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We establish a p-adic Simpson correspondence in the spirit of Liu and Zhu for rigid analytic varieties X
over Cp with a liftable good reduction by constructing a new period sheaf on Xproét. To do so, we use the
theory of cotangent complexes described by Beilinson and Bhatt. Then we give an integral decompletion
theorem and complete the proof by local calculations. Our construction is compatible with the previous
works of Faltings and Liu and Zhu.
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1. Introduction

In the theory of complex geometry, for a compact Kähler manifold X , Simpson [1992] established a
tensor equivalence between the category of semisimple flat vector bundles on X and the category of
polystable Higgs bundles with vanishing Chern classes. Nowadays, such a correspondence is known
as nonabelian Hogde theory or the Simpson correspondence. There is a well-established theory of the
Simpson correspondence for smooth varieties in characteristic p > 0 admitting a lifting modulo p2 (see
[Ogus and Vologodsky 2007]). This leads us to ask for a p-adic analogue of Simpson’s correspondence.

The first step is due to Deninger and Werner [2005]. They gave a partial analogue of classical
Narasimhan–Seshadri theory by studying parallel transport for vector bundles of curves. At the same time,
Faltings [2005] constructed an equivalence between the category of small generalised representations
and the category of small Higgs bundles for schemes X0 with toroidal singularities over Ok , the ring of
integers of some p-adic local field k, under a certain deformation assumption. His method was elaborated
and generalised by Abbes, Gros and Tsuji [Abbes et al. 2016] and related to integral p-adic Hodge theory
by Morrow and Tsuji [2020]. When X is a rigid analytic space over k, Liu and Zhu [2017] related a
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Higgs bundle on X ˆ̄k,ét
to each Qp-local system on Xét and proved that the resulting Higgs field must be

nilpotent (see [Liu and Zhu 2017, Theorem 2.1]). Their work was generalised to the logarithmic case in
[Diao et al. 2023b]. However, their Higgs functor is not an equivalence, so it is still open to classify Higgs
bundles coming from representations. For smooth rigid spaces X over ˆ̄k, Heuer [2022] established an
equivalence between the category of one-dimensional ˆ̄k-representations of the fundamental group π1(X)
and the category of pro-finite-étale Higgs bundles. Using his method, Heuer, Mann and Werner [Heuer
et al. 2023] constructed a Simpson correspondence for abeloids over ˆ̄k.

In this paper, we establish an equivalence between the category of small generalised representations
(Definition 5.1) and the category of small Higgs bundles (Definition 5.2) for rigid analytic varieties X with
liftable (see the notation section) good reductions X over OCp in the spirit of the work of Liu and Zhu.
Our construction is global and the main ingredient is a new overconvergent period sheaf OC† endowed
with a canonical Higgs field 2 on Xproét, which can be viewed as a kind of p-adic complete version of
the period sheaf OC due to Hyodo [1989]. The main theorem is stated as follows:

Theorem 1.1 (Theorem 5.3). Assume a ≥ 1/(p− 1). Let X be a liftable smooth formal scheme over OCp

of relative dimension d with the rigid generic fibre X and ν : Xproét→ Xét be the natural projection of
sites. Then there is an overconvergent period sheaf OC† endowed with a canonical Higgs field 2 such
that the following assertions are true:

(1) For any a-small generalised representation L of rank l on Xproét, let 2L := idL⊗2 be the induced
Higgs field on L⊗ÔX

OC†; then Rν∗(L⊗ÔX
OC†) is discrete. Define H(L) := ν∗(L⊗ÔX

OC†) and
θH(L) = ν∗2L. Then (H(L), θH(L)) is an a-small Higgs bundle of rank l.

(2) For any a-small Higgs bundle (H, θH) of rank l on Xét, let 2H := idH⊗2+ θH ⊗ idOC† be the
induced Higgs field on H⊗OX OC† and define

L(H, θH)= (H⊗OX OC†)2H=0.

Then L(H, θH) is an a-small generalised representation of rank l.

(3) The functor L 7→ (H(L), θH(L)) induces an equivalence from the category of a-small generalised
representations to the category of a-small Higgs bundles, whose quasi-inverse is given by (H, θH) 7→
L(H, θH). The equivalence preserves tensor products and dualities and identifies the Higgs complexes

HIG(L⊗ÔX
OC†,2L)≃ HIG(H(L)⊗OX OC†,2H(L)).

(4) Let L be an a-small generalised representation with associated Higgs bundle (H, θH). Then there is
a canonical quasi-isomorphism

Rν∗(L)≃ HIG(H, θH),

where HIG(H, θH) is the Higgs complex induced by (H, θH). In particular, Rν∗(L) is a perfect complex
of OX

[ 1
p

]
-modules concentrated in degree [0, d].
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(5) Assume f : X→Y is a smooth morphism between liftable smooth formal schemes over OCp . Let X̃
and Ỹ be the fixed A2-liftings of X and Y, respectively. Assume f lifts to an A2-morphism f̃ : X̃→ Ỹ.
Then the equivalence in (3) is compatible with the pull-back along f .

Note that when L = ÔX , we get (H(ÔX ), θH(ÔX )
) =

(
OX

[ 1
p

]
, 0

)
. So our result can be viewed as a

generalisation of [Scholze 2013b, Proposition 3.23]. Theorem 1.1(3) also provides a way to compute
the pro-étale cohomology for a small generalised representation L. More precisely, we get a quasi-
isomorphism

R0(Xproét,L)≃ R0(Xét,HIG(H(L), θH(L))).

If, in addition, X is proper, then we get a finiteness result on pro-étale cohomology of small generalised
representations.

Corollary 1.2. Keep the notation as in Theorem 1.1 and assume X is proper. Then for any a-small
generalised representation L, R0(Xproét,L) is concentrated in degree [0, 2d] and has cohomologies as
finite dimensional Cp-spaces.

The overconvergent period sheaf OC† (with respect to a certain lifting of X) has OC as a subsheaf.
Indeed, it is a direct limit of certain p-adic completions of OC. In particular, when X comes from a
scheme X0 over Ok and the generalised representation L comes from a Zp-local system on the rigid
generic fibre X0 of X0, our construction coincides with the work of Liu and Zhu (Remark 5.6). On
the other hand, OC† is related to an obstruction class cl(E+) solving a certain deformation problem
(Remark 2.10 and Proposition 2.14). Since the class cl(E+) is exactly the one used to establish the
Simpson correspondence in [Faltings 2005], our construction is compatible with the works of Faltings
and Abbes, Gros and Tsuji (Remark 5.5). These answer a question appearing in [Liu and Zhu 2017,
Remark 2.5]. Another answer, using a different method, was announced in [Yang and Zuo 2020].

Since we need to take p-adic completions of OC, we have to find its integral models. Note that OC

is a direct limit of symmetric products of Faltings’ extension, which was constructed for varieties by
Faltings [1988] at first and revisited by Scholze [2013a] in the rigid analytic case. So we are reduced to
finding an integral version of Faltings’ extension. To do so, we use the method of cotangent complexes
which was established and developed in [Quillen 1970; Illusie 1971; 1972; Gabber and Ramero 2003],
and was systematically used in the p-adic theory by [Scholze 2012; Beilinson 2012; Bhatt 2012]. The
proof of Theorem 1.1 is based on some explicit local calculations, especially an integral decompletion
theorem (Theorem 3.4) for small representations, which can be regarded as a generalisation of [Diao et al.
2023b, Appendix A].

Notation. Let k be a complete discrete valuation field of mixed characteristics (0, p) with ring of
integers Ok and perfect residue field κ . We normalise the valuation on k by setting νp(p)= 1 and the
associated norm is given by ∥ · ∥ = p−νp( · ). We denote by k0 = Frac(W(κ)) the maximal absolutely
unramified subfield of k. Denote by Dk =Dk/k0 the relative differential ideal of Ok over W(κ).
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Let k̄ be a fixed algebraic closure of k and Cp =
ˆ̄k be its p-adic completion. We denote by OCp (resp.

mCp ) the ring of integers of Cp (resp. the maximal ideal of OCp ). In this paper, when we write pa A for
some OCp -module A, we always assume a ∈Q. An OCp -module M is called almost vanishing if it is
mCp -torsion, and in this case we write Mal

= 0. A morphism f : M → N of OCp -modules is almost
injective (resp. almost surjective) if Ker( f )al

= 0 (resp. Coker( f )al
= 0). A morphism is an almost

isomorphism if it is both almost injective and almost surjective.
We choose a sequence {1, ζp, . . . , ζpn , . . . } such that ζpn is a primitive pn-th root of unity in k̄ satisfying

ζ
p
pn+1 = ζpn for every n ≥ 0. For every α ∈ Z

[ 1
p

]
∩ (0, 1), one can (uniquely) write α = (t (α))/pn(α) with

gcd(t (α), p)= 1 and n(α)≥ 1. Then we define ζ α := ζ t (α)
pn(α) when α ̸= 0 and ζ α := 1 when α = 0.

We always fix an element ρk ∈ Cp with νp(ρk)= νp(Dk)+1/(p−1). Let Ainf,k =W(O
C
♭
p
)⊗W(κ)Ok

be the period ring of Fontaine. Then there is a surjective homomorphism θk :Ainf,k→OCp whose kernel is
a principal ideal by [Fargues and Fontaine 2018, Proposition 3.1.9]. We fix a generator ξk of Ker(θk). For
instance, if k = k0 is absolutely unramified, then we choose ρk = ζp−1 and ξk = ([ϵ]−1)/([ϵ]1/p

−1) for
ϵ= (1, ζp, ζp2, . . . )∈O♭

Cp
. Put A2=Ainf,k/ξ

2
k and denote Fontaine’s p-adic analogue of 2π i by t= log[ϵ].

For a p-adic formal scheme X over OCp , we say it is smooth if it is formally smooth and locally of
topologically finite type. We say X is liftable if it admits a lifting X̃ to Spf(A2). In this paper, we always
assume X is liftable. Let X be the rigid analytic generic fibre of X and denote by ν : Xproét→ Xét the
natural projection of sites. Let Ô+X and ÔX be the completed structure sheaves on Xproét in the sense of
[Scholze 2013a, Definition 4.1]. Both of them can be viewed as OX-algebras via the projection ν.

Let K be an object in the derived category of complexes of Zp-modules. We denote by K̂ the derived
p-adic completion Rlim

←−
n K ⊗Zp Zp/pn . In particular, for a morphism A→ B of Zp-algebras, we denote

the derived p-adic completion of cotangent complex LB/A by L̂B/A. In this paper, for two complexes K1

and K2 of (sheaves of) modules, we write K1 ≃ K2 if they are quasi-isomorphic. For two modules or
sheaves M1 and M2, we write M1 ∼= M2 if they are isomorphic.

Organisation. In Section 2, we construct the integral Faltings’ extension by using p-complete cotangent
complexes and explaining how it is related to deformation theory. At the end of this section we construct
the desired overconvergent sheaf. In Section 3, we prove an integral decompletion theorem for small
representations. In Section 4, we establish a local Simpson correspondence. We first consider the trivial
representation and then reduce the general case to this special case. Finally, in Section 5, we state and
prove our main theorem. The Appendix specifies some notation and includes some elementary facts that
were used in previous sections.

2. Integral Faltings’ extension and period sheaves

We construct the overconvergent period sheaf OC† in this section. To do so, we have to construct an
integral version of Faltings’ extension.

Integral Faltings’ extension. We first discuss the properties of the cotangent complex. The following
lemmas are well known, but for the convenience of readers, we include their proofs here.
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Lemma 2.1. Let A be a ring. Suppose that ( f1, . . . , fn) is a regular sequence in A and generates the
ideal I = ( f1, . . . , fn). Then L(A/I )/A ≃ (I/I 2)[1].

Proof. Regard A as a Z[X1, . . . , Xn]-algebra by mapping X i to fi for every i . Since f1, . . . , fn is a
regular sequence in A, for any i ≥ 1, we have

TorZ[X1,...,Xn]
i (Z, A)= 0.

It follows from [Weibel 1994, 8.8.4] that

L(A/I )/A ≃ LZ/Z[X1,...,Xn]⊗
L
Z[X1,...,Xn]

A.

So we may assume A = Z[X1, . . . , Xn] and I = (X1, . . . , Xn). From homomorphisms Z→ A→ A/I
of rings, we get an exact triangle

LA/Z⊗
L A/I // L(A/I )/Z // L(A/I )/A // .

The middle term is trivial since A/I = Z and hence we deduce that

L(A/I )/A ≃ (LA/Z⊗
L
A Z)[1] ≃ (I/I 2)[1]. □

Lemma 2.2. (1) The map dlog : µp∞→�1
Ok̄/Ok

, ζpn 7→ dζpn/ζpn induces an isomorphism

dlog : k̄/ρ−1
k Ok̄ ⊗Zp(1)→�1

Ok̄/Ok
,

where Zp(1) denotes the Tate twist.

(2) LOk̄/Ok ≃�
1
Ok̄/Ok

[0].

(3) L̂OCp /Ok ≃ (1/ρk)OCp(1)[1].

Proof. (1) This is [Fontaine 1982, Théorème 1’].

(2) This is [Beilinson 2012, Theorem 1.3].

(3) This follows from (1) and (2) after taking derived p-completions on both sides. □

Corollary 2.3. (1) L̂OCp /Ainf,k [−1] ≃ (1/ρk)OCp(1)[0] ≃ ξk Ainf,k/ξ
2
k Ainf,k[0].

(2) L̂OCp /A2 ≃ (1/ρk)OCp(1)[1]⊕ (1/ρ
2
k )OCp(2)[2].

Proof. (1) Considering the morphisms Ok→ Ainf,k→OCp of rings, we have an exact triangle

LAinf,k/Ok ⊗̂
L
Ainf,k

OCp → L̂OCp /Ok → L̂OCp /Ainf,k → .

Since

L̂Ainf,k/Ok ≃ LAinf/W(κ)⊗̂
L
W(κ)Ok = 0,

the first quasi-isomorphism follows from Lemma 2.2(3). Now, the second quasi-isomorphism is straight-
forward from Lemma 2.1.
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(2) Considering the morphisms Ainf,k→ A2→OCp of rings, we have the exact triangle

LA2/Ainf,k ⊗̂
L
A2
OCp → L̂OCp /Ainf,k → L̂OCp /A2 → .

Combining Lemma 2.1 with (1), the above exact triangle reduces to

ξ 2
k Ainf,k/ξ

4
k Ainf,k ⊗A2 OCp [1] → ξk Ainf,k/ξ

2
k Ainf,k[1] → L̂OCp /A2 → .

Now we complete the proof by noting that the first arrow is trivial. □

We identify OCp(1) with OCp t , where t is Fontaine’s p-adic analogue of 2π i . It follows from
Lemma 2.2(1) that the sequence {dlog(ζpn )}n≥0 can be identified with the element t ∈ (1/ρk)OCp(1). If
we regard Ainf,k as a subring of B+dR and identify tB+dR/t2B+dR with Cp(1), then Corollary 2.3 says that t
and ρkξk in Cp(1) differ by a p-adic unit in O×

Cp
.

Remark 2.4. The corollary is still true if one replaces Cp by any closed subfield K ⊂ Cp containing
µp∞ . All results in this paper hold for K instead of Cp.

Now we construct the integral Faltings’ extension in the local case. We fix some notation as follows.
Let X= Spf(R+) be a smooth formal scheme over Spf(OCp) endowed with an étale morphism

□ : X→ Ĝd
m = Spf(OCp⟨T

±1
⟩),

where OCp⟨T
±1
⟩ = OCp⟨T

±1
1 , . . . , T±1

d ⟩. We say X is small in this case. Let X = Spa(R, R+) be the
rigid analytic generic fibre of X and X∞ = Spa(R̂∞, R̂+

∞
) be the affinoid perfectoid space associated to

the base-change of X along the Galois cover

Gd
m,∞ = Spa(Cp⟨T

±
1

p∞ ⟩,OCp⟨T
±

1
p∞ ⟩)→ Gd

m = Spa(Cp⟨T±1
⟩,OCp⟨T

±1
⟩).

Denote by 0 the Galois group of the cover X∞→ X and let γi be in 0 satisfying

γi (T
1

pn

j )= ζ
δi j
pn T

1
pn

j (2-1)

for any 1≤ i, j ≤ d and n ≥ 0. Here, δi j denotes the Kronecker delta. Then 0 ∼= Zpγ1⊕· · ·⊕Zpγd . Let
R̃+ be a lifting of R+ along A2→OCp . Then the morphisms R̃+→ R+→ R̂+

∞
of rings give an exact

triangle of p-complete cotangent complexes

LR+/R̃+⊗̂
L
R+ R̂+

∞
→ L̂R̂+∞/R̃+→ L̂R̂+∞/R+→ . (2-2)

The first term is easy to handle. Indeed, combining [Weibel 1994, 8.8.4] with Corollary 2.3(2), we deduce
that

LR+/R̃+⊗̂
L
R+ R̂+

∞
≃

1
ρk

R̂+
∞
(1)[1]⊕

1
ρ2

k
R̂+
∞
(2)[2].

