose an identification L ⊗ Ẑ p
= H2(X, Ẑ p). By

Lemma 6.4,
O(L ⊗ Z(p))\O(L ⊗ Ap

f )/O(L ⊗ Ẑ p)
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is a singleton. Hence, there exists an isometry 9 ∈ O(L ⊗ Z(p)) such that 9(L)⊗ Ẑ p
=2p(L ⊗ Ẑ p).

We apply Theorem 6.3 with R = Z(p) to produce a sequence b1, . . . , br of elements of L ⊗ Z(p) such
that b2

i ∈ Z×(p) for each i and 9 = sb1 ◦ · · · ◦ sbr . For each i , we may write bi = v/m for some primitive
v ∈ L and an integer m which is coprime to p. Note that the integer 1

2v
2
=

1
2 m2b2

i is in Z×(p), and hence
is not divisible by p. Moreover, we have sbi = sv . So, by replacing each bi with the corresponding v, we
may arrange that the bi satisfy (1). Condition (2) holds by construction. □

Lemma 6.8. Suppose that p ≥ 5. Let 2p ∈ O8(H2(X/K )) be an isometry which restricts to the identity
on H2(X/W )<1. There exists a sequence b1, . . . , br of primitive elements of H2(X) such that

(1) for each i , ni :=
1
2 b2

i is an integer and ϕ(bi )= bi , and

(2) the isometry s := sb1 ◦ · · · ◦ sbr satisfies s(H2(X/W ))=2p(H2(X/W )).

Proof. Write H=H2(X/W ), and consider the Newton–Hodge decomposition H=H<1⊕H1⊕H>1 of H.
The first and third factors are dual, and orthogonal to H1. Because 2p restricts to the identity on H<1, it
must also restrict to the identity on H>1, and hence 2p restricts to an element of O8(H1)= O(T (X)).
We fix lattices L , L ′ as in Lemma 6.5 and an identification L ′⊗ Zp = T (X). By Lemma 6.4, we may find
9 ∈O(L ′⊗ Q) such that 9(L ′)⊗ Zp =2p|T (X)(L ′⊗ Zp). By the classical Cartan–Dieudonné theorem,
we may find a sequence b1, . . . , br of elements of L ′⊗ Q such that 9 = sp = sb1 ◦ · · · ◦ sbr . By scaling,
we may assume that each bi is in L ′ and is primitive. Note that, as H<1 and H>1 are orthogonal to H1,
the reflections sbi are the identity on H<1⊕H>1. If follows that s satisfies condition (2). □

Lemma 6.9. Suppose that p ≥ 5. Let 2 ∈ O8(H2(X)Q) be an isometry such that 2p restricts to the
identity on H2(X/W )<1. There exists a sequence b1, . . . , bm of primitive elements of H2(X) such that

(1) for each i , ni :=
1
2 b2

i is an integer and bi/ni is a mixed B-field, and

(2) the isometry s := sb1 ◦ · · · ◦ sbm satisfies s(H2(X))=2(H2(X)).

Proof. We first choose elements b1, . . . , br ∈H2(X) by applying Lemma 6.8 to2p. We set s= sb1◦· · ·◦sbr .
We apply Lemma 6.7 to (s−1

◦2)p to obtain elements b′1, . . . , b′t ∈ H2(X). Set s ′ = sb′1 ◦ · · · ◦ sb′t . We
claim that the sequence b1, . . . , br , b′1, . . . , b′t ∈H2(X) satisfies the desired conditions. We check (1). We
have that ni :=

1
2 b2

i and n′i :=
1
2(b
′

i )
2 are integers. We have that ϕ((bi )p)= (bi )p, so by Proposition 2.7

each (bi )p/ni is a crystalline B-field. It follows that bi/ni is a mixed B-field. As n′i is not divisible by p,
(b′i )p/n′i is in H2(X/W ), so (b′i )p/n′i is a crystalline B-field, and b′i/n′i is a mixed B-field. We have
shown that (1) holds. To check (2), note that by construction, we have

(s ◦ s ′)p(H2(X, Ẑ p))=2p(H2(X, Ẑ p)).

Furthermore, as p does not divide 1
2(b
′

i )
2, we have s ′p(H

2(X/W ))= H2(X/W ), and so

(s ◦ s ′)p(H2(X/W ))= sp(H2(X/W ))=2p(H2(X/W )). □

Proof of Theorem 1.2. We prove the “only if” direction first. Suppose that f : h2(X ′) ∼−→ h2(X) is a
primitive derived isogeny. We may choose Brauer classes α ∈ Br(X) and α′ ∈ Br(X ′), a Fourier–Mukai
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equivalence 8P : Db(X ′, α′) ∼−→ Db(X, α), and crystalline B-field lifts B and B ′ of α and α′ such
that the cohomological transform 8v−B′⊞B (P) : H̃(X ′/K )→ H̃(X/K ) and the cohomological realization
H2(X ′/K ) ∼−→ H2(X/K ) of f restrict to the same map T 2(X ′/K ) ∼−→ T 2(X/K ), where T 2(X/K )
denotes the orthogonal complement to NS(X)⊗K in H2(X/K ) (not to be confused with the Tate module
of H2(X/W )). By Theorem 3.6, 8v−B′⊞B (P) restricts to an isomorphism H̃(X ′/W, B ′) ∼−→ H̃(X/W, B)
of crystals. Thus, by Proposition 2.15, it induces an isomorphism

H2(X ′/W )<1 = H̃(X ′/W, B ′)<1
∼
−→ H̃(X/W, B)<1 = H2(X/W )<1.

The transcendental part T 2(X/K ) contains H2(X/W )<1, so the cohomological realization of f also maps
the slope < 1 part to the slope < 1 part. This gives the result.

We now prove the “if” direction. For each ℓ ̸= p fix an isometry H2(X, Zℓ)∼=3⊗ Zℓ. Assume first
that the K3 crystals Hp and H2(X/W ) are abstractly isomorphic. This is the case, for instance, if X
has finite height. We fix an isomorphism H2(X/W ) ∼= Hp of K3 crystals. Composing with the given
embedding ι and tensoring with Q, we find an isometry 2 ∈ O8(H2(X/K ))×O(H2(X, Ẑ p)) which
maps H2

ét(X, Zℓ) to ιl(3⊗ Zℓ) and H2(X/W ) to ιp(3⊗W ). By Lemma 6.9, we may find a sequence
b1, . . . , bm ∈ H2(X) of primitive elements such that for every i , ni :=

1
2 b2

i is an integer and bi/ni is a
mixed B-field, and furthermore the isometry s := sb1 ◦ · · · ◦ sbm satisfies s(H2(X)) = 2(H2(X)). The
result follows by repeatedly applying Proposition 6.2.

We now consider the case when X is supersingular and Hp and H2(X/W ) are not isomorphic. This
can certainly occur: any two supersingular K3 crystals over k of the same rank and discriminant are
isogenous, but by results of Ogus [1979], supersingular K3 crystals themselves have nontrivial moduli.
We argue as follows. By the global crystalline Torelli theorem [Ogus 1983], there exists a supersingular
K3 surface X ′ such that H2(X ′/W ) is isomorphic as a K3 crystal to Hp. By Theorem 6.11 below, there
exists a derived isogeny h2(X ′) ∼−→ h2(X), which induces an isometry H2(X ′/K )∼= H2(X/K ). We are
now reduced to the previous case, and we conclude the result. □

Remark 6.10. The only place where the assumption p ≥ 5 is used in the above proof is in applying
the result of Ito [2019, Theorem 6.4]. If in Theorem 1.2, Hp = H2

cris(X/W ), i.e., 2p as above can be
taken to be the identity, then the assumption p > 2 suffices. In this case, in producing X ′ we only need to
iteratively take moduli of sheaves twisted by Brauer classes of prime-to-p order.

6C. Existence in the supersingular case. We make a few remarks specific to the supersingular case.
Here, very strong cohomological results are available: there is a global Torelli theorem [Ogus 1979;
1983; Bragg and Lieblich 2018], as well as a derived Torelli theorem [Bragg 2021]. Together, these
give a picture which closely parallels the case of complex K3 surfaces. We will show that any two
supersingular K3 surfaces are derived isogenous. More refined results (along the lines of [Huybrechts
2019, Theorem 0.1]) are possible, but we will omit this discussion here.

Theorem 6.11. Suppose that p ≥ 3. Let X and Y be two supersingular K3 surfaces over k. There exists a
derived isogeny h2(X) ∼−→ h2(Y ).
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Proof. We use [Bragg and Lieblich 2018, Proposition 5.2.5]: if X is a supersingular K3 surface, then there
exists a sequence X0, X1, . . . , Xn of supersingular K3 surfaces together with Brauer classes αi ∈ Br(X i )

such that X0 = X , Db(X i , αi ) ∼= Db(X i+1, αi+1) for each 0 ≤ i ≤ n − 1, and Xn = Z is the unique
supersingular K3 surface with Artin invariant 1. Applying this to both X and Y , we find derived isogenies

h2(X) ∼−→ h2(Z) ∼
←− h2(Y ). □

Remark 6.12. Shioda [1977, Theorem 1.1] showed that supersingular Kummer surfaces are unirational.
By a result of Ogus [1979] and the crystalline Torelli theorem these are exactly the supersingular K3
surfaces with Artin invariant σ0 ≤ 2. The Chow motive of a unirational surface is of Tate type. Combining
this with Theorem 6.11 we deduce that for any supersingular K3 surface X we have h(X)= halg(X)=
L0
⊕ L⊕22

⊕ L2 and h2
tr(X) = 0. In particular, we have CH2(X) = Z. This result was first proved by

Fakhruddin [2002], using a related method.

6D. Existence in characteristic 0. It is possible to formulate a purely algebraic analog of Huybrechts’
Theorem 1.3 along the lines of Theorem 1.2, valid over any algebraically closed field of characteristic 0.

Theorem 6.13. Let X be a K3 surface over an algebraically closed field of characteristic 0. Let
H =3⊗ Ẑ. Let ι : H ↪→H2(X)Q be an isometric embedding. There exists a K3 surface X ′ and a derived
isogeny f : h2(X ′) ∼−→ h2(X) such that f∗(H2(X ′))= im(ι).

Proof. This can be proved purely algebraically along the same lines as our proof of Theorem 1.2 (but
avoiding the extra complications at p). Alternatively, it can be deduced directly from Theorem 1.3. We
omit further details. □

6E. Nygaard–Ogus theory revisited. In preparation for the proof of Theorem 1.4, we briefly recap the
deformation theory of K3 crystals and K3 surfaces established in [Nygaard and Ogus 1985, §5]. For the
rest of Section 6, assume that k is a perfect field with char k = p≥ 5. We refer the reader to the paragraph
below the proof of Lemma 4.6 in loc. cit. for this restriction on p. Let R := k[ε]/(εe) for some e. Recall
that a K3 crystal over R is an F-crystal H on Cris(R/W ) equipped with a pairing H × H→ OR/W and
an isotropic line Fil⊂ HR which satisfy some properties (see Definition 5.1 in loc. cit. for details).2

Definition 6.14. Suppose V is a finite flat extension of W such that V/(p)= R. A deformation of H
to V is a pair (H, F̃il) where F̃il⊂ HV is an isotropic direct summand which lifts Fil⊂ HR .

