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On the first nontrivial strand of syzygies
of projective schemes and condition ND(ℓ)

Jeaman Ahn, Kangjin Han and Sijong Kwak

Let X ⊂ Pn+e be any n-dimensional closed subscheme. We are mainly interested in two notions related
to syzygies: one is the property Nd,p (d ≥ 2, p ≥ 1), which means that X is d-regular up to p-th step in
the minimal free resolution and the other is a new notion ND(ℓ) which generalizes the classical “being
nondegenerate” to the condition that requires a general finite linear section not to be contained in any
hypersurface of degree ℓ.

First, we introduce condition ND(ℓ) and consider examples and basic properties deduced from the
notion. Next we prove sharp upper bounds on the graded Betti numbers of the first nontrivial strand of
syzygies, which generalize results in the quadratic case to higher degree case, and provide characterizations
for the extremal cases. Further, after regarding some consequences of property Nd,p, we characterize
the resolution of X to be d-linear arithmetically Cohen–Macaulay as having property Nd,e and condition
ND(d − 1) at the same time. From this result, we obtain a syzygetic rigidity theorem which suggests a
natural generalization of syzygetic rigidity on 2-regularity due to Eisenbud, Green, Hulek and Popescu to
a general d-regularity.
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1. Introduction

Since the foundational paper on syzygy computation by Green [1984], there has been a great deal of
interest and progress in understanding the structure of the Betti tables of algebraic varieties during the
past decades. In particular, the first nontrivial linear strand starting from quadratic equations has been
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Figure 1. Two typical Betti tables B(X) of X ⊂ Pn+e with property Nd,p and with
condition ND(ℓ). Note that the shape of B(X) with ND(ℓ) is preserved under taking
general hyperplane sections and general linear projections.

intensively studied by several authors [Castelnuovo 1893; Green 1984; Green and Lazarsfeld 1988;
Eisenbud et al. 2005; 2006; Ein and Lazarsfeld 2015; Han and Kwak 2015].

Let X be any nondegenerate n-dimensional closed subscheme X in a projective space Pn+e defined
over an algebraically closed field k of any characteristic and R = k[x0, . . . , xn+e]. In this article, we are
mainly interested in two notions related to syzygies of X . One notion is the property Nd,p(d ≥ 2, p ≥ 1),
which was first introduced in [Eisenbud et al. 2005] and means that X is d-regular up to p-th step in the
minimal free resolution. To be precise, X is said to satisfy property Nd,p if the following condition holds:

βi, j (X) := dimk TorR
i (R/IX , k)i+ j = 0 for i ≤ p and j ≥ d.

The other one is a new notion condition ND(ℓ), which generalizes the classical “being nondegenerate”
in degree one to cases of higher degrees. More precisely, it means that a general linear section X ∩ 3

is not contained in any hypersurface of degree ℓ of 3, where 3 is a general linear subspace of each
dimension ≥ e. So, for irreducible varieties the classical nondegenerate condition is equivalent to condition
ND(1) by Bertini-type theorem. We give many examples and basic properties on condition ND(ℓ).

With this notion, we obtain a new angle to study syzygies of high degrees in the Betti table B(X).
Especially, it turns out to be very effective to understand the first nontrivial ℓ-th linear strand arising from
equations of degree ℓ+ 1 and also to answer many interesting questions which can be raised as compared
to the classical quadratic case.

To review previous results for the quadratic case, let us begin by recalling the well known theorems
due to Castelnuovo and Fano. Let X ⊂ Pn+e be any “nondegenerate” irreducible variety:

• (Castelnuovo, 1889) h0(IX (2)) ≤
(e+1

2

)
and “=” holds if and only if X is a variety of minimal degree.

• (Fano, 1894) Unless X is a variety of minimal degree, h0(IX (2)) ≤
(e+1

2

)
− 1 and “=” holds if and

only if X is a del Pezzo variety (i.e.„ arithmetically Cohen–Macaulay and deg X = e + 2).
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A few years ago, Han and Kwak [2015] developed an inner projection method to compare syzygies
of X with those of its projections by using the theory of mapping cone and partial elimination ideals. As
applications, over any algebraically closed field k of arbitrary characteristic, they proved the sharp upper
bounds on the ranks of higher linear syzygies by quadratic equations, and characterized the extremal and
next-to-extremal cases, which generalized the results of Castelnuovo and Fano:

• [Han and Kwak 2015] βi,1(X) ≤ i
(e+1

i+1

)
, i ≥ 1 and the equality holds for some 1 ≤ i ≤ e if and only

if X is a variety of minimal degree (abbr. VMD).

• Unless X is a variety of minimal degree, then βi,1(X) ≤ i
(e+1

i+1

)
−

( e
i−1

)
∀i ≤ e and the equality holds

for some 1 ≤ i ≤ e − 1 if and only if X is a del Pezzo variety.

Thus, the theorem above by Han and Kwak can be thought of as a syzygetic characterization of varieties
of minimal degree and del Pezzo varieties.

It is worth to note here that the condition (IX )1 = 0 (i.e., to be “nondegenerate”) implies not only an
upper bound for the number of quadratic equations h0(IX (2)) ≤

(e+1
2

)
as we reviewed, but also on the

degree of X via the so-called “basic inequality” deg X ≥
(e+1

1

)
. Thus, for “more” nondegenerate varieties,

it seems natural to raise a question as follows: For any irreducible variety X with (IX )2 = 0 (i.e., having
no linear and quadratic forms vanishing on X )

does it hold that h0(IX (3)) ≤
(e+2

3

)
and deg X ≥

(e+2
2

)
?

But, there is a counterexample for this question: the Veronese surface S ⊂ P4 (e = 2) i.e., an isomorphic
projection of ν2(P

2), one of the Severi varieties classified by Zak, where S has no quadratic equations
on it, but h0(IS(3)) = 7 ≰

(2+2
3

)
and deg X = 4 ≱

(2+2
2

)
. One reason for the failure is that a general

hyperplane section of S sits on a quadric hypersurface while S itself does not. It leads us to consider the
notion of condition ND(ℓ).

Under condition ND(ℓ) it can be easily checked that the degree of X satisfies the expected bound
deg X ≥

(e+ℓ
ℓ

)
(see Remark 2.1). Further, one can see that condition ND(ℓ) is determined by the injectivity

of the restriction map H 0(O3(ℓ)) → H 0(OX∩3(ℓ)) for a general point section X ∩ 3 which can happen
in larger degree for a given ℓ, while the problem on “imposing independent conditions on ℓ-forms
(or ℓ-normality)” concerns surjectivity of the above map in degree at most

(e+ℓ
ℓ

)
. The latter has been

intensively studied in many works in the literature (see e.g., [Cook et al. 2018]), but the former has not
been considered well.

With this notion, we can also obtain sharp upper bounds on the numbers of defining equations of degree
ℓ + 1 and the graded Betti numbers for their higher linear syzygies. As in the quadratic case, we prove
that the extremal cases for these Betti numbers are only arithmetically Cohen–Macaulay (abbr. ACM)
varieties with (ℓ + 1)-linear resolution (we call a variety X ⊂ PN ACM if its homogeneous coordinate
ring RX is arithmetically Cohen–Macaulay i.e., depth(RX ) = dim X + 1).

Now, we present our first main result.
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Theorem 1.1. Let X be any closed subscheme of codimension e satisfying condition ND(ℓ) for some
ℓ ≥ 1 in Pn+e over an algebraically closed field k with ch(k) = 0. Then, we have:

(a) βi,ℓ(X) ≤
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
for all i ≥ 1.

(b) The following are equivalent:

(i) βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
for all i ≥ 1.

(ii) βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
for some i among 1 ≤ i ≤ e.

(iii) X is arithmetically Cohen–Macaulay with (ℓ + 1)-linear resolution.

In particular, if X satisfies one of equivalent conditions then X has a minimal degree
(e+ℓ

ℓ

)
.

We would like to note that if ℓ = 1, then this theorem recovers the previous results on the linear
syzygies by quadrics for the case of integral varieties (see also Remark 2.8). In general, the set of closed
subschemes satisfying ND(1) is much larger than that of nondegenerate irreducible varieties; see [Ahn and
Han 2015, Section 1] for details. Furthermore, a closed subscheme X (with possibly many components)
has condition ND(ℓ) if so does the top-dimensional part of X . Note that the Betti table B(X) is usually
very sensitive for addition some components to X (e.g., when we add points to a rational normal curve,
Betti table can be totally changed; see, e.g., [Ahn and Kwak 2015, Example 3.10]). But condition ND(ℓ)

has been still preserved under such addition of low dimensional components (thus, we could make many
examples with condition ND(ℓ) in this way).

On the other hand, if X satisfies property Nd,e, then the degree of X is at most
(e+d−1

d−1

)
and the equality

happens only when X has ACM d-linear resolution. We prove this by establishing a syzygetic Bézout
theorem (Theorem 3.1), a geometric implication of property Nd,p using projection method. We also
investigate an effect of Nd,p on loci of d-secant lines (Theorem 3.3).

Furthermore, if two notions - condition ND(d − 1) and property Nd,e on X - meet together, then the
degree of X should be equal to

(e+d−1
d−1

)
and X has ACM d-linear resolution (in particular, X is d-regular).

From this point of view, we can obtain another main result, a syzygetic rigidity for d-regularity as follows:

Theorem 1.2 (syzygetic rigidity for d-regularity). Let X be any algebraic set of codimension e in Pn+e

satisfying condition ND(d − 1) for d ≥ 2. If X has property Nd,e, then X is d-regular (more precisely, X
has ACM d-linear resolution).

Note that if d = 2, for nondegenerate algebraic sets this theorem recovers the syzygetic rigidity for
2-regularity due to Eisenbud, Green, Hulek and Popescu [Eisenbud et al. 2005, Corollary 1.8] where the
condition ND(1) was implicitly used. In [Eisenbud et al. 2005], the rigidity for 2-regularity was obtained
using the classification of so-called “small” schemes in the category of algebraic sets in [Eisenbud et al.
2006]. But, for next 3 and higher d-regular algebraic sets, it seems out of reach to get such classifications
at this moment. From this point of view, Theorem 1.2 is a natural generalization and gives a more direct
proof for the rigidity.

We would like to also remark that for a generalization of this syzygetic rigidity into higher d, one
needs somewhat a sort of “higher nondegeneracy condition” such as the condition ND(ℓ), because there
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Figure 2. Nd,e meets only (IX )≤d−1 = 0 (left-hand side) and Nd,e meets condition
ND(d − 1) (right-hand side). Condition ND(d − 1) and property Nd,e implies ACM
d-linear resolution in the category of algebraic sets.

exist some examples where Theorem 1.2 does not hold without condition ND(ℓ) even though the given X
is an irreducible variety and there is no forms of degree ℓ vanishing on X (see Figure 2 and Example 3.6).

In the final Section 4, we present relevant examples and more consequences of our theory (see, e.g.,
Corollary 4.3) and raise some questions for further development.

2. Condition ND(ℓ) and syzygies

2A. Condition ND(ℓ): basic properties and examples. Throughout this section, we assume that the base
field is algebraically closed and ch(k) = 0 (see Remark 2.10 for finite characteristics).

As before, let X be a n-dimensional closed subscheme of codimension e in PN over k. Let IX be⊕
∞

m=0 H 0(IX/PN (m)), the defining ideal of X in the polynomial ring R = k[x0, x1, . . . , xN ]. We mean
(co)dimension and degree of X ⊂ PN by the definition deduced from the Hilbert polynomial of R/IX .

Let us begin this study by introducing the definition of condition ND(ℓ) as follows:

Definition (condition ND(ℓ)). Let k be any algebraically closed field. We say that a closed subscheme
X ⊂ PN

k satisfies condition ND(ℓ) if

H 0(IX∩3/3(ℓ)) = 0 for a general linear section 3 of each dimension ≥ e.

We sometimes call a subscheme with condition ND(ℓ) a ND(ℓ)-subscheme as well.

Remark 2.1. We would like to make some remarks on this notion as follows:

(a) First of all, if X ⊂ PN satisfies condition ND(ℓ), then every general linear section of X ∩ 3 also has
the condition (i.e., condition ND(ℓ) is preserved under taking general hyperplane sections). Further, from
the definition, condition ND(ℓ) on X is completely determined by a general point section of X .

(b) (Basic degree bound) If X is a closed subscheme of codimension e in Pn+e satisfying condition
ND(ℓ), then from the sequence 0 → H 0(IX∩3/3(ℓ)) → H 0(O3(ℓ)) → H 0(OX∩3(ℓ)) it can be easily
proved that deg X ≥

(e+ℓ
ℓ

)
.
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(c) A general linear projection of ND(ℓ)-subscheme is also an ND(ℓ)-subscheme.

(d) Any nondegenerate variety (i.e., irreducible and reduced) satisfies condition ND(1) due to Bertini-type
theorem; see, e.g., [Eisenbud 2005, Lemma 5.4].

(e) If a closed subscheme X ⊂ PN has top dimensional components satisfying ND (ℓ), then X also
satisfies condition ND(ℓ) whatever X takes as a lower-dimensional component.

(f) (Maximal ND-index) From the definition, it is easy to see that

X : not satisfying condition ND(ℓ) ⇒ X : neither having ND(ℓ + 1).

Thus, it is natural to regard a notion like

indexND(X) := max{ℓ ∈ Z≥0 : X satisfies condition ND(ℓ)} (1)

which is a new projective invariant of a given subscheme X ⊂ PN .

(g) From the viewpoint (a), one can restate the definition of condition ND(ℓ) as the injectivity of the
restriction map H 0(O3(ℓ)) → H 0(OX∩3(ℓ)) for a general point section X ∩3, while many works in the
literature have focused on surjectivity (or imposing independent conditions) to study dimensions of linear
systems in relatively small degree.

Example 2.2. We list some first examples achieving condition ND(ℓ):

(a) If X ⊂ Pn+e is an ACM subscheme with H 0(IX (ℓ)) = 0, then X is an ND(ℓ)-subscheme.

(b) Every linearly normal curve with no quadratic equation is a ND(2)-curve. Further, a variety X is
ND(2) if a general curve section X ∩ 3 is linearly normal.

(c) (From a projection of Veronese embedding) We can also find examples of non-ACM ND(ℓ)-variety
using projections. For instance, if we consider the case of v3(P

2) ⊂ P9 and its general projection
into P4 (say π(v3(P

2))), then deg π(v3(P
2)) = 9 ≥

(2+2
2

)
and all the quadrics disappear after this

projection. This is a ND(2)-variety by Proposition 2.6 (see also Remark 2.5).

In general, it is not easy to determine whether a given closed subscheme X satisfies condition ND(ℓ)

or not. The following proposition tells us a way to verify condition ND(ℓ) by aid of computation the
generic initial ideal of X ; see, e.g., [Bigatti et al. 2005, Section 1] for the theory of generic initial ideal
and Borel fixed property.

In what follows, for a homogeneous ideal I in R, we denote by Gin(I ) the generic initial ideal of I
with respect to the degree reverse lexicographic order.

Proposition 2.3 (a characterization of condition ND(ℓ)). Let X be a closed subscheme of codimension e
in Pn+e. Then the followings are equivalent:

(a) X satisfies condition ND(ℓ).

(b) Gin(IX ) ⊂ (x0, . . . , xe−1)
ℓ+1.
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Proof. Let 3 be a general linear space of dimension e and let 0 be the zero-dimensional intersection of
X with 3.

(a) ⇒ (b) For a monomial T ∈ Gin(IX ), decompose T as a product of two monomials N and M such
that

Supp(N ) ⊂ {x0, . . . , xe−1} and Supp(M) ⊂ {xe, . . . , xn+e}.

By the Borel fixed property, we see that N xdeg(M)
e ∈ Gin(IX ). Then, it follows from [Ahn and Han 2015,

Theorem 2.1] that

Gin(I0/3) =

[
(Gin(IX ), xe+1, . . . , xn+e)

(xe+1, . . . , xn+e)

]sat

=

[
(Gin(IX ), xe+1, . . . , xn+e)

(xe+1, . . . , xn+e)

]
xe→1

,

which implies N ∈ Gin(I0/3). By the assumption that X satisfies ND(ℓ), we see that deg(N ) ≥ ℓ + 1,
and thus N ∈ (x0, . . . , xe−1)

ℓ+1. Therefore T = N M ∈ (x0, . . . , xe−1)
ℓ+1 as we wished.

(a) ⇐ (b) Conversely, assume that Gin(IX ) ⊂ (x0, . . . , xe−1)
ℓ+1. Then,

Gin(I0/3) =

[
(Gin(IX ), xe+1, . . . , xn+e)

(xe+1, . . . , xn+e)

]sat

⊂

[
((x0, . . . , xe−1)

ℓ+1, xe+1, . . . , xn+e)

(xe+1, . . . , xn+e)

]
xe→1

.

Note that the rightmost ideal is identified with the ideal (x0, . . . , xe−1)
ℓ+1 in the polynomial ring

k[x0, . . . , xe]. Therefore (I0/3)ℓ = 0 and thus X satisfies condition ND(ℓ). □

Beyond the first examples in Example 2.2, one can raise a question as “Is there a higher-dimensional
ND(ℓ)-variety X which is linearly normal (i.e., not coming from isomorphic projections) but also non-
ACM?”. We can construct such an example as a toric variety which is 3-dimensional and has depth 3 as
follows.

Example 2.4 (a linearly normal and non-ACM ND(3)-variety). Consider a matrix

A =


3 −5 4 0 0 0
1 0 0 1 0 0
0 1 0 0 1 0
0 0 1 0 0 1


and we consider the toric ideal induced by the matrix A. Using Macaulay 2 [Macaulay2], we compute
the defining ideal as

IA = (x1x2
2 x3 − x0x4x2

5 , x2x3
3 x4 − x3

0 x1x5, x2
0 x2

1 x2 − x2
3 x2

4 x5,

x3
2 x4

3 − x4
0 x3

5 , x0x3
1 x3

2 − x3x3
4 x3

5 , x5
0 x3

1 − x5
3 x3

4 , x4
1 x5

2 − x4
4 x5

5).

Then the generic initial ideal of IA with respect to degree reverse lexicographic order is

Gin(IA) = (x4
0 , x3

0 x2
1 , x2

0 x3
1 , x0x5

1 , x6
1 , x0x4

1 x2
2 , x5

1 x2
2 , x3

0 x1x4
2 , x2

0 x2
1 x5

2).

Hence, IA defines a 3-dimensional toric variety X ⊂ P5 with depth(X) = 3, which satisfies condition
ND(ℓ) for ℓ ≤ 3 by Proposition 2.3. Note that IA is linearly normal but not ACM.
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Finally, we would like to remark that condition ND(ℓ) is expected to be generally satisfied in the
following manner.

Remark 2.5 (ND(ℓ) in a relatively large degree). For a given codimension e, fixed ℓ, and any general
closed subscheme X in Pn+e, it is expected that

X → ND(ℓ) as deg X → ∞ (2)

under the condition H 0(IX/Pn+e(ℓ)) = 0 and exceptional cases do appear with some special geometric
properties (e.g., such as projected Veronese surface), because the failure of ND(ℓ) means that any general
point section X ∩ 3 sits in a hypersurface of degree ℓ, which is not likely to happen for a sufficiently
large deg X . For instance, the “expectation” (2) can have an explicit form in case of codimension two in
the following proposition (see Section 4 for further discussion).

Proposition 2.6 (ND(ℓ) in codimension two). Let X ⊂ PN be any nondegenerate integral variety of
codimension two over an algebraically closed field k with ch(k) = 0. Say d = deg X. Suppose that
H 0(IX/PN (ℓ)) = 0 for some ℓ ≥ 2. Then, any such X satisfies condition ND(ℓ) if d > ℓ2

+ 1.

Proof of Proposition 2.6. For the proof, we would like to recall a result for the “lifting problem” (for the
literature, see, e.g., [Chiantini and Ciliberto 1993; Bonacini 2015]) as follows:

Let X ⊂ PN be any nondegenerate reduced irreducible scheme of codimension two over an
algebraically closed field k with ch(k) = 0 and let X H be the general hyperplane section of
X. Suppose that X H is contained in a hypersurface of degree ℓ in PN−1 for some ℓ ≥ 2. If
d > ℓ2

+ 1, then X is contained in a hypersurface of degree ℓ in PN .

Say n = dim X and suppose that X ⊂ PN does not satisfy ND(ℓ). Then for some r with 2 ≤ r ≤ n +1,
the (r − 2)-dimensional general linear section of X , X ∩3r lies on a hypersurface of degree ℓ in 3r (i.e.,
H 0(IX∩3r /3r (ℓ)) ̸= 0). By above lifting theorem, this implies H 0(IX∩3r+1/3r+1(ℓ)) ̸= 0 for the (r − 1)-
dimensional general linear section X ∩3r+1. By repeating the argument, we obtain that H 0(IX/PN (ℓ)) ̸= 0,
which is a contradiction. □

Example 2.7 (general curves in P3). Suppose that C ⊂ P3 be a general curve of degree d ≥ g + 3 with
nonspecial line bundle OC(1), where g is the genus of C . When g ≥ 3, then by the maximal rank theorem
due to Ballico and Ellia [1985], the natural restriction map

H 0(OP3(2)) → H 0(OC(2))

is injective. So there is no quadric containing C . Further, from Proposition 2.6 we see that a general
point section C ∩ H also has no quadric. Thus C satisfies condition ND(2). In a similar manner, we
can show that if g ≥ 8 then such curve satisfies ND(3) and in general it has condition ND(ℓ) in case of
d ≥ max{g + 3, ℓ2

+ 2}.
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2B. Sharp upper bounds on Betti numbers of the first nontrivial strand. From now on, we proceed to
prove Theorem 1.1, which is one of our main results.

Theorem 1.1(a). Let X be any closed subscheme of codimension e in Pn+e satisfying condition ND(ℓ)

for some ℓ ≥ 1 and let IX be the (saturated) defining ideal of X. Then we have

βi,ℓ(X) ≤

(
i + ℓ − 1

ℓ

)(
e + ℓ

i + ℓ

)
for all i ≥ 1. (3)

A proof of Theorem 1.1(a). First, recall that by [Green 1998, Corollary 1.21] we have

βi, j (X) ≤ βi, j (R/ Gin(IX )) for all i, j ≥ 0. (4)

By the assumption that X satisfies condition ND(ℓ) for a given ℓ > 0, we see that Gin(IX )d = 0 for d ≤ ℓ.
Moreover, by Proposition 2.3, we have

Gin(IX ) ⊂ (x0, . . . , xe−1)
ℓ+1. (5)

For a monomial ideal I , we write G(I ) for the set of minimal monomial generators and G(I ) j+1 for the
subset of degree j + 1 part. We denote max{a : ka > 0} for a given monomial T = xk0

0 · · · xkn
n by max(T ).

Then, for any Borel fixed ideal J ⊂ R we have a formula as

βi, j (R/J ) =

∑
T ∈G(J ) j+1

(max(T )

i −1

)
for every i, j (6)

from the result of Eliahou and Kervaire; see e.g., [Ahn and Han 2015, Theorem 2.3].

(i) Let 0 ≤ i ≤ e. Consider the ideal J0 = (x0, . . . , xe−1)
ℓ+1 which is Borel-fixed. We see that J0 is

generated by the maximal minors of (ℓ + 1) × (ℓ + e) matrix:
x0 x1 · · · xe−1 0 · · · 0 0
0 x0 x1 · · · xe−1 0 · · · 0

· · ·

0 · · · 0 x0 x1 x2 · · · xe−1


So, the graded Betti numbers of R/J0 are those given by the Eagon–Northcott resolution of the maximal
minors of a generic matrix of size (ℓ+1)× (ℓ+e); see [Geramita et al. 2013, Remark 2.11]. This implies
that

βi,ℓ(R/J0) =

( i +ℓ−1
ℓ

)(e+ℓ

i +ℓ

)
. (7)

By relation (5), we see G(Gin(IX ))ℓ+1 ⊂ G(J0)ℓ+1. So, above formula (6) implies βi,ℓ(R/ Gin(IX )) ≤

βi,ℓ(R/J0). Consequently, for each 0 ≤ i ≤ e we conclude that

βi,ℓ(X) ≤ βi,ℓ(R/ Gin(IX )) ≤ βi,ℓ(R/J0) =

( i +ℓ−1
ℓ

)(e+ℓ

i +ℓ

)
,

as we wished.
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(ii) Let e < i . By (5), we see that if T ∈ Gin(IX )ℓ+1 then max(T ) ≤ e − 1. Then, from (6) it follows

βi,ℓ(R/ Gin(IX )) =

∑
T ∈G(Gin(IX ))ℓ+1

(max(T )

i −1

)
= 0 for all i > e.

Hence, we get βi,ℓ(X) = 0 by (4). □

Theorem 1.1(b). Let X be any closed subscheme of codimension e in Pn+e satisfying condition ND(ℓ)

for some ℓ ≥ 1 and let IX be the (saturated) defining ideal of X. Then, the followings are all equivalent:

(i) βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
for all 1 ≤ i ≤ e.

(ii) βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
for some 1 ≤ i ≤ e.

(iii) Gin(IX ) = (x0, x1, . . . , xe−1)
ℓ+1.

(iv) X is an ACM variety with (ℓ + 1)-linear resolution.

In this case, X has minimal degree, i.e., deg X =
(e+ℓ

ℓ

)
.

A proof of Theorem 1.1(b). (i) ⇒ (ii) This is trivial.

(ii) ⇒ (iii) Suppose that there exists an index i such that 1 ≤ i ≤ e and βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
. Recall

that J0 = (x0, . . . , xe−1)
ℓ+1 has the Borel fixed property. By (6), we have

βi,ℓ(R/J0) =

∑
T ∈G(J0)ℓ+1

(max(T )

i −1

)

=

e−1∑
j=i−1

( j
i −1

)
|{T ∈ G(J0)ℓ+1 | max(T ) = j}|

=

e−1∑
j=i−1

( j
i −1

)
dimk x j · k[x0, . . . , x j ]ℓ

=

e−1∑
j=i−1

( j
i −1

)( j +ℓ

ℓ

)
.

Hence we see from (7) that the following binomial identity holds:

( i +ℓ−1
ℓ

)(e+ℓ

i +ℓ

)
=

e−1∑
j=i−1

( j
i −1

)( j +ℓ

ℓ

)
. (8)
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By the assumption that βi,ℓ(X) =
(i+ℓ−1

ℓ

)(e+ℓ
i+ℓ

)
= βi,ℓ(R/J0) and the binomial identity (8), we have

βi,ℓ(R/ Gin(IX )) =

∑
T ∈G(Gin(IX ))ℓ+1

(max(T )

i −1

)

=

e−1∑
j=i−1

( j
i −1

)
|{T ∈ G(Gin(IX ))ℓ+1 | max(T ) = j}|

≤

e−1∑
j=i−1

( j
i −1

)
dimk x j · k[x0, . . . , x j ]ℓ

=

e−1∑
j=i−1

( j
i −1

)( j +ℓ

ℓ

)
= βi,ℓ(R/IX ).

Thus, by the cancellation principle (4), we conclude that βi,ℓ(R/ Gin(IX )) = βi,ℓ(R/IX ). This implies
that, for each j with i − 1 ≤ j ≤ e − 1,

{T ∈ G(Gin(IX ))ℓ+1 | max(T ) = j} = x j · k[x0, . . . , x j ]ℓ.

In particular, when j = e − 1, we obtain that xℓ+1
e−1 ∈ Gin(IX ) and it follows from Borel fixed property

that
Gin(IX )ℓ+1 = (J0)ℓ+1.

Now, since X satisfies condition ND(ℓ), by Proposition 2.3 we have that Gin(IX ) ⊂ J0. Because J0 is
generated in degree ℓ + 1, this implies that Gin(IX ) = J0.

(iii) ⇒ (iv) Note that if Gin(IX ) = (x0, . . . , xe−1)
ℓ+1, then R/ Gin(IX ) has ℓ-linear resolution. By

cancellation principle [Green 1998, Corollary 1.12], the minimal free resolution of IX is obtained from
that of Gin(IX ) by canceling some adjacent terms of the same shift in the free resolution. This implies that
the betti table of R/IX are the same as that of R/ Gin(IX ), because R/ Gin(IX ) has ℓ-linear resolution.
This means R/IX is arithmetically Cohen–Macaulay with ℓ-linear resolution.

(iv) ⇒ (i) This follows directly from [Eisenbud and Goto 1984, Proposition 1.7]. □

Remark 2.8. For the case of ℓ = 1, Theorem 1.1 was proved in [Han and Kwak 2015] for any nonde-
generate variety X over any algebraically closed field (recall that every nondegenerate variety satisfies
ND(1)). Thus, this theorem is a generalization of the previous result to cases of ℓ ≥ 2.

Further, we would also like to remark that for ℓ = 1 a given X satisfies all the consequences of
Theorem 1.1(b) once the degree inequality deg X ≥

(e+ℓ
ℓ

)
attains equality (i.e., the case of classical

minimal degree), since they are all 2-regular and arithmetically Cohen–Macaulay. But, for higher ℓ ≥ 2,
this is no more true (see Example 4.8). If one does hope to establish a “converse” in Theorem 1.1(b),
then it is necessary to impose some additional conditions on components of those ND(ℓ)-schemes of
“minimal degree of ℓ-th kind”

(
i.e., deg X =

(e+ℓ
ℓ

))
.
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As a consequence of Theorem 1.1, using the upper bound for βi,ℓ(X) we can obtain a generalization
of a part of Green’s K p,1-theorem on the linear strand by quadrics of nondegenerate varieties in [Green
1984] to case of the first nontrivial linear strand by higher degree equations of any ND(ℓ)-schemes as
follows.

Corollary 2.9 (K p,ℓ-theorem for ND(ℓ)-subscheme). Let X be any closed subscheme of codimension e
in Pn+e satisfying condition ND(ℓ). Then, βi, j (X) = 0 for each i > e, j ≤ ℓ.

Remark 2.10 (characteristic p case). Although we made the assumption that the base field k has
characteristic zero at the beginning of this section, most of results in the section still hold outside of
low characteristics; see [Eisenbud 1995, Theorem 15.23]. For instance, Theorem 1.1 holds for any
characteristic p such that p > reg(IX ), where reg(IX ) is equal to the maximum of degrees of monomial
generators in Gin(IX ) with respect to the degree reverse lexicographic order.

3. Property Nd, p and Syzygies

3A. Geometry of property Nd, p. In this subsection, we assume that the base field k is algebraically
closed of any characteristic. We obtain two geometric implications of property Nd,p via projection method
and the elimination mapping cone sequence; see [Ahn and Kwak 2015; Han and Kwak 2015]. For the
remaining of the paper, we call a reduced projective scheme X ⊂ PN an algebraic set; see also [Eisenbud
2005, Chapter 5].

Theorem 3.1 (syzygetic Bézout theorem). Let X ⊂ Pn+e be a nondegenerate algebraic set of dimension
n satisfying Nd,p with 2 ≤ d and p ≤ e. Suppose that L ⊂ Pn+e is any linear space of dimension p whose
intersection with X is zero-dimensional. Then:

(a) length(L ∩ X) ≤
(d−1+p

p

)
.

(b) Moreover, if length(L ∩ X) =
(d−1+p

p

)
, then for 1 ≤ k ≤ d − 1 the base locus of a linear system

|H 0(IX/Pn+e(k))| contains the multisecant space L.

Remark 3.2. We would like to make some remarks on this result as follows:

(a) If p = 1 then it is straightforward by Bézout’s theorem. Thus, Theorem 3.1 can be regarded as a
syzygetic generalization to multisecant linear spaces when p ≥ 2.

(b) Note that in the theorem the length bound itself can be also obtained from [Eisenbud et al. 2005,
Theorem 1.1]. We provide an alternative proof on it using geometric viewpoint of projection and
further investigate the situation in which the equality holds.

Proof of Theorem 3.1. (a) It is obvious when p = 1. Now, let X be an algebraic set satisfying the property
Nd,p, p ≥ 2 and suppose that L ⊂ Pn+e is a linear space of dimension p whose intersection with X is
zero-dimensional.

Choose a linear subspace 3 ⊂ L of dimension p − 1 with homogeneous coordinates x0, x1, . . . , x p−1

such that X ∩3=∅. Consider a projection π3 : X →π3(X)⊂ Pn+e−p. Then, L∩X is a fiber of π3 at the
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point π3(L \3) ∈ π3(X). The key idea is to consider the syzygies of R/IX as an Sp = k[x p, . . . , xn+e]-
module which is the coordinate ring of Pn+e−p. By [Ahn and Kwak 2015, Corollary 2.4], R/IX satisfies
NSp

d,0 as an Sp = k[x p, . . . , xn+e]-module, i.e., we have the following surjection

Sp ⊕ Sp(−1)p
⊕ Sp(−2)β

Sp
0,2 ⊕ · · · ⊕ Sp(−d + 1)β

Sp
0,d−1

ϕ0
−→ R/IX → 0. (9)

Sheafifying (9), we have

· · · → OPn+e−p ⊕OPn+e−p(−1)p
⊕OPn+e−p(−2)β

Sp
0,2 ⊕ · · · ⊕OPn+e−p(−d + 1)β

Sp
0,d−1

ϕ̃p
−→ π3∗

OX → 0.

Say q = π3(L \ 3). By tensoring OPn+e−p(d − 1) ⊗ k(q), we have the surjection on vector spaces:[ ⊕
0≤i≤d−1

OPn+e−p(d − 1 − i)β
Sp
0,i

]
⊗ k(q) ↠ H 0(⟨3, q⟩,Oπ3

−1(q)(d − 1)). (10)

Note that by [loc. cit., Corollary 2.5] β
Sp
0,i ≤

(p−1+i
i

)
= h0(O3(i)) for 0 ≤ i ≤ d − 1 in (10). So we have

dimk H 0(⟨3, q⟩,Oπ3
−1(q)(d − 1)) = length(L ∩ X) ≤

d−1∑
i=0

β
Sp
0,i ≤

d−1∑
i=0

( p−1+i
i

)
=

(d−1+ p
p

)
.

(b) Now assume that length(L ∩ X) =
(d−1+p

p

)
. From the above inequalities, we see that β

Sp
0,i =

(p−1+i
i

)
for every i . Hence the map in (10) is an isomorphism. Thus, there is no equation of degree d −1 vanishing
on π3

−1(q) ⊂ L = ⟨3, q⟩ (i.e., H 0(Iπ3
−1(q)/L(d −1)) = 0). So, if F ∈ H 0(IX/Pn+e(k)) for 2 ≤ k ≤ d −1,

then F |L vanishes on π3
−1(q) ⊂ L and this implies that F |L is identically zero. Thus, L is contained in

Z(F), the zero locus of F as we claimed. □

Now, we think of another effect of property Nd,p on loci of d-secant lines. For this purpose, let us
consider an outer projection πq : X → πq(X) ⊂ Pn+e−1

= Proj(S1), S1 = k[x1, x2, . . . , xn+e] from a
point q = (1, 0, . . . , 0) ∈ (Sec X ∪ Tan X) \ X . We are going to consider the locus on X engraved by
d-secant lines passing through q via partial elimination ideals (abbr. PEIs) theory as below.

When f ∈ (IX )m has a leading term in( f ) = xd0
0 · · · xdn+e

n+e in the lexicographic order, we set dx0( f ) = d0,
the leading power of x0 in f . Then it is well known (e.g., [Han and Kwak 2015, Section 2.1]) that
K0(IX ) :=

⊕
m≥0{ f ∈ (IX )m | dx0( f ) = 0} = IX ∩ S1 is the saturated ideal defining πq(X) ⊂ Pn+e−1.

Let us recall some definitions and basic properties of partial elimination ideals; see also, e.g., [Green
1998, Chapter 6] or [Han and Kwak 2015] for details.

Definition (partial elimination ideal). Let I ⊂ R be a homogeneous ideal and let

K̃i (I ) =

⊕
m≥0

{ f ∈ Im | dx0( f ) ≤ i}.

If f ∈ K̃i (I ), we may write uniquely f = x i
0 f̄ + g where dx0(g) < i and define Ki (I ) by the image of

K̃i (I ) in S1 under the map f 7→ f̄ . We call Ki (I ) the i-th partial elimination ideal of I .
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Note that K0(I ) = I ∩ S1 and there is a short exact sequence as graded S1-modules

0 →
K̃i−1(I )

K̃0(I )
→

K̃i (I )

K̃0(I )
→ Ki (I )(−i) → 0. (11)

In addition, we have the filtration on partial elimination ideals of I :

K0(I ) ⊂ K1(I ) ⊂ K2(I ) ⊂ · · · ⊂ Ki (I ) ⊂ · · · ⊂ S1 = k[x1, x2, . . . , xn+e].

It is well-known that for i ≥ 1, the i-th partial elimination ideal Ki (IX ) set-theoretically defines

Zi+1 := {y ∈ πq(X) | multy(πq(X)) ≥ i + 1};

e.g., [Green 1998, Proposition 6.2]. Using this PEIs theory, we can describe the d-secant locus

6d(X) := {x ∈ X | πq
−1(πq(x)) has length d}

as a hypersurface F of degree d in the linear span ⟨F, q⟩ provided that X satisfies Nd,2(d ≥ 2).

Theorem 3.3 (locus of d-secant lines). Let X ⊂ Pn+e be a nondegenerate integral variety of dimension
n satisfying Nd,2(d ≥ 2). For a projection πq : X → πq(X) ⊂ Pn+e−1 where q ∈ (Sec X ∪ Tan X) \ X ,
consider the d-secant locus 6d(X). Then, we have:

(a) 6d(X) is either empty or a hypersurface F of degree d in the linear span ⟨F, q⟩.

(b) Zd = πq(6d(X)) is either empty or a linear subspace in πq(X) parametrizing the locus of d-secant
lines through q.

(c) For a point q ∈ Sec X \ (Tan X ∪ X), there is a unique d-secant line through q if Zd ̸= ∅.

Proof. (a) Since R/IX satisfies Nd,2, it also satisfies Nd,1 as an S1-module and we have the following
exact sequence:

→ · · · →

d−1⊕
j=1

S1(−1 − j)β
S1
1, j ϕ1

−→

d−1⊕
i=0

S1(−i) ϕ0
−→ R/IX → 0.

Furthermore, ker ϕ0 is just K̃d−1(IX ) and we have a surjection

· · · →

d−1⊕
j=1

S1(−1 − j)β
S1
1, j ϕ1

−→ K̃d−1(IX ) → 0.

Therefore, K̃d−1(IX ) is generated by elements of at most degree d .
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Now consider the following commutative diagram of S1-modules with K0(IX ) = IX ∩ S1:

0 0 0

0 K0(IX ) S1 S1/K0(IX ) 0

0 K̃d−1(IX )
⊕d−1

i=0 S1(−i) R/IX 0

0 K̃d−1(IX )/K0(IX )
⊕d−1

i=1 S1(−i) coker α̃ 0

0 0 0

α̃

ϕ0 (12)

From the left column sequences in the diagram (12), K̃d−1(IX )/K0(IX ) is also generated by at most
degree d elements. On the other hands, we have a short exact sequence from (11)

0 →
K̃d−2(IX )

K0(IX )
→

K̃d−1(IX )

K0(IX )
→ Kd−1(IX )(−d + 1) → 0, (13)

Hence, Kd−1(IX ) is generated by at most linear forms. So, Zd−1 is either empty or a linear space. Since
πq : 6d(X) ↠ Zd ⊂ πq(X) is a d : 1 morphism, 6q(X) is a hypersurface of degree d in ⟨Zd−1, q⟩. For a
proof of (c), if dim 6d(X) is positive, then clearly, q ∈ Tan 6q(X)⊂ Tan X . So, dim 6d(X)= dim Zd = 0
and there is a unique d-secant line through q . □

In particular, in the case of d = 2, entry locus of X (i.e., locus of 2-secant lines through an outer point)
is a quadric hypersurface, which was very useful to classify nonnormal del Pezzo varieties by Brodmann
and Park [2010].

3B. Syzygetic rigidity for d-regularity. In particular, if p = e then we have the following corollary of
Theorem 3.1 with characterization of the extremal cases.

Corollary 3.4. Let X ⊂ Pn+e be any nondegenerate algebraic set over an algebraically closed field k of
characteristic zero. Suppose that X satisfies Nd,e for some d ≥ 2. Then, we have

deg X ≤

(d−1+e
e

)
and the following are equivalent:

(a) deg X =
(d−1+e

e

)
.

(b) X is arithmetically Cohen–Macaulay (ACM) with d-linear resolution.

Proof. It suffices to show that (a) implies (b). By the assumption that deg X is maximal, length(L ∩ X) =(d−1+e
e

)
for a generic linear space 3 of dimension e. From a proof of Theorem 3.1, we see that there is no
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equation of degree d−1 vanishing on π3
−1(q)⊂ L =⟨3, q⟩ (i.e., H 0(Iπ3

−1(q)/L(d−1))= 0). This means
X satisfies ND(d − 1) condition. In particular, it follows from Theorem 1.1(a) that βe,d−1(X) ≤

(e+d−2
d−1

)
.

We also see from [Ahn and Kwak 2015, Corollary 2.4] that β
Se
0,d−1 ≤ β R

e,d−1 = βe,d−1(X) because X
satisfies Nd,e. Note that β

Se
0,d−1 =

(e+d−2
d−1

)
= h0(O3(d − 1)) in (10). Therefore,

βe,d−1(X) =

(e+d−2
d−1

)
.

So, we conclude from Theorem 1.1(b) that X is ACM with d-linear resolution. □

Remark 3.5. The above corollary can also be proved by the generalized version of the multiplicity
conjecture which was shown by Boij and Söderberg [2012]. Not relying on Boij–Söderberg theory, here
we give a geometric proof for the multiplicity conjecture in this special case.

As a consequence of previous results, now we can derive a syzygetic rigidity for d-regularity as follows:

Theorem 1.2 (syzygetic rigidity for d-regularity). Let X ⊂ Pn+e be any algebraic set of codimension e
over an algebraically closed field k of ch(k) = 0 satisfying condition ND(d − 1) for some d ≥ 2. If X has
property Nd,e, then X is d-regular (more precisely, X has ACM d-linear resolution).

Proof. By Theorem 1.1 and Corollary 3.4, if X satisfies both condition ND(d − 1) and property Nd,e,
then the degree of X should be equal to

(d−1+e
e

)
and this implies that X has ACM d-linear resolution (in

particular, X is d-regular). □

We would like to note that Theorem 1.2 does not hold without condition ND(ℓ) even though the given
X is an irreducible variety.

Example 3.6 (syzygetic rigidity fails without condition ND(ℓ)). Let N = (d0, . . . , ds) be a strictly
increasing sequence of integers and B(N) be the pure Betti table associated to N; see [Boij and Söderberg
2012]. Due to Boij–Söderberg theory, we can construct a Betti table B0 as given by

0 1 2 3 4
0 1 - - - -
1 - - - - -
2 - - - - -
3 - 18 32 16 -
4 - - - - 1

from the linear combination 4
5 B((0, 4, 5, 6))+ 1

5 B((0, 4, 5, 6, 8)). This B0 expects a curve C of degree 16
and genus 13 in P4 with h1(OC(1)) = 1 (i.e., e = 3), which satisfies property N4,e, but not 4-regular (i.e.,
Theorem 1.2 fails). This Betti table can be realized as the one of a projection C into P4 of a canonically
embedded genus 13 general curve C̃ ⊂ P12 from random 8 points of C̃ . Note that C is irreducible
(in fact, smooth) and has no defining equations of degree less than 4, but is not ND(3)-curve because
deg(C) = 16 ≱

(3+3
3

)
= 20. Here is a Macaulay 2 code for this:
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loadPackage("RandomCanonicalCurves",Reload=>true);
setRandomSeed("alpha");
g=13; k=ZZ/32003;
S=k[x_0..x_(g-1)];
I=(random canonicalCurve)(g,S);
for i from 0 to 7 do P_i=randomKRationalPoint I;
L=intersect apply(8,i->P_i); R=k[y_0..y_4];
f=map(S,R,super basis(1,L));
RI=preimage(f,I); betti res RI

4. Comments and further questions

In the final section, we present some relevant examples and discuss a few open questions related to our
main results in this paper.

4A. Certificates of condition ND(ℓ). First of all, from the perspective of this article, it would be very
interesting to provide more situations to guarantee condition ND(ℓ). As one way of thinking, one may
ask where condition ND(ℓ) does hold largely. For instance, as discussed in Remark 2.5, we can consider
this problem as follows:

Question 4.1. For given e, ℓ > 0, is there a function f (e, ℓ) such that any X ⊂ Pn+e of codimension e is
ND(ℓ)-subscheme if deg X > f (e, ℓ) and H 0(IX/Pn+e(ℓ)) = 0?

We showed that there are positive answers for this question in case of codimension two in Proposition 2.6
and Example 2.7. What about in higher codimensional case? (Recall that a key ingredient for
Proposition 2.6 is “lifting theorem” which is well-established in codimension 2.)

The following example tells us that for Question 4.1 one needs to assume irreducibility or some
conditions on irreducible components of X in general.

Example 4.2 (a non-ND(2) reduced scheme of arbitrarily large degree). Consider a closed subscheme
X ⊂ P3 of codimension 2 defined by the monomial ideal IX = (x3

0 , x2
0 x1, x0x2

1 , x t
1, x2

0 x2) for any positive
integer t ≥ 4. Note that h0(IX/P3(2)) = 0 and deg X = t + 2 ≥ 6 =

(e+2
2

)
. Since IX is a Borel fixed

monomial ideal, we see that IX∩L/P3 = (x2
0 , x0x2

1 , x t
1) for a general linear form L , which implies that X

does not satisfy ND(2).
If we consider a sufficiently generic distraction DL(IX ) of IX (see [Bigatti et al. 2005] for details of

distraction), then it is of the form

DL(IX ) =

(
L1L2L3, L1L2L4, L1L4L5,

t∏
j=1

M j , L1L2L7

)
,

where L i and M j are generic linear forms for each 1 ≤ i ≤ 7 and 1 ≤ j ≤ t . Then DL(IX ) defines the
union of t + 2 lines and 3 points. Using this, we can construct an example of non-ND(2) algebraic set of
arbitrarily large degree.
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4B. Condition ND(ℓ) and nonnegativity of h-vector. For any closed subscheme X ⊂ Pn+e of dimension
n, the Hilbert series of RX := k[x0, . . . , xn+e]/IX can be written as

HRX (t) =

∑
(dimk(RX )i )t i

=
h0 + h1t + · · · + hs t s

(1 − t)n+1 (14)

and the h-vector h0, h1, . . . , hs usually contains much information on the coordinate ring RX and on
geometric properties of X . One of the interesting questions on the h-vector is the one to ask about
nonnegativity of the hi and it is well-known that every hi ≥ 0 if RX is Cohen–Macaulay (i.e., X is ACM).
Recently, a relation between Serre’s condition (Sℓ) on RX and nonnegativity of h-vector has been focused
as answering such a question as:

Does Serre’s condition (Sℓ) imply h0, h1, . . . , hℓ ≥ 0?

This was checked affirmatively in case of IX being a square-free monomial ideal by Murai and Terai
[2009]. More generally, Dao, Ma and Varbaro [Dao et al. 2019] proved the above question is true under
some mild singularity conditions on X (to be precise, X has Du Bois singularity in ch(k) = 0 or RX is
F-pure in ch(k) = p). Here, we present an implication of condition ND(ℓ) on this question as follows.

Corollary 4.3 (ND(ℓ) implies nonnegativity of h-vector). Let X = Proj(RX ) be any closed subscheme of
codimension e in Pn+e over an algebraically closed field k with ch(k) = 0 and hi ’s be the h-vector of RX

in (14). Suppose that X has condition ND(ℓ − 1). Then, h0, h1, . . . , hℓ ≥ 0.

Proof. Say ri = dimk(RX )i . First of all, by (14), we have

(1 − t)n+1(r0 + r1t + r2t2
+ · · · ) = h0 + h1t + h2t2

+ · · · ,

which implies that h0 = r0, h1 =
(n+1

1

)
(−1)r0 + r1, . . . , h j =

∑ j
i=0

(n+1
i

)
(−1)ir j−i for any j . Since

r j−i =
(n+e+ j−i

j−i

)
− dimk(IX ) j−i , it holds that

h j =

j∑
i=0

(n+1
i

)
(−1)i

(n+e+ j −i
j −i

)
−

j∑
i=0

(n+1
i

)
(−1)i dimk(IX ) j−i

=

(
e + j − 1

j

)
−

j∑
i=0

(
n + 1

i

)
(−1)i dimk(IX ) j−i · · · , (∗)

where the last equality comes from comparing j-th coefficients in both sides of the identity

(1 − t)n+1
[∑

i≥0

(n+e+i
i

)
t i

]
=

1
(1 − t)e .

Now, by Theorem 1.1(a), we know that dimk(IX )0 = dimk(IX )1 = · · · = dimk(IX )ℓ−1 = 0 and
dimk(IX )ℓ ≤

(e+ℓ−1
ℓ

)
. So, for any j ≤ ℓ − 1, by (∗) we see that h j =

(e+ j−1
j

)
≥ 0. Similarly, we obtain

that hℓ =
(e+ℓ−1

ℓ

)
− dimk(IX )ℓ ≥ 0 as we wished. □
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Hence, it is natural to ask:

Question 4.4. How are Serre’s (Sℓ) on RX and condition ND(ℓ) on X related to each other?

For example, it would be nice if one could find some implications between the notions under reasonable
assumptions on singularities or connectivity of components.

4C. Geometric classification/characterization of ACM d-linear varieties. For further development, it is
natural and important to consider the boundary cases in Theorem 1.1 from a geometric viewpoint. When
ℓ = 1, due to del Pezzo–Bertini classification, we completely understand the extremal case, that is ACM
2-linear varieties, geometrically; (a cone of) quadric hypersurface, Veronese surface in P5 or rational
normal scrolls. It is also done in category of algebraic sets in [Eisenbud et al. 2006]. What about ACM
varieties having 3-linear resolution? or higher d-linear resolution? The followings are first examples of
variety with ACM 3-linear resolution.

Example 4.5 (varieties having ACM 3-linear resolution). We have:

(a) Cubic hypersurface (e = 1).

(b) 3-minors of 4 × 4 generic symmetric matrix (i.e., the secant line variety Sec(v2(P
3)) ⊂ P9).

(c) 3-minors of 3 × (e + 2) sufficiently generic matrices (e.g., secant line varieties of rational normal
scrolls).

(d) Sec(v3(P
2)); Sec(P2

× P1
× P1).

Most of above examples come from taking secants. Unless a hypersurface, are they all the secant
varieties of relatively small degree varieties? Recall that any secant variety Sec X not equal to the ambient
space is always “singular” because Sing(Sec X) ⊃ X . But, we can construct examples of smooth 3-linear
ACM of low dimension as follows:

Example 4.6 (nonsingular varieties with ACM 3-linear resolution). We have:

(a) (A nonhyperelliptic low degree curve of genus 3 in P3) For a smooth plane quartic curve C of genus
g = 3. One can reembed C into P9 using the complete linear system |OC(3)|. Say this image as C̃ . For
deg C̃ = 12, C̃ ⊂ P9 satisfies at least property N5 by the Green–Lazarsfeld theorem. We also know that

H 0(IC̃(2)) = H 0(OP9(2)) − H 0(OC̃(2)) =

(9+2
2

)
− (2 · 12 + 1 − 3) = 55 − 22 = 33.

Now, take any 6 smooth points on C̃ and consider inner projection of C̃ from these points into P3. Denote
this image curve in P3 by C . From [Han and Kwak 2012, Proposition 3.6], we obtain that

H 0(IC(2) = H 0(IC̃(2)) − (8 + 7 + 6 + 5 + 4 + 3) = 33 − 33 = 0.

In other words, there is no quadric which cuts out C in P3. Since C is nonhyperelliptic, C is projectively
normal (i.e., ACM). Therefore, C is a smooth ND(2)-curve in P3 and has deg C = 6 which is equal
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to 2g. Using Macaulay 2 [Macaulay2], we can also check all these computations including the minimal
resolution of C ⊂ P3. C has ACM 3-linear resolution such as:

0 1 2
0 1 - -
1 - - -
2 - 4 3

(b) (A surface in P6) Consider a rational normal surface scroll X = S(4, 4) in P9. Its secant line variety
Y = Sec X is a 5-fold and has a minimal free resolution as

0 1 2 3 4
0 1 - - - -
1 - - - - -
2 - 20 45 36 10

which is ACM 3-linear. Even though Y is singular, as we cut Y by three general hyperplanes H1, H2, H3

we obtain a smooth surface S = Y ∩ H1 ∩ H2 ∩ H3 of degree 15 in P6 whose resolution is same as above;
one can check all the computations using [Macaulay2].

It is interesting to observe that every variety of dimension ≥ 2 in Examples 4.5 and 4.6 has a determi-
nantal presentation for its defining ideal.

Question 4.7. Can we give a geometric classification or characterization of ACM d-linear varieties for
d ≥ 3? Do they all come from (a linear section of) secant construction except very small (co)dimension? In
particular, does it always have a determinantal presentation if X is ACM 3-linear variety and dim X ≥ 2?

Finally, we present some example as we discussed in Remark 2.8.

Example 4.8 (minimal degree of ℓ-th kind (ℓ ≥ 2) does not guarantee ACM linear resolution). In contrast
with ℓ = 1 case, a converse of Theorem 1.1(b):

The equality deg X =
(e+ℓ

ℓ

)
with ND(ℓ) implies that X has ACM (ℓ + 1)-linear resolution,

does not hold for ℓ ≥ 2 (note that, in the case of classical minimal degree, the statement does hold under
ND(1)-condition once we assume irreducibility or some connectivity condition on components of X such
as “linearly joined” in [Eisenbud et al. 2006]).

By manipulating Gin ideals and distraction method, one could generate many reducible examples of
such kind. Even though X is irreducible, we can construct a counterexample. As a small example, using
[Macaulay2] we can verify that a smooth rational curve C in P3 of degree 6, a (isomorphic) projection of
a rational normal curve in P6 from 3 random points, has Betti table as in Figure 3.

Note that C satisfies condition ND(2) and is of minimal degree of 2nd kind
(
i.e., deg(C) =

(2+2
2

))
, but

its resolution is still not 3-linear.
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0 1 2 3
0 1 - - -
1 - - - -
2 - 1 - -
3 - 6 9 3

0 1 2
0 1 - -
1 - - -
2 - 4 3
3 - - -

Figure 3. Betti tables of C and C ∩ H .
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Spectral reciprocity via integral representations
Ramon M. Nunes

We prove a spectral reciprocity formula for automorphic forms on GL.2/ over a number field that is
reminiscent of one found by Blomer and Khan. Our approach uses period representations of L-functions
and the language of automorphic representations.

1. Introduction

In the past few years, some attention has been given to spectral reciprocity formulae. By this we mean
identities of the shape X

�2F

L.�/H.�/D
X
�2 zF

zL.�/ zH.�/; (1)

where F and zF are families of automorphic representations, L.�/ and zL.�/ are certain L-values associated
to � , and H and zH are some weight functions.

The term spectral reciprocity first appeared in this context in a paper by Blomer, Li and Miller [Blomer
et al. 2019] but such identities have been around at least since Motohashi’s formula [1993] connecting the
fourth moment of the Riemann zeta-function to the cubic moment of L-functions of cusp forms for GL.2/.

The more recent results concern the cases where the families F and zF are the same or nearly the same.
Most commonly, these families are taken to be formed by automorphic representations of GL.2/.

There are at least two reasons that help understand the appeal of such formulae. The first one is that
they give a somewhat conceptual way of summarizing a technique often used in dealing with problems
on families of GL.2/ L-functions in which one uses the Kuznetsov formula on both directions in order
to estimate a moment of L-values. The second one comes from their satisfying intrinsic nature relating
objects that have no a priori reason to be linked.

The first versions of these GL.2/ spectral reciprocity formulae [Blomer and Khan 2019a; 2019b;
Andersen and Kıral 2018] used classical techniques such as the Voronoi summation formula and the
Kuznetsov formula. Starting from [Zacharias 2021], it became clear that an adelic approach could be of
interest. Not only does this render generalization to number fields almost immediate, it can also avoid
some of the combinatorial difficulties that arise when applying the Voronoi formula.
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Blomer and Khan [2019a] have shown a reciprocity formula which is the main inspiration for the
present work: Let … be a fixed automorphic representation of GL.3/ over Q. Let q and ` be coprime
integers. We write

M.q; `I h/ WD
1

q

X
cond.�/Dq

L
�

1
2
;…��

�
L
�

1
2
; �
�

L.1;Ad; �/
��.`/

`1=2
h.t�/C . � � � /;

where

� � runs over cuspidal automorphic representations of PGL.2/,

� ��.`/ is the eigenvalue of the Hecke operator T` on � ,

� t� is the spectral parameter,

� h is a fairly general smooth function, and

� . � � � / denotes the contribution of the Eisenstein part, the terms of lower conductor and some
degenerate terms.

Blomer and Khan have showed that

M.q; `; h/DM.`; q; Lh/;

where h 7! Lh is given by an explicit integral transformation. When … corresponds to an Eisenstein series,
this has an application to subconvexity: Let � be a cuspidal automorphic representation for GL.2/ over Q

of squarefree conductor. Then

L
�

1
2
; �
�
�� .cond.�//

1
4
� 1

24
.1�2#/C�; (2)

where # is an admissible exponent towards the Ramanujan conjecture (we know that 7
64

is admissible
and # D 0 corresponds to the conjecture). This was then the best-known bound of its kind but it was later
superseded by the one in [Blomer et al. 2020].

In this article we use the theory of adelic automorphic representations and integral representations of
Rankin–Selberg L-functions to deduce a result on number fields of similar flavor to that of [Blomer and
Khan 2019a, Theorem 1].

With respect to Blomer and Khan’s result, our result has the advantage of being valid for any number
field. On the other hand we need to make some technical restrictions that prevent us from having a full
generalization of their reciprocity formula. For the moment our results only work when the fixed GL.3/
form is cuspidal and our formula only contemplates forms that are spherical at every infinity place. The
first restriction is made for analytic reasons and is due to the fact that unlike cusp forms, the Eisenstein
series are not of rapid decay. This can probably be resolved by means of a suitable notion of regularized
integrals. As for the second restriction, this seems to be of a more representation-theoretic nature. It
requires showing analyticity of certain local factors for nonunitary representations of GL.2/. We hope to
address both of these technical issues in future work.
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1A. Statement of results. Let F be a number field, with ring of integers oF . Let … be a cuspidal
automorphic representation of GL.3/ over F . For each automorphic representation � of GL.2/, we
consider the completed L-functions

ƒ.s; �/; ƒ.s;Ad; �/ and ƒ.s;…��/:

These are, respectively, the Hecke L-function and the adjoint L-function of � , and the Rankin–Selberg
L-function of …�� , where for the Rankin–Selberg L-functions we take the naive definition (20). These
coincide with the local L-functions à la Langlands at all the unramified places but might differ at the
ramified ones. Notice that this might also affect the values of L.s;Ad; �/.