Now we compute the third term of (2-2).

Lemma 2.5. We have L̂R̂+∞/R+ ≃ �̂
1
R+ ⊗R+ R̂+

∞
[1], where �̂1

R+ denotes the module of formal differentials
of R+ over OCp .
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Proof. Since R+ is étale over OCp⟨T
±1
⟩, thanks to [Bhatt et al. 2018, Lemma 3.14], we are reduced to

the case R+ = OCp⟨T
±1
⟩. For any n ≥ 0, put A+n = OCp [T

±
1

pn
] and define A+

∞
= lim
−−→n A+n . Since all

rings involved are p-torsion free, we get

L̂R̂+∞/R+ ≃ L̂A+∞/A+0
.

By [Illusie 1971, Chapitre II(1.2.3.4)], we see that

LA+∞/A+0
= lim
−−→

n
LA+n /A+0

.

Since all A+n ’s are smooth over OCp , from the exact triangle

LA+0 /OCp
⊗

L
A+0

A+n → LA+n /OCp
→ LA+n /A+0

→,

we deduce that
LA+n /A+0

≃ A+n ⊗A+0

1
pn�

1
A+0
/�1

A+0
[0],

where we identify �1
A+n

with A+n ⊗A+0
(1/pn)�1

A+0
. Therefore, we get

LA+∞/A+0
≃ A+

∞
⊗A+0

�1
A+0
⊗Zp (Qp/Zp)[0].

Now the result follows by taking p-completions. □

Since R+ admits a lifting R̃+ to A2, the composition

L̂R̂+∞/R+ ≃ L̂A2(R̂+∞)/R̃+⊗̂
L
A2(R̂+∞)

R̂+
∞
→ L̂R̂+∞/R̃+

defines a section of L̂R̂+∞/R̃+ → L̂R̂+∞/R+ . Since the exact triangle (2-2) is 0-equivariant, by taking
cohomologies along (2-2), we get the following proposition.

Proposition 2.6. There exists a 0-equivariant short exact sequence of R̂+
∞

-modules

0→
1
ρk

R̂+
∞
(1)→ E+→ R̂+

∞
⊗R+ �̂

1
R+→ 0, (2-3)

where E+ = H−1(̂LR̂+∞/R̃+). The above exact sequence admits a (non-0-equivariant) section such that
E+ ∼= (1/ρk)R̂+∞(1)⊕ R̂+

∞
⊗R+ �̂

1
R+ as R̂+

∞
-modules.

Remark 2.7. When R+ is the base-change of some formal smooth Ok-algebra R+0 of topologically finite
type along Ok→OCp , it admits a canonical lifting R̃+ = R+0 ⊗̂Ok A2. After inverting p, the resulting E+

becomes the usual Faltings’ extension and the corresponding sequence (2-3) is even Gal(k̄/k)-equivariant.

We describe the 0-action on E+. For any 1≤ i ≤d , by the proof of Lemma 2.5, the compatible sequence
{dlog(T 1/pn

i )}n≥0 defines an element xi ∈ E+, which goes to dlog Ti via the projection E+→ R̂+
∞
⊗R+ �̂

1
R+ .

Since 0 acts on Ti ’s via (2-1), we deduce that, for any 1≤ i, j ≤ d ,

γi (x j )= x j + δi j .

In summary, we have the following proposition.
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Proposition 2.8. The R̂+
∞

-module E+ is free of rank d + 1 and has a basis t/ρk , x1, . . . , xd such that

(1) for any 1≤ i ≤ d , xi is a lifting of dlog(Ti ) ∈ R̂+
∞
⊗R+ �̂

1
R+ and that

(2) for any 1≤ i, j ≤ d , γi (x j )= x j + δi j t .

Also, let c : 0→ HomR+
(
�̂1

R+, (1/ρk)R̂+∞(1)
)

be the map carrying γi to c(γi ), which sends dlog(T j )

to δi j t . Then the cocycle determined by c in H1
(
0,HomR+(�̂

1
R+, (1/ρk)R̂+∞(1))

)
coincides with the

extension class represented by E+ in Ext10(R̂
+
∞
⊗R+ �̂

1
R+, (1/ρk)R̂+∞(1)) via the canonical isomorphism

H1
(
0,HomR+

(
�̂1

R+,
1
ρk

R̂+
∞
(1)

))
∼= Ext10

(
R̂+
∞
⊗R+ �̂

1
R+,

1
ρk

R̂+
∞
(1)

)
.

Proof. It remains to prove the “also” part. By (1), the extension class of E+ is represented by the cocycle

f : 0→ HomR̂+∞

(
R̂+
∞
⊗R+ �̂

1
R+,

1
ρk

R̂+
∞
(1)

)
∼= HomR+

(
�̂1

R+,
1
ρk

R̂+
∞
(1)

)
such that f (γ )(dlog(Ti ))= γ (xi )− xi for any γ ∈ 0 and any i . However, by (2), f is exactly c. We are
done. □

Now we extend the above construction to the global case. Let X be a smooth formal scheme over OCp

with a fixed lifting X̃ to A2. Denote by X its rigid analytic generic fibre over Cp. We regard both OX and
OX̃ as sheaves on Xproét via the projection ν : Xproét→ Xét (note that X and X̃ have the same étale site).
Considering morphisms of sheaves of rings OX̃→OX→ Ô+X , we get an exact triangle

LOX/OX̃
⊗̂

L
OX

Ô+X → L̂Ô+X /OX̃
→ LÔ+X /OX

→ . (2-4)

Similar to the local case, the first term becomes

LOX/OX̃
⊗̂

L
OX

Ô+X ≃ LOCp /A2 ⊗
L
OCp

Ô+X
and the composition

L̂Ô+X /OX̃
≃ L̂A2(Ô+X )/OX̃

⊗̂
L
A2(Ô+X )

Ô+X → L̂Ô+X /OX̃

defines a section of L̂Ô+X /OX̃
→ LÔ+X /OX

.
We claim that

L̂Ô+X /OX
≃ Ô+X ⊗OX �̂

1
X[1]. (2-5)

Granting this and taking cohomologies along (2-4), we get the following theorem.

Theorem 2.9. There is an exact sequence of sheaves of Ô+X -modules

0→
1
ρk

Ô+X (1)→ E+→ Ô+X ⊗OX �̂
1
X→ 0, (2-6)

where E+ = H−1(̂LÔ+X /OX̃
).
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Remark 2.10. Apply RHom(−, (1/ρk)Ô+X (1)) to the exact triangle (2-4) and consider the induced long
exact sequence

· · · → Ext1
(

L̂OX/OX̃
⊗̂OXÔ

+

X ,
1
ρk

Ô+X (1)
)

∂
→ Ext2

(
L̂Ô+X /OX

,
1
ρk

Ô+X (1)
)
→ · · ·

and the commutative diagram

Ext1
(̂
LOX/OX̃

⊗̂OXÔ
+

X ,
1
ρk
Ô+X (1)

)
∼=

��

∂
// Ext2

(̂
LÔ+X /OX

, 1
ρk
Ô+X (1)

)
∼=

��

Hom
( 1
ρk
OX(1), 1

ρk
Ô+X (1)

) ∂
// Ext1

(
Ô+X ⊗OX �̂

1
OX
, 1
ρk
Ô+X (1)

)
Then the extension class [E+] associated to E+ is the image of the natural inclusion (1/ρk)OX(1)→
(1/ρk)Ô+X (1) via the connecting map ∂ . By construction, it is the obstruction class to lift Ô+X (as a sheaf
of OX-algebras) to a sheaf of OX̃-algebras in the sense of [Illusie 1971, III Proposition 2.1.2.3]. In
particular, E+ depends on the choice of X̃. When X comes from a smooth formal scheme X0 over Ok

and X̃ is the base-change of X0 along Ok→ A2, the E+ coincides with the usual Faltings’ extension after
inverting p. So we call E+ the integral Faltings’s extension (with respect to the lifting X̃).

It remains to prove the claim (2-5).

Lemma 2.11. With the notation as above, we have

L̂Ô+X /OX
≃ Ô+X ⊗OX �̂

1
X.

Proof. Since the problem is local on Xproét, by the proof of [Scholze 2013a, Corollary 4.7], we may assume
X = Spf(R) is small and are reduced to showing, for any perfectoid affinoid space U = Spa(S, S+) ∈
Xproét/X∞,

L̂S+/R+ ≃ S+⊗R+ �̂
1
R+ . (2-7)

Since both S+ and R̂+
∞

are perfectoid rings, by [Bhatt et al. 2018, Lemma 3.14], we have a quasi-
isomorphism

L̂R̂+∞/R+⊗̂R̂+∞S+→ L̂S+/R+ .

Combining this with Lemma 2.5, we get (2-7) as desired. □

Faltings’ extension as obstruction class. In this subsection, we shall give another description of the
integral Faltings’ extension from the perspective of deformation theory. To make the notation clear, in
this subsection, for a sheaf S of A2-algebras, we always identify ξk A2 with (1/ρk)S(1). Before moving
on, we recall some basic results due to Illusie. Although their statements are given in terms of rings, all
results still hold for ring topoi.

Let A be a ring with an ideal I ◁ A satisfying I 2
= 0. Put A = A/I and fix a flat A-algebra B. A

natural question is whether there exists a flat A-algebra B whose reduction modulo I is B.
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Theorem 2.12 [Illusie 1971, III Proposition 2.1.2.3]. There is an obstruction class cl∈Ext2(LB/A, B⊗A I )
such that B lifts to some flat A-algebra B if and only if cl= 0. In this case, the set of isomorphism classes
of such deformations forms a torsor under Ext1(LB/A, B⊗A I ) and the group of automorphisms of a fixed
deformation is Hom(LB/A, B⊗A I ).

If B and C are flat A-algebras with reductions B and C , respectively, and if f̄ : B→ C is a morphism
of A-algebras, then one can ask whether there exists a deformation f : B→ C of f̄ along A→ A.

Theorem 2.13 [Illusie 1971, III Proposition 2.2.2]. There is an obstruction class cl ∈ Ext1(LB/A,C⊗A I )
such that f̄ lifts to a morphism f : B→ C if and only if cl = 0. In this case, the set of all lifts forms a
torsor under Hom(LB/A,C ⊗A I ).

We only focus on the case where (A, I )= (A2, (ξ)). Let X be a smooth formal scheme over OCp and
denote by

ob(X) ∈ Ext2
(

L̂OX/OCp
,

1
ρk
OX(1)

)
the obstruction class to lift X to a flat A2-scheme (see, for example, [Illusie 1971, III Théorème 2.1.7]).
Consider the exact triangle

LOCp /A2⊗̂
L
OCp

OX→ L̂OX/A2 → L̂OX/OCp

and the induced long exact sequence

· · · → Ext1
(

L̂OX/A2,
1
ρk
OX(1)

)
→ Ext1

(
LOCp /A2⊗̂

L
OCp

OX,
1
ρk
OX(1)

)
∂
→ Ext2

(
L̂OX/OCp

,
1
ρk
OX(1)

)
→ · · · .

The obstruction class ob(X) is the image of the identity morphism of (1/ρk)OX(1) under ∂ via the
canonical isomorphism

Ext1
(

LOCp /A2⊗̂
L
OCp

OX,
1
ρk
OX(1)

)
∼= Hom

(
1
ρk
OX(1),

1
ρk
OX(1)

)
.

If X is also liftable and X̃ is such a lifting, then ob(X)= 0 and X̃ defines a class

[X̃] ∈ Ext1
(

L̂OX/A2,
1
ρk
OX(1)

)
which goes to the identity map of (1/ρk)OX(1). Indeed, [X̃] is the image of the identity map of
(1/ρk)OX(1) via the morphism

Ext1
(

L̂OX/OX̃
,

1
ρk
OX(1)

)
→ Ext1

(
L̂OX/A2,

1
ρk
OX(1)

)
.

We also consider the similar deformation problem for Ô+X . Since Ô+X is locally perfectoid, thanks to
[Bhatt et al. 2018, Lemma 3.14], L̂Ô+X /OCp

= 0 and hence we get a quasi-isomorphism

LOCp /A2⊗̂
L
OCp

Ô+X ≃ L̂Ô+X /A2
.
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In particular, we have an isomorphism

Ext1
(

L̂Ô+X /A2
,

1
ρk

Ô+X (1)
)
∼= Hom

(
1
ρk

Ô+X (1),
1
ρk

Ô+X (1)
)
.

Therefore, Ô+X admits a canonical lifting, which turns out to be A2(Ô+X ) and there is a unique class

[X ] ∈ Ext1
(

L̂Ô+X /A2
,

1
ρk

Ô+X (1)
)

corresponding to the identity map of (1/ρk)Ô+X (1).
Regard [X̃] and [X ] as classes in Ext1(̂LOX/A2, (1/ρk)Ô+X (1)) via the canonical morphisms induced

by (1/ρk)OX(1)→ (1/ρk)Ô+X (1) and L̂OX/A2 → L̂Ô+X /A2
, respectively. Then as shown in [Illusie 1971,

III Proposition 2.2.4], the difference

cl(E+) := [X̃] − [X ]

belongs to

Ext1
(

L̂OX/OCp
,

1
ρk

Ô+X (1)
)
∼= Ext1

(
�̂1

OX/OCp
⊗OX Ô+X ,

1
ρk

Ô+X (1)
)

via the injection

Ext1
(

L̂OX/OCp
,

1
ρk

Ô+X (1)
)
→ Ext1

(
L̂OX/A2,

1
ρk

Ô+X (1)
)
,

and cl(E+) is the obstruction answering whether there is an A2-morphism from OX̃ to A2(Ô+X ) which
lifts the OCp -morphism OX→ Ô+X as described in Theorem 2.13.

Recall we have another obstruction class [E+] described in Remark 2.10. We claim that it coincides
with the class cl(E+) constructed above.

Proposition 2.14. cl(E+)= [E+].

Proof. Note that we have a commutative diagram of morphisms of cotangent complexes

LOX̃/A2⊗̂
L
OX̃

Ô+X // LOX/A2⊗̂
L
OX

Ô+X

β

��

α
// LOX/OX̃

⊗̂
L
OX

Ô+X
+1
//

��

LOX̃/A2⊗̂
L
OX̃

Ô+X //

≃

−1
''

L̂Ô+X /A2

��

// L̂Ô+X /OX̃

��

+1
//

L̂Ô+X /OX

+1
��

L̂Ô+X /OX

+1
��

(2-8)

where the notation “+1” and “−1” denote the shifts of dimensions.
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Consider the resulting diagram from applying RHom(−, (1/ρk)Ô+X (1)) to (2-8). Denote the identity
map of (1/ρk)Ô+X (1) by id. By construction, [E+] is the image of id via the connecting map induced by
the triangle

LOX/OX̃
⊗̂

L
OX

Ô+X → L̂Ô+X /OX̃
→ L̂Ô+X /OX

.

By the commutativity of diagram (2-8), [E+] is also the image of α∗(id) via the connecting map ∂ induced
by the triangle

LOX/A2⊗̂
L
OX

Ô+X → L̂Ô+X /A2
→ L̂Ô+X /OX

.

On the other hand, by the constructions of [X̃] and [X ], as elements in

Ext1
(

LOX/A2⊗̂
L
OX

Ô+X ,
1
ρk

Ô+X (1)
)
,

we have [X̃] = α∗(id) and [X ] = β∗(id); here, for the second equality, we identify

Hom
(

1
ρk

Ô+X (1),
1
ρk

Ô+X (1)
)
= Ext1

(
L̂OCp /A2⊗̂

L
OCp

Ô+X ,
1
ρk

Ô+X (1)
)

with Ext1(̂LÔ+X /A2
⊗̂

L
OCp

Ô+X , (1/ρk)Ô+X (1)). So we have

cl(E+)= α∗(id)−β∗(id) ∈ Ext1
(

LOX/A2⊗̂
L
OX

Ô+X ,
1
ρk

Ô+X (1)
)
.

