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This is a correction to the paper “Height bounds and the Siegel property” (Algebra Number Theory 12:2
(2018), 455–478). We correct an error in the proof of Theorem 4.1. Theorem 4.1 as stated in the original
paper is correct, but the correction affects additional information about the theorem which is important for
applications.

There is an error in the proof of [Orr 2018, Theorem 4.1]. The statement of Theorem 4.1 is correct,
but [loc. cit., Lemma 4.4] is incorrect under the conditions on KG stated above it.

Subsequent applications [Bakker et al. 2020, Theorem 1.1(2); Daw and Orr 2021, Lemma 2.3] have
required greater control of the maximal compact subgroup KG than is given by the statement of [Orr
2018, Theorem 4.1]. As a result of the error in the proof, the choice of KG is more constrained than
it appears in [loc. cit.]. We therefore state a version of [loc. cit., Theorem 4.1], extended to correctly
describe the constraints on KG .

Theorem 1. Let G and H be reductive Q-algebraic groups, with H ⊂ G. Let SH be a Siegel set in
H(R) with respect to the Siegel triple (PH , SH , K H). Let KG ⊂ G(R) be a maximal compact subgroup
such that

(i) K H ⊂ KG; and

(ii) the Cartan involution of G associated with KG stabilises SH .

Then there exist subgroups PG, SG ⊂ G forming a Siegel triple (PG, SG, KG), a Siegel set SG ⊂ G(R)
with respect to this Siegel triple, and a finite set C ⊂ G(Q) such that

SH ⊂ C.SG.

Furthermore, Ru(PH)⊂ Ru(PG) and SH = SG ∩ H .

Remark 2. In the setting of Theorem 1, let 2 be the Cartan involution of G associated with KG . We
now compare (ii) with:

(ii′) 2 stabilises H .
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If (i) and (ii′) are satisfied, then the restriction 2|H is the Cartan involution of H associated with K H .
Hence, by the definition of Siegel triple, (ii) is satisfied. However, if (i) and (ii) are satisfied, then (ii′)
does not necessarily hold. This may be seen in the example G = SL2, H =

{( a
db

b
a

)
: a2

−db2
= 1

}
where

d is a nonsquare positive rational number, KG = SO2(R), SH = {1}, K H = {1}.

In this note, we explain how to correct the proof of [Orr 2018, Theorem 4.1] and prove Theorem 1.
We also give examples showing that condition (ii) of Theorem 1 cannot be deleted from the statement of
the theorem: first an example in which H is a torus, then a more sophisticated example in which H is
semisimple. At the end of the note, we correct some unrelated minor errors in [loc. cit.].

A. Correction to proof of [Orr 2018, Theorem 4.1]. On [Orr 2018, page 470], item (2) (the choice of
KG) should be replaced by:

(2) KG , a maximal compact subgroup of G(R) containing K H , such that the Cartan involution of G
associated with KG stabilises SH .

Paragraph 1 of the proof of [loc. cit., Lemma 4.4] is incorrect: neither the original constraint on KG , nor
the corrected constraint, are sufficient to guarantee that 2 restricts to an involution of H (see Remark 2).
With the corrected constraint, that paragraph can be ignored and paragraph 2 of the proof of [loc. cit.,
Lemma 4.4] is valid. Hence the lemma is true under the corrected constraint on KG .

The remainder of the proof of [loc. cit., Theorem 4.1] is valid without any changes related to the choice
of KG (but see unrelated minor corrections in Section E of this note). No further conditions are imposed
on KG , so this proves Theorem 1.

In order to establish [loc. cit., Theorem 4.1], it is necessary to verify the existence of KG satisfying (2)
above. To show this, choose a faithful representation ρ : GR → GL(V ) for some real vector space V . By
[Mostow 1955, Theorem 7.3], there exists a positive definite symmetric form ψ on V with respect to
which the groups K H ⊂ H(R)⊂ G(R)⊂ GL(V ) are simultaneously self-adjoint. In other words, if 2
denotes the Cartan involution of GL(V ) associated with ψ , then 2 restricts to Cartan involutions of G,
H and K H .

Letting KG denote the stabiliser of ψ in G(R), we obtain K H ⊂ KG . By Remark 2, 2 stabilises SH .