Let �F denote the completed Dedekind zeta function of F , and let ��
F
.1/ denote its residue at 1. Let

ˆ'
N
v ˆv be a vector in the representation space of …. Let s and w be complex numbers, and let H

denote the weight function given by (29). We consider the sums

Cs;w.ˆ/ WD
X

�2C.S/

ƒ.s;…��/ƒ.w; �/

ƒ.1;Ad; �/
H.�/

and

Es;w.ˆ/ WD
X

!2„.S/

Z 1
�1

ƒ.s;…��.!; i t//ƒ.w; �.!; i t//

ƒ�.1;Ad; �.!; i t//
H.�.!; i t//

dt

2�
; (3)

where S is any finite set of places containing all the archimedean ones and those for which ˆv is ramified,
C.S/ (resp. „.S/) denotes the collection of cuspidal automorphic representations of GL.2/ (resp. unitary
normalized idele characters) over F that are unramified everywhere outside S . Finally, �.!; i t/ denotes a
normalized induced representation as in Section 3A1 and ƒ�.1;Ad; �/ denotes the first nonzero Laurent
coefficient of ƒ.s;Ad; �/ at s D 1. The main object of study in this work is the following “moment”:

Ms;w.ˆ/ WD Cs;w.ˆ/C Es;w.ˆ/: (4)

We remark that the values of ƒ.s;… � �.!; i t//, ƒ.w; �.!; i t// and ƒ�.1;Ad; �.!; i t// can be
given in terms of simpler L-functions as follows:

ƒ.s;…��.!; i t//Dƒ.sC i t;…�!/ƒ.s� i t;…� x!/;

ƒ.w; �.!; i t//Dƒ.wC i t; !/ƒ.w� i t; x!/;

ƒ�.1;Ad; �.!; i t//D RessD1Œƒ.sC 2i t; !2/ƒ.s� 2i t; x!2/�F .s/�

Dƒ.1C 2i t; !2/ƒ.1� 2i t; x!2/��F .1/ .t ¤ 0/;

where ƒ.s;…�!/ and ƒ.s; !/ are the (completed) Rankin–Selberg L-function of …�! and Dirichlet
L-function of !, respectively.

We start with the following result which can be seen as a preliminary reciprocity formula.

Theorem 1.1. Let s; w 2 C and define

.s0; w0/ WD
�

1
2
.1Cw� s/; 1

2
.3sCw� 1/

�
: (5)
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Let H be as in (29) and {H be given by (31). Suppose the real parts of s, w, s0 and w0 are sufficiently
large. Then we have the relation

Ms;w.ˆ/CDs;w.ˆ/DMs0;w0. {̂ /CDs0;w0. {̂ /;

where Ds;w.ˆ/ is given by (30).

Theorem 1.1 is a completely symmetrical formula but only holds when the real part of the parameters
s, w, s0 and w0 are sufficiently large. In order to obtain a formula that also holds at the central point
sDwD s0Dw0D 1

2
, we need to analytically continue the term Es;w.ˆ/. This is done in Section 9 under

a technical condition enclosed in Hypothesis 1.

Spectral reciprocity at the central point. Let … be an everywhere unramified cuspidal automorphic
representation for GL.3/ over F . This means that …'

N0
v…v , where for each v, …v is isomorphic to

the isobaric sum
j � j

it1;v

v � j � jit2;v

v � j � jit3;v

v :

We say that … is � -tempered if for all v and i D 1; 2; 3, we have jRe.ti;v/j � � . It follows from a result of
Luo, Rudnick and Sarnak [Luo et al. 1999] that every automorphic representation of GL.n/ is � -tempered
for some � < 1

2
. Therefore we can, and will, let � D �.…/ < 1

2
be such that … is � -tempered.

Suppose that ˆv is spherical for every archimedean place v. The reason for this restriction is twofold.
The first and main reason is that this leads to weight functions satisfying Hypothesis 1. The second is
that this trivializes the transformation Hv !

{Hv on the local archimedean weights. It would be very
interesting to have a better understanding of this transformation. In particular it would be interesting to
have an understanding of {Hv when Hv is taken to be a bump function selecting spectral parameters of a
certain size.

Let s; w 2 C, let q and l be coprime ideals with absolute norms q and `, respectively, and write
U1 WD

Q
vj1fy 2 F�v W jyvj D 1g. Suppose that ˆ D ˆq;l is the vector given in Section 7. It follows

from (34) and Propositions 7.1 and 7.2 that

H.�/D ı1.�/
y��.l; w/

.N l/w
'.q/

q2
hq.s; wI…;�/;

where ı1.�/ is the characteristic function of representations that are unramified at every archimedean
place, y��.l; w/ are modified Hecke eigenvalues given by

y��.l; w/ WD
Y
pnp jjl
np�1

�
��.p

np/�
��.p

np�1/

.N p/w

�
; (6)

' is the Euler function, and finally, hq.s; wI…;�/ D 1 if cond.�/ D q, hq.s; wI…;�/ � q�C� if
cond.�/ j q, and it vanishes otherwise. Thus, choosing ˆ as above, we get

Ms;w.ˆ/DM0.…; s; w; q; l/;
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where
M0.…; s; w; q; l/ WD C0.…; s; w; q; l/C E0.…; s; w; q; l/;

with

C0.…; s; w; q; l/D
'.q/

q2

X
� cusp0

cond.�/jq

ƒ.s;…��/ƒ.w; �/

ƒ.1;Ad; �/

y��.l; w/

`w
hq.s; wI…;�/

and

E0.…; s; w; q; l/D
'.q/

q2

X
!23F�U1nA

�
.1/

cond.!/2jq

Z 1
�1

ƒ.s;…��.!; i t//ƒ.w; �.!; i t//

ƒ�.1;Ad; �.!; i t//

�

y��.!;it/.l; w/

`w
hq.s; wI…;�.!; i t//

dt

2�
:

The notation cusp0 denotes that we are restricting to forms that are unramified at every archimedean place
and the analogous role in the Eisenstein part is played by quotienting by U1. Finally, we let

N0.…; s; w; q; l/ WD Ds0;w0. {̂ /CRs0;w0. {̂ /�Ds;w.ˆ/�Rs;w.ˆ/;

where D is given by (30) and R is given by (53).

Theorem 1.2. Let … be an everywhere unramified cuspidal automorphic representation of GL.3/ over F .
Suppose q and l are coprime ideals with absolute norms q and `, respectively, and that 1

2
� Re.s/ �

Re.w/ < 3
4

. Then we have

M0.…; s; w; q; l/DN0.…; s; w; q; l/CM0.…; s
0; w0; l; q/;

where s0 and w0 are as in (5). Moreover, in this same region, N0 satisfies

N0.…; s; w; q; l/�s;w;� min.q; `/��1C�: (7)

As an application, we may deduce a nonvanishing result which is similar in spirit to [Khan 2012,
Theorem 1.2]: we prove an asymptotic formula for a family of forms of prime level p, and let N p tend
to infinity. It may be worth mentioning that although the results are similar, Khan’s result concerns
modular forms of sufficiently large weight k for GL.2/ over the field of rationals, while our result holds
for everywhere unramified forms for GL.2/ over an arbitrary number field.

Corollary 1.3. Let … be an unramified cuspidal automorphic representation of GL.3/ over F , and let p
be a prime ideal of oF with absolute norm q. Then, for every � > 0,

'.q/

q

X
� cusp0

cond.�/Dp

ƒ
�

1
2
;…��

�
ƒ
�

1
2
; �
�

ƒ.1;Ad; �/
D

4ƒ.1;…/ƒ.0;…/

�F .2/
CO�.q

#� 1
2
C�/:

In particular, for q sufficiently large, there is at least one automorphic representation � of conductor p,
unramified for every archimedean place and such that ƒ

�
1
2
;…��

�
and ƒ

�
1
2
; �
�

are both nonzero.
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Plan of the paper. In Section 2 we lay down our first conventions on number fields and local fields. In
Section 3 we recall the notion of automorphic representations for GL.n/ over F and some of its properties.
Special attention is given to the case nD 2 where, in particular, we recall the construction of Eisenstein
series and write down an explicit spectral decomposition. In Section 4, we introduce the Whittaker models
and their relation to periods of Rankin–Selberg L-functions for GL.nC1/�GL.n/. We work in complete
generality but only use the results in the cases nD 1 and nD 2.

In Section 5 we prove an identity between periods which we call abstract reciprocity. This is connected
to the actual reciprocity via a spectral decomposition which is performed in Section 6. In Section 7 we
make some explicit computation for the local weights. Section 8 is dedicated to analyzing the degenerate
term Ds;w.ˆ/ and we show the meromorphic continuation of the spectral moment in Section 9, thus
introducing the term Rs;w.ˆ/. Theorem 1.1 only uses the results up to Section 6 and a few observations
from Section 8. On the other hand, Theorem 1.2 requires the full power of the results in Sections 7, 8 and 9
and its proof is given in Section 10 along with that of Corollary 1.3.

2. Notation

Number fields and completions. Throughout the paper, F will denote a fixed number field with ring of
integers oF and discriminant dF . For v a place of F , we let Fv be the completion of F at the place v.
If v is nonarchimedean, we write ov for the ring of integers in Fv , mv for its maximal ideal and $v for
its uniformizer. The adele ring of F is denoted by A, its unit group is denoted by A�, and finally, A�

.1/

denotes the ideles of norm 1. We also fix, once and for all, an isomorphism A� ' A�
.1/
�R>0.

Additive characters. We let  D
N
v  v be the additive character  D  Q ıTrF=Q, where TrF=Q is the

trace map and  Q is the additive character on AQ which is trivial on Q and such that  .x/ D e2�ix

for x 2 R. Let dv be the conductor of  v, i.e., the smallest nonnegative integer such that  v is trivial
on m�dv

v . Notice that dv D 0 for every finite place not dividing the discriminant and we have the relation
dF D

Q
v p

dv
v , where pv WD jov=mvj.

Measures. In the group A we use a product measure dxD
Q
v dxv , where for real v, dxv is the Lebesgue

measure on R, for complex v, dxv is twice the Lebesgue measure on C and for each finite v, dxv is
a Haar measure on Fv giving measure p�

1
2

dv
v to the compact subgroup ov. As for the multiplicative

group A�, we also take a product measure d�x D
Q

d�x, where d�xv D �v.1/.dxv=jxvj/ for infinite or
unramified v and we take d�xv WD p

1
2

dv
v �Fv .1/.dxv=jxvj/ for ramified v so that for any finite v, we are

giving measure 1 to o�v . Such measures can naturally give rise to measures on the quotient spaces FnA

and F�nA�
.1/

such that

vol.FnA/D 1 and vol.F�nA�.1//D d
1
2

F
��F .1/:

The first can be found in Tate’s thesis [1950] and the second is [Lang 1994, Proposition XIV.13] (the
factor d

1
2

F
comes from our different normalization of the multiplicative measure).
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3. Preliminaries on automorphic representations

In the course of studying automorphic forms in GL.n/, it will be important to distinguish a few of its
subgroups. For any unitary ring R with group of invertible elements given by R�, we let Zn.R/ denote
the group of central matrices (i.e., nontrivial multiples of the identity) and Nn.R/ denote the maximal
unipotent group formed by matrices with entries 1 on the diagonal and 0 below the diagonal, and we
let An.R/ denote the diagonal matrices with lower-right entry 1.

We extend our additives character to Nn in the following way: If n D .xi;j /1�i;j�n 2 Nn.A/, then
 .n/ WD  .x1;2C� � �Cxn�1;n/ and similarly for  v . We can extend the measures on the local fields Fv

and their unit groups F�v to measures on the groups Zn.Fv/, Nn.Fv/ and An.Fv/ using the obvious
isomorphisms Zn.R/'R�, Nn.R/'R

1
2

n.n�1/ and An.R/' .R
�/n�1.

Moreover, let Kv denote a maximal compact subgroup of GLn.Fv/ given by

Kv WD

8<:
O.n/ if Fv D R;

U.n/ if Fv D C;

GLn.ov/ for v <1:

We can now define a Haar measure on GLn.Fv/ by appealing to the Iwasawa decomposition. Let dk

be a Haar probability measure on Kv and consider the surjective map

Zn.Fv/�Nn.Fv/�An.Fv/�Kv! GLn.Fv/; .z; n; a; k/ 7! znak;

and let dgv be the pullback by this map of the measure

�.a/�1
n�1Y
kD1

y
�k.n�k/

k
� dz � dn� da� dk;

where

�

0BB@
y1

: : :
yn�1

1

1CCAD n�1Y
jD1

jyj j
nC1�2j :

In particular, for GL2,Z
GL2.Fv/

f .gv/ dgv D

Z
Kv

Z
F�v

Z
Fv

Z
F�v

f
�
z.u/n.x/a.y/k

�
d�u dx

d�y

jyjv
dk;

where

z.u/D

�
u

u

�
; n.x/D

�
1 x

1

�
; a.y/D

�
y

1

�
:

Similarly, we shall consider measures on the quotients

Nn.Fv/nGLn.Fv/ and PGLn.Fv/ WDZn.Fv/nGLn.Fv/

by omitting the terms dn and dz respectively. Now, given a group G for which we have attached Haar
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measures dgv to G.Fv/, we attach to G.A/ the product measure dg D
Q
v dgv. Since PGL2.F / ,!

PGL2.A/ discretely, we may use the measure of PGL2.A/ to define one on

X WD PGL2.F /nPGL2.A/DZ2.A/GL2.F /nGL2.A/;

which turns out to have finite total measure vol.X/ <C1.

3A. Automorphic representations for GL.2/. Consider the Hilbert space L2.X/ with an action of
GL2.A/ given by right multiplication and a GL2.A/-invariant inner product given by

h�1; �2iL2.X / D

Z
X

�1.g/�2.g/ dg: (8)

It is well known that this space decomposes as

L2.X/DL2
cusp.X/˚L2

res.X/˚L2
cont.X/; (9)

where L2
cusp.X/ denotes the closed subspace of cuspidal functions given by the functions satisfying the

relation Z
N2.F /nN2.A/

�.ng/ dnD 0;

L2
res.X/ is the residual spectrum consisting of all the one-dimensional subrepresentations of L2.X/,

and L2
cont.X/ is expressed in terms of Eisenstein series which we discuss further below. Moreover,

L2
cusp.X/ decomposes as a direct sum of irreducible representations, which are called the cuspidal

automorphic representations.

3A1. Induced representations and Eisenstein series. Given a character ! WF�nA�!C� (not necessarily
unitary), we denote by �.!/ the isobaric sum !�!�1, i.e., the space of measurable functions f on
GL2.A/ such that

f

��
a b

d

�
g

�
D ja=d j

1
2!.a/!�1.d/f .g/; hf; f iInd <C1;

where j � j denotes the adelic norm, K WD
Q
v Kv, and hf1; f2iInd <1, where we put

hf1; f2iInd WD

Z
F�nA�

.1/
�K

f1.a.y/k/f2.a.y/k/ d�y dk

D vol.F�nA�.1//
Z

K

f1.k/f2.k/ dk: (10)

Given such ! and f 2 �.!/, we define an Eisenstein series by a process of analytic continuation. It is
given by the following series, as long as it converges:

Eis.f /.g/ WD
X


2B2.F /nGL2.F /

f .
g/;

where for a ring R,

B2.R/ WD

��
a b

d

�
W a; d 2R�; b 2R

�
:
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Suppose ! ¤ 1. We define further the normalized Eisenstein series by takingfEis.f / WDL.1; !2/Eis.f /:

It will be convenient to define the inner product of two normalized Eisenstein series in terms of the inner
product in the induced model of the functions used for generating it. In other words, for f1; f2 2 �.!/

and �i D
fEis.fi/, where i D 1; 2, we write

h�1; �2ieEis WD jL.1; !
2/j2hf1; f2iInd D d

1
2

F
ƒ�.1;Ad�.!//

Z
K

f1.k/f2.k/ dk: (11)

Finally, for a complex parameter s, we use the notation �.!; s/ WD �.! � j � js/. For a character !v
of Fv we can similarly define the induced representation �v.!v; s/ so that if ! '

N0
v !v, we have

�.!; s/'
N0
v �v.!v; s/.

3A2. Spectral decomposition for smooth functions. We already encountered a decomposition of L2.X/

in (9), but in practice we will encounter functions in L2.X/ which are right-invariant by a large compact
subgroup K0 �GL2.A/ and moreover we will need more uniformity than simply L2-convergence. In the
following, we write down a more precise form of this decomposition for functions in C1.X=KS /, where
for a finite set S of places of F containing the archimedean ones, KS is the compact group given by

KS
WD

Y
v 62S

Kv:

The only intervening representations are those that are unramified outside S . That means � 2 C.S/,
� D�.!; i t/ for ! 2„.S/ or � D!ıdet for ! 2„.S/. For each cuspidal automorphic representation � ,
we let Bc.�/ denote an orthonormal basis of the realization of � in L2.X/ with respect to the inner
product h � ; � iL2.X /. Similarly, for an induced representation � D �.!/, we define Be.�/ to be a basis
of normalized Eisenstein series (not vectors in the induced models!) with respect to h � ; � ieEis. We may
therefore state the following version of the spectral theorem:

Proposition 3.1. Let F 2 C1.X=KS / be of rapid decay. Then

F.g/D
X

�2C.S/

X
�2Bc.�/

hF; �i�.g/C vol.X/�1
X

!2„.S/

!2D1

hF; ! ı deti!.det g/

C
1

4�

X
!2„.S/

Z 1
�1

X
�2Be.�.!;it//

hF; �i�.g/ dt;

where h � ; � i denotes the same integral as in the definition of h � ; � iL2.X / and convergence is absolute and
uniform for g on any compact subset of X .

The result, for pseudo-Eisenstein series, follows from (4.21) and (4.25) in [Gelbart and Jacquet 1979] and
by extending the inner product .a1.iy/; a2.iy// with respect to an orthogonal basis of L2.F�nA�

.1/
�K/.

The general result is a consequence of the fact that the space of cusp forms decomposes discretely and
spans the orthogonal complement to the space of pseudo-Eisenstein series.
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4. Whittaker models and periods

In this section, we consider irreducible automorphic representations � of GLn.A/ and the period integrals
related to some Rankin–Selberg L-functions. We will only be concerned with the generic representations,
which are those admitting a Whittaker model. This is done for arbitrary n but only the cases n D 2

and nD 1 are used in the sequel. Finally, we shall not distinguish between a representation � and its space
of smooth vectors V1� . An automorphic form � will always denote a smooth vector in an irreducible
automorphic representation.

4A. Whittaker functions. Let � be a generic automorphic representation of GLn.A/, and let � 2 � be
an automorphic form. Let W� W GLn.A/! C be the Whittaker function of � given by

W�.g/D

Z
Nn.F /nNn.A/

�.ng/ .n/ dn: (12)

It satisfies W�.ng/D  .n/W�.g/ for all n 2 Nn.A/.
Given a cuspidal automorphic representation of GLn.A/, we might write down an isomorphism

� '
N0
v �v where for each v, �v is a local generic admissible representation of GLn.Fv/, and we might

define Whittaker functions for each local representation such that for every � 2 � with � D
N0
v �v

through the above isomorphism, we have

W�.g/D
Y
v

W�v .gv/; g D .gv/v 2 GLn.A/: (13)

In fact, the map � 7!W� is an intertwiner between � and its image, denoted by W.�;  /, the so-called
Whittaker model of � . We similarly define the local Whittaker models W.�v;  v/. Later on, it will be
convenient to exchange freely between a representation and its associated Whittaker model. The importance
of the latter comes from its close relation to local Rankin–Selberg L-functions, as we will see in Section 4B.

There is a similar story for noncuspidal forms but in this case it is better to work with normalized
Eisenstein series. As we will only need this for nD 2, we shall restrict to this case. Let f 2 �.!/ and
suppose that f is factorable, i.e., f D

N0
v fv with fv 2 �v.!v/. Then it follows by analytic continuation

and Bruhat decomposition that

WeEis.f /.g/DL.1; !2/

Z
N2.A/

f .wng/ .n/ dnD
Y
v

W J
fv
.gv/;

where W J
fv

is the normalized Jacquet integral, given by

W J
fv
.gv/DL.1; !2

v /

Z
N2.Fv/

fv.wng/ .n/ dn:

By putting � D fEis.f / and W�v WDW J
fv

, we see that (13) also holds in this case.

It is also important to consider Whittaker functions with respect to the inverse character  0D x , so we
analogously define W 0

�
and W 0

�v
by replacing  v by  0v D x v and  by  0 D

Q
v  
0
v in all the previous
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definitions. It follows from uniqueness of local Whittaker functions that we may take

W 0x�v DW�v for all places v of F . (14)

If a local generic admissible representation �v is unramified for some finite place v, this mean that
in �v there exists a vector which is right-invariant by the action of GLn.ov/. Such a vector is called
spherical and spherical vectors are unique up to multiplication by scalars. Among the spherical vectors
we shall distinguish a certain one which we call normalized spherical. If v is unramified, the normalized
spherical vector will be the one for which W�v .e/D 1, where e 2 GLn.Fv/ denotes the identity element.
For the finite ramified places we simply define it to be the newform (defined in Section 4C). This avoids
repetition and is justified by the fact that the two notions also coincide for unramified primes.

4B. Integral representations of GLnC1 �GLn L-functions. This theory is an outgrowth of Hecke’s
theory of L-functions for GL2 and has been developed by Jacquet, Piatetski-Shapiro and Shalika. We
start with … and � irreducible automorphic representations of GLnC1.A/ and GLn.A/, respectively, and
let ˆ 2 … and � 2 � be automorphic forms. Suppose momentarily that ˆ is a cusp form and hence
rapidly decreasing. We can thus consider for every s 2 C the integral

I.s; ˆ; �/ WD

Z
GLn.F /nGLn.A/

ˆ

�
h

1

�
�.h/jdet hjs�

1
2 dh:

It follows from the Whittaker decomposition of cusp forms (see [Cogdell 2007, Theorem 1.1]) that if ˆ
is a cuspidal function, then

I.s; ˆ; �/D‰.s;Wˆ;W
0
�/ .Re.s/� 1/; (15)

where

‰.s;W;W 0/ WD

Z
Nn.A/nGLn.A/

W

�
h

1

�
W 0.h/jdet hjs�

1
2 dh: (16)

Our next result gives some of the good properties of ‰.s;W;W 0/, namely, convergence and the fact that
it factors into local integrals whenever ˆ and � also factor.

Proposition 4.1. Let … and � be automorphic representations of GL.nC 1/ and GL.n/ over F , respec-
tively. Let ˆ D

N0
v ˆv 2 … and � D

N0
v �v 2 � be automorphic forms. Let Wˆv and W 0

�v
be as in

Section 4A. Then, for Re.s/� 1, ‰.s;Wˆ;W
0
�
/ converges and we have the factorization

‰.s;Wˆ;W
0
�/D

Y
v

‰v.s;Wˆv ;W
0
�v
/;

where

‰v.s;W;W 0/ WD

Z
Nn.Fv/nGLn.Fv/

W

�
hv

1

�
W 0.hv/jdet hvj

s� 1
2 dhv: (17)

Moreover, if v is finite and both …v and �v are unramified and ˆv and �v are normalized spherical,

‰v.s;Wˆv ;W
0
�v
/D pdvln.s/

v L.s;…v ��v/; where ln.s/D
1
2
n.nC 1/s� 1

12
n.nC 1/.2nC 1/:



1392 Ramon M. Nunes

Proof. The first part follows from gauge estimates for Whittaker functions (see [Jacquet et al. 1979, §2]). It
is an important fact that this part does not require the representations to be cuspidal. The reason is that, in
some sense, the integral representation using Whittaker functions only sees the nonconstant terms. For the
local computation this is well known when pv is unramified (see, e.g., [Cogdell 2007, Theorem 3.3]). In
general we may restrict to the unramified situation by following the computation in the proof of [Cogdell
and Piatetski-Shapiro 1994, Lemma 2.1]. �

Remark. When nD 1, we write I.s; �/, ‰.s;W�/ and ‰v.s;W�v / instead of I.s; �; 1/, ‰.s;W� ;W1v /

and ‰v.s;W�v ;W1/, where 1 and 1v denote the constant functions on GL1.A/ and GL1.Fv/ respectively.

4C. Newforms and ramified L-factors. For a finite place v and any admissible irreducible generic
representation of GLn.Fv/, not necessarily unramified, we define a distinguished vector in its Whittaker
model, called newform. This was first introduced by Casselman [1973] when nD 2 by translating the
results of Atkin and Lehner to the representation-theoretic language. This was later generalized by Jacquet,
Piatetski-Shapiro and Shalika [Jacquet et al. 1981] for general n by requiring that they are good test
vectors for representing L-functions via Rankin–Selberg periods as in Section 4B. Moreover, when �v is
unramified, these coincide with normalized spherical vectors.

The fact that these newvectors are test vectors for Rankin–Selberg L-functions can be rephrased
by relating their values to the Langlands parameters of the representation. This was carefully car-
ried out in [Miyauchi 2014]. In order to quote these results we introduce the following notation: for
� D .�1; : : : ; �n�1/ 2 Zn�1, let s.�/D

Pn�1
iD1

1
2
i.n� i/�i , and for y 2 F�v , we write

a.�/ WD

0BBB@
$
�1C���C�n�1
v

$
�2C���C�n�1
v

: : :

1

1CCCA :
The main result of [Miyauchi 2014] states that if  v is unramified, then W�v .a.�//Dps.�/��.�/; where

��v .�/D 0 unless �1; : : : ; �n�1 � 0; (18)

and the ��v .�/ are in general given by Schur polynomials evaluated on the Langlands parameters of �v
(see [Miyauchi 2014] for details).

When v is ramified, this has to be modified. First, we write v.x/D Fv .�x/ for some �2F�v , where
 Fv is an unramified additive character of Fv , and let d D v.�/. We then define the newvector by taking

W�v .g/DW unr
�v
.a.�n.d//g/;

where �n.d/D .d; d; : : : ; d/ 2 Zn�1 and W unr
�v

denotes the newvector for the unramified character  Fv .
The term a.�n.d// is responsible for the change in the additive character.

In addition to Proposition 4.1, we shall also need to compute L-functions for certain ramified local
representations. In particular, we require the following computation that appears, for instance, in the
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work of Booker, Krishnamurthy and Lee [Booker et al. 2020, proof of Lemma 3.1]: Let n > m, and
let …v (resp. �v) be an irreducible admissible generic representation of GLn.Fv/ (resp. GLm.Fv/) with
Langlands parameters .
 .i/

…v
/n
iD1

(resp. .
 .j/�v /
m
jD1

). Supposing further that �v is ramified, one then has

X
�2Zm�1

�1;:::;�m�1�0

�…v .�; 0; : : : ; 0/��v .�/

p
.�1C2�2C���C.m�1/�m�1/s
v

DL.s;…v ��v/; (19)

where

L.s;…v ��v/ WD
Y

1�i�n
1�j�m

.1� 

.i/
…v

 .j/�v

p�s
v /�1: (20)

This coincides with Langlands local L-function when …v is unramified, which we shall suppose.

4D. Relation between inner products on GL.2/. Let � be a generic automorphic representation of GL.2/
over F with trivial central character. We define a GL2.A/-invariant inner product on the representation
space of � as follows: If � is cuspidal, then we may see V� embedded in L2.X/ and therefore � may
inherit the inner product from L2.X/ given by (8). If � is Eisenstein we cannot see the representation
space of � inside L2.X/ and hence we equip it with the inner product given by (11).

There is however another way of defining an inner product for factorable vectors in these representations
which is independent of whether � is cuspidal or Eisenstein. This is done by using the Whittaker model
as follows: For each place v, we have a GL2.Fv/-invariant inner form on W.�v;  v/ by letting

#v.W1;W2/D

R
F�v

W1.a.yv//W2.a.yv// d�yv;

�v.1/Lv.1;Ad�/=�v.2/
: (21)

The fact that the numerator of (21) is indeed right GL2.Fv/-invariant follows from the theory of the
Kirillov model and the inclusion of the denominator is to ensure the following property: Whenever
�v and  v are unramified and W is normalized spherical, we have #v.W;W / D 1. Finally, letting
�1 D

N
�1;v and �2 D

N
�2;v be either cusp forms or normalized Eisenstein series, we define the

canonical inner product by the formula

h�1; �2ican WD 2d
1
2

F
ƒ�.1;Ad�/�

Y
v

#v.W�1;v
;W�2;v

/: (22)

Since every two GL2.A/-invariant inner products in � must be equal up to multiplication by some scalar, it
follows that we can compare the canonical inner product with the ones introduced earlier for cuspidal and
Eisenstein representations. Indeed, Rankin–Selberg theory in the cuspidal case and a direct computation
in the Eisenstein case gives us the following relation:

h�1; �2ican D

�
h�1; �2iL2.X / if � is cuspidal;
2h�1; �2iEis if � is Eisenstein:

(23)
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The computation in the Eisenstein case follows from [Wu 2014, Lemma 2.8]. For the cusp forms we
combine the proof of [Wu 2014, Proposition 2.13] with the value of the residue of an Eisenstein series
computed in [Michel and Venkatesh 2010, (4.6)].1

5. Abstract reciprocity

In this section we show an identity between two periods. At this point we make no attempt to relate them
to moments of L-functions. The proof is a rather simple matrix computation.

Suppose ˆ 2 C1
�
Z3.A/GL3.F /nGL3.A/

�
is such that for every h 2 GL2.A/, the integral

Asˆ.h/ WD jdet hjs�
1
2

Z
F�nA�

ˆ

�
z.u/h

1

�
juj2s�1d�u (24)

converges and such that y 7!Asˆ
��

y
1

�
h
�

is of rapid decay as jyj ! 0 or C1.

Proposition 5.1. Let ˆ be as above, and let I.w; � / be as in the remark on page 1392. Then, for every
s; w 2 C, we have the reciprocity relation

I.w;Asˆ/D I.w0;As0
{̂ /;

where .s0; w0/ are as in (5) and

{̂ .g/ WDˆ.gw23/; w23 D

 
1

1
1

!
: (25)

Proof. By definition,

I.w;Asˆ/D

Z
F�nA�

Z
F�nA�

ˆ

�
z.u/a.y/

1

�
juj2s�1

jyjsCw�1 d�u d�y: (26)

Now, since ˆ is left-invariant by Z3.A/GL3.F /, we see that for every u;y 2 A�, one has

ˆ

0@uy

u

1

1ADˆ
0@0@u

u

u

1Aw23

0@y

u�1

1

1Aw23

1ADˆ
0@0@y

u�1

1

1Aw23

1AD {̂
0@y

u�1

1

1A :
Applying this to (26) and making the change of variables .u;y/D .u0�1;u0y0/ gives the result. �

6. Spectral expansion of the period

In this section we will give a spectral decomposition of the period I.w;Asˆ/. Let … be an automorphic
cuspidal representation for GL.3/ over F , and let ˆD

N
v ˆv 2… be a cusp form. Let S be a finite set

of places containing all archimedean places and all the places for which ˆ is not normalized spherical.
Since ˆ is of rapid decay, then the same holds for Asˆ. More precisely this follows by combining the

1In [Wu 2014], a factor d
1
2

F
seems to be missing in the computation of this residue.
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rapid decay of Whittaker functions with the action of the Weyl group of GL.3/. We can thus spectrally
decompose it as in Proposition 3.1:

Asˆ.h/D
X

�2C.S/

X
�2Bc.�/

hAsˆ; �i�.h/C vol.X/�1
X

!2„.S/

!2D1

hAsˆ;! ı deti!.det g/

C
1

4�

X
!2„.S/

Z 1
�1

X
�2Be.�.!;it//

hAsˆ; �i�.h/ dt:

By integrating both sides of the above expression against an additive character and over the compact
set N2.F /nN2.A/, we get the following relation for Whittaker functions:

WAsˆ.h/D
X

�2C.S/

X
�2Bc.�/

hAsˆ; �iW�.h/C
1

4�

X
�2„.S/

Z 1
�1

X
�2Be.�.!;it//

hAsˆ; �iW�.h/ dt:

Notice that since the one-dimensional representations are not generic, they do not contribute to the above
expression. Now, because of rapid decay of the Whittaker functions W� as jyj !C1, if we take Re.w/
sufficiently large, we get

‰.w;Asˆ/

D

X
�2C.S/

X
�2Bc.�/

hAsˆ; �i‰.w;W�/C
1

4�

X
!2„.S/

Z 1
�1

X
�2Be.�.!;it//

hAsˆ; �i‰.w;W�/ dt: (27)

By using the Fourier decomposition of Asˆ, we see thatZ
A�

WAsˆ.a.y//jyj
w� 1

2 d�y D I.w;Asˆ/� I.w; .Asˆ/0/;

where for any � on C1.X/, �0 is given by

�0.h/ WD

Z
FnA

�.n.x/h/ dx:

The next step is to realize the terms hAsˆ; �i and ‰.w;W�/ as a product of local integrals. First, it
follows from Proposition 4.1 that if � D

N
v �v is decomposable,

‰.w;W�/D
Y
v

‰v.w;W�v /:

Moreover, from the definition of Asˆ, we deduce, after changing variables, that

hAsˆ; �i D I.s; ˆ; x�/:

Since ˆ is a cusp form on GL.3/, it follows from (15) and Proposition 4.1 that for Re.s/ sufficiently
large and factorable �,

I.s; ˆ; x�/D‰.s;Wˆ;W
0
x�
/D

Y
v

‰v.s;Wˆv ;W
0
x�v
/;
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where ‰v.s;W;W 0/ is given by (17). As a consequence, we have

I.w;WAsˆ/D I.w; .Asˆ/0/C
X

�2C.S/

X
�2Bc.�/

Y
v

‰v.s;Wˆv ;W
0
x�v
/
Y
v

‰v.s;W�v /

C
1

4�

X
!2„.S/

Z 1
�1

X
�2Be.�.!;it//

Y
v

‰v.s;Wˆv ;W
0
x�v
/
Y
v

‰v.s;W�v / dt: (28)

For each generic automorphic representation � we will now construct an orthonormal basis for V�

which is formed exclusively by factorable vectors: We start by choosing for each place v, an orthogonal
basis BW .�v/ of the space W.�v;  v/. Consider now the elements � D

N
v �v such that for every

finite v, W�v lies in BW .�v/, and for all but finitely many v, W�v is normalized spherical. This provides
us with an orthogonal basis for V� . In order to get an orthonormal basis we multiply these vectors by
the correcting factors coming from (23). Applying these steps to (28) leads to the following (the slightly
awkward normalization is justified by the last part of Proposition 4.1):

Proposition 6.1. Let … be a cuspidal automorphic representation, and let ˆD
N
v ˆv 2… be a cusp

form. Then, for complex numbers s and w with sufficiently large real parts, we have

2d
7
2
�3s�w

F
I.w;Asˆ/DMs;w.ˆ/CDs;w.ˆ/;

where

H.�/D
Y
v

Hv.�v/; Hv.�v/ WD pdv.3�3s�w/
v

X
W 2BW .�v/

‰v.s;Wˆv ;W /‰v.w;W /

L.s;…v ��v/L.w; �v/
; (29)

Ms;w.ˆ/ is as in (4), and

Ds;w.ˆ/ WD 2d
7
2
�3s�w

F

Z
F�nA�

Z
FnA

Z
F�nA�

ˆ

�
z.u/n.x/a.y/

1

�
juj2s�1

jyjsCw�1 d�u dx d�y: (30)

We will refer to the function H given by (29) where ˆD
N
ˆv 2… as the .s; w/-weight function of

kernel ˆ. If s and w and ˆ are clear from the context, we shall refer to it simply as the weight function
of kernel ˆ.

Finally, given s; w2C, if H is the .s; w/-weight function with kernelˆ, we let {H be the .s0; w0/-weight
function associated to {̂ , where s0 and w0 are as in (5) and {̂ is as in (25). In other words,

{H .�/D
Y
v

{Hv.�v/; {Hv.�/ WD pdv.3�3s0�w0/
v

X
W 2BW .�v/

‰v.s
0;W {̂v ;W /‰v.w

0;W /

L.s0;…v ��v/L.w0; �v/
: (31)

7. Local computations

Let … be an unramified cuspidal automorphic representation of PGL.3/ over F . For all v, we let ˆ0
v

correspond to the normalized spherical vector in the Whittaker model, that is, Wˆ0
v
DW…v . Let q and l
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be two coprime integral ideals of F . Finally, let ˆq;l D
N
v ˆ

q;l
v , where, for all v ∤ql, we put ˆq;l

v Dˆ
0
v,

for v j q,

ˆq;l
v .g/ WD

1

pn
v

X
ˇ2m�n

v =ov

ˆ0
v

0@g

0@1 ˇ

1

1

1A1A ; (32)

where nD v.q/, and, for v j l,

ˆq;l
v .g/ WD

1

pm
v

X
ˇ2m�m

v =ov

ˆ0
v

0@g

0@1 ˇ

1

1

1A1A ;
with mD v.l/.

We will now proceed to the calculation of Hv for ˆDˆq;l. First notice that if, for some compact group
K0v of GL2.Fv/, we have that ˆv is invariant on the right by matrices of the shape

�
k

1

�
, where k 2K0v ,

then we may restrict the sum over the basis BW .�v/ to a sum over a basis of the right K0v-invariant
vectors. In particular, if v <1 and v ∤ql, this basis will have only one element, which can be taken to be
normalized spherical. Thus, by Proposition 4.1, we see that Hv.�v/D 1 in those cases. We divide the
remaining cases in three subcategories: v j l, v j q and v j1 and treat them in that order.

7A. Nonarchimedean case I: v j l. Even though this is not obvious at first glance, we will show that
Hv vanishes unless �v is unramified. First, notice that by right GL.2/-invariance of the Whittaker norm,
we have that for every orthonormal basis B of W.�v;  v/, one may construct another one by taking
B0 WD f�v.h/W;W 2 Bg. Applying this for h D

�
1 ˇ

1

�
for ˇ 2 m�m

v =ov, changing variables in the
GL.3/�GL.2/ Rankin–Selberg integral and summing over ˇ, we deduce that

Hv.�v/D pdv.3�3s�w/
v

X
W 2BW .�v/

‰v.s;W…v ;W /‰v.w;W
.m//

L.s;…v ��v/L.w; �v/
;

where

W .m/.h/ WD p�m
X

ˇ2m�m
v =ov

W

�
h

�
1 �ˇ

1

��
:

Now, since W…v is spherical, we may restrict the sum over BW .�v/ to only one term for which W is the
normalized spherical vector. Now, by Proposition 4.1, ‰v.s;W…v ;W�v /D pdv.3s� 5

2
/

v L.s;…v ��v/ and

‰v.w;W
.m/
�v

/D

Z
F�v

ıv.y/�m�dW�v

�
y

1

�
jyjw�

1
2 d�y;

D p
dv.w�

1
2
/

v

X
��m

��v .�/

p
�w
v ;

D p�mw
v

�
��v .m/�

��v .m� 1/

pwv

�
p

dv.w�
1
2
/

v L.w; �v/: (33)

Hence we have that

Hv.�v/D p�mw
v

�
��v .m/�

��v .m� 1/

pwv

�
: (34)
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7B. Nonarchimedean case II: v jq. We will show that Hv.�v/ vanishes unless c.�v/ � n and that
Hv.�v/�� p

n.��1C�/
v , and if c.�v/D n, then Hv.�v/D '.p

n
v /p
�2n
v .

We first notice that by a result of Casselman [1973], if we let W0 DW�v be the newvector and for
each j � 0, we let

Wj WD �v

�
1

$
j
v

�
W0: (35)

Then, for each j � 0, fW0;W1; : : : ;Wj g is a basis for the Kv Œn0Cj �-invariant vectors in W.�v;  v/,
where n0 D c.�v/. We now construct an orthonormal basis by employing the Gram–Schmidt process.
This is the local counterpart of the method in [Blomer and Milićević 2015].

Let ��v D ��v .1/ be as in Section 4C and ı�v D ın0D0, and take ˛�v WD ��v=.
p

pv.1C ı�v=pv//.
We put

��v .0; 0/D 1; ��v .1; 1/D
1p

1�˛2
�v

; ��v .1; 0/D�˛�vp
1
2
v ��v .1; 1/;

and

��v .j ; j /D
1p

1�˛2
�v

p
1� ı�v=p

2
v

; ��v .j ; j�1/D���v��v .j ; j /; ��v .j ; j�2/D ı�v��v .j ; j /;

and ��v .j ; k/D 0 for k � j � 2. If one assumes any nontrivial bound towards the Ramanujan conjecture
��v � p#v , with # < 1

2
, one has that j˛�v j is uniformly bounded by some constant C# < 1 and therefore

��v .j ; k/� pj�
v p.j�k/#

v : (36)

More importantly, for j � 0, ffW0;fW1; : : : ;fWj g is an orthonormal basis for the space of Kv Œn0Cj �-
vectors in W.�v;  v/, where

fWj WD
1

hW0;W0i
1=2

jX
kD1

��v .j ; k/p
1
2
.k�j/

v Wk : (37)

To see this we first compute hWk1
;Wk2

i, which, by (35) and the definition of ��j , equals

p�
1
2
jk2�k1jSjk2�k1j

;

where, for t � 0,

St D
�v.2/

Lv.1; �v � x�v/

X
��0

��v .�/��v .�C t/

p�v
:

It follows from the Hecke relations for ��v .�/ that

St D ��vSt�1� ı�vSt�2 for t � 2 and S1 D ˛�vp
1
2
v S0;

from which the claim follows.
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By definition, we have

Wˆv

0@a b

c d

1

1AD 1

pn
v

X
ˇ2m�n

v =ov

 .ˇc/W…v

0@a b

c d

1

1AD ıv.c/�n�dvW…v

0@a b

c d

1

1A :
Hence, if we write h D z.u/n.x/a.y/k, with x 2 Fv, u;y 2 F�v and k D .kij / 2 Kv, then Wˆv

vanishes unless v.uk21/� n�dv . Letting d1 WDmin.n; v.u/Cdv/ and d2 WD n�d1, we see that this is
equivalent to k belonging to Kv Œd2�. This allows us to write

‰v.s;Wˆv ;W /D pdv.2s�1/
v

X
d1Cd2Dn

X
min.�1;n/Dd1

p�2�1.s�
1
2
/

v ‰�1;d2
.W /; (38)

where

‰�1;d2
.W /D

Z
F�v

Z
KvŒd2�

W…v

�
z.$�1�dv

v /a.y/
�
W .a.y/k/jyjs�

3
2 d�y dk:

Now, if W D fWj is an element of our basis, given by (37), then it follows thatZ
KvŒf �

fWj .hk/ dk D

�
vol.Kv Œf �/fWj .h/ if j C n0 � f;

0 otherwise:
(39)

We reason as follows: On the one hand, for every j , fWj is Kv Œn0Cj �-invariant and is orthogonal to
W.�v;  v/

KvŒn0Cj�1�. On the other, the operator

W 7!
1

vol.Kv Œf �/

Z
KvŒf �

�v.k/W dk

is the orthogonal projection into the space of Kv Œf �-invariant vectors.
Applying (38) and (39) to the definition of Hv.�v/ and changing order of summation, we are led to

Hv.�v/D
p

dv.2�s�w/
v

L.s;…v ��v/L.w; �v/

X
d1Cd2Dn

vol.Kv Œd2�/
X

j�d2�n0

X
min.�1;n/Dd1

p�2�1.s�
1
2
/

v

�

Z
F�v

W…v

�
z.$

�1�dv
v /a.y/

1

�fWj .a.y//jyj
s� 3

2 d�y‰v.w;fWj /: (40)

By letting ��v;j .�/D fWj .a.$
��dv
v //p

1
2
� and using (18), we see thatZ

F�v

W…v

 
z.$

�1�dv
v /a.y/

1

! fWj .a.y//jyj
s� 3

2 d�y

D p
dv.s�

3
2
/

v

X
�2�0

��v .�2; �1/��v;j .�2/p
��1
v p��2s

v (41)

and also

‰v.w;fWj /D p
dv.w�

1
2
/

v

X
��0

��v;j .�/p
��w
v : (42)
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Inserting (41) and (42) in (40), we deduce that

Hv.�v/D
1

L.s;…v ��v/L.w; �v/

�

X
d1Cd2Dn

vol.Kv Œd2�/
X

j�d2�n0

X
min.�1;n/Dd1

X
�2�0

X
��0

�…v .�2; �1/��v;j .�2/��v;j .�/

p
.2�1C�2/s
v p

�w
v

:

Combining (35) and (37), we get

��v;j .�/D hW0;W0i
� 1

2

min.j ;k/X
kD1

��v .j ; k/p
k� 1

2
j

v ��v .� � k/ı��k :

As a consequence, we deduce, after changing variables, that

Hv.�v/D
hW0;W0i

�1

L.s;…v ��v/L.w; �v/

�

X
d1Cd2Dn

vol.Kv Œd2�/
X

j�d2�n0

p�j
v

X
k1;k2�j

��v .j ; k1/��v .j ; k2/p
k1.1�w/
v pk2.1�s/

v p�2d1s
v

�

X
min.�1;d2/D0

X
�2�0

�…v .�2C k2; �1C d1/��v .�2/

p
.2�1C�2/s
v

X
��0

��v .�/

p
�w
v

:

We recognize the last sum as L.w; �v/, so that

Hv.�v/D
hW0;W0i

�1

L.s;…v ��v/

X
d1Cd2Dn

vol.Kv Œd2�/
X

j�d2�n0

p�j
v

X
k1;k2�j

��v .j ; k1/��v .j ; k2/

�pk1.1�w/
v pk2.1�s/

v p�2d1s
v

X
min.�1;d2/D0

X
�2�0

�…v .�2C k2; �1C d1/��v .�2/

p
.2�1C�2/s
v

: (43)

We are now ready to prove the following

Proposition 7.1. Let ˆv Dˆ
q;l
v be as in (32), and let nD v.q/. Then for every � > 0 there exists ı > 0

such that

(i) Hv.�v/ vanishes if c.�v/ > n,

(ii) Hv.�v/D '.p
n
v /p
�2n
v if c.�v/D n,

(iii) Hv.�v/�� p
n.��1C�/
v in general for Re.s/;Re.w/ > 1

2
� ı and ı > 0 sufficiently small.

The first assertion follows by observing that if n0 D c.�v/ > n then the sum over j in (43) will vanish
independently of the value of d2.

The second one holds because if n0 D n, we automatically have d2 D n and d1 D j D k1 D k2 D 0

and moreover

hW0;W0i D
�v.2/

Lv.1; �v � x�v/

X
n�1

j��v .n/j
2

pn
v

D

�
1 if n0 D 0;

�v.2/ otherwise.
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Hence,

Hv.�v/D
'.pn

v /p
�2n
v

L.s;…v ��v/

X
�2�0

�…v .�2; 0/��v .�2/;

and we conclude by (19).
Finally, in order to show (iii), we apply the estimate in (36) and the bounds

�…v .�1; �2/� p.�1C�2/�
v ; ��v .�/� p�#v

to (43), which gives

Hv.�v/�� pn.�1C�/
v

X
d1Cd2Dn

p2.d1Cj/ı

d2�n0X
jD0

jX
k1;k2D0

p
.k1Ck2�2j/. 1

2
�#/

v p.d1Ck2/�
v

for <.s/ > 1
2
�; � C # and it follows from the results in [Luo et al. 1999] and the Kim–Sarnak bound

[2003, Appendix 2] that one has � C# < 1
2

. We conclude by taking ı sufficiently small.

7C. Local computations, the archimedean case. The analysis of the archimedean weight functions is
of a somewhat different nature from the nonarchimedean case. For those places, we make the simplest
choice imaginable. Namely we impose that …v is unramified and ˆv is normalized spherical for
every archimedean place v. As a consequence it easily follows that Hv.�v/ vanishes unless �v is itself
unramified, in which case we may choose a basis of BW .�v/ such that each term corresponds to a different
K-type, and then there will be at most one element W of BW .�v/ for which the period ‰v.s;Wˆv ;W /

is nonvanishing, and it must be a spherical vector for �v. Moreover, it follows from Stade’s formula
[2001, Theorem 3.4] that

‰v.s;Wˆv ;W /DLv.s;…v ��v/; ‰v.w;W /DLv.w; �v/:

where W DW�v 2W.�v;  v/ is spherical and such that #v.W;W / D 1. In particular, the following
holds:

Proposition 7.2. Let v be an archimedean place of F . Let …v be an irreducible admissible generic
representation for GL3.Fv/. Then there exists a vectorˆv 2…v such that for every irreducible admissible
generic representation for GL2.Fv/, we have

H.�v/D

�
1 if �v is unramified;
0 otherwise:

7D. Meromorphic continuation with respect to the spectral parameter. Let ˆq;l be as in (32), and
let H be the .s; w/-weight function of kernel ˆq;l. Our goal in this section is to find that for any unitary
character ! of F�v there is a domain of C3 on which the function

.s; w; t/ 7!Hv.�v/

is meromorphic with respect to all three variables with only finitely many polar divisors, where �v D
�v.!v; i t/ (see Section 3A1).
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From our computations so far, we know that Hv.�v/D 1 unless v j l or v j q. Moreover, in the first of
these cases, we saw that

Hv.�v/D p�mw
v

�
��v .m/�

��v .m� 1/

pwv

�
; mD v.l/;

which is clearly an entire function with respect to s, w and t , since it is a combination of terms of the
shape p

˛wCˇt
v , where ˛; ˇ 2 C.

We are now left with the case where v j q. It follows from the proof of Proposition 7.1 that given � < 1
2

,
there exists ı > 0 such that the right-hand side of (43) converges in the region

jIm.t/j< �; Re.s/;Re.w/ > 1
2
� ı;

and defines in it a holomorphic function in the variables s and w. We observe that Hv.�v/ is a linear
combination of terms of the shape

L!;k2;d1;d2
.s; t/ WD

1

L.s;…v ��v/

X
min.�1;d2/D0

X
�2�0

�…v .�2C k2; �1C d1/��v .�2/

p
.2�1C�2/s
v

;

with coefficients given by meromorphic functions in the variables s, w and t . The only possible polar
divisors occur for t satisfying !.$v/2p2it

v D p˙1
v , due to the term .1� ˛2

�v
/�1 appearing as a factor

of ��v .j ; k1/��v .j ; k2/. Moreover, it follows from [Blomer and Khan 2019a, Lemma 14], applied to
the tuple .M; d;g1;g2; q/ D .p

k2
v ;p

d1
v ; 1;p

d2
v ;p

n
v /, that for any � > 0, there exists ı > 0 such that

L!;k2;d1;d2
.s; t/ admits a holomorphic continuation to the region

Re.s/ > 1
4
� ı; Re.s/˙ Im.t/ > �ı: (44)

Moreover, using again the Ramanujan bound for �…v .�2; �2/ and recalling that �v D �v.!v; i t/, so that
��v .�/� p�jIm.t/jC�v , we see that in the region (44) we have

L!;k2;d1;d2
.s; w; t/� p.d1Ck2/.�C�/

v : (45)

As a consequence, Hv.�v/ admits meromorphic continuation to (44). Now, suppose ! D 1 is the trivial
character, and let

Dv.s; w/ WDHv.�v/jtD.1�w/=i : (46)

From what we have just seen, Dv.s; w/D 1 unless v j l or v j q. In the first case, it is clear that Dv.s; w/ is
entire with respect to both s and w. Also, when 1

2
� Re.s/;Re.w/ < 1, we have ��v .m/� p

m.1�Re.w//
v ,

and thus by (34), we see that

Dv.s; w/� 1:

Finally, if v j q, then for sufficiently small ı > 0, Dv is meromorphic in the region

1
2
� ı < Re.s/;Re.w/� 1; (47)
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where the only possible polar divisors are at the values of w such that p2�2w
v D pv. We will now show

that such poles cannot occur. To see this, let

Ej ;k2
.w/ WD ��v .j ; k2/

jX
k1D0

��v .j ; k1/p
k1.1�w/
v :

An easy computation shows that

Ej ;k2
.w/D

8<:
1 if j D 0;

tj ;k2
.w/=.1�p2w�3

v / if j D 1;

0 otherwise;

where tj ;k2
is an entire function. This and the fact that L!;k;d1;d2

.s; w; .1�w/= i/ is holomorphic in (47)
are enough to guarantee that Hv.�v/ is holomorphic in the same region. Moreover, we may argue
analogously to Proposition 7.1(iii), appealing to (45), to deduce that for 1

2
� Re.s/;Re.w/ < 1, we have

the inequality

Dv.s; w/�s;w;� pn.�1C�C�/
v

X
d1Cd2Dn

d2�n0X
jD0

pj.1�2 Re.w//
v Cpj.1�Re.s/�Re.w//

v �� pn.�1C�C�/
v :

We now summarize what we obtained in this subsection as follows:

Proposition 7.3. Let ! D
N0
v !v be an unitary character of F�nA�, and let Hv be given by (29) with

ˆv Dˆ
q;l
v , withˆq;l

v given by (32). Then .s; w; t/ 7!Hv.�v.!v; i t// admits meromorphic continuation to
the region (44) with possible polar divisor of the form t D t0, where t0 is a solution to !.$v/2p

2it0
v Dp˙1

v .
Moreover, if Dv is given by (46), then it admits a holomorphic continuation to the region (47) and
if 1

2
� Re.s/;Re.w/ < 1, it satisfies Dv.s; w/D 1 unless v j ql, in which case

Dv.s; w/�s;w;�

�
pm�
v if v j l;

p
n.�1C�C�/
v if v j q:

8. The degenerate term

In this section we study the term Ds;w.ˆ/ given by (30) and its companion Ds0;w0. {̂ /. First, by rapid
decay of Whittaker functions and the action of the Weyl group of GL.3/, we may see that both converge
for any values of s; w 2 C. This is all that is needed to know with respect to these terms for Theorem 1.1.

Let us now turn to their use in Theorem 1.2. Here we make the specialization to ˆDˆq;l. It turns out
that is easier to study first the term Ds0;w0. {̂ /, so we start with this one and later deduce an analogous
result for the other by using their symmetry. First, we recall that

Ds0;w0. {̂ /D2d
7
2
�3s0�w0

F

Z
F�nA�

Z
FnA

Z
F�nA�

{̂

�
z.u/n.x/a.y/

1

�
juj2s0�1

jyjs
0Cw0�1 d�udx d�y: (48)

We will show that, in the region

Re.3sCw/ > 1; Re.sCw/; Re.2s/ > �; (49)

Ds0;w0. {̂ /�s;w;� `
��Re.s/�Re.w/C�, where ` is the absolute norm of l.
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We begin by noticing that, using the definition of {̂ , reversing the change of variables used in the proof
of Proposition 5.1 and changing the order of summation, we see that the integral in (48) equalsZ

.F�nA�/2

0@Z
FnA

ˆ

0@0@1 x

1

1

1A�z.u/a.y/

1

�1A dx

1A juj2s�1
jyjsCw�1 d�u d�y:

By the Whittaker expansion of ˆ, the inner integral isZ
FnA

X

2N2.F /nGL2.F /

Wˆ

0@�

1

�0@1 x

1

1

1A�z.u/a.y/

1

�1A dx;

which, by elementary manipulations and changing the order of summation and integration, becomesX

2N2.F /nGL2.F /

Wˆ

�

 z.u/a.y/

1

�Z
FnA

 .
21x/ dx;

where 
21 is the lower left entry of 
 . Since 
21 2 F , the inner integral vanishes unless 
21 D 0, in
which case, it equals one. In other words, we may change the sum over N2.F /nGL2.F / into a sum over
N2.F /nB2.F /, which can be parametrized by Z2.F /A2.F /. Altogether, this implies that

Ds0;w0. {̂ /D 2d
7
2
�3s0�w0

F

Z
.F�nA�/2

X

2Z2.F /A2.F /

Wˆ

�

 z.u/a.y/

1

�
juj2s�1

jyjsCw�1 d�u d�y

D 2d
7
2
�3s0�w0

F

Z
.A�/2

Wˆ

�
z.u/a.y/

1

�
juj2s�1

jyjsCw�1 d�u d�y: (50)

Suppose that Re.s/ and Re.w/ are sufficiently large. We are now in a fairly advantageous position, as
the integral above can be factored into local ones. These local integrals are

Jv D
Z
.F�v /2

Wˆv

�
z.u/a.y/

1

�
juj2s�1

jyjsCw�1 d�u d�y:

We notice that for a finite place v for which …v is unramified, this equals

pdv.3sCw�2/
v

X
�1;�2�0

�…v .�1; �2/

p
�1.sCw/C2�2s
v

;

whose inner sum we recognize as being the local factor of Bump’s double Dirichlet series (see, e.g.,
[Goldfeld 2006, §6.6]). In particular, it follows that for Re.s C w/;Re.2s/ > � (recall the bound
�…v .�1; �2/� p

.�1C�2/�
v ) the above equals

J 0
v WD pdv.3sCw�2/

v

L.sCw;…v/L.2s;…v/

�v.3sCw/
�s;w 1: (51)

As for the remaining places, we first observe that for v j q, the unipotent averaging has no effect on the
values of the Whittaker function at diagonal element. Thus, it follows that the local integral Jv will
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also coincide with (51). Furthermore, (51) also holds for archimedean v. For real places this is done in
[Bump 1984] and for the complex places this is [Bump and Friedberg 1989, Theorem 1]. Finally, for v j l,

Wˆv

�
z.u/a.y/

1

�
D ıv.y/�m�dvW…v

�
z.u/a.y/

1

�
;

where mD v.l/. Hence, in this case, the local factor is

Jv D pdv.3sCw�2/
v

X
�1�m;�2�0

�…v .�1; �2/

p
�1.sCw/C2�2s
v

;

which, by using yet again the Ramanujan bound for �…v .�1; �2/, we may see converges in the region
Re.sCw/;Re.2s/ > � , where it satisfies

Jv�� pm.��Re.s/�Re.w/C�/
v :

In particular, if lD 1,

D 1
2
; 1

2
. {̂ /D 2d

3
2

F

ƒ.1;…/ƒ.1;…/

�F .2/
: (52)

Now, notice that Ds;w.ˆ/ is the same as Ds0;w0. {̂ / but with .q; l; s; w/ replaced by .l; q; s0; w0/. This
allows us to immediately reuse our efforts in this section to study the latter function as well. We record
the results for both these functions in a weaker form in the following proposition.

Proposition 8.1. Let Ds;w.ˆ/ and Ds;w.ˆ/ be as defined in (30) with ˆ D ˆq;l and {̂ given by (25).
Then they are entire functions of s and w, and in the region

Re.s/;Re.w/;Re.s0/;Re.w0/ > 1
4
;

they satisfy

Ds;w.ˆ/�s;w;� q��Re.sCw/C� and Ds0;w0. {̂ /�s;w;� `
��Re.sCw/C�:

9. Analytic continuation of the Eisenstein part

The conclusion of our next proposition will be subject to the following hypothesis, whose verification
when ˆDˆq;l follows from the main results of Section 7:

Hypothesis 1. There exists ı > 0 such that for every idele character !, the function

.s; w; t/ 7!H.�.!; i t//

is holomorphic in the region

Re.s/;Re.w/ > 1
2
� ı; jIm.t/j< ı:

Moreover, H.�.!; .1�w// admits a holomorphic continuation to the region

1
2
� ı < Re.s/;Re.w/ < 1:
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We will show that the term Es;w.ˆ/ admits meromorphic continuation for values of s and w with real
parts smaller than 1. The proof follows the same lines as those of Blomer and Khan [2019a, Lemma 16;
2019b, Lemma 3].