However, the diagram

L̂A2(Ô+X )/OX̃

��

+1
// LOX̃/A2⊗̂

L
OX̃

Ô+X

��

L̂Ô+X /OX

+1
// LOX/A2⊗̂

L
OX̃

Ô+X // LOX/OCp
⊗̂

L
OX

Ô+X

induces a commutative diagram

Ext1
(
LOX/OCp

⊗̂
L
OX

Ô+X ,
1
ρk
Ô+X (1)

) ⊂
//

∼=

++

Ext1
(
LOX/A2⊗̂

L
OX

Ô+X ,
1
ρk
Ô+X (1)

)
∂

��

Ext2
(

L̂Ô+X /OX
, 1
ρk
Ô+X (1)

)
In particular, as elements in Ext1(LOX/OCp

⊗̂
L
OX

Ô+X , (1/ρk)Ô+X (1)), we have

cl(E+)= ∂(α∗(id)−β∗(id))= ∂(α∗(id))= [E+] □

Remark 2.15. When X is small affine and comes from a formal scheme over Ok , the obstruction class
cl(E+) was considered as a Higgs–Tate extension associated to X̃ in [Abbes et al. 2016, I. 4.3].
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Example 2.16. Let R+ = OCp⟨T
±1
⟩ and R̃+ = A2⟨T±1

⟩ for simplicity. Consider the A2-morphism
ψ̃ : R̃+→ A2(R̂+∞), which sends Ti to [T ♭

i ] for all i , where T ♭
i ∈ R̂♭+∞ is determined by the compatible

sequence (T 1/pn

i )n≥0. Then ψ̃ is a lifting of the inclusion R+ → R̂+
∞

, but is not 0-equivariant. For
any γ ∈ 0, γ ◦ ψ̃ is another lifting. By Theorem 2.13, their difference c(γ ) := γ ◦ ψ̃ − ψ̃ belongs to
HomR+(�̂

1
R+, (1/ρk)R̂+∞(1)). One can check that, for any 1≤ i, j ≤ 1,

c(γi )(dlog(T j ))=
(γi − 1)([T ♭

j ])

T j
= δi j ([ϵ] − 1)= δi j t,

where the last equality follows from the fact that [ϵ] − 1 − t ∈ t2B+dR. By construction, the cocycle
c : 0→ HomR+(�̂

1
R+, (1/ρk)R̂+∞(1)) is exactly the class cl(E+). Comparing this with Proposition 2.8,

we deduce that cl(E+)= [E+] in this case.

As an application of Proposition 2.14, we study the behaviour of integral Faltings’ extension under the
pull-back.

Let f : X→Y be a formally smooth morphism of liftable smooth formal schemes. Fix liftings X̃ and
Ỹ of X and Y, respectively. Denote by E+X and E+Y the corresponding integral Faltings’ extensions. Then
the pull-back of E+X along the injection

f ∗�̂1
Y⊗OX Ô+X → �̂1

X⊗OX Ô+X

defines an extension E+1 of �̂1
Y⊗OY Ô+X ∼= f ∗�̂1

Y⊗OX Ô+X by (1/ρk)Ô+X (1).1 We denote its extension
class by

cl1 ∈ Ext1
(
�̂1

Y⊗OY Ô+X ,
1
ρk

Ô+X (1)
)
.

On the other hand, the tensor product E+2 = E+Y ⊗Ô+Y
Ô+X induced by applying −⊗Ô+Y

Ô+X to

0→
1
ρk

Ô+Y (1)→ E+Y → Ô+Y ⊗OY �̂
1
Y→ 0

is also an extension of �̂1
Y⊗OY Ô+X by (1/ρk)Ô+X (1) and we denote the associated extension class by

cl2 ∈ Ext1
(
�̂1

Y⊗OY Ô+X ,
1
ρk

Ô+X (1)
)
.

Then it is natural to ask whether E+1 ∼= E+2 (equivalently, cl1 = cl2).

Proposition 2.17. Keep the notation as above. If f : X→Y lifts to an A2-morphism f̃ : X̃→ Ỹ, then
cl1 = cl2.

We are going to prove this proposition in the rest of this subsection.

1Here, the tensor product �̂1
Y⊗OY

Ô+X should be understood as f −1�̂1
Y⊗ f −1OY

Ô+X . The same applies to sheaves like
O+X ⊗Ô+Y

E+Y , Ô+X ⊗Ô+Y
OC+Y,ρ , Ô+X ⊗Ô+Y

OĈ+Y,ρ , Ô+X ⊗Ô+Y
OC

†,+
Y,ρ .
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By Theorem 2.13, there exists an obstruction class

cl( f ) ∈ Ext1
(

L̂OY/OCp
,

1
ρk
OX(1)

)
to lift f along the surjection A2→OCp . Before moving on, let us recall the definition of cl( f ).

Let [X̃] and [Ỹ] be classes defined as before and regard them as elements in Ext1(̂LOY/A2, (1/ρk)OX(1))
via the obvious morphisms. Then similar to the construction of cl(E+), one can check that

cl( f )= [X̃] − [Ỹ]

via the injection
Ext1

(
L̂OY/OCp

,
1
ρk
OX(1)

)
→ Ext1

(
L̂OY/A2,

1
ρk
OX(1)

)
.

For simplicity, we still denote by cl( f ) its image in

Ext1
(

L̂OY/OCp
,

1
ρk
Ô+X (1)

)
∼= Ext1

(
�̂1

Y⊗OY Ô+X ,
1
ρk
Ô+X (1)

)
via the natural map (1/ρk)OX(1)→ (1/ρk)Ô+X (1). Then the following proposition is true.

Proposition 2.18. cl( f )= cl1− cl2.

Proof. By the constructions of E+1 and E+2 , we see that cl1 is the image of cl(E+X ) via the morphism

Ext1
(
�̂1

X,
1
ρk
Ô+X (1)

)
→ Ext1

(
�̂1

Y⊗OY OX,
1
ρk
Ô+X (1)

)
induced by

LOY/OCp
⊗̂

L
OY

OX→ L̂OX/OCp
,

and that cl2 is the image of cl(E+Y ) via the morphism

Ext1
(
�̂1

Y⊗OY Ô+Y ,
1
ρk
Ô+Y (1)

)
→ Ext1

(
�̂1

Y⊗OY Ô+X ,
1
ρk
Ô+X (1)

)
induced by the inclusion (1/ρk)Ô+Y (1)→ (1/ρk)Ô+X (1).

Now by Proposition 2.14, we have

cl1− cl2 = cl(E+X )− cl(E+Y )= ([X̃] − [Ỹ])− ([X ] − [Y ]).

However, the inclusion Ô+Y → Ô+X admits a canonical A2-lifting, namely A2(Ô+Y )→ A2(Ô+X ). So we
deduce that [X ] − [Y ] = 0, which completes the proof. □

Now, Proposition 2.17 is a special case of Proposition 2.18.

Corollary 2.19. Assume f :X→Y admits a lifting along A2→OCp . Then there is an exact sequence of
sheaves of Ô+X -modules

0→ Ô+X ⊗Ô+Y
E+Y → E+X → Ô+X ⊗OX �̂

1
X/Y→ 0, (2-9)

where �̂1
X/Y is the module of relative differentials.

Proof. This follows from the Proposition 2.17 combined with the definitions of E+1 and E+2 . □
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Period sheaves. Now, we define the desired period sheaf OC† as mentioned in Section 1. The construction
generalises the previous work of Hyodo [1989].

Let X= Spf(R+) be a small smooth formal scheme and X̃= Spf(R̃+) be a fixed A2-lifting. Let E+

be the integral Faltings’ extension introduced in Proposition 2.6. Define E+ρk
= ρk E+(−1). Then it fits

into the exact sequence

0→ R̂+
∞
→ E+ρk

→ ρk R̂+
∞
⊗R+ �̂

1
R+(−1)→ 0.

For any ρ ∈ ρkOCp , denote by E+ρ the pull-back of E+ρk
along the inclusion

ρ R̂+
∞
⊗R+ �̂

1
R+(−1)→ ρk R̂+

∞
⊗R+ �̂

1
R+(−1).

Then it fits into the 0-equivariant exact sequence

0→ R̂+
∞
→ E+ρ → ρ R̂+

∞
⊗R+ �̂

1
R+(−1)→ 0. (2-10)

By Proposition 2.8, E+ρ admits an R̂+
∞

-basis 1, (ρx1)/t, . . . , (ρxd)/t . Let E = E+ρ
[ 1

p

]
, which fits into

the induced exact sequence

0→ R̂∞→ E→ R̂∞⊗R+ �̂
1
R+(−1)→ 0.

Then it is independent of the choice of ρ and has E+ρ as a sub-R̂+
∞

-module. Also, it admits an R̂∞-basis

1, y1 =
x1

t
, . . . , yd =

xd

t
such that γi (y j )= y j + δi j for any 1≤ i, j ≤ d . Define S∞ = lim

−−→n Symn
R̂∞

E . Then by similar arguments
used in [Hyodo 1989, Section I], we have the following result.

Proposition 2.20. There exists a canonical Higgs field

2 : S∞→ S∞⊗R̂∞ �̂
1
R+(−1)

on S∞ such that the induced Higgs complex is a resolution of R̂∞. The Higgs field 2 is induced by taking
alternative sum along the projection E→ R̂∞⊗R+ �̂

1
R+(−1) and if we denote by Yi the image of yi in S∞,

then there is a 0-equivariant isomorphism

ι : S∞
∼=
−→ R̂∞[Y1, . . . , Yd ]

such that2=
∑d

i=1(∂/∂Yi )⊗((dlog Ti )/t) via this isomorphism, where R̂∞[Y1, . . . , Yd ] is the polynomial
ring on free variables Yi ’s over R̂∞.

Since we have R̂+
∞

-lattices E+ρ ’s of E , inspired by Proposition 2.20, we make the following definition.

Definition 2.21. For any ρ ∈ ρkOCp , define

(1) S+
∞,ρ = lim

−−→n Symn
R̂+∞

E+ρ ;

(2) Ŝ+
∞,ρ = lim

←−−n S+
∞,ρ/pn;

(3) S†,+
∞
= lim
−−→νp(ρ)>νp(ρk)

Ŝ+
∞,ρ and S†

∞
= S†,+
∞

[ 1
p

]
.
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For any ρ1, ρ2 ∈ ρkOCp satisfying νp(ρ1) ≥ νp(ρ2), we have E+ρ1
⊂ E+ρ2

⊂ E . So Proposition 2.20
implies that S+

∞,ρ1
⊂ S+
∞,ρ2
⊂ S∞. Moreover, the restriction of 2 to S+

∞,ρ (for ρ ∈ ρkOCp ) induces a
Higgs field on S+

∞,ρ , which is identified with R̂+
∞
[ρY1, . . . , ρYd ] via the canonical isomorphism ι. In this

case, we still have 2=
∑d

i=1(∂/∂Yi )⊗ ((dlog Ti )/t). Since 2 is continuous, it extends to Ŝ+
∞,ρ and thus

we have the following corollary.

Corollary 2.22. For any ρ ∈ ρkOCp , there exists a canonical Higgs field

2 : Ŝ+
∞,ρ→ Ŝ+

∞,ρ ⊗R̂+∞ �̂
1
R+(−1)

on Ŝ+
∞,ρ . Additionally, there is a 0-equivariant isomorphism

ι : Ŝ+
∞,ρ

∼=
−→ R̂+

∞
⟨ρY1, . . . , ρYd⟩

such that

2=

d∑
i=1

∂

∂Yi
⊗

dlog Ti

t

via this isomorphism, where R̂+
∞
⟨ρY1, . . . , ρYd⟩ is the p-adic completion of R̂+

∞
[ρY1, . . . , ρYd ].

After taking the inductive limit of {ρ ∈ ρkOCp |νp(ρ) > νp(ρk)}, we get the following corollary.

Corollary 2.23. There exists a canonical Higgs field

2 : S†,+
∞
→ S†,+

∞
⊗R̂+∞ �̂

1
R+(−1)

on S†,+
∞

. Additionally, there is a 0-equivariant isomorphism

ι : S†,+
∞

∼=
−→ lim

−−→
νp(ρ)>νp(ρk)

R̂+
∞
⟨ρY1, . . . , ρYd⟩

such that 2=
∑d

i=1(∂/∂Yi )⊗ ((dlog Ti )/t) via this isomorphism. After inverting p, the induced Higgs
complex

HIG(S†
∞
,2) : S†

∞

2
−→ S†

∞
⊗R+ �̂

1
R+(−1) 2

−→ S†
∞
⊗R+ �̂

2
R+(−2)→ · · · (2-11)

is a resolution of R̂∞.

Proof. It remains to prove the Higgs complex HIG(S†
∞
,2) is a resolution of R̂∞. For any ρ ∈ ρkOCp ,

consider the Higgs complexes

HIG(Ŝ+
∞,ρ,2) : Ŝ+

∞,ρ
2
−→ Ŝ+

∞,ρ ⊗R+ �̂
1
R+(−1) 2

−→ Ŝ+
∞,ρ ⊗R+ �̂

2
R+(−2)→ · · ·

and
HIG(S†,+

∞
,2) : S†,+

∞

2
−→ Ŝ†,+

∞
⊗R+ �̂

1
R+(−1) 2

−→ S†,+
∞
⊗R+ �̂

2
R+(−2)→ · · · .

Then we have

HIG(S†
∞
,2)= HIG(S†,+

∞
,2)

[
1
p

]
= lim

−−→
νp(ρ)>νp(ρk)

HIG(Ŝ+
∞,ρ,2)

[
1
p

]
.
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By Corollary 2.22, HIG(Ŝ+
∞,ρ,2) is computed by the Koszul complex

K
(

R̂+
∞
⟨ρY1, . . . , ρYd⟩;

∂

∂Y1
, . . . ,

∂

∂Yd

)
≃ K

(
R̂+
∞
⟨ρY1⟩;

∂

∂Y1

)
⊗̂

L
R̂+∞
· · · ⊗̂

L
R̂+∞

K
(

R̂+
∞
⟨ρYd⟩;

∂

∂Yd

)
,

via the canonical isomorphism ι. Note that, for any j ,

Hi
(

K
(

R̂+
∞
⟨ρY j ⟩;

∂

∂Y j

))
=


R̂+
∞
, i = 0,

R̂+
∞
⟨3 j,ρ⟩/R̂+

∞
⟨3 j,ρ, I,+⟩, i = 1,

0, i ≥ 2,

is derived p-complete by Proposition A.2, where R̂+
∞
⟨3 j,ρ⟩ and R̂+

∞
⟨3 j,ρ, I,+⟩ are defined as in

Definition A.1 for 3 j,ρ = {ρ
nY n

j }n≥0 and I = {νp(n+ 1)}n≥0. We deduce that, for any i ≥ 0,

Hi
(

K
(

R̂+
∞
⟨ρY1, . . . ,ρYd⟩;

∂

∂Y1
, . . . ,

∂

∂Yd

))
=

i∧̂
R+∞

( d⊕
j=1

R̂+
∞
⟨3 j,ρ⟩/R̂+

∞
⟨3 j,ρ, I,+⟩

)
.

In particular, we get

H0(HIG(S†,+
∞
,2))= lim

−−→
νp(ρ)>νp(ρk)

H0(HIG(Ŝ+
∞,ρ,2))= R̂+

∞
.

It remains to show that, for any i ≥ 1,

lim
−−→

νp(ρ)>νp(ρk)

Hi (HIG(Ŝ+
∞,ρ,2))

∼= lim
−−→

νp(ρ)>νp(ρk)

i∧̂
R+∞

( d⊕
j=1

R̂+
∞
⟨3 j,ρ⟩/R̂+

∞
⟨3 j,ρ, I,+⟩

)
is p∞-torsion. To do so, it suffices to prove that for any νp(ρ1) > νp(ρ2) > νp(ρk), there is an N ≥ 0
such that

pN R̂+
∞
⟨3 j,ρ1⟩ ⊂ R̂+

∞
⟨3 j,ρ2, I,+⟩.

By Remark A.3, we only need to find an N such that the following conditions hold:

(1) For any i ≥ 0, N + iνp(ρ1)− iνp(ρ2)− νp(i + 1)≥ 0.

(2) limi→+∞(N + iνp(ρ1)− iνp(ρ2)− νp(i + 1))=+∞.

Since νp(ρ1) > νp(ρ2), such an N exists. This completes the proof. □

Remark 2.24. (1) In the proof of Corollary 2.23, we have seen that for any ρ ∈ ρkOCp , the Higgs
complex HIG

(
S+
∞,ρ

[ 1
p

]
,2

)
is not a resolution of R̂∞.

(2) For any 1≤ i ≤ d , the p∞-torsion of Hi (HIG(S†,+
∞
,2)) is unbounded.

Remark 2.25. Since for any 1≤ i, j ≤ d, γi (Y j )= Y j + δi j , one can check that ∂/∂Yi = log γi on S†
∞

.
So the Higgs field is 2=

∑d
i=1 log γi ⊗ ((dlog Ti )/t).

Remark 2.26. A similar local construction of S†,+
∞

also appeared in [Abbes et al. 2016, I.4.7].
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There is a global analogue by using Theorem 2.9 instead of Proposition 2.6. Put E+ρk
= ρkE+(−1) and

for any ρ ∈ ρkOCp , denote by E+ρ the pull-back of E+ρk
along the inclusion

ρÔ+X ⊗OX �̂
1
X(−1)→ ρkÔ+X ⊗OX �̂

1
X(−1).

Then it fits into the exact sequence

0→ Ô+X → E+ρ → ρÔ+X ⊗OX �̂
1
X(−1)→ 0. (2-12)

As an analogue of Definition 2.21 in the local case, we define period sheaves as follows:

Definition 2.27. For any ρ ∈ ρkOCp , define

(1) OC+ρ = lim
−−→n Symn

Ô+X
E+ρ ;

(2) OĈ+ρ = lim
←−−n OC+ρ /pn;

(3) OC†,+
= lim
−−→νp(ρ)>νp(ρk)

OĈ+ρ and OC†
=OC†,+

[ 1
p

]
.