Theorem 6.15 (Nygaard and Ogus). Let X be a K3 surface over k and R be as above.

(a) The natural map X R 7→ H2
cris(X R) defines a bijection between deformations X R of X to R to

deformations of the K3 crystal H2
cris(X/W ) to R, i.e., K3 crystals H over R with H|k =H2

cris(X/W ).

(b) If X R is a deformation of X to R, then the map XV 7→ (H2
cris(X R),Fil2 H2

dR(XV /V )) defines a
bijection between deformations XV of X R to V and deformations of the K3 crystal H2

cris(X R) to V ,
in the sense of Definition 6.14.

2In fact, [Nygaard and Ogus 1985, Definition 5.1] defined K3 crystals over a more general base which satisfies a technical
assumption [Nygaard and Ogus 1985, (4.4.1)]. For our purposes it suffices to consider bases of the form k[ε]/(εe).
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Proof. This follows from [Nygaard and Ogus 1985, Theorem 5.3] and its proof. □

For the rest of Section 6E, X denotes a K3 surface of finite height over k. Recall that there is a
canonical slope decomposition (cf. [Nygaard and Ogus 1985, Proposition 5.4])

δcan : H2
cris(X/W )= D(B̂r∗X )⊕D(D∗)⊕D(B̂rX )(−1). (35)

We define a map K which sends a deformation of B̂rX to R to a deformation of the K3 crystal
H2

cris(X/W ) to R by setting K(G R) := D(G∗R)⊕D(D∗R)⊕D(G R)(−1), where DR denote the canonical
lift of D to R. The K3 crystal structure on K(G R) is given as follows: Let PG R : D(G

∗

R)×D(G R)→

OR/W (−1) be the canonical pairing and let PDR :D(D
∗

R)×D(D∗R)→OR/W (−2) be the pairing inherited
from that on D(D∗). The pairing on K(G R) is PG R (−1)⊕PDR . Finally, the isotropic direct summand Fil
in K(G R)R is given by [Fil1 D(G R)R](−1). We define a decreasing filtration on K(G R)R by setting

0= Fil3 ⊂ Fil2 := Fil⊂ Fil1 := (Fil2)⊥ ⊂ Fil0 = K(G R)R. (36)

If we further lift G R to a p-divisible group GV for a finite flat extension V of W with V/(p) = R,
then we can attach a deformation of K(G R) to V by setting F̃il= [Fil1 D(GV )V ](−1), which we denote
by K(GV ). We define a filtration on K(GV )V using (36) with K(G R)R replaced by K(GV )V .

Definition 6.16. If XV is a formal scheme over Spf V which deforms X , we say XV is a Nygaard–Ogus
lifting if it comes from K(GV ) for some p-divisible group GV lifting B̂rX to V via Theorem 6.15. That
is, setting R := V/(p), G R := (GV )⊗ R and X R := (XV )⊗ R, we have an isomorphism

(H2
cris(X R),Fil2 H2

dR(XV /V )) ∼−→ K(GV )

lifting δcan in the obvious sense. If XV is an algebraic space over Spec V which deforms X , then we say
XV is a Nygaard–Ogus lifting if its formal completion at the special fiber is a Nygaard–Ogus lifting.

Proposition 6.17. If a formal scheme XV is a Nygaard–Ogus lifting of X , then the natural map Pic(XV )→

Pic(X) is an isomorphism. In particular, XV is algebraizable.

Proof. See Proposition 4.5 and Remark 4.6 of [Yang 2022]. □

Using integral p-adic Hodge theory, we can characterize Nygaard–Ogus liftings:

Theorem 6.18. Let F be a finite extension of K with V := OF . Let XV be a formal scheme over Spf V
which lifts X and let X F denote its rigid-analytic generic fiber. Then XV is a Nygaard–Ogus lifting
if and only if there are GalF -stable Zp-sublattices T 0, T 1, T 2 in H2

ét(X F , Zp) of ranks h, 22− 2h, h
respectively, such that, as crystalline GalF -representations,

(a) T 1(1) is unramified,

(b) T 0 has Hodge–Tate weight 1 with multiplicity h− 1 and 0 with multiplicity 1,

(c) T 2(1) has Hodge–Tate weight 1 with multiplicity 1 and 0 with multiplicity h− 1.
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Proof. We recap in the Appendix the results from the integral p-adic Hodge theory used in this proof.
Let S denote Breuil’s S-ring. Using the data Fil•H2

dR(X F/F), we equip H2
cris(X/W )⊗W SK with the

structure of an object in MF
ϕ,N
SK

. For any GV which lifts B̂rX to V , we set

Tp(GV ) := TpGV ⊕ Tp DV ⊕ TpG∗V (−1).

Suppose first that XV is Nygaard–Ogus, so that it comes from some GV lifting G := B̂rX . Combining
(41) and (45), we obtain isomorphisms

H2
ét(X F , Zp)⊗

Zp

Bcris ∼= H2(X/W )⊗
W

Bcris = K(G)⊗
W

Bcris ∼= Tp(GV )(−1)⊗
Zp

Bcris,

which give rise to a rational isomorphism H2
ét(X F , Zp)⊗Zp Q p

∼
−→ Tp(GV )(−1)⊗Zp Q p. We now

show that the this restricts to an integral isomorphism

H2
ét(X F , Zp)∼= Tp(GV )(−1). (37)

It is easy to check that the object (K(G)K ,Fil• K(GV )F ) in MFϕF admits a decomposition into

(D(B̂r∗X )K ,Fil• D(G∗V )F )⊕ (D(D∗)K ,Fil• D(D∗V )F )⊕ (D(B̂rX )K ,Fil• D(GV )F )(−1).

By the construction of Nygaard–Ogus liftings, there is an isomorphism

D(G∗R)S ⊕D(D∗R)S ⊕D(G R)(−1)S ∼= H2
cris(X R)S

of strongly divisible S-modules which is compatible with the isomorphism

H2(X/W )⊗
W

SK ∼= K(G)⊗
W

SK

induced by δcan. By applying the functor Tcris, we obtain (37), which readily implies the “only if” part of
the theorem.

Now we show the “if” part. The proof is essentially a reincarnation of the proof of [Nygaard and
Ogus 1985, Proposition 5.5]. The hypothesis implies that there exists an isomorphism H2

ét(X F , Zp)∼=

Tp(GV )(−1) for some GV which lifts B̂rX to V . By Theorem A.3, there exists a unique isomorphism

D(G∗R)S ⊕D(D∗R)S ⊕D(G R)(−1)S ∼= H2
cris(X R)S (38)

which gives this isomorphism, H2
ét(X F , Zp)∼= Tp(GV )(−1), under Tcris.

The only thing we need to check is that this isomorphism of S-modules comes from an isomorphism
of F-crystals on Cris(R/W )

K(G R)= D(G∗R)⊕D(D∗R)⊕D(G R)(−1)∼= H2
cris(X R) (39)

which restricts to δcan.
Let e be the ramification degree of V over W and j be any positive number ≤ e. Set R j := R/(ε j ). We

claim that there exists a sequence of isomorphisms δ j :K(G R j )
∼=H2

cris(X R) of F-crystals on Cris(R j/W )

such that δ j is the restriction of δ j+1 for each j < e such that δ1 = δcan, and δe gives the desired
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isomorphism (39). Suppose we have constructed δ j for some j < e. Note that (ε j ) is a square-zero
ideal in R j+1 and we can view R j+1 as an object of Cris(R j/W ) by equipping (ε j ) with the trivial
PD structure. By [Nygaard and Ogus 1985, Theorem 5.2], to construct δ j+1 it suffices to show that
[Fil1 D(G R j+1)R j+1](−1) is sent to Fil2 H2

dR(X R j+1/R j+1) via the composition

K(G R j+1)R j+1
∼= K(G R j )R j+1

∼

(δ j )R j+1

−−−−→ H2
cris(X R j )R j+1

∼= H2
dR(X R j+1/R j+1).

However, this follows directly from the fact that (38) respects the filtrations. Indeed, viewing R j+1 as an
S-algebra via S→ OF → R→ R j+1, we get the above isomorphism by tensoring (38) with R j+1. □

Remark 6.19. When X is ordinary, XV is Nygaard–Ogus if and only if it is obtained via base change
from the canonical lifting, because in this case deformations of B̂rX are completely rigid. Therefore, the
above theorem is a generalization of [Taelman 2020, Theorem C] when p ≥ 5. It also follows from (37)
in the above proof that when XV is a Nygaard–Ogus lifting, for the enlarged formal Brauer group 9XV

of XV , there is a natural injective map of GalF -modules

Tp9XV → H2
ét(X F , Zp(1)),

which generalizes [Taelman 2020, Theorem 2.1]. Indeed, we have9XV = B̂rXV ⊕DV for a Nygaard–Ogus
lifting.

6F. Construction of liftable isogenies. We now prove Theorem 1.4.

Proof of Theorem 1.4. Again write ιp and ιp for the prime-to-p and crystalline component of ι. If a
Frobenius-preserving isometric embedding ιp : Hp ↪→ H2(X/W ) as in the hypothesis exists, then the K3
crystal Hp has to be abstractly isomorphic to H2(X/W ) and hence to K(B̂rX ). We choose an isomorphism
Hp

∼
−→K(B̂rX ) and consider (ιp)K := ιp⊗ K as an isometric automorphism of the F-isocrystal K(B̂rX )K .

Then (ιp)K determines, and is conversely determined by, a pair (h, g), where h ∈ End(B̂rX )[1/p]
and g ∈ End(D)[1/p]. Our goal is to produce an isogeny f : h2(X ′) → h2(X) for some other K3
surface X ′ over k = Fp such that f∗(H2

ét(X
′, Ẑ p))= ιp(3⊗ Ẑ p) and f∗(H2(X ′/W ))= (ιp)K (K(B̂rX )).

By Theorem 1.2, we first reduce to the case when ιp(3⊗ Ẑ p)= H2
ét(X, Ẑ p) and (ιp)K sends the slope 1

part, i.e., D(D∗), isomorphically onto itself.
By Lubin–Tate theory, for some finite flat extension V of W , there exists a lift GV of B̂rX to V

such that h lifts to End(GV )[1/p] [Yang 2022, Lemma 4.8]. Note that Fil• K(GV )F equips K(B̂rX )K

with the structure of an object in MFϕF and M := K(GV )S defines a strongly divisible S-lattice in the
corresponding object D :=K(B̂rX )⊗ SK in MF

ϕ,N
SK

. It is clear that ιK preserves Fil• K(GV )F and extends
to an automorphism ιSK of D .

Let XV be the Nygaard–Ogus lifting of X which corresponds to GV . We have Tcris(M )=H2
ét(X F , Zp)

inside H2
ét(X F , Q p) by the proof of Theorem 6.18, and Vcris((ιp)K ) is an automorphism of the GalF -

module H2
ét(X F , Q p) which preserves the Poincaré pairing. The image of H2

ét(X F , Zp) under Vcris((ιp)K )

can also be interpreted as Tcris(ιSK (M )). Denote this GalF -stable Zp-lattice by 3′p. By Theorem 6.13,
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up to replacing F by a finite extension, we can find another K3 surface X ′ over F with a derived isogeny
f : h2(X ′) ∼−→ h2(X F ) such that

f∗(H2
ét(X

′

F , Ẑ))=3′p×
∏
ℓ̸=p

(3′ℓ := ι
p(3⊗ Zℓ)= H2

ét(X F , Zℓ)).