Proposition 9.1. Suppose that … is a cuspidal automorphic representation, and let ˆ 2 … be an
automorphic form such that the associated weight function H satisfies Hypothesis 1 for some ı > 0. Let
Es;w.ˆ/ be given by (3), defined initially for Re.s/;Re.w/� 1. It admits a meromorphic continuation
to Re.s/;Re.w/� 1

2
�� for some � > 0 with at most finitely many polar divisors. If 1

2
�Re.s/;Re.w/< 1,

its analytic continuation is given by Es;w.ˆ/CRs;w.ˆ/, where

Rs;w.ˆ/D
X
˙

res
tD˙.1�w/=i

.˙i/
ƒ.sC i t;…/ƒ.s� i t;…/�F .wC i t/�F .w� i t/

��
F
.1/�F .1C 2i t/�F .1� 2i t/

H.�.1; i t//: (53)

Proof. Let ı > 0 to be chosen later. We use nonvanishing of completed Dirichlet L-functions ƒ.s; !/ at
Re.s/D 1 and continuity to define a continuous function � WR 7! .0; ı/ so that neitherƒ.1�2��2i t; !2/

nor H.�.!; i t C �// have poles for 0� � < �.t/.
We start by noticing that we can analytically continue Es;w.ˆ/ to Re.s/;Re.w/ > 1, since in that

region, one does not encounter any poles of ƒ.w; �.1; i t//. Now, suppose that

1< Re.s/ < 1C �.Im.s// and 1< Re.w/ < 1C �.Im.w//:

We shift the contour of the integral defining Es;w.ˆ/ down to Im t D��.Re.t//. We pick up a pole of
ƒ.w� i t; !/ when ! is the trivial character and w� i t D 1.

We observe that in view of our choice for � , the resulting integral defines a holomorphic function in
the region �

1� �.Im.s// < Re.s/ < 1C �.Im.s//;
1� �.Im.t// < Re.w/ < 1C �.Im.w//:

Take now s and w satisfying 1� �.Im.s// < Re.s/ < 1 and 1� �.Im.t// < Re.w/ < 1. We may shift
the contour back to the real line and pick a new pole when ! is trivial and at wC i t D 1. This proves the
desired formula for 1� �.Im.s// < Re.s/ < 1 and 1� �.Im.t// < Re.w/ and it follows in general by
analytic continuation to all s; w such that 1

2
� ı < Re.s/;Re.w/ < 1 by Proposition 7.3. �

10. Conclusion

In this section we put together the results of the last three sections and deduce Theorem 1.2. We have
seen in Proposition 6.1 that for sufficiently large values of Re.s/ and Re.w/, we have the relation

2d
7
2
�3s�w

F
I.w;Asˆ/DMs;w.ˆ/CDs;w.ˆ/:

If we assume that H satisfies Hypothesis 1, then we may apply Proposition 9.1, and deduce that, for
1
2
� ı < Re.s/;Re.w/ < 1,

2d
7
2
�3s�w

F
I.w;Asˆ/DMs;w.ˆ/CDs;w.ˆ/CRs;w.ˆ/: (54)
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Now suppose that {H also satisfies Hypothesis 1 and that 1
2
< Re.s/� Re.w/� 3

4
. The last assertion

implies that
1
2
� Re.s0/;Re.w0/ < 1:

Thus, we may deduce that (54) also holds with H , s and w replaced by {H , s0 and w0, respectively.
The main equality in Theorem 1.2 is now a direct consequence of Proposition 5.1 and the description
of the local weights Hv.�v/ from Section 7. In particular, we showed in Section 7D that the weight
function associated to ˆq;l satisfies Hypothesis 1. As for the inequality (7), it follows from (53) and
Propositions 7.3 and 8.1.

10A. Proof of Corollary 1.3. We use Theorem 1.2 with s D w D 1
2

, lD oF and qD p, a prime ideal.
We obtain that

M.ˆ/D D. {̂ /CR. {̂ /�D.ˆ/�R.ˆ/CM. {̂ /;

where we dropped the 1
2
; 1

2
from the index for brevity. It follows from Proposition 9.1 and the fact that

y��.1;˙ 1
2
/

�
1
2
; q
�
D 1 for any ideal q that

R. {̂ /D 2
ƒ.1;…/ƒ.0;…/

�F .2/
:

Furthermore, we have from (52) that

D. {̂ /D 2d
3
2

F

ƒ.1;…/ƒ.1;…/

�F .2/
D 2

ƒ.1;…/ƒ.0;…/

�F .2/
:

Moreover, in view of Propositions 7.1 and 8.1, we may obtain that

R.ˆ/;D.ˆ/� .N p/��1C�

and

M.ˆ/D
'.q/

q2

X
� cusp0

cond.�/Dp

ƒ
�

1
2
;…��

�
ƒ
�

1
2
; �
�

ƒ.1;Ad; �/
CO.q��1M�/;

where

M� WD
X
� cusp0

cond.�/DoF

ˇ̌
ƒ
�

1
2
;…��

�
ƒ
�

1
2
; �
�ˇ̌

jƒ.1;Ad; �/j
C

X
!23F�U1nA

�
.1/

cond.!/DoF

Z 1
�1

ˇ̌
ƒ
�

1
2
;…��.!; i t/

�
ƒ
�

1
2
; �.!; i t/

�ˇ̌
jƒ�.1;Ad; �.!; i t//j

dt

2�
:

Finally, it is easy to see that we also have the bound

M. {̂ /� q#�
1
2M�:

Corollary 1.3 will follow provided that one is able to show M�� 1. In other words, we just need
to ensure that it converges since it is clearly independent of p. To see that, we notice that the finite part
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of ƒ
�

1
2
;… � �

�
ƒ
�

1
2
; �
�
=ƒ.1;Ad; �/ is bounded polynomially in terms of the eigenvalues of �v for

archimedean v and that, by Stirling’s formula, we have, for archimedean v,

L
�

1
2
;…v ��v

�
L
�

1
2
; �v

�
L.1;Ad; �v/

� jt�v j
C e�2cFv�jt�v j

for �v D �v.1; i t�v /, where

cFv D

�
1 if Fv D R;

2 if Fv D C:

This implies that the factor ƒ
�

1
2
;…��

�
ƒ.1

2
; �/=ƒ.1;Ad; �/ decays exponentially as the t�v grow

and the convergence of M� follows by appealing to the Weyl law for GL.2/ over number fields (see
[Palm 2012, Theorem 3.2.1]).
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Quadratic points on intersections of two quadrics
Brendan Creutz and Bianca Viray

We prove that a smooth complete intersection of two quadrics of dimension at least 2 over a number field
has index dividing 2, i.e., that it possesses a rational 0-cycle of degree 2.

1. Introduction

The index of a variety over a field k is the greatest common divisor of the degrees [k(x) : k] ranging over
the residue fields k(x) of the (zero-dimensional) closed points x of the variety. Equivalently, the index is
the smallest positive degree of a k-rational 0-cycle.

Let X ⊂Pn
k be a smooth complete intersection of two quadrics over a field k of characteristic not equal

to 2. Then the index of X necessarily divides 4, because intersecting with a plane yields a 0-cycle of
degree 4. In general, this is the best possible bound. Indeed, there are examples with index 4 over local
and global fields when n = 3 [Lang and Tate 1958, Theorem 7] and over fields of characteristic 0 when
n = 4, as we show in Theorem 7.6.

Our main result is the following sharp bound on the index when n ≥ 4 and k is a number field or a
local field.

Theorem 1.1. Let X be a smooth complete intersection of two quadrics in Pn
k with n ≥ 4 and assume that

k is either a number field or a local field. Then the index of X divides 2.

This result allows us to complete the list of integers which occur as the index of a del Pezzo surface
over a local field or a number field (see Section 7D). It also allows us to deduce nontrivial index bounds
for other interesting classes of varieties. In particular, if C/k is a genus 2 curve over a number field with
a rational Weierstrass point, then it follows from the result above that any torsor of period 2 under the
Jacobian of C has index dividing 8 (see Theorem 7.7) and the corresponding Kummer variety, which
is an intersection of 3 quadrics in P5, has index dividing 4 (see Remarks 7.8). Again, these results fail
for arbitrary fields (see Remarks 7.8). Theorem 1.2 below shows that Theorem 1.1 also holds for global
function fields of odd characteristic when n ≥ 5 and conditionally in a number of cases when n ≥ 4.

Theorems of Amer [1976], Brumer [1978] and Springer [1956] show that, for X as above, index 1 is
equivalent to the existence of a k-rational point. Analogously one can ask if index 2 implies the existence
of a closed point of degree 2. Colliot-Thélène has recently sketched an argument that if X is a smooth
complete intersection of two quadrics in P4 over a field of characteristic 0 and X has index 2, then X has
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a closed point of degree 14, 6 or 2. Our next result identifies conditions under which we can prove that a
smooth intersection of two quadrics in Pn has a closed point of degree 2. In order to state it we introduce
the following notation: We say that a global field k satisfies (⋆) if Brauer–Manin is the only obstruction
to the Hasse principle for del Pezzo surfaces of degree 4 over all quadratic extensions of k.

Theorem 1.2. Let n ≥ 4 and let X ⊂ Pn
k be a smooth complete intersection of two quadrics over a field k.

In any of the following cases there is a quadratic extension K/k such that X (K ) ̸=∅:

(1) k is a local field and n ≥ 4.

(2) k is a global function field and n ≥ 5.

(3) k is a global function field of characteristic 2 and n = 4.

(4) k is a number field that satisfies Schinzel’s hypothesis and n ≥ 5.

(5) k is a global field that satisfies (⋆) or a number field that satisfies Schinzel’s hypothesis, n = 4 and
the following holds: for any quadratic field extension L/k and rank 4 quadric Q ⊂ P4

L such that
X =

⋂
σ∈Gal(L/k) σ(Q) and NormL/k(disc(Q)) ∈ k×2, we have that Q fails to have smooth local

points at an even number of primes of L.

When n= 4, there are exactly five rank 4 quadrics in the pencil of quadrics containing X (see Section 4
for details). The condition in case (5) holds for most intersections of quadrics and can be easily checked.
In particular, it is satisfied if there is no pair of Galois conjugate rank 4 quadrics in the pencil or if X has
points everywhere locally (for then any quadric containing X will have points over all completions). In
fact, if X is assumed everywhere locally solvable, the proofs of our main results become much easier (see
Corollary 3.4 and Remark 4.8). For further details of the cases covered (and not covered) in case (5), see
Remark 6.2 and Section 7A.

Theorem 1.2(5) naturally raises the question of whether the parity condition is necessary. We have
constructed many examples that fail this parity condition, but in each we have found an ad hoc proof that
(⋆) implies the existence of a quadratic point. Based on our results and this extensive numerical evidence,
we expect the following question to have a positive answer.

Question 1.3. Does every complete intersection of 2 quadrics X ⊂ P4
k over a number field k possess a

K -rational point for some quadratic extension K/k?

One can also pose this question for other classes of fields, e.g., Cr fields. Over C3 fields, the question
has a negative answer (see Section 7C for examples), but it is open for C2 fields.

1A. Obstructions to index 1 over local and global fields. Over local and global fields, necessary and
sufficient conditions for an intersection of two quadrics to have index 1 (equivalently, to have a rational
point) have been well studied. When k is a local field and n ≤ 7 there are examples with X (k) = ∅
(which necessarily have index greater than 1), while for n ≥ 8 and k a p-adic field, X (k) ̸=∅ [Demyanov
1956]. For k a number field, Colliot–Thélène, Sansuc and Swinnerton-Dyer conjecture that a smooth
complete intersection of quadrics in Pn

k satisfies the Hasse principle as soon as n ≥ 5 [Colliot-Thélène
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et al. 1987b, Section 16]. For n ≥ 8, the conjecture is proven in [Colliot-Thélène et al. 1987a; 1987b] and
this has been extended to n ≥ 7 by Heath-Brown [2018]. The analogue of this conjecture over global
function fields of odd characteristic has been established by Tian [2017], allowing us to deduce case (2)
from case (1) of Theorem 1.2.

When n = 4 (in which case X is a del Pezzo surface of degree 4), the Hasse principle can fail [Birch
and Swinnerton-Dyer 1975]. Colliot-Thélène and Sansuc [1980] have conjectured that this failure is
always explained by the Brauer–Manin obstruction. This conjecture implies that all number fields satisfy
the condition (⋆) appearing in Theorem 1.2(5). Most cases of the n = 4 conjecture have been proven
conditionally on Schinzel’s hypothesis and the finiteness of Tate–Shafarevich groups of elliptic curves by
Wittenberg [2007]. This also gives a conditional proof of the Hasse principle when n ≥ 5 as this can be
reduced to cases of the n = 4 conjecture which are covered by Wittenberg’s result.

1B. Outline of the proof of Theorems 1.1 and 1.2. Using an argument of Wittenberg [2007] (which we
review in Section 6B), we can reduce to the case n = 4, when X is a del Pezzo surface of degree 4.

In Section 2 we prove that any del Pezzo surface of degree 4 over a local field must have points over
some quadratic extension, which proves Theorem 1.2(1) and the local case of Theorem 1.1. Our approach
uses the theorems of Amer, Brumer, and Springer to reduce to the case where no integral model of X
has a special fiber that is split (i.e., contains a geometrically integral open subscheme) over a quadratic
extension. We then use semistable models of degree 4 del Pezzo surfaces, introduced by Tian [2017], to
directly show that the remaining types of degree 4 del Pezzo surfaces obtain points over every ramified
quadratic extension of k.

In Section 2F, we give an easy generalization of a result in [Dolgachev and Duncan 2018], showing
that, for k a field of characteristic 2, any del Pezzo surface of degree 4 obtains a point over k1/2. For local
and global fields of characteristic 2 we have [k1/2

: k] = 2, so this proves Theorem 1.2(3) and gives an
alternate proof of Theorem 1.2(1) in characteristic 2. Thus, for the remainder of the paper, it suffices to
assume that k is of characteristic different from 2.

Over a global field, the results of Section 2 show that after base change to a suitable quadratic extension
X becomes everywhere locally solvable. While it is also true that the Brauer group of X becomes constant
after a suitable quadratic extension (this can be deduced from the explicit calculation of Br(X)/ Br0(X)

in [Várilly-Alvarado and Viray 2014]), one cannot deduce that Theorem 1.2 holds for fields k satisfying
(⋆) directly from case (1) in this way because, in general, there is no quadratic extension K/k for which
X K is locally solvable and the Brauer group of X K is trivial modulo constant algebras (see Example 6.4).

To obtain our results when k is a global field of characteristic not equal to 2 we study the arithmetic of
the symmetric square of X , which is birational to the variety G parametrizing lines on the quadrics in the
pencil of quadrics in P4

k containing X (see Section 4 for more details). In Section 5, we develop the main
tools for studying the arithmetic of G over a global field. We determine explicit central simple algebras
over the function field of G representing the Brauer group of G modulo constant algebras and then develop
techniques to calculate the evaluation maps of these central simple algebras at several types of local points.
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Theorem 1.2(1) implies that G is everywhere locally solvable. The results of Section 5 are used in
Section 6 to show further that there is always an adelic 0-cycle of degree 1 on G orthogonal to the Brauer
group and, under the hypothesis of Theorem 1.2(5), that there is an adelic point on G orthogonal to
the Brauer group. This is perhaps surprising given that in this case the Brauer group of G can contain
nonconstant algebras and in general can obstruct weak approximation on G (see Corollary 6.3 and
Example 6.4).

The variety of lines on a smooth quadric 3-fold is a Severi–Brauer 3-fold, so the arithmetic of G is
amenable to the fibration method, as first observed in [Colliot-Thélène and Sansuc 1982]. Results of
Colliot-Thélène and Swinnerton-Dyer [1994] show that, in the number field case, the vanishing of the
Brauer–Manin obstruction on G implies the existence of a 0-cycle of degree 1 on G and, conditionally
on Schinzel’s hypothesis, a k-rational point on G. This yields a 0-cycle of degree 2 on X and, under the
hypothesis of Theorem 1.2(5), a quadratic point on X if we assume Schinzel’s hypothesis. To the best of
our knowledge the function field analogue of these results based on the fibration method have not been
established. This prevents us from considering global function fields in the n = 4 case of Theorem 1.1.

One can ask whether index(G)= 1 always implies that G has a rational point (when k is a global field
this is equivalent to Question 1.3). Our results do not answer this question, but they do show that a
stronger condition on 0-cycles fails over p-adic fields. Namely, G can contain 0-cycles of degree 1 that
are not rationally equivalent to a rational point (see Remarks 7.4(1)).

To deduce the results in case (5) of Theorem 1.2 assuming that k satisfies (⋆) (without assuming
Schinzel), we make use of Proposition 3.6, which may be of interest in its own right. It relates the Brauer–
Manin obstruction on the symmetric square of a variety that has finite Brauer group (modulo constant
algebras) to the Brauer–Manin obstruction over quadratic extensions. (More generally, in Section 3
we collect results relating the Brauer–Manin obstruction on a nice variety Y to the Brauer–Manin over
an extension which may also be of independent interest.) In a similar spirit, we answer a question
posed in [Colliot-Thélène and Poonen 2000] concerning Brauer–Manin obstructions over extensions (see
Remarks 7.4(2)) and give an example of a del Pezzo surface of degree 4 defined over Q which, for any
finite extension k/Q, has a Brauer–Manin obstruction to the existence of k-points if and only if k is of
odd degree over Q (see Section 7B).

Notation. For a field k we use k̄ to denote a separable closure and Gk :=Gal(k̄/k) to denote the absolute
Galois group of k. In Sections 2 and 3, we allow k of arbitrary characteristic; in the remainder of the
paper we restrict to k of characteristic different from 2. For k-schemes Y → Spec(k) and S→ Spec(k)

we define

YS := Y ×Spec(k) S and Y = Y ×Spec k Spec(k̄).

When S = Spec(A) is the spectrum of a k-algebra A, we use the notation YA := YSpec(A). A quadratic
point on Y is a morphism of k-schemes Spec(K )→ Y , where K is an étale k-algebra of degree 2. In
particular, K = k× k is allowed in which case Z K ≃ Z × Z for any k-subscheme Z ⊂ Y .



Quadratic points on intersections of two quadrics 1415

The Brauer group of a scheme Y is the étale cohomology group Br(Y ) := H2
ét(Y, Gm); when Y =

Spec(R) is the spectrum of a ring R we define Br(R) := Br(Spec R). If sY : Y → Spec(k) is a k-
scheme, then Br0(Y ) ⊂ Br(Y ) is the image of the pullback map s∗Y : Br(k)→ Br(Y ). We use Br1(Y )

to denote the kernel of the map Br(Y ) → Br(Y ). We recall that there is a canonical injective map
Br1(Y )/ Br0(Y )→ H1(k, Pic(Y )) coming from the Hochschild–Serre spectral sequence [Colliot-Thélène
and Skorobogatov 2021, Proposition 4.3.2] and that this map is an isomorphism if H3(k, Gm)= 0.

An element β ∈Br(Y ) may be evaluated at a k-point y : Spec(k)→ Y by pulling back along y to obtain
β(y) := y∗β ∈ Br(k). For a finite locally free morphism of schemes Y → Z we use CorY/Z : Br(Y )→

Br(Z) to denote the corestriction map. When Y = Spec(A) and Z = Spec(B) are affine schemes this is
also denoted by CorA/B : Br(A)→ Br(B).

A variety over k is a separated scheme of finite type over k. A variety is called nice if it is smooth, pro-
jective and geometrically integral and is called split if it contains an open subscheme that is geometrically
integral.

If Y is an integral k-variety, k(Y ) denotes its function field. More generally, if Y is a finite union of
integral k-varieties Yi , then k(Y ) :=

∏
k(Yi ) is the ring of global sections of the sheaf of total quotient rings.

In particular, if a finite dimensional étale k-algebra A decomposes as a product A ≃
∏

k j of finite field
extensions of k and Y is a reduced k-variety, then k(YA)≃

∏
k(Yk j ), and Cork(YA)/k(Y )=

∑
Cork(Yk j )/k(Y ).

For a global field k, we use �k to denote the set of primes of k. For a prime v ∈�k we use kv to denote
the corresponding completion and for a k-scheme Y we set Yv := Ykv

. We use Ak to denote the adele ring
of k. For a subgroup B ⊂ Br(Y ), Y (Ak)

B
⊂ Y (Ak) denotes the set of adelic points orthogonal to B, i.e.,

Y (Ak)
B
=

{
(yv) ∈ Y (Ak) : ∀β ∈ B,

∑
v∈�k

invv(β(yv))= 0
}
.

We define Y (Ak)
Br
:= Y (Ak)

Br(Y ).

2. Intersections of quadrics in P4 over local fields

Theorem 2.1. Let X ⊂ P4
k be a smooth complete intersection of two quadrics over a local field k. There

is a quadratic extension K/k such that X (K ) ̸=∅.

Outline of proof of Theorem 2.1. In Section 2A, we prove that if there exists an integral model X⊂ P4

with split special fiber, then X (k) ̸=∅. We use this result to reduce to the case that the special fiber is a
union of four planes permuted transitively by the Galois group. We then use the geometric classification
results in Section 2C together with the existence of semistable models proved by Tian [2017] (following
Kollár [1997]) to give explicit models of the remaining cases in Section 2D. Next, we study these explicit
models and show directly that over every ramified quadratic extension there is a change of coordinates so
that the model has split special fiber. Thus, by the results of Section 2A, these models have points over
every ramified quadratic extension. The details of how the ingredients come together are in Section 2E.
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Remark 2.2. The methods of this proof are fairly flexible, but it does rely on two key properties of finite
fields:

(1) There is a unique quartic extension of any finite field, it is Galois, and the Galois group is cyclic.

(2) Every split variety over a finite field has index 1.

If k is a complete field with respect to a discrete valuation and its residue field satisfies the above two
properties, then Theorem 2.1 holds over k.

As mentioned in the introduction, we also give alternate proofs of Theorem 2.1 which work in the case
that k has odd residue characteristic (Section 4B) and in the case that k has characteristic 2 (Section 2F);
this latter proof also holds for global fields of characteristic 2.

2A. Intersections of quadrics with split special fiber.

Proposition 2.3. Let k be a nonarchimedean local field, let O denote the valuation ring of k, and let X/k
smooth complete intersection of quadrics in P4

k . Assume there exists an integral model X/O such that the
special fiber is split (i.e., contains a geometrically integral open subscheme). Then X (k) ̸=∅.

Proof. Since the special fiber is split, it contains a geometrically integral open subscheme U ◦/F. By the
Hasse–Weil bounds, U ◦ contains a smooth F′-point for all extensions with sufficiently large cardinality. In
particular, there exists an extension F′/F of odd degree where U ◦ has a smooth F′-point. Thus, by Hensel’s
Lemma, X has a k ′-point for k ′/k an unramified extension of odd degree. Since X is an intersection
of two quadrics, the theorems of Amer [1976], Brumer [1978] and Springer [1956] then imply that
X (k) ̸=∅. (In characteristic 2, see [Elman et al. 2008, Corollary 18.5 and Theorem 17.14] for proofs of
the Amer, Brumer and Springer theorems; the Amer and Brumer theorem in characteristic 2 is attributed
to an unpublished preprint of Leep.) □

2B. Ranks of a quadratic forms in arbitrary characteristic. Let q be a quadratic form on a vector space V
over a field F . Then (by definition) the mapping Bq :V×V→ F given by Bq(x, y)=q(x+y)−q(x)−q(y)

is bilinear. We say that q is regular if the set {x ∈ V : q(x)= 0 and ∀y ∈ V, Bq(x, y)= 0} contains only
the zero vector in V . (If the characteristic of F is not 2, then the condition q(x)= 0 is superfluous.) We
say that q is geometrically regular if its base change to the algebraic closure of F is regular. Such forms
are called nondegenerate in [Elman et al. 2008, Definition 7.17]. A quadratic form q on a vector space of
dimension at least 2 is geometrically regular if and only if the quadric Q in P(V ) defined by the vanishing
of q is geometrically regular or, equivalently, smooth; see [Elman et al. 2008, Proposition 22.1].

The rank of a quadratic form q is the largest integer m such that there is a subspace W ⊂V of dimension
m such that the restriction of q to W is geometrically regular, i.e., such that the intersection of Q with the
linear space corresponding to W is smooth. The rank of a quadric in Pn is defined to be the rank of any
quadratic form defining it. If F has characteristic different from 2, then the rank of q is the same as the
rank of a symmetric matrix associated to Bq .
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If char(F)= 2, then the rank of q is not necessarily equal to the rank of (a matrix associated to) Bq ,
but the definition yields the lower bound rank(Bq)≤ rank(q). The possible discrepancy between these
two ranks is due to the fact that Bq(x, x)= q(2x)− 2q(x)= 0 for all x ∈ V . Thus a matrix associated to
Bq has zeros along the diagonal and so is skew-symmetric (and symmetric). Skew symmetric matrices
always have even rank, but quadratic forms can have odd rank (e.g., q = x2 has rank 1).

Over an algebraically closed field a quadratic form q has rank 2n if and only if there is a change
of coordinates such that q = x1x2 + x3x4 + · · · + x2n−1x2n , and rank(q) = 2n + 1 if and only if there
is a change of coordinates such that q = x2

0 + x1x2 + x3x4 + · · · + x2n−1x2n; see [Elman et al. 2008,
Propositions 7.29 and 7.31 and Example 7.34].1 It follows from this characterization that a quadric in
Pn of rank 1 with n ≥ 1 is not geometrically reduced and a quadric in Pn of rank 2 with n ≥ 2 is not
geometrically irreducible.

It also follows that, for a quadratic form q over an algebraically closed field, the rank is the smallest
integer r such that there exists a linear change of variables under which q becomes a quadratic form in
the variables x1, . . . , xr alone. This is the definition of rank used in [Heath-Brown 2018]. We will only
require the equivalence of these definitions over algebraically closed fields, but we note that they are
also equivalent if the field is not of characteristic 2 (by the well known fact that q can be diagonalized)
or if the field is perfect of characteristic 2 (as follows from [Elman et al. 2008, Proposition 7.31] using
that in this case c1x2

1 + · · ·+ cs x2
s = (c1/2

1 x1+ · · ·+ c1/2
s xs)

2). In general, the two notions differ as seen
by considering the rank 1 form x2

1 + t x2
2 = (x1+ t1/2x2)

2 over F2(t) for which there is no F2(t)-linear
change of variables writing it as a form in 1 variable.

Lemma 2.4. Suppose q and q̃ are quadratic forms of rank r(q) and r(q̃), respectively, over a field F.
Then r(q ⊥ q̃) = r(q)+ r(q̃) except when char(F) = 2 and r(q) and r(q̃) are both odd, in which case
r(q ⊥ q̃)= r(q)+ r(q̃)− 1.

Proof. For char(F) ̸= 2 see [Elman et al. 2008, Proposition 7.29]. For char(F) = 2 this follows from
[Elman et al. 2008, Proposition 7.31 and Remark 7.21] and the fact that an orthogonal direct sum of rank
1 forms has rank 1; see [Elman et al. 2008, Remark 7.24]. □

2C. Intersections of two quadrics with many irreducible components.

Lemma 2.5. Let X ⊂ P4 be a reduced complete intersection of two quadrics over an algebraically closed
field. If X is reducible, then X contains a 2-plane or an irreducible quadric surface. In addition:

(1) If X contains an irreducible quadric surface, then X is the union of two quadric surfaces (with one
possibly reducible) and X is contained in a rank 2 quadric.

(2) If X contains two distinct 2-planes P1, P2, then X is either the union of four distinct 2-planes or the
union of P1 and P2 with an irreducible quadric surface.

1This characterization shows that, in general, the rank of the symmetric bilinear form can only differ from the rank of the
quadratic form by 1, namely that rank(Bq )≤ rank(q)≤ rank(Bq )+ 1.
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Proof. The components of this proof can be found in [Colliot-Thélène et al. 1987a, Section 1] and
[Heath-Brown 2018, Proof of Lemma 3.2]. We repeat them here for the reader’s convenience.

The degrees of the irreducible components of X sum to 4, so we consider the partitions

3+ 1, 2+ 2, 2+ 1+ 1, 1+ 1+ 1+ 1.

In any of these cases, X contains a surface of degree 1 (i.e., a 2-plane) or a surface of degree 2 (i.e., a
quadric surface). To complete the proof, it remains to show that if X contains an irreducible quadric
surface, then X is contained in a rank 2 quadric, and in the case of the partition 2+ 1+ 1, the union of
the two planes is a quadric surface, i.e., is contained in a hyperplane.

Assume that X contains an irreducible quadric surface, given by the vanishing of a quadratic form
q and a linear form ℓ. The rank of q cannot be 1 because X is reduced and the rank of q cannot be 2
because the quadric surface is irreducible. So q must have rank at least 3. Then the quadratic forms
defining X must be of the form cq + ℓℓ′, for some constant c and some linear form ℓ′. There will be
some linear combination of these where c = 0, and so X is cut out by the ideal

⟨ℓℓ′, q + ℓℓ′′⟩ = ⟨ℓ, q⟩ · ⟨ℓ′, q + ℓℓ′′⟩,

for some linear forms ℓ′, ℓ′′. The first factor gives our original quadric surface, the residual factor will
give a (possibly reducible) quadric surface, and V (ℓℓ′) is a rank 2 quadric hypersurface containing X . □

Lemma 2.6. Let X ⊂ P4 be a complete intersection of two quadrics over an algebraically closed field. If
X is the union of 4 distinct planes, then X is a cone and X is contained in a quadric hypersurface of rank 2.
If , in addition, X has a unique cone point and there is cyclic subgroup of Aut(X) acting transitively on
the irreducible components of X , then, up to an automorphism of P4, X = V (x0x1, x2x3)⊂ P4.

Proof. After a change of coordinates, we may assume that one of the planes is V (x0, x1). If all pairs of
the planes meet in a line, then we may assume that one of the other planes is V (x0, x2). Thus, X must be
defined by x0ℓ= x0ℓ̃+ x1x2 = 0 for some linear forms ℓ, ℓ̃. Note that x0ℓ has rank 2. If x0, x1, x2, ℓ, ℓ̃

are linearly dependent, then X is a cone. If x0, x1, x2, ℓ, ℓ̃ are linearly independent, then, without loss of
generality, we may assume that ℓ= x3 and ℓ̃= x4, so

X = V (x0x3, x0x4+ x1x2)= V (x0, x1)∪ V (x0, x2)∪ V (x3, x0x4+ x1x2).

This is not a union of four planes, so we have a contradiction.
If any pair of the planes meet in a point (in which case any cone point would be unique), then we

may instead assume that one of the other planes is V (x2, x3). Under these assumptions X must be the
intersection of V (ai x0x2+ bi x0x3+ ci x1x2+ di x1x3) for i = 0, 1 and some ai , bi , ci , di . In particular, X
is a cone. In addition, if (a0, d0), (a1, d1) are linearly independent, then one of the defining equations can
be taken to be a rank 2 quadric divisible by xi , and similarly if (b0, c0), (b1, c1) are linearly independent.
Thus, it remains to consider the case that X = V (ax0x2+ dx1x3, bx0x3+ cx1x2), with abcd ̸= 0. Then

bc(ax0x2+ dx1x3)+
√

abcd(bx0x3+ cx1x2)= (
√

abx0+
√

bcdx1)(
√

acx2+
√

bcdx3),

and so X is contained in a rank 2 quadric.
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It remains to show that if X has a unique cone point and admits a transitive cyclic action on its
irreducible components, then, up to an automorphism of P4, X = V (x0x1, x2x3)⊂ P4. Without loss of
generality, we may assume the cone point is [0 : 0 : 0 : 0 : 1], and so X is a cone over an intersection of
quadrics in P3, which is a curve Z of arithmetic genus 1. Since by assumption X is a union of 4 planes,
Z must be the union of 4 lines. Furthermore, since X has a unique cone point, the four lines of Z cannot
all meet. This combined with the transitive Z/4Z-action then implies that any triple of the lines cannot
meet. By enumerating the possible intersection configurations, one can check that the only arrangement
of lines with a transitive Z/4Z-action, with no triple meeting, and whose union is a curve of genus 1 is a
4-gon, i.e., a cycle of rational curves, where each curve meets exactly two of the others. After a change
of coordinates, we may assume that the intersections are

P1∩P2=V (x0, x1, x2), P2∩P3=V (x0, x1, x3), P3∩P4=V (x0, x2, x3), P4∩P1=V (x1, x2, x3),

so

X = V (x0x2, x1x3). □

Corollary 2.7. Let X ⊂ P4
k be a geometrically reduced complete intersection of two quadrics over a

field k. If X is nonsplit, then X is contained in a rank 2 quadric.

Proof. Assume X is nonsplit. Since X is geometrically reduced and nonsplit, it must be geometrically
reducible, and so reducible over a separable closure. Thus the absolute Galois group of k acts on the
geometric components. Since X is nonsplit, none of the components are fixed by Galois, and so, by
Lemma 2.5, X is geometrically either the union of two irreducible quadric surfaces or the union of four
planes. In the first case, Lemma 2.5(1) gives the result, and in the second Lemma 2.6 does. □

2D. Semistable models. Following work of Kollár [1997] in the case of hypersurfaces, Tian [2017,
Section 2.1] has defined a notion of semistability for intersections of two quadrics over discrete valuation
rings. This notion of semistability allows one to find a model of X whose special fiber is fairly well
controlled.

Before stating our results, we first review some of the definitions from Tian’s semistability machinery.
Suppose k is a nonarchimedean local field with ring of integers O and residue field F. We will use π to
denote a uniformizer. Let X⊂ P4

O be an intersection of two quadrics. Given X, we can associate a 2× 15
matrix A such that each row is the coefficient vector of the corresponding defining equation for X. Note
that changing the defining equations corresponds to multiplying A on the left by an element of GL2(O).
Thus, up to this GL2-action, we have a well-defined matrix AX.

Given an nonnegative integer weight vector w ∈ N5, we define the change of coordinates fw : P4
O→

P4
O, xi 7→ πwi xi . Then we define the multiplicity of X with respect to w to be

multw(X) :=min{v(m) : m is a 2× 2 minor of A f ∗wX},
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where v denotes the valuation on O. Then X is said to be semistable if for all weight vectors w and all
automorphisms g ∈ Aut(P4

O)= PGL5(O), we have

multw(g(X))≤ 4
5

( 4∑
i=0

wi

)
.

By [Tian 2017, Theorem 2.7], any smooth intersection of two quadrics X ⊂ P4
k has a semistable integral

model. For more details, see [Tian 2017, Section 2.1 and 2.4].
We will also make use of the following results from [Tian 2017].

Lemma 2.8. Let k be a nonarchimedean local field, let O denote the valuation ring of k, let F denote the
residue field of k, and let X ⊂ P4

k be a smooth complete intersection of two quadrics. Let X⊂ P4
O be a

semistable model of X (which exists by [Tian 2017, Theorem 2.7]). Then:

(1) [Tian 2017, Lemma 2.9] The special fiber of X is a complete intersection of two quadrics.

(2) [Tian 2017, Lemma 2.22(1)] The special fiber is not contained in a reducible quadric hypersurface
defined over F.

(3) [Tian 2017, Lemma 2.22(2)] The special fiber does not contain a plane defined over F.

(4) [Tian 2017, Lemma 2.22(4)] The special fiber is reduced.

Remark 2.9. In [Tian 2017, Sections 2.2–2.4], Tian works over local function fields, but as noted in
[Tian 2017, beginning of Section 2.2], the proofs go through essentially verbatim for any nonarchimedean
local field. In [Tian 2017, Section 2.4] (in which [Tian 2017, Lemma 2.22] is stated and proved), Tian
adds the hypothesis that the residue field has odd characteristic, and so freely interchanges smooth and
nonsingular. However, no assumption on the residue characteristic is needed for the proofs of [Tian 2017,
Lemma 2.22(1), (2), and (4)]. For the sake of completeness, we repeat Tian’s proof of Lemma 2.8(2)–(4).

Proof. If the special fiber is contained in a reducible quadric hypersurface defined over F, then, after
possibly changing variables, one of the quadrics defining X must be of the form x0x1+π q̃ , in which case
mult(1,0,0,0,0)(X)≥1. However, since X is assumed to be semistable we must have mult(1,0,0,0,0)(X)≤ 4·(1)

5 ,
resulting in a contradiction. This proves (2). Similarly, if the special fiber contains a linear subspace of
dimension 2 defined over F, which we may assume is V (x0, x1), then mult(1,1,0,0,0)(X) ≥ 2. However,
the semistability hypothesis implies that mult(1,1,0,0,0)(X)≤ 4·(1+1)

5 =
8
5 , giving a contradiction. Thus, we

conclude (3).
Now we prove (4). By [Tian 2017, Lemma 2.9], the special fiber is a complete intersection, so the

special fiber is reduced if and only if all geometric irreducible components are reduced. Assume that the
special fiber has a nonreduced geometric irreducible component. Since the special fiber has degree 4 and
contains no plane defined over F, the only possibilities are:

(a) A quadric surface of multiplicity 2.

(b) A union of two conjugate planes, each with multiplicity 2.
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Note that in case (b), the two planes must meet in a line, as otherwise a general hyperplane section would
be the union of two skew double lines, which is not possible. Thus, case (b) is subsumed by case (a), and
so the reduced special fiber is given by the vanishing of a linear form ℓ and a quadratic form q. Hence,
the special fiber is defined by quadratic forms of the form ℓℓ1, ℓℓ2+q for some linear forms ℓ1, ℓ2, which
contradicts (2). □

Proposition 2.10. Let k be a nonarchimedean local field, let O denote the valuation ring of k, let F denote
the residue field of k, and let X ⊂ P4

k be smooth complete intersection of two quadrics. Let X⊂ P4
O be a

semistable model of X (which exists by [Tian 2017, Theorem 2.7]). Assume that the special fiber of X/O
is geometrically the union of four 2-planes and that the Galois group acts transitively on the four 2-planes.
Then, for any choice of uniformizer π , X must be given by the vanishing of quadratic forms of the shape

q(x0, . . . , x3)+πm x4ℓ(x0, . . . , x3) and q̃(x0, . . . , x3)+πx2
4 +πnx4ℓ̃(x0, . . . , x3), (2-1)

(with m, n positive integers, and q, q̃ quadratic forms such that every F-linear combination of q and q̃
modulo π has rank at least 2); or

g(x0, x1, x2)+πh(x3, x4)+πax3ℓ3(x0, x1, x2)+πbx4ℓ4(x0, x1, x2), and

g̃(x0, x1, x2)+π h̃(x3, x4)+π cx3ℓ̃3(x0, x1, x2)+πd x4ℓ̃4(x0, x1, x2),
(2-2)

(with a, b, c, d positive integers, ℓi , ℓ̃i linear forms and g, g̃, h, h̃ quadratic forms such that every F-linear
combination of g and g̃ modulo π has rank at least 2 and every F-linear combination of h and h̃ modulo
π has rank at least 1).

Proof. By Lemma 2.6, the special fiber must be isomorphic (over F) to V (x0x1, x2x3) or a cone over a
complete intersection of two quadrics in P2 (i.e., a complete intersection of two conics).

Let us first assume that the special fiber is geometrically isomorphic to V (x0x1, x2x3). Note that this
variety has a unique singular point, the cone point, so it must be defined over F. After a change of
coordinates, we may assume the cone point reduces to V (x0, x1, x2, x3) and hence X is given by

q(x0, . . . , x3)+πm x4ℓ(x0, . . . , x4) and q̃(x0, . . . , x3)+πnx4ℓ̃(x0, . . . , x4),

for some integers m, n ≥ 1, quadratic forms q, q̃ and linear forms ℓ, ℓ̃ that are nonzero modulo π . We
will first use the semistability of X for the weight vector w := (1, 1, 1, 1, 0) to show that one of πmℓ or
πn ℓ̃ must evaluate to a uniformizer at [0 : 0 : 0 : 0 : 1]. Note that A f ∗wX has the following form(

π2coefs(q) πm+1ℓ0 πm+1ℓ1 πm+1ℓ2 πm+1ℓ3 πmℓ4

π2coefs(q̃) πn+1ℓ̃0 πn+1ℓ̃1 πn+1ℓ̃2 πn+1ℓ̃3 πn ℓ̃4

)
,

where ℓ =
∑

i ℓi xi , ℓ̃ =
∑

i ℓ̃i xi and coefs(q), coefs(q̃) denote the coefficient vectors of q, q̃ respec-
tively. Hence, using the strong triangle equality and the definition of multiplicity, one can compute that
multw(X) ≥ min(4, 2+m + v(ℓ4), 2+ n+ v(ℓ̃4)). However, the semistability assumption implies that
multw(X)≤ 4·(1+1+1+1)

5 =
16
5 , and so min(m+ v(ℓ4), n+ v(ℓ̃4))= 1. Thus, after renaming q, q̃ and ℓ, ℓ̃
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and possibly scaling the equations, we may assume the equations are of the form

q(x0, . . . , x3)+πm x4ℓ(x0, . . . , x3) and q̃(x0, . . . , x3)+πnx4ℓ̃(x0, . . . , x3)+πx2
4 .

To see that every F-linear combination of q and q̃ modulo π is rank at least 2, recall that the variety
defined by q and q̃ modulo π is geometrically isomorphic to V (x0x1, x2x3) and note that ax0x1+ bx2x3

has rank 4 for all a, b ̸= 0.
Now assume that the special fiber is a cone over a complete intersection of two quadrics in P2. Then,

up to a change of variables, X must be given by quadratic forms of the shape

g(x0, x1, x2)+πmh(x3, x4)+πax3ℓ3(x0, x1, x2)+πbx4ℓ4(x0, x1, x2) and

g̃(x0, x1, x2)+π m̃ h̃(x3, x4)+π cx3ℓ̃3(x0, x1, x2)+πd x4ℓ̃4(x0, x1, x2),

where a, b, c, d, m, m̃ are positive integers, g, g̃, h, h̃ are quadratic forms, and ℓi , ℓ̃i are linear forms.
Since, by assumption, the special fiber is reduced, the complete intersection in P2

F
defined by the vanishing

of g and g̃ modulo π must also be reduced. This complete intersection is therefore, geometrically, a set
of 4 noncolinear points in P2

F
. These points are not contained in any quadric of rank 1 so every F-linear

combination of g and g̃ modulo π has rank at least 2.
To complete the proof, we need to show that m = m̃ = 1 and that h, h̃ are linearly independent

modulo π . We will again use our semistability hypothesis. Consider the weight vector w= (1, 1, 1, 0, 0).
One can compute that multw(X) is at least min{4, m + m̃, 2+m, 2+ m̃} and, in addition, if h and h̃
are linearly dependent modulo π , then multw(X) ≥ min{4, m + m̃ + 1, 2+m, 2+ m̃}. However, the
semistability assumption implies that multw(X)≤ 4·(1+1+1)

5 =
12
5 . Thus, we must have that h and h̃ are

linearly independent modulo π , and m+ m̃ = 2, which implies that m = m̃ = 1. □

2E. Proof of Theorem 2.1. If k is archimedean, then [k̄ : k] ≤ 2 so the result is immediate. Henceforth
we assume that k is nonarchimedean, and we write O for the valuation ring of k and F for the residue
field of k. By [Tian 2017, Theorem 2.7], there is a linear change of coordinates on P4

k such that the
resulting integral model X⊂ P4

O of X is semistable. In particular, by Lemma 2.8, the special fiber of X is
a reduced complete intersection of quadrics.

If the special fiber of X is split, then the desired result follows from Proposition 2.3. If the special fiber
of X is not split, but becomes split over the quadratic extension of F, then we may apply Proposition 2.3
over k ′, the unique quadratic unramified extension of k, and conclude that X (k ′) ̸=∅.

Thus, we have reduced to the case that the special fiber X◦ of X is nonsplit and remains nonsplit over the
unique quadratic extension F′/F. Since F is perfect and X◦ is reduced, X◦ must be geometrically reduced.
Therefore X◦ must be geometrically reducible and Gal(F/F′) must act nontrivially on the components. By
Lemma 2.5, this is possible only if X◦

F
is the union of four 2-planes. Furthermore, the current assumptions

imply that Gal(F/F) must act transitively on the four 2-planes. Thus, by Proposition 2.10, we may assume
that X is given by quadrics as in (2-1) or (2-2).
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Consider a ramified quadratic extension k ′/k and let ϖ be a uniformizer of k ′. First assume that X is
given by equations of the form (2-1). Over k ′ we may absorb a ϖ into x4 and obtain the model X′/O′

(where O′ is the valuation ring of k ′):

q(x0, . . . , x3)+urϖ 2r−1x4ℓ(x0, . . . , x3) and q̃(x0, . . . , x3)+unϖ 2n−1x4ℓ̃(x0, . . . , x3)+ux2
4 , (2-3)

where u is the unit such that uϖ 2
= π . Every F-linear combination of the forms in (2-3) modulo ϖ is an

orthogonal sum of an F-linear combination of q and q̃ modulo ϖ (which has rank at least 2 by (2-1))
with a quadratic form of rank 1. It follows from Lemma 2.4 that every F-linear combination of the forms
in (2-3) modulo ϖ has rank at least 3. Thus, by Corollary 2.7, the special fiber of X′ is split, so, by
Proposition 2.3, X′ has a k ′-point.

Now assume that X is given by equations of the form (2-2). Then, we may absorb a ϖ into x3 and x4

and obtain the model X′/O given by

g(x0, x1, x2)+ uh(x3, x4)+ uaϖ 2a−1x3ℓ3(x0, x1, x2)+ ubϖ 2b−1x4ℓ4(x0, x1, x2) and

g̃(x0, x1, x2)+ uh̃(x3, x4)+ ucϖ 2c−1x3ℓ̃3(x0, x1, x2)+ udϖ 2d−1x4ℓ̃4(x0, x1, x2),
(2-4)

where u is the unit such that uϖ 2
= π . Then every F-linear combination of the forms in (2-4) modulo ϖ

is an orthogonal direct sum of an F-linear combination of g and g̃ modulo ϖ (which is a form of rank 2
or 3) with an F-linear combination of h and h̃ modulo ϖ (which is a form of rank 1 or 2). Thus, by
Lemma 2.4, every F-linear combination of the forms in (2-4) modulo ϖ has rank at least 3. Hence, by
Corollary 2.7, the special fiber of X′ is split, and so X has a k ′-point, by Proposition 2.3. □

2F. Alternate proof in characteristic 2. The following is a slight generalization of [Dolgachev and
Duncan 2018, Theorem 4.4].

Proposition 2.11. Suppose k is a field of characteristic 2 and X ⊂ P4
k is smooth complete intersection of

two quadrics. Then X (k1/2) ̸=∅. In particular, if k is a local or global field of characteristic 2, then X
contains a point defined over the quadratic extension k1/2 of k.

Proof. By [Dolgachev and Duncan 2018, Theorem 1.1], X can be defined by the vanishing of quadratic
forms of the form

a0x2
0 + a1x2

1 + a2x2
2 + x3ℓ1+ x4ℓ2 and b0x2

0 + b1x2
1 + b2x2

2 + x3ℓ3+ x4ℓ4

where ai , bi ∈ k and ℓi ∈ k[x0, . . . , x4] are linear forms. In particular, the intersection of X with
the plane V (x3, x4) is an intersection of two conics in P2 neither of which is geometrically reduced.
The reduced subschemes of the base changes of these conics to the algebraic closure are the lines
V (a1/2

0 x0 + a1/2
1 x1 + a1/2

2 x2) and V (b1/2
0 x0 + b1/2

1 x1 + b1/2
2 x2), which are defined over k1/2. Their

intersection yields a k1/2-point on X .
It remains to show that [k1/2

: k] = 2 when k is a local or global field of characteristic 2. If k is
local, then k = F((t)) with F a finite field of characteristic 2 and k1/2

= F((t1/2)) which is clearly an
extension of degree 2. Similarly, if k = F(t) is a global function field of genus 0 and characteristic 2, then
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k1/2
= F(t1/2) is clearly a degree 2 extension. For a general global field k of characteristic 2, which is

necessarily a finite extension of k0 = F(t) with F finite characteristic 2, we may reduce to the genus 0 case
as follows; see [Becker and MacLane 1940, Theorem 3]. Frobenius gives an isomorphism F : k1/2

→ k
which restricts to an isomorphism k1/2

0 → k0, and so [k1/2
: k1/2

0 ] = [k : k0]. Since k and k1/2
0 are both

intermediate fields of the extension k0 ⊂ k1/2 we have

[k1/2
: k][k : k0] = [k1/2

: k1/2
0 ][k

1/2
0 : k0].

Taken together these observations show that [k1/2
: k] = [k1/2

0 : k0]. □

3. Brauer–Manin obstructions over extensions

In this section, we prove some general results relating the Brauer–Manin obstruction on a nice variety
Y to the Brauer–Manin obstruction over an extension. Moreover, for quadratic extensions, we relate
the Brauer–Manin obstruction on (a desingularization of) the symmetric square to the Brauer–Manin
obstruction over quadratic extensions.

Lemma 3.1. Let Y/k be a nice variety over a global field k, let K/k be a finite extension, and let B be a
subset of Br(YK ). Then Y (Ak)

CorK/k(B)
⊂ YK (AK )B . In particular,

(1) if Y (Ak)
Br
̸=∅, then YK (AK )Br

̸=∅, and

(2) for any d | [K : k], Y (Ak)⊂ YK (AK )ResK/k Br(Y )[d].

Proof. By [Colliot-Thélène and Skorobogatov 2021, Proposition 3.8.1], for any α ∈ Br(YK ) and for any
local point Pv ∈ Y (kv), we have (CorYK /Y (α))(Pv)= CorKv/kv

(α(Pv)), where Kv = K ⊗k kv. Thus, for
(Pv) ∈ Y (Ak),∑

v∈�k

invv(CorYK /Y (α)(Pv))=
∑
v∈�k

invv(CorKv/kv
(α(Pv)))=

∑
v∈�k

∑
w∈�K ,w | v

invw(α(Pv))

(where the last equality follows from the equality of maps invw= invv ◦CorKw/kv
for any prime w | v), and

so Y (Ak)
CorK/k(α)

⊂ Y (AK )α. The general statement follows by considering the intersection of Y (AK )α

for all α ∈ B.
It remains to prove statements (1) and (2). The first follows from taking B =Br(YK ) and observing that

Y (Ak)
Br(Y )
⊂ Y (Ak)

CorK/k(Br(YK )), and the second follows from taking B = ResK/k Br(Y )[d] and using
that CorK/k ◦ResK/k = [K : k]. □

Remark 3.2. Yang Cao has given an alternative proof of Lemma 3.1(1) which also yields a similar
statement for the étale-Brauer obstruction. This will appear in forthcoming work of Yang Cao and Yongqi
Liang [2022].

The following lemma and corollary extend techniques of Kanevsky [1987] in the case of cubic surfaces.
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Lemma 3.3. Let Y be a nice variety over a field k such that H3(k, Gm)= 0. Assume that

(1) Pic(Y ) is finitely generated and torsion free,

(2) Br(Y ) is finite, and

(3) Br(Y )→ Br(Y )Gk is surjective.

Then there is a finite Galois extension k1/k such that for all extensions K/k linearly disjoint from k1 the
map ResK/k : Br(Y )/ Br0(Y )→ Br(YK )/ Br0(YK ) is surjective.

Proof. The assumption H3(k, Gm)= 0 implies that the injective map Br1(Y )/ Br0(Y )→ H1(k, Pic(Y ))

coming from the Hochschild–Serre spectral sequence [Colliot-Thélène and Skorobogatov 2021, Propo-
sition 4.3.2] is an isomorphism. Assumption (1) implies that H1(k, Pic(Y )) ≃ H1(k0/k, Pic(Y )) for
some finite Galois extension k0/k. By assumption (2), there is a finite Galois extension k1/k0 such
that Resk̄/k1

: Br(Yk1)→ Br(Y ) is surjective. Now suppose K/k is linearly disjoint from k1. In partic-
ular, K is linearly disjoint from k0, so ResK/k : Br1(Y )/ Br0(Y ) ≃ H1(k, Pic(Y ))→ H1(K , Pic(Y )) ≃

Br1(YK )/ Br0(YK ) is an isomorphism. So it will suffice to show that Br(Y ) and Br(YK ) have the same
image in Br(Y ). Since Br(Yk1) → Br(Y ) is surjective, the image of Br(YK ) → Br(Y ) is contained
in Br(Y )G K ∩ Br(Y )Gk1 , which is equal to Br(Y )Gk , since k1 and K are linearly disjoint. Thus, by
assumption (3), Br(Y ) and Br(YK ) have the same image in Br(Y ). □

Corollary 3.4. If Y is a nice variety over a global field k such that Y (Ak) ̸= ∅ and Br(Y )/ Br0(Y ) is
generated by the image of Br(Y )[d], then for any extension K/k of degree d , YK (AK )ResK/k(Br(Y ))

̸= ∅.
Moreover, if Y satisfies the conditions of Lemma 3.3, then there is a finite extension k1/k such that for any
degree d extension K/k which is linearly disjoint from k1 we have YK (AK )Br

̸=∅. □

Proof. For a global field k we have H3(k, Gm) = 0. So the corollary follows immediately from Lem-
mas 3.1(2) and 3.3. □

Remark 3.5. If Y ⊂ P4
k is smooth complete intersection of two quadrics over a global field k of

characteristic not equal to 2 and Y is everywhere locally solvable, then the corollary applies with
d = 2. This gives a proof of the n = 4 case of Theorem 1.2(5) under the additional hypothesis of local
solubility. Note that local solubility is used here in two distinct ways. First it ensures that Br(Y )/ Br0(Y )

is generated by the image of Br(Y )[2] (which is not the case in general even though Br(Y )/ Br0(Y ) is
2-torsion) [Várilly-Alvarado and Viray 2014, Theorem 3.4]. Second, it implies that the canonical maps
Br(k)→Br0(Y ) are isomorphisms, locally and globally. This is used implicitly in the proof of Lemma 3.1.
In general, Br(k)→ Br0(Y ) need not be injective (see Lemma 5.9 for a description of the kernel when Y
is a del Pezzo surface of degree 4) and so ResK/k does not necessarily annihilate [K : k]-torsion elements
of Br0(Y ). Consequently, the exact sequence

0→ Br(k)→
⊕

Br(kv)→Q/Z→ 0

of global class field theory has no analogue for Br0(Y ).
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The following proposition relates the Brauer–Manin obstruction over quadratic extensions to the
Brauer–Manin obstruction on the symmetric square. Note that while the symmetric square Sym2(Y )

is singular if Y has dimension at least 2, there exists a smooth projective model Y (2) over any field of
characteristic different from 2 (see the proof of part (1) of the proposition for details).

Proposition 3.6. Let k be a field of characteristic different from 2, let Y/k be a nice variety of dimension
at least 2 with torsion free geometric Picard group, and let Y (2) be a smooth projective model of the
symmetric square of Y over k:

(1) The rational map Y 2
→ Sym2(Y ) 99K Y (2) induces a corestriction map

CorY 2/Y (2) : Br(Y 2)→ Br(Y (2))

on the Brauer groups of the varieties. Furthermore, if π1 denotes projection onto the first factor of
Y 2
= Y × Y , then the composition CorY 2/Y (2) ◦π∗1 : Br(Y )→ Br(Y (2)) induces an injective map

φ :
Br1(Y )

Br0(Y )
↪→

Br1(Y (2))

Br0(Y (2))
.

(2) Let α ∈ Br(Y ) and let β = CorY 2/Y (2) ◦π∗1 (α) ∈ Br(Y (2)). There exists a dense open U ⊂ Y (2) such
that for any y ∈ U , y corresponds to a quadratic point ỹ : Spec(K )→ Y for some degree 2 étale
k(y)-algebra K and we have β(y)= CorK/k(y)(α(ỹ)).

(3) Suppose k is a global field, Br(Y )/ Br0(Y ) is finite and let B ⊂ Br(Y (2))/ Br0(Y (2)) denote the image
of CorY 2/Y (2) ◦π∗1 modulo constant algebras. If there exists a quadratic extension K/k such that
YK (AK )ResK/k(Br(Y ))

̸=∅, then Y (2)(Ak)
B
̸=∅.

(4) Let B ⊂ Br(Y (2))/ Br0(Y (2)) denote the image of CorY 2/Y (2) ◦π∗1 modulo constant algebras. Suppose
that k is a global field, that Y (2)(Ak)

B
̸=∅, and that Y satisfies the hypotheses of Lemma 3.3. Then

there exists a finite set S⊂�k , degree 2 étale kv-algebras Kw/kv for v ∈ S and a finite extension k1/k
such that for any quadratic extension K/k that is linearly disjoint from k1 and such that K⊗kv ≃ Kw

for v ∈ S we have YK (AK )Br
̸=∅. In particular, there are infinitely many quadratic extensions K/k

such that YK (AK )Br
̸=∅.

Proof. (1) Let 1 = {(y, y) : y ∈ Y } ⊂ Y 2 denote the diagonal subscheme and let Bl1 Y 2 denote the
blow-up of Y along 1. Observe that the S2-action on Y 2 extends to an action on Bl1 Y 2 whose fixed
locus is the exceptional divisor E1; we claim that the quotient (Bl1 Y 2)/S2 is smooth (equivalently
geometrically regular). Since Bl1 Y 2 is smooth, the quotient (Bl1 Y 2)/S2 is automatically smooth away
from the branch locus. Let y ∈ E1. Since E1 is a divisor, the involution acts as a pseudoreflection on the
geometric tangent space of y. Since the order of the group acting is not divisible by the characteristic
of k, the Chevalley–Shephard–Todd theorem (see, e.g., [Smith 1985]) implies that the dimensions of the
geometric tangent spaces of y and its image in the quotient are equal. Hence the quotient is smooth at the
image of y.
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Consider the following commutative diagram:

Bl1 Y 2 //

��

(Bl1 Y 2)/S2

��

Y 2 // Sym2 Y

The left vertical map is birational by definition, and since Y 2
→ Sym2 Y is generically degree 2, the right

vertical map is also birational. The top horizontal map is flat of degree 2 [Stacks 2005–, Tag 00R4], so we
have a corestriction morphism Br(Bl1 Y 2)→ Br((Bl1 Y 2)/S2) that extends to the corestriction map on
function fields [Colliot-Thélène and Skorobogatov 2021, Section 3.8]. Since the Brauer group of smooth
projective varieties is a birational invariant (and pullback along any birational map gives an isomorphism)
[Colliot-Thélène and Skorobogatov 2021, Corollary 6.2.11], this yields the first claim.

It remains to prove injectivity of the induced map φ on the quotient Br1(Y )/ Br0(Y ). Since k(Y 2) is
Galois over k(Y (2)) with Galois group generated by the involution σ interchanging the factors of Y ×Y ,
by [Gille and Szamuely 2006, Chapter 3, Exercise 3], the composition

Resk(Y 2)/k(Y (2)) ◦Cork(Y 2)/k(Y (2)) : Br(k(Y 2))→ Br(k(Y 2))

is given by x 7→ x + σ(x). We may then deduce that the same formula holds for the composition
ResY 2/Y (2) ◦CorY 2/Y (2) : Br(Y 2) → Br(Y 2) by evaluating at generic points [Colliot-Thélène and Sko-
robogatov 2021, Theorem 3.5.4]. Therefore, the composition Res ◦Cor ◦π∗1 is equal to the diagonal map
Br(Y )→ Br(Y )⊕Br(Y )→ Br(Y 2) sending α to π∗1 α+ σ(π∗1 α)= π∗1 α+π∗2 α.