Theorem 2.28. There is a canonical Higgs field 2 on OC†,+ such that the induced Higgs complex

HIG(OC†,2) : OC† 2
−→OC†

⊗OX �̂
1
X(−1) 2

−→OC†
⊗OX �̂

2
X(−2)→ · · · (2-13)

is a resolution of ÔX . Additionally, when X= Spf(R+) is small affine, there is an isomorphism

ι :OC
†,+
|X∞→ lim

−−→
νp(ρ)>νp(ρk)

Ô+X ⟨ρY1, . . . , ρYd⟩|X∞

such that the Higgs field 2 equals
∑d

i=1(∂/∂Yi )⊗ ((dlog Ti )/t).

Proof. Since the problem is local, we are reduced to Corollary 2.23. □

Finally, we describe the relative version of the above constructions. We assume that f : X→ Y

is a morphism of liftable smooth formal schemes and lifts to an A2-morphism f̃ : X̃→ Ỹ. Then by
Corollary 2.19, for any ρ ∈ ρkOCp , we have the exact sequence

0→ Ô+X ⊗Ô+Y
E+ρ,Y → E+ρ,X → Ô+X ⊗OX �̂

1
X/Y(−1)→ 0.

By construction of period sheaves in Definition 2.27, we get morphisms of sheaves Ô+X ⊗Ô+Y
FY → FX

for F ∈ {OC+ρ ,OĈ+ρ ,OC†,+
}. Also, the natural projection E+ρ,X → Ô+X ⊗OX �̂

1
X/Y(−1) induces relative

Higgs fields

2X/Y : FX → FX ⊗OX �̂
1
X/Y(−1)

for F ∈ {OC+ρ ,OĈ+ρ ,OC†,+
}. Using similar arguments as above, we get the following proposition.

Proposition 2.29. Assume that f : X→Y is a morphism of liftable smooth formal schemes and lifts to
an A2-morphism f̃ : X̃→ Ỹ. The induced relative Higgs complex

HIG(OC
†
X ,2X/Y ) : OC

†
X
2X/Y
−−→OC

†
X ⊗OX

�̂1
X/Y(−1) 2X/Y

−−→OC
†
X ⊗OX

�̂2
X/Y(−2)→ · · ·
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is a resolution of lim
−−→ρ,νp(ρ)>νp(ρk)

(Ô+X ⊗̂Ô+Y
OĈ+ρ,Y )

[ 1
p

]
and makes the diagram

f ∗OC
†
Y

f ∗2Y
//

��

f ∗OC
†
Y ⊗OY �̂

1
Y(−1)

��

// · · ·

OC
†
X

2X
//

2X/Y

��

OC
†
X ⊗OX �̂

1
X(−1) //

2X/Y

��

· · ·

OC
†
X ⊗OX �̂

1
X/Y(−1)

��

2X/Y
// OC

†
X ⊗OX �̂

2
X/Y(−2) //

��

· · ·

...
...

(2-14)

commute, where f ∗OC
†
Y = ÔX ⊗ÔY

OC
†
Y and f ∗2Y = id⊗2Y .

Proof. Put C := lim
−−→ρ,νp(ρ)>νp(ρk)

(Ô+X ⊗̂Ô+Y
OĈ+ρ,Y )

[ 1
p

]
. Since f admits a lifting f̃ , for any ρ ∈ ρkOCp , we

have a morphism Ô+X ⊗Ô+Y
OC+ρ,Y → OC+ρ,X and hence morphisms f ∗OC

†
Y → C→OC

†
X . It remains

to show the relative Higgs complex HIG(OC
†
X ,2X/Y ) is a resolution of C and that the diagram (2-14)

commutes. Since the problem is local, we may assume Y= Spf(S+) and X= Spf(R+) are both small
affine such that the morphism f :X→Y is induced by a morphism S+→ R+ which makes the diagram

OCp⟨T
±1

1 , . . . , T±1
d ⟩

⊂
//

��

OCp⟨T
±1

1 , . . . , T±1
d , T±1

d+1, . . . , T±1
d+r ⟩

��

S+ // R+

commute, where d is the dimension of Y over OCp , r is the dimension of X over Y and both vertical
maps are étale. Let Ŝ+

∞
and R̂+

∞
be the perfectoid rings corresponding to the base-changes of S+ and R+

along morphisms

OCp⟨T
±1

1 , . . . , T±1
d ⟩ →OCp⟨T

±
1

p∞

1 , . . . , T
±

1
p∞

d ⟩

and

OCp⟨T
±1

1 , . . . ,T±1
d ,T±1

d+1, . . . ,T
±1

d+r ⟩ →OCp⟨T
±

1
p∞

1 , . . . ,T
±

1
p∞

d ,T
±

1
p∞

d+1 , . . . ,T
±

1
p∞

d+r ⟩,

respectively. Put Y∞ = Spa(Ŝ∞, Ŝ+
∞
) and X∞ = Spa(R̂∞, R̂+

∞
) with Ŝ∞ = Ŝ+

∞

[ 1
p

]
and R̂∞ = R̂+

∞

[ 1
p

]
.

For any ρ ∈ ρkOCp , since E+ρ,Y fits into the exact sequence

0→ Ô+X → Ô+X ⊗Ô+Y
E+ρ,Y → ρ�̂1

Y⊗OY Ô+X (−1)→ 0,

we see that (Ô+X ⊗Ô+Y
E+Y )(X∞)(⊂ E+ρ,X (X∞)) coincides with R̂+

∞
⊗Ŝ+∞ E+ρ,Y (Y∞). This implies that

(Ô+X ⊗Ô+Y
OC+ρ,Y )(X∞)∼= R̂+

∞
[ρY1, . . . , ρYd ]
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such that the induced Higgs field is given by
∑d

i=0(∂/∂Yi )⊗ ((dlog Ti )/t). On the other hand, we have

OC+ρ,X (X∞)∼= R̂+
∞
[ρY1, . . . , ρYd+r ]

such that the induced Higgs field is given by
∑d+r

i=0 (∂/∂Yi )⊗ ((dlog Ti )/t). So the morphism

Ô+X ⊗Ô+Y
OC+ρ,Y →OC+ρ,X

is compatible with Higgs fields for any ρ ∈ ρkOCp . Therefore, for any ρ ∈ ρkOCp , we have morphisms
of sheaves

Ô+X ⊗Ô+Y
OC+ρ,Y → Ô+X ⊗Ô+Y

OĈ+ρ,Y → Ô+X ⊗̂Ô+Y
OĈ+ρ,Y →OĈ+ρ,X

which are all compatible with Higgs fields. After taking direct limits and inverting p, we get morphisms

f ∗OC
†
Y → C→OC

†
X

of sheaves which are compatible with Higgs fields. In particular, the top two rows of (2-14) form a
commutative diagram.

To complete the proof, we have to show that HIG(OC
†
X ,2X/Y ) is a resolution of C. Since we do have

a morphism C→ HIG(OC
†
X ,2X/Y ), we can conclude by checking the exactness locally.

By the “additionally” part of Corollary 2.23, we obtain that

OC
†
X (X∞)= ( lim

−−→
ρ,νp(ρ)>νp(ρk)

R̂+
∞
⟨ρY1, . . . , ρYd+r ⟩)

[
1
p

]
with 2X =

∑d+r
i=1 (∂/∂Yi )⊗ ((dlog Ti )/t). A similar argument also shows that

2X/Y =

d+r∑
i=d+1

∂

∂Yi
⊗

dlog Ti

t
.

So the rest of (2-14) commutes. Note that C(X∞) = (lim−−→ρ,νp(ρ)>νp(ρk)
R̂+
∞
⟨ρY1, . . . , ρYd⟩)

[ 1
p

]
. By a

similar argument in the proof of Corollary 2.23, we see that HIG(OC
†
X ,2X/Y ) is a resolution of C. □

3. An integral decompletion theorem

In this section, we generalise results in [Diao et al. 2023b, Appendix A] to an integral case which will be
used to simplify local calculations. Let X=Spf(R+), R̂+

∞
and 0 be as in the previous section. Throughout

this section, we put π = ζp − 1, r = νp(π)= 1/(p− 1) and c = pr . Recall νp(ρk)≥ r . We begin with
some definitions.

Definition 3.1. (1) By a Banach OCp -algebra, we mean a flat OCp -algebra A such that A
[ 1

p

]
is a Banach

Cp-algebra, and that A =
{
a ∈ A

[ 1
p

]
| ∥a∥ ≤ 1

}
.

(2) Assume A is a Banach OCp -algebra. For an A-module M , we say it is a Banach A-module if M
[ 1

p

]
is a Banach A

[ 1
p

]
-module, and M =

{
m ∈ M

[ 1
p

]
| ∥m∥ ≤ 1

}
.

There are some typical examples.
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Example 3.2. (1) If A is a Banach OCp -algebra, then any topologically free A-module endowed with
the supreme norm is a Banach A-module.

(2) The rings R+ and R̂+
∞

are Banach OCp -algebras.

(3) The R̂+
∞
/R+ is a Banach R+-module.

Now, we make the definition of (a-trivial) 0-representations.

Definition 3.3. Assume a > r and A ∈ {R+, R̂+
∞
}.

(1) By an A-representation of 0 of rank l, we mean a finite free A-module M of rank l endowed with a
continuous semilinear 0-action.

(2) Let M be a representation of 0 of rank l over A. We say M is a-trivial, if M/pa ∼= (A/pa)l as
representations of 0 over A/pa .

(3) Let M be a representation of 0 of rank l over R+. We say M is essentially (a+r)-trivial if M is
a-trivial and M ⊗R+ R̂+

∞
is (a+r)-trivial.

The goal of this section is to prove the following integral decompletion theorem.

Theorem 3.4. Assume a > r . Then the functor M 7→ M ⊗R+ R̂+
∞

induces an equivalence from the
category of (a+r)-trivial R+-representations of 0 to the category of (a+r)-trivial R̂+

∞
-representations

of 0. The equivalence preserves tensor products and dualities.

The first difficulty is to construct the quasi-inverse, namely the decompletion functor, of the functor in
Theorem 3.4. To do so, we need to generalise the method adapted in [Diao et al. 2023b] to the small
integral case. However, their method only shows the decompletion functor takes values in the category of
essentially (a+r)-trivial representations. So, the second difficulty is to show the resulting representation
is actually (a+r)-trivial. The trivialness condition is crucial to overcome both difficulties.

Construction of decompletion functor. We first construct the decompletion functor. From now on,
we use R0(0,M) to denote the continuous group cohomology of a p-adically completed R+-module
endowed with a continuous 0-action. By virtues of [Bhatt et al. 2018, Lemma 7.3], R0(0,M) =
Rlim
←−

kR0(0,M/pk) can be calculated by the Koszul complex

K(M; γ1− 1, . . . , γd − 1) : M
(γ1−1,...,γd−1)
−−−−−−−−→ Md

→ · · · .

Proposition 3.5. Assume a > r . Let M∞ be an (a+r)-trivial R̂+
∞

-representation of 0. Then there exists
a finite free R+-submodule M ⊂ M∞ such that the following assertions are true:

(1) The finite free A-module M is an essentially (a+r)-trivial R+-representation of 0 such that the
natural inclusion M ↪→ M∞ induces an isomorphism M ⊗R+ R̂+

∞
∼= M∞ of R̂+

∞
-representations

of 0.

(2) The induced morphism R0(0,M)→ R0(0,M∞) identifies the former as a direct summand of the
latter, whose complement is concentrated in positive degrees and killed by π .
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Remark 3.6. The finite free A-module M is unique up to isomorphism and the functor M∞ 7→ M turns
out to be the quasi-inverse of the functor M 7→ M ⊗ R+

∞
described in Theorem 3.4.

Now we prove Proposition 3.5 by using similar arguments in [Diao et al. 2023b]. Since we work on
the integral level, so we need to control (p-adic) norms carefully. We start with the following result.

Lemma 3.7. For any cocycle f ∈ C•(0, R̂∞/R), there exists a cochain g ∈ C•−1(0, R̂∞/R) such that
dg = f and ∥g∥ ≤ c ∥ f ∥.

Proof. The result follows from the same argument used in the proof of [Diao et al. 2023b, Proposition
A.2.2.1], especially the part for checking the condition (3) of [Diao et al. 2023b, Definition A.1.6], by
using [Scholze 2013a, Lemma 5.5] instead of [Diao et al. 2023a, Lemma 6.1.7]. □

Since the norm on R (resp. R̂∞) is induced by that on R+ (resp. R̂+
∞

), there exists a norm-preserving
embedding of complexes

C•(0, R̂+
∞
/R+)→ C•(0, R̂∞/R).

We shall apply Lemma 3.7 via this embedding.

Lemma 3.8. For any cocycle f ∈ C•(0, R̂+
∞
/R+), there is a cochain g ∈ C•−1(0, R̂+

∞
/R+) such that

∥g∥ ≤ ∥ f ∥ and dg = π f .

Proof. Regard C•(0, R̂+
∞
/R+) as a subcomplex of C•(0, R̂∞/R) as above. Applying Lemma 3.7 to π f ,

we get a cochain g ∈ C•−1(0, R̂∞/R) such that ∥g∥ ≤ c ∥π f ∥ and dg = π f . But c ∥π f ∥ = ∥ f ∥ ≤ 1, so
we see g ∈ C•−1(0, R̂+

∞
/R+). □

Lemma 3.9. Let (C•, d) be a complex of Banach modules over a Banach OCp -algebra A. Suppose
that for every degree s and every cocycle f ∈ Cs , there exists a g ∈ Cs−1 such that ∥g∥ ≤ ∥ f ∥ and
dg = π f . Then, for any cochain f ∈ Cs , there exists an h ∈ Cs−1 such that ∥h∥ ≤ max(∥ f ∥/c, ∥d f ∥)
and ∥π2 f − dh∥ ≤ ∥d f ∥/c.

Proof. By assumption, one can choose a g ∈ Cs such that dg = πd f and that ∥g∥ ≤ ∥d f ∥. Then
(g−π f ) ∈ Cs is a cocycle. Using this assumption again, there is an h ∈ Cs−1 satisfying ∥h∥ ≤ ∥g−π f ∥
and dh = π(g−π f ). Then ∥π2 f − dh∥ ≤ ∥g∥/c ≤ ∥d f ∥/c and ∥h∥ ≤max(∥d f ∥, ∥ f ∥/c). □

The following lemma is a consequence of Lemmas 3.8 and 3.9.

Lemma 3.10. For any cochain f ∈ C•(0, R̂+
∞
/R+), there is a cochain h ∈ C•−1(0, R̂+

∞
/R+) such that

∥h∥ ≤max(∥ f ∥/c, ∥d f ∥) and ∥π2 f − dh∥ ≤ ∥d f ∥/c.

The following lemma can be viewed as an integral version of [Diao et al. 2023b, Lemma A.1.12].

Lemma 3.11. We denote (R+, R̂+
∞
/R+) by (A,M) for simplicity.

Let L =
⊕n

i=1 Aei be a Banach A-module (with the supreme norm) endowed with a continuous 0-
action. Assume there exists an R > 1 such that, for each γ ∈ 0 and each i , ∥(γ − 1)(ei )∥ ≤ 1/(Rc). Then
the following assertions are true:
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(1) For any cocycle f ∈ C•(0, L ⊗A M), there is a cochain g ∈ C•−1(0, L ⊗A M) such that ∥g∥ ≤ ∥ f ∥
and dg = π f .

(2) For any cochain f ∈ C•(0, L ⊗A M), there exists an h ∈ C•(0, L ⊗A M) such that ∥h∥ ≤
max(∥ f ∥/c, ∥d f ∥) and ∥π2 f − dh∥ ≤ ∥d f ∥/c.

Proof. We only prove (1) and then (2) follows from Lemma 3.9 directly.
Now, let f =

∑n
i=1 ei ⊗ fi be a cocycle with f j ∈ Cs(0,M) for all 1≤ j ≤ n. Then ∥ f ∥ ≤ 1. For any

γ1, γ2, . . . , γs+1 ∈ 0, we have( n∑
i=1

ei⊗d fi

)
(γ1, . . . , γs+1)=

( n∑
i=1

ei⊗d fi

)
(γ1, . . . , γs+1)−d f (γ1, . . . , γs+1)

=

n∑
i=1

(1−γ1)(ei )⊗ fi (γ2, . . . , γs+1).