We argue that f induces an integral isomorphism Pic(X ′F )
∼
−→ Pic(X F ). Indeed, f induces an

isomorphism
Pic(X ′F )

∼
−→ Pic(X F )Q ∩

∏
ℓ

3′ℓ(1).

However, we know that the image of Pic(X ′F ) lies in the unramified part of H2
ét(X F , Zp(1)), and the

unramified part of 3′p(1) coincides with that of H2
ét(X F , Zp(1)). This implies that the target of the above

isomorphism is just Pic(X F ).
It follows that Pic(X ′F ) also satisfies hypothesis (a), (b) or (c) if Pic(X F )∼= Pic(X) does. For (a) and (c)

this is clear; for (b) this follows from [Lieblich et al. 2014, Lemma 2.3.2]. In any case, by [Matsumoto
2015, Theorem 1.1; Ito 2019, §2] and Theorem 8.10 to be proved below, X ′F admits potentially good
reduction. Up to replacing F by a further extension, we can find a smooth proper algebraic space X ′V
over V such that X ′F is the generic fiber of X ′V . The map induced on crystalline cohomology of special
fibers is Dcris( f ), which sends H2(X ′/W ) onto (ιp)K (K(B̂rX )). □

7. Uniqueness theorems

In this section we prove Theorem 1.5 by lifting to characteristic 0 (as outlined in the introduction).

7A. Shimura varieties. Let p > 2 be a prime and L be any self-dual quadratic lattice over Z(p) of rank
m ≥ 5 and signature (2+, (m − 2)−). Set G̃ := CSpin(L(p)), G := SO(L(p)), Kp := CSpin(L ⊗ Zp),
Kp :=SO(L ⊗ Zp) and� := {ω∈ P(L ⊗C) : ⟨ω,ω⟩=0, ⟨ω, ω̄⟩>0}. Let S̃Kp(L) (resp. SKp(L)) denote
the canonical integral model of ShKp(G̃, �) (resp. ShKp(G, �)) over Z(p) given by [Kisin 2010] (see
also [Madapusi Pera 2016, §4]). We choose a compact open subgroup Kp of G̃(Ap

f ) and set K=KpK
p.

Similarly, set Kp to be the image of Kp and K :=KpK
p. Denote by S̃hK(L), S̃K(L), ShK(L), and SK(L)

the stacky quotients S̃hKp(L)/K
p, S̃Kp(L)/K

p, ShKp(L)/K
p, and SKp(L)/K

p respectively.
The model S̃K(L) is equipped with a universal abelian scheme A up to prime-to-p isogeny whose

cohomology gives rise to sheaves H∗ (∗ = B, cris, ℓ, dR) on suitable fibers of S̃ (L). The abelian
scheme A is equipped with a Cl(L)-action and Z/2Z-grading, and the sheaves H∗ are equipped with
tensors π∗ ∈ H⊗(2,2)∗ . We call the triple of Z/2Z-grading, Cl(L)-action and various realizations of π the
CSpin structures on A or H∗. The dual of the images of π∗ are denoted by L∗. We refer the reader to
[Madapusi Pera 2016, §4] for details of these constructions or [Yang 2022, (3.1.3)] for a quick summary.

Here is another way to view the sheaves L∗: On the double quotient ShK(L)C =G(Q)\�×G(A f )/K,
the standard representation SO(L)→GL(L) produces a variation of Z-Hodge structures [Madapusi Pera
2016, §3.3], which is nothing but (L B, LdR,C := LdR|ShK(L)C ). The filtered vector bundle LdR,C is
commonly called the automorphic vector bundle associated to this representation, and by the general
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theory of automorphic vector bundles, we know that it admits a canonical descent to the canonical
model ShK(L) over the reflex field Q. This canonical descent is nothing but LdR (when restricted
to ShK(L)). In fact, the pair (L B, LdR,C) is the variation of Z-Hodge structures associated to a family of
Z-motives L over ShK(L)C in the sense of [Madapusi Pera 2015, §1.4]. This family of motives descend
to the canonical model ShK(L), whose ℓ-adic realizations give Lℓ|ShK(L) and whose de Rham realization
gives LdR|ShK(L). Once we extend ShK(L) to SK(L) over Z(p), these sheaves arising from cohomological
realizations of motives over ShK(L) also extend. This motivic point of view is discussed in more detail in
[Madapusi Pera 2015, §4.7].

It is explained in [Yang 2022, (3.1.3)] that the sheaves L∗ are equipped with an orientation tensor
δ∗ : det (L) ∼−→ det(L∗) (∗ = B, ℓ ̸= p). Here det (L) denotes the constant sheaf whose stalks are
det(L) on S̃ (L) in the appropriate Grothendieck topology. In short, δ∗’s come up because the adjoint
representation of G̃ on L(p) factors through SO(L(p)), i.e., it preserves a choice of orientation δ on L(p).
It is possible to discuss de Rham or crystalline realizations of δ, but for our purposes it suffices to use
the 2-adic realization δ2. The sheaves L∗ and the tensors π∗ and δ∗ descend to S (L).

We will repeatedly make use of the following key fact about LdR and HdR:

Proposition 7.1. Let s be any point on S̃K(L). Fil1 LdR,s is one-dimensional, and Fil1 HdR,s = ker(x)
for any nonzero element x ∈ Fil1 LdR,s .

Proof. If char k(s)= 0, we can simply base change to C and apply Hodge theory (see [Yang 2022, p. 8]).
If char k(s)= p, we can check this by a lifting argument or read it off from [Madapusi Pera 2016, §4.9]. □

We recall the definition of a CSpin-isogeny [Yang 2022, Definition 3.2]:

Definition 7.2. Let κ be a perfect field with algebraic closure κ̄ , and let s, s ′ be κ-points on S̃K p(L). We
call a quasi-isogeny As→ As′ a CSpin-isogeny if it commutes with the CSpin structures, i.e., it respects
the Z/2Z-grading, Cl(L)-action and sends πℓ,s⊗ κ̄ to πℓ,s′⊗ κ̄ for every ℓ ̸= char κ and in addition πcris,s

to πcris,s′ if char κ = p.

We remark that CSpin-isogenies are stable under liftings and reductions:

Lemma 7.3. Let κ be a perfect field of characteristic p, and let s, s ′ be two k-points on S̃K(L). Let K
denote W (κ)[1/p] and F ⊆ K be a finite extension of K , and let sF , s ′F be F-valued points on S̃K(L)
which specialize to s, s ′. Suppose ψF : AsF → As′F is a quasi-isogeny which specializes to ψ : As→ As′ .
Then ψ is a CSpin-isogeny if and only if ψF is also a CSpin-isogeny.

Proof. Clearly, ψ respects the Z/2Z-grading and the Cl(L)-actions if and only if ψF also respects these
structures. Let sK and s ′

K
denote the K -valued geometric points over sF and s ′F . To check whether ψF

sends πℓ,sK
to πℓ,s′

K
for every ℓ, it suffices to check this for one ℓ, as one can always take a base change

to C and use Betti realizations. Therefore, the only part of the statement which does not follow directly
from the smooth and proper base change theorem is that if ψF is a CSpin-isogeny, then ψ sends πcris,s

to πcris,s′ . This follows from [Yang 2022, Remark 3.1]. □
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Lemma 7.4. Let sC , s ′C be two C-points on S̃K(L). For every Hodge isometry

g : L B,s′C ⊗ Q ∼
−→ L B,sC ⊗ Q

which sends δ2,sC to δ2,s′C , there exists a CSpin-isogeny AsC
∼
−→ As′C which induces g by conjugation.

Proof. From the construction of the local system HB (see [Madapusi Pera 2016, §3.3]) it is clear that
there exists an isomorphism of free Z(p)-modules H ∼

−→ HB,sC which respects the CSpin-structures,
i.e., it respects the Z/2Z-grading, Cl(L)-action and sends π to πB,sC . The same is true for s ′C , so there
exists an isomorphism of Z(p)-modules ψ ′ : HB,sC

∼
−→ HB,s′C which respects the CSpin structures. The

map g′ : L B,sC ⊗ Q ∼
−→ L B,s′C ⊗ Q induced by ψ ′ by conjugation sends δ2,sC to δ2,s′C . Therefore, the

composition g−1
◦ g′ lies in SO(L B,sC ⊗ Q). Since the natural morphism CSpin(L Q)→ SO(L Q) is

surjective, we may lift g−1
◦g′ to an automorphism of HB,sC which preserves the CSpin structures and use

it to adjust ψ ′ to obtain a morphism ψ which induces g by conjugation. It follows from Proposition 7.1
that f preserves the Hodge structures, so that g̃ comes from a CSpin-isogeny. □

7B. Hilbert squares and period morphisms. We will apply the period morphism construction to Hilbert
squares of K3 surfaces, so we recollect some basic facts and set up some notation here. Let k be any
algebraically closed field of characteristic 0 or p > 2, X be any K3 surface over k and Y := X [2] be the
Hilbert scheme of two points on X . The lemma below implies that Y is a K3[2]-type variety in the sense
of [Yang 2023, Definition 1].

Lemma 7.5. When char k = p > 2 or 0, Y has the same Hodge numbers as those of a complex K3[2]-type
variety, and the Hodge–de Rham spectral sequence of Y degenerates at the E1-page.

Proof. Let Y ′ := Bl1(X × X) be the blowup of X × X along the diagonal 1 ⊂ X × X . Let E ⊂ Y ′ be
the exceptional divisor, which is isomorphic to the projectivization of the tangent bundle of X . There is
an action of Z/2 on X × X given by permuting the factors, which lifts to an action on Y ′ that is trivial
on E , and there is a natural map q : Y ′→ Y that identifies Y with the quotient Y ′/(Z/2). The map q is a
double cover branched over the divisor D = q(E)⊂ Y , which may be described explicitly as the locus of
nonreduced subschemes. Using our assumption that 2 is invertible in k, we obtain a canonical direct sum
decomposition

q∗OY ′ = OY ⊕L ,

where L is the cokernel of the pullback map OY → q∗OY ′ . From this and the projection formula we
deduce the equality

H j (Y ′, q∗�i
Y )= H j (Y, �i

Y )⊕H j (Y, �i
Y ⊗L ).

All of these data may be defined in a flat family over a flat finite type Z-scheme. By semicontinuity, the
dimensions of both summands on the right-hand side must be greater than or equal to their corresponding
values over the complex numbers. Thus, it will suffice to verify that the groups H j (Y ′, q∗�i

Y ) have the
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same dimensions as over the complex numbers. This can be done via a direct computation. In more detail,
we compute using the identification q∗�1

Y
∼=�1

Y ′(−E), which yields isomorphisms

q∗�i
Y
∼=�

i
Y ′(−i E).

The cohomology of these sheaves may be related to the Hodge cohomology of X by pushing forward
along the blowup morphism Y ′→ X × X . The result then follows (eventually) from the fact that the
Hodge numbers of X do not depend on the characteristic of the ground field.