If Pic(Y ) is torsion free, then Pic(Y ) ⊕ Pic(Y ) ≃ Pic(Y
2
); see [Skorobogatov and Zarhin 2014,

Proposition 1.7]. So the diagonal map together with the Hochschild–Serre spectral sequence gives a
commutative diagram:

H1(k, Pic(Y )) // H1(k, Pic(Y ))⊕2 H1(k, Pic(Y
2
))

Br1(Y )/ Br0(Y )
?�

OO

// (Br1(Y )/ Br0(Y ))⊕2
?�

OO

// Br1(Y 2)/ Br0(Y 2)
?�

OO

As the composition along the top row is injective, the same must be true of the composition along the
bottom row. This composition is induced by Res ◦Cor ◦π∗1 and it factors through the map φ in the last
statement of (1), so φ must also be injective.

(2) Since Y (2) is birational to Sym2 Y , there is an open set U ⊂ Y (2) that is isomorphic to an open set of
the regular locus of Sym2 Y , i.e., the image of Y 2

−1. For y ∈U , we obtain ỹ by taking the preimage of
y under Y 2

→ Sym2 Y 99K Y (2). The points y and ỹ fit into a commutative diagram displayed on the left

https://stacks.math.columbia.edu/tag/00R4
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below. This induces the diagram displayed on the right. Commutativity of the latter gives the result:

Spec(k(y))
y
// Y (2) Br(k(y)) Br(Y (2))

y∗
oo

f −1(y)

OO

// Y × Y

f

OO

π1

��

⇒ Br( f −1(y))

Cor

OO

Br(Y × Y )

Cor

OO

oo

Spec(K )
ỹ

// Y Br(K ) Br(Y )

π∗1

OO

ỹ∗
oo

(3) Suppose that K/k is a quadratic extension, YK (AK )ResK/k(Br(Y ))
̸=∅ and that β=CorY 2/Y (2)(π∗1 (α))∈

Br(Y (2)) represents a class in B that is the image of α ∈ Br(Y ). Since Br(Y )/ Br0(Y ) is finite,
YK (AK )ResK/k(Br(Y )) is an open subset of YK (AK ) in the adelic topology which we have assumed is
nonempty. So for any v ∈�k the image of the projection map YK (AK )ResK/k(Br(Y ))

→
∏

w | v YK (Kw)=

Y (K ⊗ kv) is a nonempty open subset and therefore contains a quadratic point ỹv : Spec(K ⊗ kv)→ Y
corresponding to a point yv ∈U (kv), where U is the open set from (2). For the case that v does not split
in K we are using the fact that Y (Kw) ̸= Y (kv) since kv is a local field; see, e.g., [Liu and Lorenzini
2018, Proposition 8.3]. By (2) we have∑

v∈�k

invv β(yv)=
∑
v∈�k

invv CorK⊗kv/kv
(α(ỹv))= 0.

So the adelic point y = (yv) ∈ Y (2)(Ak) is orthogonal to β.

(4) Suppose Y (2)(Ak)
B
̸= ∅. The hypothesis in Lemma 3.3 implies that Br(Y )/ Br0(Y ) and, hence,

B is finite. Thus, Y (2)(Ak)
B is open and, arguing as in (3), we see that, for each v ∈ �k , its image

in Y (kv) contains a point yv ∈ U (kv) corresponding to a quadratic point ỹv : Spec(Kv)→ Y , where
Kv is an étale kv-algebra of degree 2. Moreover, by (2) if α ∈ Br(Y ) and β = CorY 2/Y (2)(π∗1 (α)), then
β(yv)=CorKv/kv

(α(ỹv)). By assumption
∑

v∈�k
invv β(yv)= 0, so (ỹv)v∈�k is an effective adelic 0-cycle

of degree 2 on Y which is orthogonal to the Brauer group of Y . Under the additional hypotheses of (4),
Br(Y )/ Br0(Y ) is finite and, by Lemma 3.3, there is an extension k1/k such that for K/k linearly disjoint
from k1, ResK/k : Br(Y )→ Br(YK )/ Br0(YK ) is surjective. Moreover, for any set α1, . . . , αn ∈ Br(Y ) of
representatives for Br(Y )/ Br0(Y ), there is a finite set S ⊂�k such that for all i = 1, . . . , n and all v ̸∈ S
the evaluation maps invv ◦αi : Y (kv)→Q/Z are constant; see [Colliot-Thélène and Skorobogatov 2013,
Lemma 1.2 and Theorem 3.1]. In particular Y (kv) ̸= ∅ for v ̸∈ S. Let K/k be a quadratic extension
linearly disjoint from k1 and such that K ⊗ kv ≃ Kw for v ∈ S. By weak approximation on k× the map
k×/k×2

→
∏

v∈S′ k
×
v /k×2

v is surjective for any finite set of primes S′ ⊂�k , so such extensions K/k do
in fact exist. Any adelic point (xw)w∈�K ∈ YK (AK ) such that ỹv =

∑
w | v xw for v ∈ S will be orthogonal

to Br(YK ). □
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4. Pencils of quadrics in P4 and associated objects

Let Q ⊂ P4
× P1 be a pencil of quadrics, i.e., the zero locus of a bihomogeneous polynomial Q of

degree (2, 1), defined over a field k of characteristic different from 2. If the projection map Q→ P1

is generically smooth, then we may naturally associate three objects. First, we may consider the base
locus X = XQ ⊂ P4 of the pencil of quadrics, i.e., ∩t∈P1Qt , where Qt ⊂ P4 denotes the fiber over t ∈ P1.
This is a degree 4 projective surface. Second, we may consider the subscheme S⊂ P1 parametrizing the
singular quadrics in the pencil. If Q is any degree (2, 1) form defining Q, then S is given by the vanishing
of det(MQ), where MQ denotes the symmetric matrix corresponding to Q considered as a quadratic form
whose coefficients are linear polynomials in the homogeneous coordinate ring of P1. Since Q→ P1 is
generically smooth, S⊂ P1 is a degree 5 subscheme. Third, we may consider the fourfold G = GQ→ P1

that parametrizes lines on quadrics in the pencil; the generic fiber of G is a Severi–Brauer variety with
index dividing 4 and order dividing 2 [Elman et al. 2008, Example 85.4].

Remark 4.1. Over a field of characteristic 2, det(MQ) is identically 0 since MQ is a 5x5 skew-symmetric
matrix, and so the correspondences between these objects already fails. Due to this, the assumption that k
has characteristic different from 2 will remain in force for the remainder of the paper.

Each of these objects has been well-studied, and their conditions for smoothness are known to be
closely related.

Proposition 4.2. Let Q⊂ P4
×P1 be a pencil of quadrics over a field of characteristic different from 2.

Then the following are equivalent:

(1) The base locus X is smooth and purely of dimension 2, in which case X is a del Pezzo surface of
degree 4.

(2) The degree 5 subscheme S⊂ P1 is reduced.

(3) For every s ∈ S, the fiber Qs is rank 4 and the vertex of Qs does not lie on any other quadric in the
pencil.

(4) The fourfold G is smooth, the map G → P1 is smooth away from S, and above S the fibers are
geometrically reducible.

Proof. The equivalence of conditions (1), (2), and (3) is given by [Reid 1972, Proposition 2.1]. The
equivalence of (4) with any (equivalently all) of the others is given by [Reid 1972, Theoerem 1.10]. □

Definition 4.3. A pencil of quadrics Q over a field of characteristic different from 2 satisfies (†) if
any of the equivalent conditions in Proposition 4.2 hold. Given a pencil Q satisfying (†), we define
εS ∈ k(S)/k(S)×2 to be the discriminant of a smooth hyperplane section of QS; note that the square class
of the discriminant does not depend on the choice of hyperplane, nor on the choice of a defining equation
for QS.

Given a pencil of quadrics satisfying (†), there are even stronger connections among these three objects.
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Proposition 4.4. Let Q be a pencil of quadrics satisfying (†). Let X = XQ,G = GQ, and (S, εS) =

(SQ, εSQ):

(1) The variety G is birational to the symmetric square Sym2(X) of X. Moreover, G(k) ̸=∅ if and only
if X (K ) ̸=∅ for some quadratic extension K/k.

(2) The residues of the Brauer class [Gk(P1)] ∈ Br k(P1) are

εS ∈ k(S)×/k(S)×2
≃ H1(k(S), 1

2 Z/Z
)
⊂

⊕
t∈(P1)(1)

H1(k(t), Q/Z).

In particular, Normk(S)/k(εS) ∈ k×2.

(3) Given a pair (S′, εS′) where S′⊂P1 is a reduced degree 5 subscheme and a class εS′ ∈ k(S′)×/k(S′)×2

of square norm, there exists a unique (up to isomorphism) pencil of quadrics Q such that (S′, εS′)=

(SQ, εSQ). Thus, for any t ∈ P1
− S, [Gt ] ∈ Br(k(t)) is determined by (S, εS).

Remark 4.5. The second statement of Part (2) provides an alternate proof of a proposition by Wittenberg
[2007, Proposition 3.39].

Proof. (1) Consider a point (x, x ′) ∈ X × X −1, where 1 denotes the diagonal image of X , and let
ℓ{x,x ′} be the line joining them. For generic (x, x ′) the line ℓ{x,x ′} is not contained in X , in which case
we claim that ℓ{x,x ′} lies on a quadric in the pencil containing X . This quadric will be unique since a
line that is contained in more than one quadric in the pencil lies on X . To see that ℓ{x,x ′} is contained in
some quadric note that the intersections Qt ∩ ℓ{x,x ′} determine a nonzero pencil of binary quadrics (i.e.,
quadrics in P1) that all contain x and x ′. The singular binary quadrics of this pencil are rank at most 1
and contain the distinct points x and x ′ so they must be identically 0 on ℓ{x,x ′}.

Therefore, we have a rational map

f : X × X 99K G, (x, x ′) 7→ (t{x,x ′}, ℓ{x,x ′}),

defined on the locus of pairs (x, x ′) ∈ X × X −1 such that the line ℓ{x,x ′} is not contained in X , where
t{x,x ′} ∈ P1 is such that ℓ{x,x ′} ⊂Qt{x,x ′}

. Noting that a line ℓ⊂Qt which is not contained in X intersects
X in 0-dimensional scheme of degree 2 we see that f is dominant, generically of degree 2, and factors
through the symmetric square of X . Thus, the induced map Sym2 X 99K G is birational.

If G(k) ̸=∅, then the Lang–Nishimura theorem (see, e.g., [Poonen 2017, Theorem 3.6.11]) (which
applies since G is smooth) implies that Sym2(X)(k) ̸=∅ and, consequently, that there is a quadratic point
on X . In particular, there is a quadratic extension K/k with X (K ) ̸=∅. Conversely, if X (K ) ̸=∅ for some
quadratic extension K/k, then X (K ) is infinite by [Salberger and Skorobogatov 1991, Theorem (0.1)].
The line through any Galois stable pair of distinct points gives a k-rational point on G.

(2) Let t ∈ P1. By [Reid 1972, Theorems 1.2 and 1.8], the fiber Gt is smooth and geometrically
irreducible exactly when Qt has rank 5. Thus, for all t ∈ P1

− S, the class [Gk(P1)] has trivial residue
at t . By Proposition 4.2 and assumption (†), if t ∈ S, then Qt has rank 4. If Qt is rank 4 and has square
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discriminant, then by [Reid 1972, Theorem 1.8] the fiber Gt is reducible and split over k(t). If Qt is rank
4 and has nonsquare discriminant, then the same result of Reid says that Gt is irreducible and nonsplit over
k(t), but becomes split over the quadratic discriminant extension. Thus, the residue of [Gk(P1)] at t is the
discriminant of Qt [Frossard 1997, Proposition 2.3]. By definition of εS, this gives the first statement. The
second statement now follows from the Faddeev exact sequence for Br k(P1); see [Gille and Szamuely
2006, Theorem 6.4.5] or (5-4).

(3) The first statement is a theorem of Flynn [2009] which was expanded upon by Skorobogatov [2010].
The second statement follows from the first together with the Faddeev exact sequence for Br(k(P1)); see
[Gille and Szamuely 2006, Theorem 6.4.5] or (5-4). □

The proceeding proposition together with Theorem 2.1 yields the following.

Corollary 4.6. Assume k is a local field of characteristic not equal to 2. For any pencil of quadric
threefolds Q→ P1 satisfying (†), GQ(k) ̸=∅. □

4A. Notation. For a pencil of quadrics that satisfies (†) we will move freely between the objects
Q, X = XQ,G = GQ, and (S, εS) = (SQ, εSQ). We will assume that S ⊂ A1

= P1
−∞. This can be

arranged by an automorphism of P1, provided k has at least 5 elements. We will write k[T ] for the
coordinate ring of A1 and let f (T ) be the unique monic polynomial whose vanishing defines S.

Let QA1 ∈ k(T )[x0, . . . , x4] be a quadratic form whose coefficients are linear polynomials in k[T ] and
whose vanishing defines QA1 on A1

⊂P1. While QA1 is only defined up to multiplication by an element of
k×, none of our results depend on this choice. For a (possibly reducible) subscheme T⊂A1

= Spec(k[T ]),
the canonical map k[T ] → k(T) can be applied to the coefficients of QA1 to obtain a quadratic form
QT over the k-algebra k(T) whose vanishing defines QT = Q×P1 T. In particular, for a ∈ k = A1(k),
the form Qa is obtained by evaluating the coefficients of QA1 at a. We define Q∞ = Q1− Q0, so that
QA1 = Q0+ T Q∞.

We will write θ for the image of T in k(S) = k[T ]/⟨ f (T )⟩. For a subscheme T ⊂ S we use εT ∈

k(T)×/k(T)×2
⊂ k(S)×/k(S)×2 to denote the discriminant corresponding to QT . We will use N to denote

any map induced in an obvious way by the norm map Normk(S)/k : k(S)→ k. Note that Normk(T)/k(εT)=

Normk(S)/k(εT)= N(εT).

4B. Alternate proof of Theorem 2.1 for odd residue characteristic. We now give an alternate proof
of Theorem 2.1 (valid for local fields of odd residue characteristic) which avoids the classification of
reducible special fibers.

Proposition 4.7. Let X ⊂ P4
k be a smooth complete intersection of two quadrics over a local field k of

characteristic not equal to 2. Then X has index dividing 2. If the residue characteristic of k is odd, then
there is a quadratic extension K/k such that X has a K -point.

Proof. First let us prove that X has a quadratic point assuming that s ∈ S(k) ̸= ∅. After a change of
coordinates on the P1 parametrizing the pencil and a change of coordinates on P4, we may assume that
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s = 0, that Q0 = Q0(x0, x1, x2, x3), and that Q∞ = Q̃∞(x0, x1, x2, x3)+ x2
4 . If Q0 contains a smooth

k-point, then the line joining the vertex of Q0 and this point will intersect X in a degree 2 subscheme,
which shows that X has a quadratic point. Thus, we may restrict to the case that Q0 has no smooth
k-points.

Projection away from the vertex of Q0 ⊂ P4
k gives a double cover X → Y := Q0 ∩ V (x4) onto the

quadric surface Y . Since Q0 has no smooth k-points, Y (k) = ∅. We will prove that, in this case, the
branch curve C of the double cover X→ Y has a quadratic point. Note that by definition of the double
cover, C = X ∩ V (x4) and so is a degree 4 genus 1 curve that is the base locus of the pencil of quadric
surfaces Q′→ P1 with Q′t =Qt ∩ V (x4). Moreover, C is a 2-covering of the degree 2 genus one curve
C ′ given by the equation y2

= det(M) where M is the 4×4 symmetric matrix with entries in H0(OP1(1))

corresponding to a defining equation for Q′; see [An et al. 2001].
Consider the fiber of C ′ → P1 above 0. By definition of Q′, this is given by the equation y2

=

disc(Q0 ∩ V (x4)). By assumption, Q0 ∩ V (x4) has no k-points. Since there is (up to isomorphism) a
unique rank 4 quadric over the local field k that is anisotropic and it has square discriminant, we conclude
that disc(Q0∩V (x4)) is a square and so C ′(k) ̸=∅. Consequently, C ′ ≃ Jac(C) and so the order of C in
H1(k, Jac(C)) divides 2. By a result of Lichtenbaum [1968, Theorems 3 and 4] it follows that C has a
point defined over some quadratic extension of the local field k. The aforementioned result of Lichtenbaum
is stated for k a p-adic field, but the proof works for any local field due to Milne’s extension of Tate’s local
duality results to positive characteristic [Milne 2006, Corollary I.3.4, Remark I.3.5, Theorem III.7.8].

Now we can deduce the statement in the proposition. The scheme S ⊂ P1
k parametrizing singular

quadrics in the pencil has degree 5, so there is an odd degree extension k ′/k such that S(k ′) ̸=∅. By what
we have shown above, X has a K -rational point for some quadratic extension K/k ′. It follows that X has
index at most 2. If the residue characteristic is odd, then the inclusion k ⊂ k ′ induces an isomorphism
k×/k×2

≃ k ′×/k ′×2, so K contains a quadratic extension k2/k as an odd index subfield. By the theorems
of Amer [1976], Brumer [1978] and Springer [1956], we have X (K ) ̸= ∅⇒ X (k2) ̸= ∅, so X has a
k2-point. □

Remark 4.8. The preceding proof can be adapted to give an easy proof that a locally solvable del Pezzo
surface of degree 4 over a global field over a field of characteristic different from 2 must have index
dividing 2. Indeed, over some odd degree extension X may be written as a double cover of a quadric
surface, which is known to satisfy the Hasse principle. Hence X obtains a rational point over some
extension of degree 2m with m odd.

5. Arithmetic of the space of lines on the quadrics in the pencil

In this section we develop the main tools to prove Theorems 1.1 and 1.2 over global fields of characteristic
not equal to 2. We maintain the notation defined in Section 4A. Specifically, Q→ P1 is a pencil of
quadrics in P4

k over a field k of characteristic not equal to 2 which satisfies (†), and we let X = XQ,
G = GQ and (εS, S)= (εSQ, SQ).
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In Section 5A, we compute Br(G)/ Br0(G) and construct explicit representatives in Br(G), denoted by
βT, which are determined by subsets T ⊂ S such that N(εT) ∈ k×2. In Section 5B, we study the rank 4
quadrics QT corresponding to subsets T ⊂ S such that N(εT) ∈ k×2. We use Clifford algebras associated
to these rank 4 quadrics to define constant Brauer classes CT ∈ Br(k) and we show how these are related
to the kernel of the canonical map Br(k)→ Br(X). The two constructions come together in Sections 5C
where we show how the CT arise when evaluating βT at certain local points of G (see Lemmas 5.11
and 5.14). Finally, in Section 5D, we deduce consequences for the evaluation of βT at adelic points of G.

5A. The Brauer group of G. It follows from the Faddeev exact sequence (see [Gille and Szamuely 2006,
Theorem 6.4.5]) that the homomorphism

γ ′ : k(S)× ∋ ε 7→ Cork(S)/k(ε, T − θ) ∈ Br(k(P1))

induces an isomorphism

γ : ker
(

N :
k(S)×

k(S)×2 →
k×

k×2

)
≃ ker(Br(P1

− S)[2] ∞
∗

−→ Br k[2]), (5-1)

where∞∗denotes evaluation of the Brauer class at∞∈P1
−S. Recall that N(εS)∈k×2 by Proposition 4.4(2).

Define β = π∗γ : ker(N : k(S)×/k(S)×2
→ k×/k×2)→ Br(k(G)). For T ⊂ S such that N(εT) ∈ k×2,

we set βT := β(εT).

Proposition 5.1. The map β induces a homomorphism

ker
(

N :
⊕
s∈S

⟨εs⟩ → k×/k×2
)

β
−→ Br(G), (5-2)

whose image surjects onto Br(G)/ Br0(G). Furthermore, βS = [G∞] ∈ Br0(G), and for all T ⊂ S with
N(εT) ∈ k×2 and εT ̸= εS ∈ k(S)×/k(S)×2, we have

βT ∈ Br0(G)⊂ Br(G)⇐⇒ βT = 0 ∈ Br(G)⇐⇒ εT ∈ k(T)×2.

Corollary 5.2. (1) Every nontrivial element of Br(G)/ Br0(G) is represented by βT for some degree 2
subscheme T ⊂ S with N(εT) ∈ k×2.

(2) Br(G)/ Br0(G)≃ (Z/2Z)n for some n ∈ {0, 1, 2}.

(3) If Br(G)/ Br0(G) is not cyclic, then every degree 2 subscheme T ⊂ S with N(εT) ∈ k×2 must be
reducible.

(4) Let s0 ∈ S(k) be such that there exists an s ′ ∈ S(k) with β{s0,s′} ∈ Br(G)−Br0(G). Then {β{s0,s} : s ∈
S(k), N(ε{s0,s}) ∈ k×2

} generates Br(G)/Br0(G).

(5) There is a collection T of degree 2 subschemes of S and an element ε ∈ k×, such that

• N(εT) ∈ k×2 for all T ∈ T;
• {βT : T ∈ T} generates Br(G)/ Br0(G);
• for all s ∈ ∪T∈TT, the image of ε in k(s)×/k(s)×2 is equal to εs ; and
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• for any extension L/k and any s ∈ ∪T∈TT, ε ∈ k(sL)×2 if and only if ε ∈ k(s ′L)×2 for all
s ′ ∈

⋃
T∈T T.

(6) Br(G)/ Br0(G)≃ H1(k, Pic(X)).

(7) If k is a local or global field, then the injective map Br(X)/ Br0(X) → Br(G)/ Br0(G) given
by Proposition 3.6(1) is an isomorphism.

Proof of Corollary 5.2. The proposition implies that βS ∈ Br0(G) and, for any T ⊂ S such that N(εT) ∈

k(T)×2, that βT = βS−T ∈ Br(G)/ Br0(G). Since S has degree 5, it follows that every nontrivial element
in Br(G)/ Br0(G) is represented by some βT with deg(T)≤ 2. But if T has degree 1, then εT = N(εT) ∈

k×2 and βT = 0. Thus we have (1). In particular, if Br(G) ̸= Br0 G, then {deg s : s ∈ S} must be
{3, 2}, {3, 1, 1}, {2, 2, 1}, {2, 1, 1, 1}, or {1, 1, 1, 1, 1}. Now a straightforward case by case analysis of
the possible relations on ⊕s∈S⟨εs⟩∼= ⊕s∈SZ/2Z allows one to deduce statements (2)–(4). Given this
characterization of Br(G)/ Br0(G) in terms of degree 2 subschemes T ⊂ S, (5) can be established using
[Várilly-Alvarado and Viray 2014, Lemma 3.1] for the existence of ε ∈ k×. For (6), we observe that
[Várilly-Alvarado and Viray 2014, proof of Theorem 3.4] gives a description of H1(k, Pic X) in terms
of degree two subschemes T ⊂ S and the square classes εT; comparing this description with (5) gives
the desired isomorphism. Finally, when k is a local or global field, the injective map Br1(X)/ Br0(X)→

H1(k, Pic(X)) coming from the Hochschild–Serre spectral sequence [Colliot-Thélène and Skorobogatov
2021, Proposition 4.3.2] is an isomorphism, so (6) implies that the injective map Br(X)/ Br0(X)→

Br(G)/ Br0(G) from Proposition 3.6(1) is also surjective. □

Remark 5.3. If T ⊂ S is a degree 2 subscheme with N(εT) ∈ k×2 such that the quadric QT has a smooth
k(T)-point, then [Várilly-Alvarado and Viray 2014, Corollary 3.5] yields a rational map ρ : X 99K P1

such that ρ∗γ (εT) ∈ Br(X). One can show that the image of ρ∗γ (εT) under the map Br(X)/ Br0(X)→

Br(G)/ Br0(G) given by Proposition 3.6(1) is equal to the class of βT .

Proof of Proposition 5.1. Let η ∈ P1 be the generic point. Since G is smooth, Br(G) injects into Br(Gη).
Further, by the Hochschild–Serre spectral sequence, we have an exact sequence

0→ Pic(Gη)→ (Pic(Gη))
Gk(η)→ Br(k(η))→ ker(Br(Gη)→ Br(Gη))→ H1(Gk(η), Pic(Gη)).

Since Gη is a Severi–Brauer variety, Pic(Gη)≃ Z with trivial Galois action, and Br(Gη)= 0. Hence, the
exact sequence simplifies to

Z→ Br(k(η))
π∗
−→ Br(Gη)→ 0, (5-3)

where the first map sends 1 to [Gη] ∈ Br(k(η)). Thus, to determine Br(G), it suffices to determine
Br(G)∩π∗ Br(k(η)).
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The projection map π : G→ P1 induces the following commutative diagram of exact sequences where
the top row is the Faddeev exact sequence [Gille and Szamuely 2006, Theorem 6.4.5]:

Br(k) Br(k(η))
⊕

t∈(P1)(1) H1(k(t), Q/Z) H1(k, Q/Z)

Br(G) Br(Gη)
⊕

t∈P1

⊕
x∈G(1)

π(x)=t
H1(k(x), Q/Z),

π∗

(∂t )

π∗Br

∑
t Cork(t)/k

π∗
H1

(∂x )

(5-4)

If t ∈ P1
− S, then the fiber Gt is geometrically irreducible by Proposition 4.2 and hence

π∗H1 : H1(k(t), Q/Z)→ H1(k(Gt), Q/Z)

is an injection. For t ∈ S, the fiber Gt consists of two split components that are conjugate over k(t)(
√

εt).
Therefore, for t ∈ S, the kernel of π∗ : H1(k(t), Q/Z) → H1(k(Gt), Q/Z) is the 2-torsion cyclic

subgroup corresponding to the extension k̄ ∩ k(Gt) = k(t)(
√

εt). Moreover, the residues of the kernel
of π∗Br are (∂t)(ker(π∗Br))= (εt)t∈S = εS ∈ k(S)/k(S)×2. Thus, the commutativity of the above diagram
shows that

ker π∗H1

⋂
ker

∑
t

Cork(t)/k ≃ ker
(

N :
⊕
t∈S

⟨εt ⟩ → k×/k×2
)

.

In particular, the image under β of ker
(
N :

⊕
t∈S⟨εt ⟩ → k×/k×2

)
is contained inside of Br(G). Further,

since π∗Br is surjective, the image of ker
(
N :

⊕
t∈S⟨εt ⟩ → k×/k×2

)
under β generates Br(G)/ Br0(G).

It remains to understand which subsets T⊂S give rise to βT ∈Br0(G). If βT ∈Br0(G), then by definition
of Br0(G) there exists A∈Br(k) such that γ (εT)−A∈ ker π∗Br. By (5-3), the kernel of π∗Br is generated by
[Gη]. Thus, γ (εT)= [Gη]+A or γ (εT)=A, where both equalities are in Br(P1

−S). The final statement
of the proposition follows from these equalities after computing residues and evaluating at∞. □

Recall that BQt denotes the bilinear form corresponding to Qt .

Lemma 5.4. Let f : Sym2(X) 99K G be the birational map given in Proposition 4.4 and let {x, x ′} ∈
Sym2(X) − Indet( f ). Suppose that f ({x, x ′}) = (t, ℓ) =: y ∈ G(k). Then π(y) = t = [BQ0(x, x ′) :
−BQ∞(x, x ′)] ∈ P1(k). If , moreover, T ⊂ S is such that N(εT) ∈ k×2 and π(y) ̸∈ T ∪ {∞}, then

βT(y)= Cork(T)/k

(
εT,−

BQT
(x, x ′)

BQ∞(x, x ′)

)
.

Proof. Observe that for any point ax + bx ′ on the line ℓ{x,x ′} through x and x ′ we have

Qt(ax + bx ′)= BQt (ax + bx ′, ax + bx ′)= a2 Qt(x)+ b2 Qt(x ′)+ 2abBQt (x, x ′)= 2abBQt (x, x ′).

Therefore, the line ℓ{x,x ′} is contained in the quadric Qt precisely when BQt (x, x ′)= 0. If BQ0(x, x ′)=
BQ∞(x, x ′) = 0, then ℓ{x,x ′} ⊂ X in which case f is not defined at {x, x ′}. Otherwise, the relation
BQt (x, x ′) := BQ0(x, x ′)+ t BQ∞(x, x ′) = 0 shows that t = π(y) ∈ P1 must be equal to [BQ0(x, x ′) :
−BQ∞(x, x ′)].
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For the second statement recall that βT=π∗γ (εT)=π∗ Cork(S)/k(εT, T−θ), where T is the coordinate
on Spec(k[T ])= A1

⊂ P1 and θ is the image of T in k(S). We have

π(y)− θ =−
BQ0(x, x ′)+ θ BQ∞(x, x ′)

BQ∞(x, x ′)
=−

BQS
(x, x ′)

BQ∞(x, x ′)
∈ k(S).

As γ (εT) is unramified away from T we may evaluate at π(y) to obtain

βT(y)= γ (εT)(π(y))= Cork(S)/k

(
εT,−

BQS
(x, x ′)

BQ∞(x, x ′)

)
.

The projections of εT ∈
⊕

s∈S k(s)×/k(s)×2 onto the factors corresponding to s ∈ S−T are trivial. So

βT(y)= Cork(S)/k

(
εT,−

BQS
(x, x ′)

BQ∞(x, x ′)

)
= Cork(T)/k

(
εT,−

BQT
(x, x ′)

BQ∞(x, x ′)

)
. □

5B. Clifford algebras and Brauer classes. For a quadratic form F over a field of characteristic not equal
to 2 we use Clif(F) to denote the Clifford algebra of the restriction of F to a maximal regular subspace,
and Clif0(F) to denote the corresponding even subalgebra. By Witt’s theorem [Lam 2005, Chapter I,
Theorems 4.2 and 4.3], these do not depend on the choice of maximal regular subspace. If F has even
rank, then Clif(F) is a central simple algebra, which will be identified with its class in the Brauer group.
This extends to quadratic forms over finite étale algebras in the natural way, i.e., factor by factor.

In particular, we will consider Clif(QT) ∈ Br(k(T)) where QT is a quadratic form defining the quadric
QT corresponding to a subscheme T ⊂ S. This depends on the choice of quadratic form as indicated by
the following lemma.

Lemma 5.5. Let s ∈ S and c ∈ k(s)×. Then

Clif(cQs)= Clif(Qs)+ (εs, c) ∈ Br(k(s)).

Proof. This follows from a short calculation using [Lam 2005, Chapter V, Corollary 2.7]. □

For a rank 4 quadric Qs, s ∈ S with εs ∈ k(s)×2, any quadratic form Qs defining Qs is a constant
multiple of the reduced norm form of a quaternion algebra whose class in Br(k(s)) is equal to Clif(Qs)

[Elman et al. 2008, Proposition 12.4]. The following lemma gives a description of Clif(Qs) in cases
when εs /∈ k(s)×2.

Lemma 5.6. Assume that there exists some s ∈ S with εs /∈ k(s)×2 such that Qs has a smooth k(s)-
point. Let Qs be a quadratic form whose vanishing defines Qs . Then for any Gal(k(s))-stable pair
{x, x ′} ⊂Qs(k̄) and any k(s)-linear form ℓ defining a hyperplane tangent to Qs at a smooth point with
ℓ(x)ℓ(x ′) ̸= 0 we have the following equality in Br(k(s)):

Clif(Qs)=

(
εs,−

BQs (x, x ′)
ℓ(x)ℓ(x ′)

)
,

where BQs denotes the bilinear form corresponding to Qs .
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Proof. By [Várilly-Alvarado and Viray 2014, Lemma 2.1], for any ℓ= ℓ0 tangent to Qs at a smooth point,
the quadric Qs is defined by the vanishing of Qs = c(ℓ0ℓ1− ℓ2

2+ εsℓ
2
3), for some linear forms ℓ1, ℓ2, ℓ3

and some c ∈ k(s)×. In particular, we have ℓ0(x)ℓ1(x)= ℓ2(x)2
− εsℓ3(x)2 and similarly for x ′. Thus,

we may compute

−
BQs (x, x ′)
ℓ(x)ℓ(x ′)

=−c ·
ℓ0(x)ℓ1(x ′)+ ℓ0(x ′)ℓ1(x)− 2ℓ2(x)ℓ2(x ′)+ 2εsℓ3(x)ℓ3(x ′)

ℓ0(x)ℓ0(x ′)

=−c
(

ℓ2(x ′)2
− εsℓ3(x ′)2

ℓ0(x ′)2 +
ℓ2(x)2

− εsℓ3(x)2

ℓ0(x)2 − 2
ℓ2(x)ℓ2(x ′)
ℓ0(x)ℓ0(x ′)

+ 2εs
ℓ3(x)ℓ3(x ′)
ℓ0(x)ℓ0(x ′)

)
=−c

[(
ℓ2(x)

ℓ0(x)
−

ℓ2(x ′)
ℓ0(x ′)

)2

− εs

(
ℓ3(x)

ℓ0(x)
−

ℓ3(x ′)
ℓ0(x ′)

)2]
,

which shows that (εs,−BQs (x, x ′)/(ℓ(x)ℓ(x ′))) = (εs,−c). Thus, it remains to relate the quaternion
algebra (εs,−c) to the Clifford algebra of Qs . By [Lam 2005, Chapter V, Corollary 2.7],

Clif(Qs)≃ Clif(Qs |⟨ℓ0,ℓ1⟩)⊗Clif(c2
· Qs |⟨ℓ2,ℓ3⟩)≃M2(k)⊗ (−c, cεs).

To complete the proof, we observe that (−c, cεs)= (−c, εs)= (εs,−c) ∈ Br(k). □

Definition 5.7. Given T ⊂ S such that N(εT) ∈ k×2, define

CT := Cork(T)/k(Clif(QT)) ∈ Br(k).

Remark 5.8. Even though Clif(QT) may depend on the choice of quadratic form defining the pencil, the
condition N(εT) ∈ k×2 ensures that the class CT does not. Indeed, if one computes CT using instead a form
cQT which differs from QT by c ∈ k×, Lemma 5.5 shows that the result will differ by Cork(T)/k(εT, c)=
(N(εT), c), which is trivial whenever N(εT) is a square.

Lemma 5.9. The kernel of the canonical map Br(k)→ Br(X) is generated by

{Cs : s ∈ S such that εs ∈ k(s)×2
}.

Proof. By the exact sequence of low degree terms coming from the Hochschild–Serre spectral sequence
[Colliot-Thélène and Skorobogatov 2021, Proposition 4.3.2], the kernel of Br(k)→ Br(X) is the image
of the cokernel Pic(X)→ Pic(X)Gk . By [Várilly-Alvarado and Viray 2014, Proposition 2.3] (which
relies on results from [Kunyavskiı̆ et al. 1989]), Pic(X)Gk is freely generated by the hyperplane section
and, for every s ∈ S such that εs ∈ k(s)×2, the divisor class Normk(s)/k([Cs]) where Cs is obtained by
intersecting X with a plane contained in Qs . Since the hyperplane section is k-rational, the cokernel of
Pic(X)→ Pic(X)Gk is generated by

{Normk(s)/k([Cs]) : s ∈ S such that εs ∈ k(s)×2 and Qs contains no k-rational planes}.

By definition, the image of [Cs] in Br(k(s)) is the Severi–Brauer variety whose points parametrize
representatives of the class [Cs]. Since εs is a square, by [Colliot-Thélène and Skorobogatov 1993,
Theorem 2.5], Qs is a cone over the surface Zs× Zs , where Zs is a smooth conic obtained by intersecting



1438 Brendan Creutz and Bianca Viray

Qs with a general 2-plane. Since planes in a fixed ruling on Qs correspond to fibers in a projection
Zs × Zs→ Zs , we deduce that [Cs] 7→ Zs ∈ Br(k(s)). By [Elman et al. 2008, Proposition 12.4] we also
have that Clif(Qs)= Zs ∈ Br(k(s)). Hence,

Normk(s)/k([Cs])= Cork(s)/k(Clif(Qs))= Cs . □

5C. Local evaluation maps.

Lemma 5.10. If there exists a degree 2 subscheme T ⊂ S such that for all t ∈ T, εt ∈ k(t)×2 and Qt has a
smooth k(t)-point, then X (k) ̸=∅.

Proof. Let T(k̄) = {t1, t2}. The assumptions in the lemma imply that there are k(ti )-rational planes
contained in Qti . The intersection of one with X gives a k(ti )-rational conic Ci on X . If t1 /∈ T(k), then
we replace C2 with the conjugate of C1. Thus, the pair {C1, C2} are Galois invariant. As computed in
[Várilly-Alvarado and Viray 2014, proof of Proposition 2.2] we have C1.C2 = 1. (We note that our C2

may be either C2 or C ′2 in the notation of [Várilly-Alvarado and Viray 2014], but both have the same
intersection number with C1.) Therefore the intersection of these divisors produces a k-point on X . □

Lemma 5.11. Assume that k is a local field of characteristic not equal to 2 and let T ⊂ S be a degree
2 subscheme such that N(εT) ∈ k×2. Then, for any quadratic extension K/k with εT ∈ k(TK )×2 and
K ̸= k(T), there exists y ∈ G(k) corresponding to a quadratic point Spec K → X. Moreover, for such y,

βT(y)=

{
CT if εT /∈ k(T)×2,

0 if εT ∈ k(T)×2.

Proof. If X (k) ̸=∅, then for any nontrivial extension K/k we have X (k)⊊ X (K ) because k is local; see,
e.g., [Liu and Lorenzini 2018, Proposition 8.3]. Then any pair of Gal(K/k)-conjugate points on X will
give the required y ∈ G(k). Now we prove the first statement in the case where X (k)=∅. Over any local
field, there is a unique rank 4 quadric (up to isomorphism) that fails to have a point, and it has square
discriminant. Furthermore, this anisotropic quadric has a point over any quadratic extension of k(t).

If εt ∈ k(t)×2 for some t ∈ T (equivalently, for all t ∈ T by Corollary 5.2(5)), then Qt may not have
a smooth k(t)-point, but it will have a smooth point over any quadratic extension of k(t). If K/k is a
quadratic extension different from k(T)/k, then k(TK ) will be a quadratic extension of k(T) and hence
we may apply Lemma 5.10. Moreover, since εT ∈ k(T)×2, by definition, βT = 0 ∈ Br(G).

Now we consider the case when εt /∈ k(t)×2, so Qt has nonsquare discriminant, and thus is isotropic.
Hence, Lemma 5.10 gives the existence of K -points on X for any K such that εT ∈ k(TK )×2.

Now suppose y corresponds to the line joining the K/k-conjugate points x, x ′ ∈ X (K ), with K
satisfying the conditions of the lemma. By continuity of the evaluation map, we may reduce to the case
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where π(y) ̸= ∞, π(y) ̸∈ T. By Lemma 5.4 we have

βT(y)= (εT,−BQT
(x, x ′)/BQ∞(x, x ′))

= Cork(T)/k(εT,−BQT
(x, x ′))+ (Nk(T)/k(εT), BQ∞(x, x ′))

= Cork(T)/k(εT,−BQT
(x, x ′)) (since N (εT) ∈ k×2)

= Cork(T)/k[(εT, ℓT(x)ℓT(x ′))+Clif(QT)] (by Lemma 5.6)

= Cork(TK )/k(εT, ℓT(x))+Cork(T)/k Clif(QT)

= Cork(T)/k Clif(QT) (since εT ∈ k(TK )×2)

= CT (by Definition 5.7) . □

Lemma 5.12. Assume that k is a local field of characteristic not equal to 2. Suppose s ∈ S(k) is such that
Qs has a smooth k-point and let vs denote the vertex of Qs . For any t ∈ A1(k)−{s} sufficiently close to s,
we have

Gt(k) ̸=∅⇐⇒ (εs, t − s)= Clif(Qs)+ (εs,−Q∞(vs)) in Br(k).

Remark 5.13. Note that by Lemma 5.5, the sum Clif(Qs)+ (εs,−Q∞(vs)) appearing on the right-hand
side above does not depend on the choice of quadratic form defining the pencil.

Proof. Since t ∈A1(k)−{s} is sufficiently close to s and S is closed, we have t /∈ S and Qt has rank 5. So
by [Elman et al. 2008, Example 85.4] the Severi–Brauer variety Gt and the even Clifford algebra Clif0(Qt)

(which is a central simple k-algebra) determine the same class in Br(k). In particular, Gt(k) ̸=∅ if and
only if Clif0(Qt)= 0 in Br(k).

Since X is smooth, Qt(vs) ̸= 0. So the quadratic forms Qt and Qt |⟨vs⟩⊥⊕Qt |⟨vs⟩ are equivalent by
[Lam 2005, Chapter I, Corollary 2.5]. Therefore,

Clif0(Qt)= Clif(−Qt(vs) · Qt |⟨vs⟩⊥) (by [Lam 2005, Chapter V, Corollary 2.9])

= Clif(Qt |⟨vs⟩⊥)+ (disc(Qt |⟨vs⟩⊥),−Qt(vs)) (by Lemma 5.5).

For t sufficiently close to s, the quadratic forms Qt |⟨vs⟩⊥ and Qs |⟨vs⟩⊥ will be equivalent. For such t ,
Clif(Qt |⟨vs⟩⊥)= Clif(Qs) ∈ Br(k) and disc(Qt |⟨vs⟩⊥)= disc(Qs) ∈ k×/k×2. Hence

Clif0(Qt)= Clif(Qs)+ (εs,−Qt(vs)).

To complete the proof, we note that Qt(vs)= (Qs + (t − s)Q∞)(vs)= (t − s)Q∞(vs). □

Lemma 5.14. Assume that k is a local field of characteristic not equal to 2 and T ⊂ S is a degree 2
subscheme with N(εT) ∈ k×2 and εT /∈ k(T)×2. Then there exists y ∈ GT(k(T)) such that π(y) = T.
Moreover, for any such y,

Cork(T)/k(βT(y))= CT + (ε,−1T N(Q∞(vT))) ∈ Br(k),

where ε∈ k× is an element whose image in k(T)×/k(T)×2 represents εT , 1T is the discriminant of k(T)/k
(which we take to be 1 if T is reducible), and vT is the vertex of QT .
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Proof. By [Várilly-Alvarado and Viray 2014, Lemma 3.1] there exists ε ∈ k× such that ε · εt ∈ k(t)×2 for
all t ∈ T. Fix a closed point s ∈ T, and let s ′ be the unique k(s) point in Tk(s)−{s}.

Since εs ̸∈ k(s)×2, Qs is a cone over an isotropic quadric and as such contains smooth k(s)-points and
k(s)-rational lines (passing through the vertex). Hence Gs(k(s)) is nonempty. By the implicit function
theorem, we can find t ∈ (P1

−{s})(k(s)) arbitrarily close to s such that Gt(k(s)) ̸=∅. In addition, by
Lemma 5.12 and the fact that the evaluation map β : G(k(s))→ Br(k(s)) is locally constant and constant
on the fibers of π : G→ P1 (because βT is the pullback of a element of Br(k(P1))), we may choose such
a t sufficiently close to s so that

(1) (ε, t − s)= Clif(Qs)+ (ε,−Q∞(vs)) ∈ Br(k(s)),

(2) βT(Gs(k(s)))= βT(Gt(k(s))) ∈ Br(k(s)), and

(3) t − s ′ and s− s ′ represent the same class in k(s)×2.

Then for y1 ∈ Gs(k(s)) and y′1 ∈ Gt(k(s)), we have

βT(y1)= βT(y′1)= (ε, (t − s)(t − s ′))= Clif(Qs)+ (ε,−Q∞(vs)(s− s ′))∈ Br(k(s)).

Suppose y : Spec(k(T))→ G is such that π(y)= T. Then, because ε ∈ k× we have Cork(T)/k(ε, s−s ′)=
(ε, Normk(T)/k(s− s ′))= (ε, (s− s ′)(s ′− s)). It follows that

Cork(T)/k(βT(y))= Cork(T)/k[Clif(QT)+ (ε,−Q∞(vT))+ (ε, s− s ′)]

= Cork(T)/k(Clif(QT))+ (ε, N(Q∞(vT)))+ (ε, (s− s ′)(s ′− s))

= CT + (ε, N(Q∞(vT)))+ (ε,−1T). □

5D. Evaluation of Brauer classes on G(Ak).

Definition 5.15. Let k be a global field of characteristic not equal to 2. Given T ⊂ S define

RT := {v ∈�k : εTv
∈ k(Sv)

×2 and CTv
̸= 0}.

Theorem 5.16. Assume that k is a global field of characteristic different from 2:

(1) There exists (yv) ∈ G(Ak) such that for all degree 2 subschemes T ⊂ S with N(εT) ∈ k×2, we have∑
v∈�k

invv(βT(yv))= #RT/2 ∈Q/Z.

(2) For all t ∈S(k) there exists (yv)∈G(Ak) such that for all degree 2 subschemes T⊂S with N(εT)∈ k×2

and t ∈ T, we have
∑

v∈�k
invv(βT(yv))= #Rt/2 ∈Q/Z.

Proof. (1) It suffices to prove the result for {βT : T ∈ T}, where T is a collection of degree 2 subschemes
of S as in Corollary 5.2(5), with corresponding ε ∈ k× simultaneously representing the discriminants of
all T ∈ T.

We define an adelic point (yv) ∈ G(Ak) as follows. For v ∈�k such that ε ∈ k(Tv)
×2 for some T ∈ T

(equivalently, for all T ∈T by Corollary 5.2(5)), let yv ∈G(kv) be any point (which exists by Corollary 4.6).
Note that if ε ∈ k(Tv)

×2, then βT⊗kv = 0 by Proposition 5.1. For each v ∈�k with ε /∈ k(Tv)
×2 for some
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(equivalently all) T ∈ T, let yv ∈ G(kv) be a point corresponding to a kv(
√

ε)-point on X , as provided by
Lemma 5.11. Note that Lemma 5.11 further implies that for such yv, βT(yv)= CTv

for all T ∈ T. Thus,
for any T ∈ T we have∑

v∈�k

invv(βT(yv))=
∑

ε/∈k(Tv)×2

invv(CTv
)=

∑
ε∈k(Tv)×2

invv(CTv
)=

#RT

2
∈Q/Z,

where the penultimate equality follows from quadratic reciprocity.

(2) Let t ∈ S(k) and set ε := εt . If t is not contained in any degree 2 subschemes T⊂ S with N(εT) ∈ k×2,
then we need only show that G(Ak) ̸= ∅, which follows from Corollary 4.6. Thus, we may assume
there is some degree 2 subscheme T ⊂ S containing t such that N(εT) ∈ k×2. For any such T we have
εT = (ε, ε) ∈ k(T)×/k(T)×2

≃ k×/k×2
× k×/k×2.

We define an adelic point (yv) ∈ G(Ak) as follows. For v ∈ �k such that ε ∈ k×2
v , take yv to be any

point of G(kv) (which exists by Corollary 4.6). For v ∈�k such that ε /∈ k×2
v we take yv ∈ G(kv) to be

any point such that π(yv) ∈ P1(kv) is close enough t so that Lemma 5.12 applies (note that Qt is a cone
over an isotropic quadric surface so the hypothesis of the Lemma 5.12 is satisfied) and so that, for all
s ∈ S(k)−{t} with εεs ∈ k×2, (π(yv)− s) and (t − s) have the same class in k×v /k×2

v .
Suppose T = {s, t} ⊂ S(k) is such that N(εT) ∈ k×2. For v ∈ �k such that ε ∈ k×2

v , we have
invv(βT(yv))= 0. For v ∈�k such that ε /∈ k×2

v we have

invv(βT(yv))= invv(ε, (π(yv)− t)(π(yv)− s))

= invv(ε, π(yv)− t)+ invv(ε, t − s)

= invv(Clif(Qt))+ invv(ε,−Q∞(vt))+ invv(ε, t − s) (By Lemma 5.12).

Since (ε,−Q∞(vt)(t − s)) is an element of Br(k), its local invariants sum to 0. Furthermore, for all
v ∈�k with ε ∈ k×2

v , (ε,−Q∞(vt)(t − s)) has trivial invariant. Thus,∑
v∈�k

invv(βT(yv))=
∑

ε/∈k×2
v

invv(βT(yv))=
∑

ε/∈k×2
v

invv(Clif(Qt))=
∑

ε∈k×2
v

invv(Clif(Qt)).

where the last equality follows from the fact that the local invariants of Clif(Qt) ∈ Br(k) sum to 0. For
v ∈�k such that εt ∈ k×2

v we have invv(Clif(Qt))= invv(Ctv ). Hence,∑
v∈�k

invv(βT(yv))=
∑

ε∈k×2
v

invv(Ctv )=
#Rt

2
,∈Q/Z. □

The following lemma relates the set RT to the condition given in (5) of Theorem 1.2.

Lemma 5.17. Let k be a global field of characteristic not equal to 2 and T⊂ S a degree 2 subscheme such
that N(εT) ∈ k×2. Then v ∈ RT if and only if there are an odd number of components of QTv

= ∪tv∈Tv
Qtv

which have no smooth k(tv)-point.

Proof. Let v ∈ �k . First suppose that εTv
̸∈ k(Sv)

×2. Then v ̸∈ RT by definition. Note also that for all
tv ∈ Tv, εtv ̸∈ k(tv)×2 (a priori this must hold for some tv ∈ Tv; the stronger conclusion holds because T
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has degree 2 and N(εT) ∈ k×2). Recall that there is a unique anisotropic quadratic form of rank 4 over
any local field and that it has square discriminant. Hence, when εTv

̸∈ k(tv)×2, all components Qtv have
smooth k(tv)-points.

Now suppose that εTv
∈ k(Sv)

×2. As above εtv ∈ k(tv)×2, for each tv ∈ Tv . Then the rank 4 quadratic
forms Qtv are equivalent to constant multiples of the norm forms of the quaternion algebras Clif(Qtv );
see [Elman et al. 2008, Proposition 12.4]. In particular, Qtv has a smooth k(tv)-point if and only if
Clif(Qtv )= 0 ∈ Br(k(tv)). The corestriction maps Cork(tv)/kv

: Br(k(tv))→ Br(kv) are isomorphisms, so
CTv
=

∑
tv∈Tv

Cork(tv)/kv
Clif(Qtv ) is nonzero if and only if there are an odd number of components of

QTv
with no smooth k(tv)-points. By definition v ∈ RT if and only if CTv

̸= 0. □

Lemma 5.18. Assume that k is a global field of characteristic different from 2 and suppose T ⊂ S is
irreducible of degree 2 such that N(εT) ∈ k×2. For any t ∈ T(k(T)), the cardinalities of the sets

RT ⊂�k and Rt ⊂�k(T)

have the same parity.

Proof. For a prime v ∈�k , we have εT ∈ k(Tv)
×2 if and only if εt ∈ k(t)×2

w for all (equivalently some)
w ∈�k(T) with w | v. For such v we have

invv(CTv
)= invv(Cork(T)/k(Clif(QT)))=

∑
w | v

invw(Clif(Qt))=
∑
w | v

invw(Ctw).

In particular, CTv
̸= 0 if and only if there are an odd number of primes w | v with Ctw ̸= 0. □

6. Proofs of the main theorems

6A. Corollaries of Theorem 5.16.

Corollary 6.1. Assume that k is a global field of characteristic not equal to 2 and that either of the
following conditions hold:

(1) Every nontrivial element of Br(G)/ Br0(G) can be represented by βT for some degree 2 subscheme
T ⊂ S such that N(εT) ∈ k×2 and #RT even.

(2) Every nontrivial element of Br(G)/ Br0(G) can be represented by βT for some degree 2 subscheme
T= {t1, t2} ⊂ S(k) such that N(εT) ∈ k×2.

Then G(Ak)
Br
̸=∅.

Proof. If condition (1) holds, then the corollary follows from Theorem 5.16(1). Now assume condition (2)
holds and (1) fails. Then there exists a nontrivial element of Br(G) of the form β{t,t ′} with t, t ′ ∈ S(k)

such that R{t,t ′} has odd cardinality. Note that R{t,t ′} is the symmetric difference of Rt and Rt ′ . Thus,
interchanging t and t ′ if needed we may assume Rt has even cardinality. Theorem 5.16(2) then gives an
adelic point orthogonal to all βT such that T has degree 2, contains t and N(εT) ∈ k×2. The result follows
since Corollary 5.2(4) shows that such βT generate Br(G)/ Br0(G). □
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Remark 6.2. If both conditions of Corollary 6.1 fail, then Br(G)/ Br0(G)≃ Z/2Z by Corollary 5.2 and
any βT with T of degree 2 which represents the nontrivial class must have T irreducible. Thus, S must
contain an irreducible degree 2 subscheme T such that

• N(εT) ∈ k×2,

• εT ̸∈ k(T)×2,

• if #(S−T)(k)= 3, then εt /∈ k×2 for all t ∈ S−T, and

• #RT is odd, which in particular implies that QT has no smooth k(T)-points.

Corollary 6.3. Assume that k is a global field of characteristic not equal to 2. Suppose there is a degree
2 subscheme T ⊂ S with N(εT) ∈ k×2 such that RT has odd cardinality. Then G(Ak)

Br
̸= G(Ak) and

there exists a quadratic extension K/k such that X K (AK ) ̸= X K (AK )Br
=∅. In particular, G does not

satisfy weak approximation and there exists quadratic extension K/k such that X K has a Brauer–Manin
obstruction to the Hasse principle.

Proof. The first statement follows immediately from Theorem 5.16(1). For the second statement we
construct K by approximating fixed quadratic extensions of kv for the primes v ∈ S := {v : X (kv) =

∅ or invv ◦βT : G(kv)→Q/Z is nonzero}. (In particular, by Lemma 5.11 and the definition of CT, we
will approximate K at every prime where CT ramifies.) For such v, if ε /∈ k×2

v , then we fix Kv := kv(
√

ε). If
v is such that ε ∈ k×2

v , then we let Kv be any quadratic extension such that X (Kv) ̸=∅. Then Lemma 5.11
implies that for every v ∈ S, there exists a yv ∈ G(kv) corresponding to a quadratic point Spec Kv→ X
and for all such yv, βT(yv) = CTv

if ε ̸∈ k×2
v and βT(yv) = 0 otherwise. Furthermore, for v /∈ S (which

necessarily means that CTv
= 0), our assumptions imply that X (Kv) ̸= ∅ and that βT(yv) = 0 for all

yv ∈ G(kv). Thus, for all (yv) ∈ G(Ak) corresponding to an adelic quadratic point Spec(AK )→ X we
have ∑

v

invv βT(yv)=
∑

ε/∈k×2
v

invv βT(yv)=
∑

ε/∈k×2
v

invv CTv
=

∑
ε∈k×2

v

invv CTv
=

#RT

2
∈Q/Z.

By Proposition 3.6(2) and Corollary 5.2(7), this implies that X K (AK )Br
=∅. □

Example 6.4. Let G → P1 be the fibration of Severi–Brauer threefolds corresponding to the pencil
containing the quadrics given by the vanishing of the rank 4 forms

Q0 = x0x1− x2
2 + εx2

3 and Q1 = ax2
0 + bx2

1 − abx2
2 − εx2

4

where a, b, ε ∈ k×. Then T = {0, 1} ⊂ S is a degree 2 subscheme with εT = (ε, ε). Hence, Corollaries 5.2
and 6.1 imply that G(Ak)

Br
̸= ∅. Note that Q0 has smooth k-points, so RT = R1 = {v ∈ �k : ε ∈

k×2
v and invv(a, b) ̸= 0}. Clearly one can choose a, b, ε so that RT has odd cardinality (e.g., for k =Q,

a = 3, b = 7, ε = 2 we have RT = {7}), in which case G has a Brauer–Manin obstruction to weak
approximation and the base locus X of the pencil is a counterexample to the Hasse principle over some
quadratic extension by Corollary 6.3.
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If 4− ab ∈ k×2
v − k×2 for some prime v ∈ RT (which holds for the values indicated above), then there

exists no quadratic extension K/k such that X K is everywhere locally solvable and Br(X K )=Br0(X K ). To
see this first observe that 4−ab= εt is the discriminant of the rank 4 quadric Qt = (Q1−abQ0)/(1−ab)

(here t = 1/(1− ab) ∈ S(k)). Now note that if a prime v ∈ RT splits in a quadratic extension K , then
X K is not locally solvable because Q1 has no smooth Kw-points for the primes w | v. On the other hand,
Proposition 5.1 shows that βT⊗K ∈Br(X K ) lies in the subgroup Br0(X K ) if and only if ε∈ K×2 (in which
case K = k(

√
ε) and all primes of RT split in K ) or εS−T ∈ k(SK )×2 (in which case K = k(

√
4− ab)

and so some prime of RT splits in K by assumption). We conclude that if K/k is a quadratic extension
such that βT ⊗ K ∈ Br0(X K ), then X K (AK )=∅.

Corollary 6.5. Assume that k is a global field of characteristic not equal to 2. There is an adelic 0-cycle
of degree 1 on G orthogonal to Br(G).

Proof. We may assume that G(Ak)
Br
= ∅ (for otherwise the Corollary holds immediately) and hence,

that the hypothesis of Corollary 6.1 fails. As explained in Remark 6.2, this implies that there is an
irreducible degree 2 subscheme T ⊂ S such that N(εT) ∈ k×2, εT /∈ k(T)×2 and RT has odd cardinality.
By Corollary 5.2(3), the existence of such an irreducible T implies that Br(G)/ Br0(G) has order 2.
Moreover, if t ∈ T(k(T)) then, by Lemma 5.18, the set Rt ⊂ �k(T) has odd cardinality. Thus, by
Theorem 5.16 applied over k(T) we obtain an effective adelic 0-cycle of degree 2 over k, denote it
by (zv), such that

∑
v∈�k

invv(βT(zv)) = 1/2. If (yv) ∈ G(Ak) is any adelic point (which exists by
Corollary 4.6), then (zv − yv) is an adelic 0-cycle of degree 1 and, since G(Ak)

Br
= G(Ak)

βT = ∅, we
have

∑
v∈�k

invv(βT(zv − yv))=
∑

v∈�k
invv(βT(zv))−

∑
v∈�k

invv(βT(yv))= 1/2− 1/2= 0. □

Remark 6.6. In the cases not already covered by Corollary 6.1, the proof above hinges on constructing
an adelic 0-cycle of degree 2 on G that is not orthogonal to the Brauer group. Lemma 5.14 can be used to
give an alternative construction of such a 0-cycle. See Section 7A.

6B. Proof of Theorem 1.1. Let X ′ ⊂ Pn
k be a smooth complete intersection of two quadrics over k. By

Bertini’s theorem the intersection of X ′ with a suitable linear subspace will yield a smooth complete
intersection of two quadrics X ⊂ P4

k . If k is a local field, then the result follows from Theorem 2.1. It
remains to consider the case that k is a number field. By Corollary 6.5, G has an adelic 0-cycle of degree
1 orthogonal to the Brauer group. Since G is a pencil of Severi–Brauer varieties, [Colliot-Thélène and
Swinnerton-Dyer 1994, Theorem 5.1] shows that G has a 0-cycle of degree 1. By Proposition 4.4 this
gives a 0-cycle of degree 2 on X .

6C. Proof of Theorem 1.2. Let X ′ ⊂ Pn
k be a smooth complete intersection of two quadrics over k. As

noted above, X ′ contains a smooth of two quadrics in P4
k . Thus, Theorem 2.1 implies that X ′ contains a

quadratic point when k is local. This proves Theorem 1.2(1). Similarly, Theorem 1.2(3) follows from
Proposition 2.11.
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Now assume k is global of characteristic not equal to 2. Theorem 2.1 implies that there is a quadratic
extension K/k such that X ′K is everywhere locally solvable. If k is a global function field and n ≥ 5, then
X ′K satisfies the Hasse principle by [Tian 2017]. This proves Theorem 1.2(2).