It follows that
∥∥∑n

i=1 ei ⊗d fi
∥∥≤ ∥ f ∥/(Rc). In other words, for each 1≤ j ≤ n, ∥d f j∥ ≤ ∥ f ∥/(Rc). By

Lemma 3.10, for every j , there is a g j ∈ Cs−1(0,M) such that ∥g j∥ ≤ max(∥ f j∥/c, ∥d f j∥) ≤ ∥ f j∥/c
and ∥π2 f j − dg j∥ ≤ ∥d f j∥/c ≤ ∥ f ∥/(Rc2).

Now, put g =
∑n

i=1 ei ⊗ gi . Then ∥g∥ ≤ ∥ f ∥/c. On the other hand, we have

π2 f − dg =
n∑

i=1

ei ⊗ (π
2 fi − dgi )+

( n∑
i=1

ei ⊗ (dgi − dg)
)
.

The first term on the right-hand side is bounded by ∥ f ∥/(Rc2) and the second term is bounded by
∥g∥/(Rc) ≤ ∥ f ∥/(Rc2). Thus ∥π2 f − dg∥ is bounded by ∥ f ∥/(Rc2). Then h1 := g/π belongs to
Cs−1(0, (L ⊗A M)) such that ∥h1∥ ≤ ∥ f ∥ and that ∥π f − dh1∥ ≤ ∥ f ∥/(Rc).

Assume we have already h1, h2, . . . , ht ∈ Cs−1(0, L ⊗A M) satisfying

∥h j∥ ≤
∥ f ∥
R j−1 and

∥∥∥∥π f −
j∑

i=1

dhi

∥∥∥∥≤ ∥ f ∥
R j c

, for all 1≤ j ≤ t.

Then f − π−1 ∑t
i=1 dhi ∈ Cs(0, L ⊗A M) with norm ∥ f − π−1 ∑t

i=1 dhi∥ ≤ ∥ f ∥/Rt . Replacing
f by f − π−1 ∑t

i=1 dhi and proceeding as above, we get an ht+1 ∈ Cs−1(0, L ⊗A M) with norm
∥ht+1∥ ≤

∥∥ f −π−1 ∑t
i=1 dhi

∥∥≤ ∥ f ∥/Rt such that∥∥∥∥π f −
t∑

i=1

dhi − dht+1

∥∥∥∥≤
∥∥ f −π−1 ∑t

i=1 dhi
∥∥

Rc
≤
∥ f ∥

Rt+1c
.

Then
∑
+∞

i=1 hi converges to an element h ∈ Cs−1(0, L ⊗A M) such that π f = dh and that ∥h∥ ≤
sup j≥1(∥h j∥)≤ ∥ f ∥. This implies (1). □

The following lemma is a generalisation of [Diao et al. 2023b, Lemma A.1.14] whose proof is similar.



1476 Yupeng Wang

Lemma 3.12. Let A → B be an isometry of Banach OCp -algebras. Suppose the natural projection
pr : B → B/A admits an isometric section s : B/A → B as Banach modules over A. Then, for all
b1, b2 ∈ B, we have

∥pr(b1b2)∥ ≤max(∥b1∥∥pr(b2)∥, ∥b2∥∥pr(b1)∥)

We shall apply this lemma to the inclusion R+→ R̂+
∞

.

Lemma 3.13. Denote the triple (R+, R̂+
∞
) by (A, B) for simplicity. Let f be a cocycle in C1(0,GLn(B)).

Suppose there exists an R > 1 such that ∥ f (γ )− 1∥ ≤ 1/(Rc) for all γ ∈ 0. Let f̄ be the image of f
in C1(0,Mn(B/A)) (which is not necessary a cocycle). If ∥ f̄ ∥ ≤ 1/(Rc2), then there exists a cocycle
f ′ ∈ C1(0,GLn(A)) which is equivalent to f such that ∥ f ′(γ )− 1∥ ≤ 1/(Rc) for all γ ∈ 0.

Proof. We proceed as in the proof of [Diao et al. 2023b, Lemma A.1.15]. It is enough to show that there
exists an h ∈Mn(B) with ∥h∥ ≤ c ∥ f̄ ∥ such that the cocycle

g : γ 7→ γ (1+ h) f (γ )(1+ h)−1

satisfies ∥g(γ )− 1∥ ≤ 1/(Rc) for all γ ∈ 0 and ∥ḡ∥ ≤ ∥ f̄ ∥/R in C1(0,Mn(B/A)).
Granting the claim, by iterating this process, we can find a sequence h1, h2, . . . in Mn(B) with
∥hn∥ ≤ (c ∥ f̄ ∥)/Rn−1

≤ 1/(cRn) such that

γ

( n∏
i=1

(1+ hi )

)
f (γ )

( n∏
i=1

(1+ hi )

)−1

≤
∥ f̄ ∥
Rn .

Set h =
∏
+∞

i=1 (1+ hi ) ∈ GLn(B). Then we have a cocycle

f ′ : γ 7→ γ (h) f (γ )h−1

taking values in Mn(A)∩GLn(B) such that ∥ f ′(γ )− 1∥ ≤ 1/(Rc) for every γ ∈ 0. Thus f ′ ∈ GLn(A)
and we prove the lemma.

Now, we prove the claim. Since f ∈ C1(0,GLn(B)) is a cocycle, for all γ1, γ2 ∈ 0, we have
f (γ1γ2)= γ1( f (γ2)) f (γ1). Using Lemma 3.12, we get

∥d f̄ (γ1, γ2)∥ = ∥γ1 f (γ2)+ f (γ1)− f (γ1γ2)∥

= ∥(γ1 f (γ2)− 1)( f (γ1)− 1)− 1∥

= ∥(γ1 f (γ2)− 1)( f (γ1)− 1)∥ ≤
∥ f̄ ∥
Rc

. (3-1)

Since ∥ f̄ ∥ ≤ 1/(Rc2), we can apply Lemma 3.10 to π−2 f̄ and get an h̄ ∈Mn(B/A) such that

∥h̄∥ ≤max
(
∥π−2 f̄ ∥

c
, ∥π−2d f̄ ∥

)
≤max(c∥ f̄ ∥, c2

∥d f̄ ∥)≤ c∥ f̄ ∥ ≤
1

Rc
.

and that

∥ f̄ − dh̄∥ ≤
∥π−2d f̄ ∥

c
≤ c ∥d f̄ ∥ ≤

∥ f̄ ∥
R
. (3-2)
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By assumption, we can lift h̄ to an h ∈Mn(B) such that ∥h∥ = ∥h̄∥ ≤ c ∥ f̄ ∥. It follows that for all γ ∈ 0,
we have

∥γ (1+ h) f (γ )(1+ h)−1
− f (γ )∥ ≤ ∥h∥ ≤

1
Rc

and, therefore,

∥γ (1+ h) f (γ )(1+ h)−1
− 1∥ ≤

1
Rc
.

Moreover, we have

∥γ (1+ h) f (γ )(1+ h)−1− γ (1+ h) f (γ )(1− h)∥ ≤ ∥h̄2
∥ ≤

c∥ f̄ ∥
Rc
=
∥ f̄ ∥

R
. (3-3)

By Lemma 3.12, we have

∥γ (1+ h) f (γ )(1− h)− f̄ (γ )− γ (h̄)+ h̄∥

= ∥γ (h)( f (γ )− 1)− ( f (γ )− 1)h− γ (h) f (γ )h∥ ≤
∥ f̄ ∥

R
. (3-4)

Combining (3-2), (3-3) and (3-4), we conclude that

∥γ (1+ h) f (γ )(1+ h)−1∥ ≤
∥ f̄ ∥

R
which proves the claim as desired. □

Now we are able to prove Proposition 3.5.

Proof of Proposition 3.5. (1) Since a > r , we may choose s > 1 such that ∥pa+r
∥ = 1/(sc2). By

our assumptions, a basis {e1, e2, . . . , en} of M∞ determines a cocycle f ∈ C1(0,GLn(R̂+∞)) satisfying
∥ f (γ )−1∥≤ 1/(sc2). In particular, f satisfies the hypothesis of Lemma 3.13. Thus there exists a cocycle
f ′ ∈ C1(0, R+) which is equivalent to f such that

∥ f ′(γ )− 1∥ ≤
1
sc
, for all γ ∈ 0.

Then the cocycle f ′ defines a finite free sub-R+-module M of rank n such that

M ⊗R+ R̂+
∞
∼= M∞.

(2) By (1), we have M∞ ∼= M⊕M⊗R+ (R̂+∞/R+). Applying Lemma 3.11(1) to L = M , we deduce that
Hi (0,M⊗R+ R̂+

∞
/R+) is killed by π for every i ≥ 0. But H0(0,M∞)= M0

∞
is π -torsion free, so we get

H0(0,M∞)= H0(0,M)

and complete the proof. □

Up to now, we have constructed a decompletion functor from the category of (a+r)-trivial R̂+
∞

-
representations of0 to the category of essentially (a+r)-trivial R+-representations of0. Now Theorem 3.4
follows from the next proposition directly.

Proposition 3.14. Every essentially (a+r)-trivial R+-representation of 0 is (a+r)-trivial.
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We give the proof of this proposition in the next subsection.

Essentially (a+r)-trivial representation is (a+r)-trivial. Throughout this subsection, we always assume
a > r . For any R+-module N with a continuous 0-action, we denote Hi (0, N ) by Hi (N ) for simplicity.

Now for a fixed essentially (a+r)-trivial R+-representation M of 0 of rank n, we define

M∞ = M ⊗R+ R̂+
∞
.

Then it is (a+r)-trivial and of the form M∞ = M⊕Mcp for Mcp = M⊗R+ R̂+
∞
/R+. Since M is a-trivial,

by Lemma 3.11, we see that R0(0,Mcp) is concentrated in positive degrees and is killed by π . As a
consequence, for any h ≥ r , we have

R0(0,Mcp/ph)≃ R0(0,Mcp)[1].

In particular, R0(0,Mcp/ph) is killed by π . So we deduce that

πH0(M∞/ph)∼= πH0(M/ph).

Replacing M by (R̂+
∞
)l , we get

πH0(R̂+
∞
/ph)n ∼= πH0(R+/ph)n = (πR+/ph)n.

Since M∞ is (a+r)-trivial, choose h = a+ r and we get

πH0(M/pa+r )∼= πH0(M∞/pa+r )∼= πH0(R̂+
∞
/pa+r )n ∼= (πR+/pa+r )n ∼= (R+/pa)n.

Thus, πH0(M/pa+r ) is a free R+/pa-module of rank n.
Choose g1, . . . gn ∈ H0(M/pa+r ) such that πg1, . . . , πgn is an R+/pa-basis of πH0(M/pa+r ). We

claim that the sub-R+/pa+r -module
n∑

i=1

R+/pa+r
· gi ⊂ H0(M/pa+r )

is free. For any i , let g̃i ∈ M be a lifting of gi . Assume x1, . . . , xn ∈ R+ such that
n∑

i=1

xi g̃i ≡ 0 mod pa+r .

Then
n∑

i=1

xiπ g̃i ≡ 0 mod pa+r .

By the choice of gi ’s, we deduce that xi ∈ pa R+ for any i . Write xi = πyi for some yi ∈ R+. Then
n∑

i=1

yiπ g̃i ≡ 0 mod pa+r .

So yi ∈ pa R+ and hence xi ∈ pa+r R+ for all i . This proves the claim.
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It remains to prove g̃1, . . . , g̃n is an R+-basis of M . Let e1, . . . , en be an R+-basis of M . Since M is
a-trivial, we get

M/pa
= H0(M/pa)=

n∑
i=1

R+/paei .

So πe1, . . . , πen is an R+/pa−r -basis of πM/pa . However, by the choice of g̃i ’s, π g̃1, . . . , π g̃n is also
an R+/pa−r -basis of πM/pa . Since a > r , we deduce that g̃i ’s generate M as an R+-module. This
completes the proof.

4. Local Simpson correspondence

In this section, we establish an equivalence between the category of a-small representations of 0 over
R̂+
∞

and the category of a-small Higgs modules over R+. This is a local p-adic Simpson correspondence.
Throughout this section, put r = 1/(p− 1).

Definition 4.1. Assume a > r and A ∈ {R+, R̂+
∞
}. We say a representation M of 0 over A is a-small if

it is (a+νp(ρk))-trivial in the sense of Definition 3.3.

Definition 4.2. By a Higgs module over R+, we mean a finite free R+-module H together with an
R+-linear morphism θ : H → H ⊗R+ �̂

1
R+(−1) such that θ ∧ θ = 0. A Higgs module (H, θ) is called

a-small, if θ is divided by pa+νp(ρk); that is,

Im(θ)⊂ pa+νp(ρk)H ⊗R+ �̂
1
R+(−1).

Let S†,+
∞

with the canonical Higgs field 2 be as in Corollary 2.23. For an a-small representation M
over R̂+

∞
, define

2M = idM ⊗2 : M ⊗R̂+∞ S†,+
∞
→ M ⊗R̂+∞ S†,+

∞
⊗R+ �̂

1
R+(−1). (4-1)

Then it is a Higgs field on M⊗R̂+∞ S†,+
∞

. We denote the induced Higgs complex by HIG(H⊗R+ S†,+
∞
,2H ).

For an a-small Higgs module (H, θH ), define

2H = θH ⊗ id+ idH ⊗2 : H ⊗R+ S†,+
∞
→ H ⊗R+ S†,+

∞
⊗R+ �̂

1
R+(−1). (4-2)

Then2H is a Higgs field on H⊗R+ S†,+
∞

. We denote the induced Higgs complex by HIG(H⊗R+ S†,+
∞
,2H ).

The main theorem in this section is the following local Simpson correspondence.

Theorem 4.3 (local Simpson correspondence). Assume a > r .

(1) Let M be an a-small R̂+
∞

-representation of 0 of rank l. Let H(M) := (M ⊗R̂+∞ S†,+
∞
)0 and θH(M) be

the restriction of 2M to H(M). Then (H(M), θH(M)) is an a-small Higgs module of rank l.

(2) Let (H, θH ) be an a-small Higgs module of rank l over R+. Put M(H, θH ) = (H ⊗R+ S†,+
∞
)2H=0.

Then M(H, θH ) is an a-small R̂+
∞

-representation of 0 of rank l.
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(3) The functor M 7→ (H(M), θH(M)) induces an equivalence from the category of a-small R̂+
∞

-
representations of 0 to the category of a-small Higgs modules over R+, whose quasi-inverse
is given by (H, θH ) 7→ M(H, θH ). The equivalence preserves tensor products and dualities.

(4) Let M be an a-small R̂+
∞

-representation of 0 and (H, θH ) be the corresponding Higgs module. Then
there is a canonical 0-equivariant isomorphism of Higgs complexes

HIG(H ⊗R+ S†,+
∞
,2H )→ HIG(M ⊗R̂+∞ S†,+

∞
,2M).

Also, there is a canonical quasi-isomorphism

R0
(
0,M

[
1
p

])
≃ HIG

(
H

[
1
p

]
, θH

)
,

where HIG
(
H

[ 1
p

]
, θH

)
is the Higgs complex induced by (H, θH ).

The following corollary follows from Theorems 3.4 and 4.3 directly.

Corollary 4.4. Assume a > r . The following categories are equivalent:

(1) The category of a-small representations of 0 over R+.

(2) The category of a-small representations of 0 over R̂+
∞

.

(3) The category of a-small Higgs modules over R+.

In order to prove the theorem, we need to compute R0(0,M ⊗R̂+∞ S†,+
∞
). By Corollary 2.23, we are

reduced to computing R0(0,M⊗R̂+∞ R̂+
∞
⟨ρY1, . . . , ρYd⟩) for any ρ ∈ ρkOCp . So before we move on, let

us fix some notation to simplify the calculation.
For any n ≥ 0, define

Fn(Y )= n!
(Y

n

)
= Y (Y − 1) · · · (Y − n+ 1) ∈ Z[Y ].

For any α ∈ N
[ 1

p

]
∩ (0, 1), define ϵα = 1− ζ−α. Then νp(ρk)≥ r ≥ νp(ϵα).

Calculation in trivial representation case. We are going to compute R0(0, R̂+
∞
⟨ρY1, . . . , ρYd⟩) in this

subsection. We assume d = 1 first. In this case, 0 = Zpγ and acts on R̂+
∞
⟨ρY ⟩ via γ (Y )= Y + 1. Note

that {ρn Fn}n≥0 is a set of topological R̂+
∞

-basis of R̂+
∞
⟨ρY ⟩ and, for any n ≥ 0,

γ (ρn Fn)= ρ
n Fn + nρ · ρn−1 Fn−1.

So we get a γ -equivariant decomposition

R̂+
∞
⟨ρY ⟩ =

⊕̂
α∈N[ 1

p ]∩[0,1)
R+⟨ρY ⟩ · T α.