The degeneration of the Hodge–de Rham spectral sequence at the E1-page follows from the fact that
Hi (Y, � j

Y )= 0 for i + j odd. □

Let H∗(−) be a Weil cohomology with coefficient field K.3 We will only make use of Betti, ℓ-adic,
crystalline, de Rham when appropriate. When there is a specified polarization, let P∗(−) denote the
corresponding primitive cohomology. We will view NS(Y ) as a Z-lattice inside H2(Y ) via c1, and will not
write c1 explicitly. H2(Y ) is equipped with natural Beauville–Bogomolov forms (BBF). When char k = 0,
these forms are well known. When char k = p> n+1, the étale and crystalline versions of these forms for
K3[n]-type varieties were defined in [Yang 2023, §2.1]. Since Y is a Hilbert square on a K3 surface X , as
opposed to a general deformation of such a variety, the Beauville–Bogomolov form on Y is easily described
by the Poincaré pairing on X : Let δ be the class of the exceptional divisor. Then δ2

=−2 under the BBF.
The incidence correspondence between X and Y embeds H2(X) isometrically into H2(Y ) such that H2(Y )
admits a natural orthogonal decomposition H2(X)⊕Kδ. Similarly, NS(Y ) decomposes as NS(X)⊕ Zδ.

Lemma 7.6. Let ξ be a polarization on X and ζ be a polarization on Y of the form mξ − δ. Denote by
projP2(Y ) δ the projection of δ to P2(Y ) and by Isom(−,−) the set of isometries between two quadratic
lattices. Now let X ′ be another K3 surface over k, take Y ′, ξ ′, δ′ similarly, and suppose Y ′ is polarized by
ζ ′ := mξ − δ′. There are natural identifications

Isom(P2(X),P2(X ′))= { f ∈ Isom(H2(X),H2(X ′) : f (ξ)= ξ ′}

= { f ∈ Isom(H2(Y ),H2(Y ′)) : f (ζ )= ζ ′, f (δ)= δ′}

= { f ∈ Isom(P2(Y ),P2(Y ′) : f (projP2(Y ) δ)= projP2(Y ′) δ
′
}. (40)

Assume now p ≥ 5 to apply the results of [Yang 2023]. Let X be a K3 surface and Y := X [2]. Let ζ
be any primitive polarization on Y such that p is prime to the top intersection number ζ 4. Let Def(Y ; ζ )
denote the deformation functor of the pair (Y, ζ ), i.e., the functor which sends an Artin W -algebra A
to the set of isomorphism classes of the flat deformations of (Y, ζ ) over A. We have that Def(Y ; ζ ) is
representable by a formal scheme isomorphic to Spf(R) for R := W [[x1, . . . , x20]]. Let (Y , ζ ) denote
the universal family over Def(Y ; ζ ). Note that ζ algebraizes Y into a scheme over Spec(R). Again we
use the symbol P2(−) for the primitive cohomologies of (Y, ζ ). There are natural pairings on P2(Y, Ẑ p)

and P2(Y/W ) given by restricting the Beauville–Bogomolov forms (see [Yang 2023, §2.1]).

3Here we are using a different font for H∗(−) to distinguish from the H∗(−) in Section 1D.
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Let F ⊂ K be any finite extension of K and b̃ be any OF -point on Def(X; ζ ). Choose an isomorphism
ι : K ∼
−→ C . Let L be the quadratic lattice P2(Yb̃(C), Z(p)), equipped with the restriction of the negative

Beauville–Bogomolov form. We remark that since H2(Yb̃(C), Z) is always isomorphic to the lattice
3[2] := 3 ⊕ Z(−2) and p ∤c1(ζb̃C

)2, the isomorphism class of L as a quadratic lattice over Z(p) is
completely determined by the number c1(ζb̃C

)2 [Milnor and Husemoller 1973, I, Lemma 4.2].
Let b be the closed point of Def(X, ζ ). We pack the input we need from the Kuga–Satake period

morphism into the following proposition:

Proposition 7.7. Assume p ≥ 5. There exists a local period morphism ρ : SpecR→ SKp(L) which
identifies SpecR with the complete local ring Ôs of s := ρ(b) on S (L)W such that:

(a) There exist an isometry αdR : P2
dR

∼
−→ ρ∗LdR(−1) of filtered vector bundles and an isometry

αcris : P2
cris

∼
−→ρ∗Lcris(−1) of F-crystals that are compatible via the crystalline–de Rham comparison

isomorphisms.

(b) There is an isometry αA f ,b : P
2
ét(Yb,A f )→ L A f ,b such that for any geometric b̃′ of characteristic zero

on SpecR, the pair of isometries (αA f ,b̃′, αdR,b̃′), where αA f ,b̃′ : P
2
ét(Yb̃′, A f )→ L A f ,b̃′ is induced

by the smooth and proper base change theorem, is absolute Hodge.

Moreover, for any choice of trivialization ϵ2 : det(L ⊗ Q2)
∼
−→ det(P2

ét(Y, Q2)), s can always be chosen
such that det(α2,b) sends ϵ2 to δ2,s .

Proof. See [Yang 2023, §3.3], which is a direct generalization of the results in [Madapusi Pera 2015, §5]. □

Remark 7.8. We remark that in order to construct the local period morphism ρ, we actually have to
choose an appropriate Z-integral structure for the Z(p)-lattice L . However, once it is constructed, we are
allowed to forget about the Z-integral structure, as the integral models of the relevant Shimura varieties
only depend on the Z(p)-lattice L .

7C. Twisted derived Torelli theorem.

Definition 7.9. Let X and X ′ be K3 surfaces over an algebraically closed field k of characteristic p > 0.
Let f : h2(X ′) ∼−→ h2(X) be an isogeny. We say that f is liftable if for some finite extension F of K
with V := OF and projective schemes XV and X ′V over V which deform X and X ′ to V , f lifts to an
isogeny fF : h

2(X ′F )
∼
−→ h2(X F ). If X and X ′ are nonsupersingular, we say that f is perfectly liftable if

XV and X ′V can be chosen to be perfect liftings.

For the rest of Section 7C, let k be an algebraically closed field of p ≥ 5.

Lemma 7.10. Let (X0, ξ0), . . . , (Xm, ξm) be finitely many nonsupersingular polarized K3 surfaces over k
and let fi :h

2(X i )
∼
−→h2(X i+1) be a perfectly liftable isogeny which sends ξi to ξi+1 for i=0, 1, . . . ,m−1.

If f := fm−1◦· · ·◦ f0 : (h
2(X0), ξ0)

∼
−→ (h2(Xm), ξm) induces an integral isomorphism H2

cris(X0/W ) ∼−→

H2
cris(Xm/W ), then f is perfectly liftable to K up to equivalence.

Proof. Set Yi := X [2]i and let δi be the exceptional divisor on Yi . For some number N ≫ 0, ζi := pN ξi−δi

is a polarization on Yi for each i . The number ⟨ζi , ζi ⟩ under the Beauville–Bogomolov form on Yi
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is an integer M which is independent of i . Let L denote a Z(p)-lattice which is isomorphic to the
orthogonal complement of an element λ ∈ 3[2]⊗ Z(p) with ⟨λ, λ⟩ = M . We choose trivializations
ϵi : det(L ⊗ Q2)

∼
−→ det(P2

ét(Yi , Q2)) such that fi sends ϵi to ϵi+1. Let ρi denote a local period
morphism obtained by applying Proposition 7.7 to (Yi , ζi ) and ϵi , and let si denote the image of the
basepoint under ρi . Let s̃i be a lift of si to S̃Kp(L).

We claim that there exists a CSpin-isogeny ψi : As̃i → As̃i+1 which induces the same isometries

Lℓ,si
∼
−→ Lℓ,si+1 and Lcris,si

∼
−→ Lcris,si+1

as fi for each i = 0, . . . ,m − 1. Indeed, fix an i and let X i,V , X i+1,V be perfect liftings of X i , X i+1

over some finite extension V of W such that f lifts to fF : X i,F
∼
−→ X i+1,F , where F = V [1/p]. Let

Yi,V , Yi+1,V be the Hilbert squares of X i,V , X i+1,V . Note that Yi,V and Yi+1,V carry liftings of ζi and ζi+1,
so via the local Torelli morphisms ρi and ρi+1, X i,V and X i+1,V induce V -points si,V , si+1,V on SK(L).
Lift these points to V -points s̃i,V , s̃i+1,V on S̃K(L), which is étale over SK(L). Now choose an isomor-
phism F ∼

−→C . The isogeny fi,F (C) induces a Hodge isometry P2(X i,F (C), Q) ∼−→ P2(X i+1,F (C), Q),
which canonically extends to a Hodge isometry P2(Yi,F (C), Q) ∼−→ P2(Yi+1,F (C), Q) via Lemma 7.6.
By Proposition 7.7, the latter can be identified with a Hodge isometry L B,si,F (C)⊗ Q ∼

−→ L B,si+1,F (C)⊗ Q.
Note that we have required that fi send ϵi to ϵi+1. By Lemma 7.4, we obtain a CSpin-isogeny
ψi,C : As̃i,F (C)

∼
−→ As̃i+1,F (C). By Lemma 7.3, ψi,C specializes to a CSpin-isogeny ψi , which can

be easily checked to have the desired properties.
By [Lieblich and Maulik 2018, Corollary 4.2], we can find a lifting X0,W of X0 which also lifts all line

bundles on X0. We transport the induced Hodge filtration on H2
cris(X0/W ) to H2

cris(Xm/W ) using f , which
induces a lift Xm,W of Xm over W . It is easy to check that Xm,W also carries liftings of all line bundles
on Xm using [Ogus 1979, Proposition 1.12]. Just as in the previous paragraph, after taking Hilbert squares
of the liftings, we obtain via the local period morphisms K -valued points s0,K , sm,K , s̃0,K , s̃m,K which
lift s0, sm , s̃0, s̃m . It follows from Proposition 7.1 that the crystalline realization of ψ := ψm−1 ◦ · · · ◦ψ0

preserves the Hodge filtrations of As0,K and Asm,K via the Berthelot–Ogus comparison isomorphisms. By
[Berthelot and Ogus 1983, Theorem 3.15], ψ lifts to a CSpin-isogeny ψK : As0,K

∼
−→ Asm,K . Choose

an isomorphism K ∼= C. By running the arguments in the preceding paragraph backwards, we obtain a
rational Hodge isometry H2(X0,K (C), Q) ∼−→ H2(Xm,K (C), Q), which by Huybrechts’ theorem [2019,
Theorem 0.2] is induced by an isogeny fC . We get the desired isogeny f by specializing fC . □

Proof of Theorem 1.5.. The forward direction is immediate (and does not need the restriction on p). For
the converse, suppose that f : h2(X ′) ∼−→ h2(X) is polarizable and Z-integral. It is easy to see that if X
is supersingular, then so is X ′. In this case, the result follows from the crystalline Torelli theorem of Ogus
[1983, Theorem II] (cf. [Yang 2022, Theorem 6.5]). Therefore, we reduce to the case when X and X ′ have
finite height. We first remark that f maps NS(X ′) isomorphically onto NS(X), so that by the structure of
ample cones of K3 surfaces [Ogus 1983, Proposition 1.10], f (ξ ′) is ample for any ample ξ . By definition,
there exists a sequence of K3 surfaces X ′ = X0, . . . , Xm = X over k and primitive derived isogenies
fi : h

2(X i )
∼
−→ h2(X i+1) such that f = fm−1 ◦ · · · ◦ f0.
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We now show that there exists a sequence δi : h
2(X i )

∼
−→ h2(X i ) given by compositions of reflections

in (−2)-curves up to a sign and a sequence of ample class ξi ∈ NS(X i )Q such that (δi+1 ◦ fi )(ξi )= ξi+1

for each i . We do this by slightly refining the argument of [Yang 2022, Lemma 6.2]. Set δ0 to be the
identity. Choose any ample class ζ0 ∈ NS(X0)Q and ϵ0 > 0, such that the open ball B(ζ0, ϵ0) centered
at ζ0 of radius ϵ0 in NS(X0)R lies inside the ample cone. By [Ogus 1979, Lemma 7.9], there exists
some δ1, such that ζ ′1 := δ1 ◦ f0(ζ0) is big and nef. The image of B(ζ0, ϵ0) in NS(X1)R under δ1 ◦ f0 is
an open neighborhood of ζ ′1 which necessarily intersects the ample cone of X1. Therefore, we may now
choose ζ1 together with ϵ1 > 0 such that (δ1◦ f0)

−1 B(ζ1, ϵ1)⊆ B(ζ0, ϵ0). We iterate this process to obtain
a sequence of open balls B(ζi , ϵi )⊂ NS(X i )R which lie inside the ample cones, and a sequence of δi ’s
such that (δi+1 ◦ fi )

−1(B(ζi+1, ϵi+1))⊆ B(ζi , ϵi ). Now we win by choosing an element ξm ∈ B(ζm, ϵm),
and iteratively set ξi := (δi+1 ◦ fi )

−1(ξi+1). By clearing denominators we may assume that each ξi is
integral.