We claim that (under the hypotheses of the theorem) X ′ contains a smooth del Pezzo surface X
of degree 4 such that the corresponding Severi–Brauer pencil G has G(Ak)

Br
̸= ∅. If n ≥ 5, then by

[Wittenberg 2007, Section 3.5] the intersection of X ′ with an appropriate linear subspace is a smooth del
Pezzo surface X of degree 4 with Br(X)= Br0(X). Corollary 5.2(7) implies that the corresponding G
has Br(G)/ Br0(G) = 0, so G(Ak)

Br
̸= ∅ by Corollary 6.1. When n = 4, X ′ = X is itself a smooth del

Pezzo surface of degree 4. If all of the nontrivial elements of Br(G)/ Br0(G) can be represented by some
βT with T reducible, then Corollary 6.1(1) implies that G(Ak)

Br
̸=∅. Otherwise, by Corollary 5.2, the

order of Br(G)/ Br0(G) divides 2 and any nontrivial element can be represented by βT with T irreducible
and N (εT) ∈ k×2. Any such element determines a quadratic extension L = k(T) and the assumption in
case (5) of the theorem is that the geometric components of QT (which are defined over L) each fail to
have smooth local points at an even number of primes of L . By Lemma 5.17 this implies that RT has
even cardinality and so G(Ak)

Br
̸=∅ by Corollary 6.1(2).

If k is a number field for which Schinzel’s hypothesis holds, then it is a result of Serre that the
Brauer–Manin obstruction is the only obstruction to the Hasse principle for fibrations of Severi–Brauer
varieties (Serre’s result is unpublished, but a more general result [Colliot-Thélène and Swinnerton-
Dyer 1994, Theorem 4.2] implies this result of Serre). In this case we obtain a k-point on G and,
consequently by Proposition 4.4, a quadratic point on X . To prove the result assuming k satisfies (⋆) it is
enough to find a quadratic extension K/k such that X K (AK )Br

̸=∅. The existence of such a K follows
from Proposition 3.6(4), since as noted in Corollary 5.2(7) the map Br(X)/ Br0(X)→ Br(G)/ Br0(G)

given by Proposition 3.6(1) is an isomorphism.

7. Complements and remarks

7A. Remarks on the cases not covered by Theorem 1.2. Suppose X is a del Pezzo surface of degree 4
over a global field k of characteristic not equal to 2 with corresponding Severi–Brauer pencil G such that
the conditions of Corollary 6.1 are not satisfied. As noted in Remark 6.2 this implies that Br(G)/ Br0(G) is
cyclic of order 2, with the nontrivial class represented by βT for an irreducible subscheme T⊂ S of degree
2 with N(εT) ∈ k×2 for which #RT is odd. By Corollary 6.3, βT obstructs weak approximation and so
G(Ak)

Br
̸=∅ if and only if there exists a prime v ∈�k such that the evaluation map βT : G(kv)→ Br(kv)

is not constant.
Let C′T := CT + (ε,−1T N(Q∞(vT))) ∈ Br(k) be the class from Lemma 5.14 and define

R′T := {v ∈�k : εT /∈ k(Sv)
×2 and invv(C′T) ̸= 0}.

Since RT has odd cardinality, so too must R′T. In particular, R′T is nonempty. If Tv is reducible for a
prime v ∈ R′T, then Lemma 5.14 shows that the evaluation map βT : G(kv)→ Br(kv) is nonconstant
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and so G(Ak)
Br
= G(Ak)

βT ̸= ∅. If Tv is irreducible at v ∈ R′T, then Lemma 5.14 shows that βT ⊗

k(Tv) : G(k(Tv))→ Br(k(Tv)) is nonconstant. Indeed the lemma gives a k(Tv)-point where βT ⊗ k(Tv)

takes the nonzero value C′Tv
, but βT⊗k(Tv) takes the value 0 at any elements in the subset G(kv)⊂G(k(Tv)).

Unfortunately, this is not enough to conclude that G(Ak)
Br
̸= ∅ because βT : G(kv)→ Br(kv) can still

be constant. Using the lemma below one can check that this occurs at v = 5 for the pencil of quadrics
defined by

Q0 =−55x2
1 + 2x1x2+ x2

3 + 5x2
4 and Q∞ = 33x2

0 − 5x2
1 − x2

2 + 10x3x4.

We note, however, that in this example (and in all others with R′T ̸= ∅ that we have considered) there
is some prime w ∈ �k (in this case w = 2) for which the evaluation map βT : G(kw)→ Br(kw) is not
constant and, hence, G(Ak)

Br
̸=∅.

Lemma 7.1. If v ∈ R′T is such that Tv is irreducible, kv has odd residue characteristic and X (k(Tv))=∅,
then βT : G(kv)→ Br(kv) is constant.

Proof. Suppose X (k(Tv))=∅ and let y ∈ G(kv). Then y corresponds to a quadratic point Spec(K )→ X ,
with K/kv a quadratic field extension such that K ̸= k(Tv). Since kv has odd residue characteristic,
k(TL) is the compositum of all quadratic extensions of kv . In particular, it must contain a square root of
εT (since εT ∈ k×v k(Tv)

×2). Therefore, Lemma 5.11 applies, and its conclusion shows that βT(y) does
not depend on y. □

In contrast, the following lemma shows that for X (in place of G) nonconstancy of an evaluation map
over an extension of kv does imply nonconstancy over kv.

Lemma 7.2. Let X be a del Pezzo surface of degree 4 over a local field k of characteristic not equal to
2 such that X (k) ̸= ∅. If α ∈ Br(X) is such that invk ◦α : X (k)→ Q/Z is constant, then for all finite
extensions K/k, invK ◦αK : X (K )→Q/Z is constant and equal to [K : k](invk ◦α).

Remark 7.3. In the case that kv has odd residue characteristic, Tv is irreducible, εTv
∈k×2

v and invv(C′T) ̸=0,
Lemma 7.2 can be used to prove the converse of Lemma 7.1. Namely, if βT is constant on kv-points, then
X (k(Tv)) must be empty.

Proof. Let P ∈ X (k). By [Salberger and Skorobogatov 1991, Lemma 4.4] (which follows from [Colliot-
Thélène and Coray 1979, Theorem C]), every 0-cycle of degree 0 on X is linearly equivalent to Q− P
for some Q ∈ X (k). Therefore, for any closed point R on X , there is some Q ∈ X (k) such that
R ∼ Q+ (deg(R)− 1)P . Since evaluation of Brauer classes factors through rational equivalence and by
assumption α(P)= α(Q), we see that invK ◦αK = [K : k](invk ◦α) for any extension K/k. □

Remarks 7.4. (1) The result of [Colliot-Thélène and Coray 1979] used in the proof above shows that
every 0-cycle of degree 1 on a conic bundle with 5 or fewer degenerate fibers is rationally equivalent
to a rational point. The example mentioned just before Lemma 7.1 shows that this does not extend to
more general Severi–Brauer bundles (at least over a p-adic fields). Indeed, evaluation of Brauer classes
factors through rational equivalence and in the example there is a Brauer class on G which is nonconstant



Quadratic points on intersections of two quadrics 1447

on 0-cycles of degree 1, but is constant on rational points. An example of a Severi–Brauer bundle (in
fact a conic bundle) with a 0-cycle of degree 1 but no rational point was constructed by Colliot-Thélène
and Coray [Colliot-Thélène and Coray 1979, Section 5]; in this example the conic bundle has 6 singular
fibers.

(2) If X/k is a del Pezzo surface of degree 4 over a number field which is a counterexample to the Hasse
principle explained by the Brauer–Manin obstruction, then as shown in [Colliot-Thélène and Poonen
2000, Section 3.5] there exists α ∈ Br(X) such that X (Ak)

α
= ∅ (a priori multiple elements of Br(X)

might be required to give the obstruction). An immediate consequence of Lemma 7.2 is that over any odd
degree extension K/k the same Brauer class will give an obstruction, i.e., X K (AK )αK =∅. This answers
a question posed in [Colliot-Thélène and Poonen 2000, Remark 3, page 95]. In particular, this shows that
the conjecture that all failures of the Hasse principle for del Pezzo surfaces of degree 4 are explained
by the Brauer–Manin obstruction is compatible with the theorems of Amer [1976], Brumer [1978] and
Springer [1956] which imply that an intersection of two quadrics with index 1 has a rational point.

7B. A degree 4 del Pezzo surface with obstructions only over odd degree extensions.

Proposition 7.5. Let X/Q be the del Pezzo surface of degree 4 given by the vanishing of

Q0 = (x0+ x1)(x0+ 2x1)− x2
2 + 5x2

4 and Q1 = 2(x0x1− x2
2 + 5x2

3).

For any finite extension K/Q we have X K (AK )Br
=∅ if and only if [K :Q] is odd.

Proof. This surface was considered by Birch and Swinnerton-Dyer [1975] who showed that X is a
counterexample to the Hasse principle explained by the Brauer–Manin obstruction. It follows from
Lemma 7.2 that for any K with [K :Q] odd, X K is also a counterexample to the Hasse principle explained
by the Brauer–Manin obstruction.

Since X is locally solvable over Q, Br(X)/ Br0(X) is generated by the image of Br(X)[2]. The
singular quadrics in the pencil lie above S(Q) = {0,±1,±4

√
2+ 5/7} ⊂ P1 and the corresponding

discriminants satisfy ε0= ε1= 5, ε−1=−1 and N(ε(±4
√

2+5)/7)=−1. For any K/Q linearly disjoint from
k1=Q(

√
−1,
√

2,
√

5), the restriction map induces an isomorphism Br(X)/ Br0(X)≃Br(X K )/ Br0(X K )

and so X K (AK )Br
̸=∅ by Lemma 3.1(2). On the other hand, if K/Q is not linearly disjoint from k1, we

can check directly that X (K ) ̸= ∅. Indeed, K must contain Q(
√

d) for some d ∈ {−1,±2,±5,±10}.
Over these quadratic fields one can exhibit points

(1 : 1 : 1 : 0 :
√
−1), (1 : −2 : 2

√
2 :
√

2 : 1), (4 : 9 : 6 : 0 : 5
√
−2), (0 : 0 :

√
5 : 1 : 1),

(5 : 0 : 0 : 0 :
√
−5), (2

√
10 : −

√
10 : 0 : 2 : 0), (0 :

√
−10 : 0 : 0 : 2). □

7C. A degree 4 del Pezzo surface with index 4.

Theorem 7.6. There exists a del Pezzo surface X of degree 4 over a field k of characteristic 0 such that X
has index 4.
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Proof. Let k0 be an algebraically closed field of characteristic 0. For i = 1, . . . , 2g, set ki := ki−1((ti ))
and set k := k2g. By a result of Lang and Tate [1958, page 678], if A/k0 is an abelian variety of dimension
g and n is an integer, then there exists a torsor under Ak = A×k0 Spec(k) of period n and index n2g. In
particular, if C/k0 is any genus 2 curve, then there exists a torsor under the Jacobian J = Jac(Ck) of
Ck of period 2 and index 16. Since C is defined over the algebraically closed field k0, it has a rational
Weierstrass point over k. As observed by Flynn [2009], and worked out in detail by Skorobogatov [2010],
if Jλ is a 2-covering πλ : Jλ→ J (i.e., a twist of [2] : J → J corresponding to λ ∈ H1(k, J [2])), then
there are morphisms

Jλ← J̃λ→ Zλ→ Xλ,

where J̃λ→ Jλ is the blow up of Jλ at π−1
λ (0J ), Zλ is the desingularized Kummer variety associated to

Jλ and Zλ→ Xλ is a double cover of a del Pezzo surface of degree 4. In particular, there is a degree 4
morphism J̃λ→ Xλ. So the index of Xλ is at least index(Jλ)/4, which will equal 4 for suitable choice of
λ by the aforementioned result of Lang and Tate. □

Theorem 7.7. Suppose k is a number field and Y is a torsor of period 2 under the Jacobian of a genus 2
curve over k with a rational Weierstrass point. The index of Y divides 8.

Proof. As in the proof of the previous theorem, the index of Y divides 4 index(X) for some del Pezzo
surface X of degree 4. The result follows from Theorem 1.1. □

Remarks 7.8. (1) The conclusion of Theorem 7.7 was known to hold by work of Clark [2004, Theorems 2
and 3] when k is a p-adic field and when k is a number field and Y is locally solvable.

(2) Arguing as in the proof of the theorem we see that the Kummer variety Zλ has index dividing 4 when
k is a local or global field. This is lower than one would expect, given that Zλ is an intersection of 3
quadrics in P5

k .

(3) The result of Lang–Tate quoted in the proof above shows that over general fields of characteristic 0,
there are examples where Zλ and Y have index 8 and 16, respectively.

(4) In response to a preliminary report on this work by the authors, John Ottem suggested the following
alternate proof of Theorem 7.6 which gives an example over the C3 field k(P3

C
). Let D1, D2 ⊂ P3

×P4

be two general (2, 2) divisors over C, and let Y = D1 ∩ D2. Then, by the Lefschetz hyperplane theorem
(applied twice), restriction gives an isomorphism H4(P3

×P4, Z) ∼−→ H4(D1, Z) ∼−→ H4(Y, Z). Note
that the generic fiber of the first projection is a del Pezzo surface of degree 4 over k(P3). Hence any
threefold V ⊂ Y can be expressed as aH 2

1 +bH1 H2+cH 2
2 , where Hi denotes the pullback of O(1) under

the projection πi . Then the degree of V → P3 is given by

V .H 3
1 = V .H 3

1 .X = (aH 2
1 + bH1 H2+ cH 2

2 ).H 3
1 .(2H1+ 2H2)

2,

which must be divisible by 4. Thus Yk(P3) has index 4. Note that to apply the Lefschetz hyperplane
theorem, we need dim Di > 5, so this argument does not extend to k(P2

C
).
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This construction suggested by Ottem generalizes to arbitrary complete intersections. Namely, given
a sequence of degrees (d1, . . . , dr ) and an ambient dimension N , one can consider an intersection of
general (d1, d1), (d2, d2), . . . , (dr , dr ) hypersurfaces in PM

×PN . If M > N −r , then the same argument
as above yields a (d1, . . . , dr ) smooth complete intersection Y ⊂ PN

k(PM )
with index d1d2 · · · dr .

(5) After viewing an early draft of this paper, Olivier Wittenberg [2013] shared a correspondence of
his that provides yet another construction that proves Theorem 7.6. Let k be any field of characteristic
different 2 such that there exists a quadric surface Q with no k-points that remains pointless after a
quadratic extension k ′/k. Wittenberg’s construction gives an example over the field k((t)).

Let f be a general rank 2 quadric in P4 that splits over k ′. Then for a general quadric g, the intersection
Q ∩V ( f + tg) is a smooth del Pezzo surface of degree 4 that has index 4 over k((t)). Indeed, the smooth
locus of the special fiber has index 4 by construction, so (for general enough g), the general fiber must
also have index 4. This construction of Wittenberg extends to give complete intersections of n quadrics
with index 2n (over fields of larger transcendence degree).

7D. The index of a degree d del Pezzo surface. The following table gives sharp upper bounds for the
indices of degree d del Pezzo surfaces over local fields, number fields and arbitrary fields of characteristic 0.
The entries in the column d = 4 are a consequence of the results in this paper, while for d ̸= 4, they can
be deduced fairly easily from known results as described below:

d 9 8 7 6 5 4 3 2 1

k arbitrary 3 4 1 6 1 4 [Theorem 7.6] 3 2 1
k a number field 3 2 1 6 1 2 [Theorem 1.1] 3 2 1

k a local field 3 2 1 2 or 3 1 2 [Theorem 1.1] 3 2 1

When d = 9, Y is a Severi–Brauer surface and so the index of Y divides 3 and examples of index 3
exist whenever Br(k) contains an element of order 3.

When d = 8, Y = ResL/k(C) is the restriction of scalars of a conic C/L defined over a degree 2 étale
algebra L/k [Poonen 2017, Proposition 9.4.12]. Since the conic has a point over some quadratic extension
L ′/L , the index of Y divides 4 and over general fields there are examples with index 4. Over local and
global fields however, the index must divide 2. Indeed, in this case C will have a point over a quadratic
extension L ′/L of the form L ′ = k ′⊗k L for some quadratic extension k ′/k. The universal property of
restriction of scalars then gives Y (k ′) ̸=∅, showing that the index divides 2.

When d = 7, Y (k) ̸= ∅ over any field k and so the index is always equal to 1. The same applies to
d = 1, 5; see, e.g., [Poonen 2017, Theorem 9.4.8 and Section 9.4.11].

For d = 6, Y is determined by a Gal(L/k)-stable triple of geometric points on a Severi–Brauer surface
S/L over a quadratic étale algebra L/k such that if S ̸≃ P2

L then the class of S in the Brauer group
does not lie in the image of Br(k)→ Br(L) [Corn 2005]. If k is a local field and L is a quadratic field
extension, then the map Br(k)→ Br(L) is an isomorphism, so either S = P2

L (in which case Y has index
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dividing 2) or L = k× k in which case the index of Y divides 3. One can construct examples of index 6
over number fields, by arranging to have index 2 at one completion and index 3 at another.

For d = 3 and k local, index 1 implies the existence of a k-rational point [Coray 1976], and so a cubic
surface without points over some local field has index 3. This gives examples of index 3 over number
fields as well.

For d = 2, index 2 examples can be obtained by blowing up a degree 4 del Pezzo surface of index 2 at
a quadratic point. By Theorems 1.1 and 1.2, any del Pezzo surface of degree 4 without points over a local
field gives such an example. The surface considered in Section 7B gives an example over a number field.
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We establish a p-adic Simpson correspondence in the spirit of Liu and Zhu for rigid analytic varieties X
over Cp with a liftable good reduction by constructing a new period sheaf on Xproét. To do so, we use the
theory of cotangent complexes described by Beilinson and Bhatt. Then we give an integral decompletion
theorem and complete the proof by local calculations. Our construction is compatible with the previous
works of Faltings and Liu and Zhu.
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1. Introduction

In the theory of complex geometry, for a compact Kähler manifold X , Simpson [1992] established a
tensor equivalence between the category of semisimple flat vector bundles on X and the category of
polystable Higgs bundles with vanishing Chern classes. Nowadays, such a correspondence is known
as nonabelian Hogde theory or the Simpson correspondence. There is a well-established theory of the
Simpson correspondence for smooth varieties in characteristic p > 0 admitting a lifting modulo p2 (see
[Ogus and Vologodsky 2007]). This leads us to ask for a p-adic analogue of Simpson’s correspondence.

The first step is due to Deninger and Werner [2005]. They gave a partial analogue of classical
Narasimhan–Seshadri theory by studying parallel transport for vector bundles of curves. At the same time,
Faltings [2005] constructed an equivalence between the category of small generalised representations
and the category of small Higgs bundles for schemes X0 with toroidal singularities over Ok , the ring of
integers of some p-adic local field k, under a certain deformation assumption. His method was elaborated
and generalised by Abbes, Gros and Tsuji [Abbes et al. 2016] and related to integral p-adic Hodge theory
by Morrow and Tsuji [2020]. When X is a rigid analytic space over k, Liu and Zhu [2017] related a
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Higgs bundle on X ˆ̄k,ét
to each Qp-local system on Xét and proved that the resulting Higgs field must be

nilpotent (see [Liu and Zhu 2017, Theorem 2.1]). Their work was generalised to the logarithmic case in
[Diao et al. 2023b]. However, their Higgs functor is not an equivalence, so it is still open to classify Higgs
bundles coming from representations. For smooth rigid spaces X over ˆ̄k, Heuer [2022] established an
equivalence between the category of one-dimensional ˆ̄k-representations of the fundamental group π1(X)
and the category of pro-finite-étale Higgs bundles. Using his method, Heuer, Mann and Werner [Heuer
et al. 2023] constructed a Simpson correspondence for abeloids over ˆ̄k.

In this paper, we establish an equivalence between the category of small generalised representations
(Definition 5.1) and the category of small Higgs bundles (Definition 5.2) for rigid analytic varieties X with
liftable (see the notation section) good reductions X over OCp in the spirit of the work of Liu and Zhu.
Our construction is global and the main ingredient is a new overconvergent period sheaf OC† endowed
with a canonical Higgs field 2 on Xproét, which can be viewed as a kind of p-adic complete version of
the period sheaf OC due to Hyodo [1989]. The main theorem is stated as follows:

Theorem 1.1 (Theorem 5.3). Assume a ≥ 1/(p− 1). Let X be a liftable smooth formal scheme over OCp

of relative dimension d with the rigid generic fibre X and ν : Xproét→ Xét be the natural projection of
sites. Then there is an overconvergent period sheaf OC† endowed with a canonical Higgs field 2 such
that the following assertions are true:

(1) For any a-small generalised representation L of rank l on Xproét, let 2L := idL⊗2 be the induced
Higgs field on L⊗ÔX

OC†; then Rν∗(L⊗ÔX
OC†) is discrete. Define H(L) := ν∗(L⊗ÔX

OC†) and
θH(L) = ν∗2L. Then (H(L), θH(L)) is an a-small Higgs bundle of rank l.

(2) For any a-small Higgs bundle (H, θH) of rank l on Xét, let 2H := idH⊗2+ θH ⊗ idOC† be the
induced Higgs field on H⊗OX OC† and define

L(H, θH)= (H⊗OX OC†)2H=0.

Then L(H, θH) is an a-small generalised representation of rank l.

(3) The functor L 7→ (H(L), θH(L)) induces an equivalence from the category of a-small generalised
representations to the category of a-small Higgs bundles, whose quasi-inverse is given by (H, θH) 7→
L(H, θH). The equivalence preserves tensor products and dualities and identifies the Higgs complexes

HIG(L⊗ÔX
OC†,2L)≃ HIG(H(L)⊗OX OC†,2H(L)).

(4) Let L be an a-small generalised representation with associated Higgs bundle (H, θH). Then there is
a canonical quasi-isomorphism

Rν∗(L)≃ HIG(H, θH),

where HIG(H, θH) is the Higgs complex induced by (H, θH). In particular, Rν∗(L) is a perfect complex
of OX

[ 1
p

]
-modules concentrated in degree [0, d].
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(5) Assume f : X→Y is a smooth morphism between liftable smooth formal schemes over OCp . Let X̃
and Ỹ be the fixed A2-liftings of X and Y, respectively. Assume f lifts to an A2-morphism f̃ : X̃→ Ỹ.
Then the equivalence in (3) is compatible with the pull-back along f .

Note that when L = ÔX , we get (H(ÔX ), θH(ÔX )
) =

(
OX

[ 1
p

]
, 0

)
. So our result can be viewed as a

generalisation of [Scholze 2013b, Proposition 3.23]. Theorem 1.1(3) also provides a way to compute
the pro-étale cohomology for a small generalised representation L. More precisely, we get a quasi-
isomorphism

R0(Xproét,L)≃ R0(Xét,HIG(H(L), θH(L))).

If, in addition, X is proper, then we get a finiteness result on pro-étale cohomology of small generalised
representations.

Corollary 1.2. Keep the notation as in Theorem 1.1 and assume X is proper. Then for any a-small
generalised representation L, R0(Xproét,L) is concentrated in degree [0, 2d] and has cohomologies as
finite dimensional Cp-spaces.

The overconvergent period sheaf OC† (with respect to a certain lifting of X) has OC as a subsheaf.
Indeed, it is a direct limit of certain p-adic completions of OC. In particular, when X comes from a
scheme X0 over Ok and the generalised representation L comes from a Zp-local system on the rigid
generic fibre X0 of X0, our construction coincides with the work of Liu and Zhu (Remark 5.6). On
the other hand, OC† is related to an obstruction class cl(E+) solving a certain deformation problem
(Remark 2.10 and Proposition 2.14). Since the class cl(E+) is exactly the one used to establish the
Simpson correspondence in [Faltings 2005], our construction is compatible with the works of Faltings
and Abbes, Gros and Tsuji (Remark 5.5). These answer a question appearing in [Liu and Zhu 2017,
Remark 2.5]. Another answer, using a different method, was announced in [Yang and Zuo 2020].

Since we need to take p-adic completions of OC, we have to find its integral models. Note that OC

is a direct limit of symmetric products of Faltings’ extension, which was constructed for varieties by
Faltings [1988] at first and revisited by Scholze [2013a] in the rigid analytic case. So we are reduced to
finding an integral version of Faltings’ extension. To do so, we use the method of cotangent complexes
which was established and developed in [Quillen 1970; Illusie 1971; 1972; Gabber and Ramero 2003],
and was systematically used in the p-adic theory by [Scholze 2012; Beilinson 2012; Bhatt 2012]. The
proof of Theorem 1.1 is based on some explicit local calculations, especially an integral decompletion
theorem (Theorem 3.4) for small representations, which can be regarded as a generalisation of [Diao et al.
2023b, Appendix A].

Notation. Let k be a complete discrete valuation field of mixed characteristics (0, p) with ring of
integers Ok and perfect residue field κ . We normalise the valuation on k by setting νp(p)= 1 and the
associated norm is given by ∥ · ∥ = p−νp( · ). We denote by k0 = Frac(W(κ)) the maximal absolutely
unramified subfield of k. Denote by Dk =Dk/k0 the relative differential ideal of Ok over W(κ).
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Let k̄ be a fixed algebraic closure of k and Cp =
ˆ̄k be its p-adic completion. We denote by OCp (resp.

mCp ) the ring of integers of Cp (resp. the maximal ideal of OCp ). In this paper, when we write pa A for
some OCp -module A, we always assume a ∈Q. An OCp -module M is called almost vanishing if it is
mCp -torsion, and in this case we write Mal

= 0. A morphism f : M → N of OCp -modules is almost
injective (resp. almost surjective) if Ker( f )al

= 0 (resp. Coker( f )al
= 0). A morphism is an almost

isomorphism if it is both almost injective and almost surjective.
We choose a sequence {1, ζp, . . . , ζpn , . . . } such that ζpn is a primitive pn-th root of unity in k̄ satisfying

ζ
p
pn+1 = ζpn for every n ≥ 0. For every α ∈ Z

[ 1
p

]
∩ (0, 1), one can (uniquely) write α = (t (α))/pn(α) with

gcd(t (α), p)= 1 and n(α)≥ 1. Then we define ζ α := ζ t (α)
pn(α) when α ̸= 0 and ζ α := 1 when α = 0.

We always fix an element ρk ∈ Cp with νp(ρk)= νp(Dk)+1/(p−1). Let Ainf,k =W(O
C
♭
p
)⊗W(κ)Ok

be the period ring of Fontaine. Then there is a surjective homomorphism θk :Ainf,k→OCp whose kernel is
a principal ideal by [Fargues and Fontaine 2018, Proposition 3.1.9]. We fix a generator ξk of Ker(θk). For
instance, if k = k0 is absolutely unramified, then we choose ρk = ζp−1 and ξk = ([ϵ]−1)/([ϵ]1/p

−1) for
ϵ= (1, ζp, ζp2, . . . )∈O♭

Cp
. Put A2=Ainf,k/ξ

2
k and denote Fontaine’s p-adic analogue of 2π i by t= log[ϵ].

For a p-adic formal scheme X over OCp , we say it is smooth if it is formally smooth and locally of
topologically finite type. We say X is liftable if it admits a lifting X̃ to Spf(A2). In this paper, we always
assume X is liftable. Let X be the rigid analytic generic fibre of X and denote by ν : Xproét→ Xét the
natural projection of sites. Let Ô+X and ÔX be the completed structure sheaves on Xproét in the sense of
[Scholze 2013a, Definition 4.1]. Both of them can be viewed as OX-algebras via the projection ν.

Let K be an object in the derived category of complexes of Zp-modules. We denote by K̂ the derived
p-adic completion Rlim

←−
n K ⊗Zp Zp/pn . In particular, for a morphism A→ B of Zp-algebras, we denote

the derived p-adic completion of cotangent complex LB/A by L̂B/A. In this paper, for two complexes K1

and K2 of (sheaves of) modules, we write K1 ≃ K2 if they are quasi-isomorphic. For two modules or
sheaves M1 and M2, we write M1 ∼= M2 if they are isomorphic.

Organisation. In Section 2, we construct the integral Faltings’ extension by using p-complete cotangent
complexes and explaining how it is related to deformation theory. At the end of this section we construct
the desired overconvergent sheaf. In Section 3, we prove an integral decompletion theorem for small
representations. In Section 4, we establish a local Simpson correspondence. We first consider the trivial
representation and then reduce the general case to this special case. Finally, in Section 5, we state and
prove our main theorem. The Appendix specifies some notation and includes some elementary facts that
were used in previous sections.

2. Integral Faltings’ extension and period sheaves

We construct the overconvergent period sheaf OC† in this section. To do so, we have to construct an
integral version of Faltings’ extension.

Integral Faltings’ extension. We first discuss the properties of the cotangent complex. The following
lemmas are well known, but for the convenience of readers, we include their proofs here.
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Lemma 2.1. Let A be a ring. Suppose that ( f1, . . . , fn) is a regular sequence in A and generates the
ideal I = ( f1, . . . , fn). Then L(A/I )/A ≃ (I/I 2)[1].

Proof. Regard A as a Z[X1, . . . , Xn]-algebra by mapping X i to fi for every i . Since f1, . . . , fn is a
regular sequence in A, for any i ≥ 1, we have

TorZ[X1,...,Xn]
i (Z, A)= 0.

It follows from [Weibel 1994, 8.8.4] that

L(A/I )/A ≃ LZ/Z[X1,...,Xn]⊗
L
Z[X1,...,Xn]

A.

So we may assume A = Z[X1, . . . , Xn] and I = (X1, . . . , Xn). From homomorphisms Z→ A→ A/I
of rings, we get an exact triangle

LA/Z⊗
L A/I // L(A/I )/Z // L(A/I )/A // .

The middle term is trivial since A/I = Z and hence we deduce that

L(A/I )/A ≃ (LA/Z⊗
L
A Z)[1] ≃ (I/I 2)[1]. □

Lemma 2.2. (1) The map dlog : µp∞→�1
Ok̄/Ok

, ζpn 7→ dζpn/ζpn induces an isomorphism

dlog : k̄/ρ−1
k Ok̄ ⊗Zp(1)→�1

Ok̄/Ok
,

where Zp(1) denotes the Tate twist.

(2) LOk̄/Ok ≃�
1
Ok̄/Ok

[0].

(3) L̂OCp /Ok ≃ (1/ρk)OCp(1)[1].

Proof. (1) This is [Fontaine 1982, Théorème 1’].

(2) This is [Beilinson 2012, Theorem 1.3].

(3) This follows from (1) and (2) after taking derived p-completions on both sides. □

Corollary 2.3. (1) L̂OCp /Ainf,k [−1] ≃ (1/ρk)OCp(1)[0] ≃ ξk Ainf,k/ξ
2
k Ainf,k[0].

(2) L̂OCp /A2 ≃ (1/ρk)OCp(1)[1]⊕ (1/ρ
2
k )OCp(2)[2].

Proof. (1) Considering the morphisms Ok→ Ainf,k→OCp of rings, we have an exact triangle

LAinf,k/Ok ⊗̂
L
Ainf,k

OCp → L̂OCp /Ok → L̂OCp /Ainf,k → .

Since

L̂Ainf,k/Ok ≃ LAinf/W(κ)⊗̂
L
W(κ)Ok = 0,

the first quasi-isomorphism follows from Lemma 2.2(3). Now, the second quasi-isomorphism is straight-
forward from Lemma 2.1.
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(2) Considering the morphisms Ainf,k→ A2→OCp of rings, we have the exact triangle

LA2/Ainf,k ⊗̂
L
A2
OCp → L̂OCp /Ainf,k → L̂OCp /A2 → .

Combining Lemma 2.1 with (1), the above exact triangle reduces to

ξ 2
k Ainf,k/ξ

4
k Ainf,k ⊗A2 OCp [1] → ξk Ainf,k/ξ

2
k Ainf,k[1] → L̂OCp /A2 → .

Now we complete the proof by noting that the first arrow is trivial. □

We identify OCp(1) with OCp t , where t is Fontaine’s p-adic analogue of 2π i . It follows from
Lemma 2.2(1) that the sequence {dlog(ζpn )}n≥0 can be identified with the element t ∈ (1/ρk)OCp(1). If
we regard Ainf,k as a subring of B+dR and identify tB+dR/t2B+dR with Cp(1), then Corollary 2.3 says that t
and ρkξk in Cp(1) differ by a p-adic unit in O×

Cp
.

Remark 2.4. The corollary is still true if one replaces Cp by any closed subfield K ⊂ Cp containing
µp∞ . All results in this paper hold for K instead of Cp.

Now we construct the integral Faltings’ extension in the local case. We fix some notation as follows.
Let X= Spf(R+) be a smooth formal scheme over Spf(OCp) endowed with an étale morphism

□ : X→ Ĝd
m = Spf(OCp⟨T

±1
⟩),

where OCp⟨T
±1
⟩ = OCp⟨T

±1
1 , . . . , T±1

d ⟩. We say X is small in this case. Let X = Spa(R, R+) be the
rigid analytic generic fibre of X and X∞ = Spa(R̂∞, R̂+

∞
) be the affinoid perfectoid space associated to

the base-change of X along the Galois cover

Gd
m,∞ = Spa(Cp⟨T

±
1

p∞ ⟩,OCp⟨T
±

1
p∞ ⟩)→ Gd

m = Spa(Cp⟨T±1
⟩,OCp⟨T

±1
⟩).

Denote by 0 the Galois group of the cover X∞→ X and let γi be in 0 satisfying

γi (T
1

pn

j )= ζ
δi j
pn T

1
pn

j (2-1)

for any 1≤ i, j ≤ d and n ≥ 0. Here, δi j denotes the Kronecker delta. Then 0 ∼= Zpγ1⊕· · ·⊕Zpγd . Let
R̃+ be a lifting of R+ along A2→OCp . Then the morphisms R̃+→ R+→ R̂+

∞
of rings give an exact

triangle of p-complete cotangent complexes

LR+/R̃+⊗̂
L
R+ R̂+

∞
→ L̂R̂+∞/R̃+→ L̂R̂+∞/R+→ . (2-2)

The first term is easy to handle. Indeed, combining [Weibel 1994, 8.8.4] with Corollary 2.3(2), we deduce
that

LR+/R̃+⊗̂
L
R+ R̂+

∞
≃

1
ρk

R̂+
∞
(1)[1]⊕

1
ρ2

k
R̂+
∞
(2)[2].

Now we compute the third term of (2-2).

Lemma 2.5. We have L̂R̂+∞/R+ ≃ �̂
1
R+ ⊗R+ R̂+

∞
[1], where �̂1

R+ denotes the module of formal differentials
of R+ over OCp .
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Proof. Since R+ is étale over OCp⟨T
±1
⟩, thanks to [Bhatt et al. 2018, Lemma 3.14], we are reduced to

the case R+ = OCp⟨T
±1
⟩. For any n ≥ 0, put A+n = OCp [T

±
1

pn
] and define A+

∞
= lim
−−→n A+n . Since all

rings involved are p-torsion free, we get

L̂R̂+∞/R+ ≃ L̂A+∞/A+0
.

By [Illusie 1971, Chapitre II(1.2.3.4)], we see that

LA+∞/A+0
= lim
−−→

n
LA+n /A+0

.

Since all A+n ’s are smooth over OCp , from the exact triangle

LA+0 /OCp
⊗

L
A+0

A+n → LA+n /OCp
→ LA+n /A+0

→,

we deduce that
LA+n /A+0

≃ A+n ⊗A+0

1
pn�

1
A+0
/�1

A+0
[0],

where we identify �1
A+n

with A+n ⊗A+0
(1/pn)�1

A+0
. Therefore, we get

LA+∞/A+0
≃ A+

∞
⊗A+0

�1
A+0
⊗Zp (Qp/Zp)[0].

Now the result follows by taking p-completions. □

Since R+ admits a lifting R̃+ to A2, the composition

L̂R̂+∞/R+ ≃ L̂A2(R̂+∞)/R̃+⊗̂
L
A2(R̂+∞)

R̂+
∞
→ L̂R̂+∞/R̃+

defines a section of L̂R̂+∞/R̃+ → L̂R̂+∞/R+ . Since the exact triangle (2-2) is 0-equivariant, by taking
cohomologies along (2-2), we get the following proposition.

Proposition 2.6. There exists a 0-equivariant short exact sequence of R̂+
∞

-modules

0→
1
ρk

R̂+
∞
(1)→ E+→ R̂+

∞
⊗R+ �̂

1
R+→ 0, (2-3)

where E+ = H−1(̂LR̂+∞/R̃+). The above exact sequence admits a (non-0-equivariant) section such that
E+ ∼= (1/ρk)R̂+∞(1)⊕ R̂+

∞
⊗R+ �̂

1
R+ as R̂+

∞
-modules.

Remark 2.7. When R+ is the base-change of some formal smooth Ok-algebra R+0 of topologically finite
type along Ok→OCp , it admits a canonical lifting R̃+ = R+0 ⊗̂Ok A2. After inverting p, the resulting E+

becomes the usual Faltings’ extension and the corresponding sequence (2-3) is even Gal(k̄/k)-equivariant.

We describe the 0-action on E+. For any 1≤ i ≤d , by the proof of Lemma 2.5, the compatible sequence
{dlog(T 1/pn

i )}n≥0 defines an element xi ∈ E+, which goes to dlog Ti via the projection E+→ R̂+
∞
⊗R+ �̂

1
R+ .

Since 0 acts on Ti ’s via (2-1), we deduce that, for any 1≤ i, j ≤ d ,

γi (x j )= x j + δi j .

In summary, we have the following proposition.
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Proposition 2.8. The R̂+
∞

-module E+ is free of rank d + 1 and has a basis t/ρk , x1, . . . , xd such that

(1) for any 1≤ i ≤ d , xi is a lifting of dlog(Ti ) ∈ R̂+
∞
⊗R+ �̂

1
R+ and that

(2) for any 1≤ i, j ≤ d , γi (x j )= x j + δi j t .

Also, let c : 0→ HomR+
(
�̂1

R+, (1/ρk)R̂+∞(1)
)

be the map carrying γi to c(γi ), which sends dlog(T j )

to δi j t . Then the cocycle determined by c in H1
(
0,HomR+(�̂

1
R+, (1/ρk)R̂+∞(1))

)
coincides with the

extension class represented by E+ in Ext10(R̂
+
∞
⊗R+ �̂

1
R+, (1/ρk)R̂+∞(1)) via the canonical isomorphism

H1
(
0,HomR+

(
�̂1

R+,
1
ρk

R̂+
∞
(1)

))
∼= Ext10

(
R̂+
∞
⊗R+ �̂

1
R+,

1
ρk

R̂+
∞
(1)

)
.

Proof. It remains to prove the “also” part. By (1), the extension class of E+ is represented by the cocycle

f : 0→ HomR̂+∞

(
R̂+
∞
⊗R+ �̂

1
R+,

1
ρk

R̂+
∞
(1)

)
∼= HomR+

(
�̂1

R+,
1
ρk

R̂+
∞
(1)

)
such that f (γ )(dlog(Ti ))= γ (xi )− xi for any γ ∈ 0 and any i . However, by (2), f is exactly c. We are
done. □

Now we extend the above construction to the global case. Let X be a smooth formal scheme over OCp

with a fixed lifting X̃ to A2. Denote by X its rigid analytic generic fibre over Cp. We regard both OX and
OX̃ as sheaves on Xproét via the projection ν : Xproét→ Xét (note that X and X̃ have the same étale site).
Considering morphisms of sheaves of rings OX̃→OX→ Ô+X , we get an exact triangle

LOX/OX̃
⊗̂

L
OX

Ô+X → L̂Ô+X /OX̃
→ LÔ+X /OX

→ . (2-4)

Similar to the local case, the first term becomes

LOX/OX̃
⊗̂

L
OX

Ô+X ≃ LOCp /A2 ⊗
L
OCp

Ô+X
and the composition

L̂Ô+X /OX̃
≃ L̂A2(Ô+X )/OX̃

⊗̂
L
A2(Ô+X )

Ô+X → L̂Ô+X /OX̃

defines a section of L̂Ô+X /OX̃
→ LÔ+X /OX

.
We claim that

L̂Ô+X /OX
≃ Ô+X ⊗OX �̂

1
X[1]. (2-5)

Granting this and taking cohomologies along (2-4), we get the following theorem.

Theorem 2.9. There is an exact sequence of sheaves of Ô+X -modules

0→
1
ρk

Ô+X (1)→ E+→ Ô+X ⊗OX �̂
1
X→ 0, (2-6)

where E+ = H−1(̂LÔ+X /OX̃
).
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Remark 2.10. Apply RHom(−, (1/ρk)Ô+X (1)) to the exact triangle (2-4) and consider the induced long
exact sequence

· · · → Ext1
(

L̂OX/OX̃
⊗̂OXÔ

+

X ,
1
ρk

Ô+X (1)
)

∂
→ Ext2

(
L̂Ô+X /OX

,
1
ρk

Ô+X (1)
)
→ · · ·

and the commutative diagram

Ext1
(̂
LOX/OX̃

⊗̂OXÔ
+

X ,
1
ρk
Ô+X (1)

)
∼=

��

∂
// Ext2

(̂
LÔ+X /OX

, 1
ρk
Ô+X (1)

)
∼=

��

Hom
( 1
ρk
OX(1), 1

ρk
Ô+X (1)

) ∂
// Ext1

(
Ô+X ⊗OX �̂

1
OX
, 1
ρk
Ô+X (1)

)
Then the extension class [E+] associated to E+ is the image of the natural inclusion (1/ρk)OX(1)→
(1/ρk)Ô+X (1) via the connecting map ∂ . By construction, it is the obstruction class to lift Ô+X (as a sheaf
of OX-algebras) to a sheaf of OX̃-algebras in the sense of [Illusie 1971, III Proposition 2.1.2.3]. In
particular, E+ depends on the choice of X̃. When X comes from a smooth formal scheme X0 over Ok

and X̃ is the base-change of X0 along Ok→ A2, the E+ coincides with the usual Faltings’ extension after
inverting p. So we call E+ the integral Faltings’s extension (with respect to the lifting X̃).

It remains to prove the claim (2-5).

Lemma 2.11. With the notation as above, we have

L̂Ô+X /OX
≃ Ô+X ⊗OX �̂

1
X.

Proof. Since the problem is local on Xproét, by the proof of [Scholze 2013a, Corollary 4.7], we may assume
X = Spf(R) is small and are reduced to showing, for any perfectoid affinoid space U = Spa(S, S+) ∈
Xproét/X∞,

L̂S+/R+ ≃ S+⊗R+ �̂
1
R+ . (2-7)

Since both S+ and R̂+
∞

are perfectoid rings, by [Bhatt et al. 2018, Lemma 3.14], we have a quasi-
isomorphism

L̂R̂+∞/R+⊗̂R̂+∞S+→ L̂S+/R+ .

Combining this with Lemma 2.5, we get (2-7) as desired. □

Faltings’ extension as obstruction class. In this subsection, we shall give another description of the
integral Faltings’ extension from the perspective of deformation theory. To make the notation clear, in
this subsection, for a sheaf S of A2-algebras, we always identify ξk A2 with (1/ρk)S(1). Before moving
on, we recall some basic results due to Illusie. Although their statements are given in terms of rings, all
results still hold for ring topoi.

Let A be a ring with an ideal I ◁ A satisfying I 2
= 0. Put A = A/I and fix a flat A-algebra B. A

natural question is whether there exists a flat A-algebra B whose reduction modulo I is B.
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Theorem 2.12 [Illusie 1971, III Proposition 2.1.2.3]. There is an obstruction class cl∈Ext2(LB/A, B⊗A I )
such that B lifts to some flat A-algebra B if and only if cl= 0. In this case, the set of isomorphism classes
of such deformations forms a torsor under Ext1(LB/A, B⊗A I ) and the group of automorphisms of a fixed
deformation is Hom(LB/A, B⊗A I ).

If B and C are flat A-algebras with reductions B and C , respectively, and if f̄ : B→ C is a morphism
of A-algebras, then one can ask whether there exists a deformation f : B→ C of f̄ along A→ A.

Theorem 2.13 [Illusie 1971, III Proposition 2.2.2]. There is an obstruction class cl ∈ Ext1(LB/A,C⊗A I )
such that f̄ lifts to a morphism f : B→ C if and only if cl = 0. In this case, the set of all lifts forms a
torsor under Hom(LB/A,C ⊗A I ).

We only focus on the case where (A, I )= (A2, (ξ)). Let X be a smooth formal scheme over OCp and
denote by

ob(X) ∈ Ext2
(

L̂OX/OCp
,

1
ρk
OX(1)

)
the obstruction class to lift X to a flat A2-scheme (see, for example, [Illusie 1971, III Théorème 2.1.7]).
Consider the exact triangle

LOCp /A2⊗̂
L
OCp

OX→ L̂OX/A2 → L̂OX/OCp

and the induced long exact sequence

· · · → Ext1
(

L̂OX/A2,
1
ρk
OX(1)

)
→ Ext1

(
LOCp /A2⊗̂

L
OCp

OX,
1
ρk
OX(1)

)
∂
→ Ext2

(
L̂OX/OCp

,
1
ρk
OX(1)

)
→ · · · .

The obstruction class ob(X) is the image of the identity morphism of (1/ρk)OX(1) under ∂ via the
canonical isomorphism

Ext1
(

LOCp /A2⊗̂
L
OCp

OX,
1
ρk
OX(1)

)
∼= Hom

(
1
ρk
OX(1),

1
ρk
OX(1)

)
.

If X is also liftable and X̃ is such a lifting, then ob(X)= 0 and X̃ defines a class

[X̃] ∈ Ext1
(

L̂OX/A2,
1
ρk
OX(1)

)
which goes to the identity map of (1/ρk)OX(1). Indeed, [X̃] is the image of the identity map of
(1/ρk)OX(1) via the morphism

Ext1
(

L̂OX/OX̃
,

1
ρk
OX(1)

)
→ Ext1

(
L̂OX/A2,

1
ρk
OX(1)

)
.

We also consider the similar deformation problem for Ô+X . Since Ô+X is locally perfectoid, thanks to
[Bhatt et al. 2018, Lemma 3.14], L̂Ô+X /OCp

= 0 and hence we get a quasi-isomorphism

LOCp /A2⊗̂
L
OCp

Ô+X ≃ L̂Ô+X /A2
.
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In particular, we have an isomorphism

Ext1
(

L̂Ô+X /A2
,

1
ρk

Ô+X (1)
)
∼= Hom

(
1
ρk

Ô+X (1),
1
ρk

Ô+X (1)
)
.

Therefore, Ô+X admits a canonical lifting, which turns out to be A2(Ô+X ) and there is a unique class

[X ] ∈ Ext1
(

L̂Ô+X /A2
,

1
ρk

Ô+X (1)
)

corresponding to the identity map of (1/ρk)Ô+X (1).
Regard [X̃] and [X ] as classes in Ext1(̂LOX/A2, (1/ρk)Ô+X (1)) via the canonical morphisms induced

by (1/ρk)OX(1)→ (1/ρk)Ô+X (1) and L̂OX/A2 → L̂Ô+X /A2
, respectively. Then as shown in [Illusie 1971,

III Proposition 2.2.4], the difference

cl(E+) := [X̃] − [X ]

belongs to

Ext1
(

L̂OX/OCp
,

1
ρk

Ô+X (1)
)
∼= Ext1

(
�̂1

OX/OCp
⊗OX Ô+X ,

1
ρk

Ô+X (1)
)

via the injection

Ext1
(

L̂OX/OCp
,

1
ρk

Ô+X (1)
)
→ Ext1

(
L̂OX/A2,

1
ρk

Ô+X (1)
)
,

and cl(E+) is the obstruction answering whether there is an A2-morphism from OX̃ to A2(Ô+X ) which
lifts the OCp -morphism OX→ Ô+X as described in Theorem 2.13.

Recall we have another obstruction class [E+] described in Remark 2.10. We claim that it coincides
with the class cl(E+) constructed above.

Proposition 2.14. cl(E+)= [E+].

Proof. Note that we have a commutative diagram of morphisms of cotangent complexes

LOX̃/A2⊗̂
L
OX̃

Ô+X // LOX/A2⊗̂
L
OX

Ô+X

β

��

α
// LOX/OX̃

⊗̂
L
OX

Ô+X
+1
//

��

LOX̃/A2⊗̂
L
OX̃

Ô+X //

≃

−1
''

L̂Ô+X /A2

��

// L̂Ô+X /OX̃

��

+1
//

L̂Ô+X /OX

+1
��

L̂Ô+X /OX

+1
��

(2-8)

where the notation “+1” and “−1” denote the shifts of dimensions.
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Consider the resulting diagram from applying RHom(−, (1/ρk)Ô+X (1)) to (2-8). Denote the identity
map of (1/ρk)Ô+X (1) by id. By construction, [E+] is the image of id via the connecting map induced by
the triangle

LOX/OX̃
⊗̂

L
OX

Ô+X → L̂Ô+X /OX̃
→ L̂Ô+X /OX

.

By the commutativity of diagram (2-8), [E+] is also the image of α∗(id) via the connecting map ∂ induced
by the triangle

LOX/A2⊗̂
L
OX

Ô+X → L̂Ô+X /A2
→ L̂Ô+X /OX

.

On the other hand, by the constructions of [X̃] and [X ], as elements in

Ext1
(

LOX/A2⊗̂
L
OX

Ô+X ,
1
ρk

Ô+X (1)
)
,

we have [X̃] = α∗(id) and [X ] = β∗(id); here, for the second equality, we identify

Hom
(

1
ρk

Ô+X (1),
1
ρk

Ô+X (1)
)
= Ext1

(
L̂OCp /A2⊗̂

L
OCp

Ô+X ,
1
ρk

Ô+X (1)
)

with Ext1(̂LÔ+X /A2
⊗̂

L
OCp

Ô+X , (1/ρk)Ô+X (1)). So we have

cl(E+)= α∗(id)−β∗(id) ∈ Ext1
(

LOX/A2⊗̂
L
OX

Ô+X ,
1
ρk

Ô+X (1)
)
.

However, the diagram

L̂A2(Ô+X )/OX̃

��

+1
// LOX̃/A2⊗̂

L
OX̃

Ô+X

��

L̂Ô+X /OX

+1
// LOX/A2⊗̂

L
OX̃

Ô+X // LOX/OCp
⊗̂

L
OX

Ô+X

induces a commutative diagram

Ext1
(
LOX/OCp

⊗̂
L
OX

Ô+X ,
1
ρk
Ô+X (1)

) ⊂
//

∼=

++

Ext1
(
LOX/A2⊗̂

L
OX

Ô+X ,
1
ρk
Ô+X (1)

)
∂

��

Ext2
(

L̂Ô+X /OX
, 1
ρk
Ô+X (1)

)
In particular, as elements in Ext1(LOX/OCp

⊗̂
L
OX

Ô+X , (1/ρk)Ô+X (1)), we have

cl(E+)= ∂(α∗(id)−β∗(id))= ∂(α∗(id))= [E+] □

Remark 2.15. When X is small affine and comes from a formal scheme over Ok , the obstruction class
cl(E+) was considered as a Higgs–Tate extension associated to X̃ in [Abbes et al. 2016, I. 4.3].
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Example 2.16. Let R+ = OCp⟨T
±1
⟩ and R̃+ = A2⟨T±1

⟩ for simplicity. Consider the A2-morphism
ψ̃ : R̃+→ A2(R̂+∞), which sends Ti to [T ♭

i ] for all i , where T ♭
i ∈ R̂♭+∞ is determined by the compatible

sequence (T 1/pn

i )n≥0. Then ψ̃ is a lifting of the inclusion R+ → R̂+
∞

, but is not 0-equivariant. For
any γ ∈ 0, γ ◦ ψ̃ is another lifting. By Theorem 2.13, their difference c(γ ) := γ ◦ ψ̃ − ψ̃ belongs to
HomR+(�̂

1
R+, (1/ρk)R̂+∞(1)). One can check that, for any 1≤ i, j ≤ 1,

c(γi )(dlog(T j ))=
(γi − 1)([T ♭

j ])

T j
= δi j ([ϵ] − 1)= δi j t,

where the last equality follows from the fact that [ϵ] − 1 − t ∈ t2B+dR. By construction, the cocycle
c : 0→ HomR+(�̂

1
R+, (1/ρk)R̂+∞(1)) is exactly the class cl(E+). Comparing this with Proposition 2.8,

we deduce that cl(E+)= [E+] in this case.

As an application of Proposition 2.14, we study the behaviour of integral Faltings’ extension under the
pull-back.

Let f : X→Y be a formally smooth morphism of liftable smooth formal schemes. Fix liftings X̃ and
Ỹ of X and Y, respectively. Denote by E+X and E+Y the corresponding integral Faltings’ extensions. Then
the pull-back of E+X along the injection

f ∗�̂1
Y⊗OX Ô+X → �̂1

X⊗OX Ô+X

defines an extension E+1 of �̂1
Y⊗OY Ô+X ∼= f ∗�̂1

Y⊗OX Ô+X by (1/ρk)Ô+X (1).1 We denote its extension
class by

cl1 ∈ Ext1
(
�̂1

Y⊗OY Ô+X ,
1
ρk

Ô+X (1)
)
.

On the other hand, the tensor product E+2 = E+Y ⊗Ô+Y
Ô+X induced by applying −⊗Ô+Y

Ô+X to

0→
1
ρk

Ô+Y (1)→ E+Y → Ô+Y ⊗OY �̂
1
Y→ 0

is also an extension of �̂1
Y⊗OY Ô+X by (1/ρk)Ô+X (1) and we denote the associated extension class by

cl2 ∈ Ext1
(
�̂1

Y⊗OY Ô+X ,
1
ρk

Ô+X (1)
)
.

Then it is natural to ask whether E+1 ∼= E+2 (equivalently, cl1 = cl2).

Proposition 2.17. Keep the notation as above. If f : X→Y lifts to an A2-morphism f̃ : X̃→ Ỹ, then
cl1 = cl2.

We are going to prove this proposition in the rest of this subsection.

1Here, the tensor product �̂1
Y⊗OY

Ô+X should be understood as f −1�̂1
Y⊗ f −1OY

Ô+X . The same applies to sheaves like
O+X ⊗Ô+Y

E+Y , Ô+X ⊗Ô+Y
OC+Y,ρ , Ô+X ⊗Ô+Y

OĈ+Y,ρ , Ô+X ⊗Ô+Y
OC

†,+
Y,ρ .
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By Theorem 2.13, there exists an obstruction class

cl( f ) ∈ Ext1
(

L̂OY/OCp
,

1
ρk
OX(1)

)
to lift f along the surjection A2→OCp . Before moving on, let us recall the definition of cl( f ).

Let [X̃] and [Ỹ] be classes defined as before and regard them as elements in Ext1(̂LOY/A2, (1/ρk)OX(1))
via the obvious morphisms. Then similar to the construction of cl(E+), one can check that

cl( f )= [X̃] − [Ỹ]

via the injection
Ext1

(
L̂OY/OCp

,
1
ρk
OX(1)

)
→ Ext1

(
L̂OY/A2,

1
ρk
OX(1)

)
.

For simplicity, we still denote by cl( f ) its image in

Ext1
(

L̂OY/OCp
,

1
ρk
Ô+X (1)

)
∼= Ext1

(
�̂1

Y⊗OY Ô+X ,
1
ρk
Ô+X (1)

)
via the natural map (1/ρk)OX(1)→ (1/ρk)Ô+X (1). Then the following proposition is true.

Proposition 2.18. cl( f )= cl1− cl2.

Proof. By the constructions of E+1 and E+2 , we see that cl1 is the image of cl(E+X ) via the morphism

Ext1
(
�̂1

X,
1
ρk
Ô+X (1)

)
→ Ext1

(
�̂1

Y⊗OY OX,
1
ρk
Ô+X (1)

)
induced by

LOY/OCp
⊗̂

L
OY

OX→ L̂OX/OCp
,

and that cl2 is the image of cl(E+Y ) via the morphism

Ext1
(
�̂1

Y⊗OY Ô+Y ,
1
ρk
Ô+Y (1)

)
→ Ext1

(
�̂1

Y⊗OY Ô+X ,
1
ρk
Ô+X (1)

)
induced by the inclusion (1/ρk)Ô+Y (1)→ (1/ρk)Ô+X (1).

Now by Proposition 2.14, we have

cl1− cl2 = cl(E+X )− cl(E+Y )= ([X̃] − [Ỹ])− ([X ] − [Y ]).

However, the inclusion Ô+Y → Ô+X admits a canonical A2-lifting, namely A2(Ô+Y )→ A2(Ô+X ). So we
deduce that [X ] − [Y ] = 0, which completes the proof. □

Now, Proposition 2.17 is a special case of Proposition 2.18.

Corollary 2.19. Assume f :X→Y admits a lifting along A2→OCp . Then there is an exact sequence of
sheaves of Ô+X -modules

0→ Ô+X ⊗Ô+Y
E+Y → E+X → Ô+X ⊗OX �̂

1
X/Y→ 0, (2-9)

where �̂1
X/Y is the module of relative differentials.

Proof. This follows from the Proposition 2.17 combined with the definitions of E+1 and E+2 . □
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Period sheaves. Now, we define the desired period sheaf OC† as mentioned in Section 1. The construction
generalises the previous work of Hyodo [1989].

Let X= Spf(R+) be a small smooth formal scheme and X̃= Spf(R̃+) be a fixed A2-lifting. Let E+

be the integral Faltings’ extension introduced in Proposition 2.6. Define E+ρk
= ρk E+(−1). Then it fits

into the exact sequence

0→ R̂+
∞
→ E+ρk

→ ρk R̂+
∞
⊗R+ �̂

1
R+(−1)→ 0.

For any ρ ∈ ρkOCp , denote by E+ρ the pull-back of E+ρk
along the inclusion

ρ R̂+
∞
⊗R+ �̂

1
R+(−1)→ ρk R̂+

∞
⊗R+ �̂

1
R+(−1).

Then it fits into the 0-equivariant exact sequence

0→ R̂+
∞
→ E+ρ → ρ R̂+

∞
⊗R+ �̂

1
R+(−1)→ 0. (2-10)

By Proposition 2.8, E+ρ admits an R̂+
∞

-basis 1, (ρx1)/t, . . . , (ρxd)/t . Let E = E+ρ
[ 1

p

]
, which fits into

the induced exact sequence

0→ R̂∞→ E→ R̂∞⊗R+ �̂
1
R+(−1)→ 0.

Then it is independent of the choice of ρ and has E+ρ as a sub-R̂+
∞

-module. Also, it admits an R̂∞-basis

1, y1 =
x1

t
, . . . , yd =

xd

t
such that γi (y j )= y j + δi j for any 1≤ i, j ≤ d . Define S∞ = lim

−−→n Symn
R̂∞

E . Then by similar arguments
used in [Hyodo 1989, Section I], we have the following result.

Proposition 2.20. There exists a canonical Higgs field

2 : S∞→ S∞⊗R̂∞ �̂
1
R+(−1)

on S∞ such that the induced Higgs complex is a resolution of R̂∞. The Higgs field 2 is induced by taking
alternative sum along the projection E→ R̂∞⊗R+ �̂

1
R+(−1) and if we denote by Yi the image of yi in S∞,

then there is a 0-equivariant isomorphism

ι : S∞
∼=
−→ R̂∞[Y1, . . . , Yd ]

such that2=
∑d

i=1(∂/∂Yi )⊗((dlog Ti )/t) via this isomorphism, where R̂∞[Y1, . . . , Yd ] is the polynomial
ring on free variables Yi ’s over R̂∞.

Since we have R̂+
∞

-lattices E+ρ ’s of E , inspired by Proposition 2.20, we make the following definition.