So it suffices to compute R0(0, R+⟨ρY ⟩ · T α) for any α. We only need to consider the Koszul complex

K(R+⟨ρY ⟩ · T α
; γ − 1) : R+⟨ρY ⟩ · T α γ−1

−−→ R+⟨ρY ⟩ · T α.
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Note that for any α, {ρn FnT α
}n≥0 is a set of topological R+-basis of R+⟨ρY ⟩T α. So we have

(γ − 1)(ρn FnT α)=

{
nρ · ρn−1 Fn−1, α = 0,
ζ αϵαT α

(
ρn Fn + n ρ

ϵα
ρn−1 Fn−1

)
, α ̸= 0.

(4-3)

Put3ρ ={ρn Fn}n≥0 and Iρ ={νp(ρ(n+1))}n≥0. Let R+⟨3ρ⟩ and R+⟨3ρ, Iρ,+⟩ be as in Definition A.1.
Then by (4-3), we see that

(γ − 1)(R+⟨ρY ⟩)= R+⟨3ρ, Iρ,+⟩

and that

(γ − 1)(R+⟨ρY ⟩T α)∼

{
ζ αϵα

(
ρn Fn + n

ρ

ϵα
ρn−1 Fn−1

)}
n≥0

in the sense of Definition A.4. By Proposition A.5, we get

(γ − 1)(R+⟨ρY ⟩T α)= ϵα(R+⟨ρY ⟩T α).

In summary, we see that for α ̸= 0, H1(Zpγ, R+⟨ρY ⟩T α) is killed by ϵα and that for α = 0,

H1(Zpγ, R+⟨ρY ⟩)= R+⟨ρY ⟩/R+⟨3ρ, Iρ,+⟩.

So, keeping the notation as above, we have the following lemma.

Lemma 4.5. (1) The inclusion R+⟨ρY ⟩ ↪→ R̂+
∞
⟨ρY ⟩ identifies R0(0, R+⟨ρY ⟩) with a direct summand

of R0(Zpγ, R̂+
∞
⟨ρY ⟩) whose complement is concentrated in degree 1 and is killed by ζp − 1.

(2) H0(0, R+⟨ρY ⟩)= R+ is independent of ρ.

(3) H1(0, R+⟨ρY ⟩)= R+⟨ρY ⟩/R+⟨3ρ, Iρ,+⟩ is the derived p-adic completion of⊕
i≥0

R+/(i + 1)ρR+.

Proof. It remains to compute H0(0, R+⟨ρY ⟩T α).
When α ̸= 0, assume

∑
n≥0 anρ

n FnT α is γ -invariant. Then we have∑
n≥0

ζ αϵα

(
an +

ρ

ϵα
(n+ 1)an+1

)
ρn FnT α

= 0.

This implies that, for any n ≥ 0 and any m ≥ 0,

an = (−1)m
m∏

j=1

(
ρ

ϵα
(n+ j)

)
an+m .

In particular, νp(an)≥
∑m

j=1 νp(n+ j) for any m ≥ 0. This forces an = 0 for any n ≥ 0.
When α = 0, assume

∑
n≥0 anρ

n Fn is γ -invariant. Then we have∑
n≥0

(n+ 1)ρan+1ρ
n Fn = 0,

which implies an = 0 for any n ≥ 1. So we have R+⟨ρY ⟩0 = R+. □
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Now we are able to handle the higher dimensional case.

Lemma 4.6. Identify Ŝ+
∞,ρ with R̂+

∞
⟨ρY1, . . . , ρYd⟩.

(1) The inclusion R+⟨ρY ⟩ ↪→ Ŝ+
∞,ρ identifies R0(0, R+⟨ρY ⟩) with a direct summand of R0(0, Ŝ+

∞,ρ)

whose complement is concentrated in degree ≥ 1 and is killed by ζp − 1.

(2) For any i ≥ 0, we have

Hi (0, R+⟨ρY ⟩)=
i∧

R+

( d⊕
j=1

R+⟨ρY j ⟩/R+⟨3ρ, j , Iρ,+⟩
)

for 3ρ, j = {ρ
n Fn(Y j )} and Iρ = {νp((n+ 1)ρ)}n≥0.

Proof. Note that R0(0, R̂+
∞
⟨ρY1, . . . , ρYd⟩) is presented by the Koszul complex

K(R̂+
∞
⟨ρY1, . . . , ρYd⟩; γ1− 1, . . . , γd − 1)≃ K(R̂+

∞
⟨ρY1⟩; γ1− 1)⊗̂L

R̂+∞
· · · ⊗̂

L
R̂+∞

K(R̂+
∞
⟨ρYd⟩; γd − 1).

Since R+⟨ρY j ⟩/R+⟨3ρ, j , Iρ,+⟩ is already derived p-complete, the lemma follows from Lemma 4.5
directly. □

Proposition 4.7. (1) (S†,+
∞
)0 = R+.

(2) For any i ≥ 1, Hi (0, S†,+
∞
) is p∞-torsion.

Proof. We only need to show, for any i ≥ 1,

lim
−−→

νp(ρ)>νp(ρk)

Hi (0, Ŝ+
∞,ρ)

is p∞-torsion. However, by Lemma 4.6, this follows from a similar argument as in the proof of
Corollary 2.23. □

Calculation in general case. Now, by virtues of Theorem 3.4, we may assume that M is an a-small
representation of 0 over R+. Let e1, . . . , el be an R+-basis of M and A j be the matrix of γ j with respect
to the chosen basis for all 1≤ j ≤ d; that is,

γ j (e1, . . . , el)= (e1, . . . , el)A j .

Put B j= A j−I . It is the matrix of γ j−1 and has p-adic valuation νp(B j )≥a+νp(ρk) by a-smallness of M .
Similar to the trivial representation case, we are reduced to computing R0(0,M⊗R+ R̂+

∞
⟨ρY1, . . . , ρYd⟩).

Note that we still have a 0-equivariant decomposition

M ⊗R+ R̂+
∞
⟨ρY1, . . . , ρYd⟩ =

⊕̂
α∈(N[ 1

p ]∩[0,1))
d M ⊗R+ R+⟨ρY1, . . . , ρYd⟩T α,

where T α denotes T α1
1 · · · T

αd
d for any α = (α1, . . . , αd).

Assume α ̸= 0 at first. Without loss of generality, we assume αd ̸= 0. Note that

{ei,n := eiρ
n Fn(Yd)T α

}1≤i≤l,n≥0
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is a set of topological basis of M ⊗R+ R+⟨ρY1, . . . , ρYd⟩T α over R+⟨ρY1, . . . , ρYd−1⟩. We have

(γd − 1)(e1,n, . . . , el,n)= ζ
αd ϵαd

(
(e1,n, . . . , el,n) · (ϵ

−1
αd

Bd + I )+ (e1,n−1, . . . , el,n−1) · n
ρ

ϵαd

Ad

)
.

Similar to the trivial representation case, using Proposition A.6, we deduce that

R0(Zpγd ,M ⊗R+ R+⟨ρY1, . . . ,ρYd⟩T α)≃ M ⊗R+ R+⟨ρY1, . . . ,ρYd⟩T α/ϵαd [−1].

Using the Hochschild–Serre spectral sequence, we have the following lemma.

Lemma 4.8. Assume α ̸= 0. Then the complex R0(0,M ⊗R+ R+⟨ρY1, . . . ,ρYd⟩T α) is concentrated in
positive degrees and is killed by ζp − 1.

Now, we focus on the α = 0 case and prove the following proposition.

Proposition 4.9. Keep the notation as above. Assume νp(ρ) < a+ νp(ρk)− r . Define

H(M) := (M ⊗R+ R+⟨ρY1, . . . , ρYd⟩)
0.

Then the following assertions are true:

(1) H(M) is a finite free R+-module of rank l and is independent of the choice of ρ. More precisely, if
we define

(h1, . . . , hl)= (e1, . . . , el)
∑

n1,...,nd≥0

d∏
i=1

(−A−1
i Bi )

ni

ni !
Fni (Yi ),

then h1, . . . , hl is an R+-basis of H(M).

(2) The inclusion H(M) ↪→ M ⊗R+ R+⟨ρY1, . . . , ρYd⟩ induces a 0-equivariant isomorphism

H(M)⊗R+ R+⟨ρY1, . . . , ρYd⟩ ∼= M ⊗R+ R+⟨ρY1, . . . , ρYd⟩.

Proof. We first consider the d = 1 case. In this case, 0 = Zpγ acts on R+⟨ρY ⟩ via γ (Y )= Y + 1. Let
e1, . . . , el be a basis of M and A be the matrix of γ associated to the chosen basis. Put B = A− I and
then νp(B)≥ a+ νp(ρk) > νp(ρ)+ r . Note that {ρn Fn(Y )}n≥0 is a set of topological basis of R+⟨ρY ⟩.

(1) Assume x =
∑

n≥0 eXnρ
n Fn(Y )∈ H(M), where Xn ∈ (R+)l for any n≥ 0 and e denotes (e1, . . . , el).

Since γ (x)= x , we deduce that, for any n ≥ 0,

B Xn =−(n+ 1)ρAXn+1.

In other words, we have

Xn =
−A−1 B

nρ
Xn−1 =

(−A−1 B)n

ρnn!
X0.

Note that νp((A−1 B)n/(ρnn!))≥ (a+ νp(ρk)− r − νp(ρ))n. So we get (A−1 B)n/(ρnn!) ∈Ml(R+) and
hence Xn is uniquely determined by X0. In particular, we have

x = e
∑
n≥0

(−A−1 B)n

ρnn!
ρn Fn(Y )X0 = e

∑
n≥0

(−A−1 B)n

n!
Fn(Y )X0. (4-4)
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Conversely, any x ∈ M ⊗R+ R+⟨ρY1, . . . , ρYd⟩ which is of the form (4-4) for some X0 ∈ (R+)l is
γ -invariant. So we are done.

(2) From the proof of (1), we see that
∑

n≥0((−A−1 B)n/(ρnn!))ρn Fn(Y ) ∈ GLl(R+⟨ρY ⟩). Thus the
hi ’s form an R+⟨ρY ⟩-basis of M ⊗R+ R+⟨ρY ⟩ as desired.

Now, we handle the case for any d ≥ 1. By what we have proved and by iterating, we get

e(R+⟨ρY1, . . . , ρYd⟩)
l
= e

∑
nd≥0

(−A−1
d Bd)

nd

nd !
Fnd (Yd)(R+⟨ρY1, . . . , ρYd⟩)

l

= e
∑

nd−1,nd≥0

(−A−1
d−1 Bd−1)

nd−1

nd−1!
Fnd−1(Yd−1)

(−A−1
d Bd)

nd

nd !
Fnd (Yd)(R+⟨ρY1, . . . , ρYd⟩)

l

= · · ·

= e
∑

n1,...,nd≥0

d∏
i=1

(−A−1
i Bi )

ni

ni !
Fni (Yi )(R+⟨ρY1, . . . , ρYd⟩)

l .

Since e
∑

n1,...,nd≥0
∏d

i=1((−A−1
i Bi )

ni /ni !)Fni (Yi ) forms a 0-invariant basis, the result follows from
(R+⟨ρY1, . . . , ρYd⟩)

0
= R+. □

Remark 4.10. Note that if νp(z) > r , then

(1+ z)Y =
∑
n≥0

zn

n!
Fn(Y ).

Therefore, for M and ρ as above, as νp(A−1
i B j )≥a> r , the operator

∏d
i=1 γ

−Yi
i , whose matrix is given by∑

n1,...,nd≥0
∏d

i=1((−A−1
i Bi )

ni /ni !)Fni (Yi ), is well defined on M⊗R+ R+⟨ρY1, . . . , ρYd⟩. Then the above
proposition says that we have H(M) =

∏d
i=1 γ

−Yi
i M . Since log(1+ z)(1+ z)Y =

∑
n≥0(z

n/n!)F ′n(Y )
when νp(z) > r , for any em⃗ ∈ M with m⃗ ∈ (R+)l and 1≤ j ≤ d, we get

∂

∂Y j

( d∏
i=1

γ
−Yi
i em⃗

)
= e ∂

∂Y j

( ∑
n1,...,nd≥0

d∏
i=1

(−A−1
i Bi )

ni

ni !
Fni (Yi )m⃗

)

= e
∑

n1,...,nd≥0

(−A−1
j B j )

n j

n j !
F ′n j
(Y j )

∏
1≤i≤d

i ̸= j

(−A−1
i Bi )

ni

ni !
Fni (Yi )m⃗

= e(−log(A j )
∑

n1,...,nd≥0

d∏
i=1

(−A−1
i Bi )

ni

ni !
Fni (Yi )m⃗)

=−log γ j

d∏
i=1

γ
−Yi
i em⃗.

Corollary 4.11. Keep the notation as above.
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(1) Denote by θH(M) the restriction of 2 to H(M). Then (H(M), θH(M)) is an a-small Higgs module.
Also, θH(M) =

∑d
i=1−log γi ⊗ ((dlog Ti )/t).

(2) The inclusion H(M)→ M ⊗R+ S†,+
∞

induces a 0-equivariant isomorphism

H(M)⊗R+ S†,+
∞
∼= M ⊗R+ S†,+

∞

and identifies the corresponding Higgs complexes

HIG(H(M)⊗R+ S†,+
∞
,2H(M))∼= HIG(M ⊗R+ S†,+

∞
,2M).

Proof. (1) Since 2=
∑d

i=1(∂/∂Yi )⊗ ((dlog Ti )/t), the “Also” part follows from Remark 4.10. Since
νp(Bi )≥ a+νp(ρk) for all j and log γ j =−

∑
n≥1(−B j )

n/n, we see the a-smallness of (H(M), θH(M))

as νp(Bn
i /n)≥ a+ νp(ρk) for all n.

(2) This follows from Proposition 4.9(2) and the definition of θH(M). □

We have seen how to achieve an a-small Higgs module from an a-small representation. It remains to
construct an a-small representation of 0 from an a-small Higgs module.

Proposition 4.12. Assume a > r . Let (H, θH ) be an a-small Higgs module of rank l over R+. Put
M = (H ⊗R+ S†,+

∞
)2H=0.

(1) The restricted 0-action on M makes it an a-small R̂+
∞

-representation of rank l. Also, if θH =∑d
i=1 θi ⊗ ((dlog Ti )/t), then γi acts on M via exp(−θi ).

(2) The inclusion M ↪→ H ⊗R+ S†,+
∞

induces a 0-equivariant isomorphism

M ⊗R̂+∞ S†,+
∞
∼= H ⊗R+ S†,+

∞

and identifies the corresponding Higgs complexes

HIG(M ⊗R̂+∞ S†,+
∞
,2M)∼= HIG(H ⊗R+ S†,+

∞
,2H ).

Proof. (1) The argument is similar to the proof of Proposition 4.9.
Assume ρ ∈ ρkmCp such that a+ νp(ρk) > νp(ρ)+ r . Let e1, . . . , el be an R+-basis of H . We claim

that M = (H ⊗R+ R̂+
∞
⟨ρY1, . . . , ρYd⟩)

2H=0.
In fact, if G⃗ = (G1, . . . ,Gl)

t
∈ (R̂+

∞
⟨ρY1, . . . , ρYd⟩)

l such that m =
∑l

i=1 ei Gi ∈ M , then we see that,
for any 1≤ i ≤ d ,

θi G⃗+
∂G⃗
∂Yi
= 0.

This forces G⃗ =
∏d

i=1 exp(−θi Yi )a⃗ for some a⃗ ∈ (R̂+
∞
)l . Since νp(θ j ) ≥ a + νp(ρk), the matrix∏d

i=1 exp(−θi Yi ) is well defined in GLl(R̂+∞⟨ρY1, . . . , ρYd⟩). This shows that M is finite free of rank l
and is independent of the choice of ρ.

Note that γi (Y j ) = Y j + δi j . We see γi acts on M via exp(−θi ). Since νp(θi ) ≥ a + νp(ρk), using
exp(−θi Yi )=

∑
n≥0((−θi )

n/n!)Y n
i , we deduce that M is a-small.
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(2) This follows from the fact that
∏d

i=1 exp(−θi Yi ) ∈ GLl(R̂+∞⟨ρY1, . . . , ρYd⟩) and the definition of
0-action on M . □

Finally, we complete the proof of Theorem 4.3.

Proof of Theorem 4.3. Part (1) was given in Corollary 4.11. Part (2) was proved in Proposition 4.12.
The equivalence part of (3) follows from Corollary 4.11(2) (as the θi ’s act via the −log γi ’s) together
with Proposition 4.12(2) (as the γi ’s act via the exp(−θi )’s). Elementary linear algebra shows that the
equivalence preserves tensor products and dualities. So we only need to prove the “Also” part of (4).