Set ξ = ξm , ξ ′ = ξ0, hi := δi+1 ◦ fi for each i < m, and f ′ := hm−1 ◦ · · · ◦ h0 = f . For each i ,
consider T (X i ) :=NS(X i )

⊥
⊂H2(X i ). Clearly fi and hi induce the same maps on transcendental lattices

T(X i )Q
∼
−→T(X i+1)Q . Therefore, f and f ′ induce the same maps T(X ′)Q

∼
−→T(X)Q but their induced

maps NS(X ′) ∼−→NS(X) may differ by an automorphism of NS(X) which preserves the ample cone. By
Theorem 5.8, each hi is liftable, so that by Lemma 7.10, f ′ : h2(X ′) ∼−→ h2(X) admits a perfect lifting
f ′K : h

2(X ′K )
∼
−→ h2(X K ). Therefore, f ′, and hence f , lifts to a Hodge isometry H2(X ′K (C), Q) ∼−→

H2(X K (C), Q) for a chosen isomorphism K ∼= C. Using the smooth and proper base change theorem
for étale cohomology, we see that this rational Hodge isometry is Z[1/p]-integral. Now we show that
it is Z-integral. Indeed, we first note that f induces isomorphism f p : H2

ét(X
′

K
, Q p)

∼
−→ H2

ét(X K , Q p)

and fcris : H2
cris(X

′/W )[1/p] ∼−→ H2
cris(X/W )[1/p]. We have f p⊗Zp Bcris = fcris⊗W Bcris under the

p-adic comparison isomorphism (see (41) in the Appendix) as it is compatible with cycle class maps,
Poincaré duality and trace maps [Ito et al. 2018, Corollary 11.6]. Let S be Breuil’s S-ring. Then we
have an identification H2

cris(X/W )⊗W S = H2
cris(X/S) and a similar one for X ′. Now, we are given that

fcris⊗W Bcris sends the S-module H2
cris(X

′/S) isomorphically onto H2
cris(X/S). By [Cais and Liu 2019,

Theorem 5.2] (see also Theorem A.5 and Remark A.4 below), f p sends the Zp-lattice H2
ét(X

′

K
, Zp)

isomorphically onto H2
ét(X K , Zp). Therefore, we have shown that f in fact induces an integral Hodge

isometry H2(X ′K (C), Z) ∼−→ H2(X K (C), Z) which preserves the ample cones. We may now conclude
using the global Torelli theorem and [Matsusaka and Mumford 1964, Theorem 2]. □

8. Isogenies and Hecke orbits

We briefly recall the definition of prime-to-p Hecke orbit on the orthogonal Shimura varieties. Let 3 be
the K3 lattice U⊕3

⊕ E⊕2
8 , λ∈3 be a primitive element with d := λ2 and p> 2 be a prime such that p ∤d .

We shall use the same notation for orthogonal and spinor Shimura varieties as in Section 7A with L = Ld

and fix Kp = G(Zp). The only difference is that this time Ld has a Z-structure, so that the sheaf L Ap
f

also has a Ẑ p-structure. Let Kp
0 denote the image of CSpin(Ld ⊗ Ẑ p) in G(Ap

f ). More concretely, Kp
0
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can be described as the maximal subgroup of SO(Ld ⊗ Ẑ p) which acts trivially on the discriminant group
disc(Ld ⊗ Ẑ p)= disc(Ld). A more helpful alternative description for us is that Kp

0 can be viewed as the
stabilizer of the element λ⊗ 1 of SO(3⊗ Ẑ p), which can naturally be viewed as a subgroup of G(Ap

f ).
The limit ShKp(Ld) is equipped with a (right) G(Ap

f )-action. By the extension property of the canonical
integral models, this action extends to SKp(Ld). Recall the complex uniformization of ShKp(Ld)

ShKp(Ld)(C)= G(Z(p))\�×G(Ap
f ),

where � is the period domain parametrizing Hodge structures of K3 type on Ld [Madapusi Pera 2016,
§3.1, 3.2; Yang 2022, Definition 3.1]. Given a point (ω, g) ∈�×G(Ap

f ) and an element g′ ∈ G(Ap
f ), g′

sends the class of (ω, g) in ShKp(Ld)(C) to that of (ω, gg′). Let k be an algebraically closed field of charac-
teristic 0 or p. Let M2d,Kp be the moduli stack over Z(p) of oriented quasipolarized K3 surfaces of degree 2d
with hyperspecial level structure at p (see [Yang 2022, 3.3.4], where it is denoted by M̃2d,Kad

p ,Z(p)
). By the

modular interpretation of M2d,Kp , M2d,Kp(k) is in natural bijection with the set of tuples (X, ξ, ϵ, η), where

• (X, ξ) is a quasipolarized K3 surface of degree 2d over k,

• ϵ is an isometry
det(Ld ⊗ Q2)

∼
−→ P2

ét(X, Q2),

which naturally extends to an isometry4

ϵ p
: det(Ld ⊗ Ap

f )
∼
−→ P2

ét(X, Ap
f ),

• η is an isometry
3⊗ Ẑ p ∼

−→ H2
ét(X, Ẑ p)

which sends λ⊗ 1 to c1(ξ) and is compatible with the isometry ϵ p.

Using these explicit descriptions, it is easy to write down the map M2d,Kp(C)→ ShKp(Ld)(C) explicitly:
Let (X, ξ, ϵ, η) be the tuple which corresponds to a point s ∈ M2d,Kp(C). Choose an isomorphism
α : (3⊗ Z(p)) ∼−→ (H2(X, Z(p)), c1(ξ)) which is compatible with ϵ. Then s is sent to the class of
(ω, η−1

◦ (α⊗ Ap
f )), where ω is the Hodge structure on Ld endowed by α. This map is clearly well

defined. The integral extension M2d → SK0(Ld) is constructed and studied in [Madapusi Pera 2015].
The reader can also look at [Yang 2022, §3.3] for a quick summary of the properties.

Theorem 8.1. Assume char k = p > 2. If any point x ∈SKp(Ld)(k) lies in the image of M2d,Kp(k), then
so does x · g for any g ∈ G(Ap

f ).

Proof. Let s ∈M2d,Kp(k) be a point such that x = ρK(s). Let (X, ξ, η, ϵ) be the tuple which corresponds
to s. We view G(Ap

f ) as the subgroup of SO(3⊗ Ap
f ) which fixes λ⊗ 1.

By Theorem 1.2 and Remark 6.10, there exists a K3 surface X ′ together with a derived isogeny
f :h2(X ′)→h2(X) such that f∗(H2(X ′))=H2

cris(X/W )×im(g)⊂H2(X)Q . Moreover, f is a composition

4For details on how to obtain this extension, see [Yang 2022, §3.3.3 or Corollary 3.3.7].
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of primitive derived isogenies which come from twisted derived equivalences involving Brauer classes of
prime-to-p order. Since f∗(NS(X ′))= f∗(H2(X ′))∩NS(X)Q , ξ ∈ f∗(NS(X ′)), so that NS(X ′) contains
a primitive vector of degree 2d . By [Ogus 1979, Lemma 7.3], we can find a derived auto-isogeny δ on X
which is given by reflections in (−2)-curves up to a sign such that δ ◦ f sends ξ to a quasipolarization ξ ′.
Now we use δ ◦ f to transport (ϵ, η) to similar structures (ϵ′, η′) on (X ′, ξ ′) so that we obtain a point
s ′ ∈M2d,Kp(k). We claim that ρ(s ′)= x · g. Although SKp(Ld) lacks a direct modular interpretation, we
can do this by a lifting argument.

We claim that there exist liftings (XW , ξW ) and (X ′W , ξ
′

W ) of (X, ξ) and (X ′, ξ ′) together with an
isogeny (h2(X ′K ), ξ

′

K )→ (h2(X K ), ξK ) whose étale realization agrees with δ ◦ f via the smooth and
proper base change theorem. If X and X ′ are of finite height, by Theorem 5.8, δ ◦ f can be lifted to an
isogeny on the nose. In the supersingular case, we first choose a lifting (XW , ξW ). Then XW induces a
Hodge filtration on H2

cris(X/W ), which can be transported to a filtration on H2
cris(X

′/W ) lifting the one
on H2

dR(X
′/k). By the local Torelli theorem, this defines a lifting X ′W of X ′. One easily checks by [Ogus

1979, Proposition 1.12] that ξ ′ lifts to X ′W . Now we apply [Yang 2023, Lemma 4.3.5] and Theorem 6.13.
Liftings as above induce W -points sW and s ′W on M2d,Kp which lift s and s ′. Let xW := ρ(sW )

and x ′W := ρ(s
′

W ). Using the G(Ap
f )-action, the lifting xW of x induces a lifting x ′′W of x ′′ := x · g. Using

the complex uniformization one quickly checks that x ′′W ⊗C = x ′W ⊗C for any embedding K ⊂ C . Since
SKp(Ld) is a limit of separated schemes, we conclude that x ′ = x ′′ as desired. □

Choose a small enough compact open Kp
⊆ K

p
0 such that for K := KpK

p, SK(Ld) is a scheme and
denote the period morphism M2d,K→ SK(Ld) by ρK. For any k-point x ∈ SK(Ld), the image of the
G(Ap

f )-orbit of a lift x̃ ∈SKp(Ld)(k) under the natural projection SKp(Ld)→SK(Ld) is what we call
the prime-to-p Hecke orbit of x .