Definition 2.21. For any ρ ∈ ρkOCp , define

(1) S+
∞,ρ = lim

−−→n Symn
R̂+∞

E+ρ ;

(2) Ŝ+
∞,ρ = lim

←−−n S+
∞,ρ/pn;

(3) S†,+
∞
= lim
−−→νp(ρ)>νp(ρk)

Ŝ+
∞,ρ and S†

∞
= S†,+
∞

[ 1
p

]
.
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For any ρ1, ρ2 ∈ ρkOCp satisfying νp(ρ1) ≥ νp(ρ2), we have E+ρ1
⊂ E+ρ2

⊂ E . So Proposition 2.20
implies that S+

∞,ρ1
⊂ S+
∞,ρ2
⊂ S∞. Moreover, the restriction of 2 to S+

∞,ρ (for ρ ∈ ρkOCp ) induces a
Higgs field on S+

∞,ρ , which is identified with R̂+
∞
[ρY1, . . . , ρYd ] via the canonical isomorphism ι. In this

case, we still have 2=
∑d

i=1(∂/∂Yi )⊗ ((dlog Ti )/t). Since 2 is continuous, it extends to Ŝ+
∞,ρ and thus

we have the following corollary.

Corollary 2.22. For any ρ ∈ ρkOCp , there exists a canonical Higgs field

2 : Ŝ+
∞,ρ→ Ŝ+

∞,ρ ⊗R̂+∞ �̂
1
R+(−1)

on Ŝ+
∞,ρ . Additionally, there is a 0-equivariant isomorphism

ι : Ŝ+
∞,ρ

∼=
−→ R̂+

∞
⟨ρY1, . . . , ρYd⟩

such that

2=

d∑
i=1

∂

∂Yi
⊗

dlog Ti

t

via this isomorphism, where R̂+
∞
⟨ρY1, . . . , ρYd⟩ is the p-adic completion of R̂+

∞
[ρY1, . . . , ρYd ].

After taking the inductive limit of {ρ ∈ ρkOCp |νp(ρ) > νp(ρk)}, we get the following corollary.

Corollary 2.23. There exists a canonical Higgs field

2 : S†,+
∞
→ S†,+

∞
⊗R̂+∞ �̂

1
R+(−1)

on S†,+
∞

. Additionally, there is a 0-equivariant isomorphism

ι : S†,+
∞

∼=
−→ lim

−−→
νp(ρ)>νp(ρk)

R̂+
∞
⟨ρY1, . . . , ρYd⟩

such that 2=
∑d

i=1(∂/∂Yi )⊗ ((dlog Ti )/t) via this isomorphism. After inverting p, the induced Higgs
complex

HIG(S†
∞
,2) : S†

∞

2
−→ S†

∞
⊗R+ �̂

1
R+(−1) 2

−→ S†
∞
⊗R+ �̂

2
R+(−2)→ · · · (2-11)

is a resolution of R̂∞.

Proof. It remains to prove the Higgs complex HIG(S†
∞
,2) is a resolution of R̂∞. For any ρ ∈ ρkOCp ,

consider the Higgs complexes

HIG(Ŝ+
∞,ρ,2) : Ŝ+

∞,ρ
2
−→ Ŝ+

∞,ρ ⊗R+ �̂
1
R+(−1) 2

−→ Ŝ+
∞,ρ ⊗R+ �̂

2
R+(−2)→ · · ·

and
HIG(S†,+

∞
,2) : S†,+

∞

2
−→ Ŝ†,+

∞
⊗R+ �̂

1
R+(−1) 2

−→ S†,+
∞
⊗R+ �̂

2
R+(−2)→ · · · .

Then we have

HIG(S†
∞
,2)= HIG(S†,+

∞
,2)

[
1
p

]
= lim

−−→
νp(ρ)>νp(ρk)

HIG(Ŝ+
∞,ρ,2)

[
1
p

]
.
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By Corollary 2.22, HIG(Ŝ+
∞,ρ,2) is computed by the Koszul complex

K
(

R̂+
∞
⟨ρY1, . . . , ρYd⟩;

∂

∂Y1
, . . . ,

∂

∂Yd

)
≃ K

(
R̂+
∞
⟨ρY1⟩;

∂

∂Y1

)
⊗̂

L
R̂+∞
· · · ⊗̂

L
R̂+∞

K
(

R̂+
∞
⟨ρYd⟩;

∂

∂Yd

)
,

via the canonical isomorphism ι. Note that, for any j ,

Hi
(

K
(

R̂+
∞
⟨ρY j ⟩;

∂

∂Y j

))
=


R̂+
∞
, i = 0,

R̂+
∞
⟨3 j,ρ⟩/R̂+

∞
⟨3 j,ρ, I,+⟩, i = 1,

0, i ≥ 2,

is derived p-complete by Proposition A.2, where R̂+
∞
⟨3 j,ρ⟩ and R̂+

∞
⟨3 j,ρ, I,+⟩ are defined as in

Definition A.1 for 3 j,ρ = {ρ
nY n

j }n≥0 and I = {νp(n+ 1)}n≥0. We deduce that, for any i ≥ 0,

Hi
(

K
(

R̂+
∞
⟨ρY1, . . . ,ρYd⟩;

∂

∂Y1
, . . . ,

∂

∂Yd

))
=

i∧̂
R+∞

( d⊕
j=1

R̂+
∞
⟨3 j,ρ⟩/R̂+

∞
⟨3 j,ρ, I,+⟩

)
.

In particular, we get

H0(HIG(S†,+
∞
,2))= lim

−−→
νp(ρ)>νp(ρk)

H0(HIG(Ŝ+
∞,ρ,2))= R̂+

∞
.

It remains to show that, for any i ≥ 1,

lim
−−→

νp(ρ)>νp(ρk)

Hi (HIG(Ŝ+
∞,ρ,2))

∼= lim
−−→

νp(ρ)>νp(ρk)

i∧̂
R+∞

( d⊕
j=1

R̂+
∞
⟨3 j,ρ⟩/R̂+

∞
⟨3 j,ρ, I,+⟩

)
is p∞-torsion. To do so, it suffices to prove that for any νp(ρ1) > νp(ρ2) > νp(ρk), there is an N ≥ 0
such that

pN R̂+
∞
⟨3 j,ρ1⟩ ⊂ R̂+

∞
⟨3 j,ρ2, I,+⟩.

By Remark A.3, we only need to find an N such that the following conditions hold:

(1) For any i ≥ 0, N + iνp(ρ1)− iνp(ρ2)− νp(i + 1)≥ 0.

(2) limi→+∞(N + iνp(ρ1)− iνp(ρ2)− νp(i + 1))=+∞.

Since νp(ρ1) > νp(ρ2), such an N exists. This completes the proof. □

Remark 2.24. (1) In the proof of Corollary 2.23, we have seen that for any ρ ∈ ρkOCp , the Higgs
complex HIG

(
S+
∞,ρ

[ 1
p

]
,2

)
is not a resolution of R̂∞.

(2) For any 1≤ i ≤ d , the p∞-torsion of Hi (HIG(S†,+
∞
,2)) is unbounded.

Remark 2.25. Since for any 1≤ i, j ≤ d, γi (Y j )= Y j + δi j , one can check that ∂/∂Yi = log γi on S†
∞

.
So the Higgs field is 2=

∑d
i=1 log γi ⊗ ((dlog Ti )/t).

Remark 2.26. A similar local construction of S†,+
∞

also appeared in [Abbes et al. 2016, I.4.7].
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There is a global analogue by using Theorem 2.9 instead of Proposition 2.6. Put E+ρk
= ρkE+(−1) and

for any ρ ∈ ρkOCp , denote by E+ρ the pull-back of E+ρk
along the inclusion

ρÔ+X ⊗OX �̂
1
X(−1)→ ρkÔ+X ⊗OX �̂

1
X(−1).

Then it fits into the exact sequence

0→ Ô+X → E+ρ → ρÔ+X ⊗OX �̂
1
X(−1)→ 0. (2-12)

As an analogue of Definition 2.21 in the local case, we define period sheaves as follows:

Definition 2.27. For any ρ ∈ ρkOCp , define

(1) OC+ρ = lim
−−→n Symn

Ô+X
E+ρ ;

(2) OĈ+ρ = lim
←−−n OC+ρ /pn;

(3) OC†,+
= lim
−−→νp(ρ)>νp(ρk)

OĈ+ρ and OC†
=OC†,+

[ 1
p

]
.

Theorem 2.28. There is a canonical Higgs field 2 on OC†,+ such that the induced Higgs complex

HIG(OC†,2) : OC† 2
−→OC†

⊗OX �̂
1
X(−1) 2

−→OC†
⊗OX �̂

2
X(−2)→ · · · (2-13)

is a resolution of ÔX . Additionally, when X= Spf(R+) is small affine, there is an isomorphism

ι :OC
†,+
|X∞→ lim

−−→
νp(ρ)>νp(ρk)

Ô+X ⟨ρY1, . . . , ρYd⟩|X∞

such that the Higgs field 2 equals
∑d

i=1(∂/∂Yi )⊗ ((dlog Ti )/t).

Proof. Since the problem is local, we are reduced to Corollary 2.23. □

Finally, we describe the relative version of the above constructions. We assume that f : X→ Y

is a morphism of liftable smooth formal schemes and lifts to an A2-morphism f̃ : X̃→ Ỹ. Then by
Corollary 2.19, for any ρ ∈ ρkOCp , we have the exact sequence

0→ Ô+X ⊗Ô+Y
E+ρ,Y → E+ρ,X → Ô+X ⊗OX �̂

1
X/Y(−1)→ 0.

By construction of period sheaves in Definition 2.27, we get morphisms of sheaves Ô+X ⊗Ô+Y
FY → FX

for F ∈ {OC+ρ ,OĈ+ρ ,OC†,+
}. Also, the natural projection E+ρ,X → Ô+X ⊗OX �̂

1
X/Y(−1) induces relative

Higgs fields

2X/Y : FX → FX ⊗OX �̂
1
X/Y(−1)

for F ∈ {OC+ρ ,OĈ+ρ ,OC†,+
}. Using similar arguments as above, we get the following proposition.

Proposition 2.29. Assume that f : X→Y is a morphism of liftable smooth formal schemes and lifts to
an A2-morphism f̃ : X̃→ Ỹ. The induced relative Higgs complex

HIG(OC
†
X ,2X/Y ) : OC

†
X
2X/Y
−−→OC

†
X ⊗OX

�̂1
X/Y(−1) 2X/Y

−−→OC
†
X ⊗OX

�̂2
X/Y(−2)→ · · ·
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is a resolution of lim
−−→ρ,νp(ρ)>νp(ρk)

(Ô+X ⊗̂Ô+Y
OĈ+ρ,Y )

[ 1
p

]
and makes the diagram

f ∗OC
†
Y

f ∗2Y
//

��

f ∗OC
†
Y ⊗OY �̂

1
Y(−1)

��

// · · ·

OC
†
X

2X
//

2X/Y

��

OC
†
X ⊗OX �̂

1
X(−1) //

2X/Y

��

· · ·

OC
†
X ⊗OX �̂

1
X/Y(−1)

��

2X/Y
// OC

†
X ⊗OX �̂

2
X/Y(−2) //

��

· · ·

...
...

(2-14)

commute, where f ∗OC
†
Y = ÔX ⊗ÔY

OC
†
Y and f ∗2Y = id⊗2Y .

Proof. Put C := lim
−−→ρ,νp(ρ)>νp(ρk)

(Ô+X ⊗̂Ô+Y
OĈ+ρ,Y )

[ 1
p

]
. Since f admits a lifting f̃ , for any ρ ∈ ρkOCp , we

have a morphism Ô+X ⊗Ô+Y
OC+ρ,Y → OC+ρ,X and hence morphisms f ∗OC

†
Y → C→OC

†
X . It remains

to show the relative Higgs complex HIG(OC
†
X ,2X/Y ) is a resolution of C and that the diagram (2-14)

commutes. Since the problem is local, we may assume Y= Spf(S+) and X= Spf(R+) are both small
affine such that the morphism f :X→Y is induced by a morphism S+→ R+ which makes the diagram

OCp⟨T
±1

1 , . . . , T±1
d ⟩

⊂
//

��

OCp⟨T
±1

1 , . . . , T±1
d , T±1

d+1, . . . , T±1
d+r ⟩

��

S+ // R+

commute, where d is the dimension of Y over OCp , r is the dimension of X over Y and both vertical
maps are étale. Let Ŝ+

∞
and R̂+

∞
be the perfectoid rings corresponding to the base-changes of S+ and R+

along morphisms

OCp⟨T
±1

1 , . . . , T±1
d ⟩ →OCp⟨T

±
1

p∞

1 , . . . , T
±

1
p∞

d ⟩

and

OCp⟨T
±1

1 , . . . ,T±1
d ,T±1

d+1, . . . ,T
±1

d+r ⟩ →OCp⟨T
±

1
p∞

1 , . . . ,T
±

1
p∞

d ,T
±

1
p∞

d+1 , . . . ,T
±

1
p∞

d+r ⟩,

respectively. Put Y∞ = Spa(Ŝ∞, Ŝ+
∞
) and X∞ = Spa(R̂∞, R̂+

∞
) with Ŝ∞ = Ŝ+

∞

[ 1
p

]
and R̂∞ = R̂+

∞

[ 1
p

]
.

For any ρ ∈ ρkOCp , since E+ρ,Y fits into the exact sequence

0→ Ô+X → Ô+X ⊗Ô+Y
E+ρ,Y → ρ�̂1

Y⊗OY Ô+X (−1)→ 0,

we see that (Ô+X ⊗Ô+Y
E+Y )(X∞)(⊂ E+ρ,X (X∞)) coincides with R̂+

∞
⊗Ŝ+∞ E+ρ,Y (Y∞). This implies that

(Ô+X ⊗Ô+Y
OC+ρ,Y )(X∞)∼= R̂+

∞
[ρY1, . . . , ρYd ]



1472 Yupeng Wang

such that the induced Higgs field is given by
∑d

i=0(∂/∂Yi )⊗ ((dlog Ti )/t). On the other hand, we have

OC+ρ,X (X∞)∼= R̂+
∞
[ρY1, . . . , ρYd+r ]

such that the induced Higgs field is given by
∑d+r

i=0 (∂/∂Yi )⊗ ((dlog Ti )/t). So the morphism

Ô+X ⊗Ô+Y
OC+ρ,Y →OC+ρ,X

is compatible with Higgs fields for any ρ ∈ ρkOCp . Therefore, for any ρ ∈ ρkOCp , we have morphisms
of sheaves

Ô+X ⊗Ô+Y
OC+ρ,Y → Ô+X ⊗Ô+Y

OĈ+ρ,Y → Ô+X ⊗̂Ô+Y
OĈ+ρ,Y →OĈ+ρ,X

which are all compatible with Higgs fields. After taking direct limits and inverting p, we get morphisms

f ∗OC
†
Y → C→OC

†
X

of sheaves which are compatible with Higgs fields. In particular, the top two rows of (2-14) form a
commutative diagram.

To complete the proof, we have to show that HIG(OC
†
X ,2X/Y ) is a resolution of C. Since we do have

a morphism C→ HIG(OC
†
X ,2X/Y ), we can conclude by checking the exactness locally.

By the “additionally” part of Corollary 2.23, we obtain that

OC
†
X (X∞)= ( lim

−−→
ρ,νp(ρ)>νp(ρk)

R̂+
∞
⟨ρY1, . . . , ρYd+r ⟩)

[
1
p

]
with 2X =

∑d+r
i=1 (∂/∂Yi )⊗ ((dlog Ti )/t). A similar argument also shows that

2X/Y =

d+r∑
i=d+1

∂

∂Yi
⊗

dlog Ti

t
.

So the rest of (2-14) commutes. Note that C(X∞) = (lim−−→ρ,νp(ρ)>νp(ρk)
R̂+
∞
⟨ρY1, . . . , ρYd⟩)

[ 1
p

]
. By a

similar argument in the proof of Corollary 2.23, we see that HIG(OC
†
X ,2X/Y ) is a resolution of C. □

3. An integral decompletion theorem

In this section, we generalise results in [Diao et al. 2023b, Appendix A] to an integral case which will be
used to simplify local calculations. Let X=Spf(R+), R̂+

∞
and 0 be as in the previous section. Throughout

this section, we put π = ζp − 1, r = νp(π)= 1/(p− 1) and c = pr . Recall νp(ρk)≥ r . We begin with
some definitions.

Definition 3.1. (1) By a Banach OCp -algebra, we mean a flat OCp -algebra A such that A
[ 1

p

]
is a Banach

Cp-algebra, and that A =
{
a ∈ A

[ 1
p

]
| ∥a∥ ≤ 1

}
.

(2) Assume A is a Banach OCp -algebra. For an A-module M , we say it is a Banach A-module if M
[ 1

p

]
is a Banach A

[ 1
p

]
-module, and M =

{
m ∈ M

[ 1
p

]
| ∥m∥ ≤ 1

}
.

There are some typical examples.
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Example 3.2. (1) If A is a Banach OCp -algebra, then any topologically free A-module endowed with
the supreme norm is a Banach A-module.

(2) The rings R+ and R̂+
∞

are Banach OCp -algebras.

(3) The R̂+
∞
/R+ is a Banach R+-module.

Now, we make the definition of (a-trivial) 0-representations.

Definition 3.3. Assume a > r and A ∈ {R+, R̂+
∞
}.

(1) By an A-representation of 0 of rank l, we mean a finite free A-module M of rank l endowed with a
continuous semilinear 0-action.

(2) Let M be a representation of 0 of rank l over A. We say M is a-trivial, if M/pa ∼= (A/pa)l as
representations of 0 over A/pa .

(3) Let M be a representation of 0 of rank l over R+. We say M is essentially (a+r)-trivial if M is
a-trivial and M ⊗R+ R̂+

∞
is (a+r)-trivial.

The goal of this section is to prove the following integral decompletion theorem.

Theorem 3.4. Assume a > r . Then the functor M 7→ M ⊗R+ R̂+
∞

induces an equivalence from the
category of (a+r)-trivial R+-representations of 0 to the category of (a+r)-trivial R̂+

∞
-representations

of 0. The equivalence preserves tensor products and dualities.

The first difficulty is to construct the quasi-inverse, namely the decompletion functor, of the functor in
Theorem 3.4. To do so, we need to generalise the method adapted in [Diao et al. 2023b] to the small
integral case. However, their method only shows the decompletion functor takes values in the category of
essentially (a+r)-trivial representations. So, the second difficulty is to show the resulting representation
is actually (a+r)-trivial. The trivialness condition is crucial to overcome both difficulties.

Construction of decompletion functor. We first construct the decompletion functor. From now on,
we use R0(0,M) to denote the continuous group cohomology of a p-adically completed R+-module
endowed with a continuous 0-action. By virtues of [Bhatt et al. 2018, Lemma 7.3], R0(0,M) =
Rlim
←−

kR0(0,M/pk) can be calculated by the Koszul complex

K(M; γ1− 1, . . . , γd − 1) : M
(γ1−1,...,γd−1)
−−−−−−−−→ Md

→ · · · .

Proposition 3.5. Assume a > r . Let M∞ be an (a+r)-trivial R̂+
∞

-representation of 0. Then there exists
a finite free R+-submodule M ⊂ M∞ such that the following assertions are true:

(1) The finite free A-module M is an essentially (a+r)-trivial R+-representation of 0 such that the
natural inclusion M ↪→ M∞ induces an isomorphism M ⊗R+ R̂+

∞
∼= M∞ of R̂+

∞
-representations

of 0.

(2) The induced morphism R0(0,M)→ R0(0,M∞) identifies the former as a direct summand of the
latter, whose complement is concentrated in positive degrees and killed by π .
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Remark 3.6. The finite free A-module M is unique up to isomorphism and the functor M∞ 7→ M turns
out to be the quasi-inverse of the functor M 7→ M ⊗ R+

∞
described in Theorem 3.4.

Now we prove Proposition 3.5 by using similar arguments in [Diao et al. 2023b]. Since we work on
the integral level, so we need to control (p-adic) norms carefully. We start with the following result.

Lemma 3.7. For any cocycle f ∈ C•(0, R̂∞/R), there exists a cochain g ∈ C•−1(0, R̂∞/R) such that
dg = f and ∥g∥ ≤ c ∥ f ∥.

Proof. The result follows from the same argument used in the proof of [Diao et al. 2023b, Proposition
A.2.2.1], especially the part for checking the condition (3) of [Diao et al. 2023b, Definition A.1.6], by
using [Scholze 2013a, Lemma 5.5] instead of [Diao et al. 2023a, Lemma 6.1.7]. □

Since the norm on R (resp. R̂∞) is induced by that on R+ (resp. R̂+
∞

), there exists a norm-preserving
embedding of complexes

C•(0, R̂+
∞
/R+)→ C•(0, R̂∞/R).

We shall apply Lemma 3.7 via this embedding.

Lemma 3.8. For any cocycle f ∈ C•(0, R̂+
∞
/R+), there is a cochain g ∈ C•−1(0, R̂+

∞
/R+) such that

∥g∥ ≤ ∥ f ∥ and dg = π f .

Proof. Regard C•(0, R̂+
∞
/R+) as a subcomplex of C•(0, R̂∞/R) as above. Applying Lemma 3.7 to π f ,

we get a cochain g ∈ C•−1(0, R̂∞/R) such that ∥g∥ ≤ c ∥π f ∥ and dg = π f . But c ∥π f ∥ = ∥ f ∥ ≤ 1, so
we see g ∈ C•−1(0, R̂+

∞
/R+). □

Lemma 3.9. Let (C•, d) be a complex of Banach modules over a Banach OCp -algebra A. Suppose
that for every degree s and every cocycle f ∈ Cs , there exists a g ∈ Cs−1 such that ∥g∥ ≤ ∥ f ∥ and
dg = π f . Then, for any cochain f ∈ Cs , there exists an h ∈ Cs−1 such that ∥h∥ ≤ max(∥ f ∥/c, ∥d f ∥)
and ∥π2 f − dh∥ ≤ ∥d f ∥/c.

Proof. By assumption, one can choose a g ∈ Cs such that dg = πd f and that ∥g∥ ≤ ∥d f ∥. Then
(g−π f ) ∈ Cs is a cocycle. Using this assumption again, there is an h ∈ Cs−1 satisfying ∥h∥ ≤ ∥g−π f ∥
and dh = π(g−π f ). Then ∥π2 f − dh∥ ≤ ∥g∥/c ≤ ∥d f ∥/c and ∥h∥ ≤max(∥d f ∥, ∥ f ∥/c). □

The following lemma is a consequence of Lemmas 3.8 and 3.9.

Lemma 3.10. For any cochain f ∈ C•(0, R̂+
∞
/R+), there is a cochain h ∈ C•−1(0, R̂+

∞
/R+) such that

∥h∥ ≤max(∥ f ∥/c, ∥d f ∥) and ∥π2 f − dh∥ ≤ ∥d f ∥/c.

The following lemma can be viewed as an integral version of [Diao et al. 2023b, Lemma A.1.12].

Lemma 3.11. We denote (R+, R̂+
∞
/R+) by (A,M) for simplicity.

Let L =
⊕n

i=1 Aei be a Banach A-module (with the supreme norm) endowed with a continuous 0-
action. Assume there exists an R > 1 such that, for each γ ∈ 0 and each i , ∥(γ − 1)(ei )∥ ≤ 1/(Rc). Then
the following assertions are true:



A p -adic Simpson correspondence for rigid analytic varieties 1475

(1) For any cocycle f ∈ C•(0, L ⊗A M), there is a cochain g ∈ C•−1(0, L ⊗A M) such that ∥g∥ ≤ ∥ f ∥
and dg = π f .

(2) For any cochain f ∈ C•(0, L ⊗A M), there exists an h ∈ C•(0, L ⊗A M) such that ∥h∥ ≤
max(∥ f ∥/c, ∥d f ∥) and ∥π2 f − dh∥ ≤ ∥d f ∥/c.

Proof. We only prove (1) and then (2) follows from Lemma 3.9 directly.
Now, let f =

∑n
i=1 ei ⊗ fi be a cocycle with f j ∈ Cs(0,M) for all 1≤ j ≤ n. Then ∥ f ∥ ≤ 1. For any

γ1, γ2, . . . , γs+1 ∈ 0, we have( n∑
i=1

ei⊗d fi

)
(γ1, . . . , γs+1)=

( n∑
i=1

ei⊗d fi

)
(γ1, . . . , γs+1)−d f (γ1, . . . , γs+1)

=

n∑
i=1

(1−γ1)(ei )⊗ fi (γ2, . . . , γs+1).

It follows that
∥∥∑n

i=1 ei ⊗d fi
∥∥≤ ∥ f ∥/(Rc). In other words, for each 1≤ j ≤ n, ∥d f j∥ ≤ ∥ f ∥/(Rc). By

Lemma 3.10, for every j , there is a g j ∈ Cs−1(0,M) such that ∥g j∥ ≤ max(∥ f j∥/c, ∥d f j∥) ≤ ∥ f j∥/c
and ∥π2 f j − dg j∥ ≤ ∥d f j∥/c ≤ ∥ f ∥/(Rc2).

Now, put g =
∑n

i=1 ei ⊗ gi . Then ∥g∥ ≤ ∥ f ∥/c. On the other hand, we have

π2 f − dg =
n∑

i=1

ei ⊗ (π
2 fi − dgi )+

( n∑
i=1

ei ⊗ (dgi − dg)
)
.

The first term on the right-hand side is bounded by ∥ f ∥/(Rc2) and the second term is bounded by
∥g∥/(Rc) ≤ ∥ f ∥/(Rc2). Thus ∥π2 f − dg∥ is bounded by ∥ f ∥/(Rc2). Then h1 := g/π belongs to
Cs−1(0, (L ⊗A M)) such that ∥h1∥ ≤ ∥ f ∥ and that ∥π f − dh1∥ ≤ ∥ f ∥/(Rc).

Assume we have already h1, h2, . . . , ht ∈ Cs−1(0, L ⊗A M) satisfying

∥h j∥ ≤
∥ f ∥
R j−1 and

∥∥∥∥π f −
j∑

i=1

dhi

∥∥∥∥≤ ∥ f ∥
R j c

, for all 1≤ j ≤ t.

Then f − π−1 ∑t
i=1 dhi ∈ Cs(0, L ⊗A M) with norm ∥ f − π−1 ∑t

i=1 dhi∥ ≤ ∥ f ∥/Rt . Replacing
f by f − π−1 ∑t

i=1 dhi and proceeding as above, we get an ht+1 ∈ Cs−1(0, L ⊗A M) with norm
∥ht+1∥ ≤

∥∥ f −π−1 ∑t
i=1 dhi

∥∥≤ ∥ f ∥/Rt such that∥∥∥∥π f −
t∑

i=1

dhi − dht+1

∥∥∥∥≤
∥∥ f −π−1 ∑t

i=1 dhi
∥∥

Rc
≤
∥ f ∥

Rt+1c
.

Then
∑
+∞

i=1 hi converges to an element h ∈ Cs−1(0, L ⊗A M) such that π f = dh and that ∥h∥ ≤
sup j≥1(∥h j∥)≤ ∥ f ∥. This implies (1). □

The following lemma is a generalisation of [Diao et al. 2023b, Lemma A.1.14] whose proof is similar.
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Lemma 3.12. Let A → B be an isometry of Banach OCp -algebras. Suppose the natural projection
pr : B → B/A admits an isometric section s : B/A → B as Banach modules over A. Then, for all
b1, b2 ∈ B, we have

∥pr(b1b2)∥ ≤max(∥b1∥∥pr(b2)∥, ∥b2∥∥pr(b1)∥)

We shall apply this lemma to the inclusion R+→ R̂+
∞

.

Lemma 3.13. Denote the triple (R+, R̂+
∞
) by (A, B) for simplicity. Let f be a cocycle in C1(0,GLn(B)).

Suppose there exists an R > 1 such that ∥ f (γ )− 1∥ ≤ 1/(Rc) for all γ ∈ 0. Let f̄ be the image of f
in C1(0,Mn(B/A)) (which is not necessary a cocycle). If ∥ f̄ ∥ ≤ 1/(Rc2), then there exists a cocycle
f ′ ∈ C1(0,GLn(A)) which is equivalent to f such that ∥ f ′(γ )− 1∥ ≤ 1/(Rc) for all γ ∈ 0.

Proof. We proceed as in the proof of [Diao et al. 2023b, Lemma A.1.15]. It is enough to show that there
exists an h ∈Mn(B) with ∥h∥ ≤ c ∥ f̄ ∥ such that the cocycle

g : γ 7→ γ (1+ h) f (γ )(1+ h)−1

satisfies ∥g(γ )− 1∥ ≤ 1/(Rc) for all γ ∈ 0 and ∥ḡ∥ ≤ ∥ f̄ ∥/R in C1(0,Mn(B/A)).
Granting the claim, by iterating this process, we can find a sequence h1, h2, . . . in Mn(B) with
∥hn∥ ≤ (c ∥ f̄ ∥)/Rn−1

≤ 1/(cRn) such that

γ

( n∏
i=1

(1+ hi )

)
f (γ )

( n∏
i=1

(1+ hi )

)−1

≤
∥ f̄ ∥
Rn .

Set h =
∏
+∞

i=1 (1+ hi ) ∈ GLn(B). Then we have a cocycle

f ′ : γ 7→ γ (h) f (γ )h−1

taking values in Mn(A)∩GLn(B) such that ∥ f ′(γ )− 1∥ ≤ 1/(Rc) for every γ ∈ 0. Thus f ′ ∈ GLn(A)
and we prove the lemma.

Now, we prove the claim. Since f ∈ C1(0,GLn(B)) is a cocycle, for all γ1, γ2 ∈ 0, we have
f (γ1γ2)= γ1( f (γ2)) f (γ1). Using Lemma 3.12, we get

∥d f̄ (γ1, γ2)∥ = ∥γ1 f (γ2)+ f (γ1)− f (γ1γ2)∥

= ∥(γ1 f (γ2)− 1)( f (γ1)− 1)− 1∥

= ∥(γ1 f (γ2)− 1)( f (γ1)− 1)∥ ≤
∥ f̄ ∥
Rc

. (3-1)

Since ∥ f̄ ∥ ≤ 1/(Rc2), we can apply Lemma 3.10 to π−2 f̄ and get an h̄ ∈Mn(B/A) such that

∥h̄∥ ≤max
(
∥π−2 f̄ ∥

c
, ∥π−2d f̄ ∥

)
≤max(c∥ f̄ ∥, c2

∥d f̄ ∥)≤ c∥ f̄ ∥ ≤
1

Rc
.

and that

∥ f̄ − dh̄∥ ≤
∥π−2d f̄ ∥

c
≤ c ∥d f̄ ∥ ≤

∥ f̄ ∥
R
. (3-2)
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By assumption, we can lift h̄ to an h ∈Mn(B) such that ∥h∥ = ∥h̄∥ ≤ c ∥ f̄ ∥. It follows that for all γ ∈ 0,
we have

∥γ (1+ h) f (γ )(1+ h)−1
− f (γ )∥ ≤ ∥h∥ ≤

1
Rc

and, therefore,

∥γ (1+ h) f (γ )(1+ h)−1
− 1∥ ≤

1
Rc
.

Moreover, we have

∥γ (1+ h) f (γ )(1+ h)−1− γ (1+ h) f (γ )(1− h)∥ ≤ ∥h̄2
∥ ≤

c∥ f̄ ∥
Rc
=
∥ f̄ ∥

R
. (3-3)

By Lemma 3.12, we have

∥γ (1+ h) f (γ )(1− h)− f̄ (γ )− γ (h̄)+ h̄∥

= ∥γ (h)( f (γ )− 1)− ( f (γ )− 1)h− γ (h) f (γ )h∥ ≤
∥ f̄ ∥

R
. (3-4)

Combining (3-2), (3-3) and (3-4), we conclude that

∥γ (1+ h) f (γ )(1+ h)−1∥ ≤
∥ f̄ ∥

R
which proves the claim as desired. □

Now we are able to prove Proposition 3.5.

Proof of Proposition 3.5. (1) Since a > r , we may choose s > 1 such that ∥pa+r
∥ = 1/(sc2). By

our assumptions, a basis {e1, e2, . . . , en} of M∞ determines a cocycle f ∈ C1(0,GLn(R̂+∞)) satisfying
∥ f (γ )−1∥≤ 1/(sc2). In particular, f satisfies the hypothesis of Lemma 3.13. Thus there exists a cocycle
f ′ ∈ C1(0, R+) which is equivalent to f such that

∥ f ′(γ )− 1∥ ≤
1
sc
, for all γ ∈ 0.

Then the cocycle f ′ defines a finite free sub-R+-module M of rank n such that

M ⊗R+ R̂+
∞
∼= M∞.

(2) By (1), we have M∞ ∼= M⊕M⊗R+ (R̂+∞/R+). Applying Lemma 3.11(1) to L = M , we deduce that
Hi (0,M⊗R+ R̂+

∞
/R+) is killed by π for every i ≥ 0. But H0(0,M∞)= M0

∞
is π -torsion free, so we get

H0(0,M∞)= H0(0,M)

and complete the proof. □

Up to now, we have constructed a decompletion functor from the category of (a+r)-trivial R̂+
∞

-
representations of0 to the category of essentially (a+r)-trivial R+-representations of0. Now Theorem 3.4
follows from the next proposition directly.

Proposition 3.14. Every essentially (a+r)-trivial R+-representation of 0 is (a+r)-trivial.
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We give the proof of this proposition in the next subsection.

Essentially (a+r)-trivial representation is (a+r)-trivial. Throughout this subsection, we always assume
a > r . For any R+-module N with a continuous 0-action, we denote Hi (0, N ) by Hi (N ) for simplicity.

Now for a fixed essentially (a+r)-trivial R+-representation M of 0 of rank n, we define

M∞ = M ⊗R+ R̂+
∞
.

Then it is (a+r)-trivial and of the form M∞ = M⊕Mcp for Mcp = M⊗R+ R̂+
∞
/R+. Since M is a-trivial,

by Lemma 3.11, we see that R0(0,Mcp) is concentrated in positive degrees and is killed by π . As a
consequence, for any h ≥ r , we have

R0(0,Mcp/ph)≃ R0(0,Mcp)[1].

In particular, R0(0,Mcp/ph) is killed by π . So we deduce that

πH0(M∞/ph)∼= πH0(M/ph).

Replacing M by (R̂+
∞
)l , we get

πH0(R̂+
∞
/ph)n ∼= πH0(R+/ph)n = (πR+/ph)n.

Since M∞ is (a+r)-trivial, choose h = a+ r and we get

πH0(M/pa+r )∼= πH0(M∞/pa+r )∼= πH0(R̂+
∞
/pa+r )n ∼= (πR+/pa+r )n ∼= (R+/pa)n.

Thus, πH0(M/pa+r ) is a free R+/pa-module of rank n.
Choose g1, . . . gn ∈ H0(M/pa+r ) such that πg1, . . . , πgn is an R+/pa-basis of πH0(M/pa+r ). We

claim that the sub-R+/pa+r -module
n∑

i=1

R+/pa+r
· gi ⊂ H0(M/pa+r )

is free. For any i , let g̃i ∈ M be a lifting of gi . Assume x1, . . . , xn ∈ R+ such that
n∑

i=1

xi g̃i ≡ 0 mod pa+r .

Then
n∑

i=1

xiπ g̃i ≡ 0 mod pa+r .

By the choice of gi ’s, we deduce that xi ∈ pa R+ for any i . Write xi = πyi for some yi ∈ R+. Then
n∑

i=1

yiπ g̃i ≡ 0 mod pa+r .

So yi ∈ pa R+ and hence xi ∈ pa+r R+ for all i . This proves the claim.
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It remains to prove g̃1, . . . , g̃n is an R+-basis of M . Let e1, . . . , en be an R+-basis of M . Since M is
a-trivial, we get

M/pa
= H0(M/pa)=

n∑
i=1

R+/paei .

So πe1, . . . , πen is an R+/pa−r -basis of πM/pa . However, by the choice of g̃i ’s, π g̃1, . . . , π g̃n is also
an R+/pa−r -basis of πM/pa . Since a > r , we deduce that g̃i ’s generate M as an R+-module. This
completes the proof.

4. Local Simpson correspondence

In this section, we establish an equivalence between the category of a-small representations of 0 over
R̂+
∞

and the category of a-small Higgs modules over R+. This is a local p-adic Simpson correspondence.
Throughout this section, put r = 1/(p− 1).

Definition 4.1. Assume a > r and A ∈ {R+, R̂+
∞
}. We say a representation M of 0 over A is a-small if

it is (a+νp(ρk))-trivial in the sense of Definition 3.3.

Definition 4.2. By a Higgs module over R+, we mean a finite free R+-module H together with an
R+-linear morphism θ : H → H ⊗R+ �̂

1
R+(−1) such that θ ∧ θ = 0. A Higgs module (H, θ) is called

a-small, if θ is divided by pa+νp(ρk); that is,

Im(θ)⊂ pa+νp(ρk)H ⊗R+ �̂
1
R+(−1).

Let S†,+
∞

with the canonical Higgs field 2 be as in Corollary 2.23. For an a-small representation M
over R̂+

∞
, define

2M = idM ⊗2 : M ⊗R̂+∞ S†,+
∞
→ M ⊗R̂+∞ S†,+

∞
⊗R+ �̂

1
R+(−1). (4-1)

Then it is a Higgs field on M⊗R̂+∞ S†,+
∞

. We denote the induced Higgs complex by HIG(H⊗R+ S†,+
∞
,2H ).

For an a-small Higgs module (H, θH ), define

2H = θH ⊗ id+ idH ⊗2 : H ⊗R+ S†,+
∞
→ H ⊗R+ S†,+

∞
⊗R+ �̂

1
R+(−1). (4-2)

Then2H is a Higgs field on H⊗R+ S†,+
∞

. We denote the induced Higgs complex by HIG(H⊗R+ S†,+
∞
,2H ).

The main theorem in this section is the following local Simpson correspondence.

Theorem 4.3 (local Simpson correspondence). Assume a > r .

(1) Let M be an a-small R̂+
∞

-representation of 0 of rank l. Let H(M) := (M ⊗R̂+∞ S†,+
∞
)0 and θH(M) be

the restriction of 2M to H(M). Then (H(M), θH(M)) is an a-small Higgs module of rank l.

(2) Let (H, θH ) be an a-small Higgs module of rank l over R+. Put M(H, θH ) = (H ⊗R+ S†,+
∞
)2H=0.

Then M(H, θH ) is an a-small R̂+
∞

-representation of 0 of rank l.
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(3) The functor M 7→ (H(M), θH(M)) induces an equivalence from the category of a-small R̂+
∞

-
representations of 0 to the category of a-small Higgs modules over R+, whose quasi-inverse
is given by (H, θH ) 7→ M(H, θH ). The equivalence preserves tensor products and dualities.

(4) Let M be an a-small R̂+
∞

-representation of 0 and (H, θH ) be the corresponding Higgs module. Then
there is a canonical 0-equivariant isomorphism of Higgs complexes

HIG(H ⊗R+ S†,+
∞
,2H )→ HIG(M ⊗R̂+∞ S†,+

∞
,2M).

Also, there is a canonical quasi-isomorphism

R0
(
0,M

[
1
p

])
≃ HIG

(
H

[
1
p

]
, θH

)
,

where HIG
(
H

[ 1
p

]
, θH

)
is the Higgs complex induced by (H, θH ).

The following corollary follows from Theorems 3.4 and 4.3 directly.

Corollary 4.4. Assume a > r . The following categories are equivalent:

(1) The category of a-small representations of 0 over R+.

(2) The category of a-small representations of 0 over R̂+
∞

.

(3) The category of a-small Higgs modules over R+.

In order to prove the theorem, we need to compute R0(0,M ⊗R̂+∞ S†,+
∞
). By Corollary 2.23, we are

reduced to computing R0(0,M⊗R̂+∞ R̂+
∞
⟨ρY1, . . . , ρYd⟩) for any ρ ∈ ρkOCp . So before we move on, let

us fix some notation to simplify the calculation.
For any n ≥ 0, define

Fn(Y )= n!
(Y

n

)
= Y (Y − 1) · · · (Y − n+ 1) ∈ Z[Y ].

For any α ∈ N
[ 1

p

]
∩ (0, 1), define ϵα = 1− ζ−α. Then νp(ρk)≥ r ≥ νp(ϵα).

Calculation in trivial representation case. We are going to compute R0(0, R̂+
∞
⟨ρY1, . . . , ρYd⟩) in this

subsection. We assume d = 1 first. In this case, 0 = Zpγ and acts on R̂+
∞
⟨ρY ⟩ via γ (Y )= Y + 1. Note

that {ρn Fn}n≥0 is a set of topological R̂+
∞

-basis of R̂+
∞
⟨ρY ⟩ and, for any n ≥ 0,

γ (ρn Fn)= ρ
n Fn + nρ · ρn−1 Fn−1.

So we get a γ -equivariant decomposition

R̂+
∞
⟨ρY ⟩ =

⊕̂
α∈N[ 1

p ]∩[0,1)
R+⟨ρY ⟩ · T α.

So it suffices to compute R0(0, R+⟨ρY ⟩ · T α) for any α. We only need to consider the Koszul complex

K(R+⟨ρY ⟩ · T α
; γ − 1) : R+⟨ρY ⟩ · T α γ−1

−−→ R+⟨ρY ⟩ · T α.
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Note that for any α, {ρn FnT α
}n≥0 is a set of topological R+-basis of R+⟨ρY ⟩T α. So we have

(γ − 1)(ρn FnT α)=

{
nρ · ρn−1 Fn−1, α = 0,
ζ αϵαT α

(
ρn Fn + n ρ

ϵα
ρn−1 Fn−1

)
, α ̸= 0.

(4-3)

Put3ρ ={ρn Fn}n≥0 and Iρ ={νp(ρ(n+1))}n≥0. Let R+⟨3ρ⟩ and R+⟨3ρ, Iρ,+⟩ be as in Definition A.1.
Then by (4-3), we see that

(γ − 1)(R+⟨ρY ⟩)= R+⟨3ρ, Iρ,+⟩

and that

(γ − 1)(R+⟨ρY ⟩T α)∼

{
ζ αϵα

(
ρn Fn + n

ρ

ϵα
ρn−1 Fn−1

)}
n≥0

in the sense of Definition A.4. By Proposition A.5, we get

(γ − 1)(R+⟨ρY ⟩T α)= ϵα(R+⟨ρY ⟩T α).

In summary, we see that for α ̸= 0, H1(Zpγ, R+⟨ρY ⟩T α) is killed by ϵα and that for α = 0,

H1(Zpγ, R+⟨ρY ⟩)= R+⟨ρY ⟩/R+⟨3ρ, Iρ,+⟩.

So, keeping the notation as above, we have the following lemma.

Lemma 4.5. (1) The inclusion R+⟨ρY ⟩ ↪→ R̂+
∞
⟨ρY ⟩ identifies R0(0, R+⟨ρY ⟩) with a direct summand

of R0(Zpγ, R̂+
∞
⟨ρY ⟩) whose complement is concentrated in degree 1 and is killed by ζp − 1.

(2) H0(0, R+⟨ρY ⟩)= R+ is independent of ρ.

(3) H1(0, R+⟨ρY ⟩)= R+⟨ρY ⟩/R+⟨3ρ, Iρ,+⟩ is the derived p-adic completion of⊕
i≥0

R+/(i + 1)ρR+.

Proof. It remains to compute H0(0, R+⟨ρY ⟩T α).
When α ̸= 0, assume

∑
n≥0 anρ

n FnT α is γ -invariant. Then we have∑
n≥0

ζ αϵα

(
an +

ρ

ϵα
(n+ 1)an+1

)
ρn FnT α

= 0.

This implies that, for any n ≥ 0 and any m ≥ 0,

an = (−1)m
m∏

j=1

(
ρ

ϵα
(n+ j)

)
an+m .

In particular, νp(an)≥
∑m

j=1 νp(n+ j) for any m ≥ 0. This forces an = 0 for any n ≥ 0.
When α = 0, assume

∑
n≥0 anρ

n Fn is γ -invariant. Then we have∑
n≥0

(n+ 1)ρan+1ρ
n Fn = 0,

which implies an = 0 for any n ≥ 1. So we have R+⟨ρY ⟩0 = R+. □
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Now we are able to handle the higher dimensional case.

Lemma 4.6. Identify Ŝ+
∞,ρ with R̂+

∞
⟨ρY1, . . . , ρYd⟩.

(1) The inclusion R+⟨ρY ⟩ ↪→ Ŝ+
∞,ρ identifies R0(0, R+⟨ρY ⟩) with a direct summand of R0(0, Ŝ+

∞,ρ)

whose complement is concentrated in degree ≥ 1 and is killed by ζp − 1.

(2) For any i ≥ 0, we have

Hi (0, R+⟨ρY ⟩)=
i∧

R+

( d⊕
j=1

R+⟨ρY j ⟩/R+⟨3ρ, j , Iρ,+⟩
)

for 3ρ, j = {ρ
n Fn(Y j )} and Iρ = {νp((n+ 1)ρ)}n≥0.

Proof. Note that R0(0, R̂+
∞
⟨ρY1, . . . , ρYd⟩) is presented by the Koszul complex

K(R̂+
∞
⟨ρY1, . . . , ρYd⟩; γ1− 1, . . . , γd − 1)≃ K(R̂+

∞
⟨ρY1⟩; γ1− 1)⊗̂L

R̂+∞
· · · ⊗̂

L
R̂+∞

K(R̂+
∞
⟨ρYd⟩; γd − 1).

Since R+⟨ρY j ⟩/R+⟨3ρ, j , Iρ,+⟩ is already derived p-complete, the lemma follows from Lemma 4.5
directly. □

Proposition 4.7. (1) (S†,+
∞
)0 = R+.

(2) For any i ≥ 1, Hi (0, S†,+
∞
) is p∞-torsion.

Proof. We only need to show, for any i ≥ 1,

lim
−−→

νp(ρ)>νp(ρk)

Hi (0, Ŝ+
∞,ρ)

is p∞-torsion. However, by Lemma 4.6, this follows from a similar argument as in the proof of
Corollary 2.23. □

Calculation in general case. Now, by virtues of Theorem 3.4, we may assume that M is an a-small
representation of 0 over R+. Let e1, . . . , el be an R+-basis of M and A j be the matrix of γ j with respect
to the chosen basis for all 1≤ j ≤ d; that is,

γ j (e1, . . . , el)= (e1, . . . , el)A j .

Put B j= A j−I . It is the matrix of γ j−1 and has p-adic valuation νp(B j )≥a+νp(ρk) by a-smallness of M .
Similar to the trivial representation case, we are reduced to computing R0(0,M⊗R+ R̂+

∞
⟨ρY1, . . . , ρYd⟩).

Note that we still have a 0-equivariant decomposition

M ⊗R+ R̂+
∞
⟨ρY1, . . . , ρYd⟩ =

⊕̂
α∈(N[ 1

p ]∩[0,1))
d M ⊗R+ R+⟨ρY1, . . . , ρYd⟩T α,

where T α denotes T α1
1 · · · T

αd
d for any α = (α1, . . . , αd).

Assume α ̸= 0 at first. Without loss of generality, we assume αd ̸= 0. Note that

{ei,n := eiρ
n Fn(Yd)T α

}1≤i≤l,n≥0
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is a set of topological basis of M ⊗R+ R+⟨ρY1, . . . , ρYd⟩T α over R+⟨ρY1, . . . , ρYd−1⟩. We have

(γd − 1)(e1,n, . . . , el,n)= ζ
αd ϵαd

(
(e1,n, . . . , el,n) · (ϵ

−1
αd

Bd + I )+ (e1,n−1, . . . , el,n−1) · n
ρ

ϵαd

Ad

)
.

Similar to the trivial representation case, using Proposition A.6, we deduce that

R0(Zpγd ,M ⊗R+ R+⟨ρY1, . . . ,ρYd⟩T α)≃ M ⊗R+ R+⟨ρY1, . . . ,ρYd⟩T α/ϵαd [−1].

Using the Hochschild–Serre spectral sequence, we have the following lemma.

Lemma 4.8. Assume α ̸= 0. Then the complex R0(0,M ⊗R+ R+⟨ρY1, . . . ,ρYd⟩T α) is concentrated in
positive degrees and is killed by ζp − 1.

Now, we focus on the α = 0 case and prove the following proposition.

Proposition 4.9. Keep the notation as above. Assume νp(ρ) < a+ νp(ρk)− r . Define

H(M) := (M ⊗R+ R+⟨ρY1, . . . , ρYd⟩)
0.

Then the following assertions are true:

(1) H(M) is a finite free R+-module of rank l and is independent of the choice of ρ. More precisely, if
we define

(h1, . . . , hl)= (e1, . . . , el)
∑

n1,...,nd≥0

d∏
i=1

(−A−1
i Bi )

ni

ni !
Fni (Yi ),

then h1, . . . , hl is an R+-basis of H(M).

(2) The inclusion H(M) ↪→ M ⊗R+ R+⟨ρY1, . . . , ρYd⟩ induces a 0-equivariant isomorphism

H(M)⊗R+ R+⟨ρY1, . . . , ρYd⟩ ∼= M ⊗R+ R+⟨ρY1, . . . , ρYd⟩.

Proof. We first consider the d = 1 case. In this case, 0 = Zpγ acts on R+⟨ρY ⟩ via γ (Y )= Y + 1. Let
e1, . . . , el be a basis of M and A be the matrix of γ associated to the chosen basis. Put B = A− I and
then νp(B)≥ a+ νp(ρk) > νp(ρ)+ r . Note that {ρn Fn(Y )}n≥0 is a set of topological basis of R+⟨ρY ⟩.

(1) Assume x =
∑

n≥0 eXnρ
n Fn(Y )∈ H(M), where Xn ∈ (R+)l for any n≥ 0 and e denotes (e1, . . . , el).

Since γ (x)= x , we deduce that, for any n ≥ 0,

B Xn =−(n+ 1)ρAXn+1.

In other words, we have

Xn =
−A−1 B

nρ
Xn−1 =

(−A−1 B)n

ρnn!
X0.

Note that νp((A−1 B)n/(ρnn!))≥ (a+ νp(ρk)− r − νp(ρ))n. So we get (A−1 B)n/(ρnn!) ∈Ml(R+) and
hence Xn is uniquely determined by X0. In particular, we have

x = e
∑
n≥0

(−A−1 B)n

ρnn!
ρn Fn(Y )X0 = e

∑
n≥0

(−A−1 B)n

n!
Fn(Y )X0. (4-4)
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Conversely, any x ∈ M ⊗R+ R+⟨ρY1, . . . , ρYd⟩ which is of the form (4-4) for some X0 ∈ (R+)l is
γ -invariant. So we are done.

(2) From the proof of (1), we see that
∑

n≥0((−A−1 B)n/(ρnn!))ρn Fn(Y ) ∈ GLl(R+⟨ρY ⟩). Thus the
hi ’s form an R+⟨ρY ⟩-basis of M ⊗R+ R+⟨ρY ⟩ as desired.

Now, we handle the case for any d ≥ 1. By what we have proved and by iterating, we get

e(R+⟨ρY1, . . . , ρYd⟩)
l
= e

∑
nd≥0

(−A−1
d Bd)

nd

nd !
Fnd (Yd)(R+⟨ρY1, . . . , ρYd⟩)

l

= e
∑

nd−1,nd≥0

(−A−1
d−1 Bd−1)

nd−1

nd−1!
Fnd−1(Yd−1)

(−A−1
d Bd)

nd

nd !
Fnd (Yd)(R+⟨ρY1, . . . , ρYd⟩)

l

= · · ·

= e
∑

n1,...,nd≥0

d∏
i=1

(−A−1
i Bi )

ni

ni !
Fni (Yi )(R+⟨ρY1, . . . , ρYd⟩)

l .

Since e
∑

n1,...,nd≥0
∏d

i=1((−A−1
i Bi )

ni /ni !)Fni (Yi ) forms a 0-invariant basis, the result follows from
(R+⟨ρY1, . . . , ρYd⟩)

0
= R+. □

Remark 4.10. Note that if νp(z) > r , then

(1+ z)Y =
∑
n≥0

zn

n!
Fn(Y ).

Therefore, for M and ρ as above, as νp(A−1
i B j )≥a> r , the operator

∏d
i=1 γ

−Yi
i , whose matrix is given by∑

n1,...,nd≥0
∏d

i=1((−A−1
i Bi )

ni /ni !)Fni (Yi ), is well defined on M⊗R+ R+⟨ρY1, . . . , ρYd⟩. Then the above
proposition says that we have H(M) =

∏d
i=1 γ

−Yi
i M . Since log(1+ z)(1+ z)Y =

∑
n≥0(z

n/n!)F ′n(Y )
when νp(z) > r , for any em⃗ ∈ M with m⃗ ∈ (R+)l and 1≤ j ≤ d, we get

∂

∂Y j

( d∏
i=1

γ
−Yi
i em⃗

)
= e ∂

∂Y j

( ∑
n1,...,nd≥0

d∏
i=1

(−A−1
i Bi )

ni

ni !
Fni (Yi )m⃗

)

= e
∑

n1,...,nd≥0

(−A−1
j B j )

n j

n j !
F ′n j
(Y j )

∏
1≤i≤d

i ̸= j

(−A−1
i Bi )

ni

ni !
Fni (Yi )m⃗

= e(−log(A j )
∑

n1,...,nd≥0

d∏
i=1

(−A−1
i Bi )

ni

ni !
Fni (Yi )m⃗)

=−log γ j

d∏
i=1

γ
−Yi
i em⃗.

Corollary 4.11. Keep the notation as above.
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(1) Denote by θH(M) the restriction of 2 to H(M). Then (H(M), θH(M)) is an a-small Higgs module.
Also, θH(M) =

∑d
i=1−log γi ⊗ ((dlog Ti )/t).

(2) The inclusion H(M)→ M ⊗R+ S†,+
∞

induces a 0-equivariant isomorphism

H(M)⊗R+ S†,+
∞
∼= M ⊗R+ S†,+

∞

and identifies the corresponding Higgs complexes

HIG(H(M)⊗R+ S†,+
∞
,2H(M))∼= HIG(M ⊗R+ S†,+

∞
,2M).

Proof. (1) Since 2=
∑d

i=1(∂/∂Yi )⊗ ((dlog Ti )/t), the “Also” part follows from Remark 4.10. Since
νp(Bi )≥ a+νp(ρk) for all j and log γ j =−

∑
n≥1(−B j )

n/n, we see the a-smallness of (H(M), θH(M))

as νp(Bn
i /n)≥ a+ νp(ρk) for all n.

(2) This follows from Proposition 4.9(2) and the definition of θH(M). □

We have seen how to achieve an a-small Higgs module from an a-small representation. It remains to
construct an a-small representation of 0 from an a-small Higgs module.

Proposition 4.12. Assume a > r . Let (H, θH ) be an a-small Higgs module of rank l over R+. Put
M = (H ⊗R+ S†,+

∞
)2H=0.

(1) The restricted 0-action on M makes it an a-small R̂+
∞

-representation of rank l. Also, if θH =∑d
i=1 θi ⊗ ((dlog Ti )/t), then γi acts on M via exp(−θi ).

(2) The inclusion M ↪→ H ⊗R+ S†,+
∞

induces a 0-equivariant isomorphism

M ⊗R̂+∞ S†,+
∞
∼= H ⊗R+ S†,+

∞

and identifies the corresponding Higgs complexes

HIG(M ⊗R̂+∞ S†,+
∞
,2M)∼= HIG(H ⊗R+ S†,+

∞
,2H ).

Proof. (1) The argument is similar to the proof of Proposition 4.9.
Assume ρ ∈ ρkmCp such that a+ νp(ρk) > νp(ρ)+ r . Let e1, . . . , el be an R+-basis of H . We claim

that M = (H ⊗R+ R̂+
∞
⟨ρY1, . . . , ρYd⟩)

2H=0.
In fact, if G⃗ = (G1, . . . ,Gl)

t
∈ (R̂+

∞
⟨ρY1, . . . , ρYd⟩)

l such that m =
∑l

i=1 ei Gi ∈ M , then we see that,
for any 1≤ i ≤ d ,

θi G⃗+
∂G⃗
∂Yi
= 0.

This forces G⃗ =
∏d

i=1 exp(−θi Yi )a⃗ for some a⃗ ∈ (R̂+
∞
)l . Since νp(θ j ) ≥ a + νp(ρk), the matrix∏d

i=1 exp(−θi Yi ) is well defined in GLl(R̂+∞⟨ρY1, . . . , ρYd⟩). This shows that M is finite free of rank l
and is independent of the choice of ρ.

Note that γi (Y j ) = Y j + δi j . We see γi acts on M via exp(−θi ). Since νp(θi ) ≥ a + νp(ρk), using
exp(−θi Yi )=

∑
n≥0((−θi )

n/n!)Y n
i , we deduce that M is a-small.
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(2) This follows from the fact that
∏d

i=1 exp(−θi Yi ) ∈ GLl(R̂+∞⟨ρY1, . . . , ρYd⟩) and the definition of
0-action on M . □

Finally, we complete the proof of Theorem 4.3.

Proof of Theorem 4.3. Part (1) was given in Corollary 4.11. Part (2) was proved in Proposition 4.12.
The equivalence part of (3) follows from Corollary 4.11(2) (as the θi ’s act via the −log γi ’s) together
with Proposition 4.12(2) (as the γi ’s act via the exp(−θi )’s). Elementary linear algebra shows that the
equivalence preserves tensor products and dualities. So we only need to prove the “Also” part of (4).

Let M be an a-small representation of 0 over R̂+
∞

and (H, θH ) be the corresponding Higgs module
over R+. By Corollary 2.23, we have quasi-isomorphisms of complexes over R̂∞

M
[

1
p

]
≃
−→ HIG(M ⊗R̂+∞ S†

∞
,2M)≃ HIG(H ⊗R+ S†

∞
,2H ).

Applying R0(0, · ), we get a quasi-isomorphism

R0
(
0,M

[
1
p

])
→ R0(0,HIG(H ⊗R+ S†

∞
,2H )).

However, it follows from Proposition 4.7 that

R0(0, S†
∞
)≃ R[0].

So we get
R0(0,HIG(H ⊗R+ S†

∞
,2H ))≃ HIG

(
H

[
1
p

]
, θH

)
.

Therefore, we conclude the desired quasi-isomorphism

R0
(
0,M

[
1
p

])
≃ HIG

(
H

[
1
p

]
, θH

)
. □

Finally, it is worth pointing out that all results in Theorem 4.3 still hold for Ŝ+
∞,ρk

instead of S†,+
∞

except the “Also” part of (4) because HIG
(

Ŝ+
∞,ρk

[ 1
p

]
,2

)
̸= R̂∞[0] and R0

(
0, Ŝ+

∞,ρk

[ 1
p

])
̸= R[0]. For

the future use, we give the following proposition.

Proposition 4.13. Keep the notation as in Theorem 4.3.

(1) Let M be an a-small R̂+
∞

-representation of 0 of rank l. Then H(M)= (M ⊗R̂+∞ Ŝ+
∞,ρk

)0 and θH(M)

is the restriction of 2M to H(M).

(2) Let (H, θH ) be an a-small Higgs module of rank l over R+. Then M(H, θH )= (H ⊗R+ Ŝ+
∞,ρk

)2H=0.