Let M be an a-small representation of 0 over R̂+
∞

and (H, θH ) be the corresponding Higgs module
over R+. By Corollary 2.23, we have quasi-isomorphisms of complexes over R̂∞

M
[

1
p

]
≃
−→ HIG(M ⊗R̂+∞ S†

∞
,2M)≃ HIG(H ⊗R+ S†

∞
,2H ).

Applying R0(0, · ), we get a quasi-isomorphism

R0
(
0,M

[
1
p

])
→ R0(0,HIG(H ⊗R+ S†

∞
,2H )).

However, it follows from Proposition 4.7 that

R0(0, S†
∞
)≃ R[0].

So we get
R0(0,HIG(H ⊗R+ S†

∞
,2H ))≃ HIG

(
H

[
1
p

]
, θH

)
.

Therefore, we conclude the desired quasi-isomorphism

R0
(
0,M

[
1
p

])
≃ HIG

(
H

[
1
p

]
, θH

)
. □

Finally, it is worth pointing out that all results in Theorem 4.3 still hold for Ŝ+
∞,ρk

instead of S†,+
∞

except the “Also” part of (4) because HIG
(

Ŝ+
∞,ρk

[ 1
p

]
,2

)
̸= R̂∞[0] and R0

(
0, Ŝ+

∞,ρk

[ 1
p

])
̸= R[0]. For

the future use, we give the following proposition.

Proposition 4.13. Keep the notation as in Theorem 4.3.

(1) Let M be an a-small R̂+
∞

-representation of 0 of rank l. Then H(M)= (M ⊗R̂+∞ Ŝ+
∞,ρk

)0 and θH(M)

is the restriction of 2M to H(M).

(2) Let (H, θH ) be an a-small Higgs module of rank l over R+. Then M(H, θH )= (H ⊗R+ Ŝ+
∞,ρk

)2H=0.

(3) Let M be an a-small R̂+
∞

-representation of 0 and (H, θH ) be the corresponding Higgs module. Then
there is a canonical 0-equivariant isomorphism of Higgs complexes

HIG(H ⊗R+ Ŝ+
∞,ρk

,2H )→ HIG(M ⊗R̂+∞ Ŝ+
∞,ρk

,2M).

Proof. By Corollary 2.22, we have a 0-equivariant decomposition

Ŝ+
∞,ρk
=

⊕̂
α∈(N∩[0,1))d

R+⟨ρkY1, . . . , ρkYd⟩T α.
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Let N be the a-small R+-representation of 0 corresponding to M in the sense of Theorem 3.4. Then
M = N ⊗R+ R̂+

∞
.

(1) Thanks to Lemma 4.8, we have

(M ⊗R̂+∞ Ŝ+
∞,ρk

)0 = (N ⊗R+ R+⟨ρkY1, . . . , ρkYd⟩)
0.

Since a > r , it is automatic that νp(ρk) < a+ νp(ρk)− r . So (1) is a consequence of Proposition 4.9.

(2) This follows from the proof of Proposition 4.12(1) directly (because νp(ρk) < a+ νp(ρk)− r ).

(3) This follows from (1), (2) and Theorem 4.3(4) via the base-change along S†,+
∞
→ Ŝ+

∞,ρk
. □

5. A p-adic Simpson correspondence

Statement and preliminaries. Now, we want to globalise the local Simpson correspondence established
in the last section for a liftable smooth formal scheme X. We fix such an X together with an A2-lifting X̃.
Then we have the corresponding integral Faltings’ extension E+ and overconvergent period sheaf OC†,+.
Let X be the rigid analytic generic fibre of X and ν : Xproét→ Xét be the projection of sites. Throughout
this section, we assume r = 1/(p− 1).

Definition 5.1. Assume a ≥ r . By an a-small generalised representation of rank l on Xproét, we mean a
sheaf L of locally finite free ÔX -modules of rank l which admits a p-complete sub-Ô+X -module L+ such
that there is an étale covering {Xi → X}i∈I and rationals bi > b > a such that, for any i ,

(L+/pbi+νp(ρk))al
|X i
∼= ((Ô+X/pbi+νp(ρk))l)al

|X i

is an isomorphism of (Ô+al
X /pbi+νp(ρk))|X i -modules, where Ô+al

X is the almost integral structure sheaf2

and X i denotes the rigid analytic generic fibre of Xi .

Definition 5.2. Assume a≥ r . By an a-small Higgs bundle of rank l on Xét, we mean a sheaf H of locally
finite free OX

[ 1
p

]
-modules of rank l together with an OX

[ 1
p

]
-linear operator θH :H→H⊗OX �̂

1
X(−1)

satisfying θH ∧ θH = 0 such that it admits a θH-preserving OX-lattice H+— i.e., H+ ⊂H is a subsheaf
of locally free OX-modules with H+

[ 1
p

]
=H— satisfying the condition

θH(H+)⊂ pb+νp(ρk)H+⊗OX �̂
1
X(−1)

for some b > a.

For any a-small generalised representation, define

2L = idL⊗2 : L⊗ÔX
OC†
→ L⊗ÔX

OC†
⊗OX Ô1

X(−1).

2This is the presheaf on Xproét sending each affinoid perfectoid space U = Spa(R, R+) to the almost OCp -module R+al in
the sense of [Scholze 2012, Section 4]. Since Xproét admits a basis of affinoid perfectoid spaces, the proof of [Scholze 2012,

Proposition 7.13] shows that Ô+al
X is a sheaf.
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Then 2L is a Higgs field on L⊗ÔX
OC†. Denote the induced Higgs complex by HIG(L⊗ÔX

OC†,2L).
For any a-small Higgs field (H, θH), put

2H = θH⊗ id+ idH⊗2 :H⊗OX OC†
→H⊗OX OC†

⊗OX �̂
1
X(−1).

Then 2H is a Higgs field on H⊗OX OC†. Denote the induced Higgs complex by HIG(H⊗OX OC†,2H).
Then our main theorem is the following p-adic Simpson correspondence.

Theorem 5.3 (p-adic Simpson correspondence). Keep the notation as above.

(1) For any a-small generalised representation L of rank l on Xproét, Rν∗(L⊗ÔX
OC†) is discrete. Define

H(L) := ν∗(L⊗ÔX
OC†) and θH(L) = ν∗2L. Then (H(L), θH(L)) is an a-small Higgs bundle of rank l.

(2) For any a-small Higgs bundle (H, θH) of rank l on Xét, put

L(H, θH)= (H⊗OX OC†)2H=0.

Then L(H) is an a-small generalised representation of rank l.

(3) The functor L 7→ (H(L), θH(L)) induces an equivalence from the category of a-small generalised
representations to the category of a-small Higgs bundles, whose quasi-inverse is given by (H, θH) 7→
L(H, θH). The equivalence preserves tensor products and dualities and identifies the Higgs complexes

HIG(L⊗ÔX
OC†,2L)≃ HIG(H(L)⊗OX OC†,2H(L)).

(4) Let L be an a-small generalised representation with associated Higgs bundle (H, θH). Then there is
a canonical quasi-isomorphism

Rν∗(L)≃ HIG(H, θH),

where HIG(H, θH) is the Higgs complex induced by (H, θH). In particular, Rν∗(L) is a perfect complex
of OX

[ 1
p

]
-modules concentrated in degree [0, d], where d denotes the dimension of X relative to OCp .

(5) Assume f : X→Y is a smooth morphism between liftable smooth formal schemes over OCp . Let X̃
and Ỹ be the fixed A2-liftings of X and Y, respectively. Assume f lifts to an A2-morphism f̃ : X̃→ Ỹ.
Then the equivalence in (3) is compatible with the pull-back along f .

Remark 5.4. Assume L is a sheaf of locally free ÔX -modules which becomes a-small after a finite
étale base-change f :Y→ X. By étale descent, Rν∗(L⊗ÔX

OC†) is well defined and discrete. Also,
ν∗(L ⊗ÔX

OC†) is a Higgs bundle which becomes an a-small Higgs bundle via pull-back along f .
Conversely, if (H, θH) is a Higgs bundle on X which becomes a-small after taking pull-back along a
finite étale morphism f , by pro-étale descent for ÔX -bundles, (H⊗OX OC†)2H=0 is a well defined
ÔX -bundle. Also, it becomes a-small via the pull-back along f . Therefore, one can establish a p-adic
Simpson correspondence in this case.

Remark 5.5. Assume X comes from a smooth formal scheme X0 over Zp and admits an A2-lifting X̃.
Note that Faltings [2005, Definition 2] used Breuil–Kisin twists to define Higgs fields while we use Tate
twists, so our smallness conditions on Higgs fields differ from his by a multiplication of (ζp − 1). By
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Proposition 2.14, after choosing a covering {Xi → X}i∈I , the cocycle {θi j }i, j∈I corresponding to the
integral Faltings’ extension is exactly the one used in [Faltings 2005, Section 4]. Note that locally we
define Higgs fields by θ =−log γ (Corollary 4.11) while Faltings [2005, Remark(ii)] defined θ = log γ .
So our construction is compatible with [Faltings 2005] up to a sign on Higgs fields.

Remark 5.6. Suppose X comes from a smooth formal scheme X0 over Ok and X̃ is the base-change of
X0 along Ok→ A2. Let OC† be the associated overconvergent period sheaf. By its construction, there is
a natural inclusion OC ↪→OC†. Now assume L is a Zp-local system on Xét and L = L⊗Zp ÔX is the
corresponding ÔX -bundle on Xproét. Since the resulting Higgs field is nilpotent by [Liu and Zhu 2017,
Theorem 2.1], it can be seen from the proof of Theorem 5.3 that the morphism

ν∗(L⊗ÔX
OC)→ ν∗(L⊗ÔX

OC†)

is an isomorphism. So our construction is compatible with the work of [Liu and Zhu 2017] in this case.

We do some preparations before proving Theorem 5.3.

Lemma 5.7. Let U ∈ Xproét be an affinoid perfectoid and M+ be a sheaf of p-torsion free Ô+X -modules
satisfying one of the following conditions:
(a)M+

|U is a sheaf of free Ô+X |U -modules.
(b)M+ is p-complete and there is an almost isomorphism

(M+

|U/pc)al ∼= ((Ô+X |U/pc)r )al

for some c > 0.
Then the following assertions are true:

(1) For any i ≥ 1 and a > 0, H i (U,M+)al ∼= H i (U,M+/pa)al
= 0.

(2) For any b > a > 0, the image of (M+/pb)(U ) in (M+/pa) is M+(U )/pa .

(3) Put M̂+
= lim
←−−n M

+/pn . Then M̂+(U )= lim
←−−n M

+(U )/pn and for any i ≥ 1, H i (U,M̂+)al
= 0.

Proof. By [Scholze 2013a, Lemma 4.10], both (1) and (2) hold for free Ô+X -modules. So we only focus
on M+’s satisfying the second condition.

(1) It is enough to show that for any i ≥ 1, H i (U,M+)al
= 0. Granting this, the rest can be deduced

from the long exact sequence induced by

0→M+ ×pa
−→M+

→M+/pa
→ 0.

Since (M+

|U/pc)al ∼= ((Ô+X |U/pc)r )al, by [Scholze 2013a, Lemma 4.10(v)], we deduce that

H i (U,M+/pc)al
= 0

for any i ≥ 1. Consider the exact sequence

0→M+/pc p(n−1)c
−−−→M+/pnc

→M+/p(n−1)c
→ 0.
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By induction on n, we see that for any i ≥ 1, H i (U,M+/pnc)al
= 0. Now, the desired result follows

from [Scholze 2013a, Lemma 3.18].

(2) Consider the commutative diagram

0 //M+
pb
//

×pb−a

��

M+ //

��

M+/pb //

��

0

0 //M+
pa
//M+ //M+/pa // 0

Then by (1), we get the commutative diagram

0 //M+(U )/pb //

��

(M+/pb)(U )
δb
//

��

H 1(U,M+) //

×pb−a

��

0

0 //M+(U )/pa // (M+/pa)(U )
δa
// H 1(U,M+) // 0

Since the multiplication by pb−a is zero on H 1(U,M+), the image of (M+/pb)(U ) in (M+/pa)(U ) is
contained in the kernel of δa . In other words, (M+/pb)(U ) takes values in M+(U )/pa . Now, the result
follows.

(3) When M+ is p-complete, there is nothing to prove. Now, assume M+ is a free Ô+X -module. The
first part follows from (2) and the second part follows from the same argument used in (1). □

Remark 5.8. In this paper, we say a module (or a sheaf of Ô+X -modules) M is p-complete, if M ∼=
Rlimn M ⊗L

Zp
Zp/pn . This is different from that M= limn M/pn in general. However, as mentioned in the

paragraph below [Bhatt et al. 2019, Lemma 4.6], if M has bounded p∞-torsion; that is, M[p∞] =M[pN
]

for some N ≥ 0, then saying M is p-complete amounts to saying M = limn M/pn . Indeed, in this case,
the pro-systems {M ⊗L

Zp
Zp/pn

}n≥0 and {M/pn
}n≥0 are pro-isomorphic. So we obtain that

Rlim
n

M ⊗L
Zp

Zp/pn
≃ Rlim

n
M/pn.

Lemma 5.9. Assume X= Spf(R+) is small. Define X∞, R̂+
∞

as before. Let L+ be a sheaf of p-complete
and p-torsion free Ô+X -modules such that

(L+/pa)al ∼= ((Ô+X/pa)l)al

for some a > 0. Put M = L+(X∞). Then:

(1) M is a finite free R̂+
∞

-module of rank l.

(2) For any 0< b < a, there is a 0-equivariant isomorphism M/pb ∼= (R̂+∞/pb)l .

Proof. By Lemma 5.7, we have 0-equivariant almost isomorphisms

M/pa ≈
−→ (L+/pa)(X∞)≈ (Ô+X/pa)l(X∞)

≈
←− (R̂+

∞
/pa)l . (5-1)
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In particular, we get an almost isomorphism M/pa
≈ (R̂+

∞
/pa)l . Denote by e1, . . . , el the standard basis

of (R̂+
∞
)l .

(1) As mentioned in the paragraph after [Scholze 2013a, Definition 2.2], for any ϵ ∈Q>0, one can find
OCp -morphisms

f : M/pa
→ (R̂+

∞
/pa)l and g : (R̂+

∞
/pa)l→ M/pa

such that f ◦ g = pϵ and g ◦ f = pϵ . In particular, the image of g is pϵM/pa and the kernel of g is killed
by pϵ .

For any i , choose xi ∈ M such that

xi ≡ g(ei ) mod pa M.

Then the xi ’s generate

pϵM/pa ∼= M/pa−ϵ .

We claim the xi ’s are linear independent over R̂+
∞
/pa−ϵ . Granting this, we see M/pa−ϵ is a finite free

R̂+
∞
/pa−ϵ-module. Since M is p-torsion free and p-complete by Lemma 5.7(3), by choosing ϵ < a, we

deduce that M is finite free of rank l as desired.
So we are reduced to proving the claim. Assume λi ∈ R̂+

∞
such that

∑l
i=1 λi xi ∈ pa M , that is,

g
(∑l

i=1 λi ei
)
∈ pa M . So

∑l
i=1 λi ei ∈ Ker(g) and thus is killed by pϵ . In other words, pϵ

∑l
i=1 λi ei ∈

pa(R̂+
∞
)l . This forces λi ∈ pa−ϵ R̂+

∞
for any i . So we are done.

(2) By [Scholze 2012, Proposition 4.4], the almost isomorphism M/pa
≈ (R̂+

∞
/pa)l induces an isomor-

phism

ι :mCp ⊗OCp
(R̂+
∞
/pa)l→mCp ⊗OCp

M/pa.

Since (5-1) is 0-equivariant, so is ι. Since mCp is flat over OCp , this amounts to a 0-equivariant
isomorphism

h : (mCp R̂+
∞
/pamCp R̂+

∞
)l→mCp M/pamCp M.

Now, for any ϵ > 0, choose xi,ϵ ∈mCp M such that, for any i ,

xi,ϵ ≡ h(pϵei ) mod pa M.

Note that xi,ϵ is unique modulo pa M . So for 0< ϵ′ < ϵ, we have

pϵ−ϵ
′

xi,ϵ′ ≡ xi,ϵ mod pa M.

Assume ϵ < a, we see that pϵ−ϵ
′

divides xi,ϵ for any ϵ′. By [Bhatt et al. 2018, Lemma 8.10], R+ is a
topologically free OCp -module; therefore, so is R̂+

∞
. As we have seen that M is a finite free R̂+

∞
-module, it

is also topologically free over OCp . This forces that xi,ϵ is divided by pϵ . So we may assume xi,ϵ = pϵ yi,ϵ

for some yi,ϵ ∈ M . By construction, yi,ϵ is unique modulo pa−ϵM .
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Now define Hϵ : (R̂+∞/pa−ϵ)l→ M/pa−ϵ by sending ei to yi,ϵ . By construction of Hϵ , we see that it is
the unique R̂+

∞
-morphism from (R̂+

∞
/pa−ϵ)l to M/pa−ϵ whose restriction to (mCp R̂+

∞
/pa−ϵ)l coincides

with h.
We need to show Hϵ is an isomorphism. However, since M is also finite free, after interchanging M

and (R̂+
∞
)l and proceeding as above, we get a unique Gϵ : M/pa−ϵ

→ (R̂+
∞
/pa−ϵ)l , whose restriction to

mCp M/pa−ϵ coincides with h−1. Now, a similar argument shows that Hϵ ◦Gϵ = id and Gϵ ◦ Hϵ = id.
So Hϵ is an isomorphism.