Let X denote the universal family over M2d,K. The mod p fiber M2d,K,Fp (resp. SK(Ld)Fp ) of moduli
space M2d,K admits a stratification M2d,K,Fp =M1

⊇M2
⊇ · · · ⊇M20 (resp. SK(Ld)Fp =S 1

⊇S 2
⊇

· · · ⊇ S 20) such that for 1 ≤ i ≤ 10, a geometric point s lies in Mi (resp. S i ) if and only if Xs

(resp. Lcris,s(−1)) has height ≥ i , and for 11≤ i ≤ 20, a geometric point s lies in Mi (resp. S i ) if and
only if Xs (resp. Lcris,s(−1)) is supersingular and has Artin invariant ≤ 21− i . Set M̊i

:=Mi
−Mi−1

and S̊ i
:=S i

−S i−1. Heights and Artin invariants are rather classical invariants. For a more modern
interpretation in terms of Newton and Ekedahl–Oort (E–O) strata for SK(Ld)Fp , see for example [Shen
2020, §8.4]. It follows from [Madapusi Pera 2015, Corollary 5.14] that the period morphism respects
these stratifications in the sense that Mi

=S i
×SK(Ld )M2d,K. We remark that the Zariski closure of the

locally closed subscheme S̊ i is S i . By [Shen and Zhang 2022, Corollaries 7.2.2 and 7.3.4], if 1≤ i ≤ 10,
then S i is a central leaf. The locus S 20 is the superspecial locus (the unique closed E–O stratum), and is
also a central leaf (see [Shen and Zhang 2022, Remark 3.2.2, Examples 6.2.4]).

In our case, the Hecke orbit conjecture predicts the following:

Conjecture 8.2. For 1 ≤ i ≤ 10 or i = 20, the prime-to-p Hecke orbit of every s ∈S i (Fp) is Zariski
dense in S i .
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We remark that once the above conjecture is known for Fp, it is automatically true for any algebraically
closed field over Fp by a specialization argument. Conjecture 8.2 has been proved by Maulik, Shankar,
and Tang [2022, Theorem 1.4] when i = 1 and p≥ 5. We prove another special case below (Theorem 8.6).

We use Nσ to denote the supersingular lattice of Artin invariant σ . We restrict to considering the p> 2
case, when these lattices are characterized by [Huybrechts 2016, §17, Proposition 2.20]. The original
reference [Rudakov and Shafarevich 1978] also treated the p = 2 case.

Lemma 8.3. For each d > 0 and i = 0, 1, there exist a primitive element ξ ∈ N1 with ξ 2
= 2d and

an αi ∈ O(N1) such that αi fixes ξ and interchanges the two isotropic lines in (N∨1 /N1)⊗ Fp2 and
det(αi )= (−1)i .

Proof. The supersingular K3 surface with Artin invariant 1, which is unique up to isomorphism, is given
by the desingularization of A/A[2], where A = E × E for a supersingular elliptic curve E [Ogus 1979,
Corollary 7.14]. Since E admits a model over Fp, so does X . Let ϕ be a topological generator of GalFp .
We fix an isomorphism between N1 and NS(X Fp

), so that N is equipped with a GalFp -action such that
NS(X) is identified with the ϕ-invariants Nϕ .

Let NS(A)(2) denote the lattice NS(A) but with the quadratic form multiplied by a factor of 2. As
a result of the Kummer construction, there exist 16 (−2)-curves δ1, . . . , δ16 on X and an isometric
embedding

NS(A)(2)⊕
( 16⊕

i=1

Zδi

)
↪→ NS(X).

Let µ ∈ NS(A)(2) be a primitive element such that µ2 > 0. For some coprime numbers a and b,
(aµ + bδ1)

2
= 2d. The generator ϕ fixes ξ := aµ + bδ1 and interchanges the isotropic lines in

(N∨1 /N1)⊗ Fp2 (cf. the paragraph below [Liedtke 2016, Examples 4.20]).
Let sδ2 be the reflection in δ2. Note that sδ2 fixes µ and δ1, and hence ξ . Moreover, it is not hard to

check that sδ2 acts trivially on N∨/N . Therefore, we can simply set α0 and α1 to be ϕ and sδ2 ◦ϕ, up to
permutation. □

Lemma 8.4. M̊i
̸=∅ for all i .

Proof. Each Mi+1
⊆Mi is locally cut out by a single equation. M2d,K,Fp is smooth of dimension 19, and

we know that M20 is zero-dimensional (cf. [Artin 1974, §7]). Therefore, it suffices to show that M20
̸=∅,

i.e., there exists a quasipolarization of degree 2d on the superspecial K3 surface, which is unique up to
isomorphism. This follows from the preceding lemma and [Ogus 1979, Lemma 7.9]. □

Let K ⊂ G̃(Ap
f ) be the preimage of K. Before proceeding we recall that for any geometric point

t ∈ S̃K(Ld), there is a distinguished subspace LEnd(At) of End(At) which consists of the elements whose
cohomological realizations lie in L Ap

f ,t
and Lcris,t ([Yang 2022, Definition 3.10]; cf. [Madapusi Pera

2016, Definition 5.11]). When t is on the supersingular locus, the natural maps LEnd(At)⊗ Ẑ p
→ Lℓ,t

and LEnd(At)⊗ Zp→ LF=1
cris,t are isomorphisms [Yang 2023, Proposition 3.2.3].
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Lemma 8.5. Let k be an algebraically closed field with char k = p. Let x be a k-point on S i for
some i ≥ 11 and t be a k-point on S̃K(Ld) which lifts x , and set P := LEnd(At). Then there exists a
primitive element ν ∈ Nσ with σ := 21− i and ν2

= 2d such that P ∼= ν⊥.

Proof. Let Zν be a quadratic lattice of rank 1 generated by ν with ν2
= 2d . By the theory of gluing lattices

(see [McMullen 2011, §2] for a quick summary), primitive extensions of P ⊕ Zν corresponds to the data
(G1,G2, φ), where G1, G2 are subgroups of disc(P) and disc(Zν) and φ is an isometry G1

∼
−→ G2.

Therefore, constructing N amounts to choosing appropriate (G1,G2, φ).
In our case, we take G1 to be the prime-to-p part of disc(P), i.e., disc(P ⊗ Ẑ p), and G2 = disc(Zν),

which is isomorphic to Z/(2d)Z as an abelian group. Then we construct φ by a lifting argument: Let xW

be a W -point on S (Ld) which lifts x and let xC be xW for some embedding W ↪→ C. The period
morphism ρK is known to be surjective on C-points, so there exists a quasipolarized K3 surface (XC , ξC)

such that the Z-Hodge structure L B,xC is naturally identified with P2(XC , Z). We have that the natural map
P ⊗ Ẑ p

→ L Ẑ p,x is an isomorphism [Yang 2023, Proposition 3.2.3] and L Ẑ p,x
∼= L B,xC ⊗ Ẑ p by smooth

and proper base change and the Artin comparison isomorphisms. Therefore, there is an isomorphism
β1 : G1

∼
−→ disc(P2(XC , Z)⊗ Ẑ p)= disc(P2(XC , Z)). On the other hand, let β2 : G2

∼
−→ disc(ZξC)

be the isomorphism given by sending ν to ξC ∈ H2(XC , Z).
We may transport the gluing data given by the primitive embedding P2(XC , Z)⊕ Zξ ⊂ H2(XC , Z)

to a gluing data φ for G1,G2 via β1, β2. Let N be the lattice given by (G1,G2, φ). We check that it is
a supersingular K3 lattice. Clearly, by our construction, N ⊗ Ẑ p ∼=3⊗ Ẑ p. As P is negative definite,
N has signature (1+, 21−). Finally, disc(N ⊗ Zp) = disc(P ⊗ Zp) ∼= (Z/pZ)2σ as an abelian group.
Therefore, N ∼= Nσ . □

We now prove another special case of Conjecture 8.2:

Theorem 8.6. Conjecture 8.2 holds for i = 20.

Proof. Take two Fp-points x, x ′ ∈ S 20. Choose lifts t, t ′ for x, x ′ in S̃K (Ld). We only need to show
that there exists a CSpin-isogeny At → At ′ which is prime to p. Indeed, this follows from an explicit
description of the isogeny classes in S̃Kp(Ld)(Fp) and their images on SKp(Ld)(Fp) [Yang 2022, §3.2.3].
Let P and P ′ denote LEnd(At) and LEnd(At ′) respectively.

We first show that every isometry PQ
∼
−→ P ′Q whose induced isomorphism L2,t ⊗ Q ∼

−→ L2,t ′ ⊗ Q
sends δ2,t to δ2,t ′ is induced by a CSpin-isogeny ψ : At → At ′ by conjugation. Indeed, by [Yang 2023,
Proposition 3.2.4], there exists some CSpin-isogeny ψ ′ : At → At ′ , which induces some isomorphism
PQ

∼
−→ P ′Q whose induced isomorphism L2,t ⊗ Q ∼

−→ L2,t ′ ⊗ Q sends δ2,t to δ2,t ′ . The group of CSpin-
isogenies from At to itself is identified with CSpin(PQ), which surjects to SO(PQ). By composing ψ ′

with some CSpin-isogeny At → At , we get the desired ψ .
We only need to show that there exists a CSpin-isogeny At → At ′ which is prime to p. By a Cartan

decomposition trick [Yang 2023, Lemma 3.2.6], we only need to show the following claim:

Claim. There exists an isometry P ⊗ Z(p) ∼−→ P ′⊗ Z(p) which sends δ2,x to δ2,x ′ and extends to an
isomorphism Lcris,x

∼
−→ Lcris,x ′ .
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By Lemma 8.5, for some primitive vectors ξ, ξ ′ in N1 with ξ 2
= (ξ ′)2 = 2d, we have P ∼= ξ⊥

and P ′ ∼= (ξ ′)⊥. Since some reflection of N ⊗ Z(p) takes ξ to ξ ′ [Milnor and Husemoller 1973, I,
Lemma 4.2], P ⊗ Z(p) ∼= P ′⊗ Z(p) as quadratic lattice over Z(p). Now P ⊗ Zp and P ′⊗ Zp are the
Tate modules of the supersingular K3 crystals Lcris,t(−1) and Lcris,t ′(−1) respectively. By Ogus’s
theory of characteristic subspaces [1979, Theorem 3.20], Lcris,t (resp. Lcris,t ′) determines an isotropic
line of (P∨/P)⊗ Fp (resp. ((P ′)∨/P ′)⊗ Fp) and the isomorphism P ⊗ Zp→ P ′⊗ Zp extends to an
isomorphism Lcris,t

∼
−→ Lcris,t ′ if and only these isotropic lines are respected. Now the claim follows

from Lemma 8.3. □

Remark 8.7. As the reader can readily tell, the heart of the above theorem is the claim. Here we have
proved the claim in a rather ad hoc way. We go through Lemma 8.5 because there does not seem to be a
good classification theory for quadratic lattices over Z(p). Moreover, P and P ′ are negative definite, so
one cannot apply, say, Nikulin’s theory to generate automorphisms, which only handles indefinite lattices.
Luckily, in our special case, there is a geometric way of constructing the automorphisms we need.

Lemma 8.8. Let k be an algebraically closed field with char k = p > 2. Let R be a DVR over k with
fraction field κ and let Xκ be a supersingular K3 surface over κ such that X κ̄ has Artin invariant σ0.
There exists a DVR S over k with fraction field L , a finite separable map R→ S, and an Nσ0-marked
supersingular K3 surface X S over S such that (X S)L ∼= (Xκ)L .