B. Counterexample in which condition (ii) of Theorem 1 is not satisfied: a torus. Let G = SL2 and let
(P0, S0, KG) be the standard Siegel triple for G, that is, P0 is the subgroup of upper triangular matrices
in G, S0 is the subgroup of diagonal matrices in G and KG = SO2(R).

Let

H =

{(
x x−1

− x
0 x−1

)}
⊂ G.

This is a Q-split torus so it possesses a unique Siegel triple, namely PH = SH = H , K H = {±1}, and a
unique Siegel set, SH = H(R).

Clearly K H = {±1} ⊂ KG . Thus KG satisfies condition (i) of Theorem 1. However by [Orr 2018,
Lemma 2.1], S0 is the only Q-split torus in P0 stabilised by the Cartan involution of G associated with KG .
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Hence this Cartan involution does not stabilise SH . In other words, KG does not satisfy condition (ii) of
Theorem 1.

Now we shall show that this SH and KG do not satisfy the conclusion of Theorem 1. Suppose for
contradiction that there exist subgroups PG, SG ⊂ G forming a Siegel triple (PG, SG, KG), a Siegel set
SG ⊂ G(R) with respect to this Siegel triple, and a finite set C ⊂ G(Q) such that SH ⊂ C.SG .

By [Borel and Tits 1965, Théorème 4.13], there exists g ∈ G(Q) such that P0 = g PGg−1. Writing
g = pk where p ∈ P0(R) and k ∈ KG , (P0, k SGk−1, KG) is a Siegel triple and gSG is a Siegel set with
respect to (P0, k SGk−1, KG). Hence we can replace PG by P0, SG by k SGk−1, SG by gSG and C
by Cg−1. We can thus assume that PG = P0. By the uniqueness of the torus in a Siegel triple, this implies
that SG = S0 and SG is a standard Siegel set in G(R).

The image of SH = SH(R) in G(R)/K0, identified with the upper half-plane, is the ray

R = {(1 − y)+ yi : y ∈ R>0}.

Write FG for the image of SG in the upper half-plane.
Since R ⊂ CFG and C is finite, there exists γ ∈ C ⊂ G(Q) such that R ∩γFG contains points z where

both Im z, |Re z| → ∞. But this is impossible because:

(i) If γ ̸∈ P0(Q), then γFG lies below a horizontal line.

(ii) If γ ∈ P0(Q), then γFG lies within a vertical strip of finite width.

C. Counterexample in which condition (ii) of Theorem 1 is not satisfied: a semisimple subgroup. Let
G = SL3 and let (P0, S0, KG) be the standard Siegel triple for G. Let

H0 = SO3(J ) where J =

0 0 1
0 1 0
1 0 0

 .

Let Q J denote the quadratic form on R3 represented by J . This form is negative definite on the
1-dimensional subspace L = R(1, 0,−1)t ⊂ R3 and positive definite on the 2-dimensional subspace
M = R(0, 1, 0)t + R(1, 0, 1)t . Let

K H = {h ∈ H0(R) : h(L)= L and h(M)= M}.

This is a maximal compact subgroup of H0(R) and is isomorphic to O2(R) via restriction to its action on M .
Let c ∈ Q \ {0,±1}. Let η ∈ GL3(Q) be the linear map which acts as multiplication by c on L and as

the identity on M . Explicitly,

η =


1
2(1 + c) 0 1

2(1 − c)
0 1 0

1
2(1 − c) 0 1

2(1 + c)

 .

Let

H = ηH0η
−1

= SO3(ηJηt).
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By construction, η centralises K H . It follows that ηK Hη
−1

= K H = KG ∩ H(R) and K H is a maximal
compact subgroup of H(R).

Let Q0 denote the standard quadratic form on R3. The spaces L and M are orthogonal with respect to
Q0 and Q0 | M = Q J | M . Hence K H ⊂ SO3(Q0)= KG . Thus condition (i) of Theorem 1 is satisfied.

Let PH = η(P0 ∩ H0)η
−1 and SH = η(S0 ∩ H0)η

−1. As in [Borel 1969, 11.16], P0 ∩ H0 is a minimal
Q-parabolic subgroup of H0 so (PH , SH , K H) is a Siegel triple in H . Let SH =�H AH,t K H be a Siegel
set in H(R) with respect to this Siegel triple.