(3) Let M be an a-small R̂+
∞

-representation of 0 and (H, θH ) be the corresponding Higgs module. Then
there is a canonical 0-equivariant isomorphism of Higgs complexes

HIG(H ⊗R+ Ŝ+
∞,ρk

,2H )→ HIG(M ⊗R̂+∞ Ŝ+
∞,ρk

,2M).

Proof. By Corollary 2.22, we have a 0-equivariant decomposition

Ŝ+
∞,ρk
=

⊕̂
α∈(N∩[0,1))d

R+⟨ρkY1, . . . , ρkYd⟩T α.
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Let N be the a-small R+-representation of 0 corresponding to M in the sense of Theorem 3.4. Then
M = N ⊗R+ R̂+

∞
.

(1) Thanks to Lemma 4.8, we have

(M ⊗R̂+∞ Ŝ+
∞,ρk

)0 = (N ⊗R+ R+⟨ρkY1, . . . , ρkYd⟩)
0.

Since a > r , it is automatic that νp(ρk) < a+ νp(ρk)− r . So (1) is a consequence of Proposition 4.9.

(2) This follows from the proof of Proposition 4.12(1) directly (because νp(ρk) < a+ νp(ρk)− r ).

(3) This follows from (1), (2) and Theorem 4.3(4) via the base-change along S†,+
∞
→ Ŝ+

∞,ρk
. □

5. A p-adic Simpson correspondence

Statement and preliminaries. Now, we want to globalise the local Simpson correspondence established
in the last section for a liftable smooth formal scheme X. We fix such an X together with an A2-lifting X̃.
Then we have the corresponding integral Faltings’ extension E+ and overconvergent period sheaf OC†,+.
Let X be the rigid analytic generic fibre of X and ν : Xproét→ Xét be the projection of sites. Throughout
this section, we assume r = 1/(p− 1).

Definition 5.1. Assume a ≥ r . By an a-small generalised representation of rank l on Xproét, we mean a
sheaf L of locally finite free ÔX -modules of rank l which admits a p-complete sub-Ô+X -module L+ such
that there is an étale covering {Xi → X}i∈I and rationals bi > b > a such that, for any i ,

(L+/pbi+νp(ρk))al
|X i
∼= ((Ô+X/pbi+νp(ρk))l)al

|X i

is an isomorphism of (Ô+al
X /pbi+νp(ρk))|X i -modules, where Ô+al

X is the almost integral structure sheaf2

and X i denotes the rigid analytic generic fibre of Xi .

Definition 5.2. Assume a≥ r . By an a-small Higgs bundle of rank l on Xét, we mean a sheaf H of locally
finite free OX

[ 1
p

]
-modules of rank l together with an OX

[ 1
p

]
-linear operator θH :H→H⊗OX �̂

1
X(−1)

satisfying θH ∧ θH = 0 such that it admits a θH-preserving OX-lattice H+— i.e., H+ ⊂H is a subsheaf
of locally free OX-modules with H+

[ 1
p

]
=H— satisfying the condition

θH(H+)⊂ pb+νp(ρk)H+⊗OX �̂
1
X(−1)

for some b > a.

For any a-small generalised representation, define

2L = idL⊗2 : L⊗ÔX
OC†
→ L⊗ÔX

OC†
⊗OX Ô1

X(−1).

2This is the presheaf on Xproét sending each affinoid perfectoid space U = Spa(R, R+) to the almost OCp -module R+al in
the sense of [Scholze 2012, Section 4]. Since Xproét admits a basis of affinoid perfectoid spaces, the proof of [Scholze 2012,

Proposition 7.13] shows that Ô+al
X is a sheaf.
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Then 2L is a Higgs field on L⊗ÔX
OC†. Denote the induced Higgs complex by HIG(L⊗ÔX

OC†,2L).
For any a-small Higgs field (H, θH), put

2H = θH⊗ id+ idH⊗2 :H⊗OX OC†
→H⊗OX OC†

⊗OX �̂
1
X(−1).

Then 2H is a Higgs field on H⊗OX OC†. Denote the induced Higgs complex by HIG(H⊗OX OC†,2H).
Then our main theorem is the following p-adic Simpson correspondence.

Theorem 5.3 (p-adic Simpson correspondence). Keep the notation as above.

(1) For any a-small generalised representation L of rank l on Xproét, Rν∗(L⊗ÔX
OC†) is discrete. Define

H(L) := ν∗(L⊗ÔX
OC†) and θH(L) = ν∗2L. Then (H(L), θH(L)) is an a-small Higgs bundle of rank l.

(2) For any a-small Higgs bundle (H, θH) of rank l on Xét, put

L(H, θH)= (H⊗OX OC†)2H=0.

Then L(H) is an a-small generalised representation of rank l.

(3) The functor L 7→ (H(L), θH(L)) induces an equivalence from the category of a-small generalised
representations to the category of a-small Higgs bundles, whose quasi-inverse is given by (H, θH) 7→
L(H, θH). The equivalence preserves tensor products and dualities and identifies the Higgs complexes

HIG(L⊗ÔX
OC†,2L)≃ HIG(H(L)⊗OX OC†,2H(L)).

(4) Let L be an a-small generalised representation with associated Higgs bundle (H, θH). Then there is
a canonical quasi-isomorphism

Rν∗(L)≃ HIG(H, θH),

where HIG(H, θH) is the Higgs complex induced by (H, θH). In particular, Rν∗(L) is a perfect complex
of OX

[ 1
p

]
-modules concentrated in degree [0, d], where d denotes the dimension of X relative to OCp .

(5) Assume f : X→Y is a smooth morphism between liftable smooth formal schemes over OCp . Let X̃
and Ỹ be the fixed A2-liftings of X and Y, respectively. Assume f lifts to an A2-morphism f̃ : X̃→ Ỹ.
Then the equivalence in (3) is compatible with the pull-back along f .

Remark 5.4. Assume L is a sheaf of locally free ÔX -modules which becomes a-small after a finite
étale base-change f :Y→ X. By étale descent, Rν∗(L⊗ÔX

OC†) is well defined and discrete. Also,
ν∗(L ⊗ÔX

OC†) is a Higgs bundle which becomes an a-small Higgs bundle via pull-back along f .
Conversely, if (H, θH) is a Higgs bundle on X which becomes a-small after taking pull-back along a
finite étale morphism f , by pro-étale descent for ÔX -bundles, (H⊗OX OC†)2H=0 is a well defined
ÔX -bundle. Also, it becomes a-small via the pull-back along f . Therefore, one can establish a p-adic
Simpson correspondence in this case.

Remark 5.5. Assume X comes from a smooth formal scheme X0 over Zp and admits an A2-lifting X̃.
Note that Faltings [2005, Definition 2] used Breuil–Kisin twists to define Higgs fields while we use Tate
twists, so our smallness conditions on Higgs fields differ from his by a multiplication of (ζp − 1). By
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Proposition 2.14, after choosing a covering {Xi → X}i∈I , the cocycle {θi j }i, j∈I corresponding to the
integral Faltings’ extension is exactly the one used in [Faltings 2005, Section 4]. Note that locally we
define Higgs fields by θ =−log γ (Corollary 4.11) while Faltings [2005, Remark(ii)] defined θ = log γ .
So our construction is compatible with [Faltings 2005] up to a sign on Higgs fields.

Remark 5.6. Suppose X comes from a smooth formal scheme X0 over Ok and X̃ is the base-change of
X0 along Ok→ A2. Let OC† be the associated overconvergent period sheaf. By its construction, there is
a natural inclusion OC ↪→OC†. Now assume L is a Zp-local system on Xét and L = L⊗Zp ÔX is the
corresponding ÔX -bundle on Xproét. Since the resulting Higgs field is nilpotent by [Liu and Zhu 2017,
Theorem 2.1], it can be seen from the proof of Theorem 5.3 that the morphism

ν∗(L⊗ÔX
OC)→ ν∗(L⊗ÔX

OC†)

is an isomorphism. So our construction is compatible with the work of [Liu and Zhu 2017] in this case.

We do some preparations before proving Theorem 5.3.

Lemma 5.7. Let U ∈ Xproét be an affinoid perfectoid and M+ be a sheaf of p-torsion free Ô+X -modules
satisfying one of the following conditions:
(a)M+

|U is a sheaf of free Ô+X |U -modules.
(b)M+ is p-complete and there is an almost isomorphism

(M+

|U/pc)al ∼= ((Ô+X |U/pc)r )al

for some c > 0.
Then the following assertions are true:

(1) For any i ≥ 1 and a > 0, H i (U,M+)al ∼= H i (U,M+/pa)al
= 0.

(2) For any b > a > 0, the image of (M+/pb)(U ) in (M+/pa) is M+(U )/pa .

(3) Put M̂+
= lim
←−−n M

+/pn . Then M̂+(U )= lim
←−−n M

+(U )/pn and for any i ≥ 1, H i (U,M̂+)al
= 0.

Proof. By [Scholze 2013a, Lemma 4.10], both (1) and (2) hold for free Ô+X -modules. So we only focus
on M+’s satisfying the second condition.

(1) It is enough to show that for any i ≥ 1, H i (U,M+)al
= 0. Granting this, the rest can be deduced

from the long exact sequence induced by

0→M+ ×pa
−→M+

→M+/pa
→ 0.

Since (M+

|U/pc)al ∼= ((Ô+X |U/pc)r )al, by [Scholze 2013a, Lemma 4.10(v)], we deduce that

H i (U,M+/pc)al
= 0

for any i ≥ 1. Consider the exact sequence

0→M+/pc p(n−1)c
−−−→M+/pnc

→M+/p(n−1)c
→ 0.
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By induction on n, we see that for any i ≥ 1, H i (U,M+/pnc)al
= 0. Now, the desired result follows

from [Scholze 2013a, Lemma 3.18].

(2) Consider the commutative diagram

0 //M+
pb
//

×pb−a

��

M+ //

��

M+/pb //

��

0

0 //M+
pa
//M+ //M+/pa // 0

Then by (1), we get the commutative diagram

0 //M+(U )/pb //

��

(M+/pb)(U )
δb
//

��

H 1(U,M+) //

×pb−a

��

0

0 //M+(U )/pa // (M+/pa)(U )
δa
// H 1(U,M+) // 0

Since the multiplication by pb−a is zero on H 1(U,M+), the image of (M+/pb)(U ) in (M+/pa)(U ) is
contained in the kernel of δa . In other words, (M+/pb)(U ) takes values in M+(U )/pa . Now, the result
follows.

(3) When M+ is p-complete, there is nothing to prove. Now, assume M+ is a free Ô+X -module. The
first part follows from (2) and the second part follows from the same argument used in (1). □

Remark 5.8. In this paper, we say a module (or a sheaf of Ô+X -modules) M is p-complete, if M ∼=
Rlimn M ⊗L

Zp
Zp/pn . This is different from that M= limn M/pn in general. However, as mentioned in the

paragraph below [Bhatt et al. 2019, Lemma 4.6], if M has bounded p∞-torsion; that is, M[p∞] =M[pN
]

for some N ≥ 0, then saying M is p-complete amounts to saying M = limn M/pn . Indeed, in this case,
the pro-systems {M ⊗L

Zp
Zp/pn

}n≥0 and {M/pn
}n≥0 are pro-isomorphic. So we obtain that

Rlim
n

M ⊗L
Zp

Zp/pn
≃ Rlim

n
M/pn.

Lemma 5.9. Assume X= Spf(R+) is small. Define X∞, R̂+
∞

as before. Let L+ be a sheaf of p-complete
and p-torsion free Ô+X -modules such that

(L+/pa)al ∼= ((Ô+X/pa)l)al

for some a > 0. Put M = L+(X∞). Then:

(1) M is a finite free R̂+
∞

-module of rank l.

(2) For any 0< b < a, there is a 0-equivariant isomorphism M/pb ∼= (R̂+∞/pb)l .

Proof. By Lemma 5.7, we have 0-equivariant almost isomorphisms

M/pa ≈
−→ (L+/pa)(X∞)≈ (Ô+X/pa)l(X∞)

≈
←− (R̂+

∞
/pa)l . (5-1)
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In particular, we get an almost isomorphism M/pa
≈ (R̂+

∞
/pa)l . Denote by e1, . . . , el the standard basis

of (R̂+
∞
)l .

(1) As mentioned in the paragraph after [Scholze 2013a, Definition 2.2], for any ϵ ∈Q>0, one can find
OCp -morphisms

f : M/pa
→ (R̂+

∞
/pa)l and g : (R̂+

∞
/pa)l→ M/pa

such that f ◦ g = pϵ and g ◦ f = pϵ . In particular, the image of g is pϵM/pa and the kernel of g is killed
by pϵ .

For any i , choose xi ∈ M such that

xi ≡ g(ei ) mod pa M.

Then the xi ’s generate

pϵM/pa ∼= M/pa−ϵ .

We claim the xi ’s are linear independent over R̂+
∞
/pa−ϵ . Granting this, we see M/pa−ϵ is a finite free

R̂+
∞
/pa−ϵ-module. Since M is p-torsion free and p-complete by Lemma 5.7(3), by choosing ϵ < a, we

deduce that M is finite free of rank l as desired.
So we are reduced to proving the claim. Assume λi ∈ R̂+

∞
such that

∑l
i=1 λi xi ∈ pa M , that is,

g
(∑l

i=1 λi ei
)
∈ pa M . So

∑l
i=1 λi ei ∈ Ker(g) and thus is killed by pϵ . In other words, pϵ

∑l
i=1 λi ei ∈

pa(R̂+
∞
)l . This forces λi ∈ pa−ϵ R̂+

∞
for any i . So we are done.

(2) By [Scholze 2012, Proposition 4.4], the almost isomorphism M/pa
≈ (R̂+

∞
/pa)l induces an isomor-

phism

ι :mCp ⊗OCp
(R̂+
∞
/pa)l→mCp ⊗OCp

M/pa.

Since (5-1) is 0-equivariant, so is ι. Since mCp is flat over OCp , this amounts to a 0-equivariant
isomorphism

h : (mCp R̂+
∞
/pamCp R̂+

∞
)l→mCp M/pamCp M.

Now, for any ϵ > 0, choose xi,ϵ ∈mCp M such that, for any i ,

xi,ϵ ≡ h(pϵei ) mod pa M.

Note that xi,ϵ is unique modulo pa M . So for 0< ϵ′ < ϵ, we have

pϵ−ϵ
′

xi,ϵ′ ≡ xi,ϵ mod pa M.

Assume ϵ < a, we see that pϵ−ϵ
′

divides xi,ϵ for any ϵ′. By [Bhatt et al. 2018, Lemma 8.10], R+ is a
topologically free OCp -module; therefore, so is R̂+

∞
. As we have seen that M is a finite free R̂+

∞
-module, it

is also topologically free over OCp . This forces that xi,ϵ is divided by pϵ . So we may assume xi,ϵ = pϵ yi,ϵ

for some yi,ϵ ∈ M . By construction, yi,ϵ is unique modulo pa−ϵM .
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Now define Hϵ : (R̂+∞/pa−ϵ)l→ M/pa−ϵ by sending ei to yi,ϵ . By construction of Hϵ , we see that it is
the unique R̂+

∞
-morphism from (R̂+

∞
/pa−ϵ)l to M/pa−ϵ whose restriction to (mCp R̂+

∞
/pa−ϵ)l coincides

with h.
We need to show Hϵ is an isomorphism. However, since M is also finite free, after interchanging M

and (R̂+
∞
)l and proceeding as above, we get a unique Gϵ : M/pa−ϵ

→ (R̂+
∞
/pa−ϵ)l , whose restriction to

mCp M/pa−ϵ coincides with h−1. Now, a similar argument shows that Hϵ ◦Gϵ = id and Gϵ ◦ Hϵ = id.
So Hϵ is an isomorphism.

Finally, since h is 0-equivariant, by the uniqueness of Hϵ , we deduce that Hϵ is also 0-equivariant.
Since ϵ is arbitrary, we are done. □

The following corollary is a special case of Lemma 5.9.

Corollary 5.10. Assume X= Spf(R+) is small affine. Let L be an a-small generalised representation with
a sub-Ô+X -sheaf L+ satisfying (L+/pb+νp(ρk))al ∼= ((Ô+X/pb+νp(ρk))l)al for some b > a. Then L+(X∞) is
a b′-small R̂+

∞
-representation of 0 for any a < b′ < b.

Lemma 5.11. Assume X= Spf(R+) is affine small. Let L+ be a sheaf of p-complete and p-torsion free
Ô+X -modules such that

(L+/pc)al ∼= ((Ô+X/pc)l)al

for some c > 0. Then for any P+ ∈ {OC+ρ ,OĈ+ρ ,OC†,+
} and for each i ≥ 0, the natural map

H i (0, (L+⊗Ô+X
P+)(X∞))→ H i (Xproét/X,L+⊗Ô+X

P+)

is an almost isomorphism. When i = 0, it is an isomorphism.

Proof. The proof is similar to [Scholze 2013a, Lemma 5.6; Liu and Zhu 2017, Lemma 2.7]. Denote
by Xm/X

∞ the m-fold fibre product of X∞ over X . As X∞ is a Galois cover of X with Galois group 0,
we have Xm/X

∞ ≃ X∞ × 0m−1. Note that Ô+X/pc comes from the étale sheaf O+X/pc on Xét and that
(L+/pc)al ∼= ((Ô+X/pc)l)al. By [Scholze 2013a, Lemma 3.16], for any i ≥ 0 and m ≥ 1, we have almost
isomorphisms

Homcts(0
m−1, H i (X∞,L+⊗Ô+X

P+/pc))→ H i (Xm/X
∞

,L+⊗Ô+X
P+/pc).

By induction on n, we have almost isomorphisms

Homcts(0
m−1, H i (X∞,L+⊗Ô+X

P+/pnc))→ H i (Xm/X
∞

,L+⊗Ô+X
P+/pnc),

for any n ≥ 1. By letting n go to +∞, we get almost isomorphisms

Homcts(0
m−1, H i (X∞,L+⊗Ô+X

P+))→ H i (Xm/X
∞

,L+⊗Ô+X
P+)

for P+ ∈ {OC+,≤r
ρ ,OĈ+ρ }, where OC+,≤r

ρ denotes the subsheaf of

OC+ρ
∼= Ô+X [ρY1, . . . , ρYd ]
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consisting of polynomials of degrees ≤ r . By the coherence of restricted pro-étale topos, H i (Xm/X
∞ ,−)

commutes with direct limits for all i . Since OC+ρ =
⋃

r≥0 OC+,≤r
ρ , we also get desired almost isomor-

phisms for P+ =OC+ρ . A similar argument also works for P+ =OC†,+
=

⋃
ρ,νp(ρ)>νp(ρk)

OĈ+ρ . When
i = 0, since both sides are mCp -torsion free, so we get injections.

Now applying the Cartan–Leray spectral sequence to the Galois cover X∞→ X and using Lemma 5.7,
we conclude that the map

H i (0∞, (L+⊗Ô+X
P+)(X∞))→ H i (Xproét/X,L+⊗Ô+X

P+)

is an almost isomorphism for every i ≥ 0.
For i = 0, we know H 0(Xproét/X,L+⊗Ô+X

P+) is the (0, 0)-term of the Cartan–Leray spectral sequence
at the E2-page, which is the kernel of the map

(L+⊗Ô+X
P+)(X∞)→ (L+⊗Ô+X

P+)(X2/X
∞
).

On the other hand, H 0(0, (L+⊗Ô+X
P+)(X∞)) is the kernel of the map

(L+⊗Ô+X
P+)(X∞)→ Homcts(0, (L+⊗Ô+X

P+)(X∞)).

So the result follows from the injectivity of the map

Homcts(0, (L+⊗Ô+X
P+)(X∞))→ (L+⊗Ô+X

P+)(X2/X
∞
). □

Proof of Theorem 5.3. Now we are prepared to prove Theorem 5.3.

(1) Let L be an a-small generalised representation of rank l and L+ be the sub-Ô+X -sheaf as described
in Definition 5.1. Define H+ := ν∗(L+⊗Ô+X

OC†,+). It suffices to show that Riν∗(L+⊗Ô+X
OC†,+) is

p∞-torsion for any i ≥ 1 and that H+ satisfies conditions in Definition 5.2. Let b > a and {Xi → X}i∈I

be as in Definition 5.1. Since the problem is local on Xét, we are reduced to showing that for any i ∈ I ,
if we write Xi = Spf(R+i ), then H n(Xproét/Xi ,L+⊗Ô+X

OC†,+) is p∞-torsion for any n ≥ 1 and is a
bi -small Higgs module over R+i for n = 0 in the sense of Definition 4.2 for some bi > b. So we only
need to deal with the case for X small affine.

Now we may assume X= Spf(R+) is affine small itself and that

(L+/pb′)al ∼= ((Ô+X )
l/pb′)al

for some b′ > b. Let X∞, R̂+
∞

and 0 be as before. By Lemma 5.11, the natural morphism

H i (0,L+(X∞)⊗R̂+∞ S†,+
∞
)→ H i (Xproét/X,L+⊗Ô+X

OC†,+)

is an almost isomorphism for i ≥ 1 and is an isomorphism for i = 0. So we are reduced to showing
R0(0,L+(X∞)⊗R̂+∞ S†

∞
) is discrete after inverting p and H 0(0,L+(X∞)⊗R̂+∞ S†

∞
) is a b′′-small Higgs

module for some b′′ > b.
However, by Corollary 5.10, L+(X∞) is a b′′-small R̂+

∞
-representation of 0 for some fixed b′′ > b. So

the result follows from Theorem 4.3(1).
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(2) Let (H, θH) be an a-small Higgs bundle of rank l and H+ be the OX-lattice as described in
Definition 5.2. Fix an a′ satisfying a< a′< b. Define L+= (H+⊗OXOC†,+)2H=0. Then it is a subsheaf
of L= (H⊗OXOC†)2H=0 and hence p-torsion free. We claim that the inclusion OC†,+

→OĈ+ρk
induces

a natural isomorphism

(H+⊗OX OC†,+)2H=0
→ (H+⊗OX OĈ+ρk

)2H=0.

Indeed, this is a local problem and therefore follows from Proposition 4.13. As H+⊗OX OĈ+ρk
is p-

complete, by continuity of 2H, so is L+. It remains to prove that L+ is locally almost trivial modulo
pa′+νp(ρk).

Assume X= Spf(R+) is small affine and let X∞, R̂+
∞

and 0 be as before. Shrinking X if necessary,
we may assume (H+, θH) is induced by a b′-small Higgs module over R+ for some b′ > a′. Then by
Theorem 4.3, L+(X∞) is a b′-small R̂+

∞
-representation of 0.

Let us go back to the global case. Choose an étale covering {Xi→X} of X by small affine Xi =Spf(R+i )
such that on each Xi , (H+, θH+) is induced by a bi -small Higgs module over R+i for some bi > a′. Denote
by X i,∞ the corresponding “X∞” for Xi instead of X. As above, we have

L+(X i,∞)/pbi ∼= (Ô+X (X i,∞)/pbi )l .

Therefore, by the proof of [Scholze 2013a, Lemma 4.10(i)], we get an almost isomorphism

(L+/pbi )al
|X i
∼= ((Ô+X/pbi )l)al

|X i

with bi > a′ > a as desired.

(3) Let L be an a-small generalised representation. There exists a natural morphism of Higgs complexes

ι : HIG(H(L)⊗OX OC†,2H(L))→ HIG(L⊗ÔX
OC†,2L).

By construction of (H(L), θH(L)), it follows from Theorem 4.3(4) that ι is an isomorphism. Since OC†

is a resolution of ÔX by Theorem 2.28, we see that L(H(L), θH(L))= L. The isomorphism

(H, θH)→ (H(L(H)), θH(L(H)))

can be deduced in a similar way. So we get the equivalence as desired.
It remains to show the equivalence preserves products and dualities. But this is a local problem, so we

are reduced to Theorem 4.3(3).

(4) This follows from the same arguments in the proof of Theorem 4.3(4). Indeed, combining Theorem 2.28
and the item (3), we have a quasi-isomorphism

L→ HIG(L⊗ÔX
OC†,2L)≃ HIG(H⊗OX OC†,2H).

On the other hand, it follows from (1) that there exists a quasi-isomorphism

Rν∗(HIG(H⊗OX OC†,2H))≃ HIG(H, θH).
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So we get a quasi-isomorphism

Rν∗(L)≃ HIG(H, θH)

as desired.

(5) Since f : X→Y admits an A2-lifting f̃ , by Proposition 2.29, we get a morphism f ∗OC
†
Y →OC

†
X

which is compatible with Higgs fields.
Assume (H, θH) is an a-small Higgs field on Yét. Denote by ( f ∗H, f ∗θH) its pull-back along f .

By (3), we get the following isomorphisms, which are compatible with Higgs fields:

L( f ∗H, f ∗θH)⊗ÔX
OC

†
X
∼= f ∗H⊗OX OC

†
X

∼= f ∗(H⊗OY OC
†
Y )⊗ f ∗OC

†
Y
OC

†
X

∼= f ∗(L(H, θH)⊗ÔY
OC

†
Y )⊗ f ∗OC

†
Y
OC

†
X

∼= f ∗L(H, θH)⊗ÔX
OC

†
X .

After taking kernels of Higgs fields, we obtain that

L( f ∗H, f ∗θH)∼= f ∗L(H, θH).

So the functor (H, θH)→ L(H, θH) in (2) is compatible with the pull-back along f . But we have shown
it is an equivalence, so its quasi-inverse must commute with the pull-back along f . This completes the
proof.

Corollary 5.12. Assume X is a liftable proper smooth formal scheme of relative dimension d over OCp .
For any small generalised representation L, R0(Xproét,L) is concentrated in degree [0, 2d], whose
cohomologies are finite dimensional Cp-spaces.

Proof. Since we have assumed X is proper smooth, this follows from Theorem 5.3(4) directly. □

Remark 5.13. Except the item (4), all results in Theorem 5.3 are still true by using OĈ+ρk
instead

of OC†,+.

Remark 5.14. In Corollary 5.12, one can also deduce that R0(Xproét,L) is concentrated in degree [0, 2d]
when X is just quasi-compact of relative dimension d over OCp . Indeed, in this case, we have

R0(Xproét,L)≃ R0(Xét,HIG(H, θH))≃ R0(Xét,HIG(H, θH)⊗OX OXét),

where HIG(H, θH)⊗OX OXét denotes the induced Higgs complex on Xét. On the other hand, by étale
descent, the category of étale vector bundles on Xét is equivalent to the category of analytic vector bundles
on Xan, where Xan denotes the analytic site of X . So the Higgs complex HIG(H, θH)⊗OX OXét upgrades
to an analytic Higgs complex HIG(Han, θH) such that

HIG(Han, θH)⊗OXan
OXét = HIG(H, θH)⊗OX OXét .
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By analytic-étale comparison (see [Fresnel and van der Put 2004, Proposition 8.2.3]), for any coherent
OXan-module M, there is a canonical quasi-isomorphism

R0(Xan,M)≃ R0(Xét,M⊗OXan
OXét).

So by considering corresponding spectral sequences of these complexes, we get a quasi-isomorphism

R0(Xan,HIG(Han, θH))≃ R0(Xét,HIG(H, θH)⊗OX OXét).

Now, the quasi-compactness of X implies that X is a noetherian space. So the result follows from
Grothendieck’s vanishing theorem [1957, Théorème 3.6.5] directly. The author thanks the anonymous
referees for pointing this out.

6. Appendix

We prove some elementary facts used in this paper. Throughout this section, we always assume A is a
p-complete flat OCp -algebra.

Definition A.1. Let 3 = {α}α∈3 be an index set and I = {iα}α be a set of nonnegative real numbers
indexed by 3. Define

(1) A[3] =
⊕

α∈3 A;

(2) A⟨3⟩ = lim
←−−m A[3]/pm A[3];

(3) A[3, I ] =
⊕

α∈3 piα A;

(4) A⟨3, I ⟩ = lim
←−−m(A[3, I ] + pm A[3])/pm A[3];

(5) A⟨3, I,+⟩ = lim
←−−m A[3, I ]/pm A[3, I ].

Proposition A.2. (1) A⟨3⟩/A⟨3, I ⟩ is the classical p-completion of A[3]/A[3, I ].

(2) A⟨3⟩/A⟨3, I,+⟩ is the derived p-completion of A[3]/A[3, I ].

Proof. Since A⟨3, I ⟩ is the closure of A⟨3, I,+⟩ in A⟨3⟩ with respect to the p-adic topology, the
item (1) follows from (2) directly. So we are reduced to proving (2).

Consider the short exact sequence

0 // A[3, I ] // A[3] // A[3]/A[3, I ] // 0.

For any n ≥ 0, we get an exact triangle

A[3, I ]⊗L
Zp

Zp/pn
→ A[3]⊗L

Zp
Zp/pn

→ (A[3]/A[3, I ])⊗L
Zp

Zp/pn
→ .

Applying Rlimn to this exact triangle and using p-complete flatness of A, we get the exact triangle

A⟨3, I,+⟩[0] → A⟨3⟩[0] → K →,

where K denotes the derived p-completion of A[3]/A[3, I ]. Now, the item (2) follows from the
injectivity of the map A⟨3, I,+⟩→ A⟨3⟩. □
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Remark A.3. For any (λα)α∈3∈
∏
α∈3 A, we write λα

νp
−→0, if for any M>0 the set {α∈3|νp(λα)≤M}

is finite. Then we have

A⟨3, I ⟩ =
{
(λα)α∈3 | νp

(
λα

piα

)
≥ 0

}
and

A⟨3, I,+⟩ =
{
(λα)α∈3 | νp

(
λα

piα

)
≥ 0, λα

piα

νp
−→ 0

}
.

Definition A.4. Assume M is a (topologically) free A-module. Let 61 and 62 be two subsets of M .

(1) We write 61 ∼62, if they (topologically) generate the same sub-A-module of M .

(2) We write 61 ≈62, if both of them are sets of (topological) basis of M . In this case, we also write
M ≈61 if no ambiguity appears.

Proposition A.5. Fix ϵ, ω ∈OCp . Let M be a (topologically) free A-module with basis {xi }i≥0. If N ⊂ M
is a submodule such that

N ∼ {ω(xi + iϵxi−1) | i ≥ 0},

where x−1 = 0, then N = ωM.

Proof. Put yi = xi + iϵxi−1 for all i . Then we see that

(y0, y1, y2, y3, . . .)= (x0, x1, x2, x3, . . .) · X

with

X =


1 ϵ 0 0 · · ·
0 1 2ϵ 0 · · ·
0 0 1 3ϵ · · ·
0 0 0 1 · · ·
...
...
...

...
. . .


and that

(x0, x1, x2, x3, . . .)= (y0, y1, y2, y3, . . .) · Y

with

Y =


1 −ϵ 2ϵ2

−6ϵ3
· · ·

0 1 −2ϵ 6ϵ2
· · ·

0 0 1 −3ϵ · · ·
0 0 0 1 · · ·

...
...

...
...

. . .


The (i, j)-entry of Y is δi j if i ≥ j and is (−ϵ) j−i (( j−1)!/(i−1)!) if i < j . Then the proposition follows
from the fact XY = Y X = Id. □

The following proposition can be proved in the same way.
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Proposition A.6. Fix 2 ∈Ml(A). Let M be a (topologically) free A-module with basis {xi }i≥0. Let N be
a finite free R-module of rank l with a basis {e1, . . . , el}. For every 1≤ j ≤ l and i ≥ 0, put f j,i ∈ N⊗A M
satisfying

( f1,i , . . . , fl,i )= (e1⊗ xi , . . . , el ⊗ xi )+ i(e1⊗ xi−1, . . . , el ⊗ xi−1)2,

where x−1 = 0. Then N ⊗A M ≈ { f j,i | 1≤ j ≤ l, i ≥ 0}.
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On moment map and bigness of tangent bundles of
G-varieties

Jie Liu

Let G be a connected algebraic group and let X be a smooth projective G-variety. We prove a sufficient
criterion to determine the bigness of the tangent bundle TX using the moment map 8G

X : T ∗ X → g∗. As
an application, the bigness of the tangent bundles of certain quasihomogeneous varieties are verified,
including symmetric varieties, horospherical varieties and equivariant compactifications of commutative
linear algebraic groups. Finally, we study in details the Fano manifolds X with Picard number 1 which is
an equivariant compactification of a vector group Gn

a . In particular, we will determine the pseudoeffective
cone of P(T ∗ X) and show that the image of the projectivised moment map along the boundary divisor D
of X is projectively equivalent to the dual variety of the variety of minimal rational tangents of X at a
general point.

1. Introduction 1501
2. Notation, conventions, and facts used 1504
3. Criteria for bigness and proof of Theorem 1.2 1508
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1. Introduction

Throughout we work over the field of complex numbers C.
Since the seminal works of Mori and Siu-Yau on the solutions to the Hartshorne conjecture and the

Frankel conjecture [27; 36], it becomes apparent that making an assumption about the positivity of the
tangent bundle TX of a projective manifold X , or equivalently the positivity of the tautological divisor 3

of the projectivisation P(T ∗X) (in the geometric sense), allows us to derive a particularly rich geometry
of X . While the situation where TX is ample or nef has been intensively studied in the literature (see
[27; 3; 4; 28]), the case where TX is big is much less understood. The main difficulty in investigating
the bigness of TX in the general case is the lack of numerical characterisations in terms of invariants
of X even in low dimensions. As far as we know, there are three main tools which are used to prove or
disprove the bigness of TX . The first one is the (projectivised) moment map, i.e., the rational map defined
by certain subspaces of |3|. The second one is the existence of twisted symmetric vector fields, i.e.,
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nonvanishing of H 0(X, Symm TX ⊗ OX (−A)) with A being a big divisor. The third one is to determine
the cohomological class of the total dual variety of minimal rational tangents Č ⊆ P(T ∗X). We give in
the following an overview of a few of the varieties which have already been studied and also the method
used to prove or disprove the bigness of their tangent bundles:

• (Projectivised) moment map:

– Rational homogeneous spaces [33].

• Twisted symmetric vector fields:

– Toric varieties [14].
– Intersection of two quadrics in P4 and cubic surfaces in P3 [24].
– Hypersurfaces in Pn (n ≥ 3) [13].

• Total dual variety of minimal rational tangents:

– del Pezzo surfaces and del Pezzo threefolds [13].
– Fano manifolds with Picard number 1 and with zero-dimensional variety of minimal rational

tangents [12].
– Moduli spaces SUC(r, d) of stable vector bundles of rank r and degree d over a projective curve

C of genus g such that r ≥ 3, g ≥ 4 and (r, d) = 1 [8].
– Fano threefolds with Picard number 2 [21].

The main body of this paper will be devoted to pursue furthermore the criterion for the bigness of
TX via moment map. Let G be a connected algebraic group with Lie algebra g and let X be a smooth
projective G-variety. Then the moment map 8G

X : T ∗X → g∗ is defined as follows: for a point x ∈ X , the
map T ∗

x X → g∗ is defined as the cotangent map of the orbit map µx : G → Gx at x ; see Section 2C for
more details. We denote by MG

X ⊆ g∗ the closure of the image of 8G
X . The starting point of this paper is

the following criterion for the bigness of TX , which is proved by combining the moment map method
with the approach via twisted symmetric vector fields.

Proposition 1.1. Let G be a connected algebraic group and let X be a smooth projective G-variety. Then
TX is big if there exists an effective big divisor A such that

dim(8G
X (T ∗X |Supp(A))) < dim(MG

X ).

We refer the reader to Section 3A for discussion on how to verify the conditions in the criterion. As
the first application of Proposition 1.1, the following theorem confirms the bigness of the tangent bundles
of certain interesting smooth projective quasihomogeneous varieties.

Theorem 1.2. Let X be a projective manifold. Then TX is big if X is isomorphic to one of the following
varieties:

(1) A spherical G-variety with a G-stable affine open subset, e.g., symmetric varieties.

(2) A horospherical G-variety.

(3) A quasihomogeneous G-variety with G a commutative linear algebraic group.
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We refer the reader to Section 3B for the definitions of spherical varieties, symmetric varieties and
horospherical varieties. Our initial motivation for the present work is trying to produce more examples
of Fano manifolds with Picard number 1 and with big tangent bundle, while the only previous known
nonhomogeneous examples, up to our knowledge, are the quintic del Pezzo threefold V3 [13] and the
horospherical G2-variety X5 [32]. As the second application of Proposition 1.1, we derive infinitely many
(nonhomogeneous) examples of Fano manifolds with Picard number 1 and with big tangent bundle, which
are summarised in the following:

• Rational homogeneous spaces G/P with Picard number 1 [33]; see Theorem 2.10 and Example 3.9.

• Nonhomogeneous projective symmetric varieties (and their degenerations) [34]:

– The Cayley Grassmannian CG [25].
– The double Cayley Grassmannian DG [26].
– A smooth hyperplane section of the third row of the geometric Freudenthal’s magic square

Grω(A3, A6), where A is a complex composition algebra (i.e., the complexification of R, C, the
quaternions H, or the octonions O) [23].

See Corollary 3.11 and Remark 3.12.

• Nonhomogeneous smooth projective horospherical varieties [31]:

– X1(m) := (Bm, ωm−1, ωm) (m ≥ 3).
– X2

:= (B3, ω1, ω3).
– X3(m, i) := (Cm, ωi , ωi+1) (m ≥ 2, 1 ≤ i ≤ m − 1).
– X4

:= (F4, ω2, ω3).
– X5

:= (G2, ω2, ω1).

The varieties X3(m, i) are the odd symplectic Grassmannians and we refer the reader to [31] for the
notations; see Proposition 3.13 and Remark 3.14.

• A smooth linear section Vk of Gr(2, 5) ⊆ P9 with codimension k ≤ 3 in its Pücker embedding [12;
13]. The variety V1 is isomorphic to the horospherical variety X3(2, 1); see Proposition 3.15 and
Example 4.5.

• A smooth linear section Sk of the 10-dimensional spinor variety S5 ⊆ P15 with codimension k ≤ 3
in its minimal embedding. The variety S1 is the horospherical variety X2; see Proposition 3.15,
Example 4.5 and Corollary 4.18.

• The smooth projective two-orbits F4-variety X1 given in [31, Definition 2.11]. Note that the smooth
projective two-orbits G2×PGL2-variety X2 is isomorphic to the general codimension 2 linear section
Sg

2 of S5; see [1, Proposition 4.8; 31, Definition 2.12] and Proposition 4.21.

An interesting class of examples belonging to case (3) of Theorem 1.2 is the equivariant compactifica-
tions of vector groups. Recall that an equivariant compactification of an algebraic group G is a pair (X, x),
where X is a normal complete algebraic variety equipped with a regular action G × X → X and x ∈ X is a
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point with the trivial stabiliser such that the orbit Gx is open and dense in X . We find it quite remarkable
that the moment map of a Fano manifold X with Picard number 1 which is an equivariant compactification
of a vector group Gn

a exhibits many interesting geometric properties and it has a surprising connection
with the variety of minimal rational tangents (VMRT, for short) of X . In particular, in this situation,
as the last application of Proposition 1.1, we have a complete description of the pseudoeffective cone
of P(T ∗X) and we can relate the criterion given in Proposition 1.1 to the criterion given by total dual
VMRT in [8; 13]. We refer the reader to Section 4A for the explicit definitions of dual varieties, codegree,
VMRT and total dual VMRT.

Theorem 1.3. Let X be a Fano manifold with Picard number 1, different from projective spaces, which is
an equivariant compactification of the vector group G = Gn

a with an open orbit O ⊆ X. Denote by D the
complementary X \ O and by MG

D the closure of the image of the restricted map 8G
X |D : T ∗X |D → g∗.

Then the following statements hold:

(1) The pseudoeffective cone Eff(P(T ∗X)) is generated by π∗D and all the prime divisors DH (see
Notation 3.2), where π : P(T ∗X) → X is the natural projection and H is a reduced and irreducible
hypersurface in P(g∗) containing P(MG

D).

(2) If the VMRT Cx ⊆ P(Tx X) at a point x ∈ O is smooth, then P(MG
D)⊆ P(g∗) is projectively equivalent

to the dual variety of Cx ⊆ P(Tx X).

(3) If the VMRT Cx ⊆ P(Tx X) at a point x ∈ O is smooth and not dual defective, then we have

DH = Č, Eff(P(T ∗X)) = ⟨DH, π∗D⟩ and DH ∼ a3 − 2π∗D

where H = P(MG
D) ⊆ P(g∗), the variety Č ⊆ P(T ∗X) is the total dual VMRT , the coefficient a is the

codegree of the VMRT and 3 is the tautological divisor of P(T ∗X).

Remark 1.4. (1) For projective spaces, there exist nonisomorphic equivariant compactification struc-
tures of vector groups and they are classified by the so-called Hassett–Tschinkel correspondence
proved in [11]; see also [6]. In particular, Theorem 1.3 above holds for the simplest equivariant
compactification structure on projective spaces (see Example 4.6), however the statement (2) is no
longer true for others. Indeed, since the VMRT of a projective space is the whole projectivised
tangent space, its total dual VMRT is an empty set. Therefore, if the statement (2) holds, then MG

D

is the origin of g∗. This implies that the points in D are fixed under the action of G.

(2) For the known examples of equivariant compactifications of vector groups with Picard number 1
(see Example 4.5), we will determine in Table 1 the dual defect and the codegree of their VMRTs,
i.e., the value of a.

2. Notation, conventions, and facts used

Let X be a projective manifold. Denote by N 1(X)R the finite-dimensional R-vector space of numerical
equivalence classes of R-divisors. The pseudoeffective cone Eff(X) ⊆ N 1(X)R is the closure of the convex
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cone spanned by the classes of effective R-divisors. It is known the interior of Eff(X) is the big cone
Big(X) of X ; that is, the open cone generated by big divisors on X .

2A. Positivity of vector bundles. Let E be a vector bundle over a smooth projective variety X . We denote
by P(E) the natural (not the Grothendieck) projectivisation of E ; that is, we have

P(E) := Proj
(⊕

m≥0

Symm E∗

)
,

where E∗ is the dual bundle of E .

Definition 2.1. Let E be a vector bundle over a projective manifold X . We say that E is big (resp. ample,
nef, pseudoeffective) if the tautological line bundle OP(E∗)(1) of the projective bundle P(E∗) is big (resp.
ample, nef, pseudoeffective).

Example 2.2. Let E ∼=OP1(a1)⊕· · ·⊕OP1(ar ) be a vector bundle of rank r over P1 such that a1 ≥· · ·≥ar .
Then we have

E is


ample if and only if ar > 0;

nef if and only if ar ≥ 0;

big if and only if a1 > 0;

pseudoeffective if and only if a1 ≥ 0.

We have the following simple but useful criterion for bigness of vector bundles:

Lemma 2.3 (equivalent definitions of bigness, [13, Lemma 2.3]). Let E be a vector bundle over a
projective manifold X. Denote by π : P(E∗) → X the natural projection and by 3 the tautological divisor
class of P(E∗). Then the following statements are equivalent:

(1) The vector bundle E is big.

(2) There exists a big divisor A on X and a positive integer m such that m3 − π∗ A is big.

(3) There exists a big divisor A on X and a positive integer m such that m3 − π∗ A is pseudoeffective.

Proof. The implication (1)=⇒(2) follows from the openness of bigness, and the implication (2)=⇒(3) is
trivial. Finally the implication (3)=⇒(1) follows from [13, Lemma 2.3]. □

Lemma 2.4. Let F and E be two vector bundles over a projective manifold X such that there exists a
generically injective map σ : F → E. If F is big, then E is big.

Proof. By Lemma 2.3, there exists a big divisor A on X and a positive integer m such that m3F − π∗

F A
is big, where 3F is the tautological divisor of P(F∗) and πF : P(F∗) → X is the natural projective.
Then, after replacing m by its large enough multiple m′m and replacing A by m′ A, we may assume
that |m3F −π∗

F A| is nonempty. In particular, we have H 0(X, Symm F ⊗ OX (−A)) ̸= ∅. This implies
that H 0(X, Symm E ⊗ OX (−A)) ̸= ∅. In other words, we have |m3E − π∗

E A| ̸= ∅ and hence E is
big by Lemma 2.3, where 3E is the tautological divisor of P(E∗) and πE : P(E∗) → X is the natural
projection. □
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Example 2.5. Let X be a projective manifold and let L be a big line bundle over X . Set E = L ⊕ L∗.
Then the tangent bundle of P(E∗) is big. Indeed, we note that E is big by Lemma 2.4 as L is big. In
particular, the relative tangent bundle of P(E∗) → X is big as it is isomorphic to the line bundle OP(E∗)(2).
Consequently, the tangent bundle T P(E∗) itself is big by Lemma 2.4.

2B. Pseudoeffective cone of divisors on G-varieties. Let D be a Q-Weil divisor on a normal projective
variety X and let D be an irreducible component of supp(D). We denote by m D(D) the multiplicity of
D along D, i.e., the coefficient of D in D.

Lemma 2.6. Let X be a projective manifold. Let D and D′ be two effective Q-Weil divisors on X such
that supp(D) = supp(D′). Then D is big if and only if D′ is big.

Proof. By symmetry, it suffices to prove that if D is big, then D′ is big. Let us denote by D1, . . . , Dr the
irreducible components of supp(D) = supp(D′). We define

m := max{m Di (D) | i = 1, . . . , r} and m′
:= min{m Di (D′) | i = 1, . . . , r}.

Let n be a positive integer such that nm′
≥ m. Then nD′

− D is effective. In particular, it follows that
nD′ is big and hence so is D′ itself. □

In general, the pseudoeffective cone of a projective manifold may be very complicated to describe.
However, if X admits a G-action for some solvable linear algebraic group G, then we have the following
very useful result concerning Eff(X).

Theorem 2.7 [2, Théorème 1.3]. Let G be a connected solvable linear algebraic group and let X be
a smooth projective G-variety. Then every effective cycle on X is rationally equivalent to a G-stable
effective cycle. In particular, the pseudoeffective cone Eff(X) of X is generated by G-stable divisors.

As an immediate application of the theorem above, one can easily derive the following criterion for
bigness of G-equivariant vector bundles over smooth projective G-varieties.

Proposition 2.8 (criterion for bigness of G-equivariant vector bundles). Let G be a connected solvable
linear algebraic group. Let E be a G-equivariant vector bundle over a smooth projective G-variety X.
Denote by π : P(E∗) → X the natural projection and by 3 the tautological divisor class of P(E∗). Then
E is big if and only if there exist G-stable effective integral divisors 1 on P(E∗) and D on X satisfying:

(1) There exists a positive integer m > 0 such that 1 ∈ |m3|.

(2) The divisor D is big and 1 − π∗D ≥ 0.

Proof. One direction is clear by Lemma 2.3. Thus we may assume that E is big. By Lemma 2.3, there
exists a big divisor A on X and a positive integer m1 such that m13 − π∗ A is big. On the other hand,
by Theorem 2.7, there exists a G-stable effective divisor D′ on X such that A ∼Q r1 D′ and a G-stable
effective divisor 1′ on P(E∗) such that m13 − π∗ A ∼Q r21

′ for some rational numbers r1, r2 > 0. Set
1 = m2(r21

′
+ r1π

∗D′) for some sufficiently divisible positive integer m2. Then we conclude by letting
m = m1m2 and D = m2r1 D′. □
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2C. Moment map of G-varieties. In this subsection, we briefly recall basic facts concerning moment
maps of G-varieties and we refer the reader to [40] for more details. Let X be an n-dimensional smooth
algebraic variety. Then there exists a standard symplectic structure on the cotangent bundle T ∗X of
X , which is given by a 2-form ω = dx ∧ d y =

∑
dxi ∧ dyi , where x = (x1, . . . , xn) is a tuple of local

coordinates on X and y = (y1, . . . , yn) is an impulse, i.e., a tuple of dual coordinates in a cotangent
space. If X is a G-variety, then the symplectic structure on T ∗X is G-invariant and, for every ξ ∈ g, the
velocity field of ξ on T ∗X has a Hamiltonian Hξ = ξ∗, the respective velocity field on X considered as a
linear function on T ∗X . Furthermore, the action of G on T ∗X is Hamiltonian, i.e., the map ξ 7→ Hξ is a
homomorphism of g to the Poisson algebra of functions on T ∗X . The dual morphism 8G

X : T ∗X → g∗

defined as following

⟨8G
X (w), ξ⟩ = Hξ (w) = ⟨w, Hξ (x)⟩, ∀w ∈ T ∗

x X, ξ ∈ g, (2.8.1)

is called the moment map. We denote by MG
X ⊆ g∗ the closure of the image of the moment map. If

Z ⊆ X is a closed (maybe reducible) subvariety, we denote by MG
X (Z) ⊆ g∗ the closure of the image

8G
X (T ∗X |Z ). Let T gX ⊆ X × g∗ be the closure of the image of the following map

π × 8G
X : T ∗X → X × g∗,

where π : T ∗X → X is the natural projection. Then clearly the moment map factors as

8G
X : T ∗X → T gX 8̂G

X−−→ g∗.

The morphism 8̂G
X is called the localised moment map. The general fibres of 8̂G

X are the cotangent spaces
g⊥

x = T ∗
x Gx to general orbits and the induced map T g

x X → g∗ is exactly the cotangent map of the orbit
map µx at x . Here gx is the Lie algebra of the isotropy subgroup Gx of G at x .

The moment map 8G
X is equivariant with respect to the natural C∗-actions on T ∗X and g∗. This implies

that the 8G
X induces a projectivised moment map

8G
X : P(T ∗X) 99K P(g∗).

Then the closure of the image of 8G
X is exactly P(MG

X ) and MG
X is the affine cone of P(MG

X ). Moreover,
denote by V ⊆ H 0(X, TX) the subspace of Hamiltonians. Then V can be naturally identified to a linear
system V ⊆ |OP(T ∗ X)(1)| and the rational map 8G

X is exactly the rational map defined by the linear
system V . Indeed, firstly note that we have a natural surjective linear map g → V whose kernel consists
of elements ξ ∈ g such that Hξ = 0. Let x ∈ X be a general point and ω ∈ T ∗

x X be a general element.
Then the rational map 8V : P(T ∗X) 99K P(V ∗) ⊆ P(g∗) defined by the linear system V sends the point
[ω] ∈ P(T ∗

x X) to [V ⊥
x ] ∈ P(V ∗), where Vx is the codimension one subspace of V defined as

Vx := {Hξ ∈ V | ⟨ω, Hξ (x)⟩ = 0}.

Comparing this with (2.8.1), one can easily derive that 8G
X ([ω]) = 8V ([ω]); that is, the map 8G

X coincides
with 8V .
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Finally, we note that the moment map 8G
X is G-equivariant and MG

X is a G-birational invariant of X .
In particular, after passing to a smooth G-stable open subset, we can define the moment map for singular
G-varieties. Moreover, the moment map also induces a homomorphism of filtered algebras

gr 8∗
: Sym• g = C[g∗

] → H 0(X, Sym• TX) ⊆ C[T ∗X ], (2.8.2)

where C[g∗
] (resp. C[T ∗X ]) is the algebra of regular functions on g∗ (resp. T ∗X ).

If G is a reductive linear algebraic group, the dimension of MG
X is given by Knop [22] in terms of two

numerical invariants of X related to the action of a Borel subgroup of G: the complexity and the rank;
see for instance Example 3.8.

Definition 2.9 (complexity and rank). Let G be a connected reductive linear algebraic group with a fixed
Borel subgroup B, and let X be an algebraic G-variety:

(1) The complexity c(X) of the action G on X is the codimension of a general B-orbit in X .

(2) The rank r(X) of the action G on X is the rank of 3(X), where 3(X) is the set of weights of all
rational B-eigenfunctions on X .

We recall that for any linear algebraic group G acting on a variety X , the set of rational G-eigenfunctions
on X are defined as

C(X)(G)
= { f ∈ C(X) \ {0} | ∃χ ∈ X (G) s.t. ∀g ∈ G, g · f = χ(g) f },

where C(X) is the field of rational functions on X and X (G) is the group of characters of G.

Theorem 2.10 (dimension formula of MG
X , [22, Satz 7.1]). Let G be a connected reductive linear

algebraic group and let X be a projective G-variety. Then we have

dim(MG
X ) = dim(P(MG

X )) + 1 = 2 dim(X) − 2c(X) − r(X).

3. Criteria for bigness and proof of Theorem 1.2

In this section, firstly we shall prove Proposition 1.1 which gives a sufficient condition to guarantee
the bigness of tangent bundles of smooth projective G-varieties via its moment map along effective big
divisors. Next we will discuss several situations where the conditions in Proposition 1.1 hold automatically.
Finally, we apply these criteria to prove Theorem 1.2, which confirms the bigness of tangent bundles
of certain quasihomogeneous spaces, including symmetric varieties, spherical varieties and equivariant
compactifications of commutative linear algebraic groups.

3A. Criterion for bigness via moment map. Let m be a positive integer. For every ξ ∈ Symm g, we
denote by Hξ ∈ H 0(X, Symm TX) the image of ξ under the map gr 8∗; see (2.8.2). Then for any point
x ∈ X , the evaluation Hξ (x) of Hξ at x can be regarded as a homogeneous polynomial of degree m
over the cotangent space T ∗

x X . We note that Hξ (x) may be identically zero over T ∗
x X and the following

observation relates the vanishing locus of Hξ (x) in T ∗
x X to the zero locus of ξ in g∗.
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Lemma 3.1. Let G be a connected algebraic group and let X be a smooth projective G-variety. Given a
positive integer m, an element ξ ∈ Symm g and a point w ∈ T ∗

x X , then Hξ (x) vanishes at w if and only if
ξ vanishes at 8G

X (w) ∈ g∗.

Proof. Note that the moment map 8G
X restricted to T ∗

x X is just the following composition

8G
X,x : T ∗

x X → T ∗

x Ox = g⊥

x ↪→ g∗,

where Ox is the G-orbit of x . In particular, the form Hξ (x) is the composition ξ ◦ 8G
X,x , where ξ is

regarded as a function over g∗. □

Given a positive integer m and a Weil divisor A on X , recall that we have the following natural
isomorphism

H 0(P(T ∗X), OP(T ∗ X)(m) ⊗ OP(T ∗ X)(−π∗ A)) → H 0(X, Symm TX ⊗ OX (−A)). (3.1.1)

Let σ ∈ H 0(P(T ∗X), OP(T ∗ X)(m)) be a section and denote by Hσ ∈ H 0(X, Symm TX ) the corresponding
symmetric vector field on X . Then, for a prime divisor A on X , the section σ vanishes along π∗ A if and
only if the corresponding form Hσ vanishes along A.

Proof of Proposition 1.1. By Lemma 2.6, we may assume that A is reduced. Since both MG
X (A) and MG

X

are invariant under the dilation action of C∗ on g∗, by assumption, we have

dim(P(MG
X (A))) < dim(P(MG

X )).

In particular, as MG
X is irreducible, there is a hypersurface in P(g∗) defined by a homogeneous polynomial

ξ ∈ Symm g of degree m such that it contains P(MG
X (A)) but not P(MG

X ). Let Hξ ∈ H 0(X, Symm TX )

be the corresponding symmetric vector field on X . Then we have Hξ ̸= 0 and Hξ vanishes identically
along A.

Let σ ∈ H 0(P(T ∗X), OP(T ∗ X)(m)) be the global section such that Hσ = Hξ . Then according to
Lemma 3.1 and the discussion before the proof, the section σ vanishes identically along π∗ A. In
particular, the following divisor

m3 − π∗ A ∼ div(σ ) − π∗ A ≥ 0

is pseudoeffective. Thus, as A is big, it follows from Lemma 2.3 that TX is big. □

Notation 3.2. Given a (maybe nonreduced and reducible) hypersurface H⊆ P(g∗) defined by ξ ∈ Symm g.
We will denote by Dξ ∈ |OP(T ∗ X)(m)| the divisor corresponding to ξ and the divisor DH is defined as the
horizontal part of Dξ . Let π : P(T ∗X) → X be the natural projection. Then we have

Dξ = DH +

∑
multπ∗ D(Dξ )π

∗D,

where D runs over all the prime divisor in X such that P(MG
X (D)) is contained in H.
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3A1. Criteria for bigness of boundary divisors. To apply Proposition 1.1, firstly we need to find an
effective big divisor A in X . In most cases considered in this paper, the variety X will be a smooth
quasihomogeneous projective variety and it is natural to choose A to be the complement of the unique
open orbit.

Proposition 3.3 [10, Section I, Proposition 1 and Theorem 1]. Let X be a projective manifold and let
U ⊆ X be an affine dense open subset of X. Then the complement D := X \ U has pure codimension 1
and the line bundle OX (D) is big.

Proof. The first statement follows from [10, Proposition 1]. For the second statement, since U is affine, by
[10, Theorem 1], there is a closed subvariety Z of D and a blowing-up ϕ : X → X with the centre Z ⊆ D
such that ϕ−1(D) is the support of an effective ample divisor A on X . In particular, the push-forward
ϕ∗ A is a big Weil divisor with support D. Then it follows from Lemma 2.6 that D itself is big. □

Let G be connected linear algebraic group. A closed subgroup H of G is said to be regularly embedded
in G if Radu(H) ⊆ Radu(G), where Radu(H) (resp. Radu(G)) is the unipotent radical of H (resp. G).
For example, if there is no parabolic subgroup of G containing H , then H is regularly embedded in G
[16, 30.3].

Lemma 3.4 (criteria for bigness of boundary). Let G be a connected linear algebraic group and let X be
a smooth projective G-variety with a Zariski open dense orbit O. Then the complement D := X \ O is a
big divisor if one of the following holds:

(1) The group G is solvable.

(2) For a point x ∈ O , the isotropy subgroup Gx of G at x is regularly embedded in G.

(3) For a point x ∈ O , the isotropy subgroup Gx of G at x is reductive.

Proof. By Proposition 3.3, it is enough to show that O is an affine variety and the latter follows from
certain known criteria for affineness of homogeneous spaces; see for instance [39, Theorems 3.5, 3.7
and 3.8]. □

3A2. Image of moment map along boundary divisors. Once we have an effective big divisor D on a
projective G-variety X , to apply Proposition 1.1, we need to control the dimension of MG

X (Dred). In the
following we consider the case where D is G-stable. Let G be a connected algebraic group and H be
a closed subgroup. Let F be an H -variety. Then H acts on G × F by h(g, f ) = (gh−1, h · f ) and we
denote by G ∗H F the quotient set (G × F)/H , which is a homogeneous fibre bundle over G/H .

Lemma 3.5. Let G be a connected algebraic group and let X = G/H be a homogeneous variety. Denote
by N the normaliser NG(H) of H in G and by n its Lie algebra. Then we have T ∗X = G ∗H h⊥ and the
moment map 8G

X factors as
G ∗H h⊥

→ G ∗N h⊥
→ g∗,

where N acts on h⊥ by coadjoint action. In particular, we have

dim(MG
X ) ≤ dim(X) + dim(g) − dim(n). (3.5.1)
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Proof. This is a standard fact about homogeneous spaces. Let us recall the proof for the reader’s
convenience. There is a canonical isomorphism Tx X ∼= g/gx for any point x ∈ X . In particular, we get a
canonical embedding T ∗X → X × g∗. Then the isomorphism 9 : G ∗H h⊥

→ T ∗X is given as follows:

9(g, w) = ([gH ], Ad∗

g(w)),

where g ∈ G, w ∈ h⊥ and Ad∗

g ∈ GL(g∗) is the coadjoint representation of g. In particular, under the
isomorphism 9, the moment map 8G

X : T ∗X → g∗ can be written as

8G
X (g ∗ w) = Ad∗

g(w),

where g ∈ G and w ∈ h⊥. For any n ∈ N , we have Ad∗

n(h
⊥) = h⊥ by definition. This immediately

implies that 8G
X factors through G ∗N h⊥

→ g∗. The inequality (3.5.1) then follows from the fact that
dim(MG

X ) ≤ dim(G ∗N h⊥) = dim(G/N ) + dim(h⊥). □

Lemma 3.6. Let G be a connected linear algebraic group and let X be a smooth projective G-variety.
Let D be a G-stable prime divisor in X. Then we have

dim(MG
X (D)) = dim(MG

D) ≤ dim(X) + dim(g) − dim(n) − 1,

where n is the Lie algebra of the normaliser NG(H) of the isotropy subgroup of G at a general point
x ∈ D.