Proof. By a result of Rudakov and Shafarevich (see [Rudakov and Shafarevich 1976, Theorem 50],
and [Bragg and Lieblich 2018, Theorem 5.2.1] for p = 3) there exists a DVR S, a finite separable map
R→ S, and a supersingular K3 surface X S over S such that (X S)L ∼= (Xκ)L . The Picard scheme PicX L

is formally étale over Spec L . As Pic(X L) is finitely generated, after taking a further finite separable
extension we may ensure that the restriction map Pic(X L)∼= Pic(X L) is an isomorphism. Thus, X L admits
an Nσ0-marking. As S is a DVR, we have Pic(X L)= Pic(X), so the generic marking extends uniquely to
an Nσ0-marking of X S . □

Theorem 8.9. If Conjecture 8.2 holds for i , or i ≥ 11, then S i
⊂ im(ρK).

Proof. If Conjecture 8.2 holds for i then the conclusion is a direct consequence of Theorem 8.1 and the
fact that im(ρK) is open. Now assume i ≥ 11 and take k = Fp. Note that by Theorem 8.6, S 20

⊂ im(ρK).
Since the Zariski closure of S̊ i is S i , the intersection im(ρK)∩S i is open and dense in S i . Take a
closed point x ∈ S̊ i

k . Let R be the ring k[[t]] and F be its fraction field. Choose an R-valued point x̃
which extends x such that x̃F lies in im(ρK)∩S i . Such an x̃ can always be found: we can always choose
a smooth curve which passes through x and whose generic point lies in im(ρK)∩S i . Then we simply
take the completion of this curve at x . Let XF be a supersingular K3 surface over the generic point of x̃F.
Note that the geometric fiber of XF has Artin invariant σ := 21− i . By the preceding lemma, there exists
a DVR R′ over R, whose fraction field F′ is a finite extension of F, such that there is an Nσ -marked
supersingular K3 surface X over R′.

We argue that the special fiber Xk of X has Artin invariant σ . There are two families of supersingular
K3 crystals over R′ (see [Ogus 1979, §5] for the definition): One is obtained by pulling back Lcris,x̃(−1)
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along R→ R′. The other is given by H2
cris(X

′). By construction, these two families agree on the generic
fiber. By Proposition 4.6 and Theorem 5.3 of [Ogus 1979], there exists a universal family of supersingular
K3 crystals over a smooth projective space M such that these two families are both obtained by pulling
back the universal family along morphisms R→ M. Since M is in particular separated, these two
morphisms have to agree. Therefore, H2

cris(X
′/R′) is precisely the pullback of Lcris,x̃(−1). Now we

conclude by the hypothesis that x ∈S i
k .

Now we know that XF := X⊗F and Xk have the same Artin invariant. This guarantees that the
specialization map Pic(XF′)→ Pic(Xk) must be an isomorphism, and hence must send the ample cone
isomorphically onto the ample cone. Since the big and nef cone is the closure of the ample cone, the
quasipolarization on XF′ extends to a quasipolarization on Xk . This shows that x ∈ im(ρK). □

Finally we discuss some implications of the surjectivity of the period morphism to the good reduction
theory of K3 surfaces. As Conjecture 8.2 is known for i = 1 and p ≥ 5 (by [Maulik et al. 2022,
Theorem 1.4]), the following result in particular implies the unconditional Theorem 1.7.

Theorem 8.10. Let k be a perfect field of characteristic p> 2. Let F be a finite extension of K =W [1/p].
Let X F be a K3 surface over F equipped with a quasipolarization ξ of degree 2d with p ∤d. Suppose that
the GalF -action on H2

ét(X F , Qℓ) is potentially unramified for some ℓ ̸= p. Then we have:

(a) H2
ét(X F , Ap

f ) and H2
ét(X F , Q p) are potentially unramified and crystalline respectively.

(b) If H2
ét(X F , Q p) is crystalline, then Dcris(H2

ét(X F , Q p)) is a K3 crystal.

(c) Suppose that the hypothesis of (b) is satisfied and Dcris(H2
ét(X F , Q p)) is a K3 crystal of height i . If

Conjecture 8.2 holds for i or if i =∞, then X F has potential good reduction.

We recall that X F as above is said to have potential good reduction if, up to replacing F by a finite
extension, there exists a smooth proper algebraic space X over OF , whose special fiber is a K3 surface
over k and whose generic fiber is X F (cf. [Liedtke and Matsumoto 2018, Definition 2.1]).

Proof. (a) and (b) Up to replacing F by a finite extension, we may equip (X, ξ) with a K-level structure
and an orientation so that it is given by an F-point s on M2d,K, and find a lift t ∈ S̃K(Ld)(F) of ρK(s).
Consider the abelian variety At . One easily adapts the argument of Deligne [1981, §6.6] to see that, up to
replacing F by a further extension, At admits good reduction. By the extension property of the integral
models, we can extend t to an OF -valued point τ on SK(Ld). This implies both (a) and (b).

(c) We have τ ⊗ k ∈ S i . If the hypothesis is satisfied, then S i
⊂ im(ρK). Now we conclude by the

étaleness of ρK. Indeed, the global Torelli theorem implies that if two C-points of M2d,K are mapped to
the same points under ρK, then the K3 surfaces they correspond to are (noncanonically) isomorphic. If
there is a quasipolarized K3 surface over k whose moduli point is sent to τ ⊗ k, then the étaleness of ρK
tells us that there exists an F-point s ′ of M2d,K such that ρK(s)= ρK(s ′). Up to replacing F by a finite
extension, the K3 surfaces defined by s and s ′ are isomorphic. □
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Appendix: Some results from integral p-adic Hodge theory

We review some basic results in p-adic Hodge theory. Let k be a perfect field of characteristic p > 0.
We write W for W (k) and K0 for W [1/p]. Let K be a totally ramified extension of K0 and let π be a
uniformizer of its ring of integers OK .5 Let G K denote the absolute Galois group GalK . Set R :=OK /(p).

Let f :X→ SpecOK be a smooth and proper scheme (more generally, the following discussion applies
also when X is only a formal scheme and XK denotes the rigid analytic generic fiber). The subject of
p-adic Hodge theory is concerned with how to recover the following tuples of data from one another
under suitable assumptions:

(A) The Zp-module Hi
ét(XK , Zp) equipped with a G K -action.

(B) The F-crystal Ri fR,cris∗OX R over Cris(R/W ) together with the filtered OK -module Hi
dR(X/OK ).

(B′) The F-crystal Hi
cris(Xk/W ) together with the filtered OK -module Hi

dR(X/OK ).

Remark A.1. Let e be the ramification degree of OK over W . When e ≤ p− 1, R ∼= k[ε]/εe has a PD
structure, so that the category of crystals of quasicoherent sheaves over Cris(R/W ) is equivalent to
that over Cris(k/W ) [Berthelot and Ogus 1978, Corollary 6.7]. Therefore, under mild torsion-freeness
assumptions on various cohomology modules of X , (B) and (B′) are equivalent data. Moreover, as OK is
a PD thickening of W , the crystalline de Rham comparison theorem gives us a canonical isomorphism

Hi
cris(Xk/W )⊗

W
OK ∼= Hi

dR(X/OK ).

If e > p− 1, then (B) contains strictly more information than (B′). The above isomorphism no longer
holds integrally in general. However, there is still a canonical isomorphism after inverting p:

Hi
cris(Xk/W )⊗

W
K ∼= Hi

dR(X/OK ) ⊗
OK

K .

This isomorphism is often called the Berthelot–Ogus isomorphism because it was first introduced in
[Berthelot and Ogus 1983]. Below we will often make use of this isomorphism implicitly. Note that in the
above isomorphisms, the left-hand side only depends on the special fiber Xk , whereas the right-hand side
is equipped with the additional data of a Hodge filtration, which in general depends on the lifting X of Xk .

Here is an overview of the relationship between the above tuples: The classical (rational) p-adic
comparison isomorphisms tell us how to recover (A) and (B′) from one another after inverting p. Integral
p-adic Hodge theory (e.g., the seminal paper of Bhatt, Morrow, and Scholze [Bhatt et al. 2018]) tells
us how to recover (B) from (A). For our purposes, we are mainly concerned with how to recover (A)
from (B). Roughly speaking, the way to do this is to evaluate the F-crystal Ri fR,cris∗OX R on a certain
PD-thickening S of R (S is often called Breuil’s S-ring), so that we obtain an S-module. This S-module is
equipped with a Frobenius action from the F-crystal structure on Ri fR,cris∗OX R , and is moreover equipped
with a filtration which absorbs the data of the Hodge filtration on Hi

dR(X/OK ). The main result of

5This notation is chosen to be in line with most references in p-adic Hodge theory. In the main text, the letters K and F take
the roles of K0 and K respectively. We apologize for this inconsistency of notation.
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[Cais and Liu 2019] tells us that by applying a certain functor (denoted by Tcris below) to this S-module,
we recover (A). Of course, [Bhatt et al. 2018] already treats the relationship between (A) and (B), but the
conclusions there are packaged in a more abstract way.

After inverting p. Let MFϕ,NK denote the category of filtered (ϕ, N )-modules. An object of this category
is a K0-vector space D which is equipped with

• a Frobenius semilinear injection ϕ : D→ D;

• a K0-linear map N : D→ D such that Nϕ = pNϕ;

• a descending filtration on DK such that Fili DK = DK for i ≪ 0 and Fili DK = 0 for i ≫ 0.

Let MFϕK denote the subcategory with N = 0. The motivation to consider this category is that the
data in (A) is naturally an object in MFϕK after inverting p, because there is a canonical Berthelot–
Ogus isomorphism Hi

cris(Xk/W )⊗W K ∼= Hi
dR(X/OK )⊗OK K . We will use this isomorphism repeatedly

without explicitly mentioning it. We remark that in most references the operator N is in MFϕ,NK to
treat varieties with semistable reductions. Since we are assuming good reduction, we may restrict to
considering the category MFϕK .

Let RepG K
denote the category of G K -representations over Q p and let Repcris

G K
denote the subcategory

of crystalline representations. Given an object Q ∈ Repcris
G K

, one may define an object in MFϕK using
the (covariant) Fontaine’s functors Dcris and DdR, which are defined by Dcris(Q) = (Q⊗Q p Bcris)

G K

and DdR(Q) = (Q⊗Q p BdR)
G K . The pair (Dcris(Q), DdR(Q)) are equipped with a Frobenius action

and filtrations respectively, and hence define an object in MFϕK . We abusively denote the resulting
functor RepG K

→MFϕK also by Dcris. We define a functor from the essential image of Dcris to Repcris
G K

by
Vcris = Fil0(D⊗K0 Bcris)

ϕ=1. There is an equality of Q p-submodules

Q = Vcris(Dcris(Q))

of (Q⊗Q p Bcris)⊗K0 Bcris, which specifies a natural transformation Vcris ◦ Dcris⇒ id on Repcris
G K

.6 The
reader may look at [Brinon and Conrad 2009, Part I, Sections 8 and 9] for more details about these objects.