We shall show that SH and KG do not satisfy the conclusion of Theorem 1. Suppose for contradiction
that there exist subgroups PG, SG ⊂ G forming a Siegel triple (PG, SG, KG), a Siegel set SG ⊂ G(R)
with respect to this Siegel triple, and a finite set C ⊂ G(Q) such that SH ⊂ C.SG . By the same argument
as in Section B, we may assume that PG = P0 and SG = S0.

Let σs = diag(s, 1, s−1) for s ∈ R>0. Now

{ησsη
−1

: s ≥ t} = AH,t ⊂ SH ⊂ CSG.

Since C is finite, there exists some γ ∈ C such that γSG contains elements of the form ησsη
−1 for

arbitrarily large s. Consequently η−1γSGη contains σs for arbitrarily large s. Furthermore the standard
Siegel set SG contains {σs : s ≥ t ′

} for some t ′
∈ R>0.

Let χ1, χ2 denote the simple roots of G with respect to S0, using the ordering induced by P0. Then
χ1(σs) = χ2(σs) = s so the previous paragraph shows that SG ∩ η−1γSGη contains elements σs with
arbitrarily large values for χ1 and χ2. Applying Lemma 3 below (with �G = KG ∪ KGη

−1), we deduce
that η−1γ is contained in the standard parabolic subgroup Q P0,∅ = P0.

Let U0 = Ru(P0). Write the Iwasawa decomposition of η−1 as

η−1
= µακ where µ ∈ U0(R), α ∈ S0(R), κ ∈ KG.

For arbitrarily large real numbers s, we have

σsµσ
−1
s .σsα.κ = σsη

−1
∈ SGη

−1
∩ η−1γSG ⊂ η−1γSG.

By the definition of Siegel sets and since η−1γ ∈ P0(R), the U0(R)-component in the Iwasawa decompo-
sition of every element of η−1γSG is bounded. Thus σsµσ

−1
s lies in a bounded set for arbitrarily large

real numbers s. By direct calculation, this implies that µ= 1. (This is the opposite situation to [Borel
1969, Lemme 12.2], adapted to our conventions about Siegel sets.) Hence η−1

= ακ ∈ S0(R)KG .
It follows that ηtη = (α−1)t(κ−1)tκ−1α−1

= α−2 is diagonal. But ηtη is not diagonal, as can be seen
either by direct calculation or by noting that η is symmetrical so ηtη = η2 has L as a 1-dimensional
eigenspace yet L is not a coordinate axis.

D. Siegel sets with noncompact intersection. In this section, we prove a generalisation of [Borel 1969,
Proposition 12.6], replacing a Siegel set S =�P At K by a set of the form �P At�G where �G may be
any compact subset of G(R). This generalisation was used in Section C.
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Let G be a reductive Q-algebraic group. Let P be a minimal parabolic Q-subgroup of G and let U be
the unipotent radical of P . Let S be a maximal Q-split torus in S and let M be the maximal Q-anisotropic
subgroup of ZG(S). Let t be a positive real number and let At be the subset of S(R) defined in [Orr 2018,
Section 2B]. Let g and u denote the Lie algebras of G and U respectively (over R).

Let 1 be the set of simple roots of G with respect to S, using the ordering induced by P . For θ ⊂1,
let 9θ denote the set of roots φ such that the expression of φ as a linear combination of elements of 1
has a positive coefficient for at least one element of θ .

For each character χ ∈ X∗(S), there is a unique continuous group homomorphism P(R)→ R>0, which
we denote fχ , with the properties fχ (s) = |χ(s)| for all s ∈ S(R) and fχ = 1 on U(R)M(R). (This
is because S(R)∩ U(R)M(R) is finite, so |χ(s)| = 1 for all s ∈ S(R)∩ U(R)M(R), and S normalises
U M.) Choose a maximal compact subgroup K ⊂ G(R). Then fχ (P(R)∩ K ) is a compact subgroup
of R>0, so is trivial. Therefore we can extend fχ to a continuous function G(R)= P(R)K → R>0 by
setting fχ (pk) = fχ (p) for all p ∈ P(R) and k ∈ K . These functions fχ are not necessarily “of type
(P, χ)” as defined in [Borel 1969, 14.1] because χ ∈ X∗(S) might not extend to a character of P , but
the argument in [loc. cit., 14.2(c)] still applies to the functions fχ .