Proof. Since D is G-stable, the restriction of the moment map 8G
X to D factors as

T ∗X |Dreg → T ∗Dreg → g∗,

where Dreg is the smooth locus of D. In particular, we have MG
X (D) = MG

D. Let Ox be the orbit of a
general point x ∈ Dreg. Then we also have

dim(MG
D) = dim(8̂G

D(T gDreg)) = dim(D) − dim(Ox) + dim(MG
Ox

).

Then we conclude by applying Lemma 3.5 to the homogeneous space Ox = G/Gx . □

Lemma 3.7. Let G be a connected reductive linear algebraic group and let X be a smooth projective
G-variety. Let D be a G-stable prime divisor in X. Then

dim(MG
X (D)) = dim(MG

D) < dim(MG
X ).

if and only if
c(X) = c(D) and r(X) = r(D) + 1.

Proof. This follows directly from Knop’s dimension formula, see Theorem 2.10. Here we remark that we
have always c(D) ≤ c(X), r(D) ≤ r(X) and the equality holds if and only if D = X [39, Theorem 5.7]. □

Example 3.8 (quintic del Pezzo threefold). Let X = V3 be the smooth quintic del Pezzo threefold, e.g., a
smooth codimension 3 linear section of Gr(2, 5) ⊆ P9. Then TX is big by [13, Theorem 1.5]. Denote
by H the ample generator of Pic(X). Recall that there is an SL2-action on X with three orbits [29]: a
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unique open orbit, a unique 2-dimensional orbit whose closure D is linearly equivalent to 2H , a unique
1-dimensional orbit which is a rational normal curve of degree 6. Then under the SL2-action, we have

c(X) = r(X) = 1, c(D) = 0 and r(D) = 1.

Hence, by Theorem 2.10, we obtain that MG
X =MG

D = g∗. This shows that the converse of Proposition 1.1
is false in general.

3B. Proof of Theorem 1.2. In this subsection, we aim to apply the criteria proved in the previous
subsection to prove the bigness of the tangent bundles of certain interesting quasihomogeneous G-
varieties. In particular, we shall finish the proof of Theorem 1.2.

3B1. Spherical varieties. Let G be a connected reductive linear algebraic group and let X be a normal
G-variety. Then X is said to be spherical if c(X) = 0. In particular, there is an open G-orbit G/H ⊆ X .
Let Y be a G-orbit in X . Denote by VY (X) the set of G-stable prime divisors in X containing Y and
by DY (X) the set of B-stable but not G-stable prime divisors in X containing Y . Write X∨

Q
the tensor

product of the dual lattice of 3(X) with Q; see Definition 2.9. For any prime divisor D in X there is an
associated valuation νD and also an associated element ρ(D) in X∨

Q
. Denote by C∨

Y (X) ⊆ X∨

Q
the cone

generated by the images of divisors in VY (X) and DY (X).

Example 3.9. We collect some typical examples of spherical varieties:

(1) Recall that a toric variety is a normal variety X with a dense orbit of a torus T = Gr
m such that the

points in the dense T -orbit have a trivial stabiliser in T . The variety X is spherical for G = T with
H = {e}. Moreover, we have r(X) = dim(T ) = dim(X). Recall that it is shown in [14, Corollary 1.3]
that the tangent bundle of a smooth projective toric variety is big.

(2) For G a connected semisimple linear algebraic group and P a parabolic subgroup containing a
maximal torus T of G, the quotient G/P is a projective rational homogeneous space and the Bruhat
decomposition implies that G/P is a spherical G-variety. Moreover, we have r(X) = 0. Thus the
moment map 8G

X is generically finite (see Theorem 2.10) and hence TX is big, see also [33].

(3) Let G be a connected semisimple linear algebraic group equipped with a nonidentical involution
θ ∈ Aut(G). Let H be a closed subgroup of G such that Gθ

⊆ H ⊆ NG(Gθ ). Then G/H is said
to be a symmetric homogeneous space and G/H -embeddings are called symmetric varieties. The
symmetric varieties are spherical.

Proposition 3.10. Let G be a connected reductive linear algebraic group and let X be smooth projective
spherical G-variety. Let D be a G-stable prime divisor in X. Then we have c(X) = c(D) = 0 and
r(D) = r(X) − 1. In particular, if there exists a G-stable affine open subset O of X , then TX is big.

Proof. Since X is a spherical G-variety, we have c(D) ≤ c(X) = 0. On the other hand, let Y be the unique
open G-orbit in D. Then one can easily obtain that VY (X) = {D} and DY (X) = ∅. This implies that the
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cone C∨

Y (X) ⊆ X∨

Q
is 1-dimensional. In particular, by [39, Proposition 15.14], we obtain

r(D) = r(Y ) = r(X) − dim(C∨

Y ) = r(X) − 1.

Now we assume that there exists a G-stable affine open subset O of X . By Proposition 3.3, the complement
D := X \O is a big divisor on X . Then the bigness of TX follows from Proposition 1.1 and Lemma 3.7. □

Corollary 3.11. Let G be a connected reductive linear algebraic group and let X be a smooth projective
spherical G-variety. Then TX is big if one of the following holds:

(1) The variety X is a symmetric variety.

(2) The variety X has Picard number 1 and contains a G-stable prime divisor.

Proof. Firstly we assume that X is a symmetric variety and denote by O the unique open G-orbit of X .
Then O is isomorphic to a symmetric homogeneous variety G/H . On the other hand, thanks to [37,
Section 8], the subgroup H is reductive. Therefore, by Lemma 3.4, the boundary divisor D := X \ O is a
big divisor and it follows from Proposition 3.10 above that TX is big.

Next we assume that X has Picard number 1 and there exists a G-stable prime divisor D in X . Then
D is ample and it is well known that O := X \ D is an affine variety. Hence it follows again from
Proposition 3.10 that TX is big. □

Remark 3.12. The smooth projective symmetric varieties with Picard number 1 are classified by Ruzzi
[34] and there are exactly six nonhomogeneous ones, including the Cayley Grassmannian CG, the
double Cayley Grassmannian DG, a general hyperplane section of Grω(A3, A6), where A is a complex
composition algebra. In particular, by Semicontinuity Theorem, the tangent bundle of any smooth
hyperplane section of Grω(A3, A6) is big.

3B2. Horospherical varieties. Let G be a connected reductive linear algebraic group. A closed subgroup
H of G is said to be horospherical if it contains the unipotent radical of a Borel subgroup of G. In
this case we shall say that the homogeneous space G/H is horospherical. Denote by P the normaliser
NG(H) of H in G. Then P is a parabolic subgroup of G such that P/H is a torus and G/H is a torus
bundle over the flag variety G/P . A normal G-variety is said to be a horospherical variety if G has an
open orbit isomorphic to G/H for some horospherical subgroup H . Horospherical varieties are spherical
and their ranks are equal to the rank of the torus P/H .

Proposition 3.13. Let G be a connected reductive linear algebraic group and let X be a smooth projective
horospherical G-variety. Then TX is big.

Proof. Let D be a G-stable prime divisor in X . As shown in the proof of Proposition 3.10, we have
r(D) = r(X)−1 and, by Lemma 3.7, we obtain dim(MG

X (D)) < dim(MG
X ). Let O = G/H be the unique

open G-orbit in X with H a horospherical subgroup of G. Denote by P = NG(H) the normaliser of H
in G. Then, by Lemma 3.5, the restriction of the moment map 8G

X : T ∗X → g∗ to O factors as

G ∗H h⊥ πA
−→ G ∗P h⊥ ϕ

−→ g∗.
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Moreover, it is known that ϕ is generically finite onto its image MG
X ; see Theorem 2.10. Let D be a

B-stable but not G-stable prime divisor in X . Then D ∩ O ̸= ∅ and D ∩ O is the inverse image by the
torus fibration G/H → G/P of a Schubert divisor D′ of the flag variety G/P . As a consequence, the
Zariski closure of the image 8G

X (T ∗X |D) is equal to the Zariski closure of the image ϕ(p−1(D′)), where
p : G ∗P h⊥

→ G/P is the natural projection. However, as ϕ is generically finite onto MG
X , we get

dim(ϕ(p−1(D′))) < dim(G ∗P h⊥) = dim(MG
X ).

As a consequence, our argument above shows that for every B-stable prime divisor D in X , we have
always dim(MG

X (D)) < dim(MG
X ). On the other hand, let OB be the open B-orbit of X . Then OB is

an affine variety and the complement D := X \ OB is big divisor by Lemma 3.4. Then it follows from
Proposition 1.1 that TX is big. □

Remark 3.14. Smooth projective horospherical varieties with Picard number 1 are classified by Pasquier
[31]. With the same notations as in [31], there are five classes of nonhomogeneous ones, including
X1(m)= (Bm, ωm−1, ωm) (m ≥ 3), X2

= (B3, ω1, ω3), X3(m, i)= (Cm, ωi , ωi+1) (m ≥ 2, 1 ≤ i ≤ m−1),
X4

= (F4, ω2, ω3) and X5
= (G2, ω2, ω1).

3B3. Quasihomogeneous G-varieties with G commutative. The following result confirms the bigness of
the tangent bundles of equivariant compactifications of connected commutative linear algebraic groups.

Proposition 3.15. Let G be a connected commutative linear algebraic group and let X be a smooth
projective G-variety with an open G-orbit O. Then TX is big. In particular, the tangent bundle of an
equivariant compactification of G is big.

Proof. Let O be the unique open G-orbit in X and let D := X \ O be the complement of O . Since G
is solvable, by Lemma 3.4, the divisor D is big. Moreover, as G is commutative, for any subgroup H ,
we have always NG(H) = G. In particular, Lemma 3.5 implies that dim(MG

X ) ≤ dim(X). On the other
hand, as G has an open orbit O in X , we must have dim(MG

X ) ≥ dim(O) = dim(X). Hence, we obtain
dim(MG

X ) = dim(X). Let Di be an irreducible component of D. As G is commutative, Lemma 3.6 yields

dim(MG
X (Di )) = dim(MG

Di
) ≤ dim(X) − 1 < dim(MG

X ).

Hence, the tangent bundle TX is big by Proposition 1.1. □

Proof of Theorem 1.2. It follows from Propositions 3.10, 3.13 and 3.15 and Corollary 3.11. □

Remark 3.16. Recall that a connected commutative linear algebraic group is known to be isomorphic to
Gr

m × Gs
a with some nonnegative integers r and s:

(1) If s = 0, then G = Gr
m is a torus and an equivariant compactification of G is a toric variety. In

particular, our result above recovers the bigness of tangent bundles of smooth projective toric varieties
[14, Corollary 1.3].
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(2) If r = 0, then G = Gs
a is a vector group and the equivariant compactifications of vector groups

are studied actively during the past decades. A full classification of all Fano threefolds admitting
an equivariant compactification structure of the vector group G3

a is given in [15, Main Theorem],
including 14 toric ones and 5 nontoric ones. In particular, this allows us to give a different proof of the
bigness of the tangent bundles of the Fano threefolds № 28, № 30 and № 31 in [21, Table 1], which
are proved there using total dual VMRT. In higher dimension, a classification of Fano manifolds
admitting an equivariant compactification structure of vector groups is available only for varieties
with high index; see [9], Examples 4.5 and 4.6. The equivariant compactifications of vector groups
with Picard number 1 are of special interests and we will discuss them in details in the next section.

4. Equivariant compactification of vector groups

In this section, we will investigate the Fano manifolds with Picard number 1 which is an equivariant
compactification of a vector group Gn

a . The study of equivariant compactification of vector groups is
started in [11], where a classification of them in dimension 3 and with Picard number 1 is obtained.
Nevertheless, it seems difficult to obtain a full classification in higher dimension; see [6; 7; 9] for more
details. The main goal of this section is to show that the image of the projectivised moment map 8G

X

along the boundary divisor of an equivariant compactification of a vector group is projectively equivalent
to the dual variety of its VMRT. In particular, this allows us to relate the criterion for the bigness of
tangent bundles given in Proposition 1.1 via moment map to the previous approach to the bigness of
tangent bundles via total dual VMRT initiated in [13]; see also [8; 12; 21] and Theorem 4.1 below.

4A. VMRT and its dual variety. Let X be a uniruled projective manifold. An irreducible component K
of the space of rational curves on X is called a minimal rational component if the subscheme Kx of K
parametrising curves passing through a general point x ∈ X is nonempty and proper. Curves parametrised
by K will be called minimal rational curves. Let q : U → K be the universal family and by µ : U → X
the evaluation map. The tangent map τ : U 99K P(TX) is defined by

τ(u) = [Tµ(u)µ(q−1q(u))] ∈ P(Tµ(x)X).

The closure C ⊆ P(TX) of its image is the total variety of minimal rational tangents (total VMRT for
short) of X . The projection C → X is a proper and surjective morphism, and a general fibre Cx ⊆ P(Tx X)

is called the variety of minimal rational tangents of X at the point x ∈ X . A general minimal rational
curve l passing through a general point x is standard; that is, if f : P1

→ l is the normalisation, we have

f ∗TX ∼= OP1(2) ⊕ OP1(1)⊕p
⊕ O

⊕(n−p−1)

P1 ,

where p = dim(Cx). Moreover, the projectivised tangent space T[Tx l]Cx of Cx at [Tx l] is the linear subspace
of P(Tx X) corresponding to the positive factors of f ∗TX at x ∈ l.

Let Z ⊆ P(V ) be a projective variety. The dual variety Ž ⊆ P(V ∗) is defined as the Zariski closure of
the set of hyperplanes in P(V ) which are tangent to Z at some smooth point. The dual defect of Z is
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codim(Ž)− 1 and Z is called dual defective if its dual variety Ž is not a hypersurface. The codegree of
Z is defined as the degree of Ž . The total dual VMRT Č ⊆ P(T ∗X) of a uniruled projective manifold
X is defined as the closure of the union of dual varieties Čx ⊆ P(T ∗

x X) of the VMRT Cx ⊆ P(Tx X) at
general points. The total dual VMRT Č is dominated by a family U of rational curves such that 3 ·C = 0
for a general element [C] ∈ U , where 3 is the tautological divisor of P(T ∗X); see [30, Section 4.1] and
[13, Section 2.B] for more details. The importance of the total dual VMRT in the study of the bigness of
tangent bundles is illustrated in the following theorem.

Theorem 4.1 [8, Theorem 3.4; 12, Proposition 5.8]. Let X be a Fano manifold with Picard number 1 and
denote by H the ample generator of Pic(X). Assume that the VMRT of X at a general point is not dual
defective and denote by a ∈ Z>0, b ∈ Z the unique integers such that

[Č] ≡ a3 + bπ∗H,

where 3 is the tautological divisor class of P(T ∗X) and π : P(T ∗X) → X is the natural projection. Then
TX is big if and only if b < 0.

The following result suggests that there may exist some interesting relations between the criterion
given in Proposition 1.1 via moment map and that given in Theorem 4.1 via total dual VMRT.

Lemma 4.2. Let G be a connected algebraic group and let X be a smooth projective uniruled G-variety.
Fix a minimal rational component K on X with total dual VMRT Č ⊆ P(T ∗X). Then for any reduced big
divisor D in X we have

8G
X (Č) ⊆ 8G

X (P(T ∗X |D)) = P(MG
X (D)).

Proof. The inclusion is clear if MG
X (D)=MG

X . Thus we may assume that MG
X (D) ̸=MG

X . Let H⊆ P(g∗)

be an arbitrary reduced (maybe reducible) hypersurface of degree m containing P(MG
X (D)), but not

containing P(MG
X ). Following Notation 3.2, consider the divisor DH ⊆ P(T ∗X). Then there exists

an effective big divisor D′
≥ D such that DH + π∗D′

∼ m3, where 3 is the tautological divisor of
π : P(T ∗X) → X . On the other hand, we note that the total dual VMRT Č is dominated by a family U of
π -horizontal rational curves with 3 · C = 0 for a general element [C] ∈ U . Thus, the restriction DH|Č is
not pseudoeffective since D′ is big and π∗D′

· C > 0 for a general element [C] ∈ U . In particular, the
total dual VMRT Č is contained in the support of the divisor DH. By the construction of DH, we must
have 8G

X (DH) ⊆ H and therefore 8G
X (Č) ⊆ H. As H is an arbitrary reduced hypersurface containing

P(MG
X (D)), it follows that 8G

X (Č) ⊆ P(MG
X (D)). □

Remark 4.3. The assumption on the bigness of D cannot be removed, see Example 4.6 below. Moreover,
the following inclusion is in general strict:

8G
X (Č) ⊆

⋂
D effective big divisor

P(MG
X (D)).

Let X = G/P be a rational homogeneous space with Picard number 1. Then the moment map 8G
X :

T ∗X → g∗ is a generically finite dominant map to its image MG
X , which is the closure of a nilpotent
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orbit. Moreover, the projectivised moment map 8G
X : P(T ∗X) → P(MG

X ) is everywhere well-defined.
Let P(T ∗X)

ε
−→ P(M̃G

X ) → P(MG
X ) be the Stein factorisation; see [8, Seciton 5.A]. Then ε is actually

the birational morphism defined by |m3| with m ≫ 1, where 3 is the tautological divisor of P(T ∗X).
As in the proof of Lemma 4.2, since Č is dominated by rational curves C with 3 · C = 0, the total dual
VMRT Č is contained in the exceptional locus E of ε. Thanks to [8, Theorem 5.5], we have⋂

D effective ample divisor

ε(P(T ∗X |supp(D))) = ε(E).

Consequently, if 8G
X is birational and if E is a divisor and Č is not a divisor, then 8G

X (Č) is a proper
subvariety of 8G

X (E); see [8, Proposition 5.4, Definition 5.6 and Table 2].

4B. Geometry of equivariant compactifications. In this subsection, we collect some basic facts about
equivariant compactifications of vector groups. Recall that for a smooth projective variety X , an EC-
structure on X is an algebraic action Gn

a × X → X which makes X an equivariant compactification
of Gn

a .

Proposition 4.4 [7, Proposition 5.4]. Let X be a Fano manifold with Picard number 1 which is an
equivariant compactification of Gn

a . Denote by D the complement of the unique open Gn
a-orbit O ⊆ X.

Let K be a covering family of minimal rational curves on X and denote by C ⊆ P(TX) its total VMRT.
Then the following statements hold:

(1) The closed subvariety D is an irreducible divisor such that Pic(X) ∼= ZD.

(2) If the points in D are fixed by Gn
a , then X is isomorphic to Pn .

(3) For any point x ∈ O , the VMRT Cx ⊆ P(Tx X) is irreducible and is independent of x up to projective
equivalence.

(4) If the VMRT is smooth, then a member C of Kx , for x ∈ O , is the closure of the image of a
1-dimensional subspace in Gn

a and D · C = 1.

Proof. The first statement is proved in [11, Theorem 2.5] and the second statement is proved in [11,
Corollary 2.9]. The first part of the third statement is proved in [6, Proposition 2.2] and the second part
follows from the fact that the total VMRT C ⊆ P(TX) is preserved by the natural action of Gn

a on P(TX).
The last statement follows from [7, Proposition 5.4]. □

Let Z ⊆ P(V ) be a nondegenerate submanifold and let W ⊆ V be a subspace such that P(W ) ⊆ Z .
Denote by (V/W )∗ ⊂ V ∗ the set of linear functionals on V annihilating W such that P((V/W )∗)

parametrises the set of hyperplanes in P(V ) containing P(W ). Then a general member of P((V/W )∗) is
called a P(W )-general hyperplane in P(V ). More generally, a linear subspace of codimension k in P(V )

is P(W )-general if it is defined by a general member of Gr(k, (V/W )∗).

Example 4.5. Up to our knowledge, the known examples of Fano manifolds with Picard number 1 which
are equivariant compactifications of vector groups are as follows:
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• The irreducible Hermitian symmetric spaces.

• The odd Lagrangian Grassmannians X3(m, m − 1) (m ≥ 2); see Remark 3.14.

• A smooth linear section Vk of Gr(2, 5) ⊆ P9 with codimension k ≤ 2.

• A smooth P4-general linear section Sa
k of S5 ⊆ P15 with codimension k ≤ 3.

The following example shows that there are many smooth equivariant compactifications of vector
groups with higher Picard number.

Example 4.6 [7, Example 2.2]. Let [x0 : · · · : xn] be the homogeneous coordinates of the n-dimensional
projective space Pn . Let H = Pn−1

⊆ Pn be the hyperplane defined by the equation x0 = 0. Then there is
a natural EC-structure 9 : Gn

a × Pn
→ Pn on Pn with the unique open orbit Pn

\ H . More precisely, for a
point y = (y1, . . . , yn) ∈ Gn

a , we define an automorphism 9 y : Pn
→ Pn as follows:

[x0 : x1 : · · · : xn] 7→ [x0 : x1 + y1x0 : · · · : xn + ynx0].

Clearly this gives an EC-structure on Pn such that the induced action on the hyperplane H is trivial. Let
S ⊆ H be a smooth irreducible projective variety, and let

ν : Z := BlS Pn
→ Pn

be the blowing-up of Pn along S with exceptional divisor E = P(NS/Pn ). Then the EC-structure 9 on Pn

can be naturally lifted to be an EC-structure 9Z on Z such that µ is equivariant. Denote by W ⊆ P(NS/Pn )

the subvariety P(NS/H ) of E . Then it is clear that the induced action of 8Z on W is trivial and for each
point s ∈ S, the fibre Es of E → S over s is invariant such that 8Z is transitive over the open subset
Es \ Ws , where Ws is the fibre of W → S over s.

Denote by H̃ the strict transform of H in Z . Then the induced Gn
a-action on H̃ is trivial. In particular,

the image 8
Gn

a
Z (T ∗Z |H̃ ) is the origin 0 ∈ g∗. Let K be the irreducible component of the space of rational

curves in Z parametrising the strict transforms of lines in Pn meeting S. Then K is a minimal rational
component on Z such that its VMRT is projectively equivalent to S ⊆ Pn−1. For any point z ∈ Z \(H̃ ∪ E),
we have 8

Gn
a

Z (T ∗
z Z) = g∗. Since the members in K have H̃ -degree 0, the divisor H̃ is not big. This shows

that the assumption on the bigness of D in Lemma 4.2 cannot be removed.

The proof of the following result is communicated to me by Baohua Fu.

Proposition 4.7. Notations as in Example 4.6. Let X be a Fano manifold with Picard number 1 which is
an equivariant compactification of Gn

a , different from projective spaces. Denote by D ⊆ X the boundary
divisor. Assume that there exists a covering family K of minimal rational curves on X such that its VMRT
Cx ⊆ P(Tx X) at a general point x ∈ X is projectively equivalent to a smooth projective variety S ⊆ Pn−1.
Then there exist Gn

a-stable proper subvarieties D0 ⊆ D and E0 ⊆ E such that there exists a Gn
a-equivariant

isomorphism

8 : X \ D0 → BlS(P
n) \ (H̃ ∪ E0).
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Proof. Let K′ be the covering family of minimal rational curves on BlS(P
n) parametrising the strict

transform of lines in Pn meeting S. Denote by O and O ′ the open Gn
a-orbits of X and BlS(P

n), respectively.
Fix two points o ∈ O and o′

∈ O ′. Denote by νo : Gn
a → O and νo′ : Gn

a → O ′ the orbit maps, respectively.
For a general point x ′

∈ BlS(P
n), we denote by C′

x ′ ⊆ P(Tx ′ BlS(P
n)) the VMRT of K′ at x ′. Note that

the VMRT of K at a point x ∈ O ′ is projectively equivalent to S ⊆ Pn−1. In particular, applying [6,
Proposition 2.4] shows that there exists a group automorphism F of Gn

a such that the biholomorphic map
ϕ : O → O ′ defined by ϕ := νo′ ◦ F ◦ ν−1

o satisfying:

(1) ϕ(o) = o′.

(2) ϕ(g · o) = F(g) · ϕ(o′) for any g ∈ Gn
a .

(3) the differential map dϕ : P(TO) → P(TO ′) sends Cx to C′

ϕ(x) for all x ∈ O .

The last statement (3) implies that general members in K are sent to general members in K′ by ϕ. Denote
by 8 : X 99K BlS(P

n) the rational map defined by ϕ. Let D0 ⊆ D be the closed subvariety such that 8

is an isomorphism over X \ D0. We note that 8(D) is a divisor in BlS(P
n). In fact, a general minimal

rational curve in K is disjoint from the indeterminacy locus of 8 and it meets D as X has Picard number
1. Thus, if 8(D) has codimension 2 in BlS(P

n), then every minimal rational curves in K′ passes through
the codimension 2 subvariety 8(D), which is impossible. Thus 8(D) is a divisor and this yields that the
map 8 is a local isomorphism at general points of D. As a consequence, the closed subvariety D0 is a
proper subvariety of D and hence has codimension at least 2 in X as D is irreducible. On the other hand,
the statement (2) shows that the rational map 8 is Gn

a-equivariant and it follows that D0 is Gn
a-stable.

Next we consider the inverse map 8−1
: BlS(P

n) 99K X . Note that the points in the prime divisor
H̃ are fixed by Gn

a . We claim that 8(H̃) has codimension at least 2 in X . Otherwise, we must have
8(H̃) = D. In particular, the points in D are fixed by Gn

a and X is isomorphic to the projective space
Pn by Proposition 4.4, which contradicts our assumption. Hence, the divisor H̃ is contracted by 8−1

and we have 8−1(E) = D. In particular, the map 8−1 is a local isomorphism at general points of E and
consequently there exists a closed proper Gn

a-stable subvariety E0 of E such that 8−1 is an isomorphism
over the Zariski open subset BlS(P

n) \ (H̃ ∪ E0). □

4C. Pseudoeffective cone of P(T∗X). In this subsection, we will finish the proof of the first statement
of Theorem 1.3. Let G be a connected linear algebraic group and let X be an equivariant compactification
of G. Fix a point o in the unique open orbit. We define

D := {1 ⊆ P(T ∗X) | 1 is a G-stable π -horizontal prime divisor}

and
H := {H ⊆ P(T ∗

o X) | H is a reduced but maybe reducible hypersurface}.

We can naturally identify g∗ to T ∗
o X via the cotangent map of the orbit map µo : G → Go = O at the

identity e ∈ G. In particular, we shall also regard the set H as the set of reduced but maybe reducible
hypersurfaces in P(g∗); see Notation 3.2.
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Lemma 4.8. Let 1 ∈ D and let H ∈ H be the intersection 1 ∩ P(T ∗
o X). If G is commutative, then

1 = DH.

Proof. Since both 1 and DH are π -horizontal, it is enough to show that the equality 1 = DH holds over
the open subset P(T ∗O). For an arbitrary point o′

∈ O , there exists a unique element g ∈ G such that
o′

= go. Moreover, as 1 is G-stable, we must have

1 ∩ P(T ∗

o′ X) = dµg|o(dµo|e(H)),

where dµg is the tangent map of the map µg : X → X , x 7→ gx , at x . Consider the following diagram

G Go = O

G Go′
= O

µo

id µg

µo′

Since G is commutative, for any g′
∈ G, we have

µg(µo(g′)) = g(g′o) = (g′g)o = g′(go) = µo′(g′).

In particular, the diagram above is commutative. This yields

1 ∩ P(T ∗

o′ X) = dµg|o ◦ dµo|e(H) = dµo′ |e(H) = DH ∩ P(T ∗

o′ X).

Thus, we have 1 = DH over P(T ∗O) and hence 1 = DH. □

The first statement in Theorem 1.3 is a special case of the following more general result.

Proposition 4.9. Let G be a connected commutative linear algebraic group, and let X be a smooth equi-
variant compactification of G with the unique open orbit O. Then the pseudoeffective cone Eff(P(T ∗X))

of P(T ∗X) is generated by following divisors:

(1) the divisors π∗D, where π :P(T ∗X)→ X is the natural projection and D is an irreducible component
of the complement X \ O.

(2) the prime divisors DH, where H is an irreducible reduced hypersurface in P(g∗).

Proof. The action of G on X can be naturally lifted to an action on P(T ∗X). Thus, according to
Theorem 2.7, the pseudoeffective cone of P(T ∗X) is generated by G-stable prime divisors. Let 1 be a
prime G-stable prime divisor in P(T ∗X). Then we have the following possibilities for 1:

• The divisor 1 is π -vertical.

• The divisor 1 is π -horizontal.

If the prime divisor 1 is π -vertical, then there exists a G-stable prime divisor D in X such that π∗D = 1

because the projection π is G-equivariant. This implies that D is an irreducible component of X \ O .
Now we assume that 1 is π-horizontal. Fix a point o in the open orbit O . Taking intersection with

P(T ∗
o X) yields an injection D→H. Let 1∈D be an arbitrary element and let H∈H be the corresponding
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hypersurface. Then we have 1 = DH by Lemma 4.8. Note that if H=H1 +H2 as divisors in P(g∗), then
clearly we have DH = DH1 + DH2 as divisors in P(T ∗X). Thus we may assume that the hypersurfaces
in H are irreducible. □

Remark 4.10. The commutativity of G is necessary in Proposition 4.9. In general, if G is not commutative,
then Lemma 4.8 is false and it is possible that there are G-stable prime divisors in P(T ∗X) which are not
of the form DH. For example, for the quintic del Pezzo threefold X = V3 (see Example 3.8), its total
dual VMRT Č ⊆ P(T ∗X) is an SL2-invariant prime divisor such that the intersection Č ∩ P(T ∗

x X) for a
point x contained in the open orbit is a union of three hyperplanes; see [13, Section 5]. In particular,
if Č is of the form DH, then H is also a union of three hyperplanes in P(g∗) and consequently DH is
a reducible divisor containing three irreducible components, which contradicts the irreducibility of Č.
Actually, the pseudoeffective cone of P(T ∗V3) is generated by Č and π∗D, where D is the closure of the
unique 2-dimensional SL2-orbit.

4D. Pseudoeffective slope. In this subsection, we will pursue further the study of the pseudoeffective cone
of P(T ∗X) for X being a smooth equivariant compactification with Picard number 1 of a vector group.

Definition 4.11 (pseudoeffective slope of vector bundles). Let E be a vector bundle over a normal
projective variety X , and let A be a big R-Cartier divisor on X . The pseudoeffective slope of E with
respect to A is defined as

µ(E, A) := sup{ε ∈ R | 3 − επ∗ A is pseudoeffective},

where π : P(E∗) → X is the natural projection and 3 is the tautological divisor of P(E∗).

Remark 4.12. The invariant µ(E, A) is also called pseudoeffective threshold of E with respect to A in
[8; 35] and E is big if and only if µ(E, A) > 0 for some big divisor A on X . On the other hand, if X is
a projective manifold with Picard number 1, then the pseudoeffective cone of P(T ∗X) is generated by
3 − µ(E, A)π∗ A and π∗ A, where A is an ample divisor on X .

4D1. Behaviour under deformation. Let p : X → 1 be smooth family of projective manifolds over a
disk 1. By Semicontinuity Theorem, if the tangent bundle of the fibre Xt is big for t ̸= 0, then the tangent
bundle of the central fibre X0 is also big. Thus one may expect to get more examples of Fano manifolds
with Picard number 1 and with big tangent bundle by degenerating known examples. Nevertheless, it
turns out that this may be not so successful. Recall that a smooth projective X is rigid if for any smooth
deformation X → 1 with Xt ∼= X for any t ̸= 0, we have X0 ∼= X :

• The rational homogeneous spaces with Picard number 1 are rigid except the orthogonal Grassmannian
B3/P2 = Grq(2, 7) by a series works of Hwang and Mok [18, Main Theorem] and the latter one has
a degeneration to X5 [32, Proposition 2.3].

• The odd symplectic Grassmannians X3(m, i) (m ≥ 2, 1 ≤ i ≤ m − 1) are rigid by [17, Theorem 1.7].

• The codimension k(≤ 3) linear section Vk of Gr(2, 5) ⊆ P9 and the smooth P4-general linear section
Sa

k of S5 ⊆ P15 with 1 ≤ k ≤ 3 are rigid by the classification of Fano manifolds with coindex at most 3.
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Question 4.13 [20; 26]. Let X be either a nonhomogeneous smooth projective symmetric variety with
Picard number 1 or a nonhomogeneous smooth projective horospherical variety with Picard number 1,
different from the odd symplectic Grassmannians. Is X rigid?

Conversely, if the tangent bundle of X0 is big, then it is not clear for us if TXt is big for t small enough
and up to our knowledge there are no known counterexamples yet. However, in certain special cases, we
can show that the bigness of tangent bundles is preserved under small deformation.

Lemma 4.14. Let E → 1 be a vector bundle over the disk 1 and let S ⊆ P(E∗) be a smooth family
of embedded smooth projective varieties over 1. Then the codegrees and the dual defects of the fibres
St ⊆ P(E∗

t ) are independent of t .

Proof. Let us consider the total conormal variety I ⊆ P(E∗)×1 P(E) of S; that is, the variety defined as
follows:

{(t, s, [H ]) | t ∈ 1, s ∈ St , [H ] ∈ P(Et) is a hyperplane tangent to St at s}

Then the total dual variety Š ⊆ P(E) is the image of the natural projection I → P(E). Moreover, it is
clear that the fibre of Š → 1 over t is just the dual variety of the fibre of S → 1 over t . Since 1 is
one-dimensional, the family Š → 1 is flat. In particular, the degrees and the dimensions of the fibres of
Š → 1 are independent of t and so are the codegrees and the dual defects of the fibres of S → 1. □

Remark 4.15. The result is false without the smoothness assumption. This can be shown by considering
a family of smooth hypersurfaces in Pn degenerating to a dual defective singular hypersurface in Pn .

Proposition 4.16. Let p : X → 1 be a smooth family of Fano manifolds with Picard number 1. Let K be
an irreducible component of the relative Chow variety Chow(X/1) such that Kt is a minimal rational
component of Xt for any t ∈ 1. Assume moreover that the VMRT of Kt at general points of Xt is smooth
for every t ∈ 1. If the VMRT of X0 is not dual defective and TX0 is big, then TXt is big for any t ∈ 1 and
we have

µ(TXt , −KXt ) = µ(TX0, −KX0), ∀t ∈ 1.

Proof. Let σ : 1 → X be a general section passing through a general point in X0. Then the normalised
Chow space Kσ(t) along this section gives a family of smooth projective varieties. On the other hand,
since the VMRT of Xt is smooth for any t , it follows that the VMRTs Cσ(t) ⊆ P(Tσ(t)Xt) along σ(1) is a
smooth family of embedded projective varieties. Then by Lemma 4.14, the VMRT Cσ(t) ⊆ P(Tσ(t)Xt) is
not dual defective for any t ∈ 1. In particular, the relative total dual VMRT ČX ⊆ P(T ∗(X/1)) of the
relative total VMRT CX ⊆ P(T (X/1)) is a prime divisor, where T (X/1) is the relative tangent bundle
of p. Since the fibration X → 1 has relative Picard number 1, there are two unique real numbers a and b
such that

ČX ∼p a3X + bπ∗KX/1,
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where 3X is the tautological divisor of P(T ∗(X/1)). Then it is clear that a is equal to the codegree of
the VMRT of X0 (see Lemma 4.14) and

µ(TXt , −KXt ) =
b
a , ∀t ∈ 1.

As TX0 is big, we have b > 0 by Theorem 4.1. Hence, the tangent bundle TXt is big for any t ∈ 1. □

Remark 4.17. Recall that a smooth projective variety X is said locally rigid if for any smooth deformation
X → 1 with X0 ∼= X , we have Xt ∼= X for t in a small analytic neighbourhood of 0:

• Smooth projective horospherical varieties with Picard number 1 and the smooth projective two-orbits
varieties X1 and X2 are locally rigid except the horospherical G2-variety X5 [32, Theorem 0.5 and
Proposition 2.3].

• Smooth projective symmetric varieties with Picard number 1 are locally rigid; see [1; 20; 26].

• Smooth equivariant compactifications of vector groups with Picard number 1 may be not locally
rigid. Among all the known examples (see Example 4.5), the only locally nonrigid ones are the
smooth P4-general linear sections Sa

k of S5 ⊆ P15 with codimension k = 2 or 3; see [1].

Corollary 4.18. Let Sk be a smooth codimension k linear section of S5 ⊆ P15. Then T Sk is big if k ≤ 3.

Proof. Recall that the VMRT of S5 is the Grassmannian Gr(2, 5) ⊆ P9 in its Plücker embedding which is
self-dual. In particular, its dual defect is 2. Moreover, the VMRT of Sk is a smooth codimension k linear
section of Gr(2, 5) ⊆ P9. In particular, the VMRT of Sk is dual defective if and only if k = 1. Moreover,
if k ≤ 3, a codimension k smooth P4-general linear section Sa

k of S5 is an equivariant compactification of
a vector group. As a consequence, if k = 2 or 3, by Theorem 1.2 and Proposition 4.16, the tangent bundle
T Sk is big. On the other hand, if k = 1, then there is only one class of S1 up to projective equivalence.
Hence, the tangent bundle T S1 is also big. □

Remark 4.19. The variety S9 is a smooth curve of genus 7 and S8 is a smooth K3 surface. In particular,
their tangent bundles are even not pseudoeffective. For S6 and S7, their VMRTs are 0-dimensional and it
follows from [12, Theorem 1.1] that their tangent bundles are not big. Thus the only remaining unknown
cases are S4 and S5. On the other hand, there are exactly two isomorphic classes of S2. The special one
Sa

2 is an equivariant compactification of G8
a , while the general one Sg

2 is the G2 × PSL2-variety X2 given
in [31, Theorem 0.2 and Definition 2.12]; see [1, Proposition 4.8].

Question 4.20. Are the tangent bundles of S4 and S5 big?

In the following we apply Proposition 1.1 to treat the two-orbits F4-variety X1. Let us give a brief
geometric description of X1 [31, proof of Proposition 2.2 and Definition 2.11]. Set G = F4. Let
G/H = O ⊆ X1 be the unique open G-orbit and by Z its complement, which is the unique closed G-orbit.
Then Z has codimension 3. Let P be a parabolic subgroup of G containing H and minimal for this
property. Then R(P) ⊆ H and P is the maximal parabolic subgroup P(ω1) of F4. Let

ϕ : G/H = O → Y = G/P
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be the natural projection. Let F be an arbitrary fibre of ϕ. Then P acts transitively over F . Denote
by Q the quotient P/R(P). Then Q is a semisimple group of type C3 and Q acts transitively over F .
Moreover, the Q-variety F has an equivariant compactification Gr(2, C6) ⊆ P(∧2C6) whose boundary
divisor is a closed Q-orbit isomorphic to Grω(2, 6).

Proposition 4.21. The tangent bundle of X1 is big.

Proof. Firstly we show that the image MP
F ⊆ p∗ has dimension 2 dim(F) − 1. Indeed, note that the

Q-variety F has complexity 0 and rank 1. It follows from Theorem 2.10 that the variety MQ
F ⊆ q∗ has

dimension 2 dim(F) − 1. Let h̄ be the Lie algebra of the image H of H in Q and let ι : q∗
→ p∗ be

the natural inclusion induced by P → Q. As R(P) ⊆ H , we have ι(h̄⊥) = h⊥. Consider the following
commutative diagram:

T ∗F = P ∗H h⊥ p∗

T ∗F = Q ∗H h̄⊥ q∗

8P
F

σ

8
Q
F

ι

where σ is an isomorphism. This yields MP
F = ι(MQ

F ) and consequently MP
F has dimension 2 dim(F)−1.

Next we show that the image MG
X1

(F) has dimension dim(X1) + dim(F) − 1. To see this, let us
consider the following commutative diagram:

N ∗

F/X1
T ∗X1|F T ∗F

g∗ p∗

ν 8G
X1

8P
F

η

As η(MG
X1

(F)) = η(8G
X1

(T ∗X |F )) = 8P
F (T ∗F) = MP

F , it follows that we have

dim(MG
X1

(F)) ≤ dim(MP
F ) + dim(g∗) − dim(p∗) = dim(X1) + dim(F) − 1.

Finally, note that the G-variety X1 has complexity 0 and rank 1. The image MG
X1

has dimension
2 dim(X1) − 1 by Theorem 2.10. Hence, we obtain

2 dim(X1) − 1 = dim(MG
X1

) ≤ dim(Y ) + dim(MG
X1

(F)) ≤ 2 dim(X1) − 1.

This implies that dim(MG
X1

(F)) = dim(X1)+ dim(F)− 1. Let A be a prime ample divisor in Y . Then
the closure of ϕ∗ A in X1 is an ample prime divisor as X1 has Picard number 1. On the other hand, note
that we have

dim(MG
X1

(ϕ∗ A)) ≤ dim(A) + dim(MG
X1

(F)) = 2 dim(X) − 2.

Hence, according to Proposition 1.1, the tangent bundle of X1 is big. □
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4D2. Pseudoeffective slope of equivariant compactifications. Recall from Notation 3.2 that if H ⊆ P(g∗)

is an irreducible reduced hypersurface defined by ξ ∈ Symm g, then we have

Dξ = DH +

∑
multπ∗ D(Dξ )π

∗D,

where D runs over all the prime divisor in X such that P(MG
X (D)) is contained in H and π : P(T ∗X)→ X

is the natural projection.

Notation 4.22. Let C be a smooth projective curve and let E be a vector bundle of rank n over C . Assume
that there exists a nonzero map ϕ : E → V r , where V r is the trivial vector bundle of rank r over C . Let
p : P(V r ) = C × Pr−1

→ Pr−1 be the second projection. Let ξ be a homogeneous polynomial of degree
d over Pr−1. Then for any point c ∈ C , denote by Ec the fibre of E over c. Then the restricted linear map
ϕc := ϕ|Ec : Ec → Cr induces a homogeneous polynomial ϕ∗

c ξ on the fibre F = P(Ec) of P(E) → C
over c, which is either zero or of degree d . In particular, if ϕ∗

c′ξ is nonzero for some c′
∈ C , then we can

define the multiplicity m F (ϕ, ξ) along F as the multiplicity of the pull-back (p ◦ ϕ)∗ξ along F . Clearly
we have m F (ϕ, ξ) = m F (ϕ, aξ) for any nonzero constant a.

Let us give a geometric explanation for the notation m F (ϕ, ξ). Denote by ϕ the induced rational map
P(E) 99K P(V r ). Then the composition p ◦ϕ : P(E) 99K Pr−1 is defined by the following linear system

V := Image(H 0(C, (V r )∗) → H 0(C, E∗)) ⊆ H 0(C, E∗) = H 0(P(E), OP(E)(1)).

Let D be the fixed part of |V |. Then we have

(p ◦ ϕ)∗OPr−1(1) ⊗ OP(E)(D) ∼= OP(E)(1).

Let Hξ be the degree d divisor in Pr−1 corresponding to ξ . Then the assumption ϕ∗

c′ξ ̸= 0 means that the
pull-back (p ◦ ϕ)∗Hξ is a well-defined divisor in P(E). Moreover, we have

m F (ϕ, ξ) = multF ((p ◦ ϕ)∗Hξ ) + d multF (D).

Lemma 4.23. Let H ⊂ P(g∗) be a hypersurface defined by a homogeneous polynomial ξ . Let D be a
prime divisor in X such that P(MG

X (D)) ⊆ H. Fix a general point x ∈ D. Let C be an irreducible curve
passing through x such that C ̸⊆ D and P(MG

X (C)) ̸⊆ supp(H). Denote by f : C̃ → C its normalisation.
Then we have

multπ∗ D(Dξ ) = m F (ϕ, ξ),

where the map ϕ : f ∗(T ∗X |C) → C̃ × g∗ is naturally induced by the moment map 8G
X and F is a fibre of

P( f ∗(T ∗X |C)) → C̃ over a point c such that f (c) = x ∈ D.

Proof. This follows directly from the definition of Dξ and the fact that the multiplicity multπ∗ D(Dξ ) only
depends on the multiplicity of Dξ along general fibres of π∗D → D. □

Now we are in the position to finish the proof of Theorem 1.3.
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Proof of Theorem 1.3. The first statement follows from Proposition 4.9. For the second statement, as
the VMRT of X is smooth, following the notations in Proposition 4.7, there exist closed subvarieties
E0 ⊆ BlS(P

n) and D0 ⊆ X of codimension at least 2 such that the following morphism

8 : X \ D0 → BlS(P
n) \ (H̃ ∪ E0)

is an isomorphism. Moreover, the induced rational map E 99K D is birational and Gn
a-equivariant. Note

that the Gn
a-orbits on E = P(NS/Pn )\W = P(NS/H ) are just the fibres of the natural projection E \W → S

(see Example 4.6). Thus the general Gn
a-orbits on D have dimension n − p − 1, where p is the dimension

of the VMRT S ⊆ Pn−1 of X .
Fix a point o ∈ X . If l is a general minimal rational curve passing through o, then l is the strict

transform of a line l ′ in Pn passing through o. Moreover, we may also assume that the strict transform of
l in BlS(P

n) is disjoint from H̃ ∪ E0. In particular, the curve l meets D at a smooth point z ∈ D \ D0.
Since l is standard, we have

f ∗TX ∼= OP1(2) ⊕ OP1(1)⊕p
⊕ O

⊕n−p−1
P1 .

where f : P1
→ l ⊆ X is the natural embedding. Denote by T +

l X the positive factor of f ∗TX and by
T +

o l the fibre of T +

l X over o. By Proposition 4.4, there exists a 1-dimensional subspace Vl of Gn
a such

that l is the closure of the Vl-orbit of o. Moreover, the subbundle T +

l X is preserved by the Vl-action.
Denote by gl the subspace of g corresponding to the subspace T +

o l ⊆ To X ∼= g. Then the Vl-action
induces a map of vector bundles

9 : l × g → f ∗TX

such that the induced map l ×gl → T +

l X is nondegenerate along l \ {z}. Moreover, as Gn
a is commutative,

the dual map 9∗
: f ∗T ∗X → l × g∗ is exactly the restriction of the map

π × 8
Gn

a
X : T ∗X → X × g∗.

From the splitting type of T +

l X , one can derive that the linear map {z} × gl → T +
z l is zero. As the

Gn
a-orbit of z has dimension n − p − 1, the rank of the linear map

{z} × g → Tz X

is n − p − 1. This implies 8
Gn

a
X (T ∗

z X) = g⊥

l . On the other hand, as P(T +
o l) ⊆ P(To X) is the projectivised

tangent bundle of the VMRT Co ⊆ P(To X) at [Tol], thus we may regard g⊥

l as the set of hyperplanes in
P(To X) which are tangent to Co at [Tol].

For a general point z ∈ D, the Gn
a-orbit Oz of z is the image of a fibre of E\W → S over some point s ∈ S.

In particular, the strict transform of the line connecting o and s is a minimal rational curve l on X passing
through o and meeting Oz at a point z′. As Gn

a is commutative, we have 8
Gn

a
X (T ∗X |Oz ) = 8

Gn
a

X (T ∗

z′ X) = g⊥

l ,
where gl is the subspace of g corresponding to T +

o l. As a consequence, the image P(MGn
a

D ) ⊆ P(g∗) is
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the closure of the following ⋃
[l]∈Kx general

P(g⊥

l ) =

⋃
[l]∈Kx general

P((T +

o l)⊥) ⊆ P(T ∗

o X)

which is exactly the dual variety of the VMRT Co ⊆ P(To X) by definition.
Finally, we assume that the VMRT is smooth and not dual defective. Then P(MG

D) is a hypersurface in
P(g∗) defined by a homogeneous polynomial ξ ∈ Syma g. where a is the degree of H, i.e., the codegree
of Co. For simplicity, we denote it by H. Now we want to determine the cohomological class of the divisor
DH ⊆ P(T ∗X). By Lemma 4.2, we have 8

Gn
a

X (Č) ⊆ H. This implies that Č is contained in supp(Dξ ). On
the other hand, since both Č and DH are π -horizontal prime divisors, we obtain Č = DH. In particular, by
Theorem 4.1, it remains to prove DH ∼ a3 − 2π∗D.

Choose a general minimal rational curve l on X meeting D at z. Fix a general point o ∈ l and identify
H ⊆ P(g∗) to the dual variety of Co ⊆ P(To X). Consider the following map 9∗

: f ∗T ∗X → l × g∗.
By Lemma 4.23, we only need to calculate multF (9∗, ξ), where F is the fibre of f ∗T ∗X → l over z.
Fix a coordinate t around z ∈ A1

⊆ l. Then after choosing suitable trivialisation of f ∗T ∗X , the map
9∗

: A1
× Cn

→ A1
× Cn can be written in coordinates as follows:

(x, v0, v1, . . . , vp, vp+1, vn−1) 7→ (x, t2v0, tv1, . . . , tvp, vp+1, . . . , vn−1),

where the first coordinate v0 corresponds to the cotangent bundle OP1(−2) of l and the first p + 1
coordinates correspond to the negative factors of f ∗T ∗X . Given a general point y on 8

Gn
a

X (P(F)) ⊆ H,
then we may assume that H is smooth at y as l is general. In particular, by biduality theorem, the
projectivised tangent bundle of H at y corresponds to the point [Tol] ∈ Co. This implies that the linear part
of the local equation of H at y only consists of the first coordinate v0. In particular, the local description
above shows that multiplicity multF (9∗, ξ) is 2. Hence, we have Dξ = DH+2π∗D and the result follows
as Dξ ∈ |a3|. □

Remark 4.24. Let us give a more geometric description of the linear map {z} × g → Tz X . Let πo :

Pn
\ {o} → H be the projection from o. Then πo induces a natural projection

po : g \ {0}
dµo

−−→ ToPn
\ {o} = Pn

\ {o}
πo

−→ H,

where ToPn is the projectivised tangent space of Pn at o. For a general point s ∈ S, for a point z′
∈ Es \Ws ,

the Lie algebra gz′ of the isotropy subgroup Gz′ of z′ is exactly the linear subspace of the inverse image
p−1

o (Ts S) = gl , where Ts S ⊆ H is the projectivised tangent bundle of S at s. Thus the map {z}×g→ Tz X
is the projection g → g/gl .

4D3. Codegree of VMRT. Now we proceed to calculate the codegree of the VMRT of the equivariant
compactifications X of vector groups given in Example 4.5. If X is an irreducible Hermitian symmetric
space, the pseudoeffective cone of P(T ∗X) and hence the value µ(TX, −K X ) are determined in [35]
and [8]. In particular, if the VMRT is not dual defective, it turns out that its codegree is equal to the rank
of X in the sense of [35, Definition 4.6]. Here we remark that the definition of rank in [35, Definition 4.6]
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X VMRT embedding defect codegree

X3(m, m − 1), (m ≥ 2) P(OPm−1(−1) ⊕ OPm−1(−2)) |O(1)| 0 m + 1
V2 P1

|O(3)| 0 4
Sa

1 V1 |O(1)| 1 –
Sa

2 V2 |O(1)| 0 5
Sa

3 V3 |O(1)| 0 10

Table 1. Known examples of nonhomogeneous EC-structure.

of X is different from that given in Definition 2.9. For the remaining nonhomogeneous examples, we
summarise the results in Table 1.

Here we recall that V2 is the codimension two smooth linear section of Gr(2, 5) ⊆ P9 in its Plücker
embedding and Sa

i is a codimension i smooth P4-general linear section of the spinor tenfold S5 ⊆ P15 in
its minimal embedding (see Example 4.5).

Odd Lagrangian Grassmannians. Let a := (a0, . . . , ar ) be a sequence of integers such that 0 ≤ a0 ≤

· · · ≤ ar with ar > 1. Denote by Em(a) the following vector bundle over Pm :
r⊕

i=0

OPm (−ai ).

Then the tautological linear bundle OP(Em(a))(1) of P(Em(a)) is globally generated and defines a morphism

8m(a) : P(Em(a)) → PN (m,a).

This map is birational because ar > 0. Write Sm(a) for the image of this map. Note that if a0 > 0, the
morphism 8m(a) is an embedding.

According to [17, Section 6] (see also [18, Proposition 3.5.2]), the VMRT of the odd symplectic
Grassmannian X3(m, i) is projectively equivalent to

Sm−1(12m−2i−1, 2) ⊆ PN (m,12m−2i−1,2).

In particular, the codegree of the VMRT of odd Lagrangian Grassmannians X3(m, m − 1) can be derived
from the following general result.

Proposition 4.25. The dual variety of the scroll Sm(1r , 2) ⊆ PN (m,1r ,2) is a hypersurface of degree
m + r + 1 if m ≥ r .

Proof. Denote by 3 a hyperplane section of Sm(1r , 2). Firstly we recall that the projective variety
Sm(1r , 2) is isomorphic to the blowing-up of the projective space Pm+r along a linear subspace L ∼= Pr−1,
see for instance [5, Section 9.3.2]. Denote this blowing-up Sm(1r , 2) → Pm+r by µ and let E be the
exceptional divisor. Then we have an isomorphism

OSm(1r ,2)(3) ∼= µ∗OPm+r (2) ⊗ OSm(1r ,2)(−E).
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In particular, taking push-forward yields a linear isomorphism

p : |3| → |OPm+r (2) ⊗ IL| = HL,

where IL is the ideal sheaf of L. Denote by Š ⊆ |3| the dual variety of Sm(1r , 2), i.e., the closure of the
set of singular elements. For a general point [Q] ∈ Š, we may assume that the singular locus of Q is
not contained in E . This implies that the push-forward p∗Q is a singular element in the linear system
|OPm+r (2)| which contains L.

Conversely, as r ≤ m, a general element in HL is smooth and a general singular element [Q] ∈ HL is a
quadric hypersurface containing L such that it is a cone with a single point p ∈ Pm+r

\ L as vertex and
hence p−1

[Q] is contained in Š. As a consequence, the map p induces a dominant map

p̄ : Š → X̌ ∩ HL ⊆ |OPm+r (2)|,

where X̌ is the dual variety of the Veronese embedding X = ν2(P
m+r ) ⊆ |OPm+r (2)|. As Pm+r is

homogeneous, the variety X̌ ∩ HL is an irreducible proper subvariety of HL. In particular, the map p̄ is an
isomorphism. Note that X̌ is a hypersurface of degree m + r + 1 by Boole formula [38, Example 6.4],
hence Š ⊆ |3| is a hypersurface of degree m + r + 1. □

Remark 4.26. Let [Q] ∈ Š be a general singular hyperplane section of S. If m < r , then the divisor p∗Q
is a quadric cone containing L with vertex L′

⊆ Pm+r , which is a (r − m)-dimensional linear subspace
such that dim(L ∩ L′) = r − m − 1. In particular, the singular locus of Q has dimension r − m and this
implies that the scroll Sm(1r , 2) has dual defect r − m [38, Theorem 7.21].

Linear section Vk of the Grassmannian Gr(2, 5). The VMRT of the Grassmannian Gr(2, 5) is projectively
equivalent to the Segre embedding P1

× P2
⊆ P5. Moreover, for k ≤ 3, there is only one isomorphic

class of codimension k linear section Vk of Gr(2, 5). This implies that the VMRT of Vk is projectively
equivalent to a general linear section of P1

× P2 with codimension k. Then an easy computation shows
that the VMRT of V2 is the twisted cubic in P3 whose dual variety is a quartic surface; see for instance
[38, Example 10.3].

Linear section Sk of the spinor tenfold S5. The VMRT of the 10-dimensional spinor variety S5 is the
Grassmannian Gr(2, 5) ⊆ P9 in its Plücker embedding. Hence, the VMRT of the codimension k linear
section Sk of S5 is projectively equivalent to the smooth codimension k linear section Vk ⊆ P9−k of the
Grassmannian Gr(2, 5). As Gr(2, 5) ⊆ P9 has dual defect 2, the linear section Vk ⊆ P9−k has dual defect
max{0, 2 − k} [38, Theorem 5.3]. In the following we will compute the codegree of Z = Vk , k = 2 or 3,
using the Katz–Kleiman formula [38, Theorem 6.2]:

codeg(Z) =

dim(Z)∑
i=0

(i + 1)cdim(Z)−i (T ∗Z) · H i ,
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where H is the hyperplane section. To calculate the Chern classes of Z , firstly we write the total Chern
classes of Gr(2, 5) as 

1
5 12

11 30 25
15 35 30 33


where the rows and columns are labelled from 0, and the (i, j)-th element is the coefficient of the Schubert
cycles σi, j . From the tangent sequence of Z we have

c(Z) := c(Vk) =
c(Gr(2, 5))

(1 + σ1)k ,

where σ1 := σ1,0 denotes the ample generator of the Picard group, i.e., the hyperplane section. Using the
Pieri’s formula, that is,

σa,b · σ1 = σa+1,b + σa,b+1,

a routine computation then yields:

c(V2) =


1
3 5
4 6 4
4 2 ∗ ∗

 and c(V3) =


1
2 3
2 1 ∗

2 ∗ ∗ ∗


Using again the Pieri’s formula and our computations of the degrees of the Schubert classes we deduce
that the codegree of V2 and V3 are 5 and 10, respectively.

There is also an alternative more geometric way to see that the codegree of V2 is 5. Since the
Grassmannian Gr(2, 5) ⊆ P9 is self-dual, the dual variety of Vk ⊆ P9−k , k = 1 or 2, is projectively
equivalent to the image of Gr(2, 5) under the projection πL : P9 99K P9−k from a general linear subspace
L ⊆ P9 of dimension k − 1; see for instance [38, Theorem 5.3]. As L is general, the restriction of πL to
Gr(2, 5) is a birational morphism. Since Gr(2, 5) is of degree 5 and with dimension 6, it follows that the
dual variety of V2 is a hypersurface in P7 with degree 5.

Remark 4.27. (1) Let X be a Fano manifold with Picard number 1. Then the anticanonical pseudoeffec-
tive slope µ(TX, −K X ) of TX is bounded by the maximal slope of TX with respect to −K X ; see [8,
Lemma 2.8]. In particular, if TX is semistable, then µ(TX, −K X ) is bounded by 1/ dim(X). Actually,
it is expected that this should hold without the semistability assumption; see [8, Conjecture 1.3]. On
the other hand, while the semistability of TX is confirmed in many cases, [19, Theorem 0.3] says
that the tangent bundles of the horospherical varieties X1(m) (m ≥ 4) and X4 are not semistable.
Thus it is natural and interesting to ask if their anticanonical pseudoeffective slopes are (strictly)
dominated by the reciprocal of their dimensions.
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(2) For odd Lagrangian Grassmannians X = X3(m, m − 1) (m ≥ 2), according to Table 1, we have

µ(TX, −K X ) =
2

(m + 1)(m + 2)
<

1
dim(X)

=
2

m(m + 3)
.

(3) By [35, Corollary 1.4; 8, Theorem 1.14] and Table 1 above, the anticanonical pseudoeffective slope
µ(TX, −K X ) of the varieties in Example 4.5 are determined except the hyperplane section S1 of S5.
As the VMRT of S1 is dual defective, maybe we need a different treatment.
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