Finally, since h is 0-equivariant, by the uniqueness of Hϵ , we deduce that Hϵ is also 0-equivariant.
Since ϵ is arbitrary, we are done. □

The following corollary is a special case of Lemma 5.9.

Corollary 5.10. Assume X= Spf(R+) is small affine. Let L be an a-small generalised representation with
a sub-Ô+X -sheaf L+ satisfying (L+/pb+νp(ρk))al ∼= ((Ô+X/pb+νp(ρk))l)al for some b > a. Then L+(X∞) is
a b′-small R̂+

∞
-representation of 0 for any a < b′ < b.

Lemma 5.11. Assume X= Spf(R+) is affine small. Let L+ be a sheaf of p-complete and p-torsion free
Ô+X -modules such that

(L+/pc)al ∼= ((Ô+X/pc)l)al

for some c > 0. Then for any P+ ∈ {OC+ρ ,OĈ+ρ ,OC†,+
} and for each i ≥ 0, the natural map

H i (0, (L+⊗Ô+X
P+)(X∞))→ H i (Xproét/X,L+⊗Ô+X

P+)

is an almost isomorphism. When i = 0, it is an isomorphism.

Proof. The proof is similar to [Scholze 2013a, Lemma 5.6; Liu and Zhu 2017, Lemma 2.7]. Denote
by Xm/X

∞ the m-fold fibre product of X∞ over X . As X∞ is a Galois cover of X with Galois group 0,
we have Xm/X

∞ ≃ X∞ × 0m−1. Note that Ô+X/pc comes from the étale sheaf O+X/pc on Xét and that
(L+/pc)al ∼= ((Ô+X/pc)l)al. By [Scholze 2013a, Lemma 3.16], for any i ≥ 0 and m ≥ 1, we have almost
isomorphisms

Homcts(0
m−1, H i (X∞,L+⊗Ô+X

P+/pc))→ H i (Xm/X
∞

,L+⊗Ô+X
P+/pc).

By induction on n, we have almost isomorphisms

Homcts(0
m−1, H i (X∞,L+⊗Ô+X

P+/pnc))→ H i (Xm/X
∞

,L+⊗Ô+X
P+/pnc),

for any n ≥ 1. By letting n go to +∞, we get almost isomorphisms

Homcts(0
m−1, H i (X∞,L+⊗Ô+X

P+))→ H i (Xm/X
∞

,L+⊗Ô+X
P+)

for P+ ∈ {OC+,≤r
ρ ,OĈ+ρ }, where OC+,≤r

ρ denotes the subsheaf of

OC+ρ
∼= Ô+X [ρY1, . . . , ρYd ]
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consisting of polynomials of degrees ≤ r . By the coherence of restricted pro-étale topos, H i (Xm/X
∞ ,−)

commutes with direct limits for all i . Since OC+ρ =
⋃

r≥0 OC+,≤r
ρ , we also get desired almost isomor-

phisms for P+ =OC+ρ . A similar argument also works for P+ =OC†,+
=

⋃
ρ,νp(ρ)>νp(ρk)

OĈ+ρ . When
i = 0, since both sides are mCp -torsion free, so we get injections.

Now applying the Cartan–Leray spectral sequence to the Galois cover X∞→ X and using Lemma 5.7,
we conclude that the map

H i (0∞, (L+⊗Ô+X
P+)(X∞))→ H i (Xproét/X,L+⊗Ô+X

P+)

is an almost isomorphism for every i ≥ 0.
For i = 0, we know H 0(Xproét/X,L+⊗Ô+X

P+) is the (0, 0)-term of the Cartan–Leray spectral sequence
at the E2-page, which is the kernel of the map

(L+⊗Ô+X
P+)(X∞)→ (L+⊗Ô+X

P+)(X2/X
∞
).

On the other hand, H 0(0, (L+⊗Ô+X
P+)(X∞)) is the kernel of the map

(L+⊗Ô+X
P+)(X∞)→ Homcts(0, (L+⊗Ô+X

P+)(X∞)).

So the result follows from the injectivity of the map

Homcts(0, (L+⊗Ô+X
P+)(X∞))→ (L+⊗Ô+X

P+)(X2/X
∞
). □

Proof of Theorem 5.3. Now we are prepared to prove Theorem 5.3.

(1) Let L be an a-small generalised representation of rank l and L+ be the sub-Ô+X -sheaf as described
in Definition 5.1. Define H+ := ν∗(L+⊗Ô+X

OC†,+). It suffices to show that Riν∗(L+⊗Ô+X
OC†,+) is

p∞-torsion for any i ≥ 1 and that H+ satisfies conditions in Definition 5.2. Let b > a and {Xi → X}i∈I

be as in Definition 5.1. Since the problem is local on Xét, we are reduced to showing that for any i ∈ I ,
if we write Xi = Spf(R+i ), then H n(Xproét/Xi ,L+⊗Ô+X

OC†,+) is p∞-torsion for any n ≥ 1 and is a
bi -small Higgs module over R+i for n = 0 in the sense of Definition 4.2 for some bi > b. So we only
need to deal with the case for X small affine.

Now we may assume X= Spf(R+) is affine small itself and that

(L+/pb′)al ∼= ((Ô+X )
l/pb′)al

for some b′ > b. Let X∞, R̂+
∞

and 0 be as before. By Lemma 5.11, the natural morphism

H i (0,L+(X∞)⊗R̂+∞ S†,+
∞
)→ H i (Xproét/X,L+⊗Ô+X

OC†,+)

is an almost isomorphism for i ≥ 1 and is an isomorphism for i = 0. So we are reduced to showing
R0(0,L+(X∞)⊗R̂+∞ S†

∞
) is discrete after inverting p and H 0(0,L+(X∞)⊗R̂+∞ S†

∞
) is a b′′-small Higgs

module for some b′′ > b.
However, by Corollary 5.10, L+(X∞) is a b′′-small R̂+

∞
-representation of 0 for some fixed b′′ > b. So

the result follows from Theorem 4.3(1).
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(2) Let (H, θH) be an a-small Higgs bundle of rank l and H+ be the OX-lattice as described in
Definition 5.2. Fix an a′ satisfying a< a′< b. Define L+= (H+⊗OXOC†,+)2H=0. Then it is a subsheaf
of L= (H⊗OXOC†)2H=0 and hence p-torsion free. We claim that the inclusion OC†,+

→OĈ+ρk
induces

a natural isomorphism

(H+⊗OX OC†,+)2H=0
→ (H+⊗OX OĈ+ρk

)2H=0.

Indeed, this is a local problem and therefore follows from Proposition 4.13. As H+⊗OX OĈ+ρk
is p-

complete, by continuity of 2H, so is L+. It remains to prove that L+ is locally almost trivial modulo
pa′+νp(ρk).

Assume X= Spf(R+) is small affine and let X∞, R̂+
∞

and 0 be as before. Shrinking X if necessary,
we may assume (H+, θH) is induced by a b′-small Higgs module over R+ for some b′ > a′. Then by
Theorem 4.3, L+(X∞) is a b′-small R̂+

∞
-representation of 0.

Let us go back to the global case. Choose an étale covering {Xi→X} of X by small affine Xi =Spf(R+i )
such that on each Xi , (H+, θH+) is induced by a bi -small Higgs module over R+i for some bi > a′. Denote
by X i,∞ the corresponding “X∞” for Xi instead of X. As above, we have

L+(X i,∞)/pbi ∼= (Ô+X (X i,∞)/pbi )l .

Therefore, by the proof of [Scholze 2013a, Lemma 4.10(i)], we get an almost isomorphism

(L+/pbi )al
|X i
∼= ((Ô+X/pbi )l)al

|X i

with bi > a′ > a as desired.

(3) Let L be an a-small generalised representation. There exists a natural morphism of Higgs complexes

ι : HIG(H(L)⊗OX OC†,2H(L))→ HIG(L⊗ÔX
OC†,2L).

By construction of (H(L), θH(L)), it follows from Theorem 4.3(4) that ι is an isomorphism. Since OC†

is a resolution of ÔX by Theorem 2.28, we see that L(H(L), θH(L))= L. The isomorphism

(H, θH)→ (H(L(H)), θH(L(H)))

can be deduced in a similar way. So we get the equivalence as desired.
It remains to show the equivalence preserves products and dualities. But this is a local problem, so we

are reduced to Theorem 4.3(3).

(4) This follows from the same arguments in the proof of Theorem 4.3(4). Indeed, combining Theorem 2.28
and the item (3), we have a quasi-isomorphism

L→ HIG(L⊗ÔX
OC†,2L)≃ HIG(H⊗OX OC†,2H).

On the other hand, it follows from (1) that there exists a quasi-isomorphism

Rν∗(HIG(H⊗OX OC†,2H))≃ HIG(H, θH).
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So we get a quasi-isomorphism

Rν∗(L)≃ HIG(H, θH)

as desired.

(5) Since f : X→Y admits an A2-lifting f̃ , by Proposition 2.29, we get a morphism f ∗OC
†
Y →OC

†
X

which is compatible with Higgs fields.
Assume (H, θH) is an a-small Higgs field on Yét. Denote by ( f ∗H, f ∗θH) its pull-back along f .

By (3), we get the following isomorphisms, which are compatible with Higgs fields:

L( f ∗H, f ∗θH)⊗ÔX
OC

†
X
∼= f ∗H⊗OX OC

†
X

∼= f ∗(H⊗OY OC
†
Y )⊗ f ∗OC

†
Y
OC

†
X

∼= f ∗(L(H, θH)⊗ÔY
OC

†
Y )⊗ f ∗OC

†
Y
OC

†
X

∼= f ∗L(H, θH)⊗ÔX
OC

†
X .

After taking kernels of Higgs fields, we obtain that

L( f ∗H, f ∗θH)∼= f ∗L(H, θH).

So the functor (H, θH)→ L(H, θH) in (2) is compatible with the pull-back along f . But we have shown
it is an equivalence, so its quasi-inverse must commute with the pull-back along f . This completes the
proof.

Corollary 5.12. Assume X is a liftable proper smooth formal scheme of relative dimension d over OCp .
For any small generalised representation L, R0(Xproét,L) is concentrated in degree [0, 2d], whose
cohomologies are finite dimensional Cp-spaces.

Proof. Since we have assumed X is proper smooth, this follows from Theorem 5.3(4) directly. □

Remark 5.13. Except the item (4), all results in Theorem 5.3 are still true by using OĈ+ρk
instead

of OC†,+.

Remark 5.14. In Corollary 5.12, one can also deduce that R0(Xproét,L) is concentrated in degree [0, 2d]
when X is just quasi-compact of relative dimension d over OCp . Indeed, in this case, we have

R0(Xproét,L)≃ R0(Xét,HIG(H, θH))≃ R0(Xét,HIG(H, θH)⊗OX OXét),

where HIG(H, θH)⊗OX OXét denotes the induced Higgs complex on Xét. On the other hand, by étale
descent, the category of étale vector bundles on Xét is equivalent to the category of analytic vector bundles
on Xan, where Xan denotes the analytic site of X . So the Higgs complex HIG(H, θH)⊗OX OXét upgrades
to an analytic Higgs complex HIG(Han, θH) such that

HIG(Han, θH)⊗OXan
OXét = HIG(H, θH)⊗OX OXét .
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By analytic-étale comparison (see [Fresnel and van der Put 2004, Proposition 8.2.3]), for any coherent
OXan-module M, there is a canonical quasi-isomorphism

R0(Xan,M)≃ R0(Xét,M⊗OXan
OXét).

So by considering corresponding spectral sequences of these complexes, we get a quasi-isomorphism

R0(Xan,HIG(Han, θH))≃ R0(Xét,HIG(H, θH)⊗OX OXét).

Now, the quasi-compactness of X implies that X is a noetherian space. So the result follows from
Grothendieck’s vanishing theorem [1957, Théorème 3.6.5] directly. The author thanks the anonymous
referees for pointing this out.

6. Appendix

We prove some elementary facts used in this paper. Throughout this section, we always assume A is a
p-complete flat OCp -algebra.

Definition A.1. Let 3 = {α}α∈3 be an index set and I = {iα}α be a set of nonnegative real numbers
indexed by 3. Define

(1) A[3] =
⊕

α∈3 A;

(2) A⟨3⟩ = lim
←−−m A[3]/pm A[3];

(3) A[3, I ] =
⊕

α∈3 piα A;

(4) A⟨3, I ⟩ = lim
←−−m(A[3, I ] + pm A[3])/pm A[3];

(5) A⟨3, I,+⟩ = lim
←−−m A[3, I ]/pm A[3, I ].

Proposition A.2. (1) A⟨3⟩/A⟨3, I ⟩ is the classical p-completion of A[3]/A[3, I ].

(2) A⟨3⟩/A⟨3, I,+⟩ is the derived p-completion of A[3]/A[3, I ].

Proof. Since A⟨3, I ⟩ is the closure of A⟨3, I,+⟩ in A⟨3⟩ with respect to the p-adic topology, the
item (1) follows from (2) directly. So we are reduced to proving (2).

Consider the short exact sequence

0 // A[3, I ] // A[3] // A[3]/A[3, I ] // 0.

For any n ≥ 0, we get an exact triangle

A[3, I ]⊗L
Zp

Zp/pn
→ A[3]⊗L

Zp
Zp/pn

→ (A[3]/A[3, I ])⊗L
Zp

Zp/pn
→ .

Applying Rlimn to this exact triangle and using p-complete flatness of A, we get the exact triangle

A⟨3, I,+⟩[0] → A⟨3⟩[0] → K →,

where K denotes the derived p-completion of A[3]/A[3, I ]. Now, the item (2) follows from the
injectivity of the map A⟨3, I,+⟩→ A⟨3⟩. □
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Remark A.3. For any (λα)α∈3∈
∏
α∈3 A, we write λα

νp
−→0, if for any M>0 the set {α∈3|νp(λα)≤M}

is finite. Then we have

A⟨3, I ⟩ =
{
(λα)α∈3 | νp

(
λα

piα

)
≥ 0

}
and

A⟨3, I,+⟩ =
{
(λα)α∈3 | νp

(
λα

piα

)
≥ 0, λα

piα

νp
−→ 0

}
.

Definition A.4. Assume M is a (topologically) free A-module. Let 61 and 62 be two subsets of M .

(1) We write 61 ∼62, if they (topologically) generate the same sub-A-module of M .

(2) We write 61 ≈62, if both of them are sets of (topological) basis of M . In this case, we also write
M ≈61 if no ambiguity appears.

Proposition A.5. Fix ϵ, ω ∈OCp . Let M be a (topologically) free A-module with basis {xi }i≥0. If N ⊂ M
is a submodule such that

N ∼ {ω(xi + iϵxi−1) | i ≥ 0},

where x−1 = 0, then N = ωM.

Proof. Put yi = xi + iϵxi−1 for all i . Then we see that

(y0, y1, y2, y3, . . .)= (x0, x1, x2, x3, . . .) · X

with

X =


1 ϵ 0 0 · · ·
0 1 2ϵ 0 · · ·
0 0 1 3ϵ · · ·
0 0 0 1 · · ·
...
...
...

...
. . .


and that

(x0, x1, x2, x3, . . .)= (y0, y1, y2, y3, . . .) · Y

with

Y =


1 −ϵ 2ϵ2

−6ϵ3
· · ·

0 1 −2ϵ 6ϵ2
· · ·

0 0 1 −3ϵ · · ·
0 0 0 1 · · ·

...
...

...
...

. . .


The (i, j)-entry of Y is δi j if i ≥ j and is (−ϵ) j−i (( j−1)!/(i−1)!) if i < j . Then the proposition follows
from the fact XY = Y X = Id. □

The following proposition can be proved in the same way.
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Proposition A.6. Fix 2 ∈Ml(A). Let M be a (topologically) free A-module with basis {xi }i≥0. Let N be
a finite free R-module of rank l with a basis {e1, . . . , el}. For every 1≤ j ≤ l and i ≥ 0, put f j,i ∈ N⊗A M
satisfying

( f1,i , . . . , fl,i )= (e1⊗ xi , . . . , el ⊗ xi )+ i(e1⊗ xi−1, . . . , el ⊗ xi−1)2,

where x−1 = 0. Then N ⊗A M ≈ { f j,i | 1≤ j ≤ l, i ≥ 0}.
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