Lemma 3. Let �P and �G be compact subsets of P(R) and G(R) respectively. Let γ ∈ G(R). If
�P At�G ∩ γ�P At�G is noncompact, then γ is contained in a proper parabolic Q-algebraic subgroup
of G containing P . More precisely, let

θ = {χ ∈1 : fχ is bounded above on �P At�G ∩ γ�P At�G}.

Then γ lies in the standard parabolic subgroup Q Pθ in the notation of [Borel and Tits 1965, 5.12].

Proof. Let

�=

( ⋃
a∈At

a−1�P a
)
�G ⊂ G(R).

By [Borel 1969, Lemme 12.2], � is compact. From the definitions, �P At�G ⊂ At�. Hence, for all
χ ∈1 \ θ , fχ is unbounded on At�∩ γ At�.

Let QUθ denote the unipotent radical of Q Pθ and let Quθ = Lie(QUθ ). Let

Y = {v ∈ g : (Ad ξ−1
n )v → 0 for some sequence (ξn) in At�∩ γ At�}.

Let ⟨Y ⟩ denote the subspace of g generated by Y . We shall show that

Quθ ⊂ ⟨Y ⟩ ⊂ (Ad γ )u. (1)

To prove the first inclusion of (1), note that Quθ is the direct sum of the root spaces uφ for φ ∈91\θ ,
so it suffices to prove that uφ ⊂ Y for each φ ∈91\θ .

Let φ ∈91\θ and write φ as a linear combination of simple roots: φ =
∑

ψ∈1 mψψ . By the definition
of 91\θ , there exists some χ ∈1 \ θ such that mχ > 0.



1236 Martin Orr and Christian Schnell

By the definition of θ , fχ is unbounded on �P At�G ∩γ�P At�G ⊂ At�∩γ At�. Choose a sequence
(ξn) in At�∩ γ At� such that fχ (ξn)→ +∞. Write ξn = αnκn where αn ∈ At and κn ∈�.

The argument of [Borel 1969, 14.2(c)] shows that fχ (ξn)/ fχ (αn) is bounded both above and below
independently of n. Hence

|χ(αn)| = fχ (αn)→ +∞.

Since φ is a positive root, mψ ≥ 0 for all ψ ∈1. Since αn ∈ At and mχ > 0, it follows that φ(αn)→ +∞.
Hence for every v ∈ uφ , we have (Adα−1

n )v → 0. Since � is compact, after replacing (ξn) by a
subsequence, we may assume that κn converges, say to κ ∈�. Then (Ad ξ−1

n )v → (Ad κ)−10 = 0. Thus
uφ ⊂ Y .

To prove the second inclusion of (1), consider an element v ∈ Y . Let (ξn) be a sequence in At�∩γ At�

such that (Ad ξ−1
n )v → 0. Write ξn = γβnλn with βn ∈ At , λn ∈�. Since � is compact, after replacing

(ξn) by a subsequence, we may assume that λn converges, say to λ ∈�. Then

(Adβ−1
n )(Ad γ−1)v = (Ad λn)(Ad ξ−1

n )v → (Ad λ)0 = 0.

Hence, when we decompose (Ad γ−1)v using the root space decomposition of g, nonzero components
can occur only for those roots φ satisfying |φ(βn)| → +∞. Since βn ∈ At , such roots φ must be positive
roots. Thus (Ad γ−1)v ∈

⊕
φ∈8+ uφ = u.

We have proved both parts of (1). Passing from Lie algebras to groups, we obtain

QUθ ⊂ γUγ−1
⊂ γ Pγ−1

⊂ γ Q Pθ γ−1.

By [Borel and Tits 1965, Corollaire 4.5], it follows that Q Pθ = γ Q Pθ γ−1. Since a parabolic subgroup
of G is its own normaliser, we conclude that γ ∈ Q Pθ (R). □

E. Additional minor corrections to [Orr 2018]. The following are additional corrections to [Orr 2018]:

• (page 461, Section 2D) (F2) should begin “For every g ∈ G(Q).”

• (page 474, proof of Proposition 4.7) On the fifth line from the end, should say “χ|SH ∈8α ∪ {0}.”
instead of “χ|SH ∈8α”.

• (page 474, proof of Lemma 4.10) The first paragraph should say “Let TG be a maximal R-split torus
in G which contains SG and is stabilised by the Cartan involution of G associated with KG .” This is
necessary to apply [Borel and Tits 1965, Section 14].
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