By [Bhatt et al. 2018, Proposition 5.1, Theorem 14.6], there is a p-adic comparison isomorphism

Hi
cris(Xk/W )⊗

W
Bcris

∼
−→ Hi

ét(XK , Zp)⊗
Zp

Bcris (41)

which respects the GalF -actions and filtrations. Therefore, we obtain an isomorphism of objects in MFϕK

Dcris(Hi
ét(XF , Q p))

∼
−→ (Hi

cris(Xk/W )[1/p],Hi
dR(XK /K )). (42)

There are multiple rational p-adic comparison isomorphisms of the form (41) (e.g., those constructed
earlier by Faltings [1999], Tsuji [1999], and others). We choose to use the one from [Bhatt et al. 2018]
because this is the one used in [Cais and Liu 2019], to be cited below. Once we fix this choice of rational
p-adic comparison isomorphism, then the isomorphism (42) is also fixed.

6Note that the natural transformations between two functors between 1-categories (or locally small categories in the usual
sense) do form a set (as opposed to a groupoid), so it makes sense to specify an element in this set.
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Recovering integral lattices. We now explain how to recover the natural integral lattices in the objects
of (42) from one another. Let S := W [[u]], and let θ : S → OK be the map sending u to π . Let
Repcris◦

GalK
denote the category of G K -stable Zp-lattices in objects of Repcris

G K
. Let M(−) be the functor as

in [Kisin 2010, Theorem 1.2.1] which sends an object in Repcris◦
G K

to a Breuil–Kisin module in the sense
of [Bhatt et al. 2018, Theorem 4.4], so that there exist canonical isomorphisms

ϕ∗M(T )⊗
S

K0
∼
−→ Dcris(T [1/p]) and ϕ∗M(T ) ⊗

S,θ
K ∼
−→ DdR(T [1/p]) (43)

which preserve Frobenius actions and filtrations respectively. Then we have the following result [Bhatt
et al. 2018, Theorem 14.6].

Theorem A.2. Assume that Hi
cris(Xk/W ) and Hi+1(Xk/W ) are torsion-free. Then for T = Hi

ét(XK , Zp)

the isomorphisms (43) map M(T )⊗S W and M(T )⊗S,θ OK isomorphically onto Hi
cris(Xk/W ) and

Hi
dR(X/OK ) respectively, when composed with the isomorphisms in (41).

We refer the reader also to [Ito et al. 2018, Theorem 3.2] for an exposition which is closer to ours
in notation. The above theorem tells us how to recover (B′) from (A). Under the additional assumption
that i < p− 1, [Cais and Liu 2019, Theorem 5.4] tells us how to recover (A) from (B). Before doing so
we need to introduce the intermediate category of Breuil’s S-modules, which packages the data of (B) in
a different way.

Breuil’s S-modules. Let S denote the p-adic completion of the PD envelope of (S, ker θ). Let Sπ denote
the ring W [[u−π ]]. Then there is an embedding ι : S ↪→ Sπ which sends u to u−π . Let fπ : Sπ → OK

(resp. f0 : S→W ) be the projection which sends u−π to 0 (resp. u to 0). Then there is a commutative
diagram of W -algebras

S Sπ

W OK

ι

f0 fπ

In [Breuil 1997], the above ring S is denoted by S0
min. The letter S in loc. cit. denotes a certain extension

of S0
min,K0

. For our purposes, one may simply take S = S0
min,K0

when reading [Breuil 1997]. The letter S
in our notation is in line with [Cais and Liu 2019] and [Liu 2008].

Let MF
ϕ,N
SK0

denote the category of filtered (ϕ, N )-modules over SK0 .7 There is an equivalence of
categories

η :MFϕ,NK →MF
ϕ,N
SK0

(44)

which sends (D,Fil• DK , ϕ, N ) to an object (D,Fil•D, ϕD , ND) with D = D⊗W S ([Cais and Liu
2019, p. 1215]; see also [Breuil 1997, Theorem 6.1.1]). The quasi-inverse η−1 is defined by (D ⊗ f0 W,
D ⊗ fπ◦ι OK ), for which the Frobenius action and filtration are inherited from those on D . There is a

7This is just the category denoted by MF(ϕ, N ) in [Liu 2008, §2.2], except that we have not restricted to positive objects, so
that we replace the condition Fil0 D = D by Fil j D = D for j ≪ 0.
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canonical natural transformation η−1
◦ η⇒ id on MFϕK which underlies the tautological identification of

modules

(D, DK )= (D⊗
W

S⊗
f0

W, DK ⊗
W

S ⊗
fπ◦ι

OK ).

A strongly divisible S-lattice (of height r ) in an object D ∈MF
ϕ,N
SK

with Fil0 D =D is an S-lattice such
that M [1/p] = D , ND(M )⊆M , and ϕD(Filr M )⊆ prM , where Filr M :=M ∩ Filr D . Let MF

ϕ,N
S

denote the category of strongly divisible S-lattices in objects of MF
ϕ,N
SK0

.

Theorem A.3 (Liu). Suppose that Q ∈ Repcris
G K

has Hodge–Tate weights in {0, 1, . . . , p − 2}. Let D

denote η(Q). The covariant functor Tcris :M 7→ Fil0(M ⊗S Acris)
ϕ=1 defines a bijection between the set

of strongly divisible S-lattices in D and that of G K -stable Zp-lattices in Vcris(Dcris(Q))= Q.

Proof. Theorem 2.3.5 of [Liu 2008] tells us that the above theorem holds for Breuil’s functor Tst. The
contravariant version of this functor is reviewed in Section 2.2 of loc. cit. If we use the superscript (resp.
subscript) ∗ to indicate contravariance (resp. covariance), then T ∗st (−)= T∗st((−)

∨). Proposition 3.5.1 of
loc. cit. tells us that Tst(M )= Tcris(M ) as Q is crystalline. □

Remark A.4. Let C denote the full subcategory of MF
ϕ,N
S whose image in MF

ϕ,N
SK0

lies in the essential
image of MFϕK (as a subcategory of MFϕ,NK ) under η. To sum up, we now have a commutative diagram
of categories

Repcris
G K

MFϕK MFϕ,NK MF
ϕ,N
SK0

Repcris◦
G K

C MF
ϕ,N
S

Dcris

Vcris

η

η−1

Tcris

in which the vertical arrows are given by inverting p. Moreover, the natural transformations Vcris◦Dcris⇒ id
and η−1

◦η⇒ id are tautological. By the above theorem, Tcris is an equivalence of categories. We remark
that since Acris is a W -subalgebra of Bcris and the inclusion Acris⊆ Bcris respects the filtration and Frobenius
structures, Tcris(M ) is a priori a Zp-submodule of Vcris(Dcris(Q)). The reason that we emphasize the
natural transformations used is to decategorify the language, so that Tcris, which is often stated as an
equivalence of categories, is concretely an equality of sets.

Theorem A.5 (Cais and Liu). Assume that H i
cris(Xk/W ) and H i+1

cris (Xk/W ) are torsion-free and i ≤ p−2.
Set M := Hi

cris(XR/S). Let p : M → Hi
cris(Xk/W ) be the canonical projection induced by f0. Let

D ∈MF
ϕ,N
SK0

be given by the object (Hi
cris(Xk)K ,Fil•Hi

dR(XK /K )) in MFϕK via η. Then we have:

(a) There is a canonical section s to p[1/p] such that s is ϕ-equivariant and s⊗W S induces an isomor-
phism M [1/p] ∼−→ D .

(b) Under the isomorphism in (a), M defines a strongly divisible S-lattice in D and Tcris(M ) =

Hi
ét(XK , Zp).
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Proof. Part (a) is a variant of the Berthelot–Ogus isomorphism [Cais and Liu 2019, Proposition 5.1].
Part (b) follows from [Cais and Liu 2019, Theorem 5.4(2)] and its proof, which proceeds by reducing to
proving the equality of two lattices.

Let T be an object of Repcris◦
G K

and let M(T ) be the Breuil–Kisin module associated to T . Let M(−)
be the functor defined by ϕ∗(M(−)). Then M (M(T )) := M(T )⊗S S can be equipped with additional
structures so that it becomes an object in MF

ϕ,N
S . The base-change-to-S functor M used here is defined

in (3.6) of loc. cit. There is a natural isomorphism M (M(T ))[1/p] ∼−→ η(Dcris(T [1/p])) which lifts
the isomorphism M(T )⊗S K0

∼
−→ Dcris(T [1/p]) in (43). Moreover, Tcris sends the strongly divisible

S-lattice M (M(T )) to T . The reader may also check out the proof of [Snowden 2014, Lemma A.3] for
entirely similar considerations.

Now let T be Hi
ét(XK , Zp). Since Tcris establishes a bijection between strongly divisible S-lattices in D

and G K -stable Zp-lattices in T [1/p], one reduces to showing an equality of S-lattices M =M (M(T ))
under the isomorphisms

M (M(T ))[1/p] ∼= D ∼=M [1/p].

This is the main step in the proof of [Cais and Liu 2019, Theorem 5.4(2)] (see the second paragraph on
page 1226). □

Remark A.6. In the above setting, let f :XR→Spf(R) be the structure morphism and let H i
cris(XR) denote

the F-crystal Ri fcris∗OXR . Then Hi
cris(XR/S) (resp. Hi

cris(XR/OK )) can be viewed as a the S-module given
by evaluating H i

cris(XR) on the object S (resp. OK ) of Cris(R/W ). The morphism θ : S→ OK defines a
canonical isomorphism θ∗H i

cris(XR)S
∼
−→ H i

cris(XR)OK . The lifting X of XR to OK endows H i
cris(XR)OK

with a Hodge filtration via the crystalline de Rham comparison H i
cris(XR)OK

∼= Hi
dR(X/OK ). The S-

module H i
cris(XR)S , being an object of MF

ϕ,N
S , is also equipped with a natural filtration, which maps

isomorphically onto the Hodge filtration on H i
dR(X/OK ). However, note that the filtration on H i

cris(XR)S

is defined in a more formal way, with the Hodge filtration on H i
dR(X/OK ) being the key input. Namely,

one first constructs D out of (Hi
cris(Xk/W ),Hi

dR(X/OK )), and then defines a filtration on M by inter-
secting with Fil•D under the isomorphism in part (a) of the above theorem. One naturally wonders
whether this filtration has a more direct cohomological construction. This question is addressed in
[Cais and Liu 2019, §6.1]. However, we won’t make use of this cohomological interpretation.

Remark A.7. If X is a smooth proper scheme over OK , or more generally a smooth proper algebraic space
over OK whose special and generic fibers are schemes, then the above results hold for XK interpreted as
the generic fiber in the usual sense. The point is that the analytification of the generic fiber is functorially
isomorphic to the rigid analytic generic fiber of the formal completion of X at the special fiber. The reader
may look at [Ito et al. 2018, §11.2] for details.

Applications to p-divisible groups. Let G be a p-divisible group over OK and assume p ≥ 3. Let Tp(−)

denote the Tate module functor, D(−) denote the contravariant Dieudonné module functor and G ∗ denote
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the Cartier dual of G . There is a p-adic comparison isomorphism

D(Gk)⊗
W

Bcris
∼
−→ TpG ∗(−1)⊗

Zp

Bcris (45)

which induces an isomorphism Dcris(TpG ∗(−1)⊗Zp Q p)
∼
−→ D(Gk)[1/p]. Tcris(D(GR)S) recovers the

Zp-lattice TpG ∗(−1) inside TpG ∗(−1)⊗Zp Q p [Kisin 2006, Lemma 2.2.4]. Note that TpG ∗(−1) is
canonically isomorphic to (TpG )∨